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Summary 

Introduction 

As (partially) automated vehicles (AVs) become increasingly prevalent on public roads, 
attention is also increasing on their integration in mixed traffic (traffic composed of AVs and 
human-driven vehicles), and on the impacts they could have on traffic flow, traffic safety, and 
road infrastructure. One aspect that has received relatively little attention so far is the effect of 
AVs on the driving behavior of human-driven vehicles (HDVs) in mixed traffic. The 
interactions of AVs with HDVs can be different than the interactions of HDVs with other HDVs. 
Recently, growing evidence has emerged in scientific literature supporting this. Such changes 
include HDVs driving closer while following behind AVs or making more frequent lane 
changes while driving in mixed traffic. These changes can have negative or positive effects on 
the overall traffic safety and efficiency. Currently, there is a limited understanding of which 
mixed traffic factors affect HDVs’ driving behavior and the nature of their effects. Therefore, 
this dissertation focused on studying the impacts of AVs on the behavior of HDVs to gain a 
better and deeper understanding of any potential changes in HDV driving behavior, referred to 
in this dissertation as behavioral adaptations. The main research question of this dissertation is:  
What are the impacts of automated vehicles on the driving behavior of human-driven 
vehicles, and their consequences on mixed traffic efficiency? 
Figure S 1 is a depiction of the scope of this dissertation, highlighted by the orange shade. It 
positions the HDV in the center, being affected by three different sets of factors: the road 
environment (e.g., weather, infrastructure), the traffic (other road users), and the driver 
(personal characteristics). These factors influence the driving behavior of the HDVs, such as 
car-following and gap acceptance, which ultimately impact the overall traffic aspects such as 
safety andefficiency. In this dissertation, I focused on car-following, overtaking, and gap 
acceptance behavior, and the impact of gap acceptance on traffic efficiency. These were partly 
selected based on how driving behavior is generally characterized and studied in traffic 
engineering, covering both longitudinal (car-following) and lateral behaviors 
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(overtaking and gap acceptance); and partly on the insights derived during this research. Gap 
acceptance behavior was chosen to study the impact on traffic efficiency because of the impact 
it can have on the traffic flow on the road to which traffic is merging on to and on the road 
network upstream of the intersection. Moreover, during gap acceptance, drivers have the 
opportunity to observe the oncoming vehicles, possibly being more prone to mixed traffic 
factors such as AV appearance. To answer the main research question, the following sub 
research questions (RQs) were defined, which are also depicted as thick arrows in Figure S 1:  

1. What are the potential behavioral adaptations of human drivers during their interactions 
with AVs? 

2. What is the impact of AVs on the car following behavior of HDVs? 
3. How do human drivers perform gap acceptance maneuvers in mixed (automated and 

human-driven) traffic at priority T-intersections? 
4. How does mixed traffic affect the traffic efficiency of priority T-intersections? 

 

 
Figure S 1: Conceptual framework as an outline for this dissertation. 

Methods 

To answer the research questions, this dissertation adopted empirical data collection methods 
such as driving simulators and field tests. As AVs currently do not widely operate on public 
roads, and because there is very limited available data on interactions between AVs and HDVs, 
data collection efforts were made for this dissertation. Driving simulators help to study 
empirically the behavior of drivers in a safe and controlled virtual environment, where different 
traffic conditions can be tested in a cost-effective manner. Field tests allow the investigation of 
driving behavior in a real-life setting therefore having potentially greater validity than driving 
simulator studies, however having less possibilities to control the environmental conditions 
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compared to driving simulators. Therefore, this dissertation used a combination of these two 
methods.  
This dissertation also entailed mathematical modelling of driving behaviors of interest. For 
instance, mathematical models of car following behavior and gap acceptance behavior were 
estimated using empirical data collected from the driving simulator experiments. These models 
were also implemented in microsimulation to define HDVs’ behaviors. With the help of 
microsimulation, macroscopic indicators of traffic efficiency in mixed traffic was studied.  

Results 

The main findings are summarized inTable S 1 and Table S 2. The tables show how different 
behaviors of human drivers are affected by specific mixed traffic factors. The driving behaviors 
are represented by certain indicators, and the specific nature of the effect. They also show which 
study and chapter of this dissertation the finding relates to. This dissertation investigated the 
effects of several factors on different indicators. The tables only present the effects that resulted 
in a (significant) change in the indicators, only for mixed traffic specific factors. The factors 
did not have any significant effect on the other indicators. The complete list of factors 
considered in this dissertation were: Mixed traffic specific factors (AV appearance, AV driving 
style, trust in AVs, AV penetration rate, considering behavioral adaptation), general factors 
(Driver age, driver gender, driver driving style). The complete list of indicators investigated 
were: Car-following (Jam spacing, Desired velocity, Safe time headway, Maximum 
acceleration, Comfortable deceleration), Gap acceptance (Accepted gap size, Critical gap, 
probability of accepting a gap), Overtaking (Headway after overtaking, Lateral distance while 
overtaking), Traffic efficiency at priority T intersection(Delay per vehicle on minor road, Delay 
per vehicle on major road, Queue length). 
Factors related to mixed traffic were observed to have several effects on HDV behavior and on 
behavioral adaptation. Specifically, I focused on the following mixed traffic factors: AV 
appearance, AV driving style, Trust in AVs, and AV penetration rate. I investigated their effects 
on fundamental driving maneuvers of HDVs including HDVs’ car-following behavior, gap 
acceptance behavior, and overtaking behavior. I then investigated the impact of the changes in 
gap-acceptance behavior on traffic efficiency at priority T-intersections. These behaviors were 
measured using different indicators as shown in Table S 1 and Table S 2, where the specific 
directions of the effects on these indicators are also presented. 
In addition to the specific results of this dissertation, the following key takeaways also result 
from the combination and discussion of all the findings: 

1. Mixed traffic factors affect human drivers’ behaviors, and this also has 
implications on traffic efficiency at a macroscopic level. For example, in a driving 
simulator experiment, human drivers tended to accept larger gaps in the major road 
traffic stream when they had to merge in front of a recognizable AV that was driving 
less defensively. After implementing HDVs’ gap acceptance behavior in 
microsimulation, it showed that the delay for minor road HDV vehicles was larger when 
the major road traffic had less defensive recognizable AVs. 

2. Not considering behavioral adaptation of HDVs while predicting the traffic 
efficiency of mixed traffic could lead to inaccurate results. For example, the 
microsimulation study showed that not considering behavioral adaptations of HDVs in 
gap acceptance could lead to an underestimation of delay of minor road vehicles by 
about 75% (at 75% AV penetration rate). 

3. There is a stronger tendency for behavioral adaptations to occur in the forward 
field of view of AVs. Interactions in the forward field of view of AVs could be 
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performing gap acceptance in front of an AV from standstill or merging in front of an 
AV after overtaking. For example, in the field test, drivers were willing to merge in front 
of AVs at closer distances than in front of HDVs. Also, they merged closer in front of 
AVs after overtaking them, as compared to HDVs. Behavioral adaptations can still occur 
in other behaviors and directions, only that the extent could be smaller than in the 
forward field of view. In a driving simulator experiment, we found behavioral adaptation 
also in car-following where drivers had smaller desired standstill (jam) distance when 
following an AV compared to an HDV. 

4. If drivers do not recognize a vehicle as an AV, then drivers tend to imitate the 
driving behavior of the vehicle. For example, in a driving simulator experiment, we 
found that drivers accepted larger gaps during gap acceptance when the (not-
recognizable) AVs drove more defensively and accepted smaller gaps when the (not-
recognizable) AVs drove less defensively. 

5. If drivers recognize a vehicle as an AV, then the direction and extent of the 
behavioral adaptations depend on the level of trust drivers have in AVs. For 
example, in a driving simulator experiment, we found that drivers accepted smaller gaps 
during gap acceptance when the (recognizable) AVs drove more defensively and 
accepted larger gaps when the (recognizable) AVs drove less defensively. In the field 
test, when positive information (trust-building) about AVs was provided to drivers, they 
merged even closer in front of AVs after overtaking. 

 

Practical implications and future research directions 

The results of this dissertation have implications for several stakeholders. Drivers of manual 
vehicles must become aware of the behavioral adaptations they could undergo. AV users must 
also be conscious of how other drivers could change their behavior when interacting with them. 
Road authorities must make an evaluation of how meaningful/significant the impacts of 
behavioral adaptation are, and what kind of traffic management and infrastructural measures 
they can take. Driving license and vehicle licensing authorities also need to make guidelines 
on AV aspects such as their appearance and driving style, and to train human drivers to better 
manage the effects of behavioral adaptation. AV car manufacturers must investigate the 
effects of their vehicles and systems (appearance and behavior-related) on other road traffic. 
Also, AV manufacturers must make the users aware of what impacts of the different in-car 
settings could be on surrounding traffic. For instance, AV users can be informed that keeping 
defensive settings (such as large time headway) in adaptive cruise control could result in other 
drivers making closer maneuvers in front of the AVs. Ideally, a close collaboration between all 
stakeholders would be beneficial in ensuringgood driving conditions in mixed traffic. 
In addition to the practical implications, this dissertation points to future research directions. 
Behavioral adaptations in other situations (e.g., motorways,  urban roads) and driving 
maneuvers (e.g., lane changing, emergency braking) need to be investigated. Impacts on long 
term behavioral adaptation is also important to be studied as behaviors observed in the short-
term could be very different from the long-term ones. Another interesting direction of research 
is the impact that eHMIs (external Human Machine Interfaces) of AVs on the interactions with 
HDVs. It is also important to investigate the interactions and impacts in mixed traffic having 
different penetration rates of AVs. Another crucial aspect that must be studied is the effect on 
traffic safety. Finally, the consequence of considering behavioral adaptation on the measured 
macroscopic effects on traffic efficiency must further be investigated. This topic has not been 
studied yet, except in this dissertation. 
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Table S 1: Overview of the effects of mixed traffic factors on human driver car-following 
and overtaking behavior 
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Table S 2: Overview of the effects of mixed traffic factors on human driver gap acceptance 
behavior and traffic efficiency 
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Samenvatting (Language - Dutch) 

