

Product-ProtoNet
A simple architecture for classifying

supermarket products, using just a few
example images

by

Rick Dekker

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Friday March 8, 2024 at 14:00 AM.

Student number: 4682548
Project duration: June 6, 2023 – March 8, 2024
Thesis committee: Prof. dr. ir. M. Wisse, TU Delft, supervisor

Dr. H. Ceasar, TU Delft
Dr. Ir. R. Sabzevari, TU Delft

Cover: Personal image; Albert in a test supermarket at AirLab

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Airlab, a collaboration between TU Delft and Ahold Delhaize, is developing Albert, a robot tailored to
work in a complex supermarket environment. Key to Albert is a product detection and classification
module that tells it what products to grasp andwhere they are located in a shelf. Albert’s existing YOLO‑
based product detector however has two significant issues: 1) It has noticeable positional biases and
can not always identify products that are in a different place than usual; and 2) Adding new products
without re‑training the whole model is impossible. Especially in a dynamic supermarket environment
with an ever‑changing stock, the latter is a major issue.

To address the first problem, product localization and product classification will be split. This means
that product class is independent of product location and locational biases will be less prevalent. The
second problemwill be themain focus of this paper. This problem is addressed through few‑shot learn‑
ing, which predicts similarity between query and target products. This simplifies adding new products
to just supplying new target images. Few‑shot learning also requires significantly less data to train on.
In supermarkets with 300.000 different products, requiring only a few images per product is a major
advantage. For this reason, this paper aims to deploy a few‑shot model to classify products as either
the target class or non‑target class for Albert’s picking task and defines the following research question:
“What few‑shot classifier can identify products in a supermarket environment, is able to detect
non‑target classes, and meets the requirements of deployment on a robotic platform like Albert
best?“

This paper first analyses the potential of using TRIDENT and P>M>F, two state‑of‑the‑art few‑shot mod‑
els, for deployment on Albert, and evaluates them on the requirements of this paper. These are: 1) A
minimum accuracy threshold of 90% on products classes seen and not seen during training; 2) A maxi‑
mum inference time of 3.6 ms per image, to allow for real‑time visual feedback that guides robot grasp
control (visual servoing); and 3) AGPUmemoryusagebelow4GB for compatibilitywith lower‑endGPUs;
BothTRIDENTandP>M>Fpass theGPUmemory requirement, but areunusable ona supermarket robot,
as their high inference timemakes themunsuited for visual servoing. P>M>F has a consistently 5%‑10%
higher accuracy thanTRIDENThowever, and its architecture allows for inference timeoptimization. This
makes P>M>F the preferred model for Albert. However to work well, it still requires adjustments.

For this reason, this paper uses P>M>F’s two key ideas to construct Product‑ProtoNet, a new Albert‑
suitable few‑shotmodel: 1) Using a good pre‑trained feature extractor; and 2) Comparing query images
to a set of classes andmatching only to the likeliest. P>M>F uses a ProtoNetmodel for classification that
essentially does this; Like ProtoNet, Product‑ProtoNet constructs class prototypes fromone ormultiple
examples of class images. Product‑ProtoNet then uses a sigmoid classifier to predict if query images
have the same class as those prototypes. It compares query images to a set of similar class prototypes
(helper prototypes) and classifies them as the likeliest match. Product‑ProtoNet uses a ViT pre‑trained
withDINO toextract image features. Tobringdown inference time, Product‑ProtoNet computesproduct
prototypes before deployment.

With an accuracy of 99.1% on product classes seen during training and 99.8% on novel classes in a real‑
istic supermarket setting, an inference time of 2.89 ms and a memory usage lower than 4GB, Product‑
ProtoNet is theonlymodel that passes all requirements of this paper. WhendeployedonAlbert together
withaYOLOproductdetector forproduct localizationProduct‑ProtoNet successfully guidesAlbert to the
right product in 97%of attempts. Thismeans that real‑life detectionworkswell and that this implemen‑
tation of Product‑ProtoNet in Albert’s perception pipeline is fast enough for visual servoing. Thismakes
Product‑ProtoNet the only few‑shot classifier that can identify products in a supermarket environment, is
able to detect non‑target classes, and meets the requirements of deployment on a robotic platform like
Albert.

i

Contents

1 Introduction 1
1.1 Research Question and Subquestions of this paper . 2
1.2 Requirements . 2

2 RelatedWork 4
2.1 TRIDENT . 6
2.2 P>M>F . 6
2.3 Assumptions of few‑shot object classifiers . 7

3 Datasets Used 8
3.1 AholdSet‑V1 . 8
3.2 AholdSet‑V2 . 10

4 Analysis of P>M>F and TRIDENT 12
4.1 Experiments . 12

4.1.1 Accuracy on seen‑ and unseen datasets . 12
4.1.2 Memory usage and inference time . 13

4.2 Results . 13
4.2.1 Inference Time . 13
4.2.2 Memory Usage . 14
4.2.3 Accuracy on Seen Dataset . 14
4.2.4 Accuracy on Unseen Dataset . 14

4.3 Conclusion . 15

5 Product‑ProtoNet 16
5.1 Introduction of Product‑ProtoNet . 16

5.1.1 Mathematical formulation of Product‑ProtoNet 17
5.1.2 Other design choices . 19
5.1.3 Assumptions of Product‑ProtoNet . 19
5.1.4 Hyperparameters . 19
5.1.5 Subquestions associated with Product‑ProtoNet 20

5.2 Experiments . 20
5.2.1 Non‑class classification capability . 20
5.2.2 Similarity to ProtoNet . 21
5.2.3 Helper prototypes in a realistic supermarket . 21
5.2.4 Feature separation . 21
5.2.5 Performance on requirements . 21

5.3 Results . 21
5.3.1 Non‑class classification capability . 22
5.3.2 Similarity to ProtoNet . 23
5.3.3 Influence of helper prototypes . 24
5.3.4 Feature separation . 25
5.3.5 Performance on requirements . 26

5.4 Conclusion . 27

6 Product‑ProtoNet On Albert 28
6.1 Implementation of Product‑ProtoNet on Albert . 28
6.2 Experiment . 29

ii

Contents iii

6.3 Results . 30
6.4 Conclusion . 32

7 Discussion 33
7.1 Selecting similar classes afterwards or during training 33
7.2 Does training with a sigmoid classifier actually help? . 34

8 Conclusion 35

9 Future Work 38
9.1 Architectural improvements of Product‑ProtoNet . 38
9.2 Pruning Product‑ProtoNet’s backbone . 38
9.3 Feature Matching . 38
9.4 Segmentation vs Bounding boxes . 39
9.5 Fine‑tuning or re‑training YOLO . 39
9.6 Predicting class and location together . 39

References 40

1
Introduction

Supermarkets are busy places. Customers walk around to do their daily grocery shopping, products are
being restocked, taken out of shelves and eventually sold at the cash register. Understandably, this is
a hectic and ever‑changing environment. Product stock may change, product packaging may change,
aisles may at onemoment be filled with people and fully empty at another.

AIRLab, a cooperation between Ahold Delhaize and TU Delft, has been tasked by Ahold Delhaize to pro‑
duce a robot for exactly this very challenging environment. This robot, Albert, can recognize, pick and
collect items fromanonline shopping list. Alberts’ current product detectionmodel (YOLO[41]‑V6.3) can
however not detect products it has never seen during training. Generally this is not a problem, but prod‑
ucts’ packaging may change and new products may be introduced to a supermarket. After all, changes
in product package design are a positive purchase decision stimulant for a product [9] and producers
might want to change their packaging regularly.

Re‑training a model on 300,000 [29] diverse supermarket products for packaging updates or introduc‑
tions of new products is a time‑consuming task that generally requires huge amounts of data per prod‑
uct. For DarkNet for example, a framework that supports the training and testing of YOLO‑V4, YOLO‑V3
and YOLO‑V2, 2000 images per class are recommended [2]. Few‑shot models on the other hand need
very few example images (shots) per class to effectively train with. As few‑shot models learn to classify
the similarity between query images and target classes, invariant of their actual class, adding newprod‑
ucts is as simple as providing the model with a few new target images. This also eliminates the need
to re‑train an existing model. For this reason, this paper aims to deploy a few‑shot model to classify
products as target‑ or non‑target product for Albert’s picking task. Two few‑shot models that look very
promising are TRIDENT [49] and P>M>F [16].These state‑of‑the‑art few‑shot models achieve accuracies
of respectively 96.0% and 98.4% on mini‑ImageNet, a common few‑shot dataset. To ensure safety, it
is crucial for few‑shot classifiers to not classify all input images as the most likely product class, which
someclassifiers do [16], especiallywhen this input image is a human. Instead it should consistently clas‑
sify this human as a non‑product. To find the best few‑shot classifier, this paper defines the following
research question:

What few‑shot classifier can identify products in a supermarket environment, is able
to detect non‑target classes, andmeets the requirements of deployment on a robotic
platform like Albert best?

Together with a YOLO‑V6.3 product detector, which predicts the spatial location of products within an
image, theproposed few‑shot classifierwill replace the existing fully YOLO‑baseddetection and localiza‑
tion model that is currently on the robot. The current model predicts both product position and class
and shows noticeable positional biases, as reported by people working with Albert. This bias easily
occurs when products in a training dataset are not evenly spread trough a shelf (e.g. if cheap salami

1

1.1. Research Question and Subquestions of this paper 2

is always on the bottom, bottom products are more often predicted to be cheap salami, independent
from their real class). Utilizing a product detector for localization and a few‑shot classifier for classifi‑
cation will decouple class from location andmitigate this locational bias. This paper specifically uses a
YOLO‑V6.3‑nano‑detector that has been trained on an zoom‑augmented version of the SKU110‑dataset
[14] and has a mean average precision of 0.65 on a supermarket dataset made for our application [24],
but any object detector should work.

With awell‑working Albert that can accurately classify both familiar and novel products, Ahold Delhaize
is interested in exploring how well robots can adapt to real life supermarket scenarios. As an added
benefit, these robots can be used for picking and offering online orders directly in the supermarket,
which would decrease the need for dedicated online distribution centers (HSC’s [1]). Of course there
also is the promising aspect that a robot that is good at picking products from shelves can easily be
adapted to a shelf‑stocking robot, as there are very little changes in core functioning. However, in order
to achieve these objectives Albert first has to work well. To which end this paper focuses on finding a
few‑shot classifier that identifies products in a supermarket environment, is able to detect non‑classes,
and meets the requirements of deployment on a robotic platform like Albert best.

1.1. Research Question and Subquestions of this paper
This paper focuses on answering the following research question:

“What few‑shot classifier can identify products in a supermarket environment, is able to
detect non‑target classes, and meets the requirements of deployment on a robotic plat‑
form like Albert best?“

To do so, first TRIDENT andP>M>Fwill be analysed to determine the optimal base classifier towork on a
robot like Albert. Secondly, since few‑shot classifiers operate under the assumption that the classes of
query images always belong to a set of example classes, certain classifiers, such as P>M>F, simply select
the most likely of the set as the designated query class [16]. This behavior is undesirable and unsafe. If
P>M>F is chosen as the best or if either model does not meet Albert’s requirements, a new model that
can classify non‑classes and meets Albert’s requirements must be designed. Thirdly, the performance
of the bestmodelwhen deployed on Albert will be evaluated, as it is crucial to ensure that it can be used
in real life. This yields the following sub‑questions that will each be answered in their own chapter:

1. Which of the current state‑of‑the‑art few‑shot classificationmodels TRIDENT and P>M>F can
be used best as a classifier for Albert?

2. If this classifier does not meet all requirements or can not classify non‑target classes, how
can it bemodified to be fit for Albert?

3. Howwell does this model work on Albert?

1.2. Requirements
The best few‑shot classification method heavily depends on what specifications this method should
meet. Some important specifications this paper sets are:

1. Inference time: The model’s inference time should be as low as possible, but models with a high
detection accuracy are preferred over those with a low inference time. To still have good closed‑loop
object tracking, this paper requires a maximum inference time of 3.6 ms per query image.

Albert uses visual predictions toupdate it’s graspand trackproducts (visual servoing). This typically
requiresadetection rateof 30‑100Hz [24],[19],[60],[55]. This translates toanallowed inference time
per detection of 10‑33 ms. A YOLO‑V6.3‑nano model has an inference time of 1.3 ms on an NVIDIA
Tesla‑T4 GPU [26]. This means there will be 8.7‑31.7 ms left to detect if the products seen are the
target class or not. Assuming9product detectionsper camera imageonaverage, the inference time
per detected product is should be between 1‑3.6 ms.

2. Accuracy on seen products: The preferred few‑shot method should have the highest possible accu‑

1.2. Requirements 3

racy in a realistic supermarket setting for product classes that are seen during training. As a design
decision, this should be at least 90%.

Papers that try to solve a similar problem in a similar setting, set a classification accuracy of 90%
as an acceptable threshold [12]. Some others call an accuracy of 87.5% not enough [59]. In the
end the acceptable accuracy of a model comes down to a design decision: What do customers and
what does Ahold find an acceptable misdetection rate? In this paper an accuracy of 90% on will be
deemed acceptable, but it is clear that higher accuracies are preferred.

Few‑shot classifiers generally only evaluate their accuracy on classes not seen during training [34].
However for amodel thatwill be used in a real supermarket, it is important that the product classes
it has seen during training are also detected correctly. For this reason, this paper applies the 90%
accuracy threshold to seen products as well.

Albert uses visual servoing with an algorithm that selects the class with maximum occurrence [24].
Which means that a product is correctly classified as long as the majority of detections has the cor‑
rect class. To give an example: if a model manages to do three detections within 3.6 ms, with an
accuracy of 75%, the chance that a majority of detections will be correct is 92%. With a base ac‑
curacy of 90%, this chance will become 99%. Generally this will mean that this paper chooses the
fastest classifier with the highest accuracy.

Few‑shot models are commonly evaluated in a few‑shot setting [34], [51], [20]. This is a setting
where all query images have the same class as all example images the model uses. In a realistic
supermarket setting however, it is possible that not all products in a shelf are one of the example
classes. To this end, this paper will evaluate models on the accuracy requirement in a realistic
supermarket setting. A realistic supermarket setting is defined by this paper as a shelf with 10
products, very similar in brand, product type or color. Here a classifier has to distinguish 1 product
from these 9 other products, without necessarily having information about all products. Arguably
this is a very hard use‑case, but as in supermarkets products of the same brand, color and prod‑
uct type often together, this seems more realistic and representative to Alberts’ environment than
evaluating classifiers onn randomclasses, all ofwhich a classifier has information about. Note that
this realistic supermarket settingmight not be fully representative of all real world scenarios and is
mainly ametric tomake evaluation of few‑shot classifiers more comparable to real life. Real‑world
evaluation of the performance of classifiers when deployed on Albert is therefore still essential.

