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A B S T R A C T

In the context of the ever-evolving 5G landscape, where network management and control are paramount, a
new Radio Access Network (RAN) as emerged. This innovative RAN offers a revolutionary approach by enabling
the flexible distribution of baseband functions across various nodes, all tailored to meet the ever-shifting
demands of both system requirements and user traffic patterns. As users move within the network, the need to
anticipate and strategically position these baseband functions becomes crucial for seamless network operation.
Traditionally, this challenge has been tackled through a two-step process: first, forecasting traffic patterns,
and then optimizing resource allocation accordingly. However, this approach falls short in guaranteeing an
efficient placement when actual traffic demands surge onto the network. It often leads to resource overbooking,
constraint violations, and excessive power consumption, putting strain on the network’s capabilities. In this
paper, we introduce a novel framework based on a black-box optimization approach. This tool empowers
prediction algorithms not just with historical traffic data but also with insights from optimization outcomes.
The goal is to minimize a loss function related to power consumption and constraint violation: this ensures a
predicted placement that is feasible and whose power is close to optimal. This approach ensures that the
predicted placement is both feasible and power-efficient, bridging the gap between theoretical prediction
and practical implementation. Remarkably, our proposed method, while potentially sacrificing some degree
of traffic prediction accuracy, outperforms the conventional two-step approach by delivering a more efficient
baseband function placement.
1. Introduction

The fifth generation of mobile networks (5G) is a new approach
to address the strict requirements of various applications and enhance
their overall performance. It was necessary to improve the Decentral-
ized Radio Access Network (DRAN) of 4G, as it would result in an
inefficient and costly architecture for mobile operators at scale. 4G
introduced the Centralized RAN (C-RAN) to separate the Remote Radio
Head (RRH) and Baseband Unit (BBU) and centralize and virtualize the
BBUs in central offices. This design improves network management and
control, processing scalability, and reduces overall power consumption
by better utilizing computing resources. However, several issues still
need to be addressed to enable its widespread deployment. Combining
baseband functions in a single central node imposes strict latency
requirements between sites and also requires high traffic capacity over
the fronthaul links connecting the RRHs to their BBU [1].
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E-mail address: sebastian.troia@polimi.it (S. Troia).

To address these issues and strike a balance between power con-
sumption, processing, and bandwidth capacity, some baseband func-
tions can be virtualized and distributed across local offices in the
network. The 3rd Generation Partnership Project (3GPP) has proposed
functional splits that indicate the degree of centralization of baseband
functions [2]. In this setup, the RRH remains at the antenna site and the
BBU functions are implemented as Virtual Network Functions (VNFs)
in Distributed Unit (DU) and Centralized Unit (CU). The DUs deploy
lower-layer network functions in the access network, and the CUs
deploy the remaining functions over cloud-enabled nodes in the metro
network.

Network operators must efficiently place CUs in the network to
ensure correct operation and reduce operational costs [3–5]. By de-
ploying CU functions as VNFs, operators can modify the placement
based on network requirements. However, these requirements are not
static, particularly in urban areas where user movement impacts traffic
vailable online 4 April 2024
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volume [6,7]. Operators must place and move CU VNFs to follow
traffic patterns and ensure quality of service while minimizing power
consumption. The efficient placement of VNFs is a new optimization
problem with significant effort in the literature to solve it. However, as-
pects related to costs and functional split constraints have not been fully
considered. Operators must minimize operational costs while ensuring
service requirements are met. Power models that consider different net-
work aspects are cumbersome to use. Our previous works [8,9] shows
that network power consumption plays a key role in NFV infrastructure
cost. Therefore, we study optimal VNF placement to minimize node
and network power consumption while ensuring compliance with split
and service latency requirements. We consider CU placement while
assuming DUs are fixed in the access network.

The placement of baseband VNFs is significantly impacted by net-
work traffic, which fluctuates daily due to user movement in urban
areas. Consequently, network operators may need to relocate these
VNFs across different nodes to adapt to changing traffic patterns and
comply with split and service requirements. To ensure correct network
operations and avoid service disruption, the placement of CUs must be
planned in advance. While machine learning algorithms can predict
future traffic patterns, their accuracy does not immediately translate
into efficient optimization. Machine learning algorithms can aid this
anticipated optimization by leveraging the predictable daily traffic
variations in urban areas caused by inhabitants’ and commuters’ reg-
ular displacement. These algorithms provide accurate traffic forecasts
and enhance the applicability of optimization frameworks in real-
time scenarios. Several works available in the literature combine these
predictive algorithms with the optimization problem in a two-step
approach to enable resource allocation anticipation [6,7,10–12]. How-
ever, as demonstrated in our previous work [8], unforeseen events can
cause disruptions in these patterns, rendering traditional techniques
that use machine learning to predict traffic and subsequently optimize
placement incapable of providing solutions that ensure feasibility in
real-time. In fact, these methods do not guarantee that actual traffic
can be accommodated by the predicted placement. Traditional traffic
prediction algorithms train models to minimize prediction error, but
applying the uncertainty of the prediction to the optimization model
may lead to poor decisions [13].

This paper presents a novel training method of prediction mod-
els based on the outcome of an optimization problem that depends
on the forecast value. This tool ensures operators that the predicted
placement is feasible and efficient when applying the real traffic. The
proposed framework is based on a black-box method. It allows training
the prediction algorithm not just with the traffic historical data, but
also including the feedback from the optimization outcomes into the
training process. For this, we model the optimal placement of CU
VNFs in a metro-network to minimize the system power consumption.
This paper uses a Mixed Integer Linear Programming (MILP) and a
heuristic to solve this problem. During the training phase, the black-
box algorithm iteratively updates the weights of the traffic prediction
according to a loss function, which is obtained by applying the real
traffic to the predicted CU VNF placement. It computes a penalty for
constraint violations and the difference between the resulting power
consumption with respect to the oracle available during the training
phase.

The remainder of the paper is organized as follows. Section 2
describes the related works. Sections 3 and 4 detail the proposed
framework, including the MILP formulation and the black-box-based
framework to train the traffic prediction algorithm. Section 5 ex-
plains the simulation environment and describes the results. Section 6
concludes the paper.

2. Related works

2.1. Resource allocation in 5G RAN

Several works are available in the literature to perform resource
2

allocation in 5G RAN. Al-Quzaweeni et al. [3] minimized the power
consumption when allocating baseband functions and routing users’
traffic considering both processing and network components. For this
purpose, they modeled the placement of VNFs related to the base-
band and core functions over different nodes of an optical network.
They demonstrated that the virtualization of baseband functions can
substantially reduce the system power consumption. Tinini et al. [14]
optimized the placement and migration of baseband units over cloud
and fog nodes in a virtual passive optical network to minimize the
consumed power. They proposed a dynamic algorithm that decides
whether to migrate the virtual BBUs according to the traffic variation,
and then calls a mathematical program for the optimal placement.
They showed that their algorithm reduces power consumption and
blocking probability with respect to other solutions. Singh et al. [15]
modeled an integer quadratic problem that jointly decides the split
option to indicate the functions hosted by the CU, and the assignment
of the CU and the DU over the network node. Their results showed
that distributed processing is usually more efficient than centralized
scenarios. These works provide solutions to place different baseband
functions over network nodes; however, they fail to evaluate the func-
tional split latency, which is an important requirement as it determines
the network efficiency and quality of service.

Klinkowski et al. proposed in [16] a DU allocation and fronthaul
and midhaul flow routing guaranteeing the quality of service for all
the service requests. They formulated a MILP optimization to minimize
the number of DUs and the service latency. They explained that the
greater is the number of demands generated, the higher is overall
flow latency. In addition, they demonstrated that larger networks re-
quire more DUs to ensure that the latency requirements are respected.
Gupta et al. [17] optimized the placement of CUs based on energy
consumption and number of handovers considering different functional
splits. They placed CUs with the goal of reducing the energy con-
sumption according to the number of active CUs, to the number of
handovers and to the additional energy consumed by the migration of
DUs. Their results revealed that their framework improves the system
energy efficiency and the quality of service by reducing the number of
handovers and of DU relocation. These works provide more complete
formulations to evaluate the functional splits requirements; neverthe-
less, their power model considers only the node-related components.
Our previous work [9] formulated a CU VNF placement problem con-
sidering different split options. It proposed a MILP model with the goal
to minimize the node and the network power consumption ensuring
that split-related constraints are respected. That work showed that the
network component of the power consumption plays a key role in the
placement of these functions. We further extended that work in [5]
placing VNFs related both to CUs and DUs. That work formulates a
more complete and flexible model to allocate resources and ensure
latency and processing constraints related to the radio network units.
Due to the complexity of the MILP model, we also developed a heuristic
algorithm that was capable of reaching similar results.

All these works aimed at proposing models to optimize the VNF
placement in 5G RAN assuming that the network conditions are known.
However, as previously explained, the traffic presents significant vari-
ations during the day, making it necessary to recompute the placement
multiple times a day. Because of the long RAN reconfiguration time,
these algorithms cannot be immediately deployed in real-time systems.
This paper presents an anticipatory optimization model based on the
algorithms presented in [5].

