
Model Driven Development of 
Simulation Models

Modeling and simulation (M&S) is an effective method for analyzing and 
designing systems and it is of interest to scientists and engineers from all 
disciplines. This thesis proposes the application of a model driven software 
development approach throughout the whole set of M&S activities and 
it proposes a formal model driven development framework for modeling 
and simulation, which is called MDD4MS.

The MDD4MS framework presents an integrated approach to bridge the 
gaps between different steps of a simulation study by using metamodeling 
and model transformations. The practical examples with the MDD4MS 
framework showed that the framework is applicable and useful in the 
business process modeling and simulation domain.

This thesis mainly addresses the conceptual modeling and the simulation 
model development stages in the M&S lifecycle and the proposed 
framework can be incorporated into existing simulation methodologies for 
increasing the productivity, maintainability and quality of M&S projects.
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model continuity [ÇVS14]. . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Four layer metamodeling architecture in UML specification [OMG99]. 33

3.1 Checklist for applying the MDD4MS framework. . . . . . . . . . . . 69

6.1 BPMN-to-DEVS transformation pattern. . . . . . . . . . . . . . . . . 109
6.2 DEVS to JAVA transformation pattern. . . . . . . . . . . . . . . . . . 114
6.3 Applying the MDD4MS framework for discrete event simulation of

business process models: languages and metamodels. . . . . . . . . 134
6.4 Applying the MDD4MS framework for discrete event simulation of

business process models: tools. . . . . . . . . . . . . . . . . . . . . . 134
6.5 Applying the MDD4MS framework for discrete event simulation of

business process models: models, transformations and results. . . . 135

7.1 Satisfying the requirements throughout the thesis. . . . . . . . . . . 146

D.1 Experimental model and setup parameters for model-1. . . . . . . . 170
D.2 Experimental model and setup parameters for model-2. . . . . . . . 170

D.3 Symbols used in the thesis. . . . . . . . . . . . . . . . . . . . . . . . . 210

ix



x



Acknowledgements

This research study and doctoral dissertation could not have been completed
without the help and support of many people, who I hope to acknowledge in
this section.

First and foremost, I would like to thank my promotor Prof.dr.ir. Alexander Ver-
braeck and my daily supervisor Dr. Mamadou D. Seck for their great guidance,
support and motivation throughout my research. I am extremely grateful to Alex-
ander, his outstanding vision and strong work ethic have been a great source of
inspiration for me. Similarly, I deeply appreciate Mamadou’s insightful suggestions
and warm encouragements throughout the completion of this thesis.

Secondly, I would like to extend my gratitude to all my present and past colleagues
in the Systems Engineering section. I would like to especially thank Prof.dr. Frances
M.T. Brazier for her future directions and encouragements. I also would like to
thank Dr. Joseph Barjis for his valuable suggestions and comments. Special thanks
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Chapter 1

Introduction

Modeling and simulation is an effective method for analyzing and designing sys-
tems and it is of interest to scientists and engineers from all disciplines [Pid02].
Simulation is the process of conducting experiments with a model for a specific
purpose such as analysis, problem solving, decision support, training, entertain-
ment, testing, research or education [Sha75, Bal01]. The fundamental prerequisite
for simulation is a model, which is called a simulation model. A simulation model
is developed through a modeling process, which is called simulation model devel-
opment. Therefore, the activities in a simulation study are collectively referred
to as Modeling and Simulation (M&S) [Bal01]. Simulation models are typically
built for individual projects and very little advantage is taken from existing models
developed earlier [KN00]. Thus, redundant representations of the same concepts
are often developed for simulation projects.

Several methodologies have been proposed to guide modelers through various
stages of M&S and to increase the probability of success in simulation studies
[Sha75, RAD+83, Ban98, Bal12]. Each methodology suggests a body of meth-
ods, techniques, procedures, guidelines, patterns and/or tools as well as a number
of required steps to develop and execute a simulation model. Most of the well
known modeling and simulation methodologies state the importance of concep-
tual modeling in simulation studies and they suggest the use of conceptual models
during the simulation model development process. However, the transformation
from a conceptual model to an executable simulation model is often not addressed
[vdZKT+10]. Besides, none of the existing modeling and simulation methodologies
provides guidance for formal model transformations between the models at differ-
ent abstraction levels. As a result, conceptual models are often not used explicitly
in the further steps of the simulation studies and a big semantic gap exists between
the different models of the simulation projects [Rob06, BAO11]. Because of this
gap there is not an easy way of tracing the concepts in different models.

From the software engineering perspective, a (computer) simulation model can
be seen as a software application and an M&S study can be seen as a software
engineering project, as a simulation model is an executable program written in a
programming language. The programming language can be either a general pur-
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pose programming language (such as C++, Java, etc.) or a specialized simulation
programming language (such as SIMSCRIPT, SIMAN, SIMULA, etc.). In both
cases, an interpreter executes the simulation model. Thus, software engineering
methodologies can be applied to M&S and existing tools and techniques can be
utilized.

In order to address the identified issues in the M&S field, this research suggests
the application of a Model Driven Development (MDD) approach throughout the
whole set of M&S activities and it proposes a formal MDD framework for mod-
eling and simulation. MDD is a software engineering methodology that suggests
the systematic use of models as the primary means of a development process
[KWB03]. MDD introduces model transformations between the models at dif-
ferent abstraction levels and suggests the use of metamodels for specifying mod-
eling languages. In MDD, models are transformed into other models in order to
(semi)automatically generate the final (software) system. MDD has been proposed
to improve productivity, maintainability, and quality during a development process
[AK03, Sel06, KJB+09, PTTT09, MCM13]. Due to the similarities between soft-
ware development and simulation model development, MDD could potentially be
a cost and effort saving approach for the M&S research and practices. Applying
an MDD approach in simulation could in principle reduce the gap between the
conceptual modeling and the simulation model development stages, and increase
the quality of the simulation study.

The outline of this chapter is as follows: The following three sections provide some
background information about systems engineering, M&S, and M&S lifecycles.
The selected research issues in the M&S field are explained in Section 1.4. The
research objective and the research questions are presented in Section 1.5. The
research philosophy and the research strategy are explained in Section 1.6 and 1.7
respectively. The outline of the thesis is given in Section 1.8.

1.1. Systems thinking

Thinking in terms of systems is a way of looking at the world and the term system
has been used for centuries with various meanings in many fields. A typically
used definition of a system is “a set of interrelated components working together
toward some common objective or purpose” [Kli69, SA00, KS03, BF06]. Producing
system-level purposeful results is the basic characteristic of a system. A system may
be classified as a natural or human-made system; physical or conceptual system;
closed-loop or open-loop system; static or dynamic system, and so on [BF06].
Management systems, transportation systems, health care information systems,
economic systems, education systems, manufacturing systems, military systems,
biological organisms, electronic systems, hardware systems, organizations, social
systems, etc. are all examples of systems with various complexities [KS03, Wym93].

Systems thinking provides a rigorous way of understanding and expressing real world
situations based on a part-whole hierarchy of components. In this way, it helps to
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deal with complexity [vB68, vG91]. The components can include people, hard-
ware, software, facilities, policies, documents, or other things which are required to
achieve the system purpose. The components of a system can be other subsystems
as well [Bun79]. Each component of the system has a number of properties and
functions. Besides, a system has its own properties [Che99]. The system-level res-
ults are produced by its components over time through the relationships between
them [Ash57, SA00]. Hence, the value added by the system as a whole is beyond
that contributed independently by its parts. A system is bounded within an envir-
onment. The environment of a system is a set of components and their relevant
properties, which are not part of the system but a change in any of which can
cause or produce a change in the state of the system [AE72].

Systems engineering is an interdisciplinary field based on the systems thinking
that manages, guides or supports engineering projects to enable the realization of
successful systems [INC06]. The main purpose of systems engineering is to achieve
a high standard of overall quality, performance and reliability of an engineering
project [SA00].

Systems engineering is a comprehensive activity, and so system engineers util-
ize different methods and techniques such as modeling and simulation, functional
analysis, hardware in-the-loop testing, reliability analysis, etc. [NAS07]. Systems
engineering methods can be applied at any stage of the project lifecycle such as
analysis, design, development, test, operation, integration, update, or manage-
ment. This research is about modeling and simulation. M&S is an important and
useful tool, which enables study of the dynamic behavior of a system. M&S is used
for many years in various fields such as business, economics, marketing, education,
politics, social science, transportation, international relations, urban studies, global
systems, etc. [Pid02, Sha75]. The next section presents more information about
M&S.

1.2. Modeling and simulation

Simulation is the process of conducting experiments with a model for a specific
purpose [Sha75, Bal01]. Broadly speaking, a model is a representation of some-
thing. The represented thing is called the source which can be for instance an
object, an idea, a phenomenon, an organization, a process or an event. A model
can even be a representation of another model. From the systems perspective, a
model is a representation of a system and the represented thing is called the source
system [ZPK00].

A simulation model is a representation of a system which can be simulated by means
of experimentation [Kle08]. It may be a physical model, a formal (mathematical)
model, a computer model, or a combination of these [RAD+83]. A wind tunnel, a
wave tank or a scaled down model of a plane can be examples of physical simulation
models. Since physical models are often relatively expensive to build, formal models
are preferred in many cases. If the calculations have to be performed by hand in

3



Chapter 1. Introduction

Figure 1.1: Basic concepts in modeling and simulation.

a formal model, simulation can be extremely tedious and costly. Due to the rapid
growth of the computer technology, computer simulation has replaced simulation
using hand calculations, and computer simulation models are used in many fields.
A simulation model is executed on a simulation platform to generate simulation
results, which is generally called as simulator [ZPK00]. If not stated otherwise, a
simulation model refers to an executable computer model in the context of this
thesis. Figure 1.1 shows the basic concepts and relations in M&S.

Models are commonly classified according to how they deal with time, randomness
and state as dynamic/static models, deterministic/stochastic models and discrete/
continuous models respectively [LK91, Nan81].

� Dynamic vs. static models: A dynamic model represents a system as it
evolves over time; whereas a static model is a representation of a system at
a particular time, or one that may be used to represent a system in which
time simply plays no role.

� Deterministic vs. stochastic models: In deterministic models, a model does
not contain any probabilistic elements; and the output is determined once
the set of input values and relationships in the model have been specified,
even though it might take a lot of computer time to evaluate what it is.
Stochastic models produce output using probabilistic or random variables.

� Discrete vs. continuous models: In continuous models, state variables change
continuously with respect to time. In discrete models, state variables change
instantaneously at distinct points in time.

Simulation models can also be classified along these three dimensions [LK91].
However, in simulation studies, the source system has some sort of mechanism that
changes [Wym67], and so the simulation models are dynamic in nature. On the
other hand, deterministic simulation models are seen as a special case of stochastic
models, since their parameters or input variables are generally sampled from a given
prior distribution [Kle08].
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1.3. M&S lifecycles

Several methodologies have been proposed in the literature to guide modelers
through various stages of M&S and to increase the probability of success in simula-
tion studies [Sha75, RAD+83, Ban98, Bal12]. Looking at the existing methodolo-
gies, some similar terms and patterns can be distinguished. Although the concept
of a lifecycle has not been fully employed in the field of M&S [Bal12], an M&S
lifecycle with five main stages can be characterized; (1) M&S study definition, (2)
conceptual modeling, (3) simulation model development, (4) experimentation and
(5) analysis of results. In this section, a set of M&S lifecycles will be analyzed in
order to identify the common steps and concepts among them. The activities are
labeled with the numbers 1 to 5 to show which activities fall into the proposed
main stages. Original names of the stages are given in the parentheses if they are
comparable to the given ones.

In Shannon’s methodology [Sha75, Sha98], a simulation study starts with defining
the problem and determining the boundaries (1). After deciding to use simulation,
abstraction of the real system is represented with a flow diagram and the data
needed by the model is identified in an appropriate form (2). Then the model
is described in a computer programming language and validated (3). After that
strategic and tactical planning for the experiments are done; and simulation model
is executed to generate the results to perform analysis (4). At the end, results
are analyzed and the model and/or results are implemented while the activities
and outcomes are documented (5). Implementation here means putting the model
and/or results to use.

Roberts et al. [RAD+83] define a similar lifecycle, which includes six stages to
construct a computer simulation model. The first stage involves recognizing and
defining a problem to study (problem definition) (1). The second stage involves
committing to paper the important influences believed to be operating within a
system (system conceptualization) (2). After that, models are represented in the
form of computer code that can be executed (model representation) (3). In the
fourth stage, computer simulation is used to determine how all of the variables
within the system behave over time (model behavior) (4). In the model evaluation
stage, numerous tests must be performed on the model to evaluate its quality and
validity (model evaluation). Lastly, the model is used to test alternative policies
that might be implemented in the system under study (policy analysis and model
use) (5).

Nance [Nan84, Nan94] characterizes the model lifecycle as problem definition,
model development, and decision support. The problem definition is dependent
on both technical and organizational factors, and success can be achieved only
by effective communication among the participants and the documentation of de-
cisions reached during these stages (1). Model development starts by expressing
the mental model in the minds of one or more modelers (he calls it a conceptual
model) in the form of one or more communicative models (a communicative model
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can be compared to a conceptual model in the context of this thesis) (2). Then,
the program model follows from a communicative model (3); and, embodied within
an experimental design, the experimental model produces results (4). The integ-
rated decision support period is initiated with the acceptability of the model (5).
Again, both technical and organizational factors can contribute to the acceptance
decision. Besides, Nance states the importance of tool support throughout the
model lifecycle.

Fishwick [Fis95] identifies simulation as a tightly coupled and iterative process
composed of model design, model execution, and execution analysis. He focuses
on model design and model execution and explains the steps to develop and use
a simulation model. He defines the first step as gathering data associated with
the system (1). Then, from the data and knowledge of past experiments with
similar systems, a model is formulated. The model will usually contain parameters
which need to be initialized to some specific value (2). After that, models must
be converted to algorithms to run on a digital computer (3). Verification is the
process of making sure that the written computer program corresponds precisely
to the formal model. Validation is the process of making sure that the model’s
output accurately reflects the behavioral relationships present within the source
system data. The model, when simulated, should be able to produce the same
sorts of data and input output relationships that were gathered initially (4). Lastly,
analysis tests on the data generated from the model are performed (5).

Banks [Ban98] defines a lifecycle with twelve steps which is similar to Shannon’s.
The lifecycle can be broken down into four main stages. The first stage consists
of problem formulation and setting of objectives and overall design. The initial
statement of the problem is usually not well defined and the initial objectives
usually need to be refined (1). The second stage is related to model building
and data collection and includes model conceptualization, data collection, model
translation, verification, and validation (2-3). The third stage concerns running
the model. It involves experimental design, simulation model runs and analysis
(4-5). This stage must have a thoroughly conceived plan for experimenting with
the simulation model. The fourth stage involves reporting and implementation (5).

Law [Law03] defines a seven step approach for conducting a successful simulation
study. First, the problem of interest is stated by the decision maker (1). Then
the conceptual model is prepared and a structured walk through of the model is
performed for conceptual model validation (2). After that, the conceptual model is
programmed in either a general purpose programming language or in a commercial
simulation software product. The programmed model is validated according to
the comparable performance measures collected from the actual existing system
(3). Once the simulation model is ready, simulation experiments are designed and
executed (4). The results are analyzed and additional experiments are performed
if needed. Lastly, the documentation for the model and the associated simulation
study are presented (5).
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Robinson [Rob04] gives special attention to conceptual modeling and presents a
lifecycle with four stages. The first stage includes the understanding of the problem
situation and data collection (conceptual modeling) (1-2). In the second stage,
the conceptual model is converted into a computer model (model coding). This
simply refers to the development of the model on a computer (3). Once developed,
experiments are performed with the simulation model in order to obtain a better
understanding of the real world and/or to find solutions to real world problems
(experimentation) (4). The fourth stage is implementation. Implementation can
be thought of in three ways. First, it is implementing the findings from a simulation
study in the real world. Where the simulation study has identified a particular
solution to a real world problem, then implementation is a case of putting this
solution into practice. A second interpretation of implementation is implementing
the model in the real world rather than the findings. The third interpretation is
implementation as learning. Where the study has led to an improved understanding,
implementation is less explicit, but should be apparent in future decision making.
These forms of implementation are not mutually exclusive and a simulation study
might result in two or even three of these types (5).

A recent work of Balci [Bal12] introduces a more detailed and comprehensive M&S
lifecycle. The lifecycle consists of processes, work products, verification and val-
idation activities, quality assurance activities, and project management activities
required to develop, use, maintain, and reuse an M&S application from birth to re-
tirement. The main processes in the lifecycle are problem formulation, requirements
engineering (1), conceptual modeling (2), architecting, design, implementation (3),
integration, experimentation (4), presentation (5) and certification.

There have been attempts to standardize the M&S activities. For example, in the
military domain, HLA Federation Development and Execution Process (FEDEP)
(or the newer version DSEEP [IEE10]) is proposed, which provides a process for
developing interoperable HLA based federations [IEE03]. A federation develop-
ment can be compared to a simulation model development [MNA06, KCG+08].
FEDEP presents seven main stages as: defining federation objectives (1), perform-
ing conceptual analysis, designing the federation (2), developing the federation
(3), planning, integrating and testing the federation, executing the federation and
preparing the results (4), and analyzing output data and evaluating results (5).

Many other lifecycles are proposed to outline the key processes in simulation studies
[Rob04]. However, when the lifecycles are analyzed in detail, similar steps can be
recognized. The main differences lie in the naming of the processes and the number
of the stages into which they are split [Rob04]. Please note that the lifecycles
are compared just in order to obtain a common terminology. A possible generic
modeling and simulation lifecycle with five main stages is presented in Figure 1.2.
As a summary,

1. In the M&S study definition stage, the problem or issues are identified and
the purpose of the simulation study is stated. The requirements are defined
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and the outline of the M&S study is presented in the M&S plan.

2. In the conceptual modeling stage, a conceptual model is developed while the
system is investigated and data is gathered.

3. In the simulation model development stage, an executable simulation model
is developed according to the conceptual model. Formulating a mathematical
model first, i.e. a formal model, is suggested at this stage. Model validation
and verification is done according to the collected data before executing the
model.

4. In the experimentation stage, experiments are designed and the simulation
model is executed on a simulator to generate simulation results.

5. In the analysis stage, the experimentation results are analyzed and results are
presented in a report. Additional experiments can be performed if needed.

An iterative approach can be followed between the development stages. Model val-
idation deals with building the right model and it is used to determine that a model
is an accurate representation of the source system. During the model validation,
the model behavior compared with respect to the source system behavior. Model
verification deals with building the model right and it is used to ensure that the
model is developed correctly according to the modeling method and it functions
properly without error. During model verification, the accuracy of the model trans-
formation from one form into another is tested as well. The final implementation
or model use stage [Sha75, RAD+83, Rob04] is excluded from this lifecycle since
it is assumed to be in the scope of the systems engineering lifecycle [SA00].

1.4. Identified issues in the M&S field

When the outputs of the M&S lifecycle are examined, it can be easily noticed
that the development process relies on models at different stages. At least four
models are developed throughout the M&S lifecycle, which are conceptual model,
formal model, computer model and experimental model. Although the definition
of a computer model is clear and the relationship between a computer model and
an experimental model is defined through the design of experiments, there is not
a clear understanding of how a conceptual model and a formal model relate to a
computer model and to each other.

Recent studies state the importance of conceptual modeling in simulation studies
[YO06, Rob06, BD08, RBKvdZ10]. The most important role of a conceptual
model is to make all parties involved in a simulation project to understand the
models in the same way [KR08]. Proper development of a simulation conceptual
model is critical for expressing the objectives of the simulation study. Surprisingly
there are many simulation projects that have no conceptual model, a poorly or
only partially developed conceptual model, or incomplete documentation of the
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Figure 1.2: A generic M&S lifecycle.
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simulation conceptual model [Pac00, RBKvdZ10]. For an effective conceptual
modeling stage, more formal and precise methods and tools are needed that will
enable the explicit use of conceptual models [Pac00].

Issue 1. There is a lack of tool support that will enable the explicit use of the
conceptual models in simulation studies.

Despite the fact that most of the existing modeling and simulation methodologies
suggest the use of conceptual models before the simulation model development
process, a very small amount of them refer to how to move from a conceptual
model to an executable simulation model [vdZKT+10]. But none of them provides
a formal method for model transformations between the models at different stages.
As a result, there is no guidance for formal model transformations while moving
from a conceptual model to an executable simulation model.

Issue 2. There is no commonly accepted guidance for formal model transformations
between the different models of the M&S lifecycle.

Due to conceptual models are often not used explicitly in the further steps of
the M&S lifecycle, a big semantic gap exists between the different models of the
simulation project. This gap causes a lack of model continuity in many cases.
Model continuity refers to the generation of an approximate morphism relation
[Far98, ZPK00, RB04] between the different models of a development process
through predefined transformation rules. Model continuity is obtained if the initial
and intermediate models are effectively consumed in the later steps of a develop-
ment process and the modeling relation is preserved [HZ05].

The lack of model continuity has a potential risk of increased design and develop-
ment costs due to unnecessary iterations [JWLBB02]. In the current M&S practice,
model continuity can only be obtained implicitly by the simulation modeler, which
is hard to assess. If model continuity can be guaranteed explicitly then it can in-
crease the maintainability and quality of a simulation study, and it can decrease
the risk of failure [HZ05].

Issue 3. There is a model continuity problem throughout the M&S lifecycle.

1.5. Research objective and questions

The objective of this research is to design a framework for M&S that would provide
a set of methods and guidelines for specifying (conceptual) models in a well-defined
manner (to address issue 1), for performing formal model transformations on those
models (to address issue 2), and for supporting model continuity throughout the
M&S lifecycle (to address issue 3). To address the identified issues in the M&S
field and to achieve the research objective, two main research questions and a
number of subquestions are investigated throughout this research.

Question 1. How can we support the conceptual modeling stage in M&S?
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� Q.1.1. What are the requirements for an effective conceptual modeling stage
in M&S?

� Q.1.2. How can a conceptual modeling language help to meet these require-
ments?

Question 2. How can we provide model continuity throughout the M&S lifecycle?

� Q.2.1. How can simulation conceptual models be utilized in the further steps
of the simulation study?

� Q.2.2. How can formal model transformations help to bridge the gap
between the different models in the M&S lifecycle?

In the first question, the focus of the research is on supporting the conceptual
modeling stage in M&S. So, the requirements for an effective conceptual modeling
stage needs to be examined first (Q.1.1). After that, the formal usage of conceptual
modeling languages to meet these requirements is researched (Q.1.2). In the second
question, the focus of the research is on providing model continuity throughout the
M&S lifecycle. Hence, a practical and formal way to utilize simulation conceptual
models in the further steps of the simulation study needs to be searched first
(Q.2.1). After that, the usage of formal model transformations to bridge the gap
between the different models in the M&S lifecycle is researched (Q.2.2).

To answer the research questions, this research proposes the application of an MDD
approach throughout the M&S lifecycle. From the software engineering perspect-
ive, a (computer) simulation model can be seen as a software application and an
M&S study can be seen as a software engineering project, as a simulation model
is an executable program written in a programming language. Thus, we believe
that software engineering methodologies can be applied to M&S and existing tools
and techniques can be utilized. MDD introduces model transformations between
the models at different abstraction levels and suggests the use of metamodels for
specifying modeling languages. Applying an MDD approach in simulation could
in principle reduce the gap between the conceptual modeling and the simulation
model development stages, and increase the effective use of conceptual models.
Based on our observations and background research, we formulate the following
hypothesis:

The use of the MDD methods, techniques and tools can improve the conceptual
modeling stage in simulation studies and provide model continuity between the
different models in the M&S lifecycle.

Background information that is used to formulate the hypothesis is given in Chapter
2. To test this hypothesis, a formal MDD framework for M&S is proposed and
a case example is performed according to the framework. The following sections
present the research philosophy, research strategy and outline of the thesis.
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1.6. Research philosophy

Research in its most general form is a systematic inquiry to understand existing
knowledge and generate new knowledge [GKV01]. A research philosophy relates to
the development of knowledge and contains assumptions about the way in which
a researcher views the reality and knowledge [SLT07]. It guides the researcher in
choosing the research strategy and appropriate methods for conducting successful
research. Research philosophy is built on three major components which are onto-
logy, epistemology and methodology, whereas there is a close relationship between
them.

Ontology refers to the nature of reality. The dominant ontological paradigms are
realism, critical realism, pragmatic realism and idealism [LT08]. Realism merely
assumes that there is some sort of reality which is independent of the observer
[Hol97]. Critical realism assumes that there is an imperfectly understandable reality.
Claims about reality are subjected to the widest possible critical examination to
facilitate apprehending the reality as closely as possible [GL94]. Pragmatic realism
acknowledges the idea of relativity while defending the moderately realist view
[LT08]. It accepts that some part of the reality can be dependent on some other
parts in a specified context. Thus, pragmatic realism accepts a conceptual system,
which may be real for some people, but not for others. Idealism, in contrast to
realism, assumes that the reality is purely dependent on the activity of mind and
it is purely an observer’s perception [Sta08]. In this research, it is believed that
although there is some sort of reality which is independent of the observer, it is
still not possible to perfectly interpret and understand it. Hence, critical realist
ontology is chosen in this research.

Epistemology refers to the theory of knowledge and the major paradigms are pos-
itivism, postpositivism, pragmatism and interpretivism [Hol97]. Epistemological
paradigms depend on the beliefs about the nature of knowledge. Positivism be-
lieves that all knowledge about reality is objectively given and observer is capable
of studying it without influencing it [GL94]. Postpositivism tries to be less certain
regarding to claims about reality, but it is still closely related to positivism [TT98].
It states that the apprehension of the reality can only be imperfect and incomplete.
Pragmatism believes that the knowledge is relative to the overall goals and object-
ives of the observer. Thus, it is more teleological or goal oriented. Interpretivism
believes that all knowledge about reality is only constructed and depends on human
perception and experience. Constructions are not more or less true, but more or
less sophisticated [OB91]. In this research, it is believed that reality can be agreed
upon by independent observers while being respectful to the idea of relativity. So,
this research, from a philosophical point of view, is posited on a postpositivist
epistemology.

Methodology refers to the selection of an appropriate set of research methods which
will be used during research [OB91]. There are a wide variety of research methods
to gain and enhance knowledge; and it is possible to categorize them in many ways.
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A commonly used categorization is according to the nature of data, as quantitative
and qualitative. Quantitative approach is concerned with the collection and analysis
of measurable and statistic data. It tends to emphasize relatively large scale and
representative sets of data. Qualitative approach, on the other hand, is concerned
with collecting and analyzing information not subject to numeric measurement in
as many forms as possible [BHT96].

Quantitative methods include survey methods, formal methods for data analysis,
laboratory experiments and numerical methods such as mathematical modeling,
among others. Qualitative methods include the observation, participant observa-
tion and interviews, among others. This research uses mostly quantitative methods.

Another categorization of the methods is done according to the underlying type of
reasoning such as deductive reasoning, inductive reasoning and abductive reasoning
[Yu06]. Reasoning is the process of using existing knowledge to draw conclusions,
make predictions, or construct explanations.

� Deductive reasoning is a method of reasoning in which general principles or
premises are proceeded to derive particular information as deductive argu-
ments. (e.g. All birds have feathers. Cino is a bird. Therefore, Cino has
feathers.)

� Inductive reasoning is a method of reasoning in which the premises of an
argument indicate some degree of support for the conclusion but do not
ensure it. (e.g. All of the sugar we have examined so far is sweet. Therefore,
all sugar is sweet.)

� Abductive reasoning is a method of reasoning in which a set of accepted
facts is proceeded to infer to the best explanation for the relevant evidence.
(e.g. All the beads from this box are blue. These beads are blue. Therefore,
these beads are from this box.)

Deductive reasoning based research tests or evaluates a hypothesis, while inductive
or abductive reasoning based research generates or suggests a hypothesis. The un-
derlying reasoning in this research is deductive reasoning, such that the hypothesis
given in Section 1.5 is tested throughout the research. An overview of the research
paradigms is given in Figure 1.3 to provide a comprehensive view. In many cases
method selection depends on the research questions, research objective, available
time, research funds and researcher’s background as well as the ontological and epi-
stemological position. In order to achieve the objective of this research, a number
of suitable research methods have been used which are listed below:

� Literature review: Scientific reading to gather background information.

� Prototyping: Testing the applicability of a theory by a proof of concept
implementation.
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Figure 1.3: Research paradigms from the ontological, epistemological and meth-
odological point of view

� Case example: Demonstrating a relevant exemplary case with the prototype.

� Formal proof: Theorem proving via a sequence of mathematical steps when
some predefined statements (axioms) are assumed to be true.

1.7. Research strategy

Ontological, epistemological and methodological paradigms shape the research
strategy and they have been applied for scientific research in different disciplines.
Research strategy is an overall strategy based on the research philosophy for concep-
tualizing and conducting an inquiry, and constructing scientific knowledge [Hol97].
Furthermore, general research strategy patterns or research frameworks can help
to describe the structure of the research.

