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On the spatial linear growth of gravity-capillary water waves sheared
by a laminar air flow

Y. S. Tsai
J. M. Burgers Centre for Fluid Dynamics, Laboratory for Aero- and Hydrodynamics,
Delft University of Technology, Leeghwaterstraat 21, 2628 CA Delft, The Netherlands

A. J. Grass and R. R. Simons
Department of Civil and Environmental Engineering, University College London, Gower Street,
London WC1E 6BT, United Kingdom

�Received 6 December 2004; accepted 14 July 2005; published online 30 August 2005�

The initial growth of mechanically generated small amplitude water waves below a laminar air
stream was examined numerically and experimentally in order to explore the primary growth
mechanism, that is, the interfacial instability of coupled laminar air and water flows. Measurements
of the laminar velocity profile in the air over the water surface were found to be consistent with
Lock’s �Q. J. Mech. Appl. Math. 4, 42 �1951�� theory. This profile was then used to calculate the
spatial growth rates by solving the Orr-Sommerfeld equations. The simulation shows that the growth
of the boundary layer affects the exponential growth of water waves along the fetch. The sensitivity
of the growth rate is observed to vary by a factor of 2 for changes in the laminar velocity profile as
small as 2% at the water surface. This indicates that the interfacial instability is strongly influenced
by the wind-induced surface current. A laminar airflow was produced in the wind tunnel over
mechanically generated monochromatic gravity-capillary water waves with the ka value in the order
of 10−3. The novel experiment was designed to measure the minute changes in the wave slope and
phase velocity simultaneously using a highly sensitive reflected twin laser beam technique.
Agreement between linear theory and experiments for the spatial development of wave height and
phase velocity suggests that the linear instability mechanism determines the initial stages of
development of small-scale water waves. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2033910�
I. INTRODUCTION

The formation of interfacial disturbances caused by
shear flow instability occurs in a wide range of flow situa-
tions of engineering interest including, for example, a thin-
film flow of liquid over a solid surface, air-sea interaction,
the mixing process in a jet or wake, and fluid flow over a
compliant surface. One of the most familiar phenomena in
nature, which has attracted considerable interest and study
over the past century, is that of the generation of water waves
by wind. Different mechanisms have been proposed in at-
tempting to explain the central problem of energy transfer
from the wind to the waves. These models are only relevant
under particular conditions and at different stages of wave
growth and wave development. A definitive explanation of
the wave growth mechanism either physical or theoretical
remains to be propounded at the present time.

In his pioneering study, Miles1 considered how water
waves grow when the mean wind velocity has a linear-
logarithmic profile assuming the distribution in the airflow is
governed by the inviscid Rayleigh equation. This so-called
quasilaminar model resulted in the prediction of a constant
exponential growth rate. For a small-scale wave, Benjamin2

contributed a major advancement to the understanding of the
role of viscosity in the growth of waves on a general flexible
surface through a wall frictional layer adjacent to the bound-

ary. The energy transferring from wind to waves was ex-
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plained by the distribution of shear and normal stresses over
a wavy boundary. Miles3 generalized the previous work of
Benjamin and, ignoring the wind-induced surface current,
demonstrated that the resonance between the Tollmien-
Schlichting waves and free-surface waves provides the
mechanism for water wave growth. Subsequent studies in-
corporated some minor but also important additional factors
such as surface current4,5 and distributions of the velocity
profiles.5,6 These studies focused mainly on the application
of a turbulent shear layer over a wavy surface in order to
simulate the natural state of water wave growth. Comparison
with the laboratory experiments of Larson and Wright7 and
Kawai8 indicated a high probability that the wave growth can
be predicted by linear instability theory in the initial stages.

From the models mentioned above, it has been con-
cluded that the precise form of the wind shear profile is criti-
cal to the nature of the instability of the water waves. How-
ever, a turbulent flow developing over a deformed water
surface is a highly complex phenomenon in which the role of
the air-water interface is analogous to that of a solid surface.
Streaky structures and bursting near the interface and large-
scale ordered motion in the outer part of the boundary layer
violently perturbing the entire boundary shear flow have
been observed.9,10 At present, this knowledge can only come
from direct numerical simulation and advanced physical ex-
perimentation, paralleling similar studies of solid wall layer

11,12
turbulence. The complexity of the interaction process
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leads to uncertainties in the determination of the friction ve-
locity on an undulating surface and even the exact shape of
the turbulent velocity profile. These are, however, precisely
the fundamental factors responsible for the probability of
significant discrepancies in the wave growth rate prediction
from linear instability theory.

Originating from the analysis of the instability of a lami-
nar flow over a rigid surface, under the assumption of infi-
nitely small disturbances superimposed on the mean flow,
linear instability theory has been used to describe the devel-
opment of Tollmien-Schlichting waves and the theory has
been well confirmed.13–15 The difficulty in using a turbulent
airflow over a heavy liquid is that significant oscillations of
the primary flow especially near the boundary caused by tur-
bulent inrushes and ejections contravene the primary as-
sumption of small disturbance theory. As has also been
pointed out by Benjamin16 this linearized theory only applies
to laminar shear flows. In this respect Miles’ model and those
of later researchers who also used a mean velocity distribu-
tion to represent a turbulent flow remain questionable. Con-
sequently, in discussing the formation of water waves, use of
the Orr-Sommerfeld equation may only be appropriate for
cases with laminar boundary layers on both sides of the in-
terface.