2.2. Anticipatory resource allocation

The integration of machine learning has been shown to be handy in
improving the dynamicity and applicability of optimization to real-time
solutions. Several papers about traffic prediction then optimization
(two-step approach) have been published in the past years. Zhang

et al. [7] used machine learning techniques to cope with network
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resource utilization and handover by predicting users’ traffic and mobil-
ity. They presented some use cases showing the usefulness of such tech-
niques in calculating the users traffic based on the spatial dependence
of the traffic to their trajectories.

Bega et al. [18] described a tool to anticipate the allocation of
resources. Their approach based on three-dimensional convolutional
neural networks learns spatio-temporal features and forecasts the load
of different services. The prediction is then integrated into a cognitive
management framework to perform different management tasks in
the network. They demonstrated through simulations the advantages
in automating management and orchestration operations in networks.
Rago et al. proposed in [10] an anticipatory allocation of edge re-
sources based on predicted spatio-temporal user information. They
used a convolutional long short-term memory algorithm to predict the
user distribution in the cells and their service demands. This informa-
tion was integrated with an optimization framework, which uses the
predictions to allocate resources.

In the context of 5G RAN, Pelekanou et al. [11] deployed machine
learning algorithms to anticipate the resource provisioning. It first
forecasts the traffic using long short-term memory. Then, it selects the
baseband functions to be deployed in a single centralized data center
using neural networks. The later is trained based on an ILP model that
minimizes the costs related to the node and to the links. Their results
showed similar performance between their approach and the use of ILP
model with real traffic. Yu et al. [12] proposed an algorithm to allocate,
migrate and scale 5G RAN slices to enable a dynamic allocation. They
developed a traffic-prediction-based optimization to minimize the slice
degradation and the traffic to be migrated. Their algorithm first predicts
the traffic using a multiple polynomial regression algorithm. Then, an
algorithm takes this information as input to dynamically adjust and
migrate RAN slices. They proved that properly migrating the slices
reduces their degradation and that predicting the traffic helps deciding
when to perform the slice migration. Chen et al. [19] assigned baseband
units to the remote radio heads to improve cost efficiency and reduce
the handover between different units based on historic data. Their
approach initially predicts the network traffic volume and the number
of expected handovers, and then maps baseband units to the remote
radio heads using a greedy algorithm.

In a preliminary work [20], we proposed a two-step optimization
to enable operators to plan the placement of CUs and the most suitable
functional split. The output of the traffic prediction mechanism was
used to determine the optimal placement. This approach enables op-
erators to plan their network configuration beforehand; however, they
should consider a margin of capacity to ensure feasibility. Based on
these results, we proposed in [8] the placement of CU functions using
multi-task algorithm, which predicts the expected and the quantile traf-
fic. It applies the mean predicted traffic in the MILP objective function
and the quantile prediction in the constraints. Hence, it estimates the
costs and enforces the capacity limits to ensure the compliance to the
constraints.

The works presented in this subsection consider the maximization
of traffic prediction accuracy, i.e. the training goal is to minimize the
rror between the predicted and the real traffic values. This information
s then used in different optimization algorithms to determine the
lacement ahead of time. Therefore, they do not consider the result
f the resource allocation algorithm to which the predicted traffic
s applied. Alternatively, this paper presents a novel approach that
rains the predictive algorithm according to the outcomes of the CU
lacement, as explained in the next subsection.

.3. Training predictive algorithms based on optimization

Finding a prediction model that gives good results when used jointly
ith a mathematical programming is a complex optimization problem.
erwer et al. [21] combined machine learning and optimization algo-
3

ithms by encoding regression models into a mathematical program.
Their approach maps LASSO and regression trees as part of the con-
straints of the optimization problem so that the prediction and the
optimization are solved together by the solver. They showed that this
white-box approach outperforms traditional black-box best-fit search.
Wilder et al. [22] presented an end-to-end decision-focused learning
framework to train neural networks based on optimization problems.
Because the loss function in combinatorial problems is discrete, hence,
discontinuous, they proposed a framework capable of propagating the
gradients throughout the optimization using continuous relaxation.
They demonstrated that, in traditional training methods, the error dis-
tribution is not aligned with the underlying optimization. Alternatively,
their approach focuses on the aspects that are more important for the
optimization problem, such that it can take better decisions. Following
this work, Konishi and Fukunaga [23] used gradient boosting algo-
rithms for the end-to-end learning. They fitted the algorithm to predict
uncertain optimization parameters according to the final results.

Elmachtoub et al. [13] proposed the Smart Predict then Optimize
(SPO) technique. They developed a loss function to train machine
learning algorithms based on the outcome of linear-objective optimiza-
tion formulations. Instead of measuring the quality of the prediction
based on the prediction error as in traditional predict then optimize
approaches, they modeled a cost function associated to the optimization
problem. They demonstrated that their framework can be applied to
many different optimization models with convex constraints. Moreover,
they showed that the SPO loss performs better than traditional predict
then optimize approaches. Mandi et al. [24] took advantage of the
SPO technique to solve combinatorial optimization problems. Because
of the complex nature of these problems, they proposed continuous
relaxations of the combinatorial problem and used transfer learning to
accelerate the training. They showed that the use of relaxation methods
enables the SPO loss to be applied to different scenarios, including
large-scale instances.

Surrogate-based optimization methods such as Bayesian optimiza-
tion may also be used as they are designed for expensive optimization
problems [25]. Yan et al. [26] proposed a loss function to guide the
training of prediction models. They transformed the hard constraints of
linear and quadratic problems to soft constraints that were incorporated
into surrogate models to obtain the gradient to train the machine
learning algorithms. They showed that by using soft constraints in
surrogate models, their approach outperforms the traditional two-step
predict and then optimize in different scenarios.

These works showed that a closer integration of machine learning
techniques and the optimization model can improve the final optimiza-
tion goal in many different scenarios. In the context of 5G RAN, there
are no works available in the literature that explore the integration of
predictive algorithms and optimization problems such that the results
of the latter are used to train the former. Moreover, the works described
in this section consider that the uncertain parameter, i.e. the value that
is predicted, is applied uniquely in the objective function [13,22–24]
or consider only soft constraints [26]. Instead, our framework evaluates
the impact of the uncertainty applied both to the objective function and
to the constraints of the optimization problem to determine the cost
function.

2.4. Paper contribution

The configuration of 5G RAN should be performed several times a
day to cope with the varying demand. Although widely used in the
literature, the two-step approach that consists of predicting the traffic
and then computing the resource allocation does not guarantee the best
placement when applying it to the real traffic. It may lead to higher
power consumption and constraint violations. The main contribution of
this paper is a novel approach to train a predictive algorithm exploiting
the outcomes of an optimization problem solved for the training traffic.
To the best of our knowledge, this method has not been evaluated in

the 5G RAN context and the use of black-box optimization tools was
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not explored to train predictive algorithms based on the outcomes of
the resource allocation.

The approach proposed in this paper trains a polynomial regression
algorithm responsible for determining the traffic used in the MILP
model, including the linear objective function and several optimization
constraints. Polynomial regression models are widely used in the liter-
ature to design traffic prediction models. Despite its low complexity,
this category of algorithms was shown to provide accurate predic-
tion results [27]. Therefore, this work uses a black-box algorithm to
determine the weights of the polynomial regression. It uses a black-
box optimization tool called HyperOpt [28], which is a variant of
Bayesian optimization that can deal with a large number of variables
and problem variants.

3. Optimization of CU VNF placement

The optimization model consists of the placement of CU VNFs with
the goal of minimizing the overall power consumption subject to the
split and system constraints. The DUs are deployed into given nodes of
the access network. While the gateway is unique and stationed within
a high-performance cloud computing node, seamlessly connected to
the network’s core infrastructure. The CUs are placed over the metro
optical network nodes considering that the baseband functions are
separated using split 2 [2].

3.1. System description

We model the network as a graph 𝐺 = (𝑁,𝐸), where 𝑁 and 𝐸
re the set of nodes and virtual links. Each node is equipped with
𝑛 servers and has a total computing capacity of 𝐶𝑛. A single node is
sed as gateway. The server power consumption depends on the node
tilization, i.e. 𝑃𝑖𝑑𝑙𝑒 whenever active up to a maximum of 𝑃𝑚𝑎𝑥 at full
apacity. The nodes are connected through high-capacity fiber links.
he set of virtual links 𝐸 refers to the wavelengths available for the
etwork fibers. Therefore, the capacity of each virtual link 𝐶𝑒 is limited

to the wavelength bandwidth of 100 Gbit/s. The nodes are equipped
with a set of transponders, consuming 𝑃𝑡𝑥 each. A set of demands 𝐷
epresenting the aggregated traffic 𝜆𝐷𝑈

𝑑 from the DUs connected to each
ode of the network except for the gateway. Each demand must pass
hrough all radio-network units 𝑈 = {𝐷𝑈,𝐶𝑈,𝐺𝑊 }, i.e. it starts at a
U, then it is processed by an optimally placed CU, and it finally arrives

o the gateway. Table 1 summarizes the parameters and the variables
sed in the following sections.