Introductie 

Naarmate (gedeeltelijk) zelfrijdende voertuigen (ZV’s) steeds vaker voorkomen op de openbare 
weg, neemt ook de aandacht toe voor hun integratie in gemengd verkeer (verkeer dat bestaat 
uit ZV’s en door mensen bestuurde voertuigen), en voor de impact die ze kunnen hebben op de 
verkeersdoorstroming, verkeersveiligheid en weginfrastructuur. Een aspect dat tot nu toe rela-
tief weinig aandacht heeft gekregen, is het effect van ZV’s op het rijgedrag van door mensen 
bestuurde voertuigen (MBV’s) in gemengd verkeer. De interacties van ZV’s met MBV’s kunnen 
verschillen van de interacties van MBV’s met andere MBV’s. Recentelijk is er steeds meer 
bewijs naar voren gekomen in de wetenschappelijke literatuur die dit ondersteunt. Dergelijke 
veranderingen omvatten MBV’s die dichterbij rijden terwijl ze achter ZV’s rijden of vaker van 
rijstrook veranderen tijdens het rijden in gemengd verkeer. Deze veranderingen kunnen nega-
tieve of positieve effecten hebben op de algehele verkeersveiligheid en efficiëntie. Momenteel 
is er een beperkt begrip van welke gemengde verkeersfactoren van invloed zijn op het rijgedrag 
van MBV’s en de aard van hun effecten. Daarom richt dit proefschrift zich op het bestuderen 
van de effecten van ZV’s op het gedrag van MBV’s om een beter en dieper inzicht te krijgen in 
mogelijke veranderingen in het rijgedrag van MBV’s, in dit proefschrift aangeduid als gedrags-
aanpassingen. De centrale onderzoeksvraag van dit proefschrift is:  
Wat zijn de effecten van geautomatiseerde voertuigen op het rijgedrag van door mensen 
bestuurde voertuigen en wat zijn de gevolgen ervan voor de efficiëntie van gemengd ver-
keer? 
Figuur S 1 is een weergave van de afbakeningvan dit proefschrift, gemarkeerd door de oranje 
markering. Het positioneert de MBV in het midden en wordt beïnvloed door drie verschillende 
typenfactoren: de wegomgeving (bijv. weer, infrastructuur), het verkeer (andere weggebruikers) 
en de bestuurder (persoonlijke kenmerken). Deze factoren zijn van invloed op het rijgedrag van 
de MBV’s, zoals het volgen van auto's en de "gap-acceptatie"(Beoordeling of er een voldoende 
veilige ruimte tussen twee voertuigen is om door te rijden of in te voegen), die uiteindelijk van 
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invloed zijn op de algehele verkeersveiligheid en efficiëntie. Dit proefschrift richt zich op het 
volgen van auto's, inhalen en gap-acceptatiegedrag, en de impact van gap-acceptatie op ver-
keersefficiëntie. Deze fenomenen werden deels geselecteerd op basis van hoe rijgedrag over 
het algemeen wordt gekarakteriseerd en bestudeerd in de verkeerskunde, waarbij zowel longi-
tudinaal (auto-volgend) als lateraal gedrag (inhalen en gap-acceptatie) wordt behandeld; En 
deels op de inzichten die tijdens dit onderzoek naar voren zijn gekomen. Er is gekozen voor 
gap-acceptatiegedrag om de impact op de verkeersefficiëntie te bestuderen vanwege de impact 
die het kan hebben op de verkeersstroom op de weg waarop het verkeer invoegt en op het we-
gennet stroomopwaarts van het kruispunt. Bovendien hebben bestuurders tijdens de gap-accep-
tatie de mogelijkheid om de tegenliggers waar te nemen, die mogelijk vatbaarder zijn voor ge-
mengde verkeersfactoren zoals het uiterlijk van ZV’s. Om de hoofdonderzoeksvraag te beant-
woorden, zijn de volgende subonderzoeksvragen (RQ's) gedefinieerd, die in Figuur S 1 ook als 
dikke pijlen zijn weergegeven:  

1. Wat zijn de mogelijke gedragsaanpassingen van menselijke bestuurders tijdens hun 
interacties met ZV’s? 

2. Wat is de impact van ZV’s op het volggedrag van MBV’s in de auto? 
3. Hoe voeren menselijke bestuurders manoeuvres uit tijdens gap-acceptatie in ge-

mengd (geautomatiseerd en door mensen aangestuurd) verkeer op prioritaire T-
kruispunten? 

4. Wat is de invloed van gemengd verkeer op de verkeersefficiëntie van prioritaire T-
kruispunten? 

 
Figuur S 1: Conceptueel kader als schets voor dit proefschrift 
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Methoden 

Om de onderzoeksvragen te beantwoorden, is in dit proefschrift gebruik gemaakt van empiri-
sche gegevensverzamelingsmethoden zoals rijsimulatoren en veldtests. Omdat ZV’s momenteel 
niet op grote schaal op de openbare weg worden gebruikt, en omdat er zeer beperkte gegevens 
beschikbaar zijn over interacties tussen ZV’s en MBV’s, zijn voor dit proefschrift gegevensver-
zamelingen uitgevoerd. Rijsimulatoren helpen om het gedrag van bestuurders empirisch te be-
studeren in een veilige en gecontroleerde virtuele omgeving, waar verschillende verkeersom-
standigheden op een kosteneffectieve manier kunnen worden getest. Veldtests maken het mo-
gelijk om het rijgedrag in een real-life omgeving te onderzoeken, waardoor ze potentieel meer 
validiteit hebben dan rijsimulatorstudies, maar minder mogelijkheden hebben om de omge-
vingsomstandigheden te beheersen in vergelijking met rijsimulatoren. Daarom is in dit proef-
schrift een combinatie van deze twee methoden gebruikt.  
Dit proefschrift omvat ook wiskundige modellering van relevant rijgedrag. Wiskundige model-
len van het volggedrag van de auto en gap-acceptatiegedrag werden bijvoorbeeld geschat met 
behulp van empirische gegevens die waren verzameld uit de experimenten met de rijsimulator. 
Deze modellen waren ook in microsimulatie om het gedrag van MBV’s te definiëren, om ma-
croscopische indicatoren voor verkeersefficiëntie in gemengd verkeer te bestuderen.  

Resultaten 

De belangrijkste bevindingen zijn samengevat in Tabel S 1 en Tabel S 2. De tabel laat zien hoe 
verschillende gedragingen van menselijke bestuurders worden beïnvloed door specifieke ge-
mengde verkeersfactoren. Het rijgedrag wordt weergegeven door bepaalde indicatoren en de 
specifieke aard van het effect. Ook is te zien op welke studie en hoofdstuk van dit proefschrift 
de bevinding betrekking heeft. Dit proefschrift onderzocht de effecten van verschillende facto-
ren op verschillende indicatoren. De tabellen tonen alleen de effecten die resulteerden in een 
(significante) verandering van de indicatoren, specifiek voor factoren in gemengd verkeer. De 
factoren hadden geen significante invloed op de andere indicatoren. De complete lijst van fac-
toren die in dit proefschrift werden beschouwd, was: factoren specifiek voor gemengd verkeer 
(uiterlijk van ZV's, rijstijl van ZV's, vertrouwen in ZV's, penetratiegraad van ZV's, gedragsaan-
passing in overweging nemen), algemene factoren (leeftijd van de bestuurder, geslacht van de 
bestuurder, rijstijl van de bestuurder). De complete lijst van onderzochte indicatoren was: volg-
afstand (jam afstand, gewenste snelheid, veilige tijdsafstand, maximale acceleratie, comforta-
bele vertraging), gap-acceptatie (geaccepteerde gap-grootte, kritieke gap, kans op het accepte-
ren van een gap), inhalen (afstand na het inhalen, laterale afstand tijdens het inhalen), verkeers 
efficiëntie bij prioritaire T-kruispunten (vertraging per voertuig op de kleine-weg(zijweg), ver-
traging per voertuig op de hoofdweg, wachtrijlengte). 
Er werd waargenomen dat factoren die verband houden met gemengd verkeer verschillende 
effecten hebben op MBV-gedrag en op gedragsaanpassing. Specifiek richt het proefschrift 
zichop de volgende gemengde verkeersfactoren: ZV-uiterlijk, ZV-rijstijl, vertrouwen in ZV’s 
en ZV-penetratiegraad. Het onderzoekt hun effecten op fundamentele rijmanoeuvres van 
MBV’s, waaronder het autovolggedrag van MBV’s, het acceptatiegedrag van gaten en inhaal-
gedrag. Vervolgens analyseert hetwat de impact is van de veranderingen in gap-acceptatiege-
drag op de verkeersefficiëntie op prioritaire T-kruispunten. Dit gedrag werd gemeten aan de 
hand van verschillende indicatoren, zoals te zien is in Tabel S 1 en Tabel S 2, waar ook de 
specifieke richtingen van de effecten op deze indicatoren worden gepresenteerd. 
Naast de specifieke resultaten van dit proefschrift, kunnen de volgende belangrijke conclusies 
worden getrokken uit de combinatie en analyse van alle bevindingen.: 
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1. Gemengde verkeersfactoren beïnvloeden het gedrag van menselijke bestuurders, 
en dit heeft ook implicaties voor de verkeersefficiëntie op macroscopisch niveau. 
In een experiment met een rijsimulator hadden menselijke bestuurders bijvoorbeeld de 
neiging om grotere gaten in de belangrijkste verkeersstroom te accepteren wanneer ze 
moesten invoegen voor een herkenbare ZV die minder defensief reed. Na het imple-
menteren van het gap-acceptatiegedrag van MBV’s in microsimulatie, bleek dat de 
vertraging voor kleine MBV-voertuigen groter was wanneer het grote wegverkeer 
minder defensief herkenbare ZV’s had. 

Tabel S 1: Overzicht van de effecten van gemengde verkeersfactoren op het volgen van 
auto's en inhaalgedrag van menselijke bestuurders. 

 
 

Gedrag Factor Indicator Studie Hoofd
stuk

Gewenste 
snelheid ↓

Kleinere gewenste snelheid bij het volgen van 
een voertuig dat als ZV verschijnt in 

vergelijking met MBV.
Veilige 

tijdvooruit
gang

↓ Kleinere veilige tijdvooruitgang wanneer het 
uiterlijk ZV is in vergelijking met MBV.

↓
Kleinere afstand tussen de jams bij het volgen 

van een voertuig dat als ZV wordt 
weergegeven in vergelijking met MBV.

↓

Bij het volgen van een voertuig dat als ZV 
wordt weergegeven, wordt de afstand tussen de 
files verder kleiner wanneer bestuurders meer 

vertrouwen hebben in ZV's.

Comfortab
ele 

vertraging
↑

Bij het volgen van een voertuig dat als ZV 
verschijnt, grotere comfortabele vertraging 

wanneer bestuurders meer vertrouwen hebben 
in ZV's.

ZV-rijstijl Gewenste 
snelheid ↓

Wanneer de rijstijl ZV is, is de gewenste 
snelheid kleiner voor bestuurders met een 

groter vertrouwen in ZV's.

Gewenste 
snelheid ↓

Wanneer de rijstijl ZV is, is de gewenste 
snelheid kleiner voor bestuurders met een 

groter vertrouwen in ZV's.

Afstand tot 
jamafstand ↓

Bij het volgen van een voertuig dat als ZV 
wordt weergegeven, wordt de afstand tussen de 
files verder kleiner wanneer bestuurders meer 

vertrouwen hebben in ZV's.

Comfortab
ele 

vertraging
↑

Bij het volgen van een voertuig dat als ZV 
verschijnt, grotere comfortabele vertraging 

wanneer bestuurders meer vertrouwen hebben 
in ZV's.

INHALEN ZV-
uitstraling

Voorspron
g na 

inhalen
↓ Kleinere doorvaarthoogte na het inhalen van 

een herkenbare ZV in vergelijking met MBV.

Gecontrole
erde 

veldtest
2

Modelleren 
met behulp 

van 
empirische 

data

3

Jam 
spacing 
distance

Vertrouwen 
in ZV's

Effect

HET 
VOLGEN 

VAN 
AUTO'S

ZV-
uitstraling
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Tabel S 2: Overzicht van de effecten van gemengde verkeersfactoren op het gap-accepta-
tiegedrag van menselijke bestuurders en verkeersefficiëntie. 

 

Gedrag Factor Indicator Studie Hoofdstuk

Geacceptee
rde gap-
grootte

↑
Grootste geaccepteerde gap wanneer ZV's herkenbaar 
waren, met minder defensieve rijstijl en invoegen voor 
een ZV.