3. Accuracy on unseen products: The preferred few‑shot method should have the highest possible
accuracy in a realistic supermarket setting for novel product classes that are not seen during training.
As a design decision, this should be at least 90%.

To ensure a comprehensive evaluation, this paper will use identical thresholds and measurement
techniques to assess the accuracy of seen and unseen products. This will guarantee an accurate
comparison between the two and give a realistic impression of the models’ performance on both.

4. Memory usage: As a design decision, inference GPUmemory usage should be below 4GB.

Memoryusageduring inference isan important factor inhowhigh‑or low‑end thehardwareneeded
should be. Ideally the model should be able to be run on lower end GPU’s that only have 4GB of
Memory available, to keep the hardware requirements of the robot cheap and low.

2
Related Work

In order to pick or create a well‑working few shot classifier, it is important to first understand how few‑
shot classifiers work and how the few‑shot problem can be defined. Few‑shot learning tackles the prob‑
lem of creating a generalized model from very few examples. Usually few‑shot Learning is defined as
N‑way, K‑shot learning, where N denotes the number of classes it tries to identify and K denotes the
number of examples per class [51].

Figure 2.1: A figure representing the few‑shot learning problem. Adapted from [34]. A model has to classify similarity between
query images and example (or support) classes, independent of their actual class. It learns this by doing many few‑shot tasks

Figure 2.1, based on [34], shows a typical few‑shot classification problem. This particular problem clas‑
sifies 2 classes with 2 examples per class, which makes it a 2‑way, 2‑shot problem. In this example, the
first task a model has to do is to predict whether the images in the query set are cats or dogs. After this,
it has to do a second task: predict whether a query image is an okapi or a frog. By doing many of these
tasks, few‑shot algorithms should be able to determine accurately towhat example class a query image
belongs, independent of its actual class. In that sense few‑shot algorithms learn what makes images
similar. This technique can be used for many different classes and also for classes that the model has
not seen during training (unseen classes).

Few shot models are usually evaluated on classes not seen during training [34]. This means that a few‑
shot model trained on classes cat, dog, okapi and frog is evaluated on classes like duck, shark etc. to
determine its accuracy on unseen classes, or unseen accuracy in short. This is the opposite of seen
accuracy, wheremodels are only evaluated on classes seen during training. Some papers however eval‑
uate both seen and unseen accuracies of amodel to evaluate howwell amodel generalizes from classes
it has seen during training to classes it has not seen [37], [48], [61]. This paper will do the latter as good
performance on both is important for Albert.

4

5

Based on literature that gives an overview of few‑shot architectures, the primary concept of few‑shot
models typically belongs to one of the categories listed below, although combinations of categories are
also possible [51],[34],[20]:

1. Metric Learning The idea behindmetric methods for few‑shot learning is that a network classifies
the similarity between a query image and a number of example classes based on their distance in
feature space [23], [56], [52], [6], [49], [50], [27], [13], [62]. Somemethods encode classes to a proto‑
type [50], [27] or try to relate classes in a Graph Neural Networks [13], [62]. Eventually the distance
between query features and example class features is used to classify a query image. Distance func‑
tions can be anything, but are often euclidian, cosine or learnt functions.

2. Optimization‑based methods The idea behind optimization‑based methods is to take a model
and provide it with the most optimal parameters to achieve many different tasks. Optimization‑
based methods could for example train a simple neural network with a fully connected layer to
have the best input parameters for solving many different few‑shot tasks (tasks can be similar to
figure 2.1). However, this could also be used formore advanced networks like ProtoNet. The power
of optimization‑based methods lies in quickly finding parameters that generalize well to different
tasks that individually can have very little input data. Overall optimization‑based methods will in‑
crease the training complexity of a model, but inference complexity remains unchanged. [40], [11],
[32], [3], [21], [43], [39], [38], [46]

3. Sequence‑basedmethods The idea behind sequence‑basedmethods is that they do not use a dis‑
tance metric for label prediction, but directly predict from a sequence of input images. Because of
the deep neuralmodel directly connecting input and output, some papers also refer to thesemeth‑
ods as model‑based methods [34]. Only few few‑shot learning models employ a sequence‑based
classification technique. Typically theyworkwell on low‑featuredatasets likeOmniglot [25].[44],[31]

4. Transfer learningmethodsThe ideabehind transfer learningmethods is that theyusepre‑training
on other datasets to extract better features for a few‑shot task. The benefit of pre‑training is that
general image recognitionstrategies canbeapplied toboth thepre‑trainingand the few‑shotdataset
and knowledge from one dataset might be beneficial for the other. Knowledge applied in identify‑
ing flying birds might for example also be beneficial on different tasks like classifying airplanes or
telling the difference between birds and mammals. Especially in few‑shot learning where input
data is very limited, it is beneficial to use as much pre‑learnt image processing tactics as possible.
[58], [17],[8], [47], [16], [18]

5. Augmentation‑basedmethodsAproblemwith few‑shot learning is that the amount of data that is
available is very limited. Augmentation‑based methods aim to solve this by augmenting the input
data and thus creating more data [5].

In their paper P>M>F, Hu et al. [16], notice that transfer learning methods usually work best. Usually
transfer learningmethodsuse largebackbones likeWRN (WideResidualNetwork) [17], [8], [47] or ViT (Vi‑
sion Transformer) [16], which they pre‑train on a large dataset. Most othermethods use ResNets (Resid‑
ual Networks)[5], [18] and CNNs (Convolutional Neural Networks) [56], [50], [52], [27], [49], which they
then train from scratch. The P>M>F paper argues that pre‑training (P) is most important. Meta‑training
(M), the conventional way of training a few‑shot model, comes second. Fine‑tuning (F) has the least in‑
fluence on a models’ performance. Training a randomly initialized ViT‑feature extractor with ProtoNet
[50], a common few‑shot architecture, yields an accuracy of 49.1%. When using a pre‑trained feature ex‑
tractor in the same setup, P>M>F achieves an accuracy of 98.0%. With fine‑tuning P>M>F even achieves
accuracies of 95.3% (1‑shot) and 98.4% (5‑shot).

Somemetricmethodshoweveralsoperformverywell. EspeciallyTRIDENT [49] standsout, as it achieves
a 5‑shot accuracy of 95.95% and a 1‑shot accuracy of 86.11% on mini‑ImageNet. Both P>M>F and TRI‑
DENT outperform all other models’ accuracies on mini‑ImageNet and are thus the best candidates to
also performwell on a custom supermarket dataset. To gainmore insight in howbothmodels work, the
specific architecture of both TRIDENT and P>M>F is explained in more detail in the next sections.

2.1. TRIDENT 6

2.1. TRIDENT

Figure 2.2: The simplified architectures of TRIDENT. Adapted from [49].

A simplified version of the architure of TRIDENT is visualized in figure 2.2 above. TRIDENT [49] is based
on simple CNN‑based feature extractors and a transductive attention module that uses both query (Q)
and example‑ or support‑ input (S) to extractmeaningful features. TRIDENT uses a neural gaussian sam‑
pler to predict the mean and standard deviation for class‑specific and query image data. This is then
used to predict the true class label of the query input and, togetherwith amean and standard deviation
extracted from just the query information, used to reconstruct the query image. This query image recon‑
struction is used for self supervised loss and forces themodel to pull class information and background
information apart.

2.2. P>M>F

Figure 2.3: The simplified architectures of P>M>F. Based on [16].

The architecture of P>M>F can be simplified to figure 2.3, which is shown above. P>M>F [16] consist of
a pre‑trained feature extractor that feeds features to a ProtoNet [50]. Instead of the regular euclidian
distance metric that ProtoNet uses, P>M>F uses ProtoNet with a cosine distance metric. The feature
extractor that works best for P>M>F is a ViT that has been pre‑trained with DINO, an unsupervised pre‑
training method that has proven to yield better class features than supervised training methods [7].

Vision Transformers became a popular backbone and classifier choice after the influential paper ”An
Image is Worth 16x16Words: Transformers for Image Recognition at Scale” [10]. This paper proved that
it was possible to apply the Transformer architecture that had commonly been used for deep language

2.3. Assumptions of few-shot object classifiers 7

models to images. This resulted in great performance gains. In ”An Image is Worth 16x16Words...”, ViT’s
are pre‑trained on JFT‑300M, a huge dataset, and fine‑tuned on other datasets like ImageNet and CIFAR‑
100. There are different ways of pre‑training a ViT however. P>M>F explores DINO [7], BEiT [4] and CLIP
[36] aspre‑trainingmethods, pre‑trainedon respectively the ImageNet1K, ImageNet‑21KandYFCC100m
datasets. For P>M>F DINO yields the best performance.

DINO is a student‑teacher method of pre‑training a network that achieves good class separation of fea‑
tures [7]. When testedon ImageNet it is evident that features fromsubgroups likemonkeys andbirds are
well separated. Further separation is evident among specific classes like orangutans and chimpanzees.
DINO excels in matching query features to the right class with a KNN‑classifier. It also reports that aug‑
mented images are close to their originals in feature space when using cosine distance. This makes
sense, as DINO trains a student to output the same features as the teacher while both use different aug‑
mented versions of an image as input.

2.3. Assumptions of few-shot object classifiers
BothP>M>F andTRIDENT, aswell asmanyother few‑shot classifiersmake some important assumptions
about their data, listed below are two assumptions that are important for a few‑shotmodel that should
work well on Albert:

1. Conventional few‑shot methods assume that the query class is the same as one of the support
classes [51],[34],[20]. Because of this, some methods like P>M>F even assume that query classes
can never be a non‑support class [16]. In a supermarket setting however, support sets with less
than 300.000 classes are logically preferred, as this saves on computing time. This might also be
necessary if a product detector wrongly classifies non‑products as a product. If for instance a hu‑
man iswrongly classified asproduct, amodel shouldbeable to tell that this is awrong classification
instead of attributing it to one of the support classes. The perfect supermarket product classifier
should therefore also be able to tell if a query image is not in our support set. In other words: also
classify non‑classes.

2. P>M>F and TRIDENT, like most well‑performing few‑shot learning models [17], assume that class
features are Gaussian distributed. TRIDENT incorporates a neural Gaussian sampler that predicts a
mean and a variance from class features andmatches this to a query image using a learnt predictor.
P>M>F uses a softmax function that basically attributes a query feature to the closest class mean.

3
Datasets Used

This chapterwill shortly goover thedatasetsusedby thispaper toevaluate few‑shot classifiers as closely
to a real‑world supermarket scenario as possible. This chapter introduces two new datasets: AholdSet‑
V1 and it’s extended version AholdSet‑V2. Both are designed to be representative of a supermarket
that Albert will be deployed in, to be inclusive of different product contexts, such as different lighting
or angle and to be diverse enough to include a varied array of products and not just products of one
subgroup.

3.1. AholdSet-V1
AholdSet‑V1 is a balanced dataset that consists of 35 classes with 191 images per class. Dataset images
consist of products that are cropped from annotated images of stocked shelves of the supermarket that
Albert will eventually work in. These shelf images are representative of what the robot camera sees dur‑
ing operation and often includemultiple products (see figure 3.1). To be inclusive of different product
contexts, photos are taken frommany different angles and in many different lighting conditions. Prod‑
ucts are also frequently placed in different positions to ensure that the background and surroundings
of a cut‑out product do not influence its class prediction. To ensure that AholdSet‑V1 contains a di‑
verse array of products, different product subgroups were selected. Figure 3.1 for example shows that
milk/yoghurt cartons, wok sauces, canned vegetables and boxed canned vegetables are selected. In
the full AholdSet‑V1, many other subgroups like baking‑ or spicemixes in different shapes and sizes are
included as well.

Figure 3.1: Annotated image fromwhich individual products are cropped for AholdSet‑V1

8

3.1. AholdSet-V1 9

Figure 3.2: The design decisions taken into account in creating a dataset that mimics the real world as close as possible.

To make AholdSet‑V1 resemble the real world as close as possible, AholdSet‑V1 makes a few design
decisions, of which the most important ones have been listed in figure 3.2. Products have been pho‑
tographed in different lighting conditions (figure 3.2a). Photos have been taken with and without mo‑
tion blur (figure 3.2b), because an actual camera will move and sometimes have blurry images of prod‑
ucts. Sometimes products may be partially obstructed by the gripper or only partially visible, which is
why full andpartial products have been included (figure 3.2c). Because a real supermarket has products
that look very similar, at least to the human eye, very similar products have deliberately been included.
Figure 3.2d shows an example of two of those very similar products that belong to a different class.

This paper evaluates the accuracy of classifiers on products seen during training (seen accuracy) and
onnovel products (unseenaccuracy). Validating classifiers’ accuracy onproducts not seenduring train‑
ing means that some product classes have to be kept apart to validate and test on, while the rest can
be used for a training dataset. With only 35 products AholdSet‑V1 is relatively small, and setting aside
classes for validation and testing means there are few left for training, which increases the risk of over‑
fitting on those specific classes. When AholdSet‑V1 is divided into 21 training, 7 validation, and 7 test‑
ing classes (for 5‑way classifiers, each set needs at least 5 different classes), both TRIDENT and P>M>F
perform poorly. This poor performance can be seen in table 3.1 on the next page. Training and validat‑
ing classifiers on RP2K[35] and testing them on AholdSet‑V1 yields significantly better results however.
RP2K is an extensive Chinese supermarket dataset, designed to be as close to real‑world supermarkets
as possible [35]. Because this training method yields a better accuracy on AholdSet‑V1, the unseen ac‑
curacy of classifiers is evaluated by training and validating on RP2K and testing on the full AholdSet‑V1.
The seen accuracy of classifiers is evaluated fully on AholdSet‑V1, for which 15% of all images per prod‑
uct are kept apart for validation and 15% for testing. The remaining 70% of images per class is used to
train classifiers on.

3.2. AholdSet-V2 10

Train Val Finetune Test Accuracy

TRIDENT
AholdSet‑V1 AholdSet‑V1 ‑ AholdSet‑V1 0.635

RP2K RP2K ‑ AholdSet‑V1 0.823
RP2K RP2K AholdSet‑V1 AholdSet‑V1 0.589

P>M>F AholdSet‑V1 AholdSet‑V1 ‑ AholdSet‑V1 0.763
RP2K RP2K ‑ AholdSet‑V1 0.844

Table 3.1: The accuracy on unseen classes in AholdSet‑V1. AholdSet‑V1 likely overfits on the training data. Hence the small
accuracy when training, validating and testing on AholdSet‑V1.