The baseband processing load depends on the split option. Consid-
ring split 2, the processing load at the CU is [5,29]:

= 𝜎
(

𝑛2𝑎 + 3 ⋅ 𝑛𝑎 +
𝑀𝑏 ⋅ 𝐶𝑟 ⋅ 𝐿𝑚

3

)

⋅
𝑅
10

, (1)

where 𝑛𝑎 is the number of antennas, 𝑀𝑏 is the modulation, 𝐶𝑟 is the
oding rate, 𝐿𝑚 is the number of MIMO layers, and 𝑅 is the number
f resource blocks per user. The scaling factor 𝜎 is the ratio of the
omputational complexity of split 2 over the complexity of all baseband
unctions according to [30].

The latency must comply to the split 2 requirements to guarantee
he correct operation of the network functions between the DU and
he CU. The propagation and processing latency components. The
ropagation latency (𝜏𝑒) is the time for the signal to propagate from an
nd to the other end of the fiber links. It is computed as the fiber link
ength divided by the speed of the light in glass (∼200,000 km/s). The
rocessing delay (𝜌𝑛) is based on the CPU frequency, CPU capacity, and
U processing capacity [31]. The processing latency of the baseband
NFs in the CU associated to split 2 at a particular node 𝑛 ∈ 𝑁 is
efined as:

𝑛 =
𝜋

𝑓𝐶𝑃𝑈 ⋅ 𝐶𝑛
, (2)

here 𝑓 is the CPU frequency.
4

𝐶𝑃𝑈
Table 1
List of decision variables and parameters of the MILP

Parameters

𝑛𝑑 Node source of demand 𝑑
𝑛𝑔𝑤 Gateway node
𝑃𝑖𝑑𝑙𝑒 Server idle power consumption
𝑃𝑚𝑎𝑥 Server maximum power consumption
𝑃 𝐶𝑈
𝑐𝑎𝑟𝑑 Power consumption of the interfaces of radio-network unit 𝐶𝑈

𝑃𝑖𝑛𝑓𝑟𝑎 Power consumption of the infrastructure
𝑃𝑡𝑥 Power consumption of the optical transponder
𝐶𝑛 Node processing capacity
𝜂𝑛 Servers per node
𝐶𝑒 Maximum capacity of each virtual link 𝑒 ∈ 𝐸
𝜋 Processing workload of split 2
𝜌𝑛 Processing latency of split 2 at node 𝑛 to process 1 Gbit/s
𝜏𝑒 Propagation delay over link 𝑒
𝜆𝑢𝑑 Predicted traffic of demand 𝑑 from 𝑢 to 𝑢 + 1
𝑡𝑚𝑎𝑥 Maximum allowed latency of functional split 2
 Very large number

Decision Variables

𝑤𝑛 Binary variable taking 1 if node 𝑛 is active
𝑥𝑑𝑒,𝑢 Binary variable taking 1 if virtual link 𝑒 carries demand 𝑑 from

radio-network unit 𝑢 to the following unit
𝑧𝑑𝑛,𝑢 Binary variable taking 1 if node 𝑛 processes demand 𝑑 as

radio-network unit 𝑢
𝑇 𝑑
𝑛 Total processing latency for demand 𝑑 at node 𝑛

3.2. MILP model

This optimization is a simplification of the MILP proposed in our
previous work [5]. Solving the MILP model is NP-hard and it takes
several seconds to compute the result. In order to reduce the execution
time, this paper assumes the placement of CU VNFs only, decreasing
the complexity of the problem.

Objective function
The optimization formulation goal is to minimize the overall power

consumption at a determined time slot:

min𝑃ℎ (3)

𝑃ℎ =𝑃𝑛𝑒𝑡

(

𝑥𝑑𝑒,𝑢, 𝑤𝑛

)

+ 𝑃𝑛𝑜𝑑𝑒

(

𝑤𝑛, 𝑧
𝑑
𝑛,𝑢, 𝜆

)

(4a)

𝑃𝑛𝑒𝑡 =
∑

𝑒∈𝐸
2𝑃𝑡𝑥𝑥

𝑑
𝑒,𝑢 +

∑

𝑛∈𝑁
𝑃𝐶𝑈
𝑐𝑎𝑟𝑑𝑤𝑛 (4b)

𝑛𝑜𝑑𝑒 =
∑

𝑛∈𝑁
𝜂𝑛

(

𝑃𝑖𝑛𝑓𝑟𝑎𝑤𝑛 + 𝑃𝑖𝑑𝑙𝑒𝑤𝑛+ (4c)

(

𝑃𝑚𝑎𝑥 − 𝑃𝑖𝑑𝑙𝑒
)

𝐶𝑛

∑

𝑑∈𝐷
𝜆𝐷𝑈
𝑑 𝜋𝑧𝑑𝑛,𝐶𝑈

)

t depends on two main components: network and node equipment.
he network power consumption (Eq. (4b)) includes the transponders
nd the midhaul and backhaul (x-haul) interface cards. Transponders
onsume 𝑃𝑡𝑥 whenever active for optical-electrical-optical conversion.
he x-haul interfaces are responsible for connecting the nodes hosting
he CUs to the DUs and to the gateway. The second term (Eq. (4c)) com-
utes the total node power. It includes the power used by the servers to
rocess the traffic and the infrastructure power in the selected nodes.
he node infrastructure power 𝑃𝑖𝑛𝑓𝑟𝑎 considers the components of the

node site, i.e. cooling, light. The server component accounts for the
power consumed whenever the server nodes process CU functions.
Therefore, the servers consume a certain idle power when active and,
as the traffic increases, the power increases linearly.

Constraints
The objective function is subject to the following constraints. Eq. (5)

routes the demands from the DU to the gateway, ensuring that it passes
through the node hosting the CU that processes this demand. It denotes

𝑢
the flow conservation to assign a demand to virtual links 𝑥𝑑,𝑒. The
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virtual links between two radio-network units assigned to a demand
arriving at a certain node (𝐸+

𝑛 ) is equal to the number of outgoing links
(𝐸−

𝑛 ), unless the node hosts the radio-network unit in which demand
starts or ends.

∑

𝑒∈𝐸+
𝑛

𝑥𝑑𝑒,𝑢 −
∑

𝑒∈𝐸−
𝑛

𝑥𝑑𝑒,𝑢 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝑑𝑛,𝑢′ − 𝑧𝑑𝑛,𝑢 if 𝑛 can host 𝑢, 𝑢′

−𝑧𝑑𝑛,𝑢 if 𝑛 can host 𝑢, not 𝑢′

𝑧𝑘𝑛,𝑢′ if 𝑛 can host 𝑢′, not 𝑢
0 if 𝑛 cannot host 𝑢, 𝑢′

𝑢′ = 𝑢 + 1,∀𝑛 ∈ 𝑁,∀𝑢, 𝑢′ ∈ 𝑈 ⧵ {𝐺𝑊 },∀𝑑 ∈ 𝐷

(5)

Eq. (6) ensures that a single CU processes each demand. Eq. (7)
nforces that each demand is processed by the DU located in its origin,
nd Eq. (8) determines that the gateway is the destination of all
emands.
∑

∈𝑁
𝑧𝑑𝑛,𝐶𝑈 = 1, ∀𝑑 ∈ 𝐷 (6)

𝑑
𝑛,𝐷𝑈 =

{

1, if 𝑛 = 𝑛𝑑
0, otherwise

, ∀𝑛 ∈ 𝑁,∀𝑑 ∈ 𝐷 (7)

𝑑
𝑛,𝐺𝑊 =

{

1, if 𝑛 = 𝑛𝑔𝑤
0, otherwise

, ∀𝑛 ∈ 𝑁,∀𝑑 ∈ 𝐷 (8)

Eq. (9) activates the variable 𝑤𝑛 whenever a node is used, i.e. if 𝑛
osts a CU.