Rijsimulator 4

↓ Kleinere kritieke gap wanneer het uiterlijk ZV is in 
vergelijking met MBV.

Gecontrolee
rde veldtest 2

↓
Wanneer ZV's niet herkenbaar zijn, zijn kritieke gaps 
aanzienlijk kleiner wanneer ZV's minder defensief waren 
in vergelijking met meer defensief.

↑

Maar als ze herkenbaar zijn, zijn kritieke gaps aanzienlijk 
groter wanneer ZV's minder defensief waren in 
vergelijking met meer defensief (bij het invoegen voor 
ZV).

Geacceptee
rde gap-
grootte

↑
Grootste geaccepteerde gap wanneer ZV's herkenbaar 
waren, met minder defensieve rijstijl en invoegen voor 
een ZV.

↑

Wanneer ZV's herkenbaar zijn, zijn kritieke gaps 
aanzienlijk groter wanneer ZV's minder defensief waren 
in vergelijking met meer defensief (bij het invoegen voor 
ZV).

↓
Wanneer ZV's niet herkenbaar zijn, zijn kritieke gaps 
aanzienlijk kleiner wanneer ZV's minder defensief waren 
in vergelijking met meer defensief.

Vertrouwen 
in ZV'S

Kritieke 
gap ↓

Het verstrekken van positieve informatie over ZV's (het 
vergroten van het vertrouwen) verkleint de kritieke gap 
verder.

Gecontrolee
rde veldtest 2

ZV-
uitstraling

Vertraging 
voor kleine-

weg 
voertuigen

↑
Toen ZV's minder defensief waren, grotere vertragingen 
voor kleine-weg voertuigen wanneer ZV's herkenbaar 
waren in vergelijking met niet-herkenbaar.

↑

De toename van de vertraging met ZV-penetratiegraad is 
groter wanneer de hoofdweg meer defensieve ZV's heeft 
in vergelijking met wanneer deze minder defensieve ZV's 
heeft.

↑

Bij een hogere penetratiegraad is de vertraging voor 
kleine-weg voertuigen groter wanneer ZV's defensiever 
zijn in vergelijking met wanneer ZV's herkenbaar en 
minder defensief zijn.

Lengte 
wachtrij ↑

De langste wachtrij werd waargenomen in 75% ZV-
penetratiegraad met meer defensieve ZV's 
(gedragsaanpassing niet meegenomen); en de kortste 
wachtrijlengte werd waargenomen in conventioneel 
(volledig MBV) verkeer.

Vertraging 
voor kleine-

weg 
voertuigen

↑ Toename van de ZV-penetratiegraad verhoogde 
vertraging voor kleine-weg voertuigen.

Lengte 
wachtrij ↑

De langste wachtrij werd waargenomen in 75% ZV-
penetratiegraad met meer defensieve ZV's 
(gedragsaanpassing niet meegenomen); en de kortste 
wachtrijlengte werd waargenomen in conventioneel 
(volledig MBV) verkeer.

Gedragsaan
passing 

meenemen

Vertraging 
voor kleine-

weg 
voertuigen

↑

In minder defensief ZV-verkeer leidt het overwegen van 
gedragsaanpassing tot een toename van de vertraging per 
klein-weg voertuig tot 75% (bij een penetratiegraad van 
75%).

GAP-
ACCEPTATIE

Effect

VERKEERS-
EFFICIËNTIE 

OP T-
VOORRANGS

KRUISING

Microsimula
tie 5

ZV-rijstijl

Vertraging 
voor kleine-

weg 
voertuigen

ZV-
penetratiegr

aad

ZV-
uitstraling Kritieke 

gap

Rijsimulator 4

ZV-rijstijl
Kritieke 

gap



 
 

 
 

xxvi 

 

2. Het niet in overweging nemen van gedragsaanpassing van MBV’s bij het voor-
spellen van de verkeersefficiëntie van gemengd verkeer kan tot onnauwkeurige 
resultaten leiden. De microsimulatiestudie toont bijvoorbeeld aan dat het niet in aan-
merking nemen van gedragsaanpassingen van MBV’s bij gap-acceptatie zou kunnen 
leiden tot een onderschatting van de vertraging van kleine wegvoertuigen met onge-
veer 75% (bij een ZV-penetratiegraad van 75%). 

3. Er is een sterkere neiging tot gedragsaanpassingen in het voorwaartse gezichts-
veld van ZV’s. Interacties in het voorwaartse gezichtsveld van ZV’s kunnen bestaan 
uit het uitvoeren van gap-acceptatie voor een ZV vanuit stilstand of het invoegen voor 
een ZV na het inhalen. In de praktijktest waren bestuurders bijvoorbeeld bereid op 
kortere afstanden in te voegen voor ZV’s dan voor MBV’s. Ook voegden ze dichter 
voor ZV’s in nadat ze ze hadden ingehaald, in vergelijking met MBV’s. Gedragsaan-
passingen kunnen nog steeds optreden in andere gedragingen en richtingen, alleen kan 
de omvang kleiner zijn dan in het voorwaartse gezichtsveld. In een experiment met 
een rijsimulator vonden we ook gedragsaanpassing bij het volgen van auto's, waarbij 
bestuurders een kleinere gewenste stilstandsafstand (file) hadden bij het volgen van 
een ZV in vergelijking met een MBV. 

4. Als bestuurders een voertuig niet herkennen als een ZV, hebben bestuurders de 
neiging om het rijgedrag van het voertuig na te bootsen. In een experiment met een 
rijsimulator ontdekten we bijvoorbeeld dat bestuurders grotere gaten accepteerden tij-
dens gap-acceptatie wanneer de (niet-herkenbare) ZV’s defensiever reden en kleinere 
gaten accepteerden wanneer de (niet-herkenbare) ZV’s minder defensief reden. 

5. Als bestuurders een voertuig herkennen als een ZV, dan zijn de richting en om-
vang van de gedragsaanpassingen afhankelijk van de mate van vertrouwen die 
bestuurders hebben in ZV’s. In een rijsimulatorexperiment ontdekten we bijvoor-
beeld dat bestuurders kleinere gaten accepteerden tijdens het accepteren van gaten 
wanneer de (herkenbare) ZV’s defensiever reden en grotere gaten accepteerden wan-
neer de (herkenbare) ZV’s minder defensief reden. In de praktijktest, toen positieve 
informatie (vertrouwenwekkend) over ZV’s werd verstrekt aan bestuurders, voegden 
ze na het inhalen nog dichter voor ZV’s in. 

Praktische implicaties en toekomstige onderzoeksrichtingen 

De resultaten van dit proefschrift hebben implicaties voor verschillende stakeholders. Be-
stuurders van door mensen bestuurde voertuigen moeten zich bewust worden van de 
gedragsaanpassingen die ze kunnen ondergaan. ZV-gebruikers moeten zich ook bewust 
zijn van hoe andere bestuurders hun gedrag kunnen veranderen wanneer ze met hen om-
gaan. Wegbeheerders moeten een evaluatie maken van hoe zinvol/significant de effecten 
van gedragsaanpassing zijn, en wat voor soort verkeersmanagement en infrastructurele 
maatregelen ze kunnen nemen. Autoriteiten voor rijbewijzen en voertuigvergunningen 
moeten ook richtlijnen opstellen over ZV-aspecten zoals hun uiterlijk en rijstijl, en mense-
lijke bestuurders opleiden om de effecten van gedragsaanpassing beter te beheersen. Fabri-
kanten van ZV-auto's moeten de effecten van hun voertuigen en systemen (uiterlijk en 
gedrag) op het overige wegverkeer onderzoeken. Ook zouden ZV-fabrikanten de gebruikers 
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bewust kunnen maken van de gevolgen van de verschillende instellingen in de auto voor 
het omringende verkeer. ZV-gebruikers kunnen bijvoorbeeld worden geïnformeerd dat het 
behouden van defensieve instellingen (zoals een grote tijdsdruk) in adaptieve cruisecontrol 
ertoe kan leiden dat andere bestuurders dichterbij invoegen voor de ZV’s. Idealiteris een 
nauwe samenwerking tussen alle stakeholders nodig om veilige en comfortabele 
rijomstandigheden te garanderen. 
Naast de praktische implicaties geeft dit proefschrift richting voor toekomstig onderzoek. 
Gedragsaanpassingen in andere situaties (bijv. snelwegen, stedelijke wegen) en rijmanoeu-
vres (bijv. rijstrookwissel, noodremmen) moeten worden onderzocht. Effecten op gedrags-
aanpassing op de lange termijn zijn ook belangrijk om te worden bestudeerd, aangezien 
gedrag dat op korte termijn wordt waargenomen, heel anders kan zijn dan op de lange ter-
mijn. Een andere interessante onderzoeksrichting is de impact van eHMI's (external Human 
Machine Interfaces) van ZV’s op de interacties met MBV’s. Het is ook belangrijk om de 
interacties en effecten te onderzoeken in gemengd verkeer met verschillende penetratiegra-
den van ZV’s. Een ander cruciaal aspect zijn de implicaties voor de verkeersveiligheid, die 
moeten worden bestudeerd. Ten slotte moet de consequentie van het overwegen van ge-
dragsaanpassing op de gemeten macroscopische effecten op de verkeersefficiëntie verder 
worden onderzocht. Dit onderwerp is nog niet bestudeerd, behalve in dit proefschrift. 
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"ಾ$ಾಂಶ (Language - Kannada) 