Based on the research questions and the research philosophy explained in Section
1.5 and 1.6 respectively, this research has the characteristics of a deductive research
while proposing a design artifact to improve the existing modeling and simulation
methodologies. Hence, we have chosen the traditional scientific method for this
research which is illustrated in Figure 1.4 [Cre03, HGG03, CJT10]. The steps of
the research process are described as below:

1. Identify the issues and ask research questions: After choosing the research
domain and the research topic, the problems or issues are identified. The
objective of the research is stated and the research questions are defined to
address the selected issues. In this research, our research domain is modeling
and simulation, and our focus is on M&S methodologies, M&S lifecycle and
simulation conceptual modeling. So, this thesis mainly contributes to the
Body of Knowledge (BoK) of M&S Science [Tol13].
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Figure 1.4: Research strategy.
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2. Do background research: During the background research, existing know-
ledge about the research topic is reviewed. Different methods can be used to
gather data and background information. In this research, mostly literature
survey is used.

3. Formulate a hypothesis: The research hypothesis is formulated based on the
background information.

4. Design an experiment: After formulating the hypothesis, an experiment to
test the hypothesis is designed. In this research, first an MDD framework for
M&S is proposed and a proof of concept implementation is developed to do
experiments with the framework. Then, a case example is designed to test
the hypothesis.

5. Test the hypothesis: The hypothesis is tested by performing the experiment.
In this research, the designed case example is performed to test the positive
effects of MDD on the simulation model development process.

6. Analyze the results and draw a conclusion: The results are analyzed to see
if they support the initial hypothesis and conclusions are drawn.

7. Publish the results: Finally, the outcome of the research study is published
and communicated with others. It is also important to present the partial
results throughout the research in the well known workshops, conferences or
journals for scientific review.

1.8. Outline of the thesis

The outline of this research is shown in Figure 1.5. The thesis is organized as
follows:

Chapter 1 presents the motivation for this research and explains the research ap-
proach. Chapter 2 presents the background information. Section 2.1 focuses on
simulation conceptual modeling. A set of M&S methodologies is analyzed in order
to see if an MDD approach can be incorporated into these methodologies. Section
2.3 introduces model driven development into simulation field by explaining the
principles of modeling, metamodeling and model transformations.

Chapter 3 proposes the MDD4MS framework as a new method for bridging the
gap between the models at different steps of the M&S lifecycle and supporting
model continuity. Chapter 4 explains how to use domain specific languages with the
proposed framework. Chapter 5 explains how to utilize component based simulation
to support model transformations. The outcome of the Chapters 3, 4, and 5 forms
the theoretical underpinnings of this research.

Chapter 6 presents a proof of concept implementation of the MDD4MS framework
in the business process modeling and discrete event simulation domains. Two case

16



Figure 1.5: Research outline.
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examples are presented to illustrate the usage of the framework and the prototype
modeling environment. The results are analyzed to see if the prototype and the
examples support our hypothesis. Finally, Chapter 7 presents the evaluation of the
research study, draws the conclusions and suggests the future work.

1.9. Declaration

The content of this thesis is the result of the authors original work, except where
referenced or stated otherwise. Parts of this dissertation have been previously
published by the author. The following publications [ÇVS10a, ÇVS10b, ÇVS10,
ÇVS11, ÇV11, RÇSW11, ÇVS12] are presented at international conferences. The
following two chapters [ÇMVS13, ÇVS13] are published in a book, and the following
article [ÇVS14] is submitted to a journal.
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Chapter 2

Background and Related Work

In the previous chapter, a number of research questions are formulated to address
the selected issues in the M&S field. This chapter provides background inform-
ation to answer these research questions. Due to the fact that similar issues are
identified in the software engineering field in the past and solved with model driven
development approaches, this research proposes the application of a model driven
development approach into the whole M&S lifecycle.

Firstly, a brief introduction to simulation conceptual modeling is given and the
requirements for an effective conceptual modeling stage are presented in the next
section. Then, a set of M&S methodologies are analyzed in Section 2.2 in order to
show the lack of guidance for formal model transformations, as well as to show the
possibility of embedding an MDD approach into these methodologies. After that,
a detailed explanation of the MDD principles is provided with clear examples in
Section 2.3. Finally, the related work about applying MDD into M&S is presented
in Section 2.4.

2.1. Conceptual modeling for simulation

In general, conceptual modeling is a process that elicits the general knowledge
about a problem/research domain and describes a conceptual model which is ne-
cessary to develop a solution for a given problem or a construct for a specific purpose
[Oli07]. In a similar way, it can be said that simulation conceptual modeling is about
moving from an M&S study definition and system requirements to a simulation con-
ceptual model which shows the general knowledge about the problem domain and
what is going to be developed in the simulation model [Oli07, RBKvdZ10]. A sim-
ulation conceptual model is an abstract representation of a system that describes
the elements, relationships, boundaries and assumptions without reference to the
specific implementation details [Fis95, Pac00, Rob06, Rob08a]. In this way, it is
expected to show the structure and the abstract behavior of a system according to
the purpose of the simulation study.

The perspective of the client and the modeler are both important in conceptual
modeling [RBKvdZ10]. A conceptual model provides a means of communication
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between all parties in a project and minimizes the likelihood of incomplete and
inconsistent results. It is clear that without a good and agreed conceptual model,
an excessively high share of the simulation project success responsibility is put in
the hands of the simulation model programmer. This situation would have been
mitigated only if stakeholders were involved in the conceptual modeling stage, and
if the conceptual model is used explicitly in the further stages.

Although the term includes the word ’conceptual’, a conceptual model is a concrete
model which expresses the mental model in the mind of the conceptual modeler. A
conceptual model can be a user’s model or a design model, which can be compared
to as-is and to-be models in business process modeling. Hence, it is specified
in a variety of communicative forms such as chart, diagram, drawing, equation,
graph, image, text, animation, audio or video [BO07, vdZKT+10]. The targeted
users of a conceptual model can include project managers, analysts, designers,
developers or simulation model programmers [vdZKT+10]. Therefore, it is very
important to utilize a common language so that conceptual models are represented
and communicated in a manner that is understandable to all users.

A conceptual model itself is a non-executable model since it is specified to be a
preliminary model which will be used as a base for simulation model development
[Nan84, Fis95]. So, it cannot be simulated directly. However, a conceptual model
needs to be transformed into a simulation model by using some transformation
rules, techniques or patterns. If a transformation method is formally defined and
automatized, then a conceptual model can be transformed into an executable simu-
lation model automatically based on these specific transformation rules, techniques
or patterns.

The research on simulation conceptual modeling has increased in the last decade
since conceptual modeling still remains a process that is almost completely per-
formed casually. Zhou et al.[ZSC04] identify and address the issues in developing
efficient models to capture, represent and organize the knowledge for developing
conceptual models. Van der Zee et al. [vdZvdV07] discuss guidance offered by dia-
gramming techniques and simulation tools during conceptual model development.

Robinson [Rob08b] presents a conceptual modeling framework that consists of the
following activities: understanding the problem situation, determining the modeling
and general project objectives, identifying the model outputs (responses), identify-
ing the model inputs (experimental factors), determining the model content (scope
and level of detail), identifying any assumptions and simplifications. Kotiadis and
Robinson [KR08] recommend the use soft systems methodology [Che99] in under-
taking knowledge acquisition and model abstraction during conceptual modeling
and they provide examples in discrete event simulation.

Birta and Arbez [BA07] present another conceptual modeling framework for discrete-
event dynamic systems. The concepts underlying their approach are based on
activity scanning world view. An improved version is represented in [AB10]. Tako

20



et al. [TKV10] describe a framework and tools that enable stakeholder participa-
tion in the development of conceptual models in simulation studies. The suggested
framework utilizes tools from soft systems methodology and group model building
in system dynamics. A report of NATO Modeling and simulation group [NAT12]
provides comprehensive information about conceptual modeling for military mod-
eling and simulation. In the report, various methods are analyzed as well. Chwif
et al. [CBdMFS12] present a framework for specifying discrete event simulation
conceptual models. The framework extends the modeling framework of Robinson
given in [Rob08b].

Looking at the mentioned frameworks, conceptual modeling has two sub-stages
which may be performed in parallel: system structure definition and abstract beha-
vior definition. Hence, the conceptual modeling method should support these activ-
ities for a complete conceptual model [KWHL03]. The commonly used approach
to provide an accurate model is combining different diagramming techniques.

UML class diagrams, entity-relationship diagrams and system entity structure (SES)
are used commonly for representing system structure. As well as ontologies provide
a substantive basis for such a system structure definition in a domain [MA09]. A
number of researchers have suggested using ontologies to propose simulation con-
ceptual modeling methods. For example, Miller et al. [MBSF04] investigate the
benefits of ontologies for discrete-event simulation and presents a Discrete-event
Modeling Ontology (DeMO). Silver et al. [SHM07] present an ontology driven sim-
ulation method for using ontologies during the development of simulation models.
It suggests a technique that establishes relationships between domain ontologies
and a modeling ontology and then uses the relationships to instantiate a simulation
model as ontology instances.

On the other hand, various modeling languages provide an effective way for ab-
stract behavior definition. Simulation conceptual modeling mostly benefits from
general purpose modeling languages or diagramming techniques, such as process
flow diagrams, flowcharts, event graphs, activity cycle diagrams, IDEF diagrams,
UML activity diagrams, etc. [SCT03, Ong10]. As well as, there are some domain
specific conceptual modeling methods such as BPMN [OMG11a], DEMO method-
ology [Die06], KAMA [BD08], Simulation Modeling Language (SimML) [Ari01],
Simulation Model Definition Language (SMDL) [ESA05], Simulation Reference
Markup Language (SRML) [Rei02] and OntoUML [GW12].

Higher level visual diagrams for some formalisms such as Petri Nets [Pet81] or
DEVS [ZPK00] are used for conceptual modeling as well. Although these formal-
isms are not conceptual modeling languages, the higher level incomplete models
can still be used as a conceptual model if all of the stakeholders are familiar with
the formalism. In this case, conceptual models are refined incrementally and the
final full model becomes the simulation model. But, in most cases, problem owners
are not familiar with the chosen system specification formalism and so it is hard
to communicate during the conceptual modeling stage. Hence, it is critical to
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use a conceptual modeling language such that both the problem owner and the
simulation modeler can understand the conceptual model, and they can agree on
it. In general, a conceptual modeling language has no execution semantics while
a system definition language has execution semantics. Model continuity problem
arises when there is no formal continuity relation between the models when different
modeling languages are used at each stage. Although there are many languages,
techniques and tools for simulation conceptual modeling, more formal and precise
methods and tools are needed that will enable the explicit use of the conceptual
models [Pac00].

2.1.1. Requirements for simulation conceptual modeling

This section presents key requirements for conceptual modeling to provide a sound
reference for simulation model development. These requirements can form a basis
for an effective conceptual modeling method for simulation. During the conceptual
modeling stage:

� R-CM.1. The problem/research domain ontology must be described [GW04],

� R-CM.2. A modeling language must be chosen to specify the conceptual
model [GW12],

� R-CM.3. The conceptual model must conform to the modeling language,

� R-CM.4. The system structure and abstract behavior must be defined
[Rob08a],

� R-CM.5. The boundaries and the assumptions must be defined [Rob08a],

� R-CM.6. The conceptual model must be communicative between the stake-
holders [vdZKT+10],

� R-CM.7. The conceptual model must be independent from the implement-
ation details [Rob08a].

During conceptual modeling stage these requirements need to be satisfied. Choos-
ing a suitable and effective conceptual modeling method can help to develop a
good conceptual model. Domain specific modeling languages can help by defin-
ing the concepts for a specific domain. Metamodeling approach can be utilized to
define both ontologies and modeling languages in an efficient and well-defined way.
The MDD4MS framework proposed in Chapter 3 includes well-defined solutions for
conceptual model representation via metamodeling and Chapter 4 provides more
information about domain specific languages.
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2.1.2. What is next? From conceptual models to simulation models

Regardless the problems of simulation conceptual modeling in practice, if we assume
that a successful conceptual modeling stage is performed and a good conceptual
model is developed by using a suitable conceptual modeling language, there are still
problems while moving to the next stage in the project lifecycle. Conceptual models
are often not used explicitly in the further stages as formal model transformation
methods are not available to provide model continuity. Although a good conceptual
model increases the quality of a project and provides a good understanding of the
problem, a high share of the responsibility is again put in the hands of the simulation
model programmer if there is no explicit model continuity.

As a result, the existing M&S methodologies and conceptual modeling methods
require some development in the state-of-the-art approaches. This research pro-
poses the use of the model driven development methods, techniques and tools to
improve the M&S activities. To introduce the MDD approach into the simulation
field, a number of M&S methodologies are analyzed according to their support for
MDD. The major requirement for an MDD supporting methodology is defining a
multi-stage and multi-model development lifecycle [Sel06].

2.2. Analysis of M&S methodologies for applying MDD

In this section, a set of M&S methodologies will be analyzed in order to see if
an MDD approach can be incorporated into these methodologies [ÇVS14]. Each
methodology is evaluated according to a set of questions to analyze the support
for model continuity. The questions are defined according to the required steps
in a simulation study. Table 2.1 presents the results and it is shown that all of
the methodologies introduce multiple stages for carrying out a simulation study.
Regarding the outputs of the sub-stages it is identified that the development process
highly relies on models at different abstraction levels [TDT08].

All of the methodologies require a conceptualization step and many of them suggest
to transform the conceptual model into a simulation model, but do not formally
define how to do that. All of the methodologies prepare for computer simulation
and require a programming or model coding step. Some of them mention automatic
code generation. Therefore, M&S can be identified as a model based process [Ö07]
and an MDD method can be incorporated into these methodologies. On the other
hand, some of the methodologies are lacking a formal specification step which is
important to separate the formal system specification and programming concerns.
Moreover, almost all of the methodologies ignore model transformations and none
of them provides formal model transformation methods between the models at
different abstraction levels. Hence, model continuity is not supported in many
cases. Due to the similarities with software engineering, we believe that MDD
principles can be applied to M&S and existing MDD tools and techniques can be
utilized. The next section explains the principles of MDD.
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Table 2.1: Analysis of the M&S methodologies according to their support for model
continuity [ÇVS14].
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Has multiple stages? Y Y Y Y Y Y Y Y Y Y Y Y

Has multiple models? Y Y Y Y Y Y Y Y Y Y Y Y

How many models? 2 3 4 6 2 2 2 2 3 3 2 2

Has a conceptualization step? P1 P1 Y Y P1 Y Y Y Y Y Y Y

Has a formal specification step? N Y N Y N N N P3 Y Y P3 P3

Has a programming step? Y Y Y Y Y Y Y Y Y Y Y Y

Suggests conceptual model trans-
formation?

N P Y Y P Y N Y N Y N Y

Suggests automatic code genera-
tion?

N N Y Y N Y N N N N N Y

Provides formal model transform-
ations?

N N N P2 N N N N N N N N

Note: Y: Yes, N: No, P: Partially.
1 Conceptual model is not mentioned, but a diagram such as a causal-loop diagram

or a flow diagram is suggested.
2 The framework does not provide formal transformation methods, but suggests

some heuristics, explicit translation rules and general code writing rules.
3 A software specific description that determines how to structure the model in

the chosen software is suggested.
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2.3. What is MDD?

MDD is a software development methodology that provides a set of methods and
guidelines to develop a software system through successive model transformations
[ÇV11]. In MDD, models are the primary artifacts of the development process
and they represent the system and the software at different levels of abstraction
or detail. The models are transformed into other models at different stages in
order to (semi)automatically generate the final software system. MDD produces
well-structured and maintainable systems. The most important MDD methods are
modeling, metamodeling and model transformations.

Modeling is the process of representing a source system for a specific purpose in
a form that is ultimately useful for an interpreter [ÇVS14]. The concrete form
that represents the system is called the model. A model is specified in a modeling
language. The MDD approach requires that the models and modeling languages
are well defined. Metamodeling is the most commonly used method to describe
a modeling language formally in the form of a metamodel, which in turn can be
used to specify models in that language. Model transformation is the process of
converting a model into another form according to a set of transformation rules.
Model transformations are performed to utilize the knowledge in an existing model.

In an MDD approach, usually there is a chain of several model transformations
and a final model-to-code transformation. The approach is based on the idea of
having several intermediate models. Each model represents a different view of the
system. Although MDD has been advocated as a cost and effort saving develop-
ment approach for software projects [Sel03], the MDD principles are currently only
described informally. Information about the conceptual application of MDD prin-
ciples are provided by different specifications such as Model Driven Architecture
(MDA) [OMG03], Model Integrated Computing (MIC) [ISI97], Eclipse Modeling
Framework [Ecl09], and Microsoft Software Factories [Mic05]. These specifications
explain the steps required to take a model from conceptual design to final imple-
mentation. However, the software engineering community does not have a sound
and complete theory for MDD [Fav04].

MDA is a software design and development approach that provides a set of guidelines
for specifying and structuring models. MDA prescribes the use of metamodels and
meta-metamodels for specifying the modeling languages without any necessity to
be domain specific. Object Constraint Language (OCL) can be used for defining
constraints over metamodels as well as actual models in order to precisely define
a modeling language. Models can be exchanged in XML Metadata Interchange
(XMI) format.

MIC refines the MDD approaches and provides an open integration framework to
support formal analysis tools, verification techniques, and model transformations in
the development process. MIC allows the synthesis of application programs from
models by using customized model integrated program synthesis (MIPS) envir-
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onments. The meta level of MIC provides metamodeling languages, metamodels,
metamodeling environments, and meta generators for creating domain specific tool
chains on the MIPS level. The fully integrated meta programmable MIC tool suite
provides open-source tools.

Microsoft Software Factories is a unified software development approach, which
tries to synthesize ideas from DSLs, MDD, software product lines and development
by component assembly. When compared to MDA, Software Factories are less
concerned with portability and platform independence and more concerned with
productivity.

The Eclipse Modeling Project focuses on the evolution and promotion of the MDD
technologies within the Eclipse community. It provides a unified set of modeling
frameworks and open source tools. The following projects are all included in Eclipse
Modeling Project: EMF, generative modeling technologies, M2M transformation,
M2T transformation and model development tools.

Due to the fact that different MDD tools apply the same principles, an MDD expert
can easily think about combining different approaches and tools to perform an MDD
process. For example, the MDA concepts can be implemented with the MIC tool
suite. In MDD literature, the most commonly used and accepted specification is
MDA [OMG03]. The MDA concepts are presented in terms of some existing or
planned system, where a system mainly refers to a software application within a
system.

MDA introduces three types of viewpoints: The computation independent view-
point focuses on the environment of the system, and the requirements for the
system. The platform independent viewpoint focuses on the structure and opera-
tion of a system while hiding the details necessary for a particular platform. The
platform specific viewpoint focuses on the use of a specific platform by a system.
Based on these viewpoints, three types of models are used in MDA: A Computation
Independent Model (CIM) is a representation of a system from the computation
independent viewpoint that does not show the details of the structure of the sys-
tem. A Platform Independent Model (PIM) is a representation of a system that
exhibits a specified degree of platform independence to be usable with a number
of different platforms. A Platform Specific Model (PSM) is a representation of a
system that combines the specifications in the PIM with the details that specify
how that system uses a particular type of platform. MDA also defines a model
transformation as the process of converting one model to another model of the
same system. It explains the PIM-to-PSM transformation and requires that the
PSM will include the source code if it is an implementation. However, CIM-to-PIM
transformation is not clearly defined in MDA since a CIM is assumed to be a kind
of requirements specification.

By following the MDA viewpoints, we can say that at least three types of models
are produced during a software development lifecycle: a CIM for the analysis stage,
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a PIM for the design stage, and a PSM for the implementation stage [Som07]. The
final source code will be generated from the PSM. In more generic terms, an MDD
process is supposed to have an initial model, a number of intermediate models and
a final source code. The aim is to obtain a large part of the intermediate models
and the final code through successive model transformations. An MDD process
supports model continuity via formal model transformations.

The most notable advantages of MDD are rapid software development and in-
creased productivity. Although the advantages of quality, accuracy, maintenance,
customer satisfaction, support for documentation, validation and verification are
commonly accepted as pros of MDD, it is often examined for being really faster than
traditional development [MD08, MCM13]. The answer depends on the tools that
are being used, the abilities of the team, the domain knowledge of the metamodel
developers, the availability of the suitable DSMLs, expected software quality and
so on. When the modeling languages are not available and the team members have
little or no knowledge about MDD, it may take a large amount of time to develop
metamodels. However, once they are developed then the further development time
and costs decrease significantly.

MDD is different from the traditional development approaches and it requires a
learning period and changing the programming habits. However, working with
meta-levels is easier and beneficial as soon as it is understood well. Although
traditional systems modeling and software engineering approaches can be chosen
in small-scale and short-term projects, the model driven approach is more desirable
for large-scale and critical projects. The following sections provide more information
about modeling languages, metamodeling and model transformations.

2.3.1. Modeling languages

A modeling language is a means of expressing systems in a formal and precise way by
using diagrams, rules, symbols, signs, letters, numerals, etc. A modeling language
consists of the abstract syntax, concrete syntax and semantics [AK03, FB05]. The
abstract syntax describes the vocabulary of the concepts provided by the modeling
language and how they can be connected to create models. The abstract syntax
consists of the concepts, the relationships and well-formedness rules, where well-
formedness rules state how the concepts may be combined. The concrete syntax
provides a way to show the modeling elements in a concrete form which we see
and work with on paper or on the computer screen [Rum98]. The semantics of
a modeling language is the additional information to explain what the abstract
syntax actually means.

Computerized tool support is very important in MDD approaches. In order to
specify, view or change models on computer platforms, we use model editors. A
model editor for a modeling language l provides a way to specify models according
to the syntax of l and save them according to a specific file format. Besides, the
editor uses a language parser to decompose a model according to the abstract
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Figure 2.1: A model conforms to a modeling language.

syntax of l [MFF+08] and shows the model on the screen using one or more views.
In many cases, the model editor provides extra features such as verification or
syntax highlighting.

The relation between a modeling language and a model expressed in that language
is called the conformsTo relation, such as “the model m conformsTo the modeling
language l”. conformsTo relation shows that model is specified according to the
modeling language specification. Model verification ensures that this relation is
correct. Figure 2.1 illustrates the conformsTo relation between a model and a
modeling language.

Example: Simple state diagram modeling language

Figure 2.2 illustrates an example of a simple state diagram modeling language based
on the formal semantics of a Mealy machine. A state diagram is used to represent
the states and state transitions of a system. State means all the stored information
about the system properties at a given point in time. A state diagram is a directed
graph with states as vertices and transitions as edges. Each state in a diagram
refers to a set of predefined values of the system properties. Inputs are used either
to change the system properties or to produce an output at a certain state. A
state diagram d for a finite state machine is a directed graph, d = (S, s0,X,Y,δ,λ)
where,

S is a finite set of states (vertices)

s0 is an initial state

X is a finite set of input symbols

Y is a finite set of output symbols
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Figure 2.2: Syntax of a simple state diagram modeling language.

δ ∶ S ×X → S is the transition function (edges)

λ ∶ S ×X → Y is the output function

In Figure 2.2, <states> is the finite set of states defined by an ID and name.
<initialState> is the initial state and <transition> is a connection from a state to
another state defined by δ(input). The output defined by λ(input) is written
together with the transition connection. Figure 2.3 shows an example model with
the given state diagram modeling language.

2.3.2. Metamodeling

Metamodeling, in MDD context, is the process of complete and precise specification
of a modeling language in the form of a metamodel. The metamodeling term has
been used in simulation for many years in a different context. Metamodeling
referred to constructing simplified models for simulation models that are quite
complex [Bar98, Kle09]. In this context, a metamodel is known as a surrogate
model. Surrogate models mimic the complex behavior of the underlying simulation
model. Metamodeling in MDD context has been introduced to simulation lately.
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Figure 2.3: A model with the example state diagram modeling language.

The purpose of the metamodeling process is representing the abstract syntax of a
modeling language with a metamodel in order to provide a proper way to develop
models with that language. For example, instead of developing a model for a
specific problem in a certain domain, first a metamodel which defines the concepts
that apply to a larger set of problems in that domain is specified. Then, the
metamodel is used to develop a specific model. In this case, a model is said
to be an instance-of the metamodel. Hence, in a metamodeling approach, the
conformsTo relation between the model and the modeling language is implicitly
expressed via an instanceOf relation, such as “the model is an instanceOf the
metamodel”. While the conformsTo relation only guarantees a valid model, the
instanceOf relation requires that every element of a model must be an instance of
some element in the metamodel.

A metamodel is specified in a metamodeling language. Similar to a modeling lan-
guage, a metamodeling language has one abstract syntax and at least one concrete
syntax. Figure 2.4 illustrates the relations between a model and a metamodel. The
conformsTo relation between the model and the modeling language is shown with
a dashed line since this relation is implicitly obtained. One can easily notice that
the metamodeling pattern can be applied again as a metamodeling language can
also be defined with a metamodel. In this case, the metamodel, which is a model
of the grammar of a metamodeling language, is called a meta-metamodel and it is
specified in a meta-metamodeling language. To summarize,

� A model represents a system.

� A modeling language is used to specify models.

� A metamodel represents a modeling language.
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Figure 2.4: Metamodeling.

� A metamodeling language is used to specify metamodels.

� A meta-metamodel represents a metamodeling language.

Due to the fact that both a metamodel and a meta-metamodel are used to represent
languages, meta-metamodels are often self describing to avoid an unnecessary stack
in the number of meta levels. Therefore, the meta-metamodel conforms to the
metamodeling language that it represents. Most approaches implement a three
level metamodeling stack for model, metamodel and meta-metamodel in practice.
Figure 2.5 illustrates the relations between a metamodel and a meta-metamodel.

Although, it is possible to increase the number of metamodeling levels theoret-
ically, a 4-level metamodeling architecture that was introduced in the UML spe-
cification by OMG in 1999 [OMG99] is generally used in practice. The classical
UML specification is based on four levels, but the later versions allow more or
less meta-levels than this [OMG11c]. However, the minimum number of levels is
two. In the metamodeling architecture introduced by OMG, the M3-level is for
representing a metamodeling language as a meta-metamodel; the M2-level is for
representing a modeling language as a metamodel; the M1-level is for representing
a system without specific user data; and the M0-level is for representing a system
with user data. Table 2.2 shows the metamodeling levels introduced by OMG. The
Meta-Object Facility (MOF) specification is the defacto metamodeling language
in OMG specifications for the M3 level where models can be created, integrated
and transformed into different formats [OMG06].

In addition, OMG introduces the very useful concept of UML profile at the M1-level.
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Figure 2.5: Self describing meta-metamodel.

It is a way of specifying an incomplete (parameterizable) model, so that the details
can be filled in later. We will use the term template models for these incomplete
models within the modeling process. A set of template models in a modeling
language for a domain is called a domain-specific modeling library, whereas the set
of modeling elements provided by the grammar of the language is called the basic
(or core) modeling library [AK02]. We accept these features as implementation
specific concepts, and many state-of-the-art metamodel editors provide them.

2.3.3. Metamodeling languages

Popular metamodeling languages are: Meta-Object Facility (MOF) [OMG06], Ecore
[Ecl09], KM3 [IRI11] and MetaGME [ESB04]. OMG’s MDA relies on the MOF to
integrate the modeling steps and provide the model transformations [OMG03]. The
earlier version of the MOF meta-metamodel is a part of the ISO/IEC 19502:2005
standard [ISO05]. The MOF meta-metamodel is referred as the MOF Model and it
is self-describing, i.e. it is formally defined using its own metamodeling constructs.
In 2006, OMG introduced the Essential MOF (EMOF) which is a subset of MOF
with simplified classes [OMG06]. The primary goal of EMOF is to allow defining
metamodels by using simpler concepts while supporting extensions.

Eclipse Ecore meta-metamodel is the main part of The Eclipse Modeling Framework
(EMF) project. The EMF project is a modeling framework and code generation
facility for building tools and other applications based on a structured data model.
Ecore is based on the EMOF specification, but renames the metamodeling con-
structs like EClass, EAttribute, EReference or EDataType. An Ecore metamodel
needs to have a root object and a tree structure represents the whole model.

MetaGME is the top level meta-metamodel of the MIC technology. MIC defines a
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Table 2.2: Four layer metamodeling architecture in UML specification [OMG99].

Levels Description Example

M3: meta-
metamodel

Defines the language for
specifying metamodels.

MetaClass and MetaAttribute
(in the MOF Specification)

M2:
metamodel

Defines the language for
specifying models. An
instance of the meta-
metamodel.

Class and Attribute (in the
UML Specification)

M1: model Defines the model without
user data. An instance of
the metamodel.

Car class and Name attribute
(in a template UML Model)

M0: runtime
model

Defines the model with user
data. A runtime instance of
the model.

Car123 with Name=“abc” (in
a certain UML Model)

technology for the specification and use of the DSMLs. MIC refines and facilitates
MDD approaches and provides an open integration framework to support formal
analysis tools, verification techniques and model transformations in the develop-
ment process. MIC allows the synthesis of application programs from models by
using customized Model Integrated Program Synthesis (MIPS) environments.

Kermeta is a metamodeling language which allows describing both the structure
and the behavior of models. Kermeta is built as an extension to EMOF and it
provides an action language for specifying the behavior of models. Kermeta is fully
integrated with Eclipse and it is available under the open source Eclipse Public
License (EPL).