𝑤𝑛 ≥
∑

𝑑∈𝐷
𝑧𝑑𝑛,𝐶𝑈 ≥ 𝑤𝑛, ∀𝑛 ∈ 𝑁 (9)

Eq. (10) limits the total traffic carried by virtual link 𝑒 to the link
apacity. Eq. (11) restricts the processing workload of all demands
rocessed in a node.
∑

∈𝐷

∑

𝑢∈𝑈⧵𝐺𝑊
𝑥𝑑𝑒,𝑢 ≤ 𝐶𝑒, ∀𝑒 ∈ 𝐸 (10)

∑

∈𝐷
𝜆𝐷𝑈
𝑑 𝜋𝑧𝑑𝑛,𝐶𝑈 ≤ 𝐶𝑛, ∀𝑛 ∈ 𝑁 (11)

Eq. (12) bounds the propagation delay on the links and processing
ime at CU to the split requirements, i.e. 𝑡𝑚𝑎𝑥 = 1.5 ms. Eq. (13a) and
13b) determine the processing delay 𝑇 𝑑

𝑛 .
∑

∈𝐸
𝜏𝑒𝑥

𝑑
𝑒,𝐷𝑈 +

∑

𝑛∈𝑁
𝑇 𝑑
𝑛 ≤ 𝑡𝑚𝑎𝑥, ∀𝑑 ∈ 𝐷 (12)

𝑡𝑚𝑎𝑥𝑧𝑑𝑛,𝐶𝑈 ≥ 𝑇 𝑑
𝑛 ≥ 0 (13a)

∑

′∈𝐷
𝜆𝐷𝑈
𝑑 𝜌𝑛𝑧

𝑑′
𝑛,𝐶𝑈 ≥ 𝑇 𝑑

𝑛 ≥ (13b)

∑

𝑑′∈𝐷
𝜆𝐷𝑈
𝑑 𝜌𝑛𝑧

𝑑′
𝑛,𝐶𝑈 − 𝑡𝑚𝑎𝑥

(

1 − 𝑧𝑑𝑛,𝐶𝑈

)

3.3. Heuristic

As shown in [5] the MILP model is a NP-hard problem. Hence, to
obtain a faster model to be integrated in the black-box approach de-
scribed in Section 4, we utilize the heuristic algorithm presented in [5]
to compute the CU placement and routing respecting the latency and
capacity constraints. In brief, the algorithm computes the placement of
CUs based on the centrality of the network nodes with respect to the
gateway. The algorithm sorts the nodes based on the centrality weight,
computed based on the betweeness of each node and the number of
transponders needed between the source of demand 𝑑 to 𝑛 and from 𝑛
to the gateway 𝐺𝑊 :

𝐶𝐵(𝑛𝑑 , 𝑛) =

∑

𝑛′∈𝑁
|𝜎(𝑛′ ,𝐺𝑊 |𝑛)|
|𝜎(𝑛′ ,𝐺𝑊 )|

( ) ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁, (14)
5

2 |

|

𝜎(𝑛𝑑 , 𝑛)|| + |𝜎(𝑛, 𝐺𝑊 )|
Fig. 1. Traditional two-step approach. The machine learning algorithm is trained based
on the prediction error compared to the real value. The trained model forecasts the
expected traffic �̂�, which is then used by the MILP. The loss function 𝑓 (𝜆) can be
computed only in the real time application. This approach does not guarantee constraint
compliance nor minimum power.

where 𝜎(𝑛′, 𝐺𝑊 ) is the number of shortest paths between nodes 𝑛′ and
𝐺𝑊 , 𝜎(𝑛′, 𝐺𝑊 |𝑛) is the number of shortest paths between nodes 𝑛′ and
𝐺𝑊 passing through node 𝑛, 𝑛𝑑 is the source of demand 𝑑. For each
demand, the algorithm selects the node with highest 𝐶𝐵 that satisfies all
latency and capacity constraints. Then, it routes the demands applying
Dijkstra algorithm to compute the shortest path. Please refer to [5] for
more details regarding the heuristic algorithm.

4. Black-box optimization

This paper provides an anticipated planning of CU VNF place-
ment ensuring compliance to all constraints in an automated way. The
framework based on black-box techniques determines the weights of
a polynomial regression according to the outcomes of a mathematical
program.

4.1. Comparison of training methods

Unlike traditional optimization techniques, which rely upon a known
mathematical model, black-box methods optimize a certain objective
function based on data that may be noisy and without a well-defined
model. In this type of problems, we query the value 𝑓 (𝑥) of a certain
oint 𝑥, but the analytic form of the function 𝑓 (𝑥) is not known.
urrogate models may be used to fit a model 𝑚(𝑓 (𝑥)) based on past
easurements 𝑥 and 𝑓 (𝑥) to compute other solutions 𝑥′ [32]. 𝑚(𝑓 (𝑥))

s a probabilistic model that map the solutions to a probability score
(𝑓 (𝑥)), which determines the efficiency of the solution. Bayesian
ptimization with Gaussian processes are inappropriate to solve prob-
ems in which thousands of iterations are needed because of its high
omputational complexity [33]. Therefore, for this application, we use
yperOpt [28], an open-source algorithm developed as a Python library

hat was designed for large-scale optimization models. Its surrogate
odel considers a Tree-structured Parzen Estimator (TPE) [34], which

an manage large-scale problems well and it can also handle an exten-
ive number of iterations. This technique is suitable for the problem this
aper solves as there is no well-defined analytic function that relates
he optimization outcomes to the predicted traffic. HyperOpt is a type
f Bayesian optimization algorithm which uses expected improvement,
or which Frazier et al. [35] indicated that rates of convergence are not
nown in general. Nevertheless, literature shows that these algorithms
erform better than random search in all kinds of practical applications,
ith HyperOpt being among the most efficient Bayesian optimization
lgorithms that can find acceptable solutions quickly for a wide variety
f tasks [36]. In Section 5.2, we verify whether HyperOpt can quickly
ind an acceptable solution on a simpler traffic prediction task.

Fig. 1 illustrates the traditional use of machine learning in optimiza-
ion. Figs. 2 and 3 show the black-box-based optimization framework
roposed in this paper described in detail in the following subsection.

As shown in the left-hand side, the traditional two-step approach
rains the machine learning algorithm using past traffic information. It
ims to maximize the prediction accuracy, i.e. the error of the predicted
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Fig. 2. Training of proposed black-box optimization approach. The machine learning
algorithm is trained based on the loss function 𝑓 (�̂�), given by the optimization module
and the past validation traffic, using a black-box algorithm (HyperOpt).

Fig. 3. Testing of proposed black-box optimization approach.
It ensures compliance with the constraints and minimizes the placement power.

traffic computed using a set of weights 𝜔 with respect to the real traffic.
Then, the optimization uses the predicted traffic �̂� for a certain time
slot to compute the CU placement and traffic routing. In particular,
a polynomial regression algorithm predicts the normalized traffic of
each node �̂�𝑛𝑜𝑟𝑚(𝜔) using a set of weights 𝜔. The normalized traffic is
then scaled using persistent forecasting, i.e. we use the maximum traffic
observed in the previous day 𝜆𝑚𝑎𝑥 to determine the predicted traffic [8].

Alternatively, the proposed black-box optimization approach trains
the machine learning algorithm based on the evaluation of the place-
ment. In Fig. 2, the left block performs traffic prediction using the
hour of the day ℎ and the traffic of the previous days 𝜆 as input.

e deploy the same prediction algorithm as previously described for
he traditional two-step approach, i.e. computing the normalized traffic
̂𝜆𝑛𝑜𝑟𝑚 using a polynomial regression and the scaling factor 𝜆𝑚𝑎𝑥 with

ersistent forecast. The expected traffic �̂�(𝜔) is given as input to right
lock responsible for computing the CU VNF placement and routing
MILP or heuristic). Then, it applies the real validation traffic �̄� at this
articular hour to determine the loss function 𝑓 (�̄�), representing the
eedback of the number of constraints violated and how close the power
onsumption is to the oracle. We emphasize that the loss function
is computed by utilizing past validation traffic instead of relying

n real-time traffic data as in the traditional two-step approach (see
ig. 1). The oracle is determined as the optimal placement using the
eal traffic. 𝑓 (𝜔) is given as input to the HyperOpt algorithm to map
t to a probability score to determine the next weight value 𝜔′ from a
earch space .

Finally, after training the prediction algorithm, the final weights �̄�
an be used to predict the future placement as shown in Fig. 3. With this
ramework, it is enough to give the peak traffic of the past few days and
he hour of the desired reconfiguration as input to run the optimization
lgorithms to determine the future network configuration. Section 4.2
etails the black-box framework.

.2. Black-box optimization for CU VNF placement

This section describes the black-box optimization framework based
n HyperOpt [28]. The rationale behind this framework is that too
ight prediction may cause constraint violation or excessive power
hen applying the real value, as we showed in our previous work [8].

n CU VNF placement, the underestimation of the expected traffic
eads the optimization algorithm to use less nodes than necessary
o accommodate the real traffic. Therefore, we observe violations of
6

t

apacity and latency constraints. As inferred in [8], it is necessary to
verestimate the traffic to ensure the compliance with all constraints.
owever, if the expected traffic is overestimated excessively, the model
ses more nodes than necessary to host CU VNFs, increasing the power
onsumption.

The proposed approach calculates the polynomial regression to
redict the traffic for each node based on the optimization result, i.e.
erifying how many constraints were violated and the difference of
ower consumption with respect to the oracle. To speed up the learning
hase, the algorithm limits the search for optimal parameters around
he polynomial regression weights. For this, HyperOpt computes a
arameter 𝛿𝑏 to be summed to the weights of the polynomial regression
𝑏
𝑛 as Eq. (15) instead of calculating the polynomial regression weights
𝑛 for each node directly. Note that the initial polynomial regression
eights 𝜔𝑏

𝑛 are computed as in the traditional two-step approach, i.e.
ccording to the traffic prediction error.

�̂�(𝑥) =
𝐵
∑

𝑏=0
(𝜔𝑏

𝑛 + 𝛿𝑏)𝑥𝑏, (15)

here 𝐵 is the polynomial regression degree. Algorithm 1 describes the
seudo-code of this framework.