ಪ"ಚಯ 

(!ಾಗಶಃ) ಸ'ಯಂ*ಾ+ತ -ಾಹನಗಳ1 (ಎ3ಗಳ1) 4ಾವ6ಜ8ಕ ರ4ೆ<ಗಳ+= >ೆಚುA ಪCಚ+ತ-ಾಗುD<ದFಂGೆ, HಶC 

ಸಂ*ಾರದ+= (ಎ3ಗಳ1 ಮತು< Jಾನವ *ಾ+ತ -ಾಹನಗKಂದ ಕೂMದ ಸಂ*ಾರ) ಅವOಗಳ ಏQೕಕರಣದ ಬUೆV 

ಮತು< ಸಂ*ಾರ ಹWವO, ಸಂ*ಾರ ಸುರXGೆ ಮತು< ರ4 <ೆ ಮೂಲ4ೌಕಯ6ದ [ೕ\ೆ ಅವO ]ೕರಬಹು^ಾದ 

ಪW_ಾಮಗಳ ಬUೆVಯೂ ಗಮನ >ೆಚುAD<^ೆ. ಇ+=ಯವaೆUೆ ತುಲbಾತcಕ-ಾd ಕM[ ಗಮನವನುe ಪfೆದ ಒಂದು 

ಅಂಶ-ೆಂದaೆ HಶC ಸಂ*ಾರದ+= Jಾನವ *ಾ+ತ -ಾಹನಗಳ (ಎhi3)  *ಾಲbಾ ನಡವKkೆಯ [ೕ\ೆ ಎ3ಗಳ 

ಪW_ಾಮ. ಎhi3ಗlmೆಂndನ ಎ3ಗಳ ಪರಸoರ QCpಗಳ1 ಇತರ ಎhi3ಗlmೆಂndನ ಎhi3ಗಳ ಪರಸoರ 

QCpಗKdಂತ qನe-ಾdರಬಹುದು. ಇD<ೕ*ೆUೆ, ಇದನುe rೆಂಬ+ಸುವ -ೈtಾ8ಕ JಾuD  >ೆಚುAD<ರುವ 

ಪOaಾ-ೆಗಳ1 >ೊರ>ೊHc-ೆ. ಅಂತಹ ಬದ\ಾವ_ೆಗಳ+= ಎhi3ಗಳ1 ಎ3ಗಳ uಂ^ೆ uಂrಾ+ಸು-ಾಗ 

ಹD<ರnಂದ *ಾಲbೆ JಾಡುವOದು ಅಥ-ಾ HಶC ಸಂ*ಾರದ+= *ಾಲbೆ Jಾಡು-ಾಗ ಆUಾUೆV ಪಥ  

ಬದ\ಾವ_ೆಗಳನುe JಾಡುವOದು 4ೇW-ೆ. ಈ ಬದ\ಾವ_ೆಗಳ1 ಒzಾ{aೆ ಸಂ*ಾರ ಸುರXGೆ ಮತು< ದXGೆಯ [ೕ\ೆ 

ನkಾaಾತcಕ ಅಥ-ಾ ಸkಾaಾತcಕ ಪW_ಾಮಗಳನುe ]ೕರಬಹುದು. ಪCಸು<ತ, |ಾವ HಶC ಸಂ*ಾರ ಅಂಶಗಳ1 

ಎhi3ಗಳ *ಾಲbಾ ನಡವKkೆಯ [ೕ\ೆ ಪW_ಾಮ ]ೕರುತ<-ೆ ಮತು< ಅವOಗಳ ಪW_ಾಮಗಳ ಸ'ರೂಪದ ಬUೆV 

}ೕHತ Dಳ1ವKkೆ ಇ^ೆ. ಆದFWಂದ, ಈ ಪCಬಂಧವO ಎhi3 *ಾಲbಾ ನಡವKkೆಯ+= |ಾವO^ೇ ಸಂ!ಾವ� 

ಬದ\ಾವ_ೆಗಳ ಬUೆV ಉತ<ಮ ಮತು< ಆಳ-ಾದ Dಳ1ವKkೆಯನುe ಪfೆಯಲು ಎhi3ಗಳ ನಡವKkೆಯ [ೕ\ೆ 
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ಎ3ಗಳ ಪW_ಾಮಗಳನುe ಅಧ�ಯನ Jಾಡುವತ< kೇಂnCೕಕW}^ೆ, ಇದನುe ಈ ಪCಬಂಧದ+= ನಡವKkೆಯ 

>ೊಂ^ಾ�kೆಗಳ1 ಎಂದು ಉ\ೆ=ೕ�ಸ\ಾd^ೆ. ಈ ಪCಬಂಧದ ಮುಖ� ಸಂ�ೆ�ೕಧbಾ ಪC�ೆepಂದaೆ:  

"ಾನವ &ಾ'ತ )ಾಹನಗಳ &ಾಲ.ಾ ನಡವ01ೆಯ 4ೕ6ೆ ಸ8ಯಂ&ಾ'ತ )ಾಹನಗಳ ಪ;<ಾಮಗಳ> 

?ಾವ@ವ@, ಮತುB CಶE ಸಂ&ಾರ ದHIೆಯ 4ೕ6ೆ ಅವ@ಗಳ ಪ;<ಾಮಗಳ> ?ಾವ@ವ@? 

hತC 1 ಇದು ಈ ಪCಬಂಧದ -ಾ��<ಯ hತCಣ-ಾd^ೆ, ಇದನುe Qತ<l  ೆ�ಾp�ಂದ ಎD< GೋWಸ\ಾd^ೆ. ಇದು 

ಎhi3ಯನುe kೇಂದCದ+= ಇWಸುತ<^ೆ, ಇದು ಮೂರು 3qನe ಅಂಶಗKಂದ ಪC!ಾ3ತ-ಾdರುತ<^ೆ: ರ4 <ೆ ಪWಸರ 

(ಉ^ಾಹರ_ೆUೆ, ಹ-ಾJಾನ, ಮೂಲ4ೌಕಯ6), ಸಂ*ಾರ (ಇತರ ರ4 <ೆ ಬಳkೆ^ಾರರು) ಮತು< *ಾಲಕ (-ೈಯQ<ಕ 

ಗುಣಲXಣಗಳ1). ಈ ಅಂಶಗಳ1 ಎhi3ಗಳ *ಾಲbಾ ನಡವKkೆಯ [ೕ\ೆ ಪW_ಾಮ ]ೕರುತ<-ೆ, ಉ^ಾಹರ_ೆUೆ 

kಾರು-ಅನುಸರ_ೆ ಮತು< ಅಂತರ }'ೕkಾರ, ಇದು ಅಂDಮ-ಾd ಒzಾ{aೆ ಸಂ*ಾರ ಸುರXGೆ ಮತು< ದXGೆಯ 

[ೕ\ೆ ಪC!ಾವ ]ೕರುತ<^ೆ. ಈ ಪCಬಂಧದ+=, bಾನು kಾರು-ಅನುಸರ_ೆ, uಂ^ೆ >ಾಕುವOದು ("ಓವzೇ6Qಂ�") 

ಮತು< ಅಂತರ }'ೕkಾರ ನಡವKkೆ ಮತು< ಸಂ*ಾರ ದXGೆಯ [ೕ\ೆ ಅಂತರ }'ೕkಾರದ ಪW_ಾಮದ [ೕ\ೆ 

kೇಂnCೕಕW}^ೆ. ಸಂ*ಾರ ಎಂ�8ಯWಂಗe+= *ಾಲbಾ ನಡವKkೆಯನುe 4ಾJಾನ�-ಾd >ೇUೆ 

8ರೂ�ಸ\ಾಗುತ<^ೆ ಮತು< ಅಧ�ಯನ Jಾಡ\ಾಗುತ<^ೆ ಎಂಬುದರ ಆ�ಾರದ [ೕ\ೆ ಇವOಗಳನುe !ಾಗಶಃ ಆp� 

Jಾಡ\ಾd^ೆ, ಇದು 8ೕರ *ಾಲbೆ (kಾರು-ಅನುಸರ_ೆ) ಮತು< kೋ_ಾಂಶ *ಾಲbೆ (uಂ^ೆ >ಾಕುವOದು ಮತು< 

ಅಂತರ }'ೕkಾರ) ನಡವKkೆಗಳನುe ಒಳUೊಂM^ೆ; ಮತು< !ಾಗಶಃ ಈ ಸಂ�ೆ�ೕಧbೆಯ ಸಮಯದ+= ಪfೆದ 

ಒಳbೋಟಗಳ [ೕ\ೆ. ಸಂ*ಾರ ದXGೆಯ [ೕ+ನ ಪW_ಾಮವನುe ಅಧ�ಯನ Jಾಡಲು ಅಂತರ }'ೕkಾರ 

ನಡವKkೆಯನುe ಆp� Jಾಡ\ಾ�ತು ಏkೆಂದaೆ ಇದು ಕೂಡು ರ4ೆ< [ೕ\ಾ�ಗದ ರ4 <ೆ �ಾಲದ+= ಮತು< ರ4ೆ<ಯ+= 

ಸಂ*ಾರವO 3+ೕನUೊಳ1�D<ರುವ ರ4ೆ<ಯ ಸಂ*ಾರ ಹW3ನ [ೕ\ೆ ಪW_ಾಮ ]ೕರುತ<^ೆ. ಇದಲ=^ೆ, ಅಂತರ 

}'ೕkಾರದ ಸಮಯದ+=, *ಾಲಕರು ಮುಂಬರುವ -ಾಹನಗಳನುe ಗಮ8ಸಲು ಅವkಾಶವನುe >ೊಂnರುGಾ<aೆ, 

ಬಹುಶಃ ಎ3 bೋಟದಂತಹ HಶC ಸಂ*ಾರ ಅಂಶಗKUೆ >ೆಚುA ಒಳUಾಗುGಾ<aೆ. ಮುಖ� ಸಂ�ೆ�ೕಧbಾ ಪC�ೆeUೆ 

ಉತ<Wಸಲು, ಈ kೆಳdನ ಉಪ ಸಂ�ೆ�ೕಧbಾ ಪC�ೆeಗಳನುe -ಾ��ಾ�8ಸ\ಾd^ೆ, ಅವOಗಳನುe hತC 1 ರ+= ದಪo 

rಾಣಗlಾd hDCಸ\ಾd^ೆ:  

1. ಎ3ಗlmೆಂndನ ಸಂವಹನದ ಸಮಯದ+= Jಾನವ *ಾಲಕರ ಸಂ!ಾವ� ನಡವKkೆಯ 

>ೊಂ^ಾ�kೆಗಳ1 |ಾವOವO? 

2. ಎhi3ಗಳ ನಡವKkೆಯನುe ಅನುಸW} kಾWನ [ೕ\ೆ ಎ3ಗಳ ಪW_ಾಮ-ೇನು? 

3. ಆದ�Gೆಯ �-ಕೂಡು ರ4ೆ<  ಗಳ+= HಶC (ಸ'ಯಂ*ಾ+ತ ಮತು< Jಾನವ *ಾ+ತ) ಸಂ*ಾರದ+= Jಾನವ 

*ಾಲಕರು ಅಂತರ }'ೕkಾರ ತಂತCಗಳನುe >ೇUೆ 8ವ6uಸುGಾ<aೆ? 

4. HಶC ಸಂ*ಾರವO ಆದ�Gೆಯ �-ಕೂಡು ರ4ೆ<ಗಳ ಸಂ*ಾರ ದXGೆಯ [ೕ\ೆ >ೇUೆ ಪW_ಾಮ ]ೕರುತ<^ೆ? 
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!ತ# 1: ಈ ಪ#ಬಂಧದ ರೂಪ./ೇ2ೆ3ಾ5 ಪ6ಕಲ9:ಾ ;ೌಕಟು? 