3.2. AholdSet-V2
AholdSet‑V2 is an unbalanced extension of AholdSet‑V1. AholdSet‑V2 extends AholdSet‑V1 with 709
more uncropped images of shelves. The fact that this unbalanced dataset has a different number of
images per class is not critical, as all classes have the same chance of being selected [33]. AholdSet‑V2
uses the same design criteria as AholdSet‑V1 and uses images with different lighting and blur, partially
visible products and products that look visually similar.

An important reason for extending AholdSet‑V1 to AholdSet‑V2 is the assumption that the poor unseen
performance of AholdSet‑V1 is due to classifiers overfitting on the limited amount of training classes.
Table 3.2 shows this effect measured by this paper on RP2K. Even though this test is very limited, train‑
ing, validating and testing on more classes seems to be beneficial for the accuracy of a classifier. This
means that extending AholdSet‑V1 with more classes could also improve its accuracy. Interestingly
RP2K does have a significantly higher accuracy (0.913|0.910) than AholdSet‑V1 (0.635|0.763) with the
same amount of classes. This could indicate that AholdSet‑V1 is just a harder dataset, but many differ‑
ent factors could contribute to this low accuracy. AholdSet‑V2 seems to be a better dataset however.
AholdSet‑V2 was derived from AholdSet‑V1 by adding more classes and redistributing them across the
sets while intentionally keeping similar product pairs together to increase dataset complexity. Testing
AholdSet‑V2with P>M>F yields training‑, validation‑, and test accuracieswithin a 0.96‑0.98 range, which
indicates that AholdSet‑V2’s training set is representative of its validation and test set. This range also
closely approaches themaximumaccuracyachievedbyP>M>Fonmini‑ImageNet [16]. Hence, AholdSet‑
V2 seems to be a qualitatively better dataset than AholdSet‑V1 to evaluate models few‑shot models on
for applications like Albert.

Training Classes # Validation Classes # Testing Classes RP2K Accuracy

TRIDENT
21 7 7 0.913
40 9 9 0.923
575 72 72 0.962

P>M>F 21 7 7 0.910
40 9 9 0.940
575 72 72 0.995

Table 3.2: The unseen accuracy of classifiers on RP2K as measured by this paper with a varying amount of training‑, test‑, and
validation classes. Generally having more training‑, validation‑ and test‑ classes gives a better accuracy.

SinceAholdSet‑V2 showscomparable training, validation, and testingaccuracieswhenusedwithP>M>F,
and its test accuracy closely matches the maximum accuracy of P>M>F, AholdSet‑V2 seems to be a rea‑
sonable dataset to evaluate the accuracy of models on. To evaluate the seen accuracy of AholdSet‑V2,
41 different classes were split into 15% validation‑ and 15% testing images per class. The rest of the im‑
ages were used for training data. These 41 training classes containing 70% of their original amount of
images were also used as training data in the unseen dataset to make validating and testingmodels for
seen and unseen datasets easier. The unseen dataset includes 8 different unseen classes for validation.
The unseen accuracy of models was calculated by testing them on 35 novel classes. A visualization of
both seen and unseen dataset distributions can be found in figure 3.3 on the next page. The amount of

3.2. AholdSet-V2 11

classes that are in the both seen and unseen parts of the dataset can be found in table 3.3.

Train Validation Test
Seen Classes 41 41 41

Unseen Classes 41 8 35

Table 3.3: Class distribution in seen and unseen AholdSet‑V2

Figure 3.3: The distribution of images in the seen‑ and unseen AholdSet‑V2. Training data is the same for both sets to make
validating and testing the seen‑ and unseen dataset easier.

4
Analysis of P>M>F and TRIDENT

Both TRIDENT and P>M>F are extremely good state‑of‑the‑art classifiers that have respective 5‑shot ac‑
curacies of 95.95% and 98.0% on mini‑ImageNet. To answer the research question set in this paper:
“What few‑shot classifier can identify products in a supermarket environment, is able to detect
non‑target classes, and meets the requirements of deployment on a robotic platform like Albert
best?“, it is important to measure how both few‑shot classifiers perform in terms of the requirements
of this paper. This chapter will specify the experiments done to measure those requirements and the
results that follow these experiments.

P>M>F however makes an assumption about its data that make it ultimately unsuitable to be used on
a supermarket robot: query images are always classified as the most likely target product. Especially
whenaquery imageendsupbeing ahuman, classifying it as the likeliest product is dangerous. However
P>M>F might still perform better on other requirements, which is why this chapter answers the sub‑
question:Whichof the current state‑of‑the‑art few‑shot classificationmodelsTRIDENTandP>M>F
can be used best as a classifier for Albert? If neither of themmeets Albert’s requirements or P>M>F is
selected as the bestmodel, the bestmodelwill be adapted to amodel that can both classify non‑classes
and fits Alberts’ requirements.

4.1. Experiments
To determine what few‑shot classifier is best, it is important to evaluate how well P>M>F and TRIDENT
pass the requirements set in this paper. P>M>F and TRIDENT are compared on four important metrics
coming from the requirements: 1) Inference time; 2) Memory Usage; 3) Accuracy on seen classes; and
4) Accuracy on unseen classes; The amount of shots or example images that models use has influence
on all of thesemetrics. Inference timewill be longer andmemory usage will be higher when comparing
to more example images, but accuracy might also increase. For this reason, P>M>F and TRIDENT are
compared in 1‑, 3‑ and 5‑shot settings.

4.1.1. Accuracy on seen- and unseen datasets
To test bothmodels’ seen‑ andunseenaccuracy, they are evaluatedonAholdSet‑V1 in a few‑shot setting.
Eventually this paper is interested in determining the accuracy of a model in a realistic supermarket
setting, where a classifier has to distinguish target picking classes from non‑target classes, but P>M>F
can not do this. To still compare TRIDENT andP>M>F, they bothwill be evaluated in the few‑shot setting
they are designed for, rather than in a setting where non‑classes have to be identified. Theymodel with
the highest accuracy will be preferred in this case. Logically a model that can distinguish classes better,
will also be better at distinguishing them from non‑classes. This is because when a model learns class
boundaries well, it can use that knowledge to decide if new items fit into a class or not. This means
that all query image classes will be the same as example classes for all accuracy tests with TRIDENT and

12

4.2. Results 13

P>M>F.

4.1.2. Memory usage and inference time
Another experiment will be done to test memory usage and inference time. For this a computer with
an NVIDIA GeForce RTX 2080 SUPER GPUwill be used. Bothmodels will be tasked to repeatedly classify
one image with a 5‑way, N‑shot‑classifier. The inference time per image is calculated by running infer‑
ence over 10.000 images, measuring the total inference time for this operation and dividing this by the
amount of images. Memory usage is evaluated during inference. It is averaged over 5 different captures
that are taken roughly 30 seconds apart.

4.2. Results
The figure below (figure 4.1) shows the results of P>M>F and TRIDENT on the requirements specified in
this paper. These results have been producedwith the two experiments set out in section 4.1. They will
be evaluated on every requirement set in this paper separately in the sections below.

Figure 4.1: Comparison of P>M>F and TRIDENT (Accuracy on AholdSet‑V1, Memory Usage and Inference Time). P>M>F has a
consistently higher accuracy than TRIDENT in all settings and passes the memory usage requirement set in this paper, just like
TRIDENT. Both models however fail to have inference times lower than 3.6 ms and are therefore not suited for visual servoing.
However the architecture of P>M>F allows for inference time‑optimizations. This and its consistently better accuracy make

P>M>F preferred over TRIDENT.

4.2.1. Inference Time
The requirement this paper sets for inference time is: The model’s inference time should be as low as
possible, but models with a high detection accuracy are preferred over those with a low inference time.
To still have good closed‑loop object tracking, this paper requires a maximum inference time of 3.6 ms
per query image. TRIDENT has a consistently lower inference time than P>M>F. However TRIDENT still

4.2. Results 14

has a minimum inference time of 15.9 ms per image, which is much more than the 3.6 ms required for
visual servoing. Thismakes bothP>M>F,with an inference timebetween 26.9 and 65.7ms, andTRIDENT
unacceptable for use on Albert.

Doingheavy calculationsbeforedeploymenthowevermight heavily decrease inference time. Especially
since products are static and will not change during deployment, product features could be calculated
beforehand. For TRIDENT this is not possible. TRIDENT encodes query and support images transduc‑
tively, which means that for every classification all support images, combined with all query images,
have to be converted to features. P>M>F however compares query image features only to a support
prototype. This support prototype is by default always calculated from example images of a product
during deployment, but this can also very well be done before deployment. If product prototypes are
calculated before deployment, P>M>F can skip heavy calculations during inference, which makes for a
faster classifier. This change will also ensure that the inference time and memory usage of P>M>F be‑
come invariant to thenumberof example images, as theprocessof calculatingprototypes fromexample
images during deployment will no longer occur.

4.2.2. Memory Usage
This paper sets the following requirement for memory usage: As a design decision, inference GPU mem‑
ory usage should be below 4GB. Even though P>M>F consistently uses about 70% more GPU memory
than TRIDENT, both models pass this papers’ requirement. With P>M>F and TRIDENT having a maxi‑
mummemory usage of respectively 1790 and 1071 MiB, they can both run on lower‑end GPU with 4GB
memory.

4.2.3. Accuracy on Seen Dataset
The accuracy requirement to classify product classes seen during training set by this paper is: The pre‑
ferred few‑shot method should have the highest possible accuracy in a realistic supermarket setting for
product classes that are seen during training. As a design decision, this should be at least 90%. As dis‑
cussed in section 4.1, the accuracy of P>M>F and TRIDENT has not been determined in a realistic su‑
permarket setting, but rather in a few‑shot setting on a realistic supermarket dataset. This means that
it is not possible to use the 90% accuracy threshold set in the requirements as an absolute measure,
since the way that this accuracy is measured is different. Instead, when it comes to accuracy, the best
performing model will be the preferred model to use as a base classifier.

Seen accuracies are high for bothmodels, especially in the 5‑shot setting. Interestingly, P>M>F’s 1‑shot
accuracy (99.2%) is notmuchdifferent from it’s 5‑shot accuracy (99.5%). This indicates thatP>M>F isbet‑
ter at extracting generalized class‑representative features per image than TRIDENT. This is highlighted
by the fact that using 5 instead of 1 example images per class only increases its accuracy by 0.3%. TRI‑
DENT, on the other hand needsmore examples per class to functionwell. Withmore examples TRIDENT
predicts amoremeaningful class mean and standard deviation in feature space. With 94.8% in a 5‑shot
setting, it has a 13.7% higher accuracy than in a 1‑shot setting, but still performs worse than P>M>F. Be‑
cause P>M>F has a consistently higher seen accuracy, even in a 1‑shot setting, it is the preferred pick to
classify seen products.

4.2.4. Accuracy on Unseen Dataset
This paper sets the requirement for product classes not seen during training to be: The preferred few‑
shotmethod should have the highest possible accuracy in a realistic supermarket setting for novel product
classes that are not seen during training. As a design decision, this should be at least 90%. Both models
understandably perform worse on an unseen dataset than on a seen dataset. After all, they have only
learned to extractmeaningful features that differentiate between seen classes. Unseen classesmight be
characterized by different features. P>M>F however consistently outperforms TRIDENT on the unseen
dataset as well. TRIDENT has a minimum accuracy of 75.1% and a maximum accuracy of 88.9%, while
P>M>F has accuracies of 89.6% to 96.8%. Because P>M>F consistently performs better than TRIDENTon
unseen products, P>M>F is the preferred choice when it comes to unseen accuracy.

4.3. Conclusion 15

4.3. Conclusion
This chapter addresses the subquestion: Which of the current state‑of‑the‑art few‑shot classifica‑
tionmodels TRIDENT and P>M>F can be used best as a classifier for Albert?. To determine the opti‑
mal classifier for Albert, P>M>FandTRIDENTare comparedbasedon the criteria set in this paper. P>M>F
consistently demonstrates exceptional accuracy for both seen and unseen products and outperforms
TRIDENT in both settings. On AholdSet‑V1, P>M>F achieves unseen accuracies ranging from 88.9% to
96.8%, and seen accuracies between 99.2% and 99.5%, whereas TRIDENT’s highest unseen and seen
accuracies are only 88.9% and 94.8%, respectively. Thus, in terms of accuracy P>M>F is the preferred
choice as a classifier for Albert. Both P>M>F and TRIDENT meet the memory usage requirement of this
paper (below 4GB), but their high inference time makes them ultimately unsuitable to integrate on Al‑
bert. TRIDENT, with the lowest inference time of the two, takes 15.9 ms per image, well beyond this
paper’s maximum requirement of 3.6 ms per image. Consequently, neither P>M>F nor TRIDENT are
suitable for visual servoing

Pre‑calculating prototypes for products before deployment, which is only possible with P>M>F, has the
potential to significantly reduce inference time however. Additionally, this approach offers the advan‑
tage that P>M>F’s inference time andmemory usage become invariant to the number of shots or exam‑
ple images used for each product. Thismeans that the classifier with the highest performance— 5‑shot
P>M>F in this case — can be selected without concern for increased inference time or memory usage
due to additional example images. Especially since TRIDENT can never be fast enough to use on Albert,
the high performance of P>M>F, coupled with its anticipated decrease in inference time, makes P>M>F
themost attractive choice as a classifier for Albert. However, this means that P>M>F has to bemodified
to accommodate the classification of non‑classes.

5
Product-ProtoNet

With its high accuracy on both seen and unseen classes and its memory usage suited for a lower‑end
GPU,P>M>F is a great optionas abase for a classifier for Albert. P>M>Fhowever has twomajor problems
that require solving in order for it to work on Albert: 1) It’s inference timemakes it unsuitable for visual
servoing. For visual servoing a maximum of 3.6 ms per image is acceptable, but P>M>F takes at least
26.9ms to classify one single image; and 2) P>M>F, likemost few‑shotmodels cannot classify non‑target
classes and instead always matches images to their likeliest product class; In this chapter, solutions to
both of these problems are proposed. The model that incorporates these solutions is called Product‑
ProtoNet, as it classifies products with a classifier based on ProtoNet, using insights given by P>M>F.