Blennerhassett17 and Blennerhassett and Smith18 devel-
oped a laminar model to study the stability of the air/water
interface using a Poiseuille-Coutte-type velocity profile. The
model shows that surface waves can be generated by a lami-
nar model for a range of different wavelengths. The velocity
profile for general two layer laminar streams on the interface
was analyzed by Lock.19 For the case of airflow over a water
surface, referred to here as the “Lock profile,” the profile was
closely similar to the Blasius profile with a difference of
approximately 2%. Lock20 examined the air-water interfacial
stability using the Lock profile. The curves for neutral sta-
bility of the two distinct types of waves, “water waves” and
“air waves,” were explored and the generation of water
waves by wind was discussed in relation to these neutral
curves. The Lock profile was used by Akylas21 to build a
model of the resonance mechanism proposed by Miles.3 The
mechanism was found to dominate the wave growth for
wavelengths greater than 12 cm. The use of the Lock profile
in the literature of wind-wave interaction can be found only
in the above two studies. This may be because there was no
experimental evidence to validate Lock’s theory. In a recent
wind tunnel study, Tsai22 and Tsai et al.23 have accurately
measured the profile over the moving water surface.

Gupta et al.24 reported the first and only known experi-
ment to look specifically at the growth of free-surface waves
under the action of a laminar air stream for the original pur-
pose of using water as a compliant material to study drag
reduction. However, their measurements were not in good
agreement with the theoretical prediction with respect either
to the laminar velocity profile shape or to the surface water
wave growth. The experimental equipment used probably re-
stricted the investigation.

In the present study both experimental and numerical
simulations have been carried out in an attempt to improve

the understanding of the growth process of water waves
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driven by the Lock boundary layer. Novel techniques have
been developed to make an experimental investigation pos-
sible and to facilitate corroboration of the experiments using
the numerical simulation. It is important to note that direct
comparisons between the prediction and measurements of
the wave growth with respect to distance do not appear to
have been made previously. The problem under consider-
ation and the structure of this paper are as follows. Section II
discusses the relevant theories including wave attenuation in
a water tank and linear instability theory to predict the spatial
growth of short water waves. Section III outlines the numeri-
cal procedure and presents the simulation results. Section IV
describes the experimental setup used to generate and mea-
sure small long-crested surface waves. Section V presents
the results of these measurements in comparison with the
numerical simulations. Related discussion and conclusions
are presented in Secs. VI and VII.

II. THEORY

A. Wave attenuation

For small-scale waves, the surface-tension force in-
creases in significance relative to gravity as a restoring force.
A gravity-capillary water wave is said to exist in the range
where the gravity force is dominant and the surface-tension
force cannot be ignored. This range is often expressed in
terms of the Bond number

B =
�w

−1Tk2

g
, �1�

which expresses the relative strength of the surface tension.
Here, �w is the density of water, T is surface tension, k is the
wave number, and g is gravity. Water waves with frequencies
between 4 Hz �B�0.03� and 13.45 Hz �B=1, which marks
the occurrence of the minimum phase velocity, taking T
=0.074 N m−1, w=999.5 kg m−3 at 12 °C, and g
=9.81 ms−2� are considered gravity-capillary waves.

When these small-scale water waves propagate down-
stream in a wave flume, the wave height decays significantly
due to internal and boundary energy dissipation arising from
viscous stress and bottom and sidewall frictions, respec-
tively. Lamb25 showed that the temporal damping of wave
height follows an exponential decay of the form

H = Ho exp�− �tt� , �2�

where Ho is the initial wave height, �t is the temporal damp-
ing rate, which is the linear superposition of viscous damp-
ing rate, ��, and boundary friction, �b,

�t = �� + �b. �3�

The surface damping coefficient due to viscosity is

�� = 2�wk2, �4�

where �w is the kinematic water viscosity. The boundary
damping coefficient has a contribution from friction at the

26,27
bottom and the side walls,
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�b = �� �w

2�
�1/2 k

sinh 2kh
+

�

b
� �w

2�
�1/2

, �5�

where � is angular frequency and b is the width of the flume.
The temporal damping can be transformed to spatial

damping through Gaster’s relation,28

�x = �t/cg, �6�

where cg is the group velocity. In deep water, the bottom
dissipation is negligible and the damping rate with respect to
distance becomes

�x = �2�wk2 +
�

b
� �w

2�
�1/2	
 cg. �7�

B. Unperturbed boundary layer at the air-water
interface

Lock19 developed the general case for two immiscible
viscous fluid flows with different densities, viscosities, and
velocities shearing along an interface and hence forming a
mixing layer in both fluids. In the present study, the theory is
applied to a uniform laminar airflow, occupying the region
y*�0, shearing over an infinite quiescent water basin. The
contact point between the two fluids occurs at x*=0, where
x* and y* represent the Cartesian coordinates in the horizon-
tal and vertical directions, respectively. y* is measured up-
wards from the horizontal interface. The flow system forms
two Blasius equations to describe the upper and lower flows,
respectively,

fafa� + 2fa� = 0, �8�

fwfw� + 2fw� = 0, �9�

through the use of a similarity variable �=y*�Ua�
/�x* and a

stream function of the form �=��x*Ua�
f���, where sub-

scripts a and w denote the air and water, Ua�
is the air free-

stream velocity, � is the kinematic viscosity, and the primes
denote the derivatives with respect to �.

The boundary conditions at the plane of interface are
continuity of stream function and velocity, and balance of
shear stress:

�a = �w = 0:fa = fw = 0, �10�

�a = �w = 0:fa� = fw� , �11�

�a = �w = 0:�a
��afa� = �w

��wfw� , �12�

and the boundary conditions at infinity are

�a → + �:fa� = 1, �w → − �:fw� = 0. �13�

The exact solution of the boundary layer profile is ob-
tained from the integration of the Blasius equations �8� and
�9� as plotted in Fig. 1 in comparison with the Blasius pro-
file. For the Lock profile, a slip condition on the interface
means that a weak surface current is induced by the wind.
The surface flow is 2.13% of the free-stream velocity. The
Lock velocity profile is similar to that of the Blasius profile

with a difference generally less than 2% because the ratio of
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air to water density is small. The negative curvature in the air
velocity profile is essential in linear instability theory to ex-
cite unstable modes. Although the maximum difference be-
tween the two curvatures of the two profiles is less than 7%,
it causes a disproportionate difference to the wave growth
rate. This point will be discussed in Sec. III C.