%&ಾನಗಳ+ 

ಸಂ�ೆ�ೕಧbಾ ಪC�ೆeಗKUೆ ಉತ<Wಸಲು, ಈ ಪCಬಂಧವO *ಾಲbಾ "}ಮು�\ೇಟಗ6ಳ1" ಮತು< �ೇತC 

ಪWೕ�ೆಗಳಂತಹ �ಾC�ೕdಕ ದGಾ<ಂಶ ಸಂಗCಹ 3�ಾನಗಳನುe ಅಳವM}kೊಂMತು. ಎ3ಗಳ1 ಪCಸು<ತ 

4ಾವ6ಜ8ಕ ರ4ೆ<ಗಳ+= -ಾ�ಪಕ-ಾd kಾಯ68ವ6uಸದ kಾರಣ, ಮತು< ಎ3ಗಳ1 ಮತು< ಎhi3ಗಳ ನಡು3ನ 

ಪರಸoರ QCpಗಳ ಬUೆV ಬಹಳ }ೕHತ JಾuD ಲಭ�3ರುವOದWಂದ, ಈ ಪCಬಂಧkಾ�d JಾuD ಸಂಗCಹ_ೆ 

ಪCಯತeಗಳನುe Jಾಡ\ಾ�ತು. *ಾಲbಾ }ಮು�\ೇಟ� ಗಳ1 ಸುರ�ತ ಮತು< 8ಯಂDCತ ಆbೆ=ೖ� 

ಪWಸರದ+= *ಾಲಕರ ನಡವKkೆಯನುe �ಾC�ೕdಕ-ಾd ಅಧ�ಯನ Jಾಡಲು ಸ>ಾಯ Jಾಡುತ<^ೆ, ಅ+= 

3qನe ಸಂ*ಾರ ಪW}�Dಗಳನುe -ೆಚA-ಪW_ಾಮkಾW WೕDಯ+= ಪWೕ�ಸಬಹುದು. �ೇತC ಪWೕ�ೆಗಳ1 8ಜ 

�ೕವನದ ಸ8e-ೇಶದ+= *ಾಲbಾ ನಡವKkೆಯ ತ8�ೆಯನುe ಅನುಮDಸುತ<-ೆ, ಆದFWಂದ *ಾಲbಾ 

}ಮು�\ೇಟ� ಅಧ�ಯನಗKdಂತ >ೆhAನ }ಂಧುತ'ವನುe >ೊಂn-ೆ, ಆ^ಾಗೂ� *ಾಲbಾ }ಮು�\ೇಟಗ6KUೆ 

>ೋ+}ದaೆ ಪWಸರ ಪW}�Dಗಳನುe 8ಯಂDCಸಲು ಕM[ 4ಾಧ�Gೆಗಳನುe >ೊಂn-ೆ. ಆದFWಂದ, ಈ 

ಪCಬಂಧವO ಈ ಎರಡು 3�ಾನಗಳ ಸಂ�ೕಜbೆಯನುe ಬಳ}ತು.  

ಈ ಪCಬಂಧವO ಮುಖ� *ಾಲbಾ ನಡವKkೆಗಳ ಗ�ತ�ಾಸ ದ ಅನುಕರ_ೆಯನುe ಸಹ ಒಳUೊಂM^ೆ. 

ಉ^ಾಹರ_ೆUೆ, *ಾಲbಾ }ಮು�\ೇಟ� ಪC�ೕಗಗKಂದ ಸಂಗCu}ದ �ಾC�ೕdಕ JಾuDಯನುe 

ಬಳ}kೊಂಡು kಾರು ಅನುಸWಸುವ ನಡವKkೆ ಮತು< ಅಂತರ }'ೕkಾರ ನಡವKkೆಯ ಗ�ತದ JಾದWಗಳನುe 
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ಅಂ^ಾ�ಸ\ಾd^ೆ. ಈ JಾದWಗಳ1 ಎhi3ಗಳ ನಡವKkೆಗಳನುe -ಾ��ಾ�8ಸಲು, HಶC ಸಂ*ಾರದ+= ಸಂ*ಾರ 

ದXGೆಯ "Jಾ�kೊCೕ4ೊ�ೕ�¡" ಸೂಚಕಗಳನುe ಅಧ�ಯನ Jಾಡಲು "[ೖkೊCೕ}ಮು�\ೇಶ�" ನ+=ದFವO.  

ಫ-.ಾಂಶಗಳ+ 

ಮುಖ� ಸಂ�ೆ�ೕಧbೆಗಳನುe kೋಷ{ಕ [ೕಜು 1 ರ+= ಸಂ�ಪ<UೊKಸ\ಾd^ೆ. 8n6ಷ{ HಶC ಸಂ*ಾರ ಅಂಶಗKಂದ 

Jಾನವ *ಾಲಕರ 3qನe ನಡವKkೆಗಳ1 >ೇUೆ ಪW_ಾಮ ]ೕರುತ<-ೆ ಎಂಬುದನುe kೋಷ{ಕ GೋWಸುತ<^ೆ. 

*ಾಲbಾ ನಡವKkೆಗಳನುe kೆಲವO ಸೂಚಕಗಳ1 ಮತು< ಪW_ಾಮದ 8n6ಷ{ ಸ'ರೂಪnಂದ ಪCD8£ಸ\ಾಗುತ<^ೆ. 

ಈ ಪCಬಂಧದ |ಾವ ಅಧ�ಯನ ಮತು< ಅ�ಾ�ಯkೆ� ಸಂಬಂ£}^ೆ ಎಂಬುದನುe ಸಹ ಇದು GೋWಸುತ<^ೆ.  

HಶC ಸಂ*ಾರkೆ� ಸಂಬಂ£}ದ ಅಂಶಗಳ1 ಎhi3 ನಡವKkೆ ಮತು< ನಡವKkೆಯ >ೊಂ^ಾ�kೆಯ [ೕ\ೆ 

ಹಲ-ಾರು ಪW_ಾಮಗಳನುe ]ೕರುತ<-ೆ ಎಂದು ಗಮ8ಸ\ಾd^ೆ. 8n6ಷ{-ಾd, bಾನು ಈ kೆಳdನ HಶC 

ಸಂ*ಾರ ಅಂಶಗಳ [ೕ\ೆ kೇಂnCೕಕW}^ೆF: ಎ3 bೋಟ, ಎ3 *ಾಲbಾ �ೈ+, ಎ3ಗಳ+= ನಂ]kೆ ಮತು< ಎ3 

ನುಗುVವ ದರ. ಎhi3ಗಳ kಾರು-ಅನುಸWಸುವ ನಡವKkೆ, ಅಂತರ }'ೕkಾರ ನಡವKkೆ ಮತು< uಂ^ೆ >ಾಕುವ 

ನಡವKkೆ 4ೇWದಂGೆ ಎhi3ಗಳ ಮೂಲಭೂತ *ಾಲbಾ ತಂತCಗಳ [ೕ\ೆ ಅವOಗಳ ಪW_ಾಮಗಳನುe bಾನು 

ತ8�ೆ JಾM^ೆF. ಆದ�Gೆಯ �-ಕೂಡು ರ4ೆ<ಗಳ+= ಸಂ*ಾರ ದXGೆಯ [ೕ\ೆ ಅಂತರ-}'ೕkಾರ ನಡವKkೆಯ+=ನ 

ಬದ\ಾವ_ೆಗಳ ಪW_ಾಮವನುe bಾನು ತ8�ೆ JಾM^ೆ. [ೕಜು 1 ರ+= GೋW}ರುವಂGೆ ಈ ನಡವKkೆಗಳನುe 

3qನe ಸೂಚಕಗಳನುe ಬಳ}kೊಂಡು ಅlೆಯ\ಾd^ೆ, ಅ+= ಈ ಸೂಚಕಗಳ [ೕ+ನ ಪW_ಾಮಗಳ 8n6ಷ{ 

nಕು�ಗಳನುe ಸಹ ಪCಸು<ತಪMಸ\ಾd^ೆ. 

ಈ ಪCಬಂಧದ 8n6ಷ{ ಫ+Gಾಂಶಗಳ �ೊGೆUೆ, ಎ\ಾ= ಸಂ�ೆ�ೕಧbೆಗಳ ಸಂ�ೕಜbೆ ಮತು< ಚ*ೆ6�ಂದ ಈ 

kೆಳdನ ಪCಮುಖ ಅಂಶಗಳ1 ಸಹ ಉಂzಾಗುತ<-ೆ: 

1. CಶE ಸಂ&ಾರ ಅಂಶಗಳ> "ಾನವ &ಾಲಕರ ನಡವ01ೆಗಳ 4ೕ6ೆ ಪ;<ಾಮ LೕರುತB)ೆ, ಮತುB ಇದು 

"ಾN1ೊEೕPೊQೕRS ಮಟUದ'V ಸಂ&ಾರ ದHIೆಯ 4ೕ6ೆ ಪ;<ಾಮ LೕರುತBWೆ. ಉ^ಾಹರ_ೆUೆ, 

fೆ¥3ಂ� }ಮು�\ೇಟ� ಪC�ೕಗದ+=, Jಾನವ *ಾಲಕರು ಕM[ ರX_ಾತcಕ-ಾd *ಾಲbೆ 

JಾಡುD<ದF ಗುರುDಸಬಹು^ಾದ ಎ3 ಮುಂ^ೆ 3+ೕನUೊಳ�rೇkಾ^ಾಗ ಪCಮುಖ ರ4 <ೆ ಸಂ*ಾರ 

ಪC-ಾಹದ+= ^ೊಡi ಅಂತರಗಳನುe ಒ�okೊಳ�ಲು ಒಲವO GೋWದರು. [ೖkೊCೕ}ಮು�\ೇಶನe+= 

ಎhi3ಗಳ ಅಂತರ }'ೕkಾರ ನಡವKkೆಯನುe �ಾWUೆ ತಂದ ನಂತರ, ಪCಮುಖ ರ4 <ೆ ಸಂ*ಾರವO ಕM[ 

ರX_ಾತcಕ ಗುರುDಸಬಹು^ಾದ ಎ3ಗಳನುe >ೊಂnರು-ಾಗ ಸಣ¦ ರ4 <ೆ ಎhi3 -ಾಹನಗಳ 3ಳಂಬವO 

^ೊಡi^ಾd^ೆ ಎಂದು ಇದು GೋW}^ೆ. 
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@ೕಜು 1: Bಾನವ ;ಾಲಕ ನಡವFGೆಯ @ೕIೆ Jಶ# ಸಂ;ಾರ ಅಂಶಗಳ ಪ6Pಾಮಗಳ ಅವIೋಕನ 

 

Behavior Factor Indicator Study Chapter

Desired velocity ↓ Smaller desired velocity when following vehicle 
appearing as AV compared to HDV.

Safe time 
headway ↓ Smaller safe time headway when appearance is AV 

compared to HDV.

↓ Smaller jam spacing distance when following vehicle 
appearing as AV compared to HDV.

↓ When following vehicle appearing as AV, jam spacing 
further reduces when drivers have higher trust in AVs

Comfortable 
deceleration ↑

When following vehicle appearing as AV, larger 
comfortable deceleration when drivers have higher trust in 
AVs

AV driving 
style Desired velocity ↓ When driving style is AV, desired velocity smaller for 

drivers having higher trust in AVs.

Desired velocity ↓ When driving style is AV, desired velocity smaller for 
drivers having higher trust in AVs.

Jam spacing 
distance ↓ When following vehicle appearing as AV, jam spacing 

further reduces when drivers have higher trust in AVs

Comfortable 
deceleration ↑

When following vehicle appearing as AV, larger 
comfortable deceleration when drivers have higher trust in 
AVs

OVERTAKING AV 
appearance

Headway after 
overtaking ↓ Smaller headway after overtaking a recognisable AV 

compared to HDV.
Controlled field 

test 2

Accepted gap size ↑
Largest accepted gap when AVs were recognizable, with 
less defensive driving style, and merging in front of an 
AV.

Driving simulator 4

↓ Smaller critical gap when appearance is AV compared to 
HDV.

Controlled field 
test 2

↓
When AVs are non-recognizable, critical gaps 
significantly smaller when AVs were less defensive 
compared to more defensive. 

↑
But when recognizable, critical gaps significantly larger 
when AVs were less defensive compared to more 
defensive (when merging in front of AV).

Accepted gap size ↑
Largest accepted gap when AVs were recognizable, with 
less defensive driving style, and merging in front of an 
AV.

↑
When AVs are recognizable, critical gaps significantly 
larger when AVs were less defensive compared to more 
defensive (when merging in front of AV).

↓
When AVs are non-recognizable, critical gaps 
significantly smaller when AVs were less defensive 
compared to more defensive. 