As the previous chapter answered the sub‑question: ”Which of the current state‑of‑the‑art few‑shot
classification models TRIDENT and P>M>F can be used best as a classifier for Albert?” by declar‑
ing P>M>F the most attractive choice, this chapter will focus on this paper’s second sub‑question: ”If
this classifier does notmeet all requirements or can not classify non‑target classes, how can it be
modified to be fit for Albert?”

5.1. Introduction of Product-ProtoNet
BecauseP>M>Fmakes for suchanexcellent base in termsof accuracy, Product‑ProtoNet is largely based
on P>M>F, especially on its suggested implementation of ProtoNet. Meaning standard ProtoNet with a
cosine distance classifier instead of Euclidean and with a ViT‑small feature extractor pre‑trained with
DINO insteadofaCNNthat is trained fromscratch. Product‑ProtoNethowevermakessignificant changes
to the ProtoNet architecture. Instead of utilizing a softmax predictor to assign the likeliest support class
as the query class, Product‑ProtoNet uses a sigmoid predictor that predicts what cosine distance is ac‑
ceptable for query images to belong to a class. To maintain the ProtoNet‑like functionality to assign
query images to the most probable class, Product‑ProtoNet compares query images to several helper
classes and the target class, and selects the most probable option. Helper classes are classes that are
most similar to the target class. They aid in determining the class of a query image, especially when
comparing very similar products. The complete architecture of Product‑ProtoNet is illustrated in figure
5.1 on the next page.

16

5.1. Introduction of Product-ProtoNet 17

Figure 5.1: The architecture of Product‑ProtoNet, which is very similar to the architecture of P>M>F. Only a simple sigmoid
classifier is trained to tell classed apart based on their cosine distance. During deployment one can choose to add helper
prototypes to achieve better performance on similar unseen products. Pre‑computed prototypes are denoted as P, support

images as S and query images as Q.

5.1.1. Mathematical formulation of Product-ProtoNet
The general idea of Product‑ProtoNet becomes clear in figure 5.1. This section gives a mathematical
formulation of this idea andmakes Product‑ProtoNet a reproducible and usable model.

Product‑ProtoNet, just like ProtoNet uses prototypes to compare query images to. Given a small sup‑
port set (Sk) of labeledclass examples, {{x1, y1}, {x2, y2}, ..., {xN , yN}}wherexi denotes theexample
image and yi ∈ {1, ...,K} denotes the class this example has, a prototype (ck) is constructed for every
class k by calculating the mean of all class image features, using the following formula:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fϕ(xi) (5.1)

Here fϕ(x) is a feature embedding function with learnable parameters ϕ. In ProtoNet fϕ(x) is a CNN,
while Product‑ProtoNet uses a pre‑trained ViT as feature extractor.

ProtoNet uses a softmax function, together with a function of the distance between query features and
prototypes d(fϕ(x), ck) to predict the likeliness that a query image x belongs to class y. This function
compares the distance of query features to all prototypes and is given by:

pϕ,w,b(y = k|x) = exp(−(w ∗ (d(fϕ(x), ck) + b))∑K
k′=1 exp(−(w ∗ (d(fϕ(x), ck) + b))

(5.2)

In ProtoNet, d(fϕ(x), ck) represents the Euclidean distance between fϕ(x) and ck. The weight w and

5.1. Introduction of Product-ProtoNet 18

bias b are respectively fixed at 1 and 0, and are not learnable. P>M>F deviates from this and uses cosine
distance along with learnable weight and bias parameters, which can sharpen the softmax output.

Product‑ProtoNet however uses a different prediction metric. The output of a softmax‑predictor will
always sum to 1, and in situations where Albert sees products that do not belong to a target class, this
behaviour is undesirable. With a softmax‑predictor it is impossible that all example classes have a like‑
liness of 0, meaning they can not all be classified as not‑a‑product. This is one of the major problems
of P>M>F and specifically this means that an algorithm that uses a softmax‑predictor will always favor
the likeliest match from a series of options, or prototypes in this case. Especially P>M>F with a high
weightw (see equation 5.2), will always match features that lay slightly closer to one prototype to that
prototype class. For this reason Product‑ProtoNet uses a sigmoid classifier for predicting the likelihood
that a query image is the same class as a target prototype, as its output is unaffected by the relationship
between prototypes and it can assign a likelihood of 0 for all prototype classes. The formula for this is
given by:

pϕ,w,b(y = k|x) = σ(w ∗ d(fϕ(x), ck) + b) (5.3)

Here σ(x) is a sigmoid function that is used to clamp predictions between 0 and 1. w and b are a learn‑
able weight and bias and can be used to translate a cosine distance to a likelihood.

As classes can also be not the target class, the likeliness that a class is not class k is given by:

pϕ,w,b(y ̸= k|x) = 1− pϕ,w,b(y = k|x) (5.4)

Product‑ProtoNet assumes that if p(y ̸= k|x) > p(y = k|x), y is not class k.

Using a sigmoid‑ instead of a softmax classifier however means that essential information about the
relationship between prototypes is lost. Picking themost likely froma number of examples seems like a
reasonable classification strategy, especially for classes that look very similar. With a sigmoid classifier,
every class is classified without regard for other classes however. If Albert were to classify e.g. chunky
peanut butter as chunky or smooth peanut butter, a sigmoid classifier could wrongfully classify them
as both viable options. This risk is especially apparent for unseen classes, for which a classifier has not
learned to encode them apart in the feature space. A sharp softmax‑classifier could instead attribute a
query image to its likeliest class. It could correctly see that a query image of chunky peanut butter looks
slightly more similar to a chunky peanut butter prototype and thus classify it as such. Implementing
this likeliest‑class selection in Product‑ProtoNet gives a function that is very similar to equation 5.2with
a large weightw:

pϕ,w,b(y = k|x) =

{
hϕ,w,b(x, ck), if k = argmaxn(hϕ,w,b(x, cn))

0, otherwise
(5.5)

Here hϕ,w,b(x, ck) is given by equation 5.3 and n ∈ {1, ...,K}, where K is the total number of classes or
prototypes that is selected. Thismeans that only the likeliest class k fromK different classes can be the
actual query class, as the likelihood pϕ,w,b(y = k|x) for all other classes is set to 0.

Arguably this has themost effect for classes that lay close together in feature space andnot for randomly
selected classes. After all, this paper trains a sigmoid predictor specifically to do the latter, and similar
unseen classes are expected to be the hardest to classify with any classifier. To select closest classes
during inference, Product‑ProtoNet will use the following formula:

top‑K‑selectorn(d(ck, cn)) (5.6)

n ∈ {1, ..., N}, where N is the total amount of product classes. Here a top‑K‑selector will select the K
most similar classes that will be used in equation 5.5. Similar classes are defined as classes for which
the cosinedistancebetween target class ck andprototype cn is highest,meaning they are close together.
These close classes are called helper prototypes, as they help distinguish a target picking prototype ck
from other classes.

5.1. Introduction of Product-ProtoNet 19

5.1.2. Other design choices
Images passed into Product‑ProtoNet are assumed to be of one and only one product. Even if an image
were to contain multiple products in very rare and exceptional cases, Product‑ProtoNet should deter‑
mine if the image contains the target class or not. This means that the model can be forced to predict
whether a query image belongs to one and only one class. For this reason Product‑ProtoNet will use
binary cross entropy as a loss function, in contrast to ProtoNet that uses cross entropy.

Product‑ProtoNet will be trained to classify one target class and one random non‑target class. This
forces it to learn what cosine distance is acceptable to classify query images as a target class. If two
similar classes are selected, the classifier will likely tend to classify them as the same class, resulting in
a high loss, telling the classifier to move these classes further apart in feature space.

A big advantage of using P>M>F as a base‑architecture over TRIDENT is that P>M>F does not extract fea‑
tures transductively, a better accuracy in any setting. P>M>F only takes prototypes, constructed from
example images, into account for calculating the distance to query features in feature space. As prod‑
uct prototypes are static, a prototype for every product can be calculated before deployment, saving on
calculations during deployment. This means that Product‑ProtoNet can be deployed in amemory‑ and
inference time optimized way, where prototypes are calculated before query inference from all avail‑
able product images. During runtime the model only has to compare a query image to the selected
prototype.

5.1.3. Assumptions of Product-ProtoNet
Like any neural network, Product‑ProtoNet makes assumptions that simplify reality. Listed below are
the most important ones:

• Because this assumption works very well for P>M>F and TRIDENT, Product‑ProtoNet too assumes
a gaussian distribution of class features.

• A query image is deemed not to be the target picking class if it is more likely to not belong to the
target class than tobelong to it. Practically thismeansProduct‑ProtoNetusesa likelihood threshold
of 0.5 to determine if query images belong to a class.

• Query images in Product‑ProtoNet contain one and only one product at a time.
• Product‑ProtoNet is able to linearly separate products on their distance in feature space. Without
this, attributing query images to their closest prototype would not be possible.

• Training a sigmoid classifier on random classes is equally effective as training a softmax classifier
on random classes.

5.1.4. Hyperparameters
To keep the results of Product‑ProtoNet as comparable to the results of P>M>F as possible, Product‑
ProtoNet has been trained with on the same random seed and with the same backbone learning rate
as P>M>F. Product‑Protonet, however, is granted a higher learning rate than P>M>F for its weight and
bias in its sigmoid classifier (see equation 5.3). Thismakes it less dependant on perfect initialization. An
overview of the hyperparameters used is given in table 5.1.

5.2. Experiments 20

Hyperparameter P>M>F Product‑ProtoNet
n_training_epochs* 2000 2000
scheduler* cosine cosine
n_warmup_epochs* 5 5
warmup_lr* 1e‑6 1e‑6
minimal_lr* 1e‑6 1e‑6
backbone_lr 5e‑5 5e‑5
clf_lr 5e‑5 5e‑2

Table 5.1: *same for classifier and backbone
All hyperparameters have been kept the same between P>M>F and Product‑ProtoNet for optimal comparison. Product‑ProtoNet

however is allowed a higher learning rate for it’s sigmoid classifier, as this makes it less dependent on perfect initialization.

5.1.5. Subquestions associated with Product-ProtoNet
The research question of this paper is: What few‑shot classifier can identify products in a supermar‑
ket environment, is able to detect non‑target classes, andmeets the requirements of deployment
ona robotic platform likeAlbert best? BecauseP>M>Fwas selected as thebestmodel to use as abase,
but did not fit the requirements of this paper and couldnot classify non‑classes, this chapter asks the fol‑
lowing sub‑question: If this classifier does notmeet all requirements or can not classify non‑target
classes, how can it be modified to be fit for Albert? Product‑ProtoNet seems the ideal method to
reduce inference time for visual servoing and to classify non‑target products accurately. It retains the
components that make P>M>F so succesful: 1) using a pre‑trained feature extractor; and 2) picking the
likeliest option from a number of prototypes, as P>M>F does with ProtoNet; It is however important to
evaluate if Product‑ProtoNet is indeed as perfect as it seems. To do this, this chapter’s sub‑question is
split into several different smaller questions:

1. How good is Product‑ProtoNet at classifying non‑classes, considering how crucial this is for a few‑
shot model on Albert?

2. HowdoesProduct‑ProtoNet compare toP>M>F, given thathelperprototypesaimtogive it ProtoNet‑
and thus P>M>F‑like function?

3. Howmany helper prototypes are needed in a realistic supermarket situation?
4. How effectively does Product‑ProtoNet distinguish class features in the feature space, as this is a

crucial aspect for the effectiveness of helper prototypes?
5. How well does Product‑ProtoNet perform on this paper’s inference time, memory usage and accu‑

racy requirements?

5.2. Experiments
To answer the question: If this classifier does not meet all requirements or can not classify non‑
target classes, how can it bemodified to be fit for Albert?, the sub‑questions introduced in the previ‑
ous section will be evaluated. The evaluation method for each specific subquestion is specified below.
As AholdSet‑V2 proved to be better fit to evaluate unseen accuracies on than AholdSet‑V1 (chapter 3),
all evaluations of Product‑ProtoNet are done on AholdSet‑V2.

5.2.1. Non-class classification capability
The first experiment tries to answer the sub‑question: How good is Product‑ProtoNet at classifying non‑
classes, considering how crucial this is for a few‑shot model on Albert? To assess this, Product‑ProtoNet
with one helper prototype is used to predict if the non‑target class, closest to the target class in cosine
distance, is the target class or not. The amount of times Product‑ProtoNet does this correctly is then
dividedby the total amountof attempts toget toanaccuracy. Tocompare this toabaseline, theaccuracy
of P>M>F is evaluated on the same task.

5.3. Results 21

5.2.2. Similarity to ProtoNet
The second experiment attempts to answer the sub‑question: How does Product‑ProtoNet compare to
P>M>F, given that helper prototypes aim to give it ProtoNet‑ and thus P>M>F‑like function? To see how
well Product‑ProtoNet compares to P>M>F, the accuracy of both methods is tested in a P>M>F‑like set‑
ting. In this setting, query images can only belong to one of the support classes. Rather than evaluating
on randomclasses, classes that are close in cosine distancewill be chosen to evaluate classifiers in their
extreme. To see if helper prototypes do indeed give Product‑ProtoNet a P>M>F‑like function, Product‑
ProtoNet is evaluated with‑ and without helper prototypes. If Product‑ProtoNet with helper prototypes
has a similar accuracy to P>M>F, it suggests two things: 1) Selecting the likeliest prototype from a num‑
ber of prototypes is a key factor in P>M>F’s success; and 2) Training Product‑ProtoNet to distinguish
between target and random non‑target classes is as effective as P>M>F.

5.2.3. Helper prototypes in a realistic supermarket
The third experiment evaluates the sub‑question: How many helper prototypes are needed in a realis‑
tic supermarket situation? As made clear in the introduction, this paper assumes that a realistic and
arguably challenging supermarket setting is represented by a shelf with 10 very similar products on
it, from which one has to be correctly classified as the target picking class. How accurately Product‑
ProtoNet can distinguish target classes from similar‑looking classes is evaluated in this realistic super‑
market scenario, with a varying amount of helper prototypes. The amount of helper prototypes is varied
between 0 and 9, the maximum amount of visible non‑target products.

5.2.4. Feature separation
The fourth experiment aims to answer the sub‑question: How effectively does Product‑ProtoNet distin‑
guish class features in the feature space, as this is a crucial aspect for the effectiveness of helper proto‑
types? To achieve this, the paper utilizes T‑SNE [54] (t‑Distributed Stochastic Neighbor Embedding) to
transform its original 384‑dimensional prototype and example images into a 2D representation. T‑SNE
is a nonlinear dimensionality reduction algorithm designed to preserve the original distance distribu‑
tion between points while projecting them to a lower‑dimensional space. Because T‑SNE can handle
various distance distributions, the cosine distance between features can be used as a metric. As T‑SNE
will then visualize how far features are apart in cosine space, this projection can be used to analyze how
well classes are separable in cosine space.