Figure 2 demonstrates the measurements for the Lock
profile in air.22,23 The agreement between the experiment and
theory validates the profile adopted in the present model to
drive the Orr-Sommerfeld equation.

FIG. 1. �a� Lock and Blasius profiles and their curvature in the air. �b� Lock
profile and its curvature in the water. 	1a, boundary layer displacement
thickness in the air.

FIG. 2. Experimental and theoretical velocity profiles over the water sur-
face. �, x=0.6 m; �, x=0.9 m; �, x=1.2 m; 
, x=1.55 m; �, x=1.9 m;
�, x=2.2 m; and �, x=2.5 m for Ua�

=3.77 m/s. �, x=0.6 m, and �, x
=2.5 m for Ua�

=2.75 m/s, —, Lock profile. x, distance from the leading

edge.
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C. Linear instability theory for two-layer flow

To predict a preexisting sinusoidal wave superimposed
on the interface in the flow system described in Sec. II B, it
is assumed that the flow system is parallel, with the boundary
layer of constant form in the streamwise direction. The wave
amplitude a is defined to be small compared with the wave-
length, namely, steepness ka�1. Also, a is small in compari-
son with the thickness of the air boundary layer and therefore
the change of the primary flow due to the surface distur-
bances can be ignored. A stream function based on normal-
mode solutions is introduced to describe the perturbed
surface-induced motion in the form

��x,y,t� = �y�eik�x−ct�, �14�

where k and c are complex wave number and phase velocity,
kr and cr represent the real parts, ki and ci represent the
imaginary parts, �=kc is the angular frequency, and �y� is
the amplitude function. Neglecting the product terms of
wave-induced velocity and pressure disturbances, the
Navier-Stokes equation is simplified to coupled Orr-
Sommerfeld equations for the interfacial air and water layers,
respectively. These take the forms

�Ua − c��a� − k2a� − Ua�a

= − i�k Rea	1a
�−1�a� − 2k2a� + k4a� , �15�

�Uw − c��w� − k2w� − Uw�w

= − i�k Rew	1a
�−1�w� − 2k2w� + k4w� , �16�

where the primes denote the derivatives with respect to co-
ordinate y, y=y* /	1, and Reynolds numbers are given as
Rea	1a

=Ua�	1a /�a, Rew	1a
=Ua�	1a /�w. The free-stream ve-

locity in the air, Ua�, and the boundary layer displacement
thickness, 	1a, were selected as the relevant velocity and
length scales, respectively.

The boundary conditions at the interface are that the
continuity of the velocity and shear stress and the disconti-
nuity of the normal stress are balanced by the pressure and
surface tension. Using the assumption of small wave ampli-
tude, the boundary conditions are expanded at the mean wa-
ter surface y=0 and higher-order terms are neglected. The
result yields the four boundary conditions expressed in terms
of  as

a = w, �17�

Ua�

c − Uo
a + a� =

Uw�

c − Uo
w + w� , �18�

�a

�w
�� Ua�

c − Uo
+ k2�a + a�

= �� Uw� + k2�w + w� , �19�

c − Uo
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�a

�w
��Ua� −

kco
2

c − Uo
�a + �c − Uo + i

3k

Rea	1a

�a� − i
a�

k Rea	1a


= ��Uw� −

kco
2

c − Uo
�w + �c − Uo + i

3k

Rew	1a

�w�

− i
w�

k Rew	1a

 , �20�

where

co
2 = �kFr�−1 + kWe−1, �21�

Fr =
Ua�

2

g	1a
, �22�

We =
Ua�

2 	1a��w − �a�

T
. �23�

The boundary conditions at infinity are

y → �:a = a� = 0, �24�

y → − �:w = w� = 0. �25�

The problem described above is to find an eigenvalue of
the Orr-Sommerfeld equations. Only the spatial growth is
considered in this study. Thus, a real angular frequency �r is
given and the eigenvalue k is computed with the correspond-
ing phase velocity c. The imaginary part of the complex
wave number k represents the growth rate. If −ki is positive,
the wave grows. In contrast, if −ki is negative, the wave
decays.

It is illuminating to calculate the amplification of the
wave height as a function of downwind distance for direct
comparison with the experimental measurements as a means
of assessing the applicability and relevance of linear instabil-
ity theory as the pertinent growth mechanism for gravity-
capillary waves. The wave height at a distance x downstream
can be obtained by integrating the local growth rate, −ki, as
follows:

Hx

Ho
= exp �

xo

x

− ki�x�dx , �26�

where Ho is the initial wave height at position xo. The varia-
tion in the local growth rate is caused by the growth of the
boundary layer, which itself conflicts with the earlier as-
sumption of parallel flow. This difficulty was assessed quali-
tatively in the experiments of Schubauer and Skramstad,14

who confirmed all the general characteristics predicted by
linear instability theory over a fixed flat plate. This is be-
cause the growth of the boundary layer is slow in the flow
direction and has a secondary effect on the wave growth rate
through the change in velocity in the vertical direction. Nev-
ertheless, the discrepancy arising from the actual nonparallel
flow exists.29 As a first attempt to compare the spatial wave
growth between the theory and experiment for a laminar
two-phase flow model, the simplified formula �26� is adopted

to calculate the wave height.
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III. NUMERICAL PROCEDURES AND RESULTS