2.3.4. Metamodeling tools

In order to specify, view or change metamodels on computer platforms, metamodel
editors are used. A metamodel editor uses a language parser to decompose a given
metamodel according to the abstract syntax of the chosen metamodeling language.
In general, the metamodel editors provide extra features such as model-to-model
transformation, code generation or model interpretation. In this case, the complete
tool set is called a metamodeling environment. A full-featured metamodeling en-
vironment provides a way to specify a metamodel mm and automatically generate
a model editor for the modeling language that mm represents. The resulting ed-
itor may either work within the metamodeling environment, or less commonly be
produced as a separate standalone program.

Some well known metamodeling environments are Generic Modeling Environment
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(GME) [ESB04], MetaEdit+, AndroMDA, Microsoft’s DSL Tools for Software
Factories [Mic05], ASF+SDF Meta environment [vdBvDH+01], AToM3 [dLV02],
XMF-Mosaic, the Eclipse generative modeling technologies (GMT) project [Ecl06],
and Kermeta development environment [IRI11]. Metamodeling had always a close
relationship with Domain Specific Languages (DSL) and Domain Specific Modeling
(DSM). Hence, there have been some misuses of concepts such as metamodeling
environments are generally called as DSM environments.

GME is a free and open source MIPS tool. In GME, metamodels are defined as
modeling paradigms. Upon loading a modeling paradigm, the MetaGME interpreter
automatically creates an environment for model development in the specified mod-
eling language. GME has a decorator facility for nicer visualization of the models.
It is also possible to define some constraints on the metamodel with OCL.

Eclipse GMT project provides a set of prototypes and research tools in the area of
MDD. Historically the most important operation was model transformation, but
other model management facilities like model composition are also being proposed.
Different sub-projects are developed in the GMT project. The Generic Eclipse
Modeling System (GEMS) in GMT project is a configurable toolkit for creating
domain-specific modeling and program synthesis environments for Eclipse. GEMS
provides a visual metamodeling environment based on EMF and GEF/Draw2D. It
includes a code generation framework that a graphical modeling editor is gener-
ated automatically from a visual metamodel specification. The graphical modeling
editor can be used for editing instances of the modeling language described by the
metamodel.

Kermeta development environment provides a comprehensive tool support for meta-
modeling activities, such as an interpreter, a debugger, a text editor with syntax
highlighting and auto code completion, a graphical editor and various import/ex-
port transformations. Achilleos et al. [AGY07] and Amyot et al. [AFR06] present
information about various metamodeling environments.

It is not easy to define a grammar and a concrete syntax for a modeling language
textually from scratch. Besides, developing a model editor for this language requires
software engineering skills. The metamodeling tools provide a precise way for
defining metamodels and auto-generating model editors.

Example: A metamodel for the state diagram modeling language

Figure 2.6 illustrates a metamodel for the simple state diagram modeling language
given in Section 2.3.1. The metamodel is specified with the GEMS plug-in in the
Eclipse GMT project [Ecl06]. The auto generated modeling editor for the given
metamodel is shown in Figure 2.7. Although the generated editor uses a default
concrete syntax, the graphical representation of the modeling elements and the
visual appearance of the editor can be customized by changing a style file.
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Figure 2.6: An example metamodel for the simple state diagram modeling language.

Figure 2.7: Auto generated modeling editor for the example metamodel.
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Figure 2.8: Model transformation pattern in MDD.

2.3.5. Model transformations

Instead of creating the models from scratch during the different development life
cycle stages and activities, model transformations enable the reuse of information
that was once modeled. A model transformation is the process of converting
a model into another form according to a set of transformation rules. Model
transformations are carried out to transfer the existing information in a model to
a new model.

In the MDD context, we are only interested in formal model transformations. A
formal transformation requires that the models are specified in well-defined model-
ing languages and the rules are defined with a model transformation language. A
transformation rule consists of two parts: a left-hand side that accesses the given
model; and a right-hand side that generates the target system. Hence, a model
transformation is performed with a well-defined model transformation pattern. In
order to provide model continuity, the target model should contain as much as pos-
sible from the source model and the initial modeling relation should be preserved
[EE08]. Retaining the problem owner’s language throughout the modeling process
and keeping the concepts in the simulation model can lead to highly effective and
successful projects [MR09]. During the transformation, the source model remains
unchanged. Figure 2.8 shows a model transformation pattern, which is adapted
from the MDA [OMG03].

According to the output type and the target language of the process, the model
transformation can be classified as model to model (M2M) transformation, model
to text (M2T) transformation, or model to code transformation (code generation).
In an MDD approach, usually there is a chain of several M2M transformations
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and a final code generation [CH03]. As the name implies, a M2M transformation
converts a source model into a target model, which can be instances of the same or
different metamodels [SVB+06]. However, a M2T transformation converts a source
model into text. M2T transformation is generally used for final code generation
or supportive document creation. If the model is used to generate source code,
then the transformation is called code generation. For a metamodel based model
transformation, either the source model is an instance of the source metamodel or
the target model is an instance of the target metamodel, or preferably both.

If the source and target metamodels are identical, the transformation is called
endogenous; otherwise it is called exogenous [MG05]. If the level of abstraction
does not change, the transformation is called horizontal transformation. If the level
of abstraction does change, the transformation is called vertical transformation. It
is important to note that the possibility of defining various model transformations
for the same source model. However, the common objective is to preserve and
reuse the information in the source model as much as possible, which increases the
percentage of the auto generated part in the target model, code, or text.

2.3.6. Model transformation languages

The goal of model transformations is to automatically generate different repres-
entations of a system at different abstraction levels and to enable the reuse of
information that was once modeled. A key point here is the model transforma-
tion language. A model transformation language is a language that provides a
way to write transformation rules for the expressions of a formal grammar. Given
two formal grammars (one is for the source language and one is for the target
language) and a model specified in the source language, a language parser can
parse the transformation rules; an interpreter can interpret the source model; and
a model transformation engine can apply a consecutive set of the rules on the
source model and generate a target model according to the interpretation. A model
transformation tool combines all of these concepts and it is usually embedded in a
metamodeling environment. Sometimes, a model transformation is called a graph
transformation if the models are specified as graphs, and the transformation tool is
then called a graph transformation tool [ASK04]. A model transformation is also
known as model morphism [ACJG10].

Well known M2M transformation languages are ATL (ATLAS Transformation Lan-
guage), QVT (Query/View/Transformation), GReAT (Graph Rewriting and Trans-
formation Language) and Xtend. MOF 2.0 QVT Specification is a set of model
transformation languages defined by OMG [OMG11b]. The QVT specification has
a hybrid declarative/imperative nature and it defines three related transformation
languages: Relations, Operational Mappings, and Core. The Relations metamodel
and language supports complex object pattern matching and object template cre-
ation with a high-level user-friendly approach. Operational Mappings can be used
to implement one or more Relations from a Relations specification, when it is
difficult to provide a purely declarative specification of how a Relation is to be
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populated. The Core metamodel and language is defined using minimal extensions
to EMOF and Object Constraint Language (OCL) on the lower level.

ATL is one of the most popular model to model transformation languages [BDJ+03,
JABK08]. Once the target metamodel and source metamodel are available, an ATL
transformation file can produce a target model from a source model. During the
transformation, an attribute of a target model instance receives a return value of
an OCL expression that is based on a source model instance. The ATL integrated
development environment (IDE), which is developed on top of the Eclipse platform,
provides a number of tools such as a text editor with syntax highlighting, a debugger
and an interpreter that aims to ease development of ATL transformations.

There are many other model transformation languages [Sch06a]. As well as, some
projects like Kermeta, Fujaba and GReAT (these projects apply an MDD approach)
provide M2M transformation methods. Detailed explanation about the model
transformation languages and methods can be found in [Hub08, CH03, DBAS09].

MDD provides a very generic approach such that everything can be a source of
a modeling process, i.e. everything can be modeled. For example, it is possible
to develop a model of a model transformation pattern [BBG+06]. Even further, a
metamodel can be defined to represent the grammar of the model transformation
language. In this way, it can be possible to define model transformation patterns
graphically.

Example: Transforming state diagrams

In this section, the example model presented in Figure 2.7 will be transformed into
a text file to illustrate a M2T transformation. The transformation is done by a
visitor-based model interpreter whereas the mechanism is provided by the Eclipse
GEMS project. Figure 2.9 shows a part of the model interpreter code in JAVA.
For each modeling element specified in the metamodel, a corresponding visitor
function is implemented. Then, the model interpreter is registered to the state
diagram editor by adding an extension point to the plugin file. Figure 2.10 shows
the generated output for the sample model.

2.3.7. Criteria for model transformations

As stated earlier, there are many ways to define a model transformation for a source
model. Choosing the best model transformation is one of the challenging activities
of MDD. There is no general rule or guidance that can be provided to define a
good solution. However, both the target model and the transformation rules can
be evaluated according to some basic principles derived from software engineering.
This section provides evaluation criteria for model transformations extending the
work of [MG05]. Based on these criteria, model transformations can be analyzed
and results can be used to choose the best model transformation.
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Figure 2.9: A visitor based model interpreter for a M2T transformation in JAVA.

Figure 2.10: Output of the example model transformation.
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� Correctness: The correctness of a model transformation is analyzed in two
ways: syntactic and semantic correctness [MG05]. If the target model con-
forms to the target metamodel specification, then the model transformation
is syntactically correct [EE08]. If the model transformation preserves the
semantics of the source model, then it is semantically correct [NK08].

� Completeness: For each element in the source model, if there is a correspond-
ing element in the target model then the model transformation is complete
[MG05].

� Termination: If the model transformation always terminates and leads to a
result, then it provides termination.

� Uniqueness: If the model transformation generates unique target models for
each source model, then it provides uniqueness.

� Readability : If the transformation rules are human-readable and understand-
able, then the model transformation provides readability.

� Efficiency : The efficiency of a transformation can be evaluated by analyzing
how many transformation steps are necessary, and how many functions are
applied during each specific transformation.

� Maintainability : The degree of the effort spent for changing, extending and
reapplying a model transformation defines the maintainability.

� Scalability : The ability to cope with large models without sacrificing per-
formance defines the scalability [MG05].

� Reusability : Reusability can be measured with the possibility of adapting
and reusing a model transformation via various reuse mechanisms such as
parameterization or using templates [MG05].

� Accuracy : If all possible errors are handled and the model transformation can
manage with the all incomplete source models, then it provides accuracy.

� Robustness: If most of the unexpected errors can be handled and the model
transformation can manage with the all invalid source models, then it provides
robustness.

� Validity : Since transformations can be considered as a special kind of soft-
ware programs, systematic testing and validation techniques can be applied
to transformations to ensure that they have the desired behavior [MG05].

� Consistency : If the model transformation detects and possibly resolves the
internal contradictions and inconsistencies, then it is consistent [MG05].

� Traceability : Traceability is the property of having a record of links between
the source and target elements as well as the various stages of the transform-
ation process. Traceability links can be stored either in the target model or
separately [DBAS09].
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� Reversibility : A model transformation from s to t is reversible if there is a
model transformation from t to s. This property can be useful in canceling
the effects of a transformation [DBAS09].

Hermann et al. [HHK10] identify correctness, completeness and termination as the
core requirements for a successful model transformation. A model transformation
must ensure both syntactic and semantic correctness. In order to preserve and
reuse the information in the source model, it needs to be complete as well. The
completeness of a model transformation can be guaranteed by fully covering the
source metamodel and the target metamodel [Vig09]. The termination requirement
is provided by the transformation language interpreter, and so we will focus on
correctness and completeness during the evaluation of the model transformations
in Chapter 6.

2.3.8. Requirements for the application of MDD

In this section, we summarize the basic requirements that need to be satisfied for
a successful application of MDD. These requirements are derived from the MDD
literature and will be used to evaluate the MDD4MS framework in Chapter 3.

� R-MDD.1. Abstraction: Raising the level of abstraction of models to be
closer to the problem domain and to be away from the implementation details
[Sel06, MGS+11].

� R-MDD.2. Metamodeling: Defining the modeling languages formally with
metamodels [AK03].

� R-MDD.3. Transformation: Facilitating user-defined mappings from models
to other artifacts, including source code [AK03].

� R-MDD.4. Automation: Using computer technology to automatically gen-
erate models, modeling tools, source code, and documentation [Sel06].

� R-MDD.5. Generality: Describing the development process without relying
on a specific technology, tool or platform [FRR09, MRB12].

2.4. Applying MDD in M&S

In the M&S field, the application of MDD principles is more clear than in software
engineering, because a computer simulation model refers to the final executable
source code in many cases directly or indirectly. Hence, code generation can be
perceived as a model-to-model transformation as well. Besides, many simulation
modeling languages exist that implement an abstract simulator.

Furthermore, system specification formalisms can be used to define formal and
precise simulation models. For example, [ZPK00] present a generic framework for
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M&S and various system specification formalisms based on general and mathemat-
ical systems theory. The entities of their framework are source system, experimental
frame, model, and simulator. A model, a system, and an experimental frame are
linked by the modeling relation, whereas a model and a simulator are linked by
the simulation relation. An experimental frame is a specification of the conditions
under which the system is observed or experimented with.

The Petri Nets formalism is also commonly used in the M&S field especially in the
modeling of discrete event systems. Petri Nets are bipartite graphs and provide
a mathematically rigorous modeling framework [Pet81]. They consist of places,
transitions and directed arcs. Arcs run from a place to a transition or a transition
to a place, never between places or between transitions. The places from which
an arc runs to a transition are called the input places of the transition; the places
to which arcs run from a transition are called the output places of the transition.
Places may contain a number of tokens. A transition of a Petri Net model is fired
whenever there is a token at the start of all its input arcs. There are various types
of Petri Nets, such as Timed Petri Nets, Stochastic Petri Nets and Colored Petri
Nets.

As we stated in Section 2.2, the practice of M&S can be identified as a model
based approach and an MDD method can be incorporated into the existing M&S
methodologies. The MDD4MS framework provides such a method and it can be
used with any underlying formalism. Applying MDD in M&S provides new capab-
ilities for efficient development of reliable, error-free and maintainable simulation
models. MDD supports formal validation and verification techniques and provides
early detection of the flaws. Availability of the existing tools and techniques for
both metamodeling and model transformations is one of the practical advantage
of applying MDD.

MDD approach brings great advantages to M&S. It provides ways to formally define
the models and modeling languages. Since models are defined in a good manner
and free of implementation details, conceptual modelers and domain experts can
understand the models more easily and they can play a direct role in simulation
model development process. The simulation model implementation becomes more
efficient and error-free since a big portion of the source code can be generated
automatically. Most existing MDD research in M&S takes place with metamodeling
and modeling environments. Although the research studies look very promising,
especially conceptual model transformations have not been sufficiently studied yet
in simulation field. Due to MDD has a broad range of contributors, there are
various terms used in the M&S and software engineering communities. Before
presenting the related work, various acronyms and approaches are explained in the
next section.
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2.4.1. Model based or model driven?

The ’model based (MB)’ and ’model driven (MD)’ terms and initials have been used
in a variety of system and softwarerelated acronyms. Although there is a consensus
that these approaches suggest the systematic use of models as the primary means
of a process and facilitate the use of modeling languages, there is not a common
understanding of the terminology. In this section, the definitions of the frequently
used acronyms and the objectives of those approaches are presented.

Model based engineering (MBE) The main goal in MBE is to support an en-
gineering process with various models during the design, integration, validation,
verification, testing, documentation, and maintenance stages. Sometimes, a spe-
cific activity can be labeled as model based testing, model-based design (MBD),
model-based integration, model based analysis, and so on. MBE originated in the
1980s in parallel with the evolution of the computer-aided design and MBD tech-
niques. MBD provides a model-based visual method for designing complex systems,
originally for designing embedded and distributed systems. MBE facilitates the use
of domain specific modeling languages.

Model based systems engineering (MBSE) In systems engineering, the ap-
plication of MBE principles is called model based systems engineering. MBSE
provides the required insight in the analysis and design phases; it enhances better
communications between the different participants of the project; and it enables
effective management of the system complexity. A core idea of MBSE is to move
the practice of systems engineering from a document-centric to a model-centric
paradigm. INCOSE (International Council on Systems Engineering) has identified
the institutionalized use of MBSE tools and techniques as an integral part of its
vision.

Model driven engineering (MDE) MDE is a system development approach that
uses models as the primary artifacts of the development process [Sch06b]. It
introduces model transformations between different abstraction levels. In MDE,
source models are transformed into destination models at different stages to (semi)
automatically generate the final system. The main goal in MDE is increasing
productivity through automated model transformations.

Model driven development (MDD) The application of the MDE principles in
software engineering is called model driven development (MDD). MDD is also
known as model driven software development (MDSD) or model driven software
engineering (MDSE) [SVB+06]. The modern era of MDD started in the early 1990s
and now offers a notable range of methods and tools.

2.4.2. Related work

MDD methods have been commonly used in the last decade in the simulation
field [VdLM02, MZRM+08, RMdMZ09, ÇVS11, GPR13]. MDD approaches were
introduced to M&S in 2001 when Bakshi et al. [BPL01] presented a practical
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application of MIC into embedded system design and simulation. They provided a
formal paradigm for specification of structural and behavioral aspects of embedded
systems, an integrated model-based approach, and a unified software environment
for embedded system design and simulation.

Vangheluwe et al. [VdLM02] introduced metamodeling and model transformation
concepts into the theory of modeling and simulation in 2002. They present an ap-
proach to integrate three orthogonal directions of M&S research: multi-formalism
modeling, model abstraction and metamodeling. De Lara and Vangheluwe [dLV02]
present a tool for metamodeling and model transformations for simulation, namely
AToM3. The usage of the tool is presented in [VdL02].

Tolk and Muguira [TM04] introduced the concepts of the MDA into the distributed
simulation. They present the complementary ideas and methods to merge High
Level Architecture (HLA) and Discrete Event System Specification (DEVS) within
the MDA framework.

After the introduction of the initial ideas, there have been many efforts to use MDD
concepts in M&S. In some cases, metamodeling is used to describe domain specific
modeling languages only for one abstraction level [DdL09, LKPV03, LWQY09,
TTH11, SM12]. In all of these studies, lower level code representation methods are
defined via metamodeling and code generation facilities are provided by modeling
environments. In other words, the higher level conceptual models are ignored and so
MDD tools are only used for automatic code generation from a system specification.
For example, Levytskyy et al. [LKPV03] present two DEVS metamodels that
are used to automatically generate a tool that allows the graphical definition of
DEVS models. The tool is capable of generating a representation suitable for the
simulation by an external DEVS interpreter.

More unified solutions are presented by following either the MDA specification
[GKMM06, DGRMP10, GPR13] or the MIC approach [TAO08, ÇVS10a, LDNA03].
Guiffard et al. [GKMM06] provide a study that aims at applying a model driven
approach to the M&S in military domain. This work has been carried out in the
context of a larger research program (High Performance Distributed Simulation
and Models Reuse) sponsored by the DGA (Delegation Generale pour l’Armement)
of the French Ministry of Defense. The paper presents a prototype implementation
as well. The prototype demonstrates that the automated transformation from a
source model to executable source code is possible. The authors state that the
amount of work needed for writing correct and complete set of transformation rules
is extremely large.

DAmbrogio et al. [DGRMP10] introduce a model driven approach for the devel-
opment of DEVS simulation models. The approach enables the UML specification
of DEVS models and automates the generation of DEVS simulations that make
use of the DEVS/service oriented architecture (SOA) implementation. An example
application for a basic queuing system is also presented.
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Garro et al. [GPR13] propose an MDA-based process for agent-based modeling and
simulation (MDA4ABMS) that uses the agent-modeling framework of the Eclipse
agent modeling platform project. The Acore metamodel of the project is similar to
EMF Ecore and defined in Ecore, but it provides higher level support for complex
agents. MDA4ABMS process allows (automatically) producing platform specific
simulation models starting from a platform-independent simulation model obtained
on the basis of a CIM. Then, the source code can be automatically obtained with
significant reduction of programming and implementation efforts.

Topcu et al. [TAO08] propose the Federation Architecture Metamodel (FAMM)
for describing the architecture of a High Level Architecture (HLA) compliant fed-
eration. FAMM supports the behavioral description of federates based on live
sequence charts and it is defined with metaGME. FAMM formalizes the standard
HLA object model and federate interface specification.

Iba et al. [IMA04] propose a simulation model development process and present
an example for agent based social simulations. The proposed process consists of
three major phases: conceptual modeling, simulation design and verification. In the
conceptual modeling phase, the modeler analyzes the target world and describes
the conceptual model. In the simulation design phase, the modeler designs and
implements the simulation model, which is executable on the provided simulation
platform. The modeler translates the conceptual models into simulation models
according to the suggested framework. In the verification phase, the modeler
runs the simulation and inspects whether the simulation program is coded rightly.
If necessary, the modeler returns to the first or second phase and modifies the
models.

In addition to the MDA and MIC approaches, [RMdMZ09] present a UML-based
DEVS simulation method which is placed in DEVS Unified Process (DUNIP).
DUNIP proposes a process that uses the DEVS formalism as a basis for auto-
mated generation of models from various requirement specifications [MRMZ07,
MZRM+08]. Mittal and Risco Mart́ın [MRM13] present the DEVS Modeling Lan-
guage (DEVSML) 2.0 stack which shows that an underlying DEVS metamodel
provides model reusability, integration, and interoperability between different plat-
forms. They also propose how the Department of Defense Architecture Framework
(DoDAF) can be enhanced to incorporate executable models using the DUNIP pro-
cess. This work is cited as executable architecture and the research about execut-
able architectures in simulation field is also related to the MDD approach [GT10].
The term is generally used in the military domain and refers to an architecture that
contains executable models.

All of the aforementioned efforts show the applicability of the MDD approach in
the simulation field. However, to the best of our knowledge, there is no generic
theoretical framework that provides guidance for formal model transformations
while moving from a conceptual model to an executable simulation model. The
MDD4MS framework provides a generic MDD framework for M&S which can
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be incorporated into the existing M&S methodologies and presents a formalism
independent solution via formalizing the steps. The next chapter presents the
MDD4MS framework.
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Chapter 3

MDD4MS: A Model Driven
Development Framework for M&S

This chapter proposes a formal model driven development framework for modeling
and simulation, which is called the MDD4MS framework. The MDD4MS frame-
work presents an integrated approach to bridge the gaps between different steps of
a simulation study by using metamodeling and model transformations. It mainly
addresses the conceptual modeling and the simulation model development stages
in M&S lifecycle and it can be incorporated into the existing methodologies for in-
creasing the productivity, maintainability and quality of an M&S study. The M&S
lifecycle presented in Chapter 1 is extended to clearly separate the formal models
and computer simulation models.

3.1. The MDD4MS lifecycle

The MDD4MS framework proposes an extended lifecycle with a special focus on
simulation model development stage. In this way, it can be embedded into the
existing M&S methodologies easily. As shown in Figure 3.1 the model specification
and model implementation stages are separated. A brief overview of the stages is
already given in Section 1.3. In this section, the model-type outputs of the stages
are highlighted and the simulation model development stage is refined. Since
MDD4MS proposes a generic framework, the detailed activities in each stage are
not explained. The MDD4MS framework defines a number of models on top of
the final computer simulation model. It uses the concept of platform-independence
and similar terms to PIM, PSM and PIM-to-PSM transformation from the MDA
specification.

3.1.1. M&S study definition

If a problem owner identifies a need for a simulation study, he/she defines the
purpose of the simulation study, his/her requirements, and problems or issues.
This essentially includes setting the boundaries of the study and choosing the value
system (key performance indicators) according to which the system will be assessed.
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Figure 3.1: The MDD4MS lifecycle.

Requirements can be defined in a document or in a requirements model which can
be specified with a requirements specification language [GMB94]. During the initial
meetings with the problem owner and the conceptual modeler, a possible solution
is suggested and outline of the simulation study is scheduled. The outcomes of
this stage are presented in the M&S project plan.

3.1.2. Conceptual modeling

When the problem owner defines the requirements and starts the simulation study,
the conceptual modeler makes a high-level abstraction of the real system or the
future system according to a given worldview and prepares a conceptual model
(CM). The CM is defined in a well-defined conceptual modeling language. A
conceptual model serves as a bridge between the problem owner and the simulation
modeler. The conceptual modeler prepares the CM by investigating the system and
using his/her knowledge, available design patterns and the conceptual modeling
language.

A simulation conceptual model (CM) refers to the non-executable higher level
abstraction of the system under study. It represents the structure of the system
and what will be modeled in the future executable simulation model.
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3.1.3. Model specification

After the problem owner and the conceptual modeler agree on a CM, the simulation
modeler transforms it into a formal model according to a system specification
language for a certain formalism such as DEVS, Petri Nets, partial differential
equations, or finite state automata. At this stage, the simulation modeler defines
the system functionality without taking into account any specific platform on which
the model will be later implemented. Hence, the formal model will be called a
platform-independent simulation model (PISM). A PISM can be mapped to a PIM
in MDA.

This is the stage of formalizing the CM so that mathematical analyses can be con-
ducted and computational representation can be achieved. A PISM is a mathem-
atical description of the processes and activities in the conceptual model, generally
based on the available data. It is expected to be mathematically complete, in other
words it can be simulated manually. However to be able to simulate it on a specific
simulation platform it should be transformed to an executable model.

3.1.4. Model implementation

After the conceptual modeler and the simulation modeler agree on a PISM, the
simulation programmer develops the platform-specific simulation model (PSSM).
A PSSM is an implementation model of a PSIM for a specific platform. A PSSM
can be mapped to a PSM in MDA. A final compilable and/or executable simulation
model source code (SM) is automatically generated from a PSSM. PSSM and SM
are at the same abstraction level with different views.

A PSSM should be specified in a modeling language which provides a higher level
representation of a programming language. The SM is an executable source code
generated/written in that programming language. The boundaries of the system in
the surrounding environment are represented via parameters during the modeling
process. At this stage, simulation model is validated and verified to test if it
correctly and accurately represents the source system.

3.1.5. Experimentation

Once the executable SM is ready, the simulation expert designs the experiments
and executes the SM on a simulator with the collected data. The run-time model
includes the specific values for the model parameters and is called the experimental
model (EM). Before the actual experiments, validation experimentations can be
performed to validate if the input/output behavior of the simulation model matches
to the purpose of the simulation study. Simulation results are generated during the
experiments.
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Figure 3.2: MDD4MS general architecture.

3.1.6. Analysis

The simulation analyst analyzes the experimentation results to extract maximum
insight about the source system. The overall study and suggestions for future
implementations are presented in the M&S report. Additional experiments can be
performed if needed.

3.2. General architecture

The MDD4MS framework introduces model and metamodel definitions for various
stages, model transformations between different models, methods to support the
transformation steps, and a tool architecture for the overall process. MDD4MS
introduces two ways to support the model transformations with domain-specific
constructs. These are either using domain-specific languages or using domain-
specific component libraries with the framework. Domain-specific and component
based solutions are explained in Chapter 4 and 5 respectively, while the main
framework is explained in this chapter. The general architecture of the MDD4MS
framework is shown in Figure 3.2.

When the model-type outputs of the M&S lifecycle are analyzed, it is most likely
that these models need to be specified in different modeling languages. The
MDD4MS framework introduces metamodels for these languages in order to sup-
port model transformations. Hence, each model needs to be an instance of the
corresponding metamodel. All of the metamodels are specified in a metamodeling
language. Although it is practical to use the same metamodeling language, it is
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also possible to use different metamodeling languages as far as there is a suitable
model transformation language for each transformation.

The MDD4MS framework introduces model transformations between the different
models of the M&S lifecycle in order to automatically generate some parts of the
simulation model source code. Domain-specific languages or simulation component
libraries can be used to increase the portion of the generated code. The simulation
model is filled in with the specific experimentation parameters and executed on the
simulation platform.

The MDD4MS framework focuses on simulation model development and fills in
the gap between the conceptual modeling, model specification and model imple-
mentation stages. M&S study definition, experimentation and analysis stages are
partially addressed. The requirements specification metamodel is out of the scope
of this research and it is assumed that the requirements are defined in a document.
Hence, the MDD4MS framework introduces three metamodels for CM, PISM and
PSSM.

� CMmetamodel represents the grammar of a conceptual modeling language,

� PISMmetamodel represents the grammar of a system specification formalism,

� PSSMmetamodel represents the grammar of a simulation model program-
ming language.

Where,

� CM is an instance of the CMmetamodel,

� PISM is an instance of the PISMmetamodel,

� PSSM is an instance of the PSSMmetamodel.

The metamodels are expected to be specified in a metamodeling environment,
where model editors can be generated automatically. By using the model editors,
the models are specified as the instances of the metamodels. After introducing the
metamodels, the following metamodel based model transformations are proposed:

� CMtoPISM transformation is a M2M transformation from CM to PISM.

� PISMtoPSSM transformation is a M2M transformation from PISM to PSSM.

� PSSMtoSM transformation is a M2M transformation from PSSM to SM.
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Figure 3.3 illustrates the proposed framework with one meta-metamodel. There
are three metamodeling stacks, which are presented vertically in the figure. Model
transformations lay on an orthogonal axis to metamodeling as shown in the figure.