Trust in AVs Critical gap ↓ Provision of positive information on AVs (increasing trust) 
reduces critical gap further.

Controlled field 
test 2

AV 
appearance

Delay for minor 
road vehicles ↑

When AVs were less defensive, larger delays for minor 
road vehicles when AVs were recognizable compared to 
being non-recognizable. 

↑
Increase in delay with AV penetration rate is larger when 
the major road has More defensive AVs compared to when 
it has Less defensive AVs.

↑
At larger penetration rates,  delay for minor road vehicles 
is larger when AVs are more defensive as compared to 
when AVs are recognizable and less defensive.

Queue length ↑
Longest queue was observed in 75% AV penetration rate 
traffic with more defensive AVs (behavioral adaptation 
not considered); and shortest queue length was observed in 
conventional (fully HDV) traffic.

Delay for minor 
road vehicles ↑ Increase in AV penetration rate increased delay for minor 

road vehicles.

Queue length ↑
Longest queue was observed in 75% AV penetration rate 
traffic with more defensive AVs (behavioral adaptation 
not considered); and shortest queue length was observed in 
conventional (fully HDV) traffic.

Considering 
Behavioral 
Adaptation

Delay for minor 
road vehicles ↑

In less defensive AV traffic, considering behavioral 
adaptation results in an increase in delay per minor road 
vehicle by up to 75%  (at 75% penetration rate).

3

4

5

Effect

AV 
appearance Jam spacing 

distance

CAR-
FOLLOWING

The complete list of factors considered in this dissertation were: Mixed traffic specific factors (AV appearance, AV driving style, trust in AVs, AV penetration 
rate, considering behavioral adaptation), general factors (Driver age, driver gender, driver driving style). The complete list of indicators investigated were: Car-
following (Jam spacing, Desired velocity, Safe time headway, Maximum acceleration, Comfortable deceleration), Gap acceptance (Accepted gap size, Critical 

gap, probability of accepting a gap), Overtaking (Headway after overtaking, Lateral distance while overtaking), Traffic efficiency at priority T 
intersection(Delay per vehicle on minor road, Delay per vehicle on major road, Queue length)

Critical gap

AV 
appearance

Critical gap

AV driving 
style

GAP 
ACCEPTANCE

Delay for minor 
road vehicles

AV driving 
style

AV 
penetration 

rate

TRAFFIC 
EFFICIENCY AT 

PRIORITY T-
INTERSECTION

Trust in AVs

This dissertation investigated the effects of several factors on different indicators. The above table only presents the effects that resulted in a (significant) 
change in the indicators, only for mixed traffic specific factors. The factors did not have any significant effect on the other indicators. 

Modelling using 
empirical data

Driving simulator

Microsimulation
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2. CಶE ಸಂ&ಾರದ ಸಂ&ಾರ ದHIೆಯನುX ಊZಸು)ಾಗ ಎ\]^ಗಳ ನಡವ01ೆಯ _ೊಂWಾ`1ೆಯನುX 

ಪ;ಗ`ಸaರುವ@ದು ತbಾcದ ಫ'Iಾಂಶಗ0eೆ 1ಾರಣ)ಾಗಬಹುದು. ಉ^ಾಹರ_ೆUೆ, ಅಂತರ 

}'ೕkಾರದ+= ಎhi3ಗಳ ನಡವKkೆಯ >ೊಂ^ಾ�kೆಗಳನುe ಪWಗ�ಸnರುವOದು ಸಣ¦ ರ4 <ೆ -ಾಹನಗಳ 

3ಳಂಬವನುe ಸುJಾರು ೭೫% ರಷು{ ಕM[ ಅಂ^ಾಜು Jಾಡಲು kಾರಣ-ಾಗಬಹುದು (೭೫% ಎ3 

ನುಗುVವ ದರದ+=).  

3. ಎ^ಗಳ ದೃiU1ೋನದ jಾವklk mೇತEದ'V ನಡವ01ೆಯ _ೊಂWಾ`1ೆಗಳ> ಸಂಭ^ಸುವ ಬಲ)ಾದ 

ಪEವೃoB ಇWೆ. ಎ3ಗಳ ದೃª{kೋನದ ಮುಂ!ಾಗ �ೇತCದ+=ನ ಪರಸoರ QCpಗಳ1 ಎ3ಯ ಮುಂ^ೆ 

8ಲ=ದಂGೆ ಅಂತರ }'ೕkಾರವನುe 8ವ6uಸುವOದು ಅಥ-ಾ uಂ^ೆ >ಾಕುವOದು JಾMದ ನಂತರ ಎ3 

ಮುಂ^ೆ 3+ೕನUೊಳ1�ವOದು. ಉ^ಾಹರ_ೆUೆ, �ೇತC ಪWೕ�ೆಯ+=, *ಾಲಕರು ಎhi3ಗಳ ಮುಂ^ೆ 

ಇರುವOದQ�ಂತ ಹD<ರದ+= ಎ3ಗಳ ಮುಂ^ೆ 3+ೕನUೊಳ�ಲು }ದ«WದFರು. ಅಲ=^ೆ, ಎhi3ಗKUೆ 

>ೋ+}ದaೆ, ಅವOಗಳನುe uಂnQ�ದ ನಂತರ ಅವO ಎ3ಗಳ ಮುಂ^ೆ ಹD<ರ-ಾd 3+ೕನUೊಂಡವO. 

ನಡವKkೆಯ >ೊಂ^ಾ�kೆಗಳ1 ಇನೂe ಇತರ ನಡವKkೆಗಳ1 ಮತು< nಕು�ಗಳ+= ಸಂಭ3ಸಬಹುದು, 

ಆದaೆ ಅದರ -ಾ��<ಯ ಮಟ{ ¬ಾವ6­6 �ೇತCQ�ಂತ hಕ�^ಾdರಬಹುದು. fೆ¥3ಂ� }ಮು�\ೇಟ� 

ಪC�ೕಗದ+=, ಎhi3Uೆ >ೋ+}ದaೆ ಎ3ಯನುe ಅನುಸWಸು-ಾಗ *ಾಲಕರು ಕM[ ಅ�ೇ�ತ 

8ಲುಗfೆ (�ಾ®) ದೂರವನುe >ೊಂnರುವ kಾರು-ಅನುಸರ_ೆಯ+= ನಡವKkೆಯ >ೊಂ^ಾ�kೆಯನುe 

bಾವO ಕಂಡುkೊಂM^ೆFೕ-ೆ. 

4. &ಾಲಕರು )ಾಹನವನುX ಎ^ ಎಂದು ಗುರುoಸaದpqೆ, &ಾಲಕರು )ಾಹನದ &ಾಲ.ಾ ನಡವ01ೆಯನುX 

ಅನುಕ;ಸುIಾBqೆ. ಉ^ಾಹರ_ೆUೆ, fೆ¥3ಂ� }ಮು�\ೇಟ� ಪC�ೕಗದ+=, (ಗುರುDಸ\ಾಗದ) ಎ3ಗಳ1 

>ೆಚುA ರX_ಾತcಕ-ಾd *ಾಲbೆ JಾM^ಾಗ *ಾಲಕರು ಅಂತರ }'ೕkಾರದ ಸಮಯದ+= ^ೊಡi 

ಅಂತರಗಳನುe ಒ�okೊಂಡರು ಮತು< (ಗುರುDಸ\ಾಗದ) ಎ3ಗಳ1 ಕM[ ರX_ಾತcಕ-ಾd *ಾಲbೆ 

JಾM^ಾಗ ಸಣ¦ ಅಂತರಗಳನುe ಒ�okೊಂಡರು ಎಂದು bಾವO ಕಂಡುkೊಂM^ೆFೕ-ೆ. 

5. &ಾಲಕರು )ಾಹನವನುX ಎ^ ಎಂದು ಗುರುorದqೆ, ನಡುವ01ೆಯ _ೊಂWಾ`1ೆಗಳ aಕುQ ಮತುB )ಾNRB 

&ಾಲಕರು ಎ^ಗಳ'V _ೊಂaರುವ ^sಾ8ಸದ ಮಟUವನುX ಅವಲಂLrರುತBWೆ. ಉ^ಾಹರ_ೆUೆ, fೆ¥3ಂ� 

}ಮು�\ೇಟ� ಪC�ೕಗದ+=, (ಗುರುDಸಬಹು^ಾದ) ಎ3ಗಳ1 >ೆಚುA ರX_ಾತcಕ-ಾd *ಾಲbೆ 

JಾM^ಾಗ *ಾಲಕರು ಅಂತರ }'ೕkಾರದ ಸಮಯದ+= ಸಣ¦ ಅಂತರಗಳನುe ಒ�okೊಂಡರು ಮತು< 

(ಗುರುDಸಬಹು^ಾದ) ಎ3ಗಳ1 ಕM[ ರX_ಾತcಕ-ಾd *ಾಲbೆ JಾM^ಾಗ ^ೊಡi ಅಂತರಗಳನುe 

ಒ�okೊಂಡರು ಎಂದು bಾವO ಕಂಡುkೊಂM^ೆFೕ-ೆ. �ೇತC ಪWೕ�ೆಯ+=, *ಾಲಕWUೆ ಎ3ಗಳ ಬUೆV 

ಸkಾaಾತcಕ JಾuDಯನುe (3�ಾ'ಸ-8Jಾ6ಣ) ಒದd}^ಾಗ, ಓವzೇ6¡ JಾMದ ನಂತರ ಅವO 

ಎ3ಗಳ ಮುಂ^ೆ ಇನeಷು{ ಹD<ರkೆ� 3+ೕನUೊಂಡವO. 
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2ಾ34ೕ6ಕ ಪ"8ಾಮಗಳ+ ಮತು< ಭ%ಷ?ದ ಸಂBೆDೕಧFಾ GHೇIಶನಗಳ+ 