A. Numerical procedures

The integration of the Orr-Sommerfeld equation was
based on the fourth-order Runge-Kutta method through a
conventional filter scheme to remove the so-called parasitic
error.30 A code was written to conduct the integration. Digital
values of the velocity profiles and their curvatures such as
Ua, Ua�, Uw, and Uw� were stored in a separate subroutine in
different arrays with steps �y=0.01 and were called by the
main program during the computation. This started at y
=5.5 which is well above the outer edge of the air boundary
layer �the air boundary layer thickness is y=2.94 for the
Lock profile� and integrated downwards. To reduce execu-
tion time, the starting point in the water layer was at
y=−15 and integration carried out upwards. Although this
point was inside the water boundary layer, the errors in the
eigenvalues were shown to be less than 0.2% from those
when the calculation started at the point y=−30, approxi-
mately at the outer edge of the water boundary layer. When
the two independent integrations met at the interface, a
method of false position was employed to search the eigen-
value. The scheme has the advantage of being able to give a
general estimation for the initial eigenvalue used for the
iteration.31

To assess the reliability of the present numerical model,
the spatial instability of a Blasius flow on a rigid flat plate
was examined in the absence of pressure gradient. A com-
parison with the simulation of Jordinson15 showed a good
agreement between the two models.22

B. Results using Lock profile

Figure 3 shows the spatial growth rates and the corre-
sponding phase velocities for different water wave frequen-

FIG. 3. Prediction of the spatial growth rate �a� and phase velocity �b� of
water waves at different frequencies with Ua�

=3.77 m/s.
cies calculated using the Lock profile with a free-stream ve-
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locity of 3.77 m/s. The main observation from this figure is
that the growth rate changes with respect to the downwind
distance due to the consistent development of a laminar
boundary layer. This is different from the conventional ap-
proach which uses a log-linear profile to represent a fully
developed turbulent flow and accordingly predicts a constant
exponential growth rate.4,5,8 The present prediction reveals
that for gravity-capillary water waves of a specific frequency,
the growth rate initially increases and then decreases. For
each curve there is a maximum value at the position where
the waves are most unstable. At this point, the waves abstract
energy from the wind most efficiently. The peak value shifts
further downstream with waves of decreasing frequency.
This indicates that a long wave can keep growing for a
longer distance. In the region further downwind, the growth
rate is seen to decay monotonically. The reason is that the
energy dissipation caused by viscosity is larger than the en-
ergy obtained from the wind; finally, the growth rate falls to
a negative value and the waves start to decay.

The values of the phase velocity increase in the initial
stage and become constant at a large distance downwind. It
is known from the study of wave-current interaction that a
surface current increases the phase velocity of water waves
when they travel in the same direction as the current. A stron-
ger current gives rise to a larger phase velocity.32 In Lock’s
theory the surface flow induced by the upper laminar airflow
is constant with respect to distance. The change in phase
velocity reflects the variation of the shear effect arising from
the growth of the boundary layer on both sides of the inter-
face.

C. Sensitivity to the shape of the velocity profiles

It has been observed that the phase velocities measured
in the present experiments are consistently smaller than the
numerical simulations using the Lock profile �presented in
Sec. V C�. Since the phase velocity may be significantly af-
fected by the wind-induced surface current,5 it is probable
that the smaller phase velocities are caused by the surface
current being smaller than 2.13% of the free-stream airflow
as Lock predicted. To investigate the effect of a weaker sur-
face current, new velocity profiles were created with values
lying between the Lock profile and the Blasius profile. The
boundary layer equations �8� and �9� were integrated with a
range of different values for viscosity applied in the lower
layer. The more viscous the fluid in the lower layer, the
smaller the surface current generated by the wind. When the
viscosity tended to infinity, there was no surface current, re-
sulting in the Blasius profile, as is to be expected with such a
simulated solid surface.

Figure 4 gives two examples of the variation in growth
rates depending on the Blasius-type profiles for 5- and
12-Hz waves acted on by a wind speed of 3.77 m/s. The
different slip conditions are shown in the figure. The linear
model shows that the growth rate is extremely sensitive to
slight changes in the laminar profile. For example, for the
5-Hz wave, the growth rate increases by a factor of approxi-
mately 2 for the 2% difference between Blasius and Lock

profiles. This sensitivity in growth rate was reported by Van
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Gastel et al.5 and Morland and Saffman.33 For the 12-Hz
wave, the growth rate increases dramatically in the region
x�130 and then greatly reduces for x�130. It appears that a
reduction of the surface current and hence the increase of
boundary layer thickness in the air give rise to a considerably
larger growth rate. In contrast, the consequential modifica-
tion of velocity profile in the water is the major effect caus-
ing the decrease of growth rate for high-frequency waves as
they propagate further downstream. Accordingly, it is not
only the velocity profile in the air but also the current profile
in the water that are factors in transferring energy from wind
to waves.

The corresponding phase velocities are shown in Fig. 5.
The values systematically increase as the surface current in-
creases. The results predicted by the linear instability theory
demonstrate an agreement with the general wave-current
theory, that is, when the surface current moves in the direc-
tion of wave propagation, the phase velocity is increased.
Also, the calculations confirm the suggestion by Van Gastel
et al.5 that the wind-induced surface current strongly affects
the phase velocity.

Figure 6 presents an alternative way of describing the
influence of the wind-generated surface current on the phase
velocity. The curves were obtained using two free-stream
velocities of 3.77 and 2.75 m/s. The minimum phase veloc-
ity for pure mechanical waves, cm, is used as a nondimen-
sional parameter. When subject to additional wind action, the
modified phase velocities have the same trend as those for
the pure mechanical water waves without wind action but the
speeds are increased. This reveals the interesting phenom-
enon that the location of the minimum phase velocity shifts
to a higher frequency and does not occur at a Bond number
B=1. This is because the factor causing the minimum phase
velocity is no longer related to the balance of gravity and

FIG. 4. The spatial growth rates for �a� f0=5 Hz and �b� f0=12 Hz, calcu-
lated at a free-stream velocity Ua�

=3.77 m/s with different surface currents
of Uo /Ua�

shown in the figures. Surface current; f0, perturbation frequency.
surface-tension forces but also now involves the distribution
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of normal and shear stresses caused by the wind. A striking
fact observed is that the value of the minimum phase veloc-
ity increases linearly with the surface current velocity.