In CMtoPISM and PISMtoPSSM transformations, extra knowledge needs to be
added to obtain a full model. Otherwise the target model can only be partially
generated. While moving from a CM to PISM, the detailed behavior of the system
should be explained; and while moving from a PISM to PSSM, the implementation
details should be explained. CMtoPISM transformation contains domain-specific
constructs in order to add execution semantics. PSSMtoSM transformation is gen-
erally a one to one transformation for a programming language and its metamodel.

Model transformations enable the reuse of information that was once described
in a model. Defining precise metamodels and writing good model transformation
rules are the challenging activities of MDD. Various model transformations can
be defined for the same source model, so it is important to define a good model
transformation or choose the best existing one for a successful MDD process.
To increase the effectiveness of model transformations, domain-specific modeling
languages and component libraries are used in MDD applications. In this case,
the transformations can be written in a more generic and compact way since the
domain knowledge is already added via the language elements or components.

A practical application of the MDD4MS framework is an MDD process and it is
called an MDD4MS process. Although we propose an MDD4MS process with three
intermediate models and one final executable model, it is possible to increase the
number of models in the framework. MDD4MS clearly separates the conceptual
modeling, model formulation (specification), implementation and model coding
with the associated models CM, PISM, PSSM, and SM. However, according to
the different needs in simulation projects, it is also possible to merge some stages
by using the same modeling language to specify the different models, e.g., same
language can be used for CM and PISM stages in small scale projects. Then,
the higher level model becomes less detailed. The lower level model is expected
to include the missing information in the higher level model. For example, an
incomplete visual DEVS diagram can serve as a conceptual model, if the problem
owner is familiar with DEVS. Besides, different model transformation patterns can
be defined for a metamodel, e.g., a CM can be used to generate multiple PISMs,
and a PISM can be used to generate multiple PSSMs. Figure 3.4 shows a sample
workflow for the simulation model development stage of an MDD4MS process.

3.3. Theory of MDD

This section explains the theoretical underpinnings of modeling, metamodeling and
model transformations. The theory is based on the information given in Section
2.3. Although, there have been related work in the software engineering literature
for mathematical explanation of MDD concepts [Fav04, Küh06, JB06, JS09], we
could not find a sound and comprehensive reference that covers all of the definitions.
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Figure 3.4: A sample workflow for the simulation model development stage.

Yet, the preliminary definitions and ideas helped us to formalize the steps in MDD
processes.

3.3.1. Modeling

Modeling is the process of representing a source system for a specific purpose in a
form that is ultimately useful for an interpreter. The concrete form that represents
the system is called the model. A model is developed for a purpose related to the
source system [Kli69, Sha75, Ack78]. This purpose can be achieved by executing
or interpreting the model and gaining knowledge that relates to the source system.
The interpretation can only be validated in a given context. The context includes
the purpose of the modeling process, information about the surrounding environ-
ment of the source system, and the constraints, assumptions and facts that affect
the modeling process. A context can be formally defined and specified in a model
as well [TACS02]. The following primitive terms and relations are defined:

� S is the infinite set of all source systems.

Variables such as “s, s1, s2, ...” range over S.

� C is the infinite set of all contexts.

Variables such as “c, c1, c2, ...” range over C.

� L is the infinite set of all formal languages.

Variables such as “l, l1, l2, ...” range over L.

The usual set operations are applicable to S, C and L such as union, intersection,
difference, complement, subset, proper subset, Cartesian product and powerset.
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The + function c1 + c2 ∶ C × C → C is used to represent the composition of two
contexts, where c1 + c1 = c1, c1 + c2 = c2 + c1 and c1 ≤ c1 + c2.

The grammar notion of the formal language theory (see Appendix B) is used to
define the abstract syntax of a language and it is accepted that a default concrete
syntax is provided by the metalanguage. The expression generated with the con-
crete syntax is called the model and it is often in a structured textual form. Then,
the following definitions and axioms are proposed.

Definition 1 (Model). Let g = {T,N, I,P} be a grammar, and the language that
g generates is l(g). If an expression m∈l(g) is a representation of a source system
s within a context c, then m is said to be a model of s in c. The infinite set of all
models is denoted with M . Variables such as “m,m1,m2, ...” range over M . The
ternary relation ‘model-of’ is denoted with µ∶M × S ×C.

Definition 2 (Conforms-to relation). If an expression m∈l(g) and m∈M , then
the language l is a modeling language and m conforms-to l. The binary relation
‘conforms-to’ is denoted with γ∶M ×L.

Axiom 1 (transitive-µ). µ(x, y, c1) ∧ µ(y, z, c2)⇒ µ(x, z, c1 + c2).

Figure 3.5 shows the relationships between a model, a source and a language.
Figure 3.6 illustrates the Axiom 1.

Although the terminal symbols of the grammar provide a default concrete syntax
(primary view), it is possible to define other concrete syntax mappings (secondary
views) for some reasons. For example, it is very common that a model has a
textual view and a diagrammatic view in computer science. We suggest using an
extended grammar to define a mapping from the default concrete syntax to a set of
concrete symbols. In this way, all of the possible final or intermediate productions
of a given grammar with both terminal and non-terminal symbols can be included
in the mapping. The language defined with the extended grammar allows defining
composed modeling elements for a modeling language. The most important thing
is that the primary view has all the specified information and the secondary views
will be syntactically either equivalent to or weaker than it.

Definition 3 (Extended grammar). Let g = {T,N, I,P} be a grammar, and l(g)
be a modeling language. Let ĝ = {T ∪N,N, I,P} be another grammar, and l̂(ĝ)
be all expressions generated by ĝ. l̂ includes all of the possible expressions with
both terminal and non-terminal symbols of g. Hence, l ⊆ l̂. The grammar ĝ is the
extended grammar of g.

Definition 4 (Concrete syntax mapping). Let g = {T,N, I,P} be a grammar,
and l(g) be a modeling language. A concrete syntax mapping for l(g) is a binary
relation from l̂(ĝ) to cs, where cs is a set of concrete symbols, and the relation is
denoted as ψ(l̂(ĝ), cs).

Definition 5 (Secondary view). Let m∈M be a model that conforms-to a modeling
language l(g). For a given set of concrete symbols cs, if m can be mapped to an
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Figure 3.5: The relationships between model, source and language.

Figure 3.6: Illustration of the Axiom 1.

56



expression v ∈ cs∗, by using a concrete syntax mapping ψ(l̂(ĝ), cs), then v is a
secondary view of the model m. cs∗ is the infinite set of all expressions, which can
be obtained by composing zero or more symbols from cs. The infinite set of all
secondary views is denoted with V . Variables such as “v, v1, v2, ...” range over V .

In some cases, a model editor is capable of hiding some parts of a model in a
particular aspect such as hiding a specific type of connection in a model. In this
case, the concrete syntax remains unchanged. On the other hand, if a concrete
syntax mapping is defined then the editor shows a different view of the model such
as changing the shape of a specific type of element in a model. Although any
subsequent view of a model is based on the default concrete syntax, semantically
it can be more powerful than the model itself in a domain.

3.3.2. Metamodeling

Metamodeling is the process of specifying a grammar of a modeling language in
the form of a model, which in turn can be used to specify models in that language.
Hence, metamodeling is a modeling process where the source is a grammar. The
following definitions can be derived from the earlier ones.

Definition 6 (Metamodel). Let mm∈M be a model and ∃µ(mm,s, c), where s∈S
and c∈C. A model mm is a metamodel if, and only if, s is a grammar. The
infinite set of all metamodels is denoted with M ′, where M ′ ⊂M . Variables such
as “mm,mm1,mm2, ...” range over M ′.

Definition 7 (Metamodeling language). For any mm∈M ′ and γ(mm, l), the lan-
guage l is a metamodeling language. The infinite set of all metamodeling languages
is denoted with L′, where L′ ⊂ L. Variables such as “l′, l′1, l

′

2, ...” range over L′.

If a model m is an instance of a metamodel mm, where mm is a model of a
grammar g, then the model m conforms-to l(g). Figure 3.7 illustrates the relations
between a model and a metamodel.

Definition 8 (Instance-of relation). Let mm∈M ′ be a metamodel, m∈M be a
model, and γ(m, l(mm)). m is an instance-of mm if, and only if, every element
of m is an instance of some element in mm. The binary function ‘instance-of’ is
denoted with τ(m) ∶M →M ′.

Axiom 2 (Formalized conforms-to). (τ(x) = y)⇒ γ(x, l(y)) (by definition 8).

3.3.3. Model transformations

A formal transformation requires that the models are specified in well-defined mod-
eling languages and the rules are defined with a model transformation language. A
model transformation is performed with a model transformation pattern. According
to the requirements given in Section 2.3.7, we assume that a model transformation
is correct and complete so that it preserves the modeling relation.
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Figure 3.7: Metamodeling.
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Definition 9 (Model transformation pattern). A model transformation pattern p
is defined as a triple p = {lx, ly, r}, where

lx is the source modeling language,

ly is the target language (any language such as a programming language, a mod-
eling language or any well-defined language),

r is a finite set of transformation rules from lx to ly which are defined with a model
transformation language.

The infinite set of all model transformation patterns is denoted with P . Variables
such as “p, p1, p2, ...” range over P .

Definition 10 (Formal model transformation). Let m∈M be a model that conforms
to l1, and p = {l1, l2, r} be a model transformation pattern.

If an expression e∈l2 is derived from m by applying p, then the derivation is called
a formal model transformation. It is said that m is transformed-to e by applying p
and denote it as θ(m,p) = e.

Definition 11 (Formal model-to-model transformation). If θ(x, p) = y and y∈M ,
then the transformation is called a formal model-to-model transformation.

Axiom 3. If the model transformation pattern p preserves the system related
information in the source model, then

(θ(x, p) = y) ∧ µ(x, s, c) ∧ (y ∈M)⇒ µ(y, s, c + p).

Figure 3.8 shows the relationships in a model-to-model transformation. Figure 3.9
illustrates the Axiom 3.

Definition 12 (Code generation). If θ(x, p) = y and y is a source code in a software
programming language, then the transformation is called code generation.

Axiom 4. (θ(x, p) = y) ∧ (p = {l1, l2, r})⇒ γ(x, l1) (by definition 10).

Axiom 5. (θ(x, p) = y) ∧ (y ∈ M) ∧ (p = {l1, l2, r}) ⇒ γ(y, l2) (by definition 10
and definition 11).

The following axioms are defined for the metamodel based model transformations.

Axiom 6. (θ(x, p) = y) ∧ (p = {l(mm1), l2, r}) ∧ (mm1 ∈M
′)⇒ (τ(x) =mm1)

(by definition 10).

Axiom 7. (θ(x, p) = y) ∧ (y∈M) ∧ (p={l1, l(mm2), r}) ∧ (mm2∈M
′)⇒

(τ(y)=mm2) (by definition 10 and definition 11).
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Figure 3.8: The relationships in a model-to-model transformation.

Figure 3.9: Illustration of the Axiom 3.
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3.3.4. MDD process

By using the definitions given in the previous sections, we define an MDD process
as:

Definition 13 (MDD process). A model driven development process for a software
application development is defined as a tuple

mdd = {n,MML,ML,MO ,SL,pl ,MTP ,STP ,MT , sc,TO}

where

n is the number of the intermediate models,

MML = {l′0, l
′

1, ..., l
′

n−1} is an ordered set of metamodeling languages (can be
defined with meta-metamodels),

ML = {l0(mm0), l1(mm1), ..., ln−1(mmn−1) ∣γ(mmi, l
′

i)(0 ≤ i < n)} is an ordered
set of modeling languages (preferably defined with metamodels),

MO = {m0,m1, ...,mn−1 ∣γ(mi, li)(0 ≤ i < n)} is an ordered set of models, m0 is
the initial model and mn−1 is the final model,

SL is a set of supplementary languages (including at least a model transformation
language for writing transformation rules),

pl is a programming language for final code generation,

MTP = {p0, p1, ..., pn−2, pn−1} is a set of formal model transformation patterns,
where pi is a model-to-model transformation pattern, pn−1 is a code generation
pattern, and (pn−1 = {ln−1(mmn−1), pl, r}) ∈ MTP (including at least the final
code generation pattern),

STP is a set of other supplementary model transformation patterns,

MT = {(θ(x, p) = y) ∣(x ∈ M) ∧ (p ∈ MTP)} is a set of formal model trans-
formations, where (θ(mn−1, pn−1) = sc) ∈ MT (including at least the final code
generation),

sc is the final source code,

TO is a set of tools to ease the activities.

An MDD process is supposed to have an initial model, a number of intermediate
models and final source code. The aim is to obtain a large part of the intermediate
models and the final code through successive model transformations. An MDD
process supports model continuity by formal model transformations.

Definition 14 (Model continuity). Let mdd be an MDD process, m0 be the initial
model of this process and µ(m0, s, c). It is said that model continuity is obtained in
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Figure 3.10: Modeling and simulation in general.

an mdd process if, and only if n ≥ 2 and µ(mfinal, s, c+x), where mfinal is the final
model of the MDD process, it is generated through formal model transformations,
and it preserves the modeling relation.

3.4. Theory of the MDD4MS framework

Following the earlier definitions, modeling for computer simulation is the process
of representing a system for a specific purpose in a form that is executable within a
simulator. Figure 3.10 shows the basic concepts and relations based on the general
modeling principles.

The main difference from a general modeling process is that the model is interpreted
(i.e. executed) within a computerized model interpreter (i.e. simulator). Hence,
a simulation model is executable in a context within a simulator. A simulator is
a computer program which may be executed on a computer platform or may be
embedded directly into a hardware platform. The output of the simulator is called
the simulation results. Due to the fact that the main objective of a simulation
model is being simulated, a computer simulation model needs to be specified in
a programming language that provides or can be extended to provide simulation
capabilities (preferably with a suitable model editor). Simulation is the process
of conducting experiments with a model so that the behavior of the system is
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simulated over time. We propose the following definitions based on the MDD
concepts.

Definition 15 (Simulation model). Let m ∈ M be a model, s ∈ S be a source
system, and µ(m,s, c). m is a simulation model if, and only if, there exists a
simulator that can simulate m over time.

Definition 16 (Simulation modeling language). Let l(g) be a modeling language.
The language l(g) is a simulation modeling language if, and only if, there exists a
simulation model m such that γ(m, l(g)).

Due to the fact that a computer simulation model refers to the final executable
source code in many cases directly or indirectly, code generation is accepted to be
a model-to-model transformation in the MDD4MS framework. An implementation
pattern for applying MDD concepts in M&S domain is given as follows:

Definition 17 (MDD4MS process with three intermediate models). An MDD4MS
process with three intermediate models is a specialized MDD process as

mdd4ms = {n,MML,ML,MO ,SL,pl ,MTP ,STP ,MT ,SM ,TO}

where

n = 3 (CM ,PISM ,PSSM ),

MML = {l′0, l
′

1, l
′

2} is an ordered set of metamodeling languages (can be defined
with meta-metamodels),

ML = {l0(CMmetamodel), l1(PISMmetamodel), l2(PSSMmetamodel)} such that

� γ(CMmetamodel , l′0),

� γ(PISMmetamodel , l′1),

� γ(PSSMmetamodel , l′2),

MO = {CM ,PISM ,PSSM } such that CM is the initial model, PSSM is the final
model, and

� τ(CM ) = CMmetamodel ,

� τ(PISM ) = PISMmetamodel ,

� τ(PSSM ) = PSSMmetamodel ,

SL is a set of model transformation languages,

pl is a programming language with simulation capabilities,

MTP = {pcm, ppism, ppssm} such that
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� pcm = {l0(CMmetamodel), l1(PISMmetamodel), r0},

� ppism = {l1(PISMmetamodel), l2(PSSMmetamodel), r1},

� ppssm = {l2(PSSMmetamodel), pl, r2},

STP is a set of other supplementary formal model transformation patterns,

MT = {(θ(CM ,pcm) = PISM ), (θ(PISM ,ppism) = PSSM ),

(θ(PSSM ,ppssm) = SM )},

SM is the final executable simulation model,

TO a set of tools to ease the activities.

Theorem 1. An MDD4MS process with three intermediate models (performed
according to the definition 17) obtains model continuity.

Proof. For a given

mdd4ms = {n,MML,ML,MO ,SL,pl ,MTP ,STP ,MT ,SM ,TO}

where n = 3 and MO = {CM ,PISM ,PSSM }, according to definition 17, we have:

� CM ,PISM ,PSSM ∈M ,

� pcm = {l0(CMmetamodel), l1(PISMmetamodel), r0},

� ppism = {l1(PISMmetamodel), l2(PSSMmetamodel), r1},

� ppssm = {l2(PSSMmetamodel), pl, r2}

� θ(CM ,pcm) = PISM ,

� θ(PISM ,ppism) = PSSM ,

� θ(PSSM ,ppssm) = SM ,

� SM is the final executable simulation model.

We assume that CM is the initial model, µ(CM , s, c) and s is a system. As well
as, model transformations are correct and complete. Although, PSSM is the final
model in software engineering, we accept that SM is the final model in M&S.
Figure 3.11 illustrates the Theorem 1.

1. (θ(CM ,pcm) = PISM ) ∧ µ(CM , s, c) ∧PISM ∈M ⇒ µ(PISM , s, c + pcm)

(by axiom 3).
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2. (θ(PISM ,ppism) = PSSM ) ∧ µ(PISM , s, c + pcm) ∧PSSM ∈M ⇒

µ(PSSM , s, c + pcm + ppism) (by 1 and axiom 3).

3. If SM is a simulation model, then SM ∈M (by definition 15).

4. (θ(PSSM ,ppssm) = SM ) ∧ SM ∈M ∧ µ(PSSM , s, c + pcm + ppism)⇒

µ(SM , s, c + pcm + ppism + ppssm) (by 1, 2, 3 and axiom 3).

5. n ≥ 2∧µ(SM , s, c+ pcm + ppism + ppssm)⇒ mdd4ms process obtains model
continuity (by definition 14).

3.5. Tool architecture for MDD4MS

The most notable advantages of MDD are rapid software development and in-
creased productivity. Hence, computerized tool support is very important in MDD
approaches. In order to support the M&S lifecycle, a tool architecture for the
MDD4MS lifecycle is proposed in Figure 3.12. A full-featured metamodeling en-
vironment, a set of model editors and a set of model transformation tools are
required.

The MDD4MS framework introduces new roles into the M&S field as metamodeler
and transformation rule writer. The following roles are defined whereas a parti-
cipant can have more than one role: Problem owner, requirements analyst, concep-
tual modeler, simulation modeler, simulation programmer, metamodeler, modeling
tool developer, transformation rule writer, and simulation expert/analyst.

As explained before, metamodeling environments can generate the modeling tools
automatically. Many tools have decorator facilities for nicer visualization of the
models and some model verification facilities. Graphical modeling tools for simu-
lation conceptual modeling, simulation model specification and simulation model
implementation can be generated automatically by using the available MDD tools.
The auto-generated modeling tools can provide a drag and drop model editor with a
drawing palette that shows the modeling elements in the metamodel; some basic file
operations (new, open, save, close); some editing functions (editing the properties,
cut, copy, paste, delete, move, zoom in, zoom out, undo, redo); switching between
multiple windows (symbolic language elements, properties, model explorer, etc.);
toolbars and menus. Sometimes, the metamodeling environment can support the
generated modeling tool with extra facilities such as writing a model transformer-
/interpreter for the models developed with that tool. Model transformation tools
perform the M2M or M2T transformations.

A simulator can be seen as an interpreter for a programming language that ex-
ecutes the SM. If necessary, it compiles the source code first. In this case, the
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Figure 3.11: Illustration of the Theorem 1.
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simulator includes a compiler as well. The simulator can be either included or
excluded from the modeling tools. If it is a general purpose programming language
interpreter, then it is better to keep it apart from the modeling tools. An IDE that
combines the aforementioned graphical modeling tools and model transformers is
called a simulation model development environment. The intended users of the en-
vironment are conceptual modelers, simulation modelers, simulation programmers,
simulation experts or general users with basic M&S knowledge. Finally, Table 3.1
provides a checklist for applying MDD4MS in practice. The required activities are
listed in the table and the name of the artifacts or chosen methods/languages can
be written.

3.6. Evaluation of the proposed MDD application

The proposed MDD4MS framework is a conceptual application of the MDD prin-
ciples in the M&S field. Hence, we evaluate the framework according to the
requirements given in Section 2.3.8.

� R-MDD.1. Abstraction: The MDD4MS framework suggests the use of at
least four models which are CM, PISM, PSSM and SM. The models are at
different abstraction levels, for example CM is more closer to the problem
domain without execution semantics while PISM includes the execution se-
mantics but not the implementation details, and PSSM includes both. Hence,
the MDD4MS framework satisfies the abstraction requirement.

� R-MDD.2. Metamodeling: The framework uses metamodeling for language
definitions and suggests the use of at least three metamodels which are CM,
PISM and PSSM metamodels. So, the MDD4MS framework satisfies the
metamodeling requirement.

� R-MDD.3. Transformation: The framework defines three model transforma-
tions from CM to PISM, PISM to PSSM, and PSSM to SM. A transformation
needs to be defined by transformation rules with a transformation language.
So, the MDD4MS framework satisfies the transformation requirement.

� R-MDD.4. Automation: The framework presents a tool architecture and
suggests using existing metamodeling environments to automatically gener-
ate models and source code, as well as using model transformation tools to
generate models. Hence, the MDD4MS framework satisfies the automation
requirement.

� R-MDD.5. Generality: The framework proposes a generic simulation model
development method which can be incorporated into the existing methodolo-
gies. The framework is both formalism independent and platform independ-
ent, but it can be tailored according to a specific platform or technology. So,
the MDD4MS framework satisfies the generality requirement.
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Table 3.1: Checklist for applying the MDD4MS framework.

Activities Done?
Y/N

artifact/
chosen
method

Notes

Choose the conceptual modeling language

Choose the system specification formalism

Choose the simulation programming language

Choose a metamodeling language

Choose a metamodeling environment

Define/choose the simulation conceptual modeling
metamodel (CMmetamodel)

Define/choose the simulation model specification
metamodel (PISMmetamodel)

Define/choose the simulation model implementa-
tion metamodel (PSSMmetamodel)

Choose a M2M transformation language

Choose a M2T transformation language

Choose a M2M transformation tool

Choose a M2T transformation tool

Define/choose the CM-to-PISM transformation

Define/choose the PISM-to-PSSM transformation

Define/choose the PSSM-to-Code transformation

Generate/choose the simulation conceptual model
editor

Generate/choose the simulation model specifica-
tion editor

Generate/choose the simulation model implement-
ation editor

Choose a simulation platform

Specify the CM

Generate and refine the PISM

Generate and refine the PSSM

Generate and refine the SM

Design experiments

Execute the SM
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As a result, our MDD adoption satisfies all the requirements and so MDD4MS
framework successfully applies the MDD concepts.
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Chapter 4

Using Domain Specific Languages
with the MDD4MS Framework

This chapter explains how domain specific languages can be added into the MDD4MS
framework and how they can be utilized to support model transformations.

4.1. Domain specific languages

A domain specific language (DSL) is a language designed for a particular domain
which can be either graphical or textual. The elements of a DSL represent the
concepts of a particular domain and they enable the modeler to focus on the
detailed aspects of the system. The opposite is a general purpose language which
provides more general concepts in a discipline. For example, BPMN is a DSL for
business process domain while UML is a general purpose modeling language for
software engineering.

It is important to support the modeling process in a domain by graphical modeling
tools which will help the modelers to construct their models faster, better and in a
more reliable way. Hence, MDD tools are commonly used to develop modeling tools
for DSLs. In MDD, a DSL is specified with a metamodel; and so the metamodeling
process is sometimes called as Domain Specific Modeling (DSM). Once a DSL is
specified with a metamodel then the instances of this metamodel are called domain
specific models. In this case, a DSL is also known as a domain specific modeling
language (DSML).

Please note that, the term ’domain-specific’ is generally used for expressing different
application domains such as logistics, health care, airports, container terminals, etc.
in the M&S field. However, in the MDD context, a DSL is not necessarily designed
for such kind of an application domain. For example, SQL (Structured Query
Language) and HTML (Hyper Text Markup Language) are commonly referred
as DSLs [vDKV00]. Hence, while a simulation programming language can be
considered as a DSL from the point of an MDD expert, it is not domain-specific
from the point of a simulation expert since it can be used for any kind of application
domain.
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4.2. Adding domain specific languages into the MDD4MS

Adding domain specific constructs into the MDD4MS framework has significant
effect on model transformations. Domain specific constructs are more expressive
in a particular domain and so model transformations can produce more precise and
detailed models. It is also a way for defining specific transformation rules for a
domain. DSLs can be used at any stage in the MDD4MS framework by using
metamodeling.

When there is a metamodel for a stage in an MDD4MS application it is also possible
to add new domain specific constructs to the related stage. In this case, to be clear
in our terminology, we will use ’Domain-Specific metamodel (DS-metamodel)’ term
for a metamodel in a specific application domain such as logistics. For example, if
we have a DEVS metamodel and we would like to have more domain specific DEVS
constructs for logistics, we develop DEVS-logistics domain specific metamodel. A
domain specific metamodel for an application domain in simulation can be added
into the MDD4MS in three ways (when there is already a metamodel for the related
stage).

4.2.1. Adding a new metamodeling layer

The first one is adding a new metamodeling layer between M1 and M2. Although
this seems possible in theory, it is not very easy in practice. Because in order to
achieve this, M2-level metamodels need to have metamodeling capabilities, which
means that extra work should be done. For example everything in M3-level meta-
metamodel should be duplicated in each M2-level metamodel. In this case M2-
level metamodel becomes a meta-metamodel, so that a new metamodel can be
generated from that. Necessarily, the metamodeling levels need to be renumbered.

OMG introduces a very useful concept of a UML profile to specify a domain spe-
cific model which can be instantiated for specifying models in that domain. The
Profiles package included in UML 2.0 provides an extension mechanism through
stereotypes, constraints and tagged values. A different notation and semantics can
be defined for already existing elements. Although this is not exactly adding a new
layer, it is the only available practical implementation.

4.2.2. Defining a new metamodel for M2 layer

The second way is making a new metamodel for M2 level. Although this is the easi-
est way and applied in practice, this solution sacrifices the reusability of the earlier
work. The earlier models that are developed with the old M2-level metamodels will
not conform to the new metamodel.

4.2.3. Extending an existing M2 layer metamodel

Another way is extending existing M2-level metamodels for proposing new do-
main specific metamodels for any stage. Every element of the new metamodel
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should extend an element from the old metamodel, while conforming to the meta-
metamodel of the old metamodel. In this case, the new metamodel will be called
domain specific metamodel extension. Figure 4.1 presents the metamodel extension
mechanism in MDD4MS.

The extends relationship between two metamodels expresses that: Metamodel-B
extends Metamodel-A if each element in Metamodel-B extends an element from
the Metamodel-A. In this way Metamodel-B is also an instanceOf of the meta-
metamodel of Metamodel-A. DS-metamodel extensions include old concepts and
new domain specific concepts. However, restrictions or constraints can be added
such as writing rules for using only the new domain specific concepts.

Many state-of-the-art metamodeling environments provide automatic generation of
visual model editors. Hence the extended metamodels can easily be used to gen-
erate a new modeling editor. The new editor can be customized while keeping the
base structure of the old metamodel. The following sections present a detailed ex-
ample of how to define a DS-metamodel extension for conceptual modeling stage of
the MDD4MS lifecycle. First a generic simulation conceptual modeling metamodel
is proposed and then it is extended to represent a function modeling language.

4.3. An extensible conceptual modeling metamodel for simu-
lation

As stated in Section 2.1, there are many languages, techniques and tools for sim-
ulation conceptual modeling. But, there is not a commonly accepted conceptual
modeling language for simulation. This is due to the fact that conceptual modeling
languages are chosen to be understandable to the problem owner and so closer to
the problem domain. Generic conceptual modeling languages have a potential risk
of being insufficient for domain specific concepts, if they are not extensible and
flexible. DSLs guarantee that the conceptual modelers work closer to the problem
domain with a high level, intuitive and simple notation [TB11]. Metamodeling
is one of the most practical and popular approaches for defining and using DSLs
[AK03, AGRS13]. In this section, an extensible metamodel for a generic simulation
conceptual modeling language is proposed. The language is mainly based on our
earlier work presented in [ÇVS10b] and influenced from the systems theory.

4.3.1. SimCoML language and its metamodel

We propose a generic simulation conceptual modeling language (SimCoML) to
define a system with its structure and abstract behavior. In SimCoML, a model
consists of model parts. A model part can be a group modeling element, an atomic
modeling element or an entity. Each part can have different types of variables such
as input-output variables, state variables, parameters or model properties. Proper-
ties can define the meta information such as name, version, author, keywords, etc.
They can be used in cataloging and searching services. Each part can have some
constraints to express the boundaries of the system.
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Atomic model elements can include operations to represent system behavior. Vari-
ables and entities can be used in the definition of an operation. The total image
of the state variables at a particular time shows the state of the system [LK91].
State change is possible when the state variables are updated. Output is available
when the output variables are updated. Entities do not have operations and refer
to the data types on the implementation level. For example, they can be used to
represent system resources, objects, human actors, products, etc. Group model
elements are used to organize the modeling parts in a hierarchical way.