Algorithm 1 Black-box optimization algorithm.
Input: Network graph 𝐺(𝑁,𝐸), # evaluations 𝑒𝑣𝑎𝑙𝑠,

# startup evaluations 𝑠𝑡𝑎𝑟𝑡𝑢𝑝, real traffic 𝜆, hours 𝐻 ,
degree of polynomial regression 𝐵

Output: Polynomial regression weights
1: for all ℎ ∈ 𝐻 do
2: Compute oracle placement by running the optimization model

with real traffic 𝜆 (Section 3): 𝑥𝑑𝑒,𝑢, 𝑤𝑛, 𝑧𝑑𝑛,𝑢
3: Get hourly power consumption 𝑃ℎ Eq. (4a)
4: end for
5: for all 𝑛 ∈ 𝑁 do
6: Get polynomial regression weights 𝜔𝑏

𝑛 of demand starting at node
𝑛 and polynomial of degree 𝐵

7: end for
8: for 𝑖 = 0; 𝑖 ≤ 𝑒𝑣𝑎𝑙𝑠; 𝑖 + + do
9: for all 𝑛 ∈ 𝑁 do

10: for all 𝑏 ∈ 𝐵 do
11: if 𝑖 = 0 then
12: Start space 𝛿𝑛,𝑏 ← 0
13: else if 𝑖 ≤ 𝑠𝑡𝑎𝑟𝑡𝑢𝑝 then
14: Select 𝛿𝑛,𝑏 randomly from search space 𝑆
15: else
16: Select 𝛿𝑛,𝑏 from search space 𝑆 using TPE based on

previous computed costs 𝑓 (𝛿)
17: end if
18: end for
19: end for
20: Get the optimization cost 𝑓 (𝛿)𝑖 using Algorithm 2
21: end for

The first step is to compute the oracle CU VNF placement, i.e. the
lacement with the real traffic (lines 1 to 4). For each hour in the set
f hours 𝐻 used for training, it runs the MILP or heuristic with the
eal traffic 𝜆𝑑 of the demands (line 2) to obtain the placement and
outing variables 𝑥𝑑𝑒,𝑢, 𝑤𝑛 and 𝑧𝑑𝑛,𝑢. Then, it gets the hourly oracle power
onsumption as Eq. (4a) (line 3). Next, it calculates the polynomial
egression weights 𝜔𝑏

𝑛 for each node 𝑛 considering the traffic of demand
, which is received by 𝑛, over the period 𝐻 (lines 5 to 7). After this,
he HyperOpt algorithm starts (lines 8 to 21). We set 𝑒𝑣𝑎𝑙𝑠 evaluations
n which the algorithm searches for a solution. In the first iteration, we
orce the algorithm to use the polynomial regression traffic to compute

he placement, i.e. we set 𝛿 to 0 for all nodes and weights (lines 11 and
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𝑥

12). Then, for the following 𝑠𝑡𝑎𝑟𝑡𝑢𝑝 jobs, HyperOpt randomly selects
the parameter 𝛿𝑛,𝑏 for each node 𝑛 and for each polynomial regression
weight 𝑏 (lines 13 and 14). It picks each value from a probabilistic
search space  of possible configurations. In this work, it is important
that the search space is always positive to ensure that the algorithm
will overestimate the predicted traffic. Nevertheless, if the traffic is too
high, the placement algorithm will not find any feasible solution due to
the system constraints. Therefore, the search space is set as the absolute
value of a normal distribution with mean 0 and standard deviation of
0.167, such that 68.2% of the values is lower than 0.5:

 = | (0, 0.167)|. (16)

For the remaining iterations, HyperOpt uses TPE [34] to select other
candidate values for 𝛿 (line 16). After selecting 𝛿𝑛,𝑏 for each node 𝑛 ∈ 𝑁
and for each weight 𝑏 ∈ 𝐵, it calls Algorithm 2 (line 20) to obtain the
loss of this selection.

Algorithm 2 Optimization cost
Input: Parameters 𝛿, polynomial regression weights 𝜔 and degree 𝐵,

nodes 𝑁 , real traffic 𝜆, hours 𝐻
Output: Cost 𝑓 (𝛿)
1: for all 𝑛 ∈ 𝑁 do
2: for all ℎ ∈ 𝐻 do
3: Get maximum traffic of previous day 𝜆𝑚𝑎𝑥𝑑 of demand 𝑑 starting

at node 𝑛 (Eq. (17b))
4: Compute predicted traffic �̂�𝑑,ℎ (Eq. (17c))
5: end for
6: end for
7: for all ℎ ∈ 𝐻 do
8: Get CU VNF placement by running the optimization with

predicted traffic �̂� (Section 3): �̂�𝑑𝑒,𝑢, �̂�𝑛, �̂�𝑑𝑛,𝑢
9: Compute hourly power consumption 𝑃ℎ with predicted traffic �̂�

(Eq. (4a))
10: Get number of MILP constraint violations: 𝑐ℎ
11: end for
12: Compute cost 𝑓 (𝛿) ← 1

𝐻
∑

ℎ∈𝐻
|𝑃ℎ−𝑃ℎ|

𝑃ℎ
+
∑

ℎ∈𝐻 𝑐ℎ

To determine the loss function, it runs the MILP or the heuristic
model with the predicted traffic and then verifies the result when
applying the real traffic. It starts by computing the predicted traffic
using the new weights (lines 1 to 6) as explained in Section 4.1. The
traffic prediction first determines the hourly normalized traffic �̂�𝑛𝑜𝑟𝑚𝑑,ℎ
based on the hour of the day as in Eq. (17a). Then, it obtains the scaling
factor, i.e. maximum traffic of the previous day 𝜆𝑚𝑎𝑥𝑑 as in Eq. (17b).
Finally, it computes the total hourly traffic �̂�𝑑,ℎ(𝛿) by multiplying the
normalized value �̂�𝑛𝑜𝑟𝑚𝑑,ℎ (𝛿) and the scaling factor 𝜆𝑚𝑎𝑥𝑑 (lines 3 and 4):

�̂�𝑛𝑜𝑟𝑚𝑑,ℎ (𝛿) =
𝐵
∑

𝑏=0
ℎ𝑏(𝜔𝑏

𝑛 + 𝛿𝑛,𝑏) (17a)

𝜆𝑚𝑎𝑥𝑑,ℎ = max
ℎ′∈𝐻 ′

𝜆𝑑,ℎ′ (17b)

�̂�𝑑,ℎ(𝛿) = 𝜆𝑚𝑎𝑥𝑑 ⋅ �̂�𝑛𝑜𝑟𝑚𝑑,ℎ (𝛿) (17c)

where 𝐻 ′ =
[

24(⌊ℎ∕24⌋ − 2) + 1, 24(⌊ℎ∕24⌋ − 1)
]

.
After computing the predicted traffic, the algorithm computes the

CU VNF placement and the loss function (lines 7 to 12). For each
training hour, it runs the MILP or the heuristic algorithm using the
predicted traffic �̂�𝑑,ℎ to obtain the placement and routing variables
̂𝑑𝑒,𝑢, �̂�𝑛, �̂�𝑑𝑛,𝑢 (line 8). Then, it gets the hourly power consumption
𝑃ℎ as in Eq. (4a) applying the real traffic to the predicted placement
(line 9). Next, it calculates the constraint violation penalty 𝑐ℎ. This
metric determines the number of times the predicted placement is not
compliant with the model constraints when applying the real traffic
(lines 10). Consequently, to ensure that the constraints are not violated
7

Fig. 4. Large (a) and small (b) network topology.

and that the power consumption is as close as possible to the oracle,
the algorithm computes the loss 𝑓 (𝛿) associated to the 𝛿 parameters of
this iteration as:

𝑓 (𝛿) ←
1

|𝐻|

∑

ℎ∈𝐻 |𝑃ℎ − 𝑃ℎ|
∑

ℎ∈𝐻 𝑃ℎ
+

∑

ℎ∈𝐻
𝑐ℎ (18)

This work assumes that satisfying all constraints is more important
than reducing the power consumption because the former have a direct
impact on the quality of service and network operation. Therefore, the
first term (power) is smaller than the second term (constraint violation)
unless there is full constraint compliance. The loss 𝑓 (𝛿) computed using
Algorithm 2 in each evaluation step is then used by the TPE algorithm
to determine 𝛿 of the following iterations.

After training the polynomial regression weights using Algorithms
1 and 2, they can be used to predict the traffic and compute the future
CU VNF placement.

5. Simulation results and discussion

This section discusses the performance of the black-box-based op-
timization of CU VNF placement explained previously. First, it de-
scribes the simulation environment. Next, it assesses the performance
of the HyperOpt algorithm in determining the polynomial regression
weights. Then, it evaluates the black-box optimization compared to the
traditional two-step approach highly used in the literature.