IV. EXPERIMENTAL APPARATUS AND
MEASUREMENT TECHNIQUES

A. Wind tunnel and wave tank

The experiments were carried out in a low-speed and
low turbulence wind tunnel with zero pressure gradient.
Laminar airflow was maintained to at least a Reynolds num-
ber Rex=6.8�105 on a flat rigid plate. Over a compliant
water surface, the corresponding distance was sufficient to
observe the initial stages in the development of gravity-
capillary waves. A detailed description of the wind tunnel
was given by Tsai22 and Tsai et al.23

FIG. 5. Phase velocity distributions with respect to distance for �a� f0

=5 Hz and �b� f0=12 Hz with different surface currents of Uo /Ua�
.

FIG. 6. Relationship of phase velocity to frequency with and without wind
action. cm=0.232 m/s is the minimum phase velocity for a pure mechani-
cally generated water wave. Two groups of curves �Uo /cm=0.08, 0.11 and
Uo /cm=0.22, 0.35� were obtained using the wind speeds of 3.77 and
2.75 m/s with the velocity profiles of Uo /Ua�

=0.69% and Uo /Ua�

=2.13%, respectively. The distance is x=416.
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A schematic representation of the experimental arrange-
ment is shown in Fig. 7. A splitter plate with a profiled el-
liptical leading edge completely spanned the width of the
tunnel at midheight. A water trough wave tank 4.5 m long
�71 cm wide�5.5 cm deep was built into the plate. The
depth was designed to produce gravity-capillary water waves
in a deep-water condition. A rigid brass strip with a very
sharp edge served as a trailing edge for the elliptical nose
section, forming a solid/water interface to maintain continu-
ity without disturbing the airflow at the upstream edge of the
water basin. An absorbing beach 0.45 m in length was placed
at the end of the tank to dissipate incoming water waves. No
reflected waves were observed in the results. Since the small-
scale water waves were extremely sensitive to any surface
contamination, even a slightly contaminated water surface
completely damped out high-frequency waves. For this rea-
son, four drainage ports operated by an external tap were
installed close to the water surface at the end of the tank in
order to remove the surface film. This process was driven by
fresh water supplied to the wave tank for 30 min before tak-
ing measurements, thereby keeping a clean environment.

B. Generation and measurement of water
waves

Small-scale monochromatic gravity-capillary surface
water waves were generated in the range of 5–12 Hz. To
agree with the theoretical linearized problem, the wave am-
plitude was required to be as small as possible. A novel tech-
nique was developed to give sensitive control over amplitude
and frequency of these small waves using a pneumatically
activated diaphragm �Fig. 7�. The diaphragm was stuck over
a brass strip with a recess of 8 mm wide�2 mm deep
�68 cm long. A perturbation generator was responsible for
providing periodic air pressure to the chamber enclosed by
the diaphragm, and regular water waves were generated
when the brass strip emerged into the water. A function gen-
erator produced a sinusoidal signal which was amplified be-

FIG. 7. Schematic of the wind tunnel layout and measurement technology.
�, the measurement stations.
fore being connected to the driving arm. By adjusting the
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frequency in the function generator and the amplification, the
wave frequency and amplitude could be set with the desired
precision.

An optical technique was developed to measure the very
small wave slopes from which the wave heights and phase
velocities could be determined. This involved two parallel
laser beams inclined at a small angle to the vertical, and a
system of mirrors and screen. The phase difference between
the continuous movement of the laser spots on the screen
caused by the change of the surface wave slope yielded the
necessary data. Figure 8 illustrates the path geometry of a
laser beam from its source to the target screen. The wave
surface slope � is given by

� =
1

2
tan−1 xd

L
, �27�

where xd is the displacement of the laser spot from its origi-
nal point with a still surface, and L is the optical lever, which
is the total traveling distance of the beam from the water
surface to the target. In the experiment, the beams were set
up at a small angle �=4° to the vertical. The accuracy of this
method depends on the length of the optical lever. A longer
length gives a more accurate measurement of the wave slope
because of the larger displacement of the spots on the screen.
However, this is offset by the fact that the spots will move
correspondingly faster. To ensure good resolution, a high-
speed digital video camera was employed to photograph the
spot movement.

C. Laser source, high-speed digital camera and
images

The light source was a helium-neon laser, with minimum
output power of 7 mW and beam diameter of 0.81 mm. This
diameter was much smaller than the shortest wave in the
present study �19.4-mm wavelength for the 12-Hz wave�.
The single beam was converted into two beams by an inte-
gral beam splitter and the beams were adjusted to be closely
parallel using a rotating prism system. The spacing between
the beams was 12 mm in the principal direction. A high-
speed monochrome video camera was employed to capture
the movement of the spots on the screen, operating at
500 frames/s in the experiments and recording over 4.2 s for

FIG. 8. Geometry of the laser beam traveling from the laser source to the
target.
a single data set. The locations of the two bright spots in the
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image were recognized using image recognition software as
two clusters. Their centroids were obtained using a light in-
tensity weighted method.22

D. Fourier analysis

Fourier analysis was applied to separate the harmonic
components of the wave slope time history when determin-
ing the wave phase velocity and height at the dominant fre-
quency, that is, the diaphragm generated frequency f0. The
phase velocity calculated from the two laser beam measure-
ments is

c =
2�f0�s

�
, �28�

where �s and � are the distance and the phase difference
between the two laser beams, respectively.22 The surface el-
evation is the integration of the wave slope given by

H =
2A�s

�
, �29�

where A is the slope amplitude of the dominant harmonic
component.22 The observed wave height H and phase veloc-
ity c are the most important directly measured wave param-
eters required for comparison with the theoretical predictions
from linear instability theory.