5.2.5. Performance on requirements
The fifth and final experiment with Product‑ProtoNet answers an important part of the research ques‑
tion of this paper: ”What few‑shot classifier can identify products in a supermarket environment,
is able to detect non‑target classes, andmeets the requirements of deployment on a robotic plat‑
form like Albert best?” by answering the question: How well does Product‑ProtoNet perform on this
paper’s inference time, memory usage and accuracy requirements? Product‑ProtoNet is evaluated on
this paper’s requirements in a similar manner to TRIDENT and P>M>F. Save for the accuracy, which is
calculated in a realistic supermarket setting instead of in a P>M>F‑like manner (see section 5.2.3). The
inference time for Product‑ProtoNet is determined by measuring the time taken to classify 10,000 dif‑
ferent images, and the average inference time per image is then calculated. It is assumed that a new
target class is selected every 150 images. Similar to P>M>F and TRIDENT, inference times are computed
using an NVIDIA GeForce RTX 2080 SUPER GPU. Product‑ProtoNet’s memory usage is monitored during
inference and averaged over 5 different captures. Product‑ProtoNet’s inference time‑, memory usage‑
and accuracy metrics are calculated for Product‑ProtoNet with different amounts of helper prototypes.

5.3. Results
With the experiments set out in the previous section, the results of the analysis of Product‑ProtoNet
on various sub‑questions are specified in this section. Every research question has its on section with
results that apply to that specific question.

5.3. Results 22

5.3.1. Non-class classification capability

Figure 5.2: With an accuracy of 96.6% on seen classes and an accuracy of 99.3% on unseen classes, Product‑ProtoNet is clearly
good at classifying non‑classes. P>M>F on the other hand can not do so and always classifies query classes as the target class,

resulting in an accuracy of 0% for both seen and unseen classes.

Figure 5.2 showcases Product‑ProtoNet’s accuracy on the arguably very challenging task to distinguish
very similar non‑target classes from target classes. Product‑ProtoNet achieves unseen and seen accura‑
cies of respectively 96.6%and99.3%on this task. P>M>Fon theother hand is not designed for non‑class
classification, and it consistently misclassifies non‑target classes as the target class. This leaves P>M>F
with an accuracy of 0%. Thus, to answer: ”How good is Product‑ProtoNet at classifying non‑classes, con‑
sidering how crucial this is for a few‑shot model on Albert?”, it is evident that Product‑ProtoNet is indeed
very good at classifying non‑classes, as is supported by its impressive performancemetrics.

5.3. Results 23

5.3.2. Similarity to ProtoNet

Figure 5.3: By transforming P>M>F into Product‑ProtoNet (replacing its softmax classifier with a sigmoid classifier and
incorporating helper prototypes as a ProtoNet‑like mechanism to classify a product as its likeliest prototype), its performance
closely matches P>M>F. Highlighting how important a ProtoNet‑like mechanism is for both P>M>F and Product‑ProtoNet.

Product‑ProtoNet is heavily based on the implementation of ProtoNet as suggested by P>M>F. However,
since a sigmoid‑predictor can only predict if query images are in the right cosine distance threshold to
be considered the same class as a target class, predicting this for classes that are very close together
in feature space, but slightly different is hard. For this reason Product‑ProtoNet uses helper prototypes
to attribute query images to the closest class, instead of only looking at the absolute difference. This
should give Product‑ProtoNet a similar functioning to P>M>F.

That this indeedhappens becomes clear in figure 5.3. Product‑ProtoNetwithout helper prototypes func‑
tions poorly when classifying similar classes in a P>M>F‑like setting, with an accuracy even dipping to
61.0%. When P>M>F is allowed to use helper prototypes to attribute query images to a likeliest class
however, its accuracy becomes similar to P>M>F’s accuracy. This indicates two things: 1) Choosing the
likeliest from a number of classes is a mechanism that makes both P>M>F and Product‑ProtoNet work
very well; and 2) Training Product‑ProtoNet with a sigmoid classifier to tell random classes apart from
target classes is enough to make Product‑ProtoNet yield a P>M>F‑like accuracy.

Curiously, classifying 3 similar products seems slightly harder than classifying 2 similar products for a
pure sigmoid classifier, but that might simply be because there are more products to misclassify, so
overall products will have the right classification less often. Classifying 7 products on the other hand
seems to go better more often, but this likely is because AholdSet‑V2 has only 35 test classes and taking
7 classes that the most similar, might yield a 6th or 7th class that is not extremely similar to the target
class, yet still the most similar of all other possible classes.

To answer the question: ”How does Product‑ProtoNet compare to P>M>F, given that helper prototypes
aim to give it ProtoNet‑ and thus P>M>F‑like function?”, Product‑ProtoNet is indeed very similar to P>M>F,
when tested in a P>M>F‑like setting. For this it needs helper prototypes, which do indeed give it a
ProtoNet‑like function.

5.3. Results 24

5.3.3. Influence of helper prototypes

Figure 5.4: As expected, more helper prototypes help increase the accuracy of a classifier. Adding one prototype however gives
the most significant increase in accuracy: 0.93 to 0.97 for seen classes and 0.76 to 0.90 for unseen classes.

Figure 5.4 shows the results of the experiment to answer the question Howmany helper prototypes are
needed in a realistic supermarket situation? This scenario mimics a situation where one product is sur‑
rounded by 9 products, similar in feature space. This roughly resembles a shelf with 10 products with
similar brand logos, colors, or general product categories. As expected, Product‑ProtoNet with asmany
helper prototypes as visible products works best, especially for unseen products. One helper prototype
is however enough to boost Product‑ProtoNet’s seen and unseen performance over the 90%‑accuracy
threshold set by this paper.

Interestingly, the features of unseen classes are better separable on cosine distance for unseen classes
than for seen classes. This means that the effectiveness of using more prototypes is limited by the fea‑
tures extracted for seen classes. Effectively this means that for identifying seen classes 4 helper proto‑
types yield an accuracy of 99.0%, and 9 prototypes only raise this to 99.1%. For unseen classes 9 helper
prototypes result in a 99.8% accuracy. Likely this means that training Product‑ProtoNet to distinguish
a target class from a random class is not enough to push it to always separate similar classes in feature
space. As clearly it can only separate products seen during training in 99.1% of the cases. Likely the
unseen set contains less classes that the classifier finds hard to separate in feature space, which is why
Product‑ProtoNet’s unseen accuracy is higher. Likely the pre‑training of Product‑ProtoNet’s feature ex‑
tractor also contributes to this. Still, this 99.1% accuracy on seen classes is more than enough to pass
the accuracy threshold of this paper.

5.3. Results 25

5.3.4. Feature separation

Figure 5.5: a) T‑SNE dimensionality reduction of product prototype features with a cosine metric; and b) A selection of products
with per‑image features, visualized with T‑SNE. Products with similar color, brand or product type are often closer in cosine

distance. The analysis of individual class features shows that most products are separable on cosine distance, even for visually
very similar products such as the Zaanse Hoeve products. Some extremely similar products, such as the Conimex spice mixes

are barely seperable however.

Figure 5.5 shows a T‑SNEprojection of a) All product prototypes; andb) A selection of products forwhich
all image features are visualized; In figure 5.5a it becomes clear that products of similar color, brand or
product type are often closer together in feature space. Additionally, most product prototypes appear
relatively separate in feature space. Notable outliers include theConimex spicemixes andKokhThai red
and green curry. The latter is suprising, because both products have a very different color scheme and
other products with a similar layout but a different color schema are further apart in cosine distance.
However only one of the Kokh Thai mixes was a training class, so Product‑ProtoNetmight not have had
the initiative to put them apart in feature space.

Figure 5.5b shows a selection of products with their individual image features projected to 2D by T‑SNE
with a cosine distance metric. Most classes, even visually very similar products like the yoghurts of the

5.3. Results 26

Zaanse Hoeve brand are well separable in cosine distance, save for a few outliers. However 23_Con‑
imex_Kip_Kerrie_Madras and 24_Conimex_Nasi_Speciaal are barely separable in cosine distance. This
could be attributed to their extreme visual similarity, even to the human eye, especially from further
away. Bothwere training classes, but since training‑ and target classes are randomly selected, the prob‑
ability of both being selected simultaneously is low. Moreover, considering that training images consist
of a wide variety of image perspectives, the likelihood that for both classes example images from fur‑
ther away are selected is even lower. As such themodelmay not have had enough initiative to separate
them in feature space, especially not for images from further away. So to answer the question: How
effectively does Product‑ProtoNet distinguish class features in the feature space, as this is a crucial aspect
for the effectiveness of helper prototypes?, most products are very well separable on cosine distance in
feature space, save for some outliers for which Product‑ProtoNet might not have had enough initiative
to put them apart in feature space.

5.3.5. Performance on requirements
This final results section answers the question: Howwell does Product‑ProtoNet perform on this paper’s
inference time, memory usage and accuracy requirements? Arguably this is one of the most important
sub‑questions introduced in this chapter, as this determines whether Product‑ProtoNet is suitable for
Albert or not.

Architecture Helper
Prototypes

Inference time
/ image (ms)

GPUmemory
usage (MiB)

Training
Time (hr)

P>M>F (5‑shot,5‑way) ‑ 65.55 1790 11

Product‑ProtoNet

9 2.89 2460 8
4 2.83 2462 8
3 2.78 2460 8
2 2.75 2554 8
1 2.76 2464 8
0 2.73 2496 8

Table 5.2: The inference time and GPU usage of Product‑ProtoNet. The results of 5‑shot, 5‑way P>M>F (see chapter 4) have been
added as a baseline. Comparing to multiple helper classes has no noticable effect on the inference time per image.

Product‑ProtoNet’s inference time‑optimized deployment makes it an attractive choice for real‑life de‑
ployment. It hasan inference timeof 2.73‑2.83ms (see table5.2), 22 to24‑times lower than5‑shot, 5‑way
P>M>F.With any number of helper prototypes Product‑ProtoNet passes the inference time requirement
set by this paper: Themodel’s inference time should be as low as possible, butmodels with a high
detection accuracy are preferred over those with a low inference time. To still have good closed‑
loop object tracking, this paper requires a maximum inference time of 3.6 ms per query image.
Table 5.2 shows that its memory usage also is consistently below themaximumof 4GB set by this paper
in this requirement: As a design decision, inference GPUmemory usage should be below 4GB.

Architecture Helper
Prototypes

Accuracy in a realistic supermarket setting
Seen Products Unseen Products

Product‑ProtoNet

9 99.1% 99.8%
4 98.7% 97.4%
3 98.7% 97.4%
2 98.4% 95.2%
1 96.9% 90.3%
0 92.7% 75.8%

Table 5.3: A tabular summary of the results in section 5.3.3. The accuracy of Product‑ProtoNet on seen and unseen products in a
realistic supermarket scenario.

To verify that Product‑ProtoNet passes the seen and unseen accuracy requirements set in this paper:

5.4. Conclusion 27

The preferred few‑shotmethod should have the highest possible accuracy in a realistic supermar‑
ket setting for product classes that are seen during training. As a design decision, this should be
at least 90%.; and The preferred few‑shot method should have the highest possible accuracy in
a realistic supermarket setting for novel product classes that are not seen during training. As a
design decision, this should be at least 90%., the results in section 5.3.3, have been reformatted in
tabular form (table 5.3). Product‑ProtoNet passes the accuracy requirement for seen products without
any helper prototypes, but needs at least one prototype to pass it for novel products. As this paper re‑
quires to the accuracy on both to be as high as possible, 9 helper prototypes seem to be most ideal for
Product‑ProtoNet in a realistic supermarket situation.

However, as discussed in the introduction of this paper, a faster yet slightly less accurate model is pre‑
ferred over slower,more accurate ones. This is because Albert selects the productwith the highest num‑
ber of detections during a visual servoing period for picking. Since all of Product‑ProtoNet’s inference
times fall between 2.73 and 2.89ms, and themaximum required inference time for visual servoing is 3.6
ms, Product‑ProtoNet will typically have one and sometimes two detections per visual servoing period
for any number of prototypes.

In practical terms, this means that Albert often has only one detection to work with for any number
of prototypes, making the accuracy of this single detection limiting to Albert’s overall accuracy. Con‑
sequently, Product‑ProtoNet with 9 helper prototypes, which has the highest accuracy of all, remains
the preferred solution of this paper. Especially since with an inference time of 2.89 ms, a GPU memory
usage of 2460 MiB and seen‑ and unseen accuracies of respectively 99.1% and 99.8% it also passes all
requirements set in this paper gloriously.

5.4. Conclusion
This chapter tries to answer the following research question: If this classifier does not meet all re‑
quirements or can not classify non‑target classes, how can it bemodified to be fit for Albert? This
chapter takes the twomost important concepts from P>M>F to create Product‑ProtoNet: 1) A good pre‑
trained feature extractor; and 2) Attributing query images to their most likely class, which P>M>F does
with ProtoNet; Unlike from P>M>F, Product‑ProtoNet can reliably separate non‑target classes from tar‑
get classes (section 5.3.1). That both Product‑ProtoNet and P>M>F benefit from attributing query im‑
ages to their most likely class becomes clear in section 5.3.4. In fact, Product‑ProtoNet with helper pro‑
totypes, that essentially take up this function, has a similar accuracy to P>M>F. Furthermore it is clear
that Product‑ProtoNet benefits from having as much helper prototypes as visible non target products
(section 5.3.3). Product‑ProtoNet with 9 helper prototypes has an inference time of just 2.89ms, amem‑
ory usage of 260 MiB and an unseen‑ and seen accuracy of respectively 99.1% and 99.8% in a realistic
supermarket setting (section 5.3.5). This means that Product‑ProtoNet is indeed a suitable model for
Albert, that can detect non‑classes and fits its requirements.

6
Product-ProtoNet On Albert

With an inference timeof 2.89ms, a seen accuracy of 99.1%, an unseen accuracy of 99.8%andamemory
usage lower than 4 GB, Product‑ProtoNet seems the perfect model to work well on Albert. To evaluate
Product‑ProtoNet’s accuracy on a dataset, distinguishing 1 product from 9 similar products has been
deemed a realistic supermarket scenario. It is however impossible to design a realistic supermarket
dataset evaluationmethod that perfectly covers all real world scenarios. Because of this, it is extremely
important to assess Albert’s real‑world performance. This chapter evaluates this and answers this pa‑
per’s final sub‑question: Howwell does this model work on Albert?