5.1. Simulation environment

Fig. 4 illustrates the network topology considered in the simulations.
The large network topology (a) illustrates the topology inspired by a
typical network covering a large metropolitan area from the Metro-
Haul project [37]. It contains 34 nodes, among which one gateway
and destination of all demands. The small topology (b) is a subset of
the central nodes of the same topology, including the gateway. The
remaining nodes that are used for computing and communication are
equipped with one server of type Intel® Xeon® Gold 6134 with 8 cores,
3.7 GHz, and 537.6 GFLOPS of processing capacity [38]. The server
consumes 130 W when idle, reaching a maximum power consumption
of 870 W when operating at full capacity. The nodes have radio-
network unit cards that consume 10 W for the midhaul, and 1 W for the
backhaul [39]. The antennas are configured according to the specifica-
tions of [40], i.e. they use 64QAM modulation, 2 × 2 MIMO, coding
scheme of 1 in the uplink, and a single user per transmission time
interval sending 100 resource blocks of data. The nodes are connected
through bidirectional fiber links, containing at most 80 wavelengths.
The nodes are also equipped with a set of 100 Gbit/s transponders, each
of which consumes 110.4 W [41] whenever active. Table 2 summarizes
the simulation input parameters.

We obtained the mobile traffic per base station by merging the call
detail record from the TIM Big Data Challenge dataset [42] to the base
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Table 2
Input parameters used in the simulations.

Parameters Description Value

𝑓𝐶𝑃𝑈 CPU frequency 3.7 GHz
𝐶𝑛 Node processing capacity 537.6 GFLOPS
𝑃𝑖𝑑𝑙𝑒 Server idle power consumption 130 W
𝑃𝑚𝑎𝑥 Server maximum power consumption 870 W
𝑃 𝐶𝑈
𝑐𝑎𝑟𝑑 X-haul interface cards power consumption 11 W

𝑀𝑏 Modulation 64
𝑛𝑎 Number of antennas 2
𝐿𝑚 Number of MIMO layers 2
𝐶𝑟 Code rate 1
𝑅 Number of resource blocks 100
𝐶𝑒 Wavelengths per fiber 80
𝑃𝑡𝑥 Transponder power consumption 110.4

stations position [43] through Voronoi tasselation. Next, we combined
this dataset to the topology shown in Figure 4 and the maximum
capacity of each node to generate per-node hourly traffic. For this, we
created an algorithm that first associates the base stations to the nodes
based on their estimated location using Voronoi tasselation. Then, the
algorithm iteratively reassigns the base stations such that the ratio
between the traffic of all base stations assigned to a node and the total
traffic is as close as possible to the expected capacity of the node.

The dataset to train the polynomial regression contains the traffic
of the last weekdays of November. The testing dataset consists of the
following three weekdays. Moreover, the baseline for traffic prediction
is polynomial regression of degree 4. We developed this framework
using Python, and solved the MILP model with CPLEX.

5.2. Assessment of HyperOpt for traffic prediction

First, this section assesses the performance of the HyperOpt algo-
rithm for finding good weights for the polynomial regression function
and evaluate its convergence. The analytic function to compute poly-
nomial regression is well known and the solution is optimal. Thus,
it is possible to verify if HyperOpt makes mistakes in determining
the weights, by comparing its predictive performance to a standard
polynomial regression learning method. The validation of HyperOpt to
predict the weights of a polynomial regression applies a search space
with the uniform distribution:

𝑆′ = {𝜔0 =  (0, 1), 𝜔𝑖 =  (−10, 10)}, ∀𝑖 ∈ {1, 2, 3, 4} (19)

here 𝜔𝑖, 𝑖 ∈ {0, 1, 2, 3, 4} represent the polynomial regression weights.
n addition, the HyperOpt loss function is the Mean Squared Error
MSE):

(𝛿)′ = 1
𝐻

∑

ℎ∈𝐻

(

𝜆ℎ − �̂�ℎ
)2 (20)

here 𝐻 is the set of training hours, 𝜆ℎ is the hourly real traffic and
̂ℎ is the hourly predicted traffic.

Fig. 5 depicts the variation of the loss function according to the
eights selected by the HyperOpt algorithm at each iteration during

he training phase. With Bayesian optimization algorithms such as
yperOpt, it is standard practice to consider only the best result up

o a certain iteration in order to encourage exploration of the search
pace [28]. This best loss is plotted as well. Figs. 6 and 7 illustrate the
eal traffic (oracle) compared to the polynomial regression computed
ith traditional methods (standard regression) and with HyperOpt
sing the training and testing data.

These results show that after about 3000 iterations, HyperOpt finds
solution that is close to standard polynomial regression, with the
SE with respect to the oracle of 0.01948 versus 0.01041 of the stan-

ard polynomial regression. After 10,000 iterations, the MSE lowers
o 0.01567. Using the computed weights with the testing dataset, the
SE of the HyperOpt traffic prediction is 0.01092 and the standard

olynomial regression is 0.00519. These results show that, although
yperOpt does not reach the exact solution computed with the analytic
8

olynomial regression method, it can find good predictors. r
Fig. 5. MSE loss based on the result with the iteration values.

Fig. 6. Traffic predicted using the oracle, standard polynomial regression and HyperOpt
during the training phase.

Fig. 7. Traffic predicted using the oracle, standard polynomial regression and HyperOpt
during the testing phases.

5.3. Evaluation of the black-box-based optimization with the small topology

The advantage of using HyperOpt over standard polynomial regres-
sion is that it allows to optimize the weights using the optimization
results instead of the traffic prediction error. This is not possible in
standard polynomial regression because the relation between the re-
gression weights and the outcome of the optimization is not analytically
defined. The next step is to evaluate the quality of solutions found
when performing such optimization. The parameters of the HyperOpt
algorithm both with MILP and heuristic algorithms are 𝑒𝑣𝑎𝑙𝑠 = 2000
and 𝑠𝑡𝑎𝑟𝑡𝑢𝑝 = 200, meaning that it selects random values for 𝛿𝑛,𝑏 from
he search space in the first 200 iterations, and that the algorithm
uns for 2000 iterations in total. To validate the black-box optimization
esults, this section shows the average results over 5 replications of the
imulations using MILP and heuristic algorithms and their respective
onfidence intervals.

.3.1. HyperOpt loss
The goal of the framework proposed in Section 4 is to apply the

esult of the optimization to determine the weights of the polynomial
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Fig. 8. Loss variation over the iterations.

Table 3
R2 score and MSE of black-box and polynomial-regression predicted traffic with training
set for the small topology.

Node Standard Black-box with Black-box with
regression MILP heuristic

MSE 𝑅2 MSE 𝑅2 MSE 𝑅2

1 5.37 0.72 40.56 0.98 12.23 0.84
2 8.99 0.67 43.89 −0.27 34.58 0.99
3 14.49 0.88 76.9 −0.45 182.22 −5.27
4 0.65 0.9 48.62 0.7 117.44 −1.46
5 22.05 0.23 114.44 −3.42 111.74 0.35
6 1.05 0.95 20.84 0.73 20.32 0.71
7 64.1 0.55 93.2 −2.01 112.41 −0.47
8 2.73 0.1 6.71 0.96 17.37 0.36
9 27.13 0.34 58.44 −7.71 110.27 0.33

regression models used for forecasting the traffic of each topology
node. Therefore, HyperOpt gets the optimization loss associated to the
former node-traffic prediction to compute a new set of weights. Fig. 8
depicts the variation in the loss function along the iterations. This graph
shows that the best loss value (orange curve) obtained as in Eq. (18)
is under 1 after few iterations. This result means that the black-box
algorithm finds a feasible solution during the startup evaluations. Since
solutions without constraint violation penalties has already been found,
the main goal of HyperOpt after the startup phase is to reduce the
power consumption. Therefore, it uses the TPE algorithm to improve
the previous results and find a solution whose power consumption is
as close as possible to the optimal solution. The final solution used in
the remaining of this section was achieved at iteration #851. After that
iteration, the best loss does not decrease any further. As mentioned in
the previous subsection, it is standard practice to consider only the best
result obtained by the HyperOpt algorithm.

5.3.2. Traffic prediction performance
The next step is to use the weights computed by HyperOpt to

forecast the traffic of each topology node and then compute the CU
VNF placement. Hereinafter, the terms black-box with MILP and black-
box with heuristic refer to the results using the MILP algorithm and
with the heuristic algorithm, respectively. Tables 3 and 4 compare the
traffic predicted using the black-box optimization framework and the
standard polynomial regression to the oracle using the training and the
testing sets, respectively. It uses the coefficient of determination (R2

score) computed as Eq. (21) and the MSE metrics. Figs. 9 and 9(b) show
the total oracle and the traffic predicted with black-box and standard
polynomial regression in training and testing phases, respectively.

𝑅2 = 1 −
∑

(𝑌𝑖 − 𝑌𝑖)2
∑

(𝑌𝑖 −
1
𝑛
∑

𝑌𝑖)2
(21)

Compared to the polynomial regression, the black-box optimization
erforms worse in terms of prediction accuracy. Overall, the 𝑅2 scores
9

re significantly lower and the MSE values are significantly higher in a
Table 4
R2 score and MSE of black-box and polynomial-regression predicted traffic with testing
sets for the small topology.