E. Accuracy of the measurements and system errors

Water wave height and phase velocity were measured to
an accuracy of 2%, constrained by relative misalignment of
the laser beams and the mirror. It should also be noted that
there were unwanted waves in the water tank because the
diaphragm generated not only long-crested waves traveling
downstream but also corner waves and cross waves which
caused some variation in the wave height with respect to
distance. The error introduced by this effect was dependent
on wave frequency, from approximately 20% root-mean-
square �rms� wave height for 5 Hz down to 5% for 12 Hz,
and 5% error in phase velocity for all frequencies.

V. EXPERIMENTAL RESULTS

A. Wave height

The initial wave height and wave steepness observed at
the first station along the flume are listed in Table I. These
confirmed that extremely small waves could be generated.

TABLE I. Initial conditions for the perturbed water waves with a fetch of
10 cm.

Frequency
�Hz�

H
�mm� ka

5 0.033 1.52�10−3

7 0.028 2.12�10−3

8 0.016 1.63�10−3

10 0.013 1.65�10−3

12 0.016 2.54�10−3
The development of the waves was examined under the ac-
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tion of a wind speed of 3.77 m/s which was equivalent to the
velocity used in the numerical simulations. Five wave fre-
quencies were tested. Figure 9 shows an example of the time
history of wave slopes at a fetch of 1.05 m. Under the action
of the wind, the wave slope increases significantly but the
waves still remain regular and two-dimensional.

The measurements of water waves were also carried out
without wind action to understand the waves attenuation.
Figure 10 shows the results. The theoretical curves predicted
from �7� were fitted to the measurement points using a least-
squares procedure. In the present deep-water condition, wave
damping was mainly contributed by the internal viscous ef-
fect. Sidewall friction had a secondary effect and bottom
friction was negligible. For the 5-Hz waves, there was a
considerable scatter �approximately 20% rms� about the the-
oretical wave height curve. The variation is because the dia-
phragm wave generator not only produced two-dimensional
waves propagating downstream, but also induced cross
waves traveling in the spanwise direction and corner waves
propagating at approximately 45° to the longitudinal direc-
tion. The combination of these waves gives a complex varia-
tion of the wave height with a distance downwind. The 7-
and 8-Hz waves show less scattering and good agreement
with theory. A very good agreement is given by the two
observations of the 10- and 12-Hz waves, indicating minimal
side effects from the wave tank for high-frequency waves.

In the case of wave damping for purely mechanical
waves, the agreement between the experiment and theory
demonstrates the very high accuracy of the present technique
in measuring these very small waves. The wave height at
12 Hz was only 16 �m at the first station and decayed to
2 �m at the last station, 2 m downstream. A difference of
1 �m could be detacted accurately. In addition, it was con-
firmed that the methods described above for removing the
surface film were very effective since any surface contami-
nation would have damped the wave amplitude rapidly. Vi-
sualization showed that, with illumination from above, the
shadows of 12-Hz waves were observed in a regular pattern

FIG. 9. Time history of wave slope measured at the fetch of 1.05 m �a�
purely diaphragm perturbed water waves �b� acted on by a laminar air
stream with the speed of 3.77 m/s.
on the bed to a fetch greater than 2 m with a clean water
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surface. In contrast, the same waves completely disappeared
within a fetch of 0.4 m when the water surface was slightly
polluted �contaminated by stirring the water with a clean
hand for several seconds�. This technique was used to judge
whether or not the water had a clean surface. Keeping the
water extremely clean proved to be absolutely essential to
the success of the present experiments. If a surfactant formed
on the water surface, amplification of the wind waves would
have been significantly reduced by the damping mechanism
due to surface-tension gradients.34,35 This effect was not in-
cluded in the present numerical model.

As discussed in Sec. III C, the spatial growth rate of
water waves is highly sensitive to the form of the Blasius-
type profile, which may be determined by the wind-induced
surface current. Although in the present experiment the ve-
locity distribution over the water surface has been measured
very accurately, thereby demonstrating that a surface current
has been generated by the airflow above, it is not appropriate
to calculate the surface current by extrapolating the air ve-
locity above the water surface. This is because the experi-
mental error was approximately 4% in the near-wall region
between 0.5 and 1 mm from the interface, which is larger
than the discrepancy between the Blasius and Lock profiles.
The only previous measurements reported in the literature of
a surface flow sheared by a laminar airflow were conducted
by Gupta et al.24 They observed the surface current to be
3.5% of the free-stream velocity. This is significantly larger
than the prediction of Lock.19 However, these experiments
were conducted in the presence of a favorable pressure gra-
dient. The greater shear stress on the surface as a conse-
quence gave rise to a larger surface flow. In addition, the
wave tank was short, 46 in. in length, and a strong and com-
plex circulation was formed on the surface. Hence, the cur-
rent was not purely induced by the upper shear airflow. Since
there is no definite experimentally proven value for surface
velocity under a laminar boundary layer and the present nu-

FIG. 10. Comparison of water wave decay between the theory and experim
wave height at the initial station.
merical model showed a better agreement with the observed
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phase velocities using Uo /Ua�
=0.69%, two theoretical lines

corresponding to the velocity profile with surface currents
Uo /Ua�

=2.13% �the Lock profile� and Uo /Ua�
=0.69% were

tested to compare with the measured wave heights and phase
velocities.

Figure 11 gives a comparison of the measured and the-
oretical wave heights for the wind speed of 3.77 m/s. The
theoretical wave height was obtained by integration of the
local growth rate presented in Fig. 3 using �26�. Observations
show that the maximum growth rate, corresponding to the
most unstable wave, occurs in the present measurements for
waves between 5 and 7 Hz. A smaller amplification is found
at 8 and 10 Hz. At 12 Hz, it was interesting to observe that
the waves grow first and then decay at a large downwind
distance. These growth �decay� trends for wave height are in
reasonable agreement with the simulations. The two theoret-
ical curves at 7 and 8 Hz have less discrepancy than at 5 Hz,
while the discrepancy becomes significant for the 10- and
12-Hz waves. With a weaker surface current, Uo /Ua�

=0.69%, shaping the velocity profile, the predictions show a
faster decay of growth rate, particularly for the 12-Hz wave.
This is in agreement with the experimental data which show
a distinct decay of wave height.