ಈ ಪCಬಂಧದ ಫ+Gಾಂಶಗಳ1 ಹಲ-ಾರು ವಗ6ಗKUೆ ಪW_ಾಮಗಳನುe ]ೕರುತ<^ೆ. ಹಸB&ಾ'ತ )ಾಹನಗಳ 

&ಾಲಕರು ಅವರು ಒಳUಾಗಬಹು^ಾದ ನಡವKkೆಯ >ೊಂ^ಾ�kೆಗಳ ಬUೆV DKnರrೇಕು. ಎ^ ಬಳ1ೆWಾರರು 

ಇತರ *ಾಲಕರು ಅವaೊಂnUೆ ಸಂವಹನ ನfೆಸು-ಾಗ ತಮc ನಡವKkೆಯನುe >ೇUೆ ಬದ\ಾ�ಸಬಹುದು 

ಎಂಬುದರ ಬUೆVಯೂ �ಾಗೃತaಾdರrೇಕು.  ನಡವ01ೆಯ _ೊಂWಾ`1ೆಯ ಪ;<ಾಮಗಳ> ಎಷುU 

ಅಥkಪvಣk / ಮಹತ8Wಾpw)ೆ ಮತುB ಅವರು ?ಾವ ;ೕoಯ ಸಂ&ಾರ xವkಹ<ೆ ಮತುB ಮೂಲPೌಕಯk 

ಕEಮಗಳನುX Iೆeೆದು1ೊಳzಬಹುದು  ಎಂಬುದರ Jೌಲ�Jಾಪನವನುe ರ4 <ೆ ಅ£kಾWಗಳ1 

Jಾಡrೇಕು.&ಾಲ.ಾ ಪರ)ಾನw ಮತುB )ಾಹನ ಪರ)ಾನw �ಾC£kಾರಗಳ1 ಅವOಗಳ bೋಟ ಮತು< 

*ಾಲbಾ �ೈ+ಯಂತಹ ಎ3 ಅಂಶಗಳ ಬUೆV Jಾಗ6ಸೂhಗಳನುe Jಾಡrೇkಾd^ೆ ಮತು< ನಡವKkೆಯ 

>ೊಂ^ಾ�kೆಯ ಪW_ಾಮಗಳನುe ಉತ<ಮ-ಾd 8ವ6uಸಲು Jಾನವ *ಾಲಕWUೆ ತರrೇD 

8ೕಡrೇkಾd^ೆ. ಎ^ 1ಾರು ತ?ಾರಕರು ಇತರ ರ4 <ೆ ಸಂ*ಾರದ [ೕ\ೆ ತಮc -ಾಹನಗಳ1 ಮತು< 

ವ�ವ4ೆ�ಗಳ (bೋಟ ಮತು< ನಡವKkೆ-ಸಂಬಂ£ತ) ಪW_ಾಮಗಳನುe ತ8�ೆ Jಾಡrೇಕು. ಅಲ=^ೆ, ಎ3 

ತ|ಾರಕರು ಸುತ<ಮುತ<+ನ ದಟ{_ೆಯ [ೕ\ೆ 33ಧ -ಾಹನ ಒಳdನ 4ಾ�ಪbೆಗಳ ಪW_ಾಮಗಳ ಬUೆV 

ಬಳkೆ^ಾರWUೆ ಅWವO ಮೂMಸಬಹುದು. ಉ^ಾಹರ_ೆUೆ, "ಕೂC¯ ಕಂzೊCೕ°" ರX_ಾತcಕ 4ಾ�ಪbೆಗಳನುe 

(^ೊಡi ಸಮಯದ ಮುನefೆಯಂತಹ) ಇಟು{kೊಳ1�ವOದWಂದ ಇತರ *ಾಲಕರು ಎ3ಗಳ ಮುಂ^ೆ 8ಕಟ 

ಕುಶಲGೆಯನುe Jಾಡಬಹುದು ಎಂದು ಎ3 ಬಳkೆ^ಾರWUೆ DKಸಬಹುದು. ಆದಶ6-ಾd, ಸುರ�ತ ಮತು< 

ಆaಾಮ^ಾಯಕ *ಾಲbಾ ಪW}�Dಗಳನುe ಖhತಪMಸಲು ಎ\ಾ= ವಗ6ಗಳ ನಡು-ೆ ಹD<ರದ ಸಹkಾರ 

ಅಗತ�3^ೆ. 

�ಾC�ೕdಕ ಪW_ಾಮಗಳ �ೊGೆUೆ, ಈ ಪCಬಂಧವO ಭ3ಷ�ದ ಸಂ�ೆ�ೕಧbಾ 8^ೇ6ಶನಗಳನುe 

ಸೂhಸುತ<^ೆ. ಇತರ ಸಂದಭ6ಗಳ+= ವತ6bೆಯ >ೊಂ^ಾ�kೆಗಳ1 (ಉ^ಾಹರ_ೆUೆ, 

±ೕzಾರುJಾಗ6ಗಳ1, ನಗರ ರ4ೆ<ಗಳ1) ಮತು< *ಾಲbಾ ಕುಶಲGೆಗಳ1 (ಉ^ಾಹರ_ೆUೆ, *ಾಲbಾ ಪಥ 

ಬದ\ಾ�ಸುವOದು, ತುತು6 ತfೆ) ತ8�ೆ Jಾಡrೇkಾd^ೆ. nೕಘ6kಾ+ೕನ ನಡವKkೆಯ >ೊಂ^ಾ�kೆಯ 

[ೕ+ನ ಪW_ಾಮಗಳನುe ಅಧ�ಯನ JಾಡುವOದು ಸಹ ಮುಖ�-ಾd^ೆ ಏkೆಂದaೆ ಅ\ಾoವ£ಯ+= 

ಗಮ8ಸ\ಾದ ನಡವKkೆಗಳ1 nೕಘ6kಾ+ೕನ ನಡವKkೆಗKdಂತ ಬಹಳ qನe-ಾdರಬಹುದು. 

ಸಂ�ೆ�ೕಧbೆಯ ಮGೊ<ಂದು ಆಸQ<^ಾಯಕ nಕು� ಎ3ಗಳ ಇಎ³ಎಂಐಗಳ1 (rಾಹ� Jಾನವ ಯಂತC 

ಇಂಟ¬ೇ6ಸVಳ1) ಎhi3ಗlmೆಂndನ ಪರಸoರ QCpಗಳ [ೕ\ೆ ]ೕರುವ ಪW_ಾಮ-ಾd^ೆ. ಎ3ಗಳ 3qನe 

ನುಗುVವ ದರಗಳನುe >ೊಂnರುವ HಶC ಸಂ*ಾರದ+=ನ ಪರಸoರ QCpಗಳ1 ಮತು< ಪW_ಾಮಗಳನುe ತ8�ೆ 

JಾಡುವOದು ಸಹ ಮುಖ�-ಾd^ೆ. ಮGೊ<ಂದು 8_ಾ6ಯಕ ಅಂಶ-ೆಂದaೆ ಸಂ*ಾರ ಸುರXGಾ ಪW_ಾಮ, 

ಇದನುe ಅಧ�ಯನ Jಾಡrೇಕು. ಅಂDಮ-ಾd, ಸಂ*ಾರ ದXGೆಯ [ೕ\ೆ ಅlೆಯ\ಾದ 

Jಾ�kೊCೕ4ೊ�ೕ�¡ ಪW_ಾಮಗಳ [ೕ\ೆ ನಡವKkೆಯ >ೊಂ^ಾ�kೆಯನುe ಪWಗ�ಸುವ ಪW_ಾಮವನುe 

ಮತ<ಷು{ ತ8�ೆ Jಾಡrೇಕು. ಈ ಪCಬಂಧವನುe >ೊರತುಪM}, ಈ 3ಷಯವನುe ಇನುe ಎ+=ಯೂ ಅಧ�ಯನ 

Jಾಡ\ಾdಲ=. 



 

 
 

 

 
  



 
 

   

 

Reader's Guide 

Dear reader, this is a guide that helps navigating this dissertation. You can find the chapter titles 
suggesting their focus and the method used. There is also a description that takes you a step deeper in 
what the chapters offer. Additionally, there is a preview that gives you a taste of the findings. 

1 Chapter 1: Introduction 

Background, Scientific gaps, Research Questions, Contributions to Science and Practice, 
Conceptual framework, Dissertation outline 

13 Chapter 2: Investigating behavioral adaptation: A controlled field test ex-
periment 

To gain insights of human drivers behavior in mixed traffic, we conducted a first 
exploration of human drivers’ behavioral adaptation in mixed traffic. We set up a field 
test where human drivers interacted with an automated vehicle in a Wizard-of-Oz 
experiment during gap acceptance, car following, and overtaking.  
Preview: human drivers perform closer manoeuvres in front of automated vehicles 

39 Chapter 3: Investigating car-following behavior: A driving simulator exper-
iment 

To gain insights into human drivers' car following behavior, a driving simulator ex-
periment was set up where drivers followed a lead vehicle appearing either as an auto-
mated vehicle or human-driven vehicle. We estimated the Intelligent Driver 
Model (IDM) and the IDM+ to get insights into driving behavior parameters. 
Preview: human drivers have smaller desired speeds when following a vehicle that drives 
like an AV and is recognizable as an AV 

67 Chapter 4: Investigating gap-acceptance behavior: A driving simulator ex-
periment 
To gain insights into human drivers' gap-acceptance behavior, we set up a driving sim-
ulator experiment, drivers were asked to enter a major road while approaching from a 
minor road at a T-intersection, which involved waiting for an acceptable gap on the 
major road traffic. We performed descriptive analyses to check the effects of AV rec-
ognizability and AV driving style on human drivers’ gap acceptance behavior. 

Preview: human drivers accept larger gaps when automated vehicles are recognizable 
and perceived as less defensive  

95 Chapter 5: Investigating the impact of behavioral adaptation on traffic effi-
ciency at unsignalized intersections: A microsimulation approach 

To understand the impact of behavioral adaptation on traffic efficiency, we modelled hu-
man drivers’ gap acceptance behavior and implemented that in a traffic microsimula-
tion network. We studied the impact of automated vehicles’ recognizability, their driv-
ing style, and their penetration rate on the traffic efficiency of an unsignalized T-in-
tersection. 
Preview: not considering behavioral adaptation can result in an underestimation of 
delay 

131 Chapter 6: Discussion and Conclusions 

The Main Conclusions, Discussion and Synthesis of the Results, and Answering the 
Main Research Question, Reflection on Methodology, Practical Implications, Avenues 
for future research 



 

 
 

 
  



 
 

   

xxxix 

 

Chapter 1 
Introduction 

 



 

 
 

Chapter 1 
Table of Contents 

 

  

1.1. Background: The emergence of automated vehicles 1 

1.2. The question of impact on human drivers 2 

1.3. Scientific gaps 4 

1.4. Scope 4 

1.5. Research Questions and research approach 5 

1.6. Scientific contributions 6 

1.7. Contributions to practice 6 

1.8. Conceptual framework of this dissertation 7 

1.9. Outline of dissertation – Chapter division 8 

1.10. References 9 



 
 

 

 1 

 