Relations define how components and entities relate to each other. Four basic
relations are proposed as fixed composition, inheritance, association and dynamic
composition (aggregation). Fixed composition refers to the hierarchical structures
in a model. Figure 4.2 shows the metamodel specified in Eclipse GEMS plugin for
the SimCoML language.

In the metamodel, fixed compositions are represented with usual composition
relation. Inheritance relation for entities is handled with BaseEntity attribute.
BaseEntity can be specified if the entity inherits from an existing entity. Associ-
ation relations or any other logical relationships between entities are expressed with
LinkConnection. Appropriate cardinality information can be defined for the rela-
tions, such as: 1..*, *, 0..*, 0..1, 1, etc. The role of an entity in a relation can be
defined as well. Aggregation, which refers to a temporary whole-part relationship,
is represented with FlowConnection. A FlowConnection can carry a model part,
whereas the default flow type is an ’entity’ flow. This type of relation is called dy-
namic composition. EntityType for a FlowConnection can be either a single entity
or a set of entities. A standard way of representation should be used since it needs
to be parsed during the transformation. For example, ’+’ sign is used to represent
a set in the next section such as ’Visitor + Ticket’, which means that the visitor
goes to the next step with a ticket.

In order to define the expressions a simple pseudo code mechanism is suggested as
well. This mechanism can be used to support code generation. The expressions
part of the metamodel is given in Figure 4.3. By using this metamodel a visual
modeling editor is automatically generated. It is possible to add icons in the editor.
Arrows show the flow of information.

4.3.2. A sample model for a queuing system

In order to provide a better understanding, a sample model for a single server
queuing system is illustrated in this section. Simulation of a single server queuing
system is a common example of discrete event simulation such as an information
desk at an airport or a hotel, a pharmacy, a barber shop, or a ticket office.

For example, let’s consider a service facility with a single server for which we would
like to estimate the average waiting time in the queue for arriving customers. Let’s
say that it is a ticket office in front of a theme park. There will be three types of
activities: arrivals, service and departure. The service activity is controlled with a
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Figure 4.2: A metamodel for simulation conceptual modeling.
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Figure 4.3: Pseudo code metamodel.

queue. The duration from the arrival of a customer to the queue until the instant
he/she begins to be served will be calculated as the waiting time in the queue.
The arrival and service patterns are expected to be specified in the formal model.
A conceptual model for this system is illustrated in Figure 4.4.

4.3.3. Extending the metamodel for function modeling

A metamodel for IDEF0 is specified by extending the SimCoML metamodel and
it is shown in Figure 4.5. IDEF (Integration DEFinition) is a family of modeling
languages in the field of systems and software engineering [IDE99]. IDEF0 (Integra-
tion Definition for Function Modeling) is a function modeling method for describing
functions of organizations or systems. An IDEF0 model consists of functions, data
and objects. Functions are represented by boxes. Data or objects that interrelate
those functions are represented by arrows. After extending the metamodel, a new
IDEF0 editor is automatically generated which is still compatible with SimCoML
models.

4.3.4. A sample model for order processing

A sample model that shows a ticket selling process is given in Figure 4.6. The
process has four functions and is initiated with a customer order. The ticket seller
accepts the order and then calculates the total price according to the price list. If
the customer pays for the tickets, the ticket seller prints the tickets and gives them
to the customer. Served customer leaves from the system.
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Figure 4.4: A conceptual model for a ticket office simulation.

4.4. How domain specific constructs support the model trans-
formations?

In MDD, model transformations are not only expected to preserve the information
in a source model but also enhance the model by adding new knowledge. In order
to obtain an executable model or a big portion of the source code at the end,
model transformations should add new knowledge at each step. If general purpose
modeling languages are used in the earlier steps then it will be hard to generate
specific data for the different parts of the model. But, if DSLs are used then
each domain specific model element can be transformed into a more precise target
element.

To discuss the positive effect of using domain specific constructs on model trans-
formations, we provide two sample models in Figure 4.7. In the case of general
purpose modeling language, although the modeler aims to model different types of
activities in the model, he/she uses the generic activity element in the language.
So, during the transformation it is not easy to handle the difference. For the model
on the left hand side, same target code is generated for all of the four activities.

On the other hand, in the case of domain specific language, the difference is clear
since the DSL already includes different constructs for various activity types. Hence,
during the transformation, it is possible to generate more precise and useful target
model elements or code. For the model on the right hand side, more detailed code
including a queue mechanism is generated for a service activity whereas specific
code is generated for printing and send message activities. Different icons help to
distinguish different activities such as resource usage, printing or messaging. In
this way, we expect to increase the usefulness of the model transformations.
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Figure 4.6: An example IDEF0 model for order processing.

Figure 4.7: Domain specific constructs can be transformed into more precise target
elements.
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Chapter 5

Using Simulation Model
Component Libraries

This chapter explains how to integrate simulation model component libraries into
the MDD4MS framework in order to support model transformations. The full
benefit of the MDD4MS framework can be better achieved if the component based
approach is integrated in a systematic way. The component based approach has
originally a bottom-up way of assembling components, and so requires a hierarchical
modeling approach. Hence, the next section gives information about hierarchical
modeling approach. After that, Section 5.2 presents information about component
based simulation. Then, Section 5.3 explains how simulation model component
libraries can be used in the MDD4MS framework.

5.1. Hierarchical modeling approach

Hierarchical modeling (also known as multi-level modeling) provides a way to rep-
resent a system in a hierarchical structure to deal with large scale or complex
models in a thorough manner [Sim62]. Hierarchical modeling allows modeling with
more manageable subparts at different levels of detail. The ability to move among
the different levels of a model hierarchy greatly increases the manageability and
understandability of large models [DS99]. As modelers build more complex and
complicated models for large systems, thinking at various levels of abstraction be-
comes a useful approach. Hierarchical modeling can provide a more natural way of
modeling and help to focus on various degrees of detail.

Hierarchical models are generally developed in two different ways as top-down
or bottom-up strategies. In the top-down approach, a system is broken down into
subsystems until the sub-subsystems are simple enough to be studied easily. This is
called decomposition and once the simplest systems are developed, the composition
of the subsystems produces the intended system. During the top-down modeling
process, modelers specify the main parts and relationships of the system without
inner details first and then they fill in the lower levels. The top-down approach can
be especially useful when the details of lower level elements are not yet clear. In
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Figure 5.1: Hierarchical modeling approach.

the bottom-up approach, subsystems are coupled together to form a larger system
and this is called composition. During the bottom-up modeling process, modelers
first think of the lowest level, i.e. smallest parts or building blocks of the system
and then they use these previously constructed building blocks to compose larger
models and systems. The bottom-up approach has traditionally been used when
pre-developed building blocks are available. Figure 5.1 illustrates the top-down and
bottom-up approaches in hierarchical modeling. In both cases, hierarchical models
generally represent a tree-like structure.

Simulation models can be developed by employing either a top-down decompos-
ition approach or a bottom-up composition approach. Due to the fact that the
simulation model development process starts with the system investigation and
conceptual modeling activities, most of the M&S methodologies suggest a top-
down modeling approach. For example, to represent an airport system, one would
identify such subsystems as gates, security check points, information desk, check-in
desks and so forth without delving yet into their inner details.

Due to some pre-packaged commercial tools offer low-level building blocks, the
bottom-up approach is mainly adopted during the simulation model development
in practice. Building block or component based simulation applies a bottom-up
modeling approach. For example, agent based simulation is a common example
of bottom-up approach where the agents are the fundamental building blocks of
the model and the behavior of these agents produces the behavior of the system
[Rob05, LDT13]. Figure 5.2 illustrates the top-down and bottom-up approaches
in the M&S lifecycle. As a result, the theories do not match with the practice and
so the component based simulation has not yet reached its potential. The next
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Figure 5.2: The top-down and bottom-up approaches in the M&S lifecycle.

section gives information about the component based simulation.

5.2. Component based simulation

In the early 1990s, component based approaches have emerged in software engin-
eering with potential benefits for reduced development cost and time, effective use
of subject matter expertise, increased quality through the reuse of certified arti-
facts and reduced risk [OPB04]. The component based approach promises reuse
of interoperable components and rapid development. A software component is
a unit of composition with precisely specified interfaces and explicit context de-
pendencies. The development process for component based systems consists of
two major stages: component development and component composition [OPB04].
These stages are usually carried out by different parties. When a component library
is available, a developer can build a system in a bottom-up fashion, by combin-
ing components into larger components, where an assembly of the highest level
components is considered to be the system. In component based approaches,
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components are thoroughly tested first and reviewed during reuse, and so overall
software quality increases [Som07]. However despite the benefits, it has many hid-
den risks such as lack of integration capability, lack of interoperability and lack of
verification [DN06, Vit03].

Due to the fact that simulation models are becoming more and more complex
and large, the development time and costs are increasing [OPB04]. Moreover it
becomes hard to manage and maintain the simulation model after the development
has been completed. The monolithic approach for developing models becomes too
cumbersome in large simulation projects. When each simulation model is designed
from scratch, the lack of reuse makes simulation a time consuming and expensive
task. Applying the component based approach into the simulation field can help
managing larger models [Bus00, HU04, SE09, VV08].

A simulation model component is expected to be a self-contained, interoperable,
reusable and replaceable unit, providing useful services or functionality to its envir-
onment through properly defined interfaces [VD02]. Component based simulation
(CBS) relies on having pre-built, validated simulation model components that can
be coupled to form a hierarchical simulation model that represents a system. When
applied successfully, this approach should significantly reduce the model develop-
ment time. The component based approach has originally a bottom-up way of
assembling components. Simulation model components can be assembled in many
ways into a hierarchy. New components can be built from scratch in each layer
or reused if they already exist in pre-defined and verified component libraries. A
number of component based simulation frameworks have been proposed and many
of them are developed mostly on a specific domain and for standalone use.

� VSE (Visual Simulation Environment) is an integrated development envir-
onment for creating and experimenting with discrete event, general-purpose,
visual simulation models [BBEN98]. It allows creating libraries of reusable
model components. VSE technology includes VSE Editor, VSE Simulator,
VSE Output Analyzer, and VSE Teacher.

� Ptolemy II is another component based modeling and simulation framework
developed, as a part of the Ptolemy Project [Pto07]. Ptolemy II uses a
component specialization framework built on top of a Java compiler toolkit.

� CODES (COmposable Discrete-Event scalable Simulation) is systematic ap-
proach to component-based modeling and simulation that supports model
reuse across multiple application domains [TS08]. A simulation component
is viewed by the modeler as a black box. The attributes and behavior of the
component are described using COML (COmponent Markup Language), a
markup language proposed for representing simulation components.

� CoSMoS (Component Based System Modeling and Simulation) is an in-
tegrated modeling and simulation tool [SE09]. It has a unified concept
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for specifying general-purpose logical, visual, and persistent primitive and
composite models. Currently, CoSMoS supports developing parallel DEVS
compliant models which can be executed using the DEVS-Suite simulator.

� Open Simulation Architecture (OSA) provides an open platform intended to
support component-based discrete event simulation which is built on top of
the Fractal component model [Dal06, RPMD09]. Fractal is the ObjectWeb
Consortium component reference model, which is a set of rules and features
that a component based software architecture is supposed to follow.

On the other hand, some pre-packaged commercial tools such as Arena, MATLAB-
Simulink, Plant Simulation or Enterprise Dynamics offer solutions for limited do-
mains and scopes. But, a clear metamodel and a proven formalism are lacking in
many cases. In general, the components are not adaptable or extensible enough.
They are not platform-free and not compatible with other components developed
in different environments.

Although component based simulation looks like a promising field and its theory
originated more than 20 years ago, many studies do not seem to deliver on the
promises, and many simulation projects face problems when attempting to reuse
existing components in practice. [KLV+10] presents a case study in which both
simulation experts and novices experienced difficulties in developing a simulation
model by using existing simulation building blocks. Novices and experts both
utilized the building blocks to develop their models faster; however the models did
not work as intended. The novices expected that they make mistakes and they
started to make changes in their model. On the other side, the experts expected
that the building blocks were incorrect and they tried to understand the logic and
structure of the building blocks. Once they trusted the building blocks, they tried
to change configuration of the building blocks in their model. At the end, they
succeeded in correcting their models. The study showed that, the novices were
more efficient in their design whereas the experts ran into a conflict between their
own mental patterns and the design patterns offered to them, resulting in additional
cognitive load. [Ver04] points to the difficulties in component based simulation as:

� Defining a complete, verified and consistent set of components is very diffi-
cult.

� Common M&S methodologies start from the assumption that models have to
be built from scratch, and do not assume that there is a library of components
available.

� Modelers are far from developing reusable components and reusing the pre-
developed ones.

� Searching for the components, retrieving their functional and non-functional
properties, understanding the conditions needed for successful operation, and
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selecting the appropriate components can be more challenging than defining
them from scratch.

Both component based software engineering and component based simulation can
benefit from the successful implementation of component based approaches in
other fields. For example, [YO06] provide a background for hardware assembly in
engineering systems. In engineering applications, there are compatibility standards
and each component is labeled accordingly. This type of labeling and document-
ation can be named semantic labeling and is very important for searching and
selecting a component. Furthermore, a given hardware component may be inter-
changeable with a set of other components and this type of knowledge is also well
documented. Besides, the design of the component is described with a hardware
description language (HDL).

Therefore, similar considerations should be taken into account in simulation as
well. Libraries and associated directory services should be provided for effective
system composition. There must be a way to classify and distribute components
efficiently. Good documentation is essential for the successful reuse of components.
These are very important because otherwise developers will simply be unaware of
what is already available. A set of simulation model components without any
proper documentation about their usability, compatibility and interchangeability
may not be useful and sufficient for successful practice of component-based simu-
lation [YO06]. More information can be found in [Val11] about using simulation
model components for effective simulation studies.

5.2.1. Component reuse

Reuse in M&S refers to the development of new models using pre-existing modeling
elements like parts of a simulation code, functions, simulation components, and
even similar simulation models. [Pid02] emphasizes four different types of model
reuse as: code reuse (reusing or scavenging existing code), function reuse (reusing
predefined functions that provide specific functionalities), component reuse (reusing
encapsulated simulation modules that provide a well-defined interface) and full
model reuse (reusing a pre-existing model).

Simulation models are typically built for individual projects and very little advant-
age is taken from existing simulation models developed earlier [KN00]. Due to the
fact that existing M&S methodologies have no guidance for formal model trans-
formations and many simulation projects have no deliberate conceptual modeling
stage, simulation models generally do not have higher level representations, and so
they are not easily understandable by others. Thus, many redundant representa-
tions of the same concepts are developed in M&S projects. In large scale projects,
lack of reuse makes simulation a time consuming and expensive task [KN00].

Introducing a component based approach into the simulation field can help with the
reuse problem, since it promises reuse of interoperable components and hierarchical
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modeling [Ver04, Val11]. Components can be assembled in many ways into a
hierarchy and an assembly of the highest level components is considered to be the
simulation model. Reuse of simulation model components has the potential of
reducing the cost of specification, coding, documentation, maintenance, validation
and verification [BBEN97]. Using a component based design approach in the earlier
stages is also desirable to bridge the gap between the conceptual modeling and the
simulation modeling stages [BvET01, BJT02].

In the real life, reuse is more likely to occur in reusing existing code and functions.
Unfortunately, code reuse is more likely the copy, paste and change operation,
which is not considered true reuse in software engineering. True reuse requires
an instantiation capability [BBEN98]. Component reuse provides the possibility
of reusing pre-developed components (or building blocks) and refers to utilizing
domain specific component libraries [Ver04]. On the other hand, reusing a full
model without any modification is feasible only if we intend to solve exactly the
same problem or subproblem that the model was intended for [BAA08]. In most
of the cases, however, we neither model the same system nor do we intend to
solve the very same problem. Reusing a model for a purpose other than for which
it was originally constructed requires modifications on the model itself. Although
component reuse and model reuse has been a goal for a long time, they have not
been achieved effectively [Pid02]. Thus, the developed simulation model compon-
ents are rarely reused and often not used after the first simulation study. The
main problem in component based simulation is model composability such that the
simulation model components are usually platform dependent and not compatible
with other components developed in different environments [KN00, RU06, YO06].

There are many different research fields that have a direct or indirect effect on
simulation model component reuse such as collaborative problem solving, using
patterns in modeling, open source programming, using reusable assets for pack-
aging, using metadata or object data information etc. In this thesis, the approach
is about using platform independent model templates for providing a way to express
how the implemented components relate to the subtrees in the formal model.

5.2.2. Requirements for simulation model components

This section briefly describes some basic requirements for simulation model com-
ponents derived from [VV08] and [OPB04]. A successful practice of component
based simulation can be performed by fulfilling these requirements.

� R-CBS.1 Modularity: Components must be self contained and modular.
Internal data should be used within a component; and external data and
processes must be used through the interfaces.

� R-CBS.2 Interoperability: Components must be interoperable, i.e. it must
be capable of working together with other components. This requirement
includes assembly of components in different layers.
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� R-CBS.3 Reusability: It must be possible to reuse a component by instan-
tiating it in different simulation models.

� R-CBS.4 Functionality: Components must provide useful functionality which
is the role, service, operation, or whatever the component provides to the
overall system.

� R-CBS.5 Upgradeability: It should be possible to upgrade a component with
the extended version. The effects of upgrades in the component libraries
should be unambiguous.

� R-CBS.6 Replaceability: It should be possible to replace a component with
another component with the same interfaces and similar function.

� R-CBS.7 Reachability: Components must be easily reachable. They should
be classified, categorized and kept in searchable libraries.

� R-CBS.8 Flexibility: It must be easy to configure the component by using
its parameters and to extend its capabilities.

5.3. Using simulation model component libraries within the
MDD4MS framework

The MDD4MS framework highly motivates and supports component based simula-
tion. A library based approach is recommended to make component use convenient
and practical for the modelers via well documented simulation model component
libraries. These libraries contain pre-built, parameterized and flexible domain spe-
cific components for reuse. The validation and verification of components are
significant for successful reuse. Standardization and certification of components
are also important for ensuring trust and promoting general use. Simulation model
component libraries can be developed for particular application domains in the
M&S field such as health care, transportation, logistics or airport systems.

In order to support the model transformations within the MDD4MS framework, a
simulation model component is suggested to have an associated formal model and
an implementation model. The formal model of the component will be called a
PISM model template. The implementation model will be called a PSSM model
template. By using the model templates formal PISMs and PSSMs can be de-
veloped. During the PISMtoPSSM model transformation, PISM model templates
are replaced with the PSSM model templates. Similarly, during the PSSMtoCode
model transformation, PSSM model templates are replaced with the instances of
the linked components. Although, one can think about CM model templates, it is
out of the context of this thesis. However, during the CMtoPISM model transform-
ation, some parts of the conceptual model can be transformed into PISM model
templates according to some pre-determined assumptions.

In short, a model template is a pre-developed and archived model on M1 level. It
is expected to be parametric and have an associated simulation model component.
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A set of model templates for a specific domain with the associated component
information and good documentation forms a domain specific template library for
MDD4MS. In this case, the set of modeling elements provided by the grammar
of the formal specification language may be called the basic (or core) modeling
library [AK02]. Figure 5.3 presents the model template mechanism in MDD4MS.
Each element in the template has an instanceOf relationship to the higher level
metamodel. When a template library is available, the notion of includes means that
the model uses a template from a library and so reuses a component. The PISM
templates refer to PSSM templates and PSSM templates refer to components.
The model transformation patterns use templates and components.

The conceptual modeling and specification layers are related through a mapping
relation. An element in a conceptual model can be mapped to an element in the
PISM library which delivers the desired functionality. This feature offers continuity
between the conceptualization and specification phases with simpler transforma-
tion rules. In the same way, specification and implementation are related through
a matching relation. Any part of a PISM model can be matched to a PSSM model
template. For each formal specification, a number of platform specific implement-
ations can be developed. For example, a formal DEVS model can be implemented
using various tools and platforms. Although in the ideal case a simulation model
component will have both PSSM template and a PISM template which are clearly
linked, it is also possible to have not implemented PISM templates to provide only
formal specification.

Figure 5.4 proposes a sample workflow for the proposed model template mech-
anism. In this workflow, it is assumed that transformation rules are overridden if
model templates are used. During the specification stage the modeler searches
for the existing components according to their PISM model templates and selects
the most appropriate ones. A mapping between the CM elements and the PISM
templates is done. During the implementation stage the modeler searches for the
existing components according to their PSSM model templates and selects the most
appropriate ones. A mapping between the PISM elements and the PSSM templates
is done. If the PISM template has an already linked implementation then it should
be preferred. Then, the programmer defines and develops the missing components
and adds them to the library.

The most important benefit of using template libraries is that the model trans-
formation rules will be simpler. Instead of transforming a concept from the source
metamodel to a target concept with all parts and details, only a link to the related
model template is defined. This link should include the all required information to
be able to reach the exact component. By using domain specific component librar-
ies it is possible to generate a fully executable simulation model from a conceptual
model based on the assumptions and abstractions made in the components.

One of the discussed issues of MDD is the code redundancy problem, which comes
with the automatic code generation techniques. Since the code is auto generated
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there is sometimes redundant and repetitive code in the final software. Using sim-
ulation model component libraries provides a solution for this problem. Instead of
generating new code during the PSSMtoCode transformation, existing components
are reused.

For example, assume that for each element with name ’task *’ in a PSSM model,
JAVA code will be generated and the generated classes will be instantiated. A
sample model includes task 1, task 2 and task 3. Without any component based
approach or any code optimization effort, a model transformation can generate
task 1.java, task 2.java and task 3.java, which will have same structure. Naturally,
in this way, all the transformation details are kept in the model transformation,
which makes them more complex. A potential instantiation of these classes will
become as below:

var t1 = new task_1();

var t2 = new task_2();

var t3 = new task_3();

On the other hand, if task.java is written before and saved as a template, then the
model transformation can use the meta-information of this class. With an available
component, model transformation will not regenerate the code but use the pre-
developed code. This will incredibly decrease the code redundancy. Besides, the
transformation rules will be shorter. A potential use of the task class will become
as below:

var t1 = new task( ’task_1’);

var t2 = new task( ’task_2’);

var t3 = new task( ’task_3’);
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Chapter 6

Case: Discrete Event Simulation
of Business Process Models

This chapter presents an application of the MDD4MS framework with a proof of
concept implementation. The study is about discrete event simulation of business
process models. Hence, the following two sections present information about busi-
ness process modeling and discrete event simulation. After that the implementation
and the MDD4MS prototype is explained in Section 6.3. Then, the case study is
presented with two examples and it is evaluated in the next sections. Lastly the
results are analyzed in Section 6.6.

6.1. Business process modeling

Business process modeling (BPM) is the activity of defining a graphical repres-
entation of either the current or the future processes of an organization in order
to analyze and improve their efficiency and quality [RRIG09]. A business process
model is a visual representation of a set of related activities. There are numer-
ous methods and tools available for BPM and some of the tools provide ways to
simulate models. Business process simulation (BPS) enables analysis of business
processes over time and allows to experiment with what-if scenarios before imple-
menting the ideas into the organization. BPM is also known as static modeling
while BPS is known as dynamic modeling [BVCH07].

BPS tools are used for the evaluation of the dynamic behavior of business pro-
cesses. Different domain-specific languages have been used to develop business
process models [RRIG09]. IDEF and BPMN are the most common BPM tech-
niques, and BPMN [OMG11a] is selected in this case study. BPMN is an industry-
wide standard for modeling of business processes [OMG11a]. BPMN follows the
tradition of flowcharting notations for readability and flexibility. In addition, the
BPMN execution semantics is fully formalized. A BPMN model provides a high-
level representation of a business process that is readily understandable by business
analysts and technical developers.

There are five basic categories of elements in BPMN. These are flow objects,
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data elements, connecting objects, swimlanes and artifacts. Flow objects are the
main graphical elements that define the behavior of a business process. There are
three types of flow objects: events, activities and gateways. Data elements are
represented by the four following types: data object, data input, data output and
data store. There are four ways of connecting the flow objects to each other or to
other elements: sequence flows, message flows, associations, and data associations.
There are two ways of grouping the primary modeling elements through swimlanes:
pools and lanes. Artifacts are used to provide additional information about the
process. BPMN also defines the visual representation of each element.

6.2. Discrete event simulation

Discrete event simulation (DES) is a popular and effective method for analyzing
and designing systems. It has been successfully used in many different areas such
as transportation, manufacturing, construction, telecommunications, military, and
health care.

State and time descriptions form the basis of a specification formalism. In [Nan81],
the state of an object is defined as the record of all attribute values of that object
at a particular time; and time is defined as an attribute of the model that enables
state transitions. Two common measures of time are instant and interval. An
instant is a value of system time at which the value of at least one attribute of an
object can be altered, i.e. it is a point in time. An interval is the duration between
two instants.

In a discrete event system, the system’s state changes at discrete points in time
upon the occurrence of an event. Discrete-event simulation assumes that, although
time is continuous, only a finite number of events can occur in a given finite time
interval. Therefore, the execution of a discrete-event simulation model can be very
efficient because it is only needed to represent the state changes upon occurrence
of events [Wai09]. Simulation of a single server queuing system is a very common
example of DES.

There are three common simulation model development perspectives for DES,
i.e. world views: event scheduling, activity scanning, and process interaction. The
time and state concepts can be used to define the event, activity and process terms
[Nan81]. An event is a change in object state, occurring at an instant that initiates
an activity. An activity is the state of an object over an interval. A process is the
succession of states of an object over an interval of two successive instants. In event
scheduling, each event routine in a model specification describes related actions
that should always all occur in one instant (Time based). In activity scanning, each
activity routine in a model specification describes all actions that should occur due
to the model assuming a particular state (State based). In process interaction,
each process routine in a model specification describes the action sequence of a
particular model object (Object based) [ON04].
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Process interaction world view is basically a combined event scheduling and activ-
ity scanning procedure. The distinguishing feature is that a model component
description can be implemented as a unit rather than being separated into a num-
ber of events or activity routines. Process interaction simulations are typically
implemented on top of event driven simulation mechanisms [Fuj00]. Specifically,
process interaction simulations use the same event list and time advance mech-
anism defined for the event driven world view but provide additional mechanisms
for managing simulation processes. Process interaction simulations often utilize
the concept of a resource, which is an abstraction that represents a shared entity.
Overstreet and Nance [ON04] present characterizations and relationships of world
views and illustrate the possibility of automated transformation among world views.

Discrete Event System Specification (DEVS) is a well known mathematical form-
alism based on system theoretic principles [ZPK00]. Mathematical systems theory,
first developed in the 1960s, provides a fundamental mathematical formalism for
representing systems [Wym67]. It is concerned with the dynamic behavior of the
system and the state changes over time.

Zeigler et al. [ZPK00] claim and show that any system with discrete event behavior
can be represented with the DEVS formalism and an equivalent DEVS represent-
ation can be found for other formalisms. In other words, being a general system
theoretic formalism, DEVS allows one to represent all the systems that have dis-
crete event behavior. This means that discrete event systems modeled by different
techniques such as Petri Nets, State Charts, Partial Differential Equations, Bond
Graphs, Finite State Automata, etc. can be represented by DEVS models. Dis-
crete time systems can be represented by DEVS as well [ZPK00]. The generality
of DEVS converted it into a widely studied formalism and many DEVS based mod-
eling and simulation environments have been developed in recent years to describe
and to simulate many classes of discrete systems [SE09]. Hence, DEVS is selected
as the system specification formalism.

In DEVS, models that are expressed in the basic formalism are called atomic models.
Hierarchical DEVS is the extended version of the basic formalism that defines the
means for coupling the DEVS models. The composite models are called coupled
models. An atomic DEVS model is defined with the following information: the set
of input values, the set of output values, the set of state variables, the internal
transition function, the external transition function, the output function and the
time advance function. Functions define the system dynamics.

DEVS uses named input and output ports to symbolize the connection points
between the models and to provide an elegant way of building composite models.
Larger models are built by coupling models in a coupling scheme that links the
input ports and the output ports. If the couplings are done correctly, the resulting
coupled model is regarded as closed under coupling, which means that it can be
expressed as an atomic DEVS model.

95



Chapter 6. Case: Discrete Event Simulation of Business Process Models

In DEVS, atomic components have state but coupled components have a derived
state, which is in fact the set of the state of the composed atomic components.
A coupled DEVS model is defined with the following information: the set of input
ports and values, the set of output ports and values, the set of the components and
the couplings. Components are DEVS models and couplings can be EIC(external
input coupling that connects external inputs to component inputs), EOC (external
output coupling that connect component outputs to external outputs) and IC (in-
ternal coupling that connects component outputs to component inputs). Coupled
DEVS models allow constructing hierarchical models by using components’ external
interface provided with ports. It should be noted that each DEVS model is self
contained and executable.