Both measurement and theory show that at a lower wind
speed of 2.35 m/s, wave growth is smaller than that when
acted on by the stronger wind �3.77 m/s�. For 10-Hz waves,
for example, the decay mechanism dominates the wave de-
velopment and the wave height continually decreases.22

B. Phase velocity

The observations of the averaged phase velocities at all
the measurement stations without the wind action are dis-
played in Fig. 12. The frequency range used in the present
study gives an opportunity to test the well-known phenom-

perturbation frequencies: �a� 5, �b� 7, �c� 8, �d� 10, and �e� 12 Hz. Ho, the
ents;
enon of the minimum phase velocity using a Fourier analysis
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to obtain higher harmonic components. The agreement
proves that the surface-tension effect on short waves leads to
the existence of a minimum phase velocity.

The influence of the wind action on phase velocity is
displayed in Fig. 13. The comparison is made between the
averaged phase velocities and the corresponding averaged
theoretical values obtained at the same fetches as the mea-
surement stations. Better agreement is obtained for the ve-
locity profile with the weaker surface current of Uo /Ua�

=0.69%. This may indicate that the surface current in the
wave tank is smaller than that predicted by Lock. Van Gastel
et al.5 were able to show that the phase velocity was sensi-
tive to the surface current but insensitive to the wind speed.
Hence the surface current is likely to be the dominant factor
in changing the phase velocity.

VI. DISCUSSION

The results presented above show a reasonable agree-
ment between the experiment and numerical predictions for
the present study. Based on Miles’ theory,1 Lighthill36 pro-
posed a physical mechanism of energy transfer from wind to

FIG. 11. Comparison of the experimental measurements and theoretical p
frequencies: �a� 5, �b� 7, �c� 8, �d� 10, and �e� 12 Hz. Solid line, Uo /Ua�

=2

FIG. 12. Experimental phase velocities at the dominant and higher harmonic

components in comparison with theoretical values.
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water waves in terms of a vortex force caused by the closed
streamline around the critical layer. This is expressed by the
formula

E =
��ac

k
�Uc�

Uc�
�vc�

2, �30�

where the subscript c denotes the critical level y=yc at which
the airflow speed is equal to the surface wave phase velocity,
that is, U�yc�=c. The negative value of velocity curvature,
the rate of change of vorticity, means that energy is ab-
stracted from the wind and is transferred to the waves in the
form of wave growth. This critical mechanism assumes that
viscous effects can be ignored, and is believed to explain
how a long gravity wave is amplified. For a wave of small
phase velocity, Benjamin16 pointed out that the critical layer
is too close to the boundary and hence the inviscid Reynolds
stress formation in the critical layer is incapable of explain-
ing the wave growth because the velocity profile near the
boundary is linear and its curvature vanishes, particularly for
a turbulent velocity profile with the critical point inside the

tions of wave heights under the wind velocity of 3.77 m/s. Perturbation
; dash line, Uo /Ua�

=0.69%.

FIG. 13. Measurements and predictions of phase velocity at the wind speed
of 3.75 m/s. Prediction: solid line, Uo /Ua�

=2.13%; dash line, surface cur-
redic
.13%
rent Uo /Ua�
=0.69%; solid-dash line Uo /Ua�

=0.
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laminar sublayer. For Blasius-type profiles, the value of cur-
vature does not disappear. It can provide detailed information
to verify if the critical mechanism explains the growth of
short waves. In �30� the vertical velocity perturbed by the
water waves is proportional to the wave slope.36 For a par-
allel flow and undisturbed velocity profile over a wave with
the same frequency the discrepancy in vc�

2 between the Bla-
sius and Lock profiles is negligible. This point can be con-
firmed by assessing Eq. �22� from Lighthill.36 The only term
to be considered is the ratio of the velocity curvature and
gradient, Uc� /Uc�. For a 5-Hz wave with a phase velocity of
0.33 m/s, the longest water wave considered in the present
study, at a fetch of 1 m and with Ua�

=3.77 m/s, the critical
height is 0.53 mm for the Blasius profile and 0.39 mm for
the Lock profile. The ratio of �Uc� /Uc��Blasius to �Uc� /Uc��Lock is
1.07. In other words, the energy-transfer rate from the Bla-
sius profile is only 7% higher than that from the Lock profile.
However, the calculation shown in Fig. 4 demonstrates that
the ratio of growth rates between the two profiles is approxi-
mately an order of two. From the discrepancy between invis-
cid theory and the full solution of the Orr-Sommerfeld equa-
tions it can be concluded that the critical mechanism is
unable to explain the amplification of small waves even
without the curvature reducing to zero in the critical layer.

Benjamin2 suggested that viscosity is likely to have a
significant effect on the wave growth through a thin wall
friction layer only if the critical height yc is of the same order
as 	c, where 	c= ��a /Uc�k�1/3 denotes a characteristic length
for the critical layer. Figure 14 gives the values of yc and 	c

using the Lock profile for the wind speed of 3.77 m/s at
different wave numbers. For waves with frequency greater
than 1 Hz, the two values are of the same order. Thus, vis-
cosity appears to play an important role for free-surface
wave instability, similar to that of serving as an agent to
destabilize the Tollmien-Schlichting wave on a rigid plate in
a single-phase flow. In Benjamin’s theory, the viscosity in the
wall frictional layer produces a nonuniform shear stress dis-
tributed on the wavy boundary, having a maximum value at
the location ahead of the top of a wave and hence signifi-
cantly influences the phase of the pressure in relation to the
surface elevation. As a result, the increase of the pressure at