6.1. Implementation of Product-ProtoNet on Albert

Figure 6.1: The general perception pipeline of the robot, based on [24]. This setup uses YOLO only to detect products and
Product‑ProtoNet to classify what those products are. As YOLO can not classify unseen classes, this setup is necessary to add

new products without re‑training the model.

AlbertusesProduct‑ProtoNetcombinedwithYOLO‑V6.3 topredict theplaceofaproductand if itmatches
a target class. Together they work in a Detection Node that is part of a bigger perception pipeline (fig‑
ure 6.1). The YOLOProduct Detector detects products in an image and outputs a bounding box for every

28

6.2. Experiment 29

product. This bounding box is then cut out from the image and the cut‑out of the product is then passed
to Product‑ProtoNet. Product‑ProtoNet then classifies it as either the target picking class or not the tar‑
get picking class. This classification combined with the original bounding box is then passed to a Pose
EstimationNode that estimates the pose and location of products in 3D. A Tracker Node then collects all
product poses and classes to track and update their 3D position estimation. It passes this information
to Albert for picking purposes.

With respect to the previous perception implementation on Albert that made use of a YOLO‑V6.3‑nano
object detector to predict product position and class, two major changes were made: 1) A new YOLO
product detector was trained that only predicts product position; and 2) YOLO‑detections of this new
detector are classified by Product‑ProtoNet instead of directly by YOLO; Because the new setup uses
YOLO to only predict product position and not classify products, positional biases (e.g. milk is always at
the top of the shelf) are less prevalent. Different products can be in many different positions on a shelf,
whichmakes not one position preferred. Also, decoupling class from positionmakes it impossible for a
model to predict classes based on their position in an image. Using Product‑ProtoNet instead of YOLO
to classify products also makes it possible to add new products easily, as the model does not need to
be re‑trained. Product‑ProtoNet learns to classify images by comparing them to a target class. Simply
adding images of a new target class is enough for classification, which can even be done on the fly. The
code used for this new setup can be found here.

New products might also require a new picking strategy. A round can of tomatoes might require a very
different grasp and handling than a bag of crisps and of course their weight also greatly varies. For
this reason, the robot can also be taught new trajectories per product. This combination of classifying
new products and the ability to learn a new picking strategy, makes it optimally adaptable to work in a
supermarket environment where new products are added regularly to the contents of the store.

6.2. Experiment
With a YOLO‑Product‑ProtoNet‑setup, Albert should be able to classify unseen products from very few
example images. To test how well Albert can do so in real life, Product‑ProtoNet is provided only one
example image per product for 30 different unseen products (products are shown in figure 6.2 on the
next page). Visually similar products are placed next to each other to make the simulation harder and
product positions are changed regularly to make sure detection and grasping work from different per‑
spectives. This paper then classifies the amount of times Albert goes to the correct product, and the
amount of times Albert can succesfully pick this product. Both are vital for the functioning of Albert as
a system, as they mean that Albert can identify and grasp products it has never seen before. Because
Product‑ProtoNet only influences the identification of products, this is the only part this paperwill draw
conclusions from. If this part works succesfully on Albert, itmeans that both object detection and visual
servoing work correctly with Product‑ProtoNet in a complex system.

6.3. Results 30

Figure 6.2: Products never seen during training that were used for the experiment. a) 20 novel products; b) 10 more novel
products; and c) a selection of some of the visually similar products in this test set; This diverse and challenging test set aims to

be as close as possible to a real supermarket situation.

6.3. Results
Table 6.1 shows howwell Albert performs when a YOLO‑V6.3 object detector is combined with Product‑
ProtoNet. Product‑ProtoNet only influences the ”go to correct product”‑task. With 90 tries, this task has
an exceptional success rate of 0.97. With just one example image, Product‑ProtoNet is able to identify
a product consistently and steer Albert to the exact right product. This means that product detection
works well and that Product‑ProtoNet in the perception pipeline shown in figure 6.1 works fast enough
for visual servoing.

Subtask Succes rate
Go to correct product 0.97
Grasp and collect product 0.68

Table 6.1: The ”go to correct product”‑task, the only task that Product‑ProtoNet has influence on, has an extremely high succes
rate of 1.0. Albert sometimes struggles with picking the product however, which is why the ”grasp and collect product”‑succes

rate is significantly lower.

The ”grasp and collect product” success rate of 0.68 shows that teaching the robot a new grasp is possi‑
ble, even though Albert is not perfect and sometimes struggles with picking a detected product. How‑
ever, since Product‑ProtoNet has no influence on this task, it is only possible to acknowledge that teach‑
ing the robot a new grasp is possible, without drawing any further conclusions from it.

6.3. Results 31

Figure 6.3: The amount of successful ”go to product”‑ and ”pick product” actions in comparison to the number of tries per
product. Product‑ProtoNet struggles only with detecting Spice Mix, Chicken and Spice Mix, Shoarma. During the experiment it

became clear that they are oftenmisidentified as each other.

Figure 6.4: a) The misidentified product pair; and b) A selection of training classes; Product‑ProtoNet’s training likely makes it
extract image features that are less informative for packaging designs with subtle color differences.

6.4. Conclusion 32

Even though the ”go to correct product”‑action is done correctly for 97% of the tries, it is informative to
identify what causes the few misdetections still made by Albert with Product‑ProtoNet. In order to do
this, all individual products with the amount of successful actions done by Albert have been visualized
in figure 6.3. Most products are identified correctly every time, but two products stand out due to their
misdetections: Spice Mix, Chicken and Spice Mix, Shoarma. These products are visually very similar (see
figure 6.4) and during the experiment it became clear that Albert often confused the two. Albert would
oftenpick the spicemix closest to the startingpositionof thearm. While tohumans these spicemixesare
relatively easily distinguishable (they have a colored band on the packaging that corresponds to the fla‑
vor) Albert oftenmisidentifies them. Interestingly, products thatmight seemharder to distinguish, such
as Tomato, Frito and Tomato Diced were always correctly classified. Possibly Product‑ProtoNet has not
learned that small changes in package coloring ‑ such as a different‑colored band for different products
‑ correspond to different products, asmany products in the training set have distinct colors for different
product classes of the same brand (see figure 6.4). Another possibility is that Product‑ProtoNet might
not have had enough incentive to learn different representations for very similar looking classes, as it
has been trained on randomclasses, and picking two randomproducts froma supermarket often yields
twoentirely different products. In any case, this test contains only twoproducts that are oftenmisidenti‑
fied, which is very little to draw any significant conclusions from. It is clear that Product‑ProtoNetworks
extremely well in most of the cases, even for very similar products like Tomato, Frito and Tomato Diced,
but that specifically identifying Spice Mix, Chicken and Spice Mix, Shoarma is sometimes hard.

6.4. Conclusion
To answer the question: Howwell does this model work on Albert?, Product‑ProtoNet was deployed
on Albert to classify images fed to it by a YOLO product detector. Albert was tested to identify 30 dif‑
ferent products with just one example image. Of all 30 products tested, only 2 were hard to detect in
any configuration. Likely this has to do with the specific way that Product‑ProtoNet is trained. Yet still
Product‑ProtoNet functions amazingly on Albert and Albert achieves a ”go to correct product”‑rate of
0.97. This means that product detection works well and that this implementation of Product‑ProtoNet
in Albert’s perception pipeline is fast enough for visual servoing.

7
Discussion

There are alwaysmultipleways to solve a problem. This papermakes specific decisions to create a prod‑
uct detector that can detect newproductswithout having to be re‑trained. To answer the research ques‑
tion of this paper: What few‑shot classifier can identify products in a supermarket environment, is
able to detect non‑target classes, and meets the requirements of deployment on a robotic plat‑
form like Albert best?, multiple approaches are possible however. This chapter will discuss some of
them.

7.1. Selecting similar classes afterwards or during training
Product‑ProtoNetworksby traininga sigmoid classifier to tell if query classes are thepicking target class
or not. During deployment, Product‑ProtoNet selects the most similar classes to help pinpoint what
class a query image is most similar to, if any. Note that this is exactly the opposite of training on very
similar classes. Instead of learning how to tell similar classes apart during training, Product‑ProtoNet
does this during inferencewith helper classes. Thismethod likely relies on a goodpre‑trainedbackbone
to extract meaningful features with a limited amount of training.

Training on similar classesmay have some positive effect when it comes to inference time. Even though
inference time is only slightly affected by choosing helper prototypes in Product‑ProtoNet (table 5.2),
Product‑ProtoNet tests this ona relatively small dataset (AholdSet‑V2). Likely therewill beamorevisible
effect on bigger datasets. So training on similar classes might be beneficial for inference time.

Training on similar classes however significantly slows down the training process. If a closest class se‑
lector has to select the closest classes for every iteration, the mean features of all classes need to be
calculated using a frozen feature extractor from the previous iteration. The classes that are closest to‑
gether will then be selected as model input. Especially for large datasets this operation is extremely
time consuming. However, next to the increased training time, the risk to overfit on seen classes be‑
comes higher when pre‑selecting similar classes during training. The model is explicitly told to extract
features that tell similar training images apart and might not to learn a general classification strategy
for telling all classes apart. Training a model like this might force it to learn features that tell a Conimex
spice mix apart from another Conimex mix and do very well on seen classes. However, as this model
has for example not seen any spice mixes of another brand, it might not understand that spice mixes of
that brand don’t belong to the same class. Consequently, the model may have poorer generalization
on unseen classes, matching different‑ branded spice mixes to their likeliest option might again be the
best approach to increase accuracy.

In summary, class selection during training has the potential to further reduce inference time and in‑
crease accuracy on similar classes. However, it is certain to increase training time, has a higher risk
of overfitting on seen close classes and might still need helper classes to distinguish unseen classes. It

33

7.2. Does training with a sigmoid classifier actually help? 34

wouldbe interesting toexplore thismethod furtherandcompareclasspre‑selection toProduct‑ProtoNet
with helper classes. However, the simplicity of Product‑ProtoNet’s basicmethod shows that it is not nec‑
essary for a well‑performing model.

7.2. Does training with a sigmoid classifier actually help?
As helper prototypes have such a significant effect on the performance of Product‑ProtoNet it is debat‑
able if a sigmoid classifier actually does much when it comes to meta‑training a pre‑trained feature
extractor, or that just a pre‑trained classifier is already enough. After all, a good pre‑trained feature
extractor might already produce features that are informative enough to distinguish different classes
(which is also clear for P>M>F [16]). Especially since Product‑ProtoNet trains on random classes, most
of themmight even already be far enough apart in feature space to be distinguished from target classes.

This also becomes clear by the fact that Product‑ProtoNet performs slightly worse on seen classes than
on unseen classes when using helper prototypes (see figure 5.4). It means that a model that has been
trained on the seen dataset, has in fact learned to separate seen features less well than unseen features.
This can very well indicate that the pre‑training of the feature extractor plays an important role and that
theunseen features just happen tobebetter extractablewith it than the seen features. Theperformance
of Product‑ProtoNet with only a pre‑trained feature extractor will be extremely valuable to validate in
future research.

Instead of a learnable sigmoid classifier, a soft cosine distance decision boundary might already be
enough to determinewhether a query imagebelongs to a class. In fact, choosing a tight decision bound‑
ary during training might even force a feature extractor to put features of the same class close together.
This decision boundary would become a hyperparameter instead of a learnable function.

In short, the effectiveness of a learnable sigmoid classifier is debatable and itmay not be the best tool to
train a model to separate features of different classes. A user‑defined smooth decision boundary could
insteadbeused fordecidingwhetherquery featuresbelong toa target class and likelybe just as effective.
This hyperparameter might even have training benefits, as it can be used to force features of the same
class to be encoded within a certain distance of that class. However, it does not seem necessary for a
well‑workingmodel, as the accuracy of Product‑ProtoNet on a realistic supermarket scenario is already
99.1% for seen products and 99.8% for novel products.

8
Conclusion

Albert is a useful supermarket order picking robot that collects shoppers’ online orders and delivers
them to a pickup section in a supermarket. Thismakes going to the supermarket an easy task and saves
precious time. An unmissable part of Albert are its’ product detection and localization abilities. Cur‑
rently the robot uses a YOLO‑V6.3‑nano product detector that predicts both a products’ location and
class. Associated with this detector are two major problems: 1) It has noticeable positional biases and
can not always identify products that are in a different place than usual; and 2) It is impossible to add
new products without re‑training the whole model. Especially in a supermarket with an ever changing
stock, the latter is a major problem.

To solve the first problem, product localization is split from product classification and a differentmodel
is used for both. Thismeans that product class is independent of product location and locational biases
will be less prevalent. The focus of this paper is on the second problem however: adding new products
without re‑training the whole model. For this few‑shot classifiers are the ideal solution. They classify
products based on only a few images, which makes collecting product data much more manageable.
As few‑shot classifiers only learn to predict similarity between query and target images, adding new
products is as easy as providing different target images. In order to find a few‑shot classifier that can
identify if query images are Alberts’ target picking class, this paper asks the following question:

“What few‑shot classifier can identify products in a supermarket environment, is able to
detect non‑target classes, and meets the requirements of deployment on a robotic plat‑
form like Albert best?“

There are many few‑shot classifiers, and in order to pick the optimal few‑shot classificationmethod for
Albert, this paper sets the following requirements:

1. The model’s inference time should be as low as possible, but models with a high detection accuracy
are preferred over those with a low inference time. To still have good closed‑loop object tracking, this
paper requires a maximum inference time of 3.6 ms per query image.

2. The preferred few‑shot method should have the highest possible accuracy in a realistic supermarket
setting for product classes that are seen during training. As a design decision, this should be at least
90%.

3. The preferred few‑shot method should have the highest possible accuracy in a realistic supermarket
setting for novel product classes that are not seen during training. As a design decision, this should
be at least 90%.

4. As a design decision, inference GPUmemory usage should be below 4GB.

Twoverypromising few‑shotmodelsareTRIDENTandP>M>F.Theyhave respectiveaccuraciesof 95.95%
and 98.4% on miniImageNet, a dataset where most few‑shot models are evaluated on. Both TRIDENT

35

36

and P>M>F outperform all othermodels, whichmakes them the perfect candidates to dowell on Albert.
However, like all few‑shot models, P>M>F and TRIDENT assume queries exclusively belong to a specific
set of classes, with no possibility of falling outside this set. However, from a safety perspective it is cru‑
cial to be able to classify non‑products instead of attributing them to one of the products in a specific
set. Particularly when Albert’s product localization module mislabels humans as products, classifying
humans as not the target picking class is a must.