An atomic DEVS model is defined in [ZPK00] as below:

M = (X,S,Y,δint,δext,λ, ta)

where

X is the set of input values,

S is a set of states,

Y is the set of output values

δint ∶ S → S is the internal transition function

δext ∶ Q ×X → S is the external transition function, where

Q = {(s, e)∣s ∈ S,0 ≤ e ≤ ta(s)} is the total state set

e is the time elapsed since last transition

λ ∶ S → Y is the output function

ta ∶ S → R+

0,∞ is the set of positive reals with 0 and ∞

At any time the system is in some state, s. If no external event occurs, the system
will stay in state s for time ta(s). When the elapsed time e = ta(s), the system
outputs the value λ(s) and changes to state δint(s). Output is only available just
before internal transitions. If an external event x ∈ X occurs when the system is
in total state (s,e) with e ≤ ta(s), the system changes to state δext(s, e, x). A
coupled DEVS model is defined in [ZPK00] as following:

N = (X,Y,D,{Md∣d ∈D},EIC,EOC, IC,Select)

where
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X = {(p, v)∣p ∈ IPorts, v ∈Xp} is the set of input ports and values,

Y = {(p, v)∣p ∈ OPorts, v ∈ Yp} is the set of output ports and values,

D is the set of the component names. Components are DEVS models, for
each d ∈D,

Md = (Xd, Yd, S,δext,δint,λ, ta) is a DEVS with

Xd = {(p, v)∣p ∈ IPortsd, v ∈Xp}

Yd = {(p, v)∣p ∈ OPortsd, v ∈ Yp}

EIC ⊆ {((N, ipN), (d, ipd))∣ipN ∈ IPorts, d ∈ D, ipd ∈ IPortsd} external
input coupling connect external inputs to component inputs

EOC ⊆ {((d, opd), (N,opN))∣opN ∈ OPorts, d ∈ D,opd ∈ OPortsd} ex-
ternal output coupling connect component outputs to external outputs

IC ⊆ {((a, opa), (b, ipb))∣a, b ∈ D,opa ∈ OPortsa, ipb ∈ IPortsb} internal
coupling connects component outputs to component inputs

(However, no direct feedback loops are allowed, i.e. no output port of a
component may be connected to an input port of the same component:

((d, opd), (e, ipd)) ∈ IC implies d ≠ e.)

Select ∶ 2D − {}→D, the tie-breaking function

6.3. MDD4MS prototype implementation

In Chapter 3, the MDD4MS framework is proposed for model-driven development
of simulation models through metamodel based model transformations. A tool
architecture for the framework is proposed in Section 3.5. The MDD4MS prototype
is an Eclipse-based implementation of the tool architecture. The Eclipse platform is
chosen since it is designed for building new integrated development environments
that can be used to create applications. Besides, Eclipse community provides
plugins for applying MDD approach and creating graphical editors. During the
implementation, we preferred open source and flexible tools since this is a research
project and we could require improving the tools according to new research needs.

The prototype is based on the Eclipse Modeling Project and the Eclipse Modeling
Framework (EMF) [Ecl09]. All of the tools that have been used are the subpro-
jects of the top-level Eclipse Modeling Project. EMF is a modeling framework
and code generation facility for building tools and other applications based on a
structured data model. From a model specification described in XML Metadata
Interchange (XMI), EMF provides tools and run-time support to produce a set of
Java classes for the model, along with a set of adapter classes that enable view-
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ing and command-based editing of the model, and a basic editor. The core EMF
framework includes a meta-metamodel (Ecore) for describing models and run-time
support for the models, including change notification, persistence support with de-
fault XMI serialization, and a very efficient reflective API for manipulating EMF
objects.

6.3.1. Metamodeling with the GEMS Project

The Eclipse-based Generative Modeling Technologies (GMT) project provides a
set of prototypes and research tools in the area of MDD [Ecl06]. Historically, the
most important operation was model transformation, but other model management
facilities, like model composition, are also part of the GMT project. Different sub-
projects are proposed in the GMT project. The Generic Eclipse Modeling System
(GEMS) in the GMT project is a configurable tool kit for creating domain-specific
modeling and program synthesis environments for Eclipse. The GEMS project
provides a visual metamodeling environment based on EMF and GEF/Draw2D. It
includes a code generation framework in which a graphical modeling editor is gener-
ated automatically from a visual metamodel specification. The graphical modeling
editor can be used for editing instances of the modeling language described by
the metamodel. Although the generated editor uses a default concrete syntax, the
graphical representation of the modeling elements and the visual appearance of
the editor can be customized by changing a CSS style sheet file. The generated
graphical modeling tool is based on EMF, GEF, and Draw2D and it can be expor-
ted as an Eclipse plug-in. Besides, it can be extended through extension points for
writing model interpreters.

The built-in metamodeling language is based on the UML class diagram notation.
Metamodels are directly transformed into Ecore meta-metamodel. Metamodels in
other Ecore readable formats can be used as well. The models defined by the
generated tools are saved as XMI files. Metamodel constraints can be specified in
Java. GEMS project provides a meta-programmable modeling environment similar
to GME for the Eclipse community and it is open source. The MDD4MS prototype
is based on GEMS with some small improvements for increasing the graphical
modeling capabilities.

6.3.2. M2M transformations with ATL

Model-to-model (M2M) transformation is a key aspect of MDD. The Eclipse M2M
project presents a framework for defining and using model-to-model transformation
languages. The core part is the transformation infrastructure. Transformations
are executed by transformation engines that are plugged into the infrastructure.
There are three transformation engines that are developed in the scope of Ec-
lipse M2M project, which are ATLAS Transformation Language (ATL), Procedural
Query/View/Transformation (QVT) (Operational), and Declarative QVT (Core
and Relational). Each of the three represents a different category, which valid-
ates the functionality of the infrastructure from multiple contexts. The ATL IDE

98



aims to ease the development and execution of ATL transformations [JABK08].
The MDD4MS prototype uses the ATL IDE for the M2M transformations in the
MDD4MS framework.

6.3.3. M2T transformations with visitor-based model interpreters

The GEMS project has a visitor-based model interpretation mechanism . For each
modeling element specified in the metamodel, a corresponding visitor method is
generated in the interface. A Java project with a class that implements these
methods can be developed as a model interpreter. When the model interpreter
is executed, each element in a particular model can be visited separately and the
required code can be generated. The model interpreters are registered to the
editor by adding an extension point to the MANIFEST.MF file in the META-INF
directory. The current MDD4MS prototype makes use of this model interpretation
mechanism.

6.4. DEVS-based simulation of BPMN models

This section explains the conceptual application of the MDD4MS framework for
DEVS-based simulation of BPMN models. The DEVS-based simulation of BPMN
models requires a transformation process from BPMN to DEVS. The modeling
elements of BPMN have to be mapped to DEVS components to be able to sim-
ulate their behavior in a DEVS simulation environment. In our case, composed
elements such as pools and lanes are mapped to Coupled-DEVS, whereas other
basic elements such as events and gateways are mapped to Atomic-DEVS. Flow
connections are expressed with coupling relations in coupled models. Input and
output ports are defined for each component. A supplementary component called
Resource Manager is designed to support the simulation functionality for resource
allocation and waiting queues.

DSOL (Distributed Simulation Object Library) is selected to provide the simula-
tion and execution functionalities [JLV02]. DSOL is an open source multi-formalism
simulation suite which is full featured and very effective as a generic purpose simula-
tion tool. Various simulation projects have been conducted using DSOL in a broad
range of application areas, including flight scheduling, emulation and web-based
supply chain simulation [JVM05, KV07, FSV10, HSV10]. DSOL also supports exe-
cution of simulation models based on the DEVS formalism through the DEVSDSOL
library [SV09]. DEVSDSOL provides an object-oriented conceptualization of DEVS
language constructs and implements a DEVS compliant modeling and simulation
environment using the event-scheduling worldview. DSOL and DEVSDSOL are
both written in the Java programming language.

DEVSDSOL defines AtomicModel and CoupledModel abstract classes. Building
an atomic model is done by extending the abstract class AtomicModel, instanti-
ating input and output ports, creating state variables and phases and overriding
the abstract methods specifying the DEVS functions (deltaExternal, deltaInternal,
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lambda and timeAdvance functions). Similarly, building a coupled model is done by
extending the abstract CoupledModel class, adding input and output ports, adding
model components, and defining the connections within the coupled model. Input-
Port and OutputPort are defined as member classes of AtomicModel and Coupled-
Model. As a result,

� BPMN is chosen as the conceptual modeling language to define conceptual
models,

� DEVS is chosen as the system specification formalism to define platform-
independent simulation models,

� Java and the DEVSDSOL library in particular, are chosen as the underlying
simulation model programming languages to define platform-specific simula-
tion models.

Following the MDD4MS framework, the following metamodels and model trans-
formation are required during the application of the MDD4MS framework:

� BPMN metamodel as the CMmetamodel,

� DEVS metamodel as the PISMmetamodel,

� JAVA metamodel as the PSSMmetamodel,

� BPMNtoDEVS transformation as the CMtoPISM transformation,

� DEVStoJAVA transformation as the PISMtoPSSM transformation,

� JAVAtoJAVACode transformation as the PSSMtoCode transformation.

As a result, we formally define our case as follows:

Definition 18 (MDD4MS case study). Model driven development of DEVS-based
simulation models from BPMN models is an MDD4MS process defined as

case = {n,MML,ML,MO,SL, pl,MTP,STP,MT,SM,TO}

where

n = 3 (CM ,PISM ,PSSM ),

MML = {Ecore,Ecore,Ecore} is the ordered set of metamodeling languages,

ML = {l0(BPMNmetamodel), l1(DEVSmetamodel), l2(JAVAmetamodel)} such
that

γ(BPMNmetamodel ,Ecore),
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γ(DEVSmetamodel ,Ecore),

γ(JAVAmetamodel ,Ecore),

MO = {CM ,PISM ,PSSM } such that CM is the initial model, PSSM is the final
model, and

τ(CM ) = BPMNmetamodel ,

τ(PISM ) = DEVSmetamodel ,

τ(PSSM ) = JAVAmetamodel ,

SL = {ATL,JAVA} is the set of model transformation languages,

pl = JAVA is the programming language and it is extended with the DSOL and
DEVSDSOL simulation libraries,

MTP = {pcm, ppism, ppssm} such that

pcm = {l0(BPMNmetamodel), l1(DEVSmetamodel), bpmn2devs.atl},

ppism = {l1(DEVSmetamodel), l2(JAVAmetamodel), devs2java.atl},

ppssm = {l2(JAVAmetamodel),JAVA, java2code.java},

STP = {} is the set of other supplementary formal model transformation patterns,

MT = {(θ(CM ,pcm) = PISM ), (θ(PISM ,ppism) = PSSM ),

(θ(PSSM ,ppssm) = SM )},

SM is the final executable simulation model,

TO = {Eclipse and a set of plugins(GEMS ,ATL,PDE ,EMF ,GEF)} is the set
of tools to ease the activities.

The overall MDD4MS architecture, which is presented in Figure 3.2, is instantiated
as shown in Figure 6.1. Figure 6.2 shows the application of the MDD4MS process
for DEVS-based BPMN simulation.

6.5. Practical implementation with the MDD4MS prototype

This section explains the implementation of the MDD4MS process for the case
study with the MDD4MS prototype. The implementation includes metamodels,
model editors, model transformation rules, and model interpreters for DEVS-based
simulation of BPMN models [ÇVS13, ÇVS12, ÇVS11]. The following sections
explain the details of the implementation.
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Figure 6.1: The overview of the case study.

6.5.1. BPMN metamodel

The BPMN metamodel is defined with the GEMS plugin, and a modeling editor
and an Ecore metamodel are automatically generated. The metamodel is shown
in Figure 6.3. BPMNDiagram represents the business process model. The main
graphical element of the diagram is BPMNFlowObject. BPMNEvent, BPMNActiv-
ity, and BPMNGateway inherit from the flow object. An event is something that
happens during the course of a process. There are three types of events, based
on when they affect the flow: start event, intermediate event, and end event. An
activity is a task performed in a process. An activity can be an atomic task or
a compound subprocess. A gateway is used to control the divergence and con-
vergence of the sequence flows in a process. Thus, it determines the branching,
forking, merging, and joining of paths. Internal markers indicate the type of be-
havior control. Each type of control affects both the incoming and outgoing flow.
BPMNParallelFork and BPMNParallelJoin are defined for parallel forking and join-
ing; and BPMNDecide and BPMNMerge are defined for exclusive decision and
merging.

BPMNTokenFlowConnection represents the flow between the flow objects. The
type of flow is determined by the FlowType attribute. The sequence flow is used
to control the order of the activities in a process. Swimlanes are used to group
activities. A pool is used as a graphical container for partitioning a set of activities.
A lane is a subpartition within a process, sometimes within a pool, and will extend
the entire length of the process, either vertically or horizontally. Lanes are used to
organize and categorize activities. The metamodel represents the basic modeling
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elements of BPMN. A visual BPMN modeling editor that works on Eclipse platform
is automatically generated from this metamodel. A screenshot of the model editor
is given in Figure C.12 in Appendix C.

6.5.2. DEVS metamodel

A procedural DEVS metamodel for the Hierarchical DEVS formalism with ports is
defined with the GEMS plugin, and a modeling editor and an Ecore metamodel
are automatically generated. The metamodel is shown in Figure 6.4. A DEVS-
Model represents a platform-independent simulation model. The main graphical
elements of the metamodel are DEVSCoupledComp and DEVSAtomicComp, which
inherit from DEVSComponent. Each DEVS component has input and output
ports. Coupled models are defined hierarchically and couplings are represented via
connecting the ports. Atomic models have state variables and functions as well.
Functions of the atomic components are: DeltaExtFunction, DeltaIntFunction,
TimeAdvanceFunction, and LambdaFunction.

The metamodel includes both structural and behavioral abstraction of the DEVS
formalism. The behavior of the functions is represented via a pseudo-code meta-
model that is linked by the use of an Expression attribute. Any expression can be
a function call, a conditional block, or an assignment. A conditional block can
be a while loop block, an if-block, or an if-else block. Each block contains other
expressions. A visual DEVS modeling editor is automatically generated from this
metamodel. A screenshot of the model editor is given in Figure C.13 in Appendix
C.

6.5.3. JAVA metamodel

The JAVA metamodel is defined with the GEMS plugin and a modeling editor
and an Ecore metamodel are automatically generated. The metamodel is shown in
Figure 6.5. A JAVAmodel represents a platform-specific simulation model. The JA-
VAclass represents the Java classes and so each component has import definitions
for the required Java packages, port definitions and a constructor. The coupled
component constructor has connection definitions and subcomponent definitions.
The atomic component constructor has an initialization code. In this research, the
JAVA metamodel is a generic one and ignores software optimization. A detailed
approach can be found in [HKGV10]. Although a visual modeling editor is auto-
matically generated from this metamodel, it is not used for modeling purposes.
The metamodel is utilized for direct code generation from a JAVA model.

6.5.4. M2M transformation from BPMN to DEVS

The BPMN-to-DEVS transformation produces atomic and coupled models with
ports, couplings and templates for the system dynamics. Once the source and
target metamodels are available, model transformation rules from the source mod-
els to the target models can be specified. A model-to-model transformation from
BPMN to DEVS is defined by using the BPMN metamodel and DEVS metamodel.
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Figure 6.5: JAVA metamodel.
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Figure 6.6: Hierarchy in a BPMN model.

The transformation is written in ATL, as proposed in the MDD4MS prototype.
The transformation has two steps. In the first step, all BPMN model elements
are transformed into specific DEVS model elements; and all connections are trans-
formed into internal couplings from an output port in the source component to an
input port in the target component. Ports are also generated. If the connections
in the source model connect only elements of the same layer, then the output of
the first step becomes a valid DEVS model and the second step is skipped. How-
ever, this does not apply in most cases. BPMN models generally have connections
which cross more than one modeling elements, that is, which connect the modeling
elements of different layers. Therefore, the internal couplings generated in the first
step need to be refined. So, the output of the first step is only a temporary model.

In the second step, the external input couplings (EICs) and external output coup-
lings (EOCs) are defined for the nested components. In this way, the DEVS com-
patibility of the target models is guaranteed. The required number of EIC and
EOC is determined with the number of the nested components that a flow crosses.
Figure 6.6 illustrates the all-inclusive case when the source component is nested
n levels and the target component is nested m levels. In this case, n times DEV-
SOutputPort and m times DEVSInputPort are generated. Besides, n times DEV-
SOutToOut EOCConnection and m times DEVSInToIn EICConnection are defined.
Table 6.1 shows the specific DEVS modeling elements that are generated for the
BPMN modeling elements. Figure 6.7 shows a sample transformation such that a
BPMN source model (a) is transformed into the temporary model (b); and then the
target DEVS model (c) is generated. While BPMNSendTask, BPMNReceiveTask
and BPMNSimpleTask are transformed to atomic component, BPMNUserTask is
transformed into a coupled component. This is because a shared resource is needed
to perform the user tasks.

Sample rules for the BPMNtoDEVS transformation are given in Listing 6.1. The
source pattern starts with the keyword from and declares which element type of
the source metamodel has to be transformed. The target pattern starts with
the keyword to and declares into which element type(s) of the target metamodel
has to be generated. It may contain one or several target pattern elements. Each
target pattern element consists of a variable declaration and a sequence of bindings
(assignments). These bindings consist mainly of left arrow constructs.
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Table 6.1: BPMN-to-DEVS transformation pattern.

BPMN Metamodel DEVS Metamodel

BPMNModel DEVSModel

BPMNSwimlane DEVSCoupledComp

(BPMNPool, + SM Swimlane:DEVSCoupledComp

BPMNLaneVertical, + SM Swimlane.out: DEVSOutputPort

BPMNLaneHorizontal) + SM Swimlane.outSS: DEVSOutputPort

+ SM Swimlane.inS: DEVSInputPort

BPMNSendTask DEVSAtomicComp

BPMNReceiveTask DEVSAtomicComp

BPMNSimpleTask DEVSAtomicComp

BPMNUserTask DEVSCoupledComp

+ outServer: DEVSOutputPort

+ inServer: DEVSInputPort

+ serverStatus: DEVSInputPort

BPMNEvent DEVSAtomicComp

(BPMNStart,BPMNEnd,

BPMNIntermediate)

BPMNGateway DEVSAtomicComp

(BPMNDecide,BPMNMerge,

BPMNParallelFork,

BPMNParallelJoin)

BPMNTokenFlowConnection DEVSOutToIn ICConnection

+ Source.out: DEVSOutputPort

+ Target.in: DEVSInputPort

+ SourceParents.EOC Ports: DEVSOutputPort

+ TargetParents.EIC Ports: DEVSInputPort
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Figure 6.7: Sample model transformation from BPMN to DEVS.
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Listing 6.1: Sample ATL rules for BPMNtoDEVS transformation

module BPMN_To_DEVS;

create OUT: SM_Metamodel from IN: CM_Metamodel;

--count parent output ports

helper context SM_Metamodel!DEVSComponent def: countOutPorts():

Integer =

self.DEVSPorts->select (d|d.DEVSPortType=’OutputPort’)->size() + 1;

--count parent input ports

helper context SM_Metamodel!DEVSComponent def: countInPorts():

Integer =

self.DEVSPorts->select (d|d.DEVSPortType=’InputPort’)->size() + 1;

...

--Transform Main Model

rule CM2SMModel {

from

s: CM_Metamodel!BPMNModel (true)

to

t: SM_Metamodel!DEVSModel (

DEVSComponents <- s.BPMNModelingElements,

Id <- s.Id + 1,

Name <- s.Name

)

}

--Transform Flow Objects

rule BPMNFlowObjectToDEVSAtomic_NOTinRoot {

from

s: CM_Metamodel!BPMNFlowObject

(not s.isInRoot() and not s.isUserTask())

to

t: SM_Metamodel!DEVSAtomicComp (

DEVSParentComponent <- s.getParent(),

Id <- s.Id + 1,

Name <- s.Name,

X <- s.X,

Y <- s.Y,

Width <- s.Width+50,

Height <- s.Height+50,

ExpandedWidth <- s.Width+50,

ExpandedHeight <- s.Height+50,

Expanded <- false,

Description <- s.Description,

Annotation <- s.getType()

)

}

...
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An attribute of the target model t (on the left side of the arrow) receives a return
value of an Object Constraint Language (OCL) expression (on the right side of
the arrow) that is based on the source model s. In this sense, the right side of
the arrow may consist of an attribute of s or a call to a helper function. A helper
function is an OCL expression to define global variables and functions.

6.5.5. M2M transformation from DEVS to JAVA

The DEVS-to-JAVA transformation produces valid JAVA visual models with in-
formation for Java classes. A model-to-model transformation from DEVS to JAVA
is defined by using the DEVS metamodel and JAVA metamodel. The transform-
ation is written in ATL and has two steps. In the first step, DEVSComponent
instances are transformed into JAVAClass instances. Coupled component files in-
clude the package imports, class definition, port definitions, constructor defini-
tion, contained component definitions, and couplings. Coupled component files
are fully transformed and they are ready for compiling. Atomic component files
include imports, class definition, port definitions, and constructor definition. Also,
deltaExternal(double e, Object inp), deltaInternal(), lambda(), and timeAdvance()
functions are generated, which need to be refined for the user-defined expressions.

The generated JAVAclass extends from either AtomicModel or CoupledModel ab-
stract classes in the DEVSDSOL library. The generated JAVA models include all
the required information to generate source code. In the second step of the trans-
formation, the parent function of each expression is redefined to clearly link the
model parts. Table 6.2 shows the specific JAVA modeling elements that are gener-
ated for the DEVS modeling elements. Figure 6.8 shows a sample transformation
for an atomic DEVS model. A sample rule from the ATL transformation is given
in Listing 6.2.
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Listing 6.2: Sample ATL rule for DEVStoJAVA transformation

rule DEVSCoupled2JavaClass {

from

s: DEVS_Metamodel!DEVSCoupledComp (true)

to

t: JAVA_Metamodel!JAVAClass (

Id <- s.Id + 1,

Name <- s.Name,

X <- s.X,

Y <- s.Y,

...

Description <- s.Description,

Superclass <- ’CoupledModel’,

JAVAVariables <- s.DEVSPorts

),

subComp: JAVA_Metamodel!JAVAExpression (

Name <- s.Name,

FreeCode <- s.Annotation + ’ var_’ + s.Name + ’ = new ’ +

s.Annotation + ’(this, "’ + s.Name + ’", "’ +

s.Description + ’", ’ + thisModule.countID + ’);’,

JAVAParentFunction <- s.getParent()

),

c: JAVA_Metamodel!JAVAConstructor (

Id <- s.Id + 2,

Name <- s.Name,

ParameterList <- ’CoupledModel parentModel, String name,

String desc, Integer id’

),

exp: JAVA_Metamodel!JAVAExpression (

Name <- ’superCall’,

FreeCode <- ’super(name, parentModel);\n’,

JAVAParentFunction <- c

)

do {

thisModule.DefineConstructor(t, c);

thisModule.incCountID();

thisModule.AssignFunction(c, exp);

}

}

6.5.6. Code generation from the JAVA model

In the last step, a code generator for JAVA models is used to generate the source
code automatically. The code generator is a visitor-based model interpreter and has
been written in Java. Java files for each DEVS component are generated separately.
A part of the model interpreter code is given in Listing 6.3. The visitClass function
calls the visitVariables and visitMethods functions.
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Table 6.2: DEVS to JAVA transformation pattern.

DEVS Metamodel JAVA Metamodel

DEVSModel JAVAPackage

+ TestModel: JAVAClass

+ TestModel: JAVAConstructor

+ JAVAExpressions

DEVSCoupledComp JAVAClass

+ JAVAConstructor

+ JAVAExpressions

DEVSAtomicComp JAVAClass

+ JAVAConstructor

+ JAVAExpressions

DEVSInputPort JAVAVariable

DEVSOutputPort JAVAVariable

StateVariable JAVAVariable

DEVSOutToIn ICConnection JAVAExpression

DEVSInToIn EICConnection JAVAExpression

DEVSOutToOut EOCConnection JAVAExpression

Expression JAVAExpression

DeltaIntFunction JAVAMethod

DeltaExtFunction JAVAMethod

LambdaFunction JAVAMethod

TimeAdvanceFunction JAVAMethod
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Figure 6.8: Sample model transformation from DEVS to JAVA model.
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Listing 6.3: Sample code from the JAVA model interpreter

public class JAVA_to_JAVACode_Interpreter

extends org.eclipse.gmt.gems.model.actions.AbstractInterpreter

implements javacode.javamodeling.JAVAModelingVisitor {

private static final long serialVersionUID = 1L;

String projectPath = "../";

FileWriter outCurrent = null;

//constructor

public JAVA_to_JAVACode_Interpreter() {

super("javacode.javadiagram.JAVA_to_JAVACode_Interpreter");

}

@Override

public void visitJAVAClass(JAVAClass tovisit) {

System.out.println("Visiting a DEVS Model");

String CCname = tovisit.getName();

String filePath = projectPath + CCname + ".java";

File a = new File(filePath);

try {

outCurrent = new FileWriter(a);

} catch (IOException e1) {

e1.printStackTrace();

}

//start writing

write_file("package bpmnmodel;\n", 0);

//get imports

write_file("import bpmnlibrary.*;", 0);

write_file("import queueLibrary.*;", 0);

write_file("import nl.tudelft.simulation.dsol.formalisms.devs.

ESDEVS.CoupledModel;", 0);

write_file("import nl.tudelft.simulation.dsol.formalisms.devs.

ESDEVS.InputPort;", 0);

write_file("import nl.tudelft.simulation.dsol.formalisms.devs.

ESDEVS.OutputPort;\n\n", 0);

write_file("/**", 0);

write_file(" * " + CCname + " class", 0);

write_file(" * ", 0);

write_file(" * " + tovisit.getDescription() +" <br><br>" , 0);

write_file(" * @version 1.0 <br>", 0);

write_file(" * ", 0);

write_file(" * @author Auto-generated with JAVA Code generator

<br>", 0);

write_file(" */", 0);
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write_file("public class " + CCname + " extends " +

tovisit.getSuperclass() + " {\n", 0);

//write variables

write_file("private static final long serialVersionUID

= 1L;\n", 1);

visitVariables(tovisit);

write_file("\n", 0);

//constructor

write_file("/** ", 1);

write_file(" * Constructor for " + CCname, 1);

write_file(" * ", 1);

write_file(" */ ", 1);

visitJAVAConstructor(this.getConstructor(tovisit));

//write other functions and finish

visitMethods(tovisit);

write_file("}", 0);

try {

outCurrent.close();

} catch (IOException e1) {

e1.printStackTrace();

}

System.out.println("---> Finished a JAVA Class.");

}

@Override

public void visitJAVAConstructor(JAVAConstructor tovisit) {

write_file("public " + tovisit.getName() + " (" +

tovisit.getParameterList() + ") {", 1);

visitJAVAExpressions (tovisit);

write_file("}", 1);

}

@Override

public void visitJAVAExpression(JAVAExpression tovisit) {

write_file(tovisit.getFreeCode(), 2);

}

@Override

public void visitJAVAMethod(JAVAMethod tovisit) {

write_file("@Override", 1);

write_file("protected " + tovisit.getReturnType() + " " +

tovisit.getName() + " (" +

tovisit.getParameterList() + ") {" , 1);

write_file("// TODO Auto-generated block", 2);
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visitJAVAExpressions (tovisit);

write_file("}\n", 1);

}

@Override

public void visitJAVAVariable(JAVAVariable tovisit) {

write_file(tovisit.getVariableDef(), 1);

}

}

The code generator is added as an extension to the JAVA modeling editor and it
can be called for each model from a right click menu. After the code generation,
the generated code can be compiled. If there are manually entered code pieces
they need to be checked for compilation errors such as try/catch blocks or missing
imports. After fixing these kind of compile errors, the simulation model is ready to
be run. Listing 6.4 shows the generated code for the example in Figure 6.8.

Listing 6.4: Generated code for the model in Figure 6.8.

package TestModel;

import nl.tudelft.simulation.dsol.formalisms.devs.ESDEVS.AtomicModel;

import nl.tudelft.simulation.dsol.formalisms.devs.ESDEVS.CoupledModel;

import nl.tudelft.simulation.dsol.formalisms.devs.ESDEVS.InputPort;

import nl.tudelft.simulation.dsol.formalisms.devs.ESDEVS.OutputPort;

import nl.tudelft.simulation.dsol.formalisms.devs.ESDEVS.Phase;

/**

* SimpleTask class

* Atomic Model that implements BPMN Simple Task <br><br>

* @version 1.0 <br>

* @author Auto-generated with JAVA Code generator <br>

*/

public class SimpleTask extends AtomicModel {

private static final long serialVersionUID = 1L;

public InputPort<Entity> in1 = new InputPort<Entity>(this);

public OutputPort<Entity> out1 = new OutputPort<Entity>(this);

private String description = "";

private Integer compID = 0;

private Entity store_Entity = null;

private double serviceTime = 0.1;

public Phase passive = new Phase("passive");

public Phase active = new Phase("active");

/**

* Constructor for SimpleTask

*/
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public SimpleTask (CoupledModel parentModel, String name,

String desc, Integer id) {

super(name, parentModel);

phase = passive;

sigma = Double.POSITIVE_INFINITY;

this.initialize(0);

}

@Override

protected void deltaInternal () {

// TODO Auto-generated block

if (phase == active) {

phase = passive;

sigma = Double.POSITIVE_INFINITY;

}

}

@Override

protected void deltaExternal (double e, Object input) {

// TODO Auto-generated block

if (this.activePort == in1) {

store_Entity = (Entity)inp;

phase = active;

sigma = serviceTime;

}

}

@Override

protected double timeAdvance () {

// TODO Auto-generated block

return sigma;

}

@Override

protected void lambda () {

// TODO Auto-generated block

if (phase == active) {

out1.send(store_Entity);

}

}

}

6.5.7. Using a DEVS simulation model component library for BPMN

In order to support the transformation process and to generate fully executable
DEVS models, a DEVS simulation model component library for BPMN is proposed
in [RÇSW11]. The library is improved throughout this research. Each BPMN
modeling element in the BPMN metamodel has been implemented as a DEVS
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Figure 6.9: The DEVS simulation model component library for BPMN.

component in Java and these elements are executable with DEVSDSOL simulation
library. The components satisfy the requirements given in Section 5.2.2 and the
components’ behavior are validated. Usability evaluation of the MDD4MS proto-
type and the DEVS component library with business process modelers is presented
in [Rus11]. A general overview of the library is shown in Figure 6.9. More details
about each component are given in Appendix C.