1. Introduction 

1.1. Background: The emergence of automated vehicles 

Humans have found different ways to satisfy the need to move from one place to another. Early 
humans walked many kilometers every day in search of food and shelter or just for plain 
curiosity. Slowly, humans began to explore other transport modes that we found in nature such 
as horses, donkeys, and camels. Around 3500 BC, a significant revolution occurred, that is, the 
invention of the wheel. Since then, we have progressed through many revolutions in how we 
achieve transportation of people and goods. Fast-forwarding towards the end of the 19th century 
and early 20th century, we witnessed the boom of personal vehicles. Today, vehicles are 
ubiquitous and are known all around the world, transcending age, gender, and socioeconomic 
disparities. In fact, it was found that “auto”, which is the Dutch word for a car, is among the 
first 5 words learned by a baby (Opgroeien).  
As vehicles started dominating our transportation network, along with their numerous benefits, 
concerns began to rise. Increasing rates of crashes, congestion, pollution, and the space they 
occupy in our (urban) living environment stirred the need for effective solutions to these 
transportation problems. Some solutions include demand management (managing the need to 
travel), supply management (for example, building new roads and optimizing traffic light 
intersections), road infrastructural changes, promoting safe and socially compliant driving 
behavior, electrification, and improving public transportation and active modes such as biking 
and walking.   
One of the solutions that has been regarded as having potential to solve the above-mentioned 
transportation problems is the technology of automated vehicles. Automated vehicles (AVs) are 
vehicles that can perform (part of) the driving tasks themselves without requiring full human 
control. By automating the driving task, it is expected that the mistakes and errors that human 
drivers make (e.g., distraction, fatigue, misjudgment), which contribute to more than 90% of 
crashes, can be corrected. For example, AVs equipped with lane keeping systems are designed 
to keep the vehicle within the lane, preventing unintended deviation due to driver distraction or 
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error. AVs with emergency braking assist technology are designed to detect an imminent danger 
and automatically apply the brakes in case of critical situations such as sudden braking of a lead 
vehicle or a pedestrian crossing unexpectedly in front of the vehicle. Attempts are also being 
made to explicitly program AVs to drive not just safely, but also in a way to achieve additional 
goals. For example, AVs can drive in an environmentally conscious way (for example by 
avoiding sharp accelerations or decelerations) or prioritize the performance of the entire road 
network system as opposed to only their individual benefit (for example by coordinating their 
time of arrival at intersections such that the delay for all vehicles is minimum) (Elliott et al., 
2019). AVs can also support people with disabilities and/or impairments that prevent them from 
driving to gain access to desired destinations in society. Moreover, automation of vehicles 
enables vehicle sharing, thereby reducing the spatial footprint of cars, especially with respect 
to parking. Overall, AVs are expected to enhance road safety, improve traffic efficiency, reduce 
emissions, and promote livability and accessibility (Greenblatt & Shaheen, 2015; Piao et al., 
2016). 
Inspired by the transformations that AVs promise to bring, AVs were and are being deployed 
across the world. Several car manufacturers are actively working towards developing fully 
automated vehicles. In San Francisco, more than 500 self-driving cars (fully automated) are 
operating on public roads (Paul, 2024). In the European Union, all new vehicles sold from 2022 
must mandatorily have a certain range of advanced driver assistant systems (European 
Commission, 2018). For cars for example, this includes lane-keeping systems, intelligent speed 
assistance systems, and automated braking systems. Overall, we are witnessing an increasing 
number of AVs, fully automated or partially automated, deployed on our public roads.   
While these developments related to AVs are well-intentioned and even (partially) underpinned 
by empirical evidence, there are concerns emerging about the actual impact that AVs are making 
and can make. There are several reasons for this. First, the crash rates of AVs are measured to 
be higher than those of HDVs (US Department of Transportation, 2023). While this increase in 
AV-related crashes can be correlated with increasing AV deployment, and that AV-related 
crashes grab larger attention in the media, it is nevertheless a valid concern that AVs are being 
involved in crashes on public roads. AVs also have limitations to how well they execute their 
driving tasks. For instance, lane-keeping systems can perform poorly in rainy conditions, or in 
the presence of poor-quality lane markings, and have trouble navigating sharper curves, and 
can even mistakenly detect other elements on the road as lane markings and lead to deviating 
from the current lane (Utriainen et al. (2020); Reddy et al. (2020)). Additionally, drivers using 
adaptive cruise control (ACC) systems in traffic jams often experience that the vehicle 
maintains a very large distance from the lead vehicle, which allows vehicles from the other 
lanes to cut in easily in front of them (Marsden et al., 2001). Therefore, despite the expected 
transformational benefits of AVs, they are under scrutiny regarding their exact impact, 
particularly when they will be sharing the road with other road users.  

1.2. The question of AVs’ impact on human drivers 

An important reason for the concern about AVs’ deployment is that they (will) share the road 
space with other road users. While there is already great attention towards improving the driving 
ability of AVs, this is largely focused on the AV itself. For example, there is a vast amount of 
literature on how to improve the detection performance of AVs (Van Wyk et al., 2020), what 
kind of communication systems they must have (Sarker et al., 2020), the mechanisms of how 
they would keep their trajectory in a lane (Hu et al., 2019), how they should drive in different 
situations (Schieben et al., 2019), and how they manage the transition of driving control to the 
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human driver if present (Lu & de Winter, 2015). In addition to these challenges, it is important 
to consider that AVs will be driving in traffic consisting also of human-driven vehicles 
(henceforth we will refer to traffic consisting both of AVs and human-driven vehicles (HDVs) 
as ‘mixed traffic’, and to traffic consisting only of HDVs as ‘conventional traffic’). Therefore, 
it is essential to also look at what impacts AVs (would) have on HDVs. There have been few 
studies that have investigated the impact that AVs could have on HDVs. These can be classified 
into two groups: the first group includes studies looking at micro/meso-level impacts, that is, 
how HDVs change their driving behavior because of interactions with AVs, while the second 
group includes studies predicting the macro-level impacts of AVs on traffic efficiency, traffic 
safety, and emissions. 
The first group of studies is still relatively new but nevertheless offers important early evidence 
on how AVs can change HDVs’ driving behavior. For example, HDVs were found to reduce the 
gap they maintain with their lead vehicles when there were AVs driving in the adjacent lanes 
maintaining smaller gaps with their leaders (Gouy et al., 2014). Trust in AVs was also found to 
be an influencing factor where “AV-believers” maintained smaller time headways when 
following an AV as compared to “AV skeptics” (Zhao et al., 2020). Changes in HDVs’ driving 
behavior have also been observed in lane changing and gap acceptance behavior. Drivers 
exhibited greater steering magnitude and steering velocity when lane changing in an AV platoon 
environment, which further increased with increasing AV penetration rate (the share of vehicles 
on the road network that are AVs) (Lee et al., 2018). Another study observed drivers to accept 
gaps more often in front of AVs than HDVs (Trende et al., 2019). These changes in the behavior 
of HDVs in mixed traffic compared to conventional traffic can be referred to as “behavioral 
adaptation” (Kulmala & Rama, 2013). In the ensuing chapters 2, 3, 4, and 5 of this dissertation, 
such studies are listed and discussed more extensively, specifically when discussing current 
literature (Introduction or Background sections). Overall, earlier studies have found evidence 
that HDVs change their driving behavior during interactions with or because of interacting with 
AVs. However, this evidence is still in an early stage and there is a lack of clarity, and further 
insights need to be gained into how exactly AVs – because of their appearance, driving style, 
penetration rate, and also due to drivers’ trust in them – affect HDVs’ driving behavior. These 
factors that are specific to mixed traffic such as AV appearance, AV driving style, AV penetration 
rate, and trust in AVs can be called as mixed traffic factors. 
The second group of studies predict performance indicators such as traffic safety and efficiency 
in different scenarios involving AVs. These performance indicators are generally evaluated 
using simulation studies (including micro-, meso- and macrosimulations), expert opinions, 
meta-analysis (literature study) (Vahidi & Eskandarian, 2003), controlled experiments, and 
naturalistic studies. Microsimulation is a very popular tool to get concrete insights into specific 
indicators of traffic performance. For example, an increasing penetration rate of AVs was found 
to increase traffic efficiency (because of reduction in traffic conflicts) (Papadoulis et al., 2019). 
On the other hand, some studies showed that AVs without connectivity (adaptive cruise control 
for example) can decrease traffic efficiency by having larger average spacing and headways 
(Schakel et al., 2017). Also, the introduction of AVs in mixed traffic was found to boost traffic 
safety (measured by number of longitudinal conflicts and driving volatility) (Arvin et al., 2020). 
Such studies are also discussed in greater detail in the later chapters of this dissertation, 
particularly chapter 5. 
The prediction of traffic safety and efficiency of mixed traffic conditions is important because 
these constitute the input for relevant decision makers (for example, road authorities, 
policymakers, vehicle licensing authorities, car manufacturers) who steer the deployment of 
AVs on public roads. In these previous studies to predict the impacts of AV deployment on 
mixed traffic performance,  assumptions were made on the driving behavior of AVs as well as 
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HDVs. Generally, HDVs are defined according to how they currently behave. However, this 
assumes that HDVs drive in the same way in mixed traffic in the presence of AVs as they do in 
current conventional traffic conditions. However, as previously discussed, there is increasing 
evidence that HDVs change their driving behavior in mixed traffic. This prompt attention to 
how we understand and define HDV driving behavior in mixed traffic conditions. 
Understanding the behavior of HDVs in mixed traffic is crucial as it directly has an impact on 
the validity of the AV-impact studies, and consequently can help decision makers make better 
informed decisions. In essence, we need a better understanding of HDVs’ driving behavior in 
mixed traffic conditions, particularly the impact of AVs on HDVs’ behavior. This would be 
useful to make more accurate predictions or impact assessment studies looking at the 
deployment of AVs in mixed traffic, therefore assisting in making decision-makers better 
informed in making traffic safe and efficient. 

1.3. Scientific gaps 

From the synthesis of current literature, the following scientific gaps were identified: 
1. The evidence that HDVs change their behavior when interacting with AVs is still at a 

nascent stage. Studies investigating this behavioral adaptation are gradually increasing, 
but this topic remains largely unexplored. For example, it is not yet clear what are the 
specific factors – relevant to mixed traffic conditions – that affect HDV driving behavior 
in mixed traffic, and what is the precise nature of their effect. There is a need for more 
in-depth investigation and more evidence into the effects of AVs on the driving behavior 
of HDVs. For example, clear answers to questions such as how do the driving styles of 
AVs affect HDV behavior, how does this effect change when combined with the 
recognizability of the AV, and what role does driver characteristics play in this process, 
are still missing. 

2. Existing studies almost all focus on the aspect of car-following behavior on straight road 
sections. In addition to car-following, there is also a need to research the impacts of AVs 
on other driving maneuvers of HDVs’ driving behavior (e.g., gap-acceptance, lane-
changes) and in different road situations (e.g., road sections, intersections). 

3. Driving behavior models for HDVs, such as for car following and lane changing, were 
mostly calibrated for conventional traffic conditions. HDV driving behavior models 
specifically designed and calibrated for mixed traffic conditions, considering mixed 
traffic specific factors such as AV recognizability and AV driving style, do not yet exist. 

4. Existing simulation studies aiming to predict the impacts of AVs on traffic safety and 
efficiency use HDV driving models that are valid in conventional traffic. There is a need 
to conduct simulation studies that consider HDV driving behavior models that are 
designed and developed for mixed traffic conditions.  

5. Even though current simulation studies assume that HDVs drive in the same way in 
mixed traffic as in conventional traffic, there was no study so far that tested this 
assumption. We do not know if incorporating behavioral adaptation in simulation 
studies results in any (meaningful) change in the results of the study. This is important 
to investigate and remains to be determined. 

1.4. Scope 

This dissertation focuses on the HDV behavior, specifically cars. More specifically, how AVs 
would affect HDVs’ driving behavior. Hence, the behavior of other road users, such as bikes 
and pedestrians, was out of the scope of this thesis. As for the road scenarios, this dissertation 
focuses on motorways, provincial roads, and unsignalized intersections, where drivers perform 
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routine driving tasks such as car-following, lane changing, and gap acceptance. Safety-critical 
situations such as emergencies were out of the scope. The research conducted in this dissertation 
is applicable to all levels of automation. The specific descriptions of AV configuration are 
detailed in the relevant chapters. This dissertation focuses exclusively on the impacts of AVs on 
traffic efficiency, which relates to (among other things) the travel time and the delay 
experienced by drivers. Traffic safety was out of the scope of this dissertation due to simulation 
tools limitations. 

1.5. Research Questions and research approach 

The main question that this research addresses is:  
What are the impacts of automated vehicles on the driving behavior of human-driven 
vehicles, and its consequences on mixed traffic efficiency? 
To address the main research question, sub-research questions were formulated as follows: 

1. What are the potential behavioral adaptations of human drivers during their interactions 
with AVs? 

2. What is the impact of AVs on the car following behavior of HDVs? 
3. How do human drivers perform gap acceptance maneuvers in mixed (