For this reason, this paper first evaluates whether P>M>F or TRIDENT is a better base for building a clas‑
sifier that can classify query images as non‑target‑ or target picking classes, and evaluates bothmodels
against the paper’s requirements. Secondly, this paper uses the key concepts of the best classifier to
develop amodel that can discernwhether query images belong to a target product class or not. Thirdly,
this paper evaluates howwell this model, that meets all the requirements for integration on Albert, per‑
forms when actually integrated on the robot. To this end, the research question is split into three sub‑
questions:

1. Which of the current state‑of‑the‑art few‑shot classificationmodels TRIDENT and P>M>F can
be used best as a classifier for Albert?

2. If this classifier does not meet all requirements or can not classify non‑target classes, how
can it bemodified to be fit for Albert?

3. Howwell does this model work on Albert?

Toanswer:Whichof thecurrentstate‑of‑the‑art few‑shotclassificationmodelsTRIDENTandP>M>F
can be used best as a classifier for Albert?, both TRIDENT and P>M>F are evaluated on the require‑
ments of this paper. Both models meet this paper’s GPU memory usage requirement, but P>M>F con‑
sistently outperforms TRIDENT in terms of seen‑ and unseen accuracy. Both TRIDENT and P>M>F are
unsuitable for a supermarket robot however, due to their high inference times that make them unfit for
visual servoing. However, P>M>F only uses themean of class example image features to construct what
they call class prototypes to compare query images to. As these prototypes will not change during de‑
ployment, they can be calculated beforehand, which might greatly reduce inference time. This makes
P>M>F the preferred few‑shot model as a base for Albert, especially since it consistently has a 5% to
15% better accuracy than TRIDENT. P>M>F can however not classify non‑classes and therefore has to
be adapted to do this.

With P>M>F as best base‑classifier, this paper answers the question: If this classifier does not meet
all requirements or can not classify non‑target classes, how can it bemodified to be fit for Albert?
This paper identifies two reasonswhyP>M>Fworks sowell: 1) It uses goodpre‑trained feature extractor;
and 2) It compares query images to a set of prototypes and matches only to the likeliest. P>M>F uses
a ProtoNet model for classification that essentially does this; Based on these main principles of P>M>F,
this paper proposes a new few‑shotmodel: Product‑ProtoNet. It employs a ViT pre‑trainedwithDINO to
extract features, classifies query images bases on their distance to prototypes with a learned threshold ‑
enabling it to distinguish classes and non‑classes ‑ and utilizes helper prototypes to distinguish classes
that are close together in feature space in a ProtoNet‑like manner. Experiments with Product‑ProtoNet
show that it: 1) Indeed classifies non‑classes correctly; 2) Has an inference time of only 2.89 ms and
passes this papersmemoryusage requirement; and3) Achieves impressive seen‑ andunseenaccuracies
of respectively 99.1% and 99.8% in a realistic supermarket setting; Product‑ProtoNet passes all of this
paper’s requirements easily.

This leaves the question: Howwell does thismodelwork on Albert? Experiments on Albert show that
Product‑ProtoNet is suited for visual servoing and correctly tracks and goes to the right product in a
shelf with a succes rate of 0.97. With only one example image per product this is truly impressive and it
is clear that this model works very well for Albert’s specific requirements.

In short, this paper creates a new few‑shot model that can determine whether a query image classifies
as a target product or not, meets Alberts’ requirements and has excellent performance when deployed
on Albert: Product‑ProtoNet. Thus Product‑ProtoNet is this papers’ answer to the research question:
What few‑shot classifier can identify products in a supermarket environment, is able to detect

37

non‑target classes, and meets the requirements of deployment on a robotic platform like Albert
best?

9
Future Work

As mentioned in the discussion, there is still valuable research to be done with Product‑ProtoNet that
could improve its inference time and ability to distinguish similar classes. This chapter will reiterate
some of these concepts, as well as introduce some new research directions that could improve the func‑
tioning of Albert is some way.

9.1. Architectural improvements of Product-ProtoNet
Modifying Product‑ProtoNet’s architecture, as mentioned in the discussion, could improve inference
speedand class separation. Twopromising approaches are: 1) Pre‑selecting similar classes during train‑
ing, which may reduce inference time but have limited impact on unseen classes. 2) Employing a soft
decision boundary instead of a sigmoid classifier, potentially improvingmodel performance by encour‑
aging class features to cluster closely and non‑classes to separate further. Testing both methods can
deepen the understanding of Product‑ProtoNet. Both methods aim to reduce the reliance on helper
prototypes, which speeds up inference, and boost accuracy.

9.2. Pruning Product-ProtoNet's backbone
Product‑ProtoNet uses a ViT pre‑trained with DINO as a feature extractor. To improve inference time,
at the cost of a slightly worse accuracy this vision transformer could be pruned. Pruning removes con‑
nections and parameters that are deemed less important for a networks’ performance. Pruning can
reduce the floating point operations per second (FLOPs) needed by asmuch as 64%, while reducing the
accuracy of a model only by a few percent [64].

9.3. Feature Matching
Featurematching is a simple alternative to few‑shot learning that does not need a deep neural network
or any training time [28]. Keypoints are identifiedona reference imageandmatched tokeypoints found
in the image the robot camera captures. Featurematchingmight work well for themajority of products
in a supermarket and save inference time and computational complexity.

For some supermarket products, e.g. non‑rigid or rotated objects, however, this is a challenging task.
A chips bag that is crumpled up or a peanut butter jar that has been rotated so that only the rear label
is visible, likely will give no or very little matches. Deep learning on the other hand, might learn that
the rear label of a peanut butter jar belongs to the same class as the front of it, and be more accurate
in edge cases. Overall deep learning comes at an additional computing power cost, but achieves better
accuracy than traditional computer visionmethods like featurematching [28]. For this reason this paper
has focused solely ondeep learningmethods, but itwouldbe interesting to compare them to traditional
methods like feature matching in future research. Especially since fast methods with lower accuracies

38

9.4. Segmentation vs Bounding boxes 39

might eventually produce better results for visual servoing than slowmethods with higher accuracies.

9.4. Segmentation vs Bounding boxes
Currently the position of products is predicted by a YOLO‑V6‑classifier. However for grasp prediction it
might be nice to have a cutout that corresponds with the shape of the object instead of a rectangular
bounding box like YOLO predicts. For this, using SAM (Segment Anything) [22] might be interesting, as
this canbe given theprompt ‑ or be finetuned ‑ to segment products, or canbeused in combinationwith
YOLO and Product‑ProtoNet to cut out products from bounding boxes with the target class without any
finetuning. However other semantic segmentation models like U‑net [42], Mask‑RCNN [15], YOLO‑V8
[53] or FastSAM [63] can be used. Sadly FastSAM, the fastest of these classifiers already has an inference
time of 40 ms on an NVIDIA GeForce RTX 3090 GPU [63] for a single MS COCO image with a median reso‑
lution of 640 x 480, which is too much for visual servoing. However, segmenting only small portions of
an image, detected with YOLO‑V6 and classified as target product with Product‑ProtoNet might still be
a viable option to get better grasp proposals and use visual servoing.

9.5. Fine-tuning or re-training YOLO
The YOLO‑V6.3‑nano detectormodel used for tests on Albert was trained on a zoom‑augmented version
of SKU and not fine‑tuned for this papers’ specific usecase. Likely there is still much to improve in terms
of product bounding box detection. This was also observed during experiments, when product bound‑
ing boxes could not be detected in certain configurations. Fine‑tuning or re‑training this model on an
unlabeled dataset with product annotations of Albert’s specific environment would likely yield much
better detections.

9.6. Predicting class and location together
This paper has specifically chosen to decouple class and location prediction as this reduces the posi‑
tional bias for certain product classes. However, with a very balanced dataset, or with a architecture
that needs very little fine‑tuning it might be interesting to explore combined object detector and classi‑
fiers like Owl‑ViT [30] and SEG‑GPT [57]. Both can be used in a one‑shot setting and segment or detect
a query image in an image. Unofficial sources report an inference time of 300ms per query for Owl‑ViT
[45], but in order to verify if any of these models could be used in practice, they would both need to be
tested.

References

[1] Dec. 2023. URL: https://nieuws.ah.nl/in- nieuw- home- shop- center- van- albert-
heijn-doen-robots-de-boodschappen/.

[2] AlexeyAB. GitHub ‑ AlexeyAB/darknet: YOLOv4 / Scaled‑YOLOv4 / YOLO ‑ Neural Networks for Object
Detection (Windows and Linux version of Darknet). URL: https://github.com/AlexeyAB/dark
net.

[3] Antreas Antoniou, Harrison Edwards, and Amos J. Storkey. “How to train your MAML”. In: CoRR
abs/1810.09502 (2018). arXiv: 1810.09502. URL: http://arxiv.org/abs/1810.09502.

[4] Hangbo Bao, Li Dong, and Furu Wei. “BEiT: BERT Pre‑Training of Image Transformers”. In: CoRR
abs/2106.08254 (2021). arXiv: 2106.08254. URL: https://arxiv.org/abs/2106.08254.

[5] Yassir Bendou et al. “EASY: Ensemble Augmented‑Shot Y‑shaped Learning: State‑Of‑The‑Art Few‑
Shot Classification with Simple Ingredients”. In: CoRR abs/2201.09699 (2022). arXiv: 2201.09699.
URL: https://arxiv.org/abs/2201.09699.

[6] QiCai etal. “MemoryMatchingNetworks forOne‑Shot ImageRecognition”. In:CoRRabs/1804.08281
(2018). arXiv: 1804.08281. URL: http://arxiv.org/abs/1804.08281.

[7] MathildeCaronet al. EmergingProperties in Self‑Supervised Vision Transformers. 2021. arXiv:2104.
14294 [cs.CV].

[8] XiangyuChenandGuanghuiWang. “Few‑Shot Learningby Integrating Spatial and FrequencyRep‑
resentation”. In: CoRR abs/2105.05348 (2021). arXiv: 2105.05348. URL: https://arxiv.org/
abs/2105.05348.

[9] Douglas Chiguvi and Thuso Sepepe. “An Assessment of Customer Perceptions Towards Product
Packaging Design Changes: Insights from the Botswana Fast‑Moving Consumer Goods Business”.
In: Journal of Emerging Trends in Marketing and Management 1.2 (2023), pp. 46–55.

[10] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”. In: CoRR abs/2010.11929 (2020). arXiv: 2010.11929. URL: https://arxiv.org/abs/
2010.11929.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model‑Agnostic Meta‑Learning for Fast Adapta‑
tion of Deep Networks”. In: CoRR abs/1703.03400 (2017). arXiv: 1703.03400. URL: http://arxiv.
org/abs/1703.03400.

[12] Klaus Fuchs, Tobias Grundmann, and Elgar Fleisch. “Towards Identification of PackagedProducts
via Computer Vision: Convolutional Neural Networks for Object Detection and Image Classifica‑
tion in Retail Environments”. In: Proceedings of the 9th International Conference on the Internet of
Things. IoT ’19. Bilbao, Spain: Association for Computing Machinery, 2019. iSBN: 9781450372077.
DOi: 10.1145/3365871.3365899. URL: https://doi.org/10.1145/3365871.3365899.

[13] Victor Garcia and Joan Bruna. Few‑Shot Learning with Graph Neural Networks. 2018. arXiv: 1711.
04043 [stat.ML].

[14] EranGoldmanetal. “PreciseDetection inDenselyPackedScenes”. In:CoRRabs/1904.00853 (2019).
arXiv: 1904.00853. URL: http://arxiv.org/abs/1904.00853.

[15] Kaiming He et al. “Mask R‑CNN”. In: CoRR abs/1703.06870 (2017). arXiv: 1703.06870. URL: http:
//arxiv.org/abs/1703.06870.

[16] Shell Xu Hu et al. Pushing the Limits of Simple Pipelines for Few‑Shot Learning: External Data and
Fine‑Tuning Make a Difference. 2022. arXiv: 2204.07305 [cs.CV].

40

https://nieuws.ah.nl/in-nieuw-home-shop-center-van-albert-heijn-doen-robots-de-boodschappen/
https://nieuws.ah.nl/in-nieuw-home-shop-center-van-albert-heijn-doen-robots-de-boodschappen/
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://arxiv.org/abs/1810.09502
http://arxiv.org/abs/1810.09502
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2201.09699
https://arxiv.org/abs/2201.09699
https://arxiv.org/abs/1804.08281
http://arxiv.org/abs/1804.08281
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2105.05348
https://arxiv.org/abs/2105.05348
https://arxiv.org/abs/2105.05348
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://doi.org/10.1145/3365871.3365899
https://doi.org/10.1145/3365871.3365899
https://arxiv.org/abs/1711.04043
https://arxiv.org/abs/1711.04043
https://arxiv.org/abs/1904.00853
http://arxiv.org/abs/1904.00853
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/2204.07305

References 41

[17] YuqingHu, VincentGripon, andStéphanePateux. “Leveraging the FeatureDistribution in Transfer‑
based Few‑Shot Learning”. In: CoRR abs/2006.03806 (2020). arXiv: 2006.03806. URL: https://
arxiv.org/abs/2006.03806.

[18] Yuqing Hu, Stéphane Pateux, and Vincent Gripon. “Adaptive dimension reduction and variational
inference for transductive few‑shot classification”. In: International Conference on Artificial Intelli‑
gence and Statistics. PMLR. 2023, pp. 5899–5917.

[19] S. Hutchinson, G.D. Hager, and P.I. Corke. “A tutorial on visual servo control”. In: IEEE Transactions
on Robotics and Automation 12.5 (1996), pp. 651–670. DOi: 10.1109/70.538972.

[20] Shruti Jadon. “An Overview of Deep Learning Architectures in Few‑Shot Learning Domain”. In:
CoRR abs/2008.06365 (2020). arXiv: 2008.06365. URL: https://arxiv.org/abs/2008.06365.

[21] Muhammad Abdullah Jamal, Guo‑Jun Qi, and Mubarak Shah. “Task‑Agnostic Meta‑Learning for
Few‑shot Learning”. In: CoRR abs/1805.07722 (2018). arXiv: 1805.07722. URL: http://arxiv.
org/abs/1805.07722.