FIG. 14. Values of critical height yc and critical length 	c over progressive
waves with different wave numbers, calculated from Lock profile with
Ua�

=3.77 m/s.
the leeward side generates net drag on the free surface. This
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sheltering model of laminar flow over a hump could apply
also to the mechanism of amplification for wind over water
waves.11,37

Miles3 proposed that energy is transferred from the air-
flow to waves through the viscous Reynolds stress in the
region close to the water surface. He suggested that reso-
nance between the Tollmien-Schlichting waves and free-
surface waves is the mechanism responsible for the develop-
ment of short water waves. A wind-induced growth rate, �a,
was derived by solving the Orr-Sommerfeld equation, gener-
alizing the work by Miles1 and Benjamin.2 The given for-
mula was based on a turbulent log-linear profile, but this is
not applicable to the present Lock profile and cannot be com-
pared with the present study. Nevertheless, Miles3 illustrated
that the net growth rate of water waves, �e, is the combina-
tion of the work done by the airflow and a negative viscous
dissipation ��=−2�wk2 for a deep-water wave. The net
growth rate in space is

�e = − ki = �a + ��. �31�

A water wave with a specific frequency becomes un-
stable only when the viscous dissipation in the water is not
sufficient to balance the energy transferring to it from the
wind. The analytical solution of Benjamin2,38 and Van Gastel
et al.5 shows that pressure is the dominant force responsible
for transferring energy from wind to waves through the com-
ponent in phase with the wave slope. The work is done by
the term cps�� /�x, where ps is the pressure on the surface
and � is the surface elevation. From this point of view, a
high-frequency wave with higher steepness can extract en-
ergy from the wind more efficiently, resulting in a higher
wind-induced growth rate, �a. Nevertheless, the viscous
damping agent, ��, is also enhanced. The net growth rate for
a high-frequency wave can only be positive for a short dis-
tance. When the damping mechanism becomes dominant as
the wave propagates further downstream, the wave height
decays even in the presence of wind action. This explains the
theoretical curves and experimental results in Fig. 11 for 10-
and 12-Hz waves. In contrast, low-frequency waves with
smaller steepness abstract energy more slowly while the vis-
cous damping is much smaller. The waves keep growing for
a longer distance in Fig. 11 for 5- and 7-Hz waves. The
balance between the wind-induced growth rate and the vis-
cous damping rate can also explain the spatial growth rate
curves in Fig. 3; that is, why the maximum value of the
growth rate decreases and occurs at greater downwind dis-
tances as the wave frequency decreases.

The generation of the surface water current can modify
the Tollmien-Schlichting waves in the airflow. According to
Miles’ resonance theory, the modified Tollmien-Schlichting
waves will certainly change the growth of water waves. This
may explain why the growth rate is sensitive to the Blasius-
type profile. Physically, a movable boundary layer can re-
duce the drag significantly, and the momentum flux from air
to water is decreased accordingly. This is why the Blasius
profile without a surface current gives a significantly larger
growth rate for the compliant surface than the Lock profile.

However, further study is required to verify if the mechanism
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can increase the growth rate by a factor of 2 due to 2%
discrepancy of the velocity profile.

Phase velocities were in better agreement with the simu-
lations using Uo /Ua�

=0.69% indicating that the wind-
induced current in the wave tank may be lower than Lock’s
prediction of 2.13% of the free-stream velocity. In Lock’s
theory, the water is infinite, which is different from the
present wind tunnel experiments with a limited water tank.
Hence, sidewall friction and water setup caused by wind
shear may reduce the effective surface flow. Nelson et al.39

formulated a nonsimilar analytic solution for laminar airflow
shearing over a thin water layer on a flat plate. The solution
showed that the height of the surface film was proportional
to x1/4 and the surface current calculated using their method
is only about 0.14% of the free-stream velocity. The present
experiment with a deeper water layer is different from the
shallow water film study presented by Nelson et al. How-
ever, their study suggests the possibility of a smaller surface
current than Lock’s prediction.

Regarding the present linear model, it is based on the
assumption of parallel flow. In other words, the boundary
layer is assumed to be uniform with respect to distance. This
is counter to the real experimental situation. Barry and
Ross29 introduced a nonparallel flow theory in their investi-
gation of the stability of the Blasius profile on a flat plate.
The numerical simulation reported a reduction of the critical
Reynolds number from 520 to 500, giving a better agreement
with the measurements of Schubauer and Skramstad14 and
Ross et al.40 Although the nonparallel flow may be a second-
ary effect, it is interesting to note the sensitive influence of
the nonparallel theory applied in the present coupled air-
water two-phase flow system.

VII. CONCLUSIONS

A numerical simulation and delicate experiments have
been conducted to test linear instability theory for a laminar
air/water coupled flow system. Using the Lock profile, which
was confirmed in the present measurements, the computation
shows that the spatial wave growth rate varies in the wind
direction depending on the development of the boundary
layer and the frequency of externally generated disturbances.
In particular, the numerical model shows that the growth rate
is extremely sensitive to the form of the laminar Blasius-type
profile modified by the water surface flow. The prediction is
supported by measurements of wave height, especially using
the velocity profile with Uo /Ua�

=0.69% �for a wind speed of
3.77 m/s�. Measurement of the phase velocities for incident
waves and their harmonics confirms the well-known theoret-
ical curve showing the effect of surface tension on the varia-
tion in wave phase speed with wavelength. Under the action
of an additional wind stress, the minimum phase velocity
increases; this is also supported by the results from the
present experiments.

Agreement between the measurements and theory sug-
gests that the growth �decay� process of small-scale waves at
the initial stage sheared by a laminar airflow can be ex-
plained by linear instability theory. The results support the

original Benjamin-Miles idea of a linear model including the
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effect of viscosity for the small waves, when the profiles
used in the works of Benjamin2 and Miles3 are replaced by
the Lock profile.
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