The library includes a queuing library and a resource allocation mechanism as well.
Each component has been linked to a PISM template. Hence, the transformation
process can fully be automated. This means that a BPMN model can be success-
fully transformed into an executable DEVS simulation model which is written in
JAVA, and so it can be executed via automated model transformations.
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6.5.8. Model 1: The customer service process of a telecom operator

The MDD4MS framework and the prototype has been successfully tested and
used in a case study at Accenture Netherlands [Rus11]. Accenture is a global
management consulting, technology services and outsourcing company serving in
more than 120 countries [Acc13]. The role of Accenture management consulting
activities is generally speaking to advise and support clients with their business
decisions and support possible business transformations. One of the projects that
Accenture undertook was for a telecom operator to support decisions with regard to
the roll out of fiber optic cables in the Netherlands of over 100 administrative areas.
The purpose of the project was to help the organization develop robust operational
and tactical business plans and continuously improve the speed and quality of
analysis and decision making. In this section, a simplified version of the Accenture’s
customer service process model is presented. The MDD4MS prototype has been
used to develop the simulation model according to the MDD4MS framework.

Problem definition

We will develop a discrete event simulation model for the customer service process
of new orders. We will measure the average lead time and waiting time for an
order to analyze the system. Orders can be either for repair or a new installation.
There are three types of participants in the system which are customer service
office, service technician and supply technician. The customer service is accepting
the orders from the customers and sending them to the related technician. Then,
a technician processes the order and schedules a date with the customer. On the
scheduled date, if the customer is at home, the technician does either the repair
order or the install order. For the installation process, it is straightforward and
supply technician finishes his/her work. For the repair process, there is a chance
that the service technician cannot complete the order and so he/she reports the
problem to customer service. If both technician completes the order, then they
send a billing information to the customer office. More information can be found
in [Rus11].

Conceptual modeling

A conceptual model for this example is developed according to the static model
given in [Rus11]. We used the BPMN editor of the MDD4MS prototype to specify
the conceptual model with BPMN. Figure 6.10 shows the BPMN model.

Participants are modeled with BPMNSwimlanes. Sending activities are modeled
as BPMNSendTask and receiving activities are modeled as BPMNReceiveTask.
If an activity is performed by a queued set of resources then it is modeled as
BPMNUserTask. Other activities are modeled as BPMNSimpleTask. Exclusive
fork is used to control the flow of the application. The next section explains how
the BPMN model is used in the next stages.
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Simulation model specification

After the BPMN model is specified, it is transformed to a DEVS model by using
the BPMNtoDEVS transformation in the MDD4MS prototype. During the trans-
formation, BPMNSwimlanes are transformed to coupled models each containing
a set of resource and a resource manager by default. The activities except BPM-
NUserTask are transformed to atomic models which are linked to the pre-developed
DEVS components in a library. The DEVS metamodel in the MDD4MS prototype
is a procedural metamodel and it includes a simple pseudo code mechanism. So,
it is possible to generate the transition functions of an atomic component with
the model transformation rules. However, in this case, we preferred to use a pre-
developed DEVS library for BPMN which is provided with the MDD4MS prototype.
A BPMNUserTask is transformed to a coupled model which contains a queue man-
ager. All of the internal and external couplings are generated. Also, the couplings
between a queue manager in a BPMNUserTask and a resource manager in its par-
ent swimlane are defined. The auto-generated DEVS model is an instance of the
DEVS metamodel and it can be viewed with the DEVS editor in the MDD4MS
prototype. Figure 6.11 shows the DEVS model. At this point, the model can be
changed or improved if needed.

Model implementation

After the DEVS model is generated, it is transformed to a Java model by using the
DEVStoJAVA transformation in the MDD4MS prototype. During the transforma-
tion, all components are transformed to Java classes. All input ports, output ports
and state variables are transformed to Java variables. All expressions in the pseudo-
code mechanism are transformed to Java expressions. Constructors, methods, and
parameters are defined as well. The auto-generated Java model is an instance of
the JAVA metamodel. Although it can be viewed and edited with the Java model
editor in the MDD4MS prototype, its main purpose is to generate the Java code.
Figure 6.12 shows a screen shot from the Java model editor. By right clicking on
the model within the editor and choosing the Java Code Generator menu item, the
Java code is generated into a chosen folder.

Figure 6.13 shows the full Java code generated for the customer service coupled
model. Since the parameters have not been specified yet, the source code has error
messages. In some cases, the components have default parameters. For example,
for simple task component we use default service time. However, for start event,
the modeler needs to define the arrival rate.

Simulation

We use the DEVSDSOL simulation library and the pre-developed DEVS library for
BPMN to execute the generated Java code, i.e. to simulate the final executable
simulation model. In order to execute the model, we define the experimental model

123



Chapter 6. Case: Discrete Event Simulation of Business Process Models

F
igu

re
6.11:

A
u

to-gen
erated

D
E

V
S

m
o

d
el

for
th

e
cu

stom
er

service
pro

cess.

124



Figure 6.12: Auto-generated JAVA visual model for a coupled model.

Figure 6.13: Auto-generated JAVA source code for a coupled model.
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Figure 6.14: Adding the necessary parameters for the experimental model.

by adding the required parameters such as the arrival rate, queue capacity, service
rates, etc. in the Java code. We add the parameters in the source code as shown
in Figure 6.14. Appendix C provides more information about the parameter list of
the component constructors. Although, it is possible to set the parameters via a
user interface, in this project we prefer to add them manually due to time and cost
limitations of the research. Once we define all of the parameters and run length,
we execute the model. Appendix D shows the experimental parameters and setup
values. Figure 6.15 shows a screen shot of the simulation run with the DEVS library
for BPMN. For this example, we measure the average lead time and waiting time
for an order.

6.5.9. Model 2: The application process to obtain a working payment ter-
minal

We have chosen a larger example from the electronic payments sector which is
presented in [SBV+09]. This case study provides a good example of modeling and
simulation in a complex multi-actor environment with technological interdependen-
cies. The crucial role of modeling within this example is to document the business
processes as much as possible in a visualized way, to enable different parties to gain
insight into the issues and the potential solutions. We have used the MDD4MS
prototype to develop the simulation model according to the MDD4MS framework.
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Figure 6.15: Running the auto-generated code with the DEVS library for BPMN.

Problem definition

We will develop a discrete event simulation model for the application process of new
merchants to obtain a working payment terminal to accept electronic payments.
There are five types of participants in the system and there are relations and
dependencies between them for the major part of the system. The participants are:
merchant, terminal supplier, telecom supplier, acquirer and acquiring processor.
The merchant is crucial for making the application possible. The merchant sends
applications to the terminal supplier, the acquirer and the telecom supplier. Then,
the applications are processed by the resources of the related participants. Besides,
the application information is entered to the acquiring processor database and
terminal management system. When the terminal and the database of the acquiring
processor contain the same information, the terminal can start accepting electronic
payments. Details of the example can be found in [SBV+09].

Conceptual modeling

A conceptual model for this example is developed according to the static model
given in [SBV+09]. We used the BPMN editor of the MDD4MS prototype to spe-
cify the conceptual model with BPMN. Similar to the first model, participants are
modeled with BPMNSwimlanes. Sending activities are modeled as BPMNSendTask
and receiving activities are modeled as BPMNReceiveTask, and so on. Parallel forks
and joins are used to control the flow of the application. Figure 6.16 shows the
BPMN model. A part of the BPMN model, namely the telecom supplier swim-
lane, is shown in Figure 6.17-a to illustrate the model continuity. The next section
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explains how the BPMN model is used in the next stages.

Simulation model specification

Similar to the first model, after the BPMN model is specified, it is transformed
to a DEVS model by using the BPMNtoDEVS transformation in the MDD4MS
prototype. Figure 6.18 shows the DEVS model. As an example, Figure 6.17-b
shows the auto generated coupled model for the telecom supplier swimlane in the
BPMN model.

Model implementation

After the DEVS model is generated, it is transformed to a Java model by us-
ing the DEVStoJAVA transformation in the MDD4MS prototype. Figure 6.17-c
shows the Java class model for the telecom supplier as an example. Figure 6.19
shows a screenshot from the Java model editor. Figure 6.20 shows the full Java
code generated for the telecom supplier coupled model. Figure 6.17 illustrates
how modeling relation is preserved during the model transformations and model
continuity is obtained.

Simulation

In order to execute the model, we define the experimental model by adding the
required parameters. Appendix D shows the experimental parameters and setup
values. We defined arrival rate for new merchants and service rates for user tasks.
Figure 6.21 shows a screen shot of the simulation run with the DEVS library
for BPMN. The simulation results show how the information in the conceptual
model is preserved and moved into the simulation model. For example, in the
output window, ’[SendConfirmation-out]’ message is automatically generated and
it includes the task name defined at the conceptual modeling stage.

6.6. Evaluation of the case study

In this section, we will examine the generated models and results at the case
study. We would like to analyze how conceptual modeling stage is effected by
the application of the MDD4MS framework, and if model continuity between the
different models of the M&S lifecycle is obtained.

6.6.1. MDD4MS checklist

In this section, we will evaluate the case study according to the MDD4MS checklist
given in Section 3.5. The following tables show the summary of the presented case
study for applying MDD4MS in practice.

Table 6.3 shows the information about the languages and the metamodels in the
case study. Table 6.4 shows the information about the tools in the case study.
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Figure 6.16: BPMN model for the terminal application process.
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Figure 6.17: Model continuity in the case example.
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Figure 6.18: Auto-generated DEVS model for the terminal application process.
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Figure 6.19: Auto-generated JAVA visual model for a coupled model.

Figure 6.20: Auto-generated JAVA source code for a coupled model.
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Figure 6.21: Running the auto-generated code with the DEVS library for BPMN.

Table 6.5 shows the information about the developed or generated models, trans-
formations and other artifacts in the case study. The tables show that we covered
all of the steps in the framework.

6.6.2. Validation of the results

We use the simulation software Arena to validate the outcomes of the auto gen-
erated simulation models. Arena is a widely used simulation software and it is
considered to provide correct results [Are13]. The choice for Arena was made be-
cause it is possible to transform the business process modeling concepts easily to
Arena modules. For example, a start event can be modeled with a Create module,
and end event can be modeled with a Dispose module. A task can be modeled
with a Process module, and so on. During the validation, for a given BPMN
model, a DEVS model was automatically generated as well as an Arena simulation
model was developed manually. The Arena models are developed independently
and validated in different research studies [SBV+09, RÇSW11]. Both the DEVS
simulation models and the Arena simulation models were executed by using the
same experimental data.

In this section, we compare the simulation results statistically by applying an inde-
pendent two-sample t-test. This test allows us to compare the means of the two
data sets. We have to take into account that the generation of random values
is most likely different in DSOL and Arena, due to for instance the implemented
pseudo random number generators and seed values. However, when we run the
model for longer run lengths and have more replications, the means will approach
each other.
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Table 6.3: Applying the MDD4MS framework for discrete event simulation of
business process models: languages and metamodels.

Activities Done?
Y/N

artifact/ chosen
method

Choose the conceptual modeling language Y BPMN

Choose the system specification formalism Y DEVS

Choose the simulation programming language Y Java

Choose a metamodeling language Y Ecore

Define/choose the simulation conceptual model-
ing metamodel (CMmetamodel)

Y BPMN metamodel

Define/choose the simulation model specification
metamodel (PISMmetamodel)

Y DEVS metamodel

Define/choose the simulation model implement-
ation metamodel (PSSMmetamodel)

Y JAVA metamodel

Choose a M2M transformation language Y ATL

Choose a M2T transformation language Y Java

Table 6.4: Applying the MDD4MS framework for discrete event simulation of
business process models: tools.

Activities Done?
Y/N

artifact/
chosen
method

Notes

Choose a metamodeling environ-
ment

Y Eclipse GEMS
plugin

Choose a M2M transformation
tool

Y Eclipse ATL
IDE

Choose a M2T transformation tool Y Eclipse Java program

Generate/choose the simulation
conceptual model editor

Y BPMN editor auto generated

Generate/choose the simulation
model specification editor

Y DEVS editor auto generated

Generate/choose the simulation
model implementation editor

Y JAVA model
editor

auto generated

Choose a simulation platform Y Eclipse by using DSOL and
DEVSDSOL librar-
ies
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Table 6.5: Applying the MDD4MS framework for discrete event simulation of
business process models: models, transformations and results.

Activities Done?
Y/N

artifact/ chosen method

Define/choose the CM-to-PISM
transformation

Y bpmn2devs.atl

Define/choose the PISM-to-PSSM
transformation

Y devs2java.atl

Define/choose the PSSM-to-Code
transformation

Y java2code.java

Specify the CM Y RepairInstallService.bpmn

Y PaymentTerminalSetup.bpmn

Generate and refine the PISM Y RepairInstallService.devs

Y PaymentTerminalSetup.devs

Generate and refine the PSSM Y RepairInstallService.javam

Y PaymentTerminalSetup.javam

Generate and refine the SM Y auto generated Java classes

Design experiments Y Experimental models

Execute the SM Y Simulation results
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Model-1, i.e. the customer service process model, was executed for 30 replications.
Each replication runs for 5000 hours with a 100 hours warm-up period. Model-2, i.e.
the payment terminal application process model, was executed for 25 replications.
Each replication runs for 2000 hours with a 50 hours warm-up period. Appendix
D presents the experimental parameters and the results for the models.

With the t-test, we expect to show that the sample data sets are similar and there
is no statistically significant difference between them. Hence, our null hypothesis
for t-test is that the results for the two simulation models are different. We use the
SPSS statistical data analysis software [IBM13]. During the t-test, we focus on
the average total time in the system, average waiting time in user task queues and
the resource utilization statistics. After having the normality test with ShapiroWilk
test, we see that the data values for these variables are normally distributed.

For model-1, we find p-values as p = 0.823 for average total time, and p = 0.757
for average waiting time. For the resource utilization values, we have p-values as
p = 0.216 for service technician and p = 0.877 for supply technician. Figure 6.22
shows the t-test results for model-1.

For model-2, we find p-values as p = 0.581 for average total time, and p = 0.875
for average waiting time. For the resource utilization values, we have p-values as
p = 0.938 for acquirer, p = 0.596 for telecom supplier, and p = 0.964 for terminal
supplier. Figure 6.23 shows the t-test results for model-2.

As a result, we strongly reject the null hypothesis due to high p-values and conclude
that the results of the Arena model and the DEVSDSOL model are similar.

6.6.3. Model continuity in the example cases

The case examples showed that model continuity between the different models of
the M&S lifecycle is obtained when the MDD4MS framework is applied successfully.
When we look at the definition of model continuity in Section 1.4, we identify two
main requirements for providing model continuity in a development process. These
are transforming the initial and intermediate models, and preserving the modeling
relation during the transformations. Hence, performing effective and successful
model transformations in an MDD4MS process can ensure that model continuity
is obtained.

We already presented the criteria for model transformations in Section 2.3.7. In the
case example, the transformations satisfy the termination, uniqueness and readabil-
ity requirements. Efficiency, maintainability, scalability and reusability requirements
are partially supported since we made small scale examples and more experiments
are needed for a better evaluation. Due to the fact that the model editors guaran-
tee correct models, accuracy and consistency are implicitly guaranteed. Robustness
is ensured by the model transformation language compiler. However, to consider a
model transformation effective and successful, we pay attention to the correctness
and completeness during the analysis. We focus on the following three aspects:
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� Syntactic correctness of the target model,

� Completeness of the model transformation,

� Semantic correctness of the model transformation.

Syntactic correctness of the target models

If the target model conforms to the target modeling language, then it is syntactic-
ally correct. Unfortunately, the language and the compiler that we used during
the transformation rule writing does not have support to ensure the target model
correctness. So, we have spent extra effort to ensure the syntactical correctness
manually. For example, the following three rules will generate three different ID
numbers for a component, whereas only hexadecimal numbers are accepted in the
target metamodel.

ID <- ’123’

ID <- ’abc123’

ID <- ’zzz123’

So, the last model will not be correct although it is possible to write the rule with
ATL. However, we don’t see this as a problem in the future due to the fact that
tools can be improved to provide support for rule writing. As a result, by verifying
each rule, we guarantee that for a correct source model a syntactically correct
target model will be generated. Auto generated model editors that we used in the
case example ensures that only correct models are showed on the screen. Hence,
in both examples, syntactically correct models are generated in every stage.

Completeness of the model transformations

In order to analyze completeness, we will measure source metamodel coverage and
target metamodel coverage metrics. Source metamodel coverage calculates the
quotient between the total number of distinct classes from the source metamodel
that are covered in the model transformation, and the total number of classes from
the source metamodel [Vig09]. Target metamodel coverage calculates the quotient
between the total number of distinct classes from the target metamodel that are
used in the model transformation, and the total number of classes from the target
metamodel [Vig09]. Source metamodel coverage guarantees that the transforma-
tion is applicable to every model of the source language. Target metamodel cover-
age is important to generate precise target models. In the case example, all of the
ATL transformations cover fully the source metamodel and the target metamodel.
For the Java to code transformation, we only provide source metamodel coverage
but not the target metamodel coverage. Because, we use all of the concepts from
the DEVDSOL library but not the whole Java programming language. Hence, the
transformations provide completeness in order to preserve and reuse the information
in the source model.
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During the transformations, we ensure the label similarity [MKY06] between the
source and the target models. We assume that the additions and extensions to the
existing information do not cause information loss. For example, if a task name is
’ABC’ and it is transformed into a component named ’taskABC’ in the target model
then we assume that the information is preserved. Because it is always possible
to obtain the original name [EEE+07]. Due to the fact that our transformation
rules are complete we expect that structure and information preservation will be
satisfied.

Semantic correctness of the model transformation

If a model m1 transforms into m2 then m2 needs to preserve the semantics of m1

to guarantee semantic correctness as well as model continuity. Only continuous
transformations are deemed useful and meaningful [MV11]. This can in principle
be checked by executing the semantic mapping and comparing the results. In
computer science, there are various methods to check semantics preservation such
as trace equivalence, bisimulation and behavioral equivalence.

In this research, we assume trace semantics for process models and DEVS models,
and test trace equivalence between BPMN and DEVS models. In this case, the
behavior of a process model or a DEVS model is a set of traces. A trace of a
model m refers to one of its possible executions. A trace is an ordered list of labels
representing the time-ordered events occurring in the execution of the model. Two
models are trace equivalent if and only if they produce equivalent sets of traces.

To express the behavior of the sample models we will simplify the models for clarity.
Figure 6.24 shows the simplified models for model-1. Although we use two Start
elements in the original model we group them into one element in the simplified
model. In the same way, we group the End elements into one End element as well.
Serial tasks are also grouped into one element regardless their type.

Let Tr(m) denotes the set of all traces of a model m, where an element of Tr(m)
is called a trace of m [NV09]. Two models m1 and m2 are said to be trace
equivalent if and only if Tr(m1) ≅ Tr(m2). Based on the work of Burch et al.
[BPSV03], we assume that if Tr(m1) ⊆ Tr(m2) then Tr(m1) ≅ Tr(m2). During
the model transformation from BPMN to DEVS, a mapping from each part of a
BPMN model to one or more DEVS modeling elements is guaranteed. In this way,
we ensure that Tr(mbpmn) ⊂ Tr(mdevs). Based on our assumption, we conclude
that Tr(mbpmn) ≅ Tr(mdevs). For example, in Figure 6.24, it is observable that
Tr(mbpmn) ⊂ Tr(mdevs).

The BPMN and DEVS models for the payment terminal application process can
also be proven to be trace equivalent in the same way. Figure 6.25 shows the
simplified models for model-2. In both examples, we preserve the structure and
the existing information while moving from BPMN to DEVS.
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Figure 6.24: Simplified BPMN and DEVS models for the customer service process.
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Figure 6.25: Simplified BPMN and DEVS models for the payment terminal applic-
ation process.
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For more complex business process models, a recent study of Kunze et al. [KWW11b,
KWW11a] provides a metric based evaluation method for behavioral similarity.
They use a ’behavioral profile’ definition to express the behavior of a model. A
behavioral profile captures behavioral characteristics of a model by three relations
between pairs of activity nodes. These relations are based on the notion of weak
order. Two activities of a process model are in weak order, if there exists a trace
in which one activity occurs after the other. A pair (x, y) ∈ A × A, where A is
the finite non-empty set of activity nodes, is in one of the following relations: the
strict order relation, the exclusiveness relation and the interleaving order relation.

The transformation of the DEVS components into JAVA classes are performed
according to the DEVS operational semantics. By using the validated DEVSDSOL
classes we ensure that the semantics of the DEVS model is preserved in the JAVA
model. During the code generation a one to one mapping from each part of a
Java model to Java source code is guaranteed. As a result, our transformations
are effective and successful, and model continuity is obtained in both examples.

6.6.4. Satisfying the requirements for conceptual modeling

Lastly, we evaluate the case study according to the conceptual modeling require-
ments given in Section 2.1.1. The presented case study satisfies all of the require-
ments for conceptual modeling as:

� R-CM.1. The business process modeling domain ontology is described with
the BPMN metamodel.

� R-CM.2. BPMN is used for conceptual modeling,

� R-CM.3. The auto generated model editor ensures that any conceptual
model conforms to BPMN.

� R-CM.4. The system structure and abstract behavior are defined in the
BPMN models,

� R-CM.5. The boundaries are defined in the BPMN models,

� R-CM.6. The BPMN models are communicative between the stakeholders,

� R-CM.7. The BPMN models are independent from the implementation
details.

When we look at the requirements for conceptual modeling, we see that the first
three requirements are related to the domain ontology and the conceptual modeling
language rather than the conceptual model itself. Metamodeling provides a sound
method for specifying modeling languages as well as ontologies. In case of using
a domain specific language via a metamodel within the MDD4MS framework, the
first three requirements are satisfied such that:
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� R-CM.1. The problem/research domain ontology is described with the
metamodel due to the fact that a valid metamodel shows an ontology.

� R-CM.2. The modeling language which the metamodel represents is used
for conceptual modeling,

� R-CM.3. Auto generated model editor ensures that the conceptual model
conforms to the modeling language.

During the case study, it is shown that these requirements are guaranteed by the
BPMN metamodel. The major requirement for metamodeling is specifying all or the
core parts of the language specification according to the modeling needs. We have
chosen the core elements of BPMN and the metamodel is fully compatible with the
BPMN specification version 2.0 [OMG11a]. Besides, the conceptual models, which
are the instances of the BPMN metamodel, are transformed into the DEVS models
and effectively used in the further steps. As a result, the MDD4MS framework
supports and improves the conceptual modeling stage.
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Chapter 7

Epilogue

This chapter presents the conclusions, the research findings and the future work.
Before drawing the final conclusions, we present a summary of our research and how
we satisfy the necessary requirements throughout this thesis in Table 7.1. There
are different aspects of this research and the contributions are mainly in the field
of simulation conceptual modeling, model driven development, component based
simulation and business process modeling.

7.1. Conclusions

MDD approaches place models in the core of the entire system development pro-
cess. They provide better and faster ways of developing systems through automated
model transformations between models which are specified with well-defined mod-
eling languages. Applying MDD in M&S provides new capabilities for efficient
development of reliable, error-free and maintainable simulation models. MDD sup-
ports formal validation and verification techniques and provides early detection of
the flaws. Availability of the existing tools and techniques for both metamodeling
and model transformations is one of the practical advantages of MDD. Metamod-
eling provides a precise way for specifying the models and modeling languages. The
most important feature of an MDD process is model continuity.

This research study proposes a comprehensive theoretical framework for model
driven development of simulation models. The framework suggests three inter-
mediate models on top of the rigid simulation model (i.e. the final executable
simulation source code). Using intermediate models provides good understanding
of the simulation model by different parties. We show that the proposed framework
obtains model continuity via metamodel-based formal model-to-model transform-
ations. The case study illustrates that the framework is applicable in the discrete
event simulation domain.

MDD is different from the traditional development approaches and it requires a
learning period and change of the programming habits. When the modeling lan-
guages are not available and the team members have little or no knowledge about
MDD, it may take a large amount of time to develop metamodels. However, once
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Table 7.1: Satisfying the requirements throughout the thesis.

Requirements How they are satisfied

Requirements for
the application
of MDD (Section
2.3.8)

The MDD4MS framework applies the MDD concepts
successfully and satisfies all of the requirements, namely
abstraction, metamodeling, transformation, automa-
tion and generality (Section 3.6).

Requirements for
simulation con-
ceptual modeling
(Section 2.1.1)

The presented case study satisfies all of the require-
ments for conceptual modeling. BPMN is used for con-
ceptual modeling and the business process modeling do-
main ontology is described with the BPMN metamodel
(Section 6.6.4).

Requirements for
simulation model
components (Sec-
tion 5.2.2)

The DEVS components for BPMN modeling elements
satisfy the modularity, interoperability, reusability, func-
tionality, reachability and flexibility requirements. The
upgradeability and replaceability requirements are not
examined in detail due to time limitations of the re-
search (Section C).

Requirements
for providing
model continuity
(Definition 14
p.61)

The MDD4MS processes for the two example business
process models satisfy the requirements for model con-
tinuity through automated formal model transforma-
tions (Section 6.6.3).

Requirements
for a successful
model transform-
ation (Section
2.3.7)

The model transformations in the MDD4MS prototype
ensure correctness, completeness and termination re-
quirements (Section 2.3.7 and 6.6.3).
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they are developed, further development time and costs could decrease significantly
[TGS+05, BBG05, KJB+09, MCM13]. Working with metamodels is easier and be-
neficial as soon as it is understood well. Although traditional systems modeling
and software engineering approaches can be chosen in small-scale and short-term
projects, the model driven approach is more desirable for large-scale and critical
simulation projects.

From the initial research questions and the final research evaluation, we conclude
that this research addresses the identified issues in current M&S practice and theory.
The applicability of the proposed framework is tested via prototyping. The proposed
MDD4MS framework, performed case study and the example models show that
the MDD approach can be successfully applied into simulation and the MDD4MS
framework bridges the gap between simulation conceptual modeling and simulation
model development stages in the M&S life cycle.

The outcomes of this research can be summarized as follows and the deliverables
can be found in the MDD4MS project website [Çet13]):

� The MDD4MS framework which provides a set of methods and guidelines.

� A metamodel for BPMN

� A metamodel for hierarchical DEVS

� A simplified metamodel for JAVA

� A modeling editor for BPMN modeling

� A modeling editor for DEVS modeling

� A modeling editor for JAVA modeling

� An extensible conceptual modeling method for simulation (SimCoML)

� A metamodel for SimCoML

� A modeling editor for SimCoML

� A model transformation method from BPMN to DEVS

� A model transformation method from DEVS to JAVA model

� A model transformation method from JAVA model to JAVA code

� A DEVS component library for BPMN

� Sample case-1: Customer service process (bpmn, devs, java models and
executable code)

� Sample case-2: Payment terminal application process (bpmn, devs, java
models and executable code)

� Publications, tutorials, a user guide and a developers guide
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7.2. Answers to the research questions

In this section, we revise the research questions given in Section 1.5. The first ques-
tion is about supporting the conceptual modeling stage in M&S. To answer the first
research question, two subquestions have been introduced. First, the requirements
for an effective conceptual modeling stage in M&S are identified and then it is ana-
lyzed how a conceptual modeling language can help to meet these requirements.
The first subquestion is answered in Section 2.1 during the background research by
listing seven major requirements. The second subquestion is answered by applying
a metamodeling approach at the simulation conceptual modeling stage. Section
2.3.2 presents some background information about metamodeling, and Section 3.2
and 3.3.2 explains how metamodeling can be used in an MDD process. Section
4.3 illustrates an extensible conceptual modeling metamodel for simulation to illus-
trate how a metamodel can be developed and used for a DSL. Besides, Chapter 6
presents a case study to show how a conceptual modeling language can guarantee
three of the seven requirements for conceptual modeling.