[22] Alexander Kirillov et al. Segment Anything. 2023. arXiv: 2304.02643 [cs.CV].
[23] GregoryKoch, RichardZemel, RuslanSalakhutdinov, et al. “Siameseneural networks for one‑shot

image recognition”. In: ICML deep learning workshop. Vol. 2. 1. Lille. 2015.
[24] Stijn Lafontaine. Robotic Grasping from Supermarket Shelves using Visual Servoing. 2023. URL: ht

tp://resolver.tudelft.nl/uuid:4fb4a898-0980-477a-862a-c51e3bac3ce5.
[25] BrendenM. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human‑level concept learn‑

ing through probabilistic program induction”. In: Science 350.6266 (2015), pp. 1332–1338. DOi:
10 . 1126 / science . aab3050. eprint: https : / / www . science . org / doi / pdf / 10 . 1126 /
science.aab3050. URL: https://www.science.org/doi/abs/10.1126/science.aab3050.

[26] Chuyi Li et al. YOLOv6 v3.0: A Full‑Scale Reloading. 2023. arXiv: 2301.05586 [cs.CV].
[27] Wenbin Li et al. “Revisiting LocalDescriptor based Image‑to‑ClassMeasure for Few‑shot Learning”.

In: CoRR abs/1903.12290 (2019). arXiv: 1903.12290. URL: http://arxiv.org/abs/1903.12290.
[28] Niall O’ Mahony et al. “Deep Learning vs. Traditional Computer Vision”. In: CoRR abs/1910.13796

(2019). arXiv: 1910.13796. URL: http://arxiv.org/abs/1910.13796.
[29] Martha. 30 000 Different Products And Counting: The Average Grocery Store. Feb. 2022. URL: https:

//www.icsid.org/uncategorized/how-many-products-are-in-a-typical-grocery-
store/.

[30] Matthias Minderer et al. Simple Open‑Vocabulary Object Detection with Vision Transformers. 2022.
arXiv: 2205.06230 [cs.CV].

[31] NikhilMishraetal. “ASimpleNeuralAttentiveMeta‑Learner”. In: InternationalConferenceonLearn‑
ing Representations. 2018. URL: https://openreview.net/forum?id=B1DmUzWAW.

[32] Tsendsuren Munkhdalai and Hong Yu. “Meta Networks”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of
Machine Learning Research. PMLR, June 2017, pp. 2554–2563. URL: https://proceedings.mlr.
press/v70/munkhdalai17a.html.

[33] Mateusz Ochal et al. Class Imbalance in Few‑Shot Learning. 2021. URL: https://openreview.
net/forum?id=j0yLJ-MsgJ.

[34] Archit Parnami and Minwoo Lee. Learning from Few Examples: A Summary of Approaches to Few‑
Shot Learning. 2022. arXiv: 2203.04291 [cs.LG].

[35] Jingtian Peng et al. “RP2K: A Large‑Scale Retail Product Dataset for Fine‑Grained Image Classifi‑
cation”. In: CoRR abs/2006.12634 (2020). arXiv: 2006.12634. URL: https://arxiv.org/abs/
2006.12634.

[36] Alec Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. In:
CoRR abs/2103.00020 (2021). arXiv: 2103.00020. URL: https://arxiv.org/abs/2103.00020.

https://arxiv.org/abs/2006.03806
https://arxiv.org/abs/2006.03806
https://arxiv.org/abs/2006.03806
https://doi.org/10.1109/70.538972
https://arxiv.org/abs/2008.06365
https://arxiv.org/abs/2008.06365
https://arxiv.org/abs/1805.07722
http://arxiv.org/abs/1805.07722
http://arxiv.org/abs/1805.07722
https://arxiv.org/abs/2304.02643
http://resolver.tudelft.nl/uuid:4fb4a898-0980-477a-862a-c51e3bac3ce5
http://resolver.tudelft.nl/uuid:4fb4a898-0980-477a-862a-c51e3bac3ce5
https://doi.org/10.1126/science.aab3050
https://www.science.org/doi/pdf/10.1126/science.aab3050
https://www.science.org/doi/pdf/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050
https://arxiv.org/abs/2301.05586
https://arxiv.org/abs/1903.12290
http://arxiv.org/abs/1903.12290
https://arxiv.org/abs/1910.13796
http://arxiv.org/abs/1910.13796
https://www.icsid.org/uncategorized/how-many-products-are-in-a-typical-grocery-store/
https://www.icsid.org/uncategorized/how-many-products-are-in-a-typical-grocery-store/
https://www.icsid.org/uncategorized/how-many-products-are-in-a-typical-grocery-store/
https://arxiv.org/abs/2205.06230
https://openreview.net/forum?id=B1DmUzWAW
https://proceedings.mlr.press/v70/munkhdalai17a.html
https://proceedings.mlr.press/v70/munkhdalai17a.html
https://openreview.net/forum?id=j0yLJ-MsgJ
https://openreview.net/forum?id=j0yLJ-MsgJ
https://arxiv.org/abs/2203.04291
https://arxiv.org/abs/2006.12634
https://arxiv.org/abs/2006.12634
https://arxiv.org/abs/2006.12634
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

References 42

[37] Shafin Rahman, Salman Hameed Khan, and Fatih Porikli. “A Unified approach for Conventional
Zero‑shot, Generalized Zero‑shot and Few‑shot Learning”. In: CoRR abs/1706.08653 (2017). arXiv:
1706.08653. URL: http://arxiv.org/abs/1706.08653.

[38] Jathushan Rajasegaran et al. “iTAML: An Incremental Task‑Agnostic Meta‑learning Approach”. In:
CoRR abs/2003.11652 (2020). arXiv: 2003.11652. URL: https://arxiv.org/abs/2003.11652.

[39] AravindRajeswaranetal. “Meta‑Learningwith ImplicitGradients”. In:CoRRabs/1909.04630 (2019).
arXiv: 1909.04630. URL: http://arxiv.org/abs/1909.04630.

[40] Sachin Ravi and Hugo Larochelle. “Optimization as a Model for Few‑Shot Learning”. In: Interna‑
tional Conference on Learning Representations. 2017. URL: https://openreview.net/forum?
id=rJY0-Kcll.

[41] JosephRedmonetal. “YouOnlyLookOnce:Unified,Real‑TimeObjectDetection”. In:CoRRabs/1506.02640
(2015). arXiv: 1506.02640. URL: http://arxiv.org/abs/1506.02640.

[42] Olaf Ronneberger, Philipp Fischer, andThomasBrox. “U‑Net: ConvolutionalNetworks for Biomed‑
ical Image Segmentation”. In: CoRR abs/1505.04597 (2015). arXiv: 1505 . 04597. URL: http : / /
arxiv.org/abs/1505.04597.

[43] AndreiA.Rusuetal. “Meta‑LearningwithLatentEmbeddingOptimization”. In:CoRRabs/1807.05960
(2018). arXiv: 1807.05960. URL: http://arxiv.org/abs/1807.05960.

[44] Adam Santoro et al. “One‑shot Learning with Memory‑Augmented Neural Networks”. In: CoRR
abs/1605.06065 (2016). arXiv: 1605.06065. URL: http://arxiv.org/abs/1605.06065.

[45] Segments.ai. Zero‑shot Object Detection with Owl‑ViT. 2024. URL: https://segments.ai/blog/
zero-shot-object-detection-with-owl-vit/ (visited on 02/26/2024).

[46] Marcin Sendera et al. HyperShot: Few‑Shot Learning by Kernel HyperNetworks. 2022. arXiv: 2203.
11378 [cs.LG].

[47] Daniel Shalam and Simon Korman. The Self‑Optimal‑Transport Feature Transform. 2022. arXiv: 22
04.03065 [cs.CV].

[48] Xiahan Shi et al. “Relational Generalized Few‑Shot Learning”. In: CoRR abs/1907.09557 (2019).
arXiv: 1907.09557. URL: http://arxiv.org/abs/1907.09557.

[49] Anuj Singh and Hadi Jamali‑Rad. Transductive Decoupled Variational Inference for Few‑Shot Clas‑
sification. 2022. arXiv: 2208.10559 [cs.CV].

[50] Jake Snell, Kevin Swersky, and Richard S. Zemel. “Prototypical Networks for Few‑shot Learning”.
In: CoRR abs/1703.05175 (2017). arXiv: 1703.05175. URL: http://arxiv.org/abs/1703.05175.

[51] Yisheng Song et al. A Comprehensive Survey of Few‑shot Learning: Evolution, Applications, Chal‑
lenges, and Opportunities. 2022. arXiv: 2205.06743 [cs.LG].

[52] FloodSungetal. “Learning toCompare:RelationNetwork forFew‑ShotLearning”. In:CoRRabs/1711.06025
(2017). arXiv: 1711.06025. URL: http://arxiv.org/abs/1711.06025.

[53] Ultralytics. Ultralytics YOLO‑V8. URL: https://github.com/ultralytics/ultralytics.
[54] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t‑SNE.” In: Journal of ma‑

chine learning research 9.11 (2008).
[55] Markus Vincze and Gregory D. Hager. “Robust Image Processing and PositionBased Visual Ser‑

voing”. In: Robust Vision for Vision‑Based Control of Motion. 2000, pp. 163–201. DOi: 10 . 1109 /
9780470546369.ch13.

[56] Oriol Vinyals et al. “Matching Networks for One Shot Learning”. In: CoRR abs/1606.04080 (2016).
arXiv: 1606.04080. URL: http://arxiv.org/abs/1606.04080.

[57] XinlongWang et al. SegGPT: Segmenting Everything In Context. 2023. arXiv: 2304.03284 [cs.CV].
[58] Yan Wang et al. “SimpleShot: Revisiting Nearest‑Neighbor Classification for Few‑Shot Learning”.

In: CoRR abs/1911.04623 (2019). arXiv: 1911.04623. URL: http://arxiv.org/abs/1911.04623.

https://arxiv.org/abs/1706.08653
http://arxiv.org/abs/1706.08653
https://arxiv.org/abs/2003.11652
https://arxiv.org/abs/2003.11652
https://arxiv.org/abs/1909.04630
http://arxiv.org/abs/1909.04630
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1807.05960
http://arxiv.org/abs/1807.05960
https://arxiv.org/abs/1605.06065
http://arxiv.org/abs/1605.06065
https://segments.ai/blog/zero-shot-object-detection-with-owl-vit/
https://segments.ai/blog/zero-shot-object-detection-with-owl-vit/
https://arxiv.org/abs/2203.11378
https://arxiv.org/abs/2203.11378
https://arxiv.org/abs/2204.03065
https://arxiv.org/abs/2204.03065
https://arxiv.org/abs/1907.09557
http://arxiv.org/abs/1907.09557
https://arxiv.org/abs/2208.10559
https://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1703.05175
https://arxiv.org/abs/2205.06743
https://arxiv.org/abs/1711.06025
http://arxiv.org/abs/1711.06025
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/9780470546369.ch13
https://doi.org/10.1109/9780470546369.ch13
https://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
https://arxiv.org/abs/2304.03284
https://arxiv.org/abs/1911.04623
http://arxiv.org/abs/1911.04623

References 43

[59] Yuchen Wei et al. “Deep learning for retail product recognition: Challenges and techniques”. In:
Computational intelligence and neuroscience 2020 (2020).

[60] W.J. Wilson. “Visual Servo Control of Robots Using Kalman Filter Estimates of Relative Pose”. In:
IFAC Proceedings Volumes 26.2, Part 3 (1993). 12th Triennal Wold Congress of the International
Federation of Automatic control. Volume 3 Applications I, Sydney, Australia, 18‑23 July, pp. 633–
638. iSSN: 1474‑6670. DOi: https : / / doi . org / 10 . 1016 / S1474 - 6670(17) 48804 - 5. URL:
https://www.sciencedirect.com/science/article/pii/S1474667017488045.

[61] CongyingXia, CaimingXiong, andPhilip Yu. “PseudoSiameseNetwork for Few‑shot IntentGenera‑
tion”. In:Proceedings of the 44th International ACMSIGIR Conference onResearch andDevelopment
in InformationRetrieval. SIGIR ’21. <conf‑loc>, <city>VirtualEvent</city>, <country>Canada</country>,
</conf‑loc>: Association for Computing Machinery, 2021, pp. 2005–2009. iSBN: 9781450380379.
DOi: 10.1145/3404835.3462995. URL: https://doi.org/10.1145/3404835.3462995.

[62] Ling Yang et al. “DPGN: Distribution Propagation Graph Network for Few‑Shot Learning”. In: Pro‑
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2020.

[63] Xu Zhao et al. Fast Segment Anything. 2023. arXiv: 2306.12156 [cs.CV].
[64] Mingjian Zhu et al. “Visual Transformer Pruning”. In: CoRR abs/2104.08500 (2021). arXiv: 2104 .

08500. URL: https://arxiv.org/abs/2104.08500.

https://doi.org/https://doi.org/10.1016/S1474-6670(17)48804-5
https://www.sciencedirect.com/science/article/pii/S1474667017488045
https://doi.org/10.1145/3404835.3462995
https://doi.org/10.1145/3404835.3462995
https://arxiv.org/abs/2306.12156
https://arxiv.org/abs/2104.08500
https://arxiv.org/abs/2104.08500
https://arxiv.org/abs/2104.08500

	Introduction
	Research Question and Subquestions of this paper
	Requirements

	Related Work
	TRIDENT
	P>M>F
	Assumptions of few-shot object classifiers

	Datasets Used
	AholdSet-V1
	AholdSet-V2

	Analysis of P>M>F and TRIDENT
	Experiments
	Accuracy on seen- and unseen datasets
	Memory usage and inference time

	Results
	Inference Time
	Memory Usage
	Accuracy on Seen Dataset
	Accuracy on Unseen Dataset

	Conclusion

	Product-ProtoNet
	Introduction of Product-ProtoNet
	Mathematical formulation of Product-ProtoNet
	Other design choices
	Assumptions of Product-ProtoNet
	Hyperparameters
	Subquestions associated with Product-ProtoNet

	Experiments
	Non-class classification capability
	Similarity to ProtoNet
	Helper prototypes in a realistic supermarket
	Feature separation
	Performance on requirements

	Results
	Non-class classification capability
	Similarity to ProtoNet
	Influence of helper prototypes
	Feature separation
	Performance on requirements

	Conclusion

	Product-ProtoNet On Albert
	Implementation of Product-ProtoNet on Albert
	Experiment
	Results
	Conclusion

	Discussion
	Selecting similar classes afterwards or during training
	Does training with a sigmoid classifier actually help?

	Conclusion
	Future Work
	Architectural improvements of Product-ProtoNet
	Pruning Product-ProtoNet's backbone
	Feature Matching
	Segmentation vs Bounding boxes
	Fine-tuning or re-training YOLO
	Predicting class and location together

	References