Node Standard Black-box with Black-box with
regression MILP heuristic

MSE 𝑅2 MSE 𝑅2 MSE 𝑅2

1 1.27 0.93 26.81 0.15 5.03 0.81
2 2.18 0.9 16.99 0.61 12.31 0.69
3 13.91 0.88 57.54 0.64 145.19 0.11
4 0.42 0.94 48.64 −0.82 118.47 −0.66
5 4.83 0.73 56.6 −0.03 56.39 −0.03
6 0.92 0.95 16.93 0.46 15.75 0.43
7 11.09 0.9 27.18 0.82 34.89 0.74
8 0.76 0.51 2.52 0.41 9.66 −0.81
9 6 0.8 19.51 0.68 51.35 0.34

Fig. 9. Comparison of oracle, black-box, black-box with heuristic and regression traffic
during training (a) and testing (b) phases using the small topology.

black-box with MILP and with heuristic, compared to the standard
regression. In addition, several nodes present a negative coefficient of
determination using the black-box optimization. This metric normally
ranges between 0 and 1; however, models with very inaccurate predic-
tions may have a negative R2 score. In particular, nodes 5 present the
worst results using black-box with MILP, with MSE and 𝑅2 of 114.44
and −3.42, respectively. For the black-box with heuristic, node 3 has
the worst performance with MSE of 182.22 and 𝑅2 score of −5.27.

hese results indicate that the prediction at these nodes follow a very
ifferent pattern with respect to the real traffic. Overall, the total traffic
ver the network is also considerably impacted, as shown in the graphs
f Figs. 9(a) and 9(b). The black-box traffic prediction represents the
verage over five simulations and the variance is lower than 1%. The
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overall traffic is about 26% and 24% higher in the training phase
using black-box with MILP and heuristic, and 19% and 18% in the
testing phase. This overestimation of the traffic is due to the goal
of the black-box optimization. Unlike Section 5.2, which aimed to
optimize the traffic prediction, this section uses the black-box algorithm
to optimize the placement of baseband functions, ignoring that the
traffic prediction may be incorrect. Consequently, while detrimental
for the prediction accuracy, the traffic overeestimation can lead to
a more efficient placement. The following subsection shows how the
black-box approach achieves this.

5.3.3. Optimization performance
Based on the traffic predicted using the weights computed with the

black-box framework, this section verifies the performance of the CU
VNF placement applying the black-box-based traffic prediction to the
MILP model and to the heuristic algorithm. The first step is to compute
the CU VNF placement and traffic routing using the predicted traffic.
Then, apply the real traffic to verify the actual power consumption and
the compliance with the constraints.

In order to evaluate the effectiveness of the black-box optimization,
we compare the results with MILP and heuristic to the two-step ap-
proach in two scenarios, called hereinafter two-step and two-step with
buffer. The two-step solution is the traditional predict and then optimize
approach, in which the traffic estimated with the standard polynomial
regression is used to compute the optimization. The two-step with buffer
uses an artificial capacity buffer in the MILP model with standard
polynomial regression to ensure feasibility in real time, i.e. it reduces
the node processing capacity artificially in the MILP formulation until
the predicted optimization result is compliant to all constraints in real
time. Therefore, we rewrote the constraint in Eq. (11) as:
∑

𝑑∈𝐷
𝜆𝐷𝑈
𝑑 𝜋𝑧𝑑𝑛,𝐶𝑈 ≤ 𝐶𝑛 − 𝑏𝑢𝑓𝑓𝑒𝑟, ∀𝑛 ∈ 𝑁 (22)

The minimum value to ensure that all constraints are respected in the
training phase: 𝑏𝑢𝑓𝑓𝑒𝑟 = 35%.

Figs. 10(a) and 10(b) show the power consumption and constraint
violation penalty obtained during the training phase. Figs. 10(c) and
10(d) present the same results for the testing phase. The oracle pro-
vides the best solution, consuming minimum amount of power and
complying with all constraints; however, it uses traffic information that
is not known in practice. The standard polynomial regression of the
two-step approach can accurately predict the traffic, but it leads to
constraint violations. By using an artificial buffer, the two-step with
buffer provides a solution without constraint violation at the cost of
higher power consumption. The black-box approach reduces the power
consumption compared to the buffer whilst respecting all constraints.

Considering only the power consumption, the two-step without
capacity buffer is the closest solution to the optimal, consuming in total
about 930 kW less than the optimal with the training and test sets . This
phenomenon happens because, in some time slots, the two-step solution
consumes less power than the oracle. This reduction is a consequence of
a misplacement of CU VNFs, which led the two-step solution to use less
transponders or less nodes. Indeed, at all time slots with lower power
consumption, the graphs in Figs. 10(b) and 10(d) show that there is a
constraint violation penalty (slots 6, 34 and 46 for training and slots 6,
8, 10 and 16 for testing). Moreover, despite not impacting the power
consumption, the two-step CU VNF placement based on the standard
polynomial regression presents other time slots with capacity constraint
violation. Consequently, the high prediction accuracy of the standard
polynomial regression does not guarantee a feasible CU VNF placement
with the real traffic.

As previously mentioned, we need to apply an artificial capacity
buffer of 35% when optimizing the CU VNF placement using the stan-
dard polynomial regression to ensure that all constraints were respected
during the training phase. As shown in the two-step with buffer curve
10

of Fig. 10(d), this buffer also guarantees that the CU VNF placement is
feasible in the testing phase. Nonetheless, this approach led to a high
increase of 23.44% and 22.95% in power with respect to the oracle in
the training and testing phases, respectively. This growth is driven by
the number of nodes used, requiring at least one extra node at each
time slot with respect to the oracle.

The black-box-based CU VNF placement obtains an intermediate so-
lution in terms of power consumption using the MILP and the heuristic
algorithms. Both solutions guarantee that all constraints are respected
both during training and testing phases. Black-box with MILP consumes
31.34 MW and 21.32 MW more than the oracle in total during training
and testing, respectively, representing less than 10% of increase. Black-
box with heuristic presents a slightly higher power consumption with
a difference of 50.99 MW in training and 27.54 MW in testing. With
respect to the two-step with buffer, the black-box with MILP reduces
the total power consumed during training and testing phases by more
than 10% while the solution with the heuristic algorithm leads to a
reduction of about 7% and 9%. The greater power is mostly caused by
the number of nodes used during the instants with highest traffic. The
different results obtained with the MILP and the heuristic algorithms
are caused by the selection of different nodes, which leads to a greater
number of used transponders; hence, the heuristic has higher power
consumption.

HyperOpt is capable of training the traffic prediction depending
on several factors from the model. By applying the prediction to the
algorithms and, consequently, to the loss function, HyperOpt tries to
overestimate the traffic generated at the different nodes. This traffic
overestimation can also be seen as an artificial buffer calculated in-
dividually for each demand based on multiple optimization aspects.
Consequently, the black-box optimization can learn a better buffer size
than selecting a fixed value 𝑏𝑢𝑓𝑓𝑒𝑟 as shown in Eq. (22). Fig. 11 shows
the theoretical capacity buffer applied by the black-box approach at
each node compared to the two-step with static buffer. Please note that
node #10 is not represented because it is the gateway. These graphs
demonstrate that during the training and testing phases, the solution
finds different node capacity buffer values. Instead of applying a static
capacity buffer of 35% at all nodes and at all time slots, the traffic
overestimation using the black-box framework enables a dynamic se-
lection of the buffer. These results confirm that the proposed approach
provides a solution that efficiently places the CU VNFs, with reduced
power consumption compared to adding a fixed artificial buffer and
respecting all constrains, because it was trained with the goal of finding
an accurate placement model instead of an accurate prediction model.

The results presented in this section show that the use of the Hyper-
Opt algorithm in the black-box optimization enables a more intelligent
allocation of resources. The overestimation of traffic in some strategic
nodes decreases the accuracy of the traffic prediction algorithm with
respect to the standard regression. Nevertheless, it improves the final
result: the allocation of resources during the actual deployment respects
all system constraints without an excessive overestimation of resources
as in the two-step with buffer approach.

5.4. Evaluation of the black-box-based optimization with the large topology

This section analyzes the black-box-based CU VNF placement with
respect to the oracle and the two-step approach using the large topol-
ogy. As previous explained, the complexity of the MILP algorithm
lead to very high execution time; hence, the evaluation in this section
considers only the use of the heuristic algorithm in all scenarios. Here-
inafter, the term oracle refers to the heuristic CU VNF placement with
the real traffic, and two-step and two-step with buffer are the heuristic
using the standard regression prediction and the regression with buffer,
respectively. To validate the black-box optimization results, this section
shows the average results over 5 replications of the simulations and the
confidence intervals.

Considering a polynomial regression algorithm of degree 4, the

black-box optimization must compute a total of 170 parameters in
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Fig. 10. Comparison of power consumption (a) (c) and constraint violation penalty (b) (d) of oracle, black-box, two-step and two-step with buffer during training (a) (b) and
testing (c) (d) phase using the small topology.
Fig. 11. Theoretical node capacity buffer at training phase using the proposed
lack-box approach and the two-step static buffer using the small topology.

his topology. Therefore, the setup of the HyperOpt algorithm for the
raining phase includes a higher number of evaluations: 𝑒𝑣𝑎𝑙𝑠 = 2000
nd 𝑠𝑡𝑎𝑟𝑡𝑢𝑝 = 200. After running the black-box optimization for 𝑒𝑣𝑎𝑙
terations, the best loss computed as Eq. (18) was 7.2E−4, with standard
eviation of 3.6E−5.