The second main question is about providing model continuity throughout the M&S
lifecycle. Again, to answer the second research question, two subquestions have
been introduced. First, a method to utilize the simulation conceptual models in the
further steps of the simulation study is proposed and then it is analyzed how formal
model transformations can help to bridge the gap between the different models
in the M&S lifecycle. The first subquestion is answered by defining and using
metamodel based formal model transformations to transform simulation conceptual
models into more detailed new models. The new models are expected to preserve
the information in the conceptual model as well as include more detail. Section
2.3.5 presents some background information about model transformations, and
Section 3.2 and 3.3.3 explains how formal model transformations can be used
in an MDD process. Section 6.5.4 explains how simulation conceptual models
can be transformed into other models in a practical case. The overall process by
using metamodels and formal model transformations provides answer to the second
subquestion. Chapter 3 presents the main conceptual framework, followed with two
supporting approaches as using DSLs (in Chapter 4) and using simulation model
components (in Chapter 5). Chapter 6 presents a practical example to show how
model continuity is obtained throughout the M&S lifecycle.

As a result, we answer all of the research questions. The objective of this research is
stated in Section 1.5 as follows: To design a framework for M&S that would provide
a set of methods and guidelines for specifying (conceptual) models in a well-defined
manner (to address issue 1), for performing formal model transformations on those
models (to address issue 2), and for supporting model continuity throughout the
M&S lifecycle (to address issue 3). Analyzing the research questions and the
answers provided, we can state that we have accomplished this objective with this
research. As a result, this research study ends up by proposing formal and practical
solutions to the identified issues in Section 1.4. Our hypothesis that is formulated
at the beginning of the research (as the use of the MDD methods, techniques
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and tools can improve the conceptual modeling stage in simulation studies and
provide model continuity between the different models in the M&S lifecycle) is
tested throughout the research and it is supported by the results.

7.3. Research findings and reflections

It is important to follow an iterative process during the scientific research so that
the relevance of the solution can be decided early in the research time line. In
this research, initial ideas are presented at the simulation conferences and an early
prototype with GME is developed at the beginning of the research [ÇVS10a]. By
the help of this early prototype, the advantages of the MDD approach are observed
at the first year of the PhD research. Reflecting on the results of the first proto-
type evaluation, the MDD concepts are applied into the M&S field to address the
identified issues. After that, the conceptual framework is proposed in detail and
formalized as well as a new prototype with Eclipse is developed.

Throughout this research, we have observed the following advantages of the MDD
approach:

� Improved communication and information sharing via models at different
abstraction levels (Section 6.5.8),

� Automation during the generation of model editors and source code (Section
6.5),

� Improved software modularity and consistency with the use of component
based approach during code generation (Section 5.3),

On the other side, we have observed the following disadvantages and challenges:

� Model transformation languages and tools that we used are not practical and
easy to use,

� Transformation rule writing needs experience and it is costly.

Potential users of the research results are all the actors in the simulation model de-
velopment process, including conceptual modelers, simulation modelers and simu-
lation analysts. This research provides new insights in modeling and simulation field
and it aims at improving the conceptual modeling stage and increasing the reuse
of simulation model components in M&S. The focus on the conceptual modeling
stage and the application of MDD concepts into the simulation field to effectively
use the conceptual models grant the originality of this PhD research, due to fact
that this subject has not been adequately studied yet in the simulation field. The
proposed generic MDD4MS framework can ensure model continuity by the use of
the gained insights about conceptual modeling.
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If we look at the definition of a conceptual model (see page 19), we identify two
main properties as: a conceptual model is an abstract representation and it is
not executable. However, the overall objective of this research is to increase the
level of abstraction via model transformations and to obtain an executable model.
Hence, at each transformation, we add new data or information to the model so
that we have new models at a different abstraction level. As well as, we identify
an important requirement for conceptual models as (see page 22): a conceptual
model must be independent from the implementation details. This means that a
conceptual model is both implementation independent and platform independent.
However, it is not easy to say that it is paradigm independent as well with the
current available conceptual modeling languages.

The MDD4MS framework provides practical and formal guidance for moving from
a conceptual model to an executable simulation model. It improves conceptual
modeling stage and provides model continuity during simulation model develop-
ment. A possible reflection on systems engineering can be to utilize MDD4MS
for model driven systems engineering. There can be two ways to adopt MDD for
systems development. One of them is applying the concepts to whole systems
engineering lifecycle not necessarily M&S is a part of the project. This way can be
categorized under the MDE literature. The second way is using M&S during the
design stage and implementing the results in the further stages. This is generally
referred as M&S based design or M&S based systems engineering. In both cases,
the MDD4MS framework can be adapted to the systems development process.

This research has been a good practice for component based simulation as well.
Once the components were developed, validated and made available for reuse,
they have improved the model transformations and fully executable models are
generated. Component based approach also helped us to obtain consistent models
and accurate results in a cost effective manner.

The transformation of the BPMN elements into DEVS components has provided an
effective way to easily model and simulate business processes. Because, modelers
not only need graphical presentations and animations during the simulation but also
require accurate and correct simulation results. Hence, formalizing the steps and
transforming the BPMN elements into mathematically sound DEVS components
provides a formal approach for business process simulation.

As a final remark, the metamodels, the visual editors and the code generator provide
a higher layer tool architecture on top of the DSOL simulation suite and enhance
DSOL with a graphical user interface. Besides, the DEVS metamodel is used as
the PISM metamodel in the MDD4MS framework. Thus, the generated DEVS
models are free from the implementation details and they can be transformed into
different platform specific models for various DEVS simulation platforms. So, the
new approach will help the modelers to construct their simulation models faster,
better and more reliable.
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7.4. Further research

As shown in the case example, MDD4MS framework is applicable in the DEVS-
based discrete event simulation domain. MDD4MS presents a generic framework
and it is also applicable in different domains. Due to the fact that there are related
studies on applying MDD and/or component based approach in simulation field
(see Section 2.4.2), we believe that adapting them to the MDD4MS framework
can formalize the existing applications. Both to evaluate the MDD4MS framework
and to validate the MDD4MS prototype we had small scale cases and experiments.
We need more examples on the larger scale and the future work will include using
the MDD4MS framework in a large scale real life M&S study.

Agent based simulation, HLA-based distributed simulation, PetriNets-based simu-
lation, SysML-based simulation, etc. can be future implementation areas for the
MDD4MS framework. For example, Ogston and Brazier [OB11] propose to use
generic interfaces for platform-independent experimental data during multi agent
systems development and advocates a comprehensive development cycle. As a
future work, adaption of the MDD4MS framework to multi agent systems develop-
ment can help to formalize the steps and better categorize the M&S and systems
engineering processes.

As well as, an important future research topic is about component composability
and interoperability. As stated in Chapter 5, the simulation model components are
usually platform dependent and not compatible with other components developed
in different environments. MDD has been shown to be very effective and useful
to perform successful compositions. However, more research needs to be done to
fully elaborate the mathematical foundations of M&S Science and to show the ad-
vantages of higher level conceptual and platform-independent models [TDPHZ13].

During the analysis stage, we have identified that the M&S literature is lacking
the methods and metrics to measure model continuity. We believe that the theor-
etical computer science methods can be utilized for further analysis of conceptual
models, simulation models and semantics preservation during the transformations.
A possible future work will define formal analysis methods and metrics to evaluate
the MDD4MS processes for model continuity as well as other properties. Trans-
formation validation and verification methods in the MDD literature can help to
implement automated solutions for more detailed analysis of transformations.
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Chapter 7. Epilogue
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Appendix A

Basic Definitions for the
Frequently Used Terms

Due to inconsistent terminology in the literature, we give some basic definitions of
the frequently used terms to provide a common understanding. These definitions
are highly influenced by the software engineering and the systems engineering body
of knowledge [ISO10, PMI08].

Abstraction level: level of detail from different perspectives or aspects.

Discipline: a branch of scientific knowledge, field of study.

Framework: a reusable method or a set of methods that can be refined (special-
ized) and extended to support a methodology.

Guideline: a statement that provides information about how to apply a method
or a technique.

Language: a means of expressing or communicating in a structured way by using
gestures, signs, symbols, letters, numerals, sounds, etc.

Lifecycle: evolution of a system, product, service, project or other human-made
entity from conception through retirement.

Method: a systematic procedure that may be used to perform a process or a task
and that may employ one or more techniques (e.g: conceptual modeling method,
simulation model specification method, analysis method, etc.).

Methodology: a body of knowledge comprising the methods, techniques, proced-
ures, approaches, guidelines, principles, patterns and/or tools that may be used to
perform a process or a set of processes in a discipline or a particular domain (e.g:
modeling and simulation methodology).

Phase: a collection of logically related activities in a lifecycle, usually culminating
in the completion of a major deliverable.
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Procedure: ordered series of steps that specify how to perform a task.

Process: a set of interrelated or interacting activities for a purpose.

Project: an endeavor with defined start and finish dates undertaken to create a
product or service in accordance with specified resources and requirements.

Project lifecycle: a collection of generally sequential and sometimes overlapping
project phases whose name and number are determined by the control needs of
the organization or organizations involved in the project. A life cycle can be doc-
umented with a methodology.

Stage: a collection of logically related sub-activities in a phase.

Step: a defined task in a stage that tells a user to perform an action (or actions).

Study:(or research study) a work that results from studious endeavor.

Technique: a systematic procedure that may be employed to perform a task and
that may utilize one or more tool.

Tool: an instrument to perform some task
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Appendix B

Introduction to Formal Language
Theory

In this appendix, we provide a brief introduction to formal language theory. In
formal language theory, a language is a set of expressions (or sentences) each finite
in length and constructed from a finite set of symbols [Cho02]. A language consists
of a syntax and semantics that each can be defined formally or informally. Formal
language theory focuses on defining a formal syntax, which is often described by
means of a grammar [Lin12]. The finite set of symbols used to construct the
expressions is called the alphabet Σ. From the individual symbols, expressions
are constructed by composition. The infinite set of all expressions, which can be
obtained by composing zero or more symbols from Σ, is denoted as Σ∗. A language
is defined as a subset of Σ∗. An expression e in a language l is denoted as e∈l.

A grammar is a generative mechanism which can generate expressions by using a
set of production rules. A grammar includes terminal and non-terminal symbols.
Non-terminal symbols are called variables. A subset of the variables is called the
start variables. A production rule consists of a left hand side (lhs) and a right hand
side (rhs). It is denoted as lhs⇒ rhs, where each side consists of a sequence of the
terminal and non-terminal symbols. Starting from a start variable, expressions are
obtained by applying a number of production rules consecutively until the expression
consists only of terminal symbols. This is called the derivation of an expression
from a start variable. The intermediary expressions are called productions, while
the final expression is called a well-formed expression.

Definition 19. A grammar g is defined as a quadruple g = {T,N, I,P} where

T is a finite alphabet (terminal symbols),

N is a finite set of variables (non-terminal symbols), where T and N are non-empty
and disjoint sets,

I is a finite set of start variables, where I ⊆ N ,

P is a finite set of production rules, where a production rule is an ordered pair
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from (T ∪N)∗ × (T ∪N)∗.

A grammar produces syntactically correct expressions, regardless whether the ex-
pression is meaningful or not. The set of all expressions generated by g is called
the formal language generated by g and is denoted by l(g) [Lin12].

Definition 20. For a given grammar g = {T,N, I,P},

l(g) = {e ∈ T ∗∣I ⇒∗ e}, where ⇒∗ is a derivation of expression e.

If a language l has a formal syntax, an expression in l can be parsed according
to the grammar of l by a parser and the expression can be verified to be gram-
matically correct. Although the formal language theory focuses on syntax, it is
closely related to the formal semantics. If the semantics of a language is defined
as a formal system, then it is called a formal semantics. Otherwise, it is called an
informal semantics and a language with a formal syntax and an informal semantics
is called a semi-formal language. In mathematical logic, model theory provides
a way for defining structures that give meaning to the expressions of formal lan-
guages [CK12]. If a language l has a formal semantics, an expression in l can be
interpreted according to the semantics of the language by an interpreter and the
expression can be validated to be semantically correct.
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Appendix C

The MDD4MS Prototype
Implementation Details

C.1. DEVS components

This appendix provides information about the DEVS component library for BPMN.
Pools, swimlanes and subprocesses are modeled as coupled models and automat-
ically generated. So, they are not part of the library. BPMN library includes the
elements shown in Figure C.1. We provide a separate queuing library as well, which
can be used for basic queuing system modeling.

C.1.1. Start event

The Start event is an event and represents the arrival of entities. To mimic this
behavior in a simulation model, this event is translated into an atomic DEVS model.
This component generates entities based on a certain specification. It is similar to
the Create module in the Arena simulation software.

Figure C.1: Graphical representation of the BPMN elements used in the prototype.
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The parameters describing start event specification are:

� Entity type: type of the entity that will be created (e.g., email, letter, order,
customer, etc.)

� Distribution mode: the mode for the interarrival time distribution. Mode can
be (1) constant, (2) exponential, (3) uniform, (4) triangular, or (5) normal
distribution

� Mean: mean value of the distribution

� Min.: Minimum value for uniform or triangular distribution

� Max.: Maximum value for uniform or triangular distribution

� stdDev: Standard deviation for normal distribution

The formal description of the Start Event component is given by the state diagram
as shown in Figure C.2. This component has one output port through which a
newly created entity leaves, and one state, namely the ’Passive’ state. The time
duration after which an output function takes place is equal to the interarrival time
as specified by the modeler. This interarrival time may be constant (e.g., every 10
minutes an entity is created), or following a statistical distribution (e.g., an entity is
created on average after 5 to 10 minutes, following a uniform distribution). Based
on the mode that is specified in the constructor, a different distribution is used
for the random number generation of interarrival times. Each time an entity is
generated, the sigma value (time remaining before the output function is called) is
reset to the next inter-arrival time.

C.1.2. End event

The End event is an event and represents the end of a business process, namely
when an entity leaves the system. To mimic the behavior of an entity leaving
the system, the End event is formalized as an atomic DEVS model with two main
states, namely ’Passive’ and ’Active’. The component will remain in ’Passive’ state,
until an entity arrives at its input port, triggering an external transition. Then, the
state changes to ’Active’ and the entity is disposed. After that, the state changes
back from ’Active’ to ’Passive’.

An End event can be instantiated through its constructor. The constructor allows
to specify the parent model, a name, a description and a unique identifier. An End
event records several statistics about the entities and about the system. The state
diagram of the End component is shown in Figure C.3.

C.1.3. User task

A User Task is an activity which represents work that is performed by a resource and
spends a certain amount of time. To mimic the behavior of a resource performing
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Figure C.2: State diagram for Start event.

Figure C.3: State diagram for End event.
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Figure C.4: Inner details of the User Task coupled component.

an activity for some time, the Task component delays an entity arriving at the
input port for a specified duration before sending it to the output port. A task can
be performed by multiple resources at the same time for different entities.

When a Task is in ’Passive’ state, it means that no resource is currently seized.
When an entity arrives, the state changes to ’Active’ and a resource is allocated.
After the certain amount of service time, which is defined by a distribution, the
state changes to ’Passive’ if no more resources are currently performing that task,
or remains in ’Active’ state if one or more resources are performing the same task.
The user task utilizes a queue manager from a DEVS based queuing library. Queue
capacity can be specified, but chosen 1000 as default. The user task component
is implemented as a coupled model. The inner details of the user task component
are shown in Figure C.4.

A User task is always linked to a server model (from the DEVS based queuing
library) in a coupled model, where a server model represents a set of resources.
The waiting time is calculated according to the resource availability and service
rates. The service rate for a resource can be configured with mode, mean, min,
max, and stdDev parameters as defined for Start event. Figure C.5 shows how
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Figure C.5: Coupling User Task with a server model.

a user task component is coupled with a server model. The inner details of the
server model component for three resources are shown in Figure C.6. Service rate
and number of resources can be specified with parameters.

C.1.4. Simple task, Send task, Receive task

A Simple Task is an activity which represents some work that is performed at
a certain amount of time. It is a simplified task component without a resource
allocation mechanism. It can be compared to the Delay module in Arena. Send and
receive tasks are special types of a simple task. They all have a default constant
service time which can be changed. They are implemented as atomic models. The
state diagram of the Simple Task component is shown in Figure C.7.

C.1.5. Exclusive fork and Exclusive join

An Exclusive Fork is a gateway which is used to represent decisions made in a
business process and to direct the flow of an entity based on the evaluation of a
condition. This condition can be either the evaluation of an entity specific attribute
or probabilistic. Currently, an attribute based exclusive fork component can only
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Figure C.6: Inner details of the Server Model coupled component.

Figure C.7: State diagram for Simple Task.
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Figure C.8: State diagram for Exclusive Fork.

handle entity type attribute. The condition parameters should be defined by the
modeler, otherwise a default 0.50 probability is used. In Figure C.8 the formalized
DEVS model of an Exclusive Fork component is given. This component has one
input port through which entities arrive and two output ports (out1 and out2)
through which entities leave. It should be noted that an arriving entity can leave
through only one output port not both output ports at the same time.

An Exclusive Join is a gateway which is used to merge coming flows and entities.
It is implemented as an atomic model with two input ports and one output port.
It stores the entities that comes to the input ports and merges them when both
ports have entities. The state diagram of the Exclusive Join component is shown
in Figure C.9.

C.1.6. Parallel fork and Parallel join

Parallel gateways are used to support modeling and simulation of parallel activities
in a business process. A Parallel Fork duplicates an entity and sends the original
to the out1 output port while it sends the duplicate to the out2 output port. The
Parallel Fork component can be configured to have 3 or 4 output ports. In this
case, the duplicates are sent to out3 and out4 ports. The state diagram of the
Parallel Fork component is shown in Figure C.10.

A Parallel Join combines the original entity with its duplicates. Synchronization
of parallel activities through a Parallel Join is based on the concept that an entity
will wait in this gateway for an unspecified amount of time until its original (or
another duplicate) entity arrives. The state diagram of the Parallel Join component
is shown in Figure C.11.
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Figure C.9: State diagram for Exclusive Join.

Figure C.10: State diagram for Parallel Fork.
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Figure C.11: State diagram for Parallel Join.
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Appendix D

Simulation Results for the Case
Study

This appendix presents the experimental parameters and the results for the example
models in Chapter 6. Model-1, i.e. the customer service process model, was
executed for 30 replications (for both DEVS and Arena models). Each replication
runs for 5000 hours with a 100 hours warm-up period. Model-2, i.e. the payment
terminal application process model, was executed for 25 replications (for both
DEVS and Arena models). Each replication runs for 2000 hours with a 50 hours
warm-up period. The data for the average total time, average waiting time, and
resource utilization has been collected. The similarity of the sample data sets are
tested with t-test.
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Appendix D. Simulation Results for the Case Study

Table D.1: Experimental model and setup parameters for model-1.

Parameter V alue

Setup

Run length 5000 hours

Warm-up time 100 hours

Number of replications 30

Model

AtHome probability 0.95

NotDone probability 0.10

Arrival rate constant(2)

Simple task duration constant(0.1)

Service rate normalDist(1,0.25)

Appointment time normalDist(1.5,0.2)

Table D.2: Experimental model and setup parameters for model-2.

Parameter V alue

Setup

Run length 2000 hours

Warm-up time 50 hours

Number of replications 25

Model

Arrival rate constant(2.15)

Simple task duration constant(0.1)

Service rate normalDist(2,0.25)
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Appendix D. Simulation Results for the Case Study

Figure D.6: Normality test for the results for model-1.
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Figure D.7: Boxplots for the results for model-1.
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Figure D.8: Arena simulation model for the payment terminal application process
model (model-2).
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Appendix D. Simulation Results for the Case Study
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Figure D.13: Normality test for the results for model-2.
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Appendix D. Simulation Results for the Case Study

Figure D.14: Boxplot for the results for model-2.
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[BBG+06] J. Bézivin, F. Buttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow,

Model transformations? Transformation models!, in Proceedings of the

9th International Conference on Model Driven Engineering Languages and

Systems (MoDELS ’06) (O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,

eds.), Lecture Notes in Computer Science, vol. 4199, Springer-Verlag Berlin

Heidelberg, 2006, pp. 440–453.
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List of Abbreviations

ATL ATLAS Transformation Language

BPMN Business Process Modeling and Notation

CBS Component Based Simulation

CM Simulation Conceptual Model

DEVS Discrete Event System Specification
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DSML Domain-Specific Modeling Language

EMF Eclipse Modeling Framework

EMOF Essential MOF
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MIC Model Integrated Computing
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QVT Query/View/Transformation

SysML Systems Modeling Language
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Table D.3: Symbols used in the thesis.

Symbol Meaning

Sets

S set of all source systems

C set of all contexts

L set of all formal languages

M set of models

V set of secondary views of a model

M ′ set of metamodels

L′ set of all metamodeling languages

P set of all model transformation patterns

r a set of transformation rules

Instances

s, si system

c, ci context

l, li language

m,mi model

v, v1 secondary view of a model

mm,mmi metamodel

l′, l′i metamodeling language

g grammar

ĝ extended grammar of g

l(g) language generated by grammar g

p, pi model transformation pattern

Relations

µ model-of relation

γ conforms-to relation

τ instance-of relation

θ transformed-to function
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Summary

Modeling and simulation is an effective method for analyzing and designing systems

and it is of interest to scientists and engineers from all disciplines. Simulation is

the process of conducting experiments with a model for a specific purpose such

as analysis, problem solving, decision support, training, entertainment, testing,

research or education.

Several methodologies have been proposed in the literature to guide modelers

through various stages of M&S and to increase the probability of success in sim-

ulation studies. Each methodology suggests a body of methods, techniques, pro-

cedures, guidelines, patterns and/or tools as well as a number of required steps to

develop and execute a simulation model.

Most of the well known modeling and simulation methodologies state the import-

ance of conceptual modeling in simulation studies and they suggest the use of

conceptual models during the simulation model development process. However,

the transformation from a conceptual model to an executable simulation model is

often not addressed. Besides, none of the existing modeling and simulation meth-

odologies provides guidance for formal model transformations between the models

at different abstraction levels.

As a result, conceptual models are often not used explicitly in the further steps of

the simulation study and a big semantic gap exists between the different models

of the simulation project. This gap causes a lack of model continuity in many

cases. The lack of model continuity has a potential risk of increased design and

development costs due to unnecessary iterations. Model continuity is obtained if

the initial and intermediate models are effectively consumed in the later steps of a

development process and the modeling relation is preserved.

From the software engineering perspective, a (computer) simulation model can

be seen as a software application and an M&S study can be seen as a software

engineering project, as a simulation model is an executable program written in

a programming language. The programming language can be either a general

purpose programming language (such as C++, Java, etc.) or a specialized sim-

ulation programming language (such as SIMSCRIPT, SIMAN, SIMULA, etc.). In

both cases, an interpreter, which may include a compiler, executes the simulation
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model. Thus, software engineering methodologies can be applied to M&S and

existing tools and techniques can be utilized.

In order to address the identified issues in the M&S field, this research proposes

the application of a model driven development approach throughout the whole

set of M&S activities and it proposes a formal MDD framework for modeling

and simulation, which is called the MDD4MS framework. MDD is a software

engineering methodology that suggests the systematic use of models as the primary

means of a development process. MDD introduces model transformations between

the models at different abstraction levels and proposes the use of metamodels

for specifying modeling languages. In MDD, models are transformed into other

models in order to (semi)automatically generate the final (software) system. In

this research, the effects of applying an MDD approach throughout the whole set

of M&S activities is tested with the proposed framework and its proof of concept

implementation.

The MDD4MS framework presents an integrated approach to bridge the gaps

between different steps of a simulation study by using metamodeling and model

transformations. It mainly addresses the conceptual modeling and the simulation

model development stages in M&S lifecycle and it can be incorporated into the

existing methodologies for increasing the productivity, maintainability and quality

of an M&S study.

The practical examples with the MDD4MS framework showed that if model trans-

formations are complete and correct then an MDD4MS process obtains model

continuity. Besides, it has been shown that using metamodeling and DSLs within

the MDD4MS framework improves the conceptual modeling stage. As a result,

applying an MDD approach in simulation reduces the gap between the conceptual

modeling and the simulation model development stages in M&S lifecycle.
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Samenvatting (in Dutch)

Titel: Model-gestuurde ontwikkeling van simulatiemodellen

Subtitel: Het definiëren en transformeren van conceptuele modellen naar simula-

tiemodellen, middels metamodellen en modeltransformaties

Modelleren en simuleren (M&S) is een effectieve aanpak voor analyse en ontwerp

van systemen. Dit is van belang voor wetenschappers en ingenieurs in alle dis-

ciplines. Simulatie is het proces van het uitvoeren van experimenten binnen een

model, gericht op een specifiek doel zoals analyse, het oplossen van een probleem,

beslissingsondersteuning, training, vermaak, testen, onderzoek of onderwijs.

De literatuur biedt een keur aan methodologieën om modelontwikkelaars te leiden

door de verschillende stadia van M&S en daarmee de kans op succes in simula-

tiestudies te verhogen. Elke methodologie biedt een verzameling van methoden,

technieken, procedures, richtlijnen, patronen en/of gereedschappen, evenals een

aantal vereiste stappen voor het ontwikkelen en uitvoeren van een simulatiemodel.

Van de goed bekende methodologieën voor modelleren en simuleren benadrukken

de meeste het belang van conceptuele modellen in simulatiestudies en raden het

gebruik aan van dergelijke modellen tijdens de ontwikkeling van een simulatiemo-

del. Slechts heel weinig methodologieën noemen de stap van conceptueel model

naar uitvoerbaar model. Bovendien geldt dat geen enkele van de bestaande me-

thodologieën richtlijnen geeft voor formele modeltransformaties tussen modellen

op verschillende abstractieniveaus.

Dit heeft tot gevolg dat conceptuele modellen vaak niet expliciet gebruikt worden

bij de latere stappen in een simulatiestudie en er een grote begripsmatige kloof

bestaat tussen de verschillende modellen in een simulatieproject. Deze kloof ver-

oorzaakt in veel gevallen een gebrek aan continüıteit in modellen. Een dergelijk

gebrek aan continüıteit leidt tot het risico van verhoogde ontwerp en ontwikkel-

kosten door onnodige herhalingen. Modelcontinüıteit wordt verkregen door initiële

en tussenliggende modellen effectief toe te passen in de latere stappen zodat de

samenhang tussen modellen behouden blijft.

Vanuit het oogpunt van programmatuurontwikkeling kan een simulatiemodel gezien

worden als een softwareprogramma en een M&S studie kan gezien worden als een
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programmatuur-ontwikkeingsproject, want een simulatiemodel is een uitvoerbaar

programma in een programmeertaal. Deze taal kan zijn een algemeen bruikbare

programmeertaal (zoals C++, Java, etc.), of een gespecialiseerde simulatietaal (zo-

als SIMSCRIPT, SIMAN, SIMULA, etc.). In beide geval draait het simulatiemodel

in een interpreter, al dan na voorbewerking door een compiler. Bestaande me-

thoden en gereedschappen uit de programmatuurkunde kunnen derhalve toegepast

worden op M&S.

In dit onderzoek wordt een raamwerk voorgesteld voor M&S, met de naam MDD4MS

en gebaseerd op formele modellen. De effecten van het toepassen van MDD (En-

gelse afkorting voor modelgestuurde ontwikkeling) door de hele reeks van M&S-

activiteiten is getoetst in de eerste experimentele implemetatie van dit raamwerk.

MDD introduceert modeltransformaties tussen de modellen op verschillende ab-

stractieniveaus en beveelt het gebruik aan van metamodellen (modellen van mo-

dellen) voor het specificeren van modelleertalen. In MDD worden modellen ge-

transformeerd naar andere modellen teneinde het uiteindelijke softwaresysteem

(half)automatisch te generen.

Het MDD4MS-raamwerk biedt een samenhangende aanpak om de afstand te ver-

kleinen tussen de verschillende stappen in een simulatiestudie, met name door

gebruik van metamodellering en modeltransformaties. Het richt zich vooral op de

fasen van conceptueel modelleren en van simulatiemodelontwikkeling in de M&S

levenscyclus. Het kan opgenomen worden in de bestaande methodologieën ten

einde productiviteit, onderhoudbaarheid en kwaliteit in M&S-studies te verhogen.

Praktijkvoorbeelden van toepassing van MDD4MS hebben laten zien dat, als mo-

deltransformaties volledig en correct uitgevoerd worden, het MDD4MS-proces mo-

delcontinüıteit oplevert. Bovendien is aangetoond dat het gebruik van metamodel-

lering en DSL’s (domein-specifieke talen) in het kader van MDD4MS, het concep-

tueel modelleren ondersteunt en verbetert.

Op grond hiervan trekken we de conclusie dat toepassing van MDD in simula-

tiestudies de kloof verkleint tussen de conceptuele modellering en de eigenlijke

simulatiemodelontwikkeling, niet alleen theoretisch maar ook in de praktijk.
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Model Driven Development of 
Simulation Models

Modeling and simulation (M&S) is an effective method for analyzing and 
designing systems and it is of interest to scientists and engineers from all 
disciplines. This thesis proposes the application of a model driven software 
development approach throughout the whole set of M&S activities and 
it proposes a formal model driven development framework for modeling 
and simulation, which is called MDD4MS.

The MDD4MS framework presents an integrated approach to bridge the 
gaps between different steps of a simulation study by using metamodeling 
and model transformations. The practical examples with the MDD4MS 
framework showed that the framework is applicable and useful in the 
business process modeling and simulation domain.

This thesis mainly addresses the conceptual modeling and the simulation 
model development stages in the M&S lifecycle and the proposed 
framework can be incorporated into existing simulation methodologies for 
increasing the productivity, maintainability and quality of M&S projects.
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