.4.1. Traffic prediction performance
This subsection describes the accuracy of the traffic prediction using

lack-box and the standard polynomial regression with respect to the
ctual traffic. Tables 5 and 6 determine the MSE and 𝑅2 score during
11
Table 5
R2 score and MSE of black-box and polynomial-regression predicted traffic with training
set for the large topology.

Node Standard regression Black-box with heuristic

MSE 𝑅2 MSE 𝑅2

3 1.88 0.33 5.03 0.25
13 0.10 0.72 11.31 −4.07
19 0.71 0.55 23.00 −2.69
24 0.04 0.43 0.58 −0.84
26 64.10 0.55 149.15 0.32
30 6.69 0.33 161.95 −0.99
34 2.25 0.64 109.78 −1.49

Table 6
R2 score and MSE of black-box and polynomial-regression predicted traffic with testing
set for the large topology.

Node Standard regression Black-box with heuristic

MSE 𝑅2 MSE 𝑅2

1 2.51 0.46 3.59 0.6
3 0.75 0.6 2.21 0.57
13 0.07 0.81 12.08 −4.28
16 1.41 0.56 21.72 −0.91
19 0.14 0.89 17.47 −2.59
24 0.05 0.44 0.69 −0.88
30 2.29 0.62 129.13 −0.97
34 0.95 0.81 89.71 −1.35

training and testing, respectively. These tables show only the nodes
with highest and lowest accuracy for visualization purposes.

Similar to the previous subsection, the black-box optimization
presents significantly lower accuracy with respect to the standard
regression model. All nodes have significantly worse MSE, which is
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Fig. 12. Comparison of oracle, black-box and regression traffic during training (a) and
esting (b) phases using the large topology.

elated to an overestimation of the traffic, mostly in the peak hours.
n addition, the 𝑅2 score is overall lower than the standard polynomial
egression, except for node 1 during testing phase. The low 𝑅2 score

indicates that the traffic curve follows very different pattern from
the real traffic, in particular when it is negative. Figs. 12 illustrate
this behavior. Figs. 12(a) and 12(b) present the training and testing
traffic, respectively, of the actual traffic (oracle), standard regression
(two-step) and HyperOpt prediction (black-box with heuristic) with its
confidence level. The black-box traffic prediction is the average of five
replications of the simulation and presents a variance of less than 1%
for all timeslots. The standard regression used in the two-step approach
follows fairly nicely the actual traffic. Instead, the black-box prediction
overestimates the traffic in all time slots, with an average increase of
37% during training and 29% during testing.

5.4.2. Optimization performance
The traffic prediction described in the previous section was then fed

to the heuristic algorithm to compute the CU VNF placement with the
training and testing datasets using the trained weights. Figs. 13(a) and
13(b) show the power consumption and constraint violation penalty
obtained during the training phase. Figs. 13(c) and 13(d) present the
same results for the testing phase. As expected, the oracle consumes the
least energy in average and complies with all constraints because it uses
the real traffic. The two-step approach violate the constraints at several
time slots both during training and testing. By using an artificial buffer
of 40%, the two-step with buffer does not violate any constraints, but it
has higher power consumption. The black-box is capable of complying
12

to all constraints and also reduces the power consumption.
Table 7
Execution time in minutes with the small and large topology.

Topology Algorithm Total Optimization HyperOpt

Small MILP 8206.5 8200 6.53
Heuristic 14.5 9.47 5.03

Large Heuristic 798 746.65 51.35

As observed with the small topology, the two-step has the most
similar power consumption as the oracle, in average less than 1%
higher. Nevertheless, it fails to respect the capacity constraints in
several nodes at each time slot, reaching up to 4 violations with training
and 5 with testing data. Thanks to the use of an artificial and static
buffer of 40%, it is possible to ensure that all requirements are met at
the cost of significantly higher power consumption (more than 18%).
This result is due to the high number of active nodes, which increase
both the processing and the network power consumption. The black-
box approach also respects all constraints but at lower costs. Indeed,
the consumption increases with respect to the oracle by 8% in training
and testing, but it is lower than the two-step with buffer by about
6%. With respect to the multiple simulations for the black-box with
heuristic, the power consumption variance represents on average 2.2%
for each timeslot. It is worth noting that none of the training nor test
replications violated any constraints.

This subsection confirms the capability of HyperOpt to train a traffic
prediction algorithm tailored to the final application results. Instead of
using a static underestimation of available resources as the two-step
with buffer approach, the black-box solution provides an intelligent
overestimation of traffic. Hence, it allows the optimization algorithm
to correctly plan the CU VNF placement beforehand in an accurate and
more efficient manner.

5.5. Analysis of the execution time

This section evaluates the execution time of the proposed approach.
Table 7 shows the execution time with the small and with the large
topology. Optimization presents the total time to run the optimization
algorithms for all iterations. HyperOpt indicates the total time for
HyperOpt to select the parameters. Total refers to the total training
time, i.e. optimization and parameter selection.

The MILP model computes the CU VNF placement for all training
time slots per iteration in approximately 490 s in average using the
small 10-node topology. Instead, it takes about 600 ms to run the
heuristic algorithm for all time slots per iteration. After calculating the
CU VNF placement with the MILP or heuristic algorithms, HyperOpt
selects the parameters for the following iteration in several millisec-
onds. In average, the computational time of each HyperOpt iteration is
less than 400 ms, reaching a total HyperOpt execution time of 6.5 and
5 min using the MILP and heuristic algorithms, respectively.

In the large topology, the higher number of nodes lead to longer
execution time. The heuristic algorithm computes the CU VNF place-
ment for each time slot in approximately 1.5 s, resulting in more than
12 h to compute the placement for all 5000 iterations. With respect
to the HyperOpt algorithm, as detailed in [28], the computational
time increases quasi-linearly with the number of iterations. Hence, the
greater number of iterations increases the average execution time of
the algorithm to 2 s per iteration.

Based on these results, it is clear that the bottleneck is the evaluation
of the MILP objective function. It may take several days to correctly
train the model and hours to compute the CU VNF placement of an
entire day. In the scenario in which a network operator manages a
small topology, the solution with the MILP model may be appropriate.
It is possible to train the algorithm every week to obtain more accurate
placement for the following week. However, it does not scale for
larger networks because such datasets would require more iterations
for training and longer computation of the CU VNF placement.
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Fig. 13. Comparison of power consumption (a) (c) and constraint violation penalty (b) (d) of oracle, black-box, two-step and two-step with buffer during training (a) (b) and
testing (c) (d) phase using the large topology.
In scenarios in which the network operators manage a topology
with a greater number of nodes, the use of black-box with heuristic is
more suitable. The training is complete in approximately 13 h using the
traffic of a week as a training set. This corresponds to a few kWh at most
used for computations,1 while the resulting power consumption for one

eek is reduced by over 80 MWh on the test set, compared to the two-
tep with buffer approach. So the computational costs of the black-box
ith heuristic approach are negligible compared to the potential power

avings. Moreover, the fast computation time also enables the use of
arger datasets containing the information of more days to obtain more
ccurate models.

. Final remarks

Traditionally, anticipatory optimization in 5G RAN first predicts
raffic exploiting an accurate traffic prediction model and then per-
orms the resource allocation. However, as shown in this paper, al-
hough machine learning algorithms can forecast traffic with little
rror, it does not ensure that the resource allocation is efficient when
pplying the actual traffic. Indeed, prediction accuracy itself generated
iolation of constraints when resources allocated on the basis of the
redicted traffic are used to support the real demands. This paper
escribes a novel black-box-based optimization model to perform CU
NF placement. The goal is to exploit the outcomes of the optimization

o train a polynomial regression model that performs traffic predic-
ion. This model uses the HyperOpt algorithm to train the polynomial
egression weights to reach the minimum cost, which is computed
ased on the power consumption and the penalty related to constraint
iolation. The results show that this approach can effectively place CU
NFs even if it significantly reduces the traffic prediction accuracy.

1 Estimated using http://calculator.green-algorithms.org/.
13
The placement obtained during training and testing phases is feasible
at all time slots, unlike the traditional two-step approach. Indeed,
the goal of the black-box framework is to overestimate the traffic to
guarantee the compliance with all constraints when the real traffic is
applied. Moreover, it reduces the power consumption by more than
10% with respect to the two-step approach with an artificial capacity
buffer. These results confirm that the proposed approach provides a
more efficient CU VNF placement compared to traditional methods. The
approach proposed in this paper is very promising as it can potentially
be adapted for a multitude of applications and to train many machine
learning algorithms: this aspect will be investigated in future works.

Acronyms

3GPP 3rd Generation Partnership Project
BBU Baseband Unit
CRAN Centralized RAN
CU Central Unit
DRAN Decentralized Radio Access Network
DU Distributed Unit
GW Gateway
MILP Mixed Integer Linear Programming
MIMO Multiple-Input Multiple-Output
MSE Mean Squared Error
RAN Radio Access Network
RRU Remote Radio Head
SPO Smart Predict then Optimize
TPE Tree-structured Parzen Estimator

VNF Virtual Network Function

http://calculator.green-algorithms.org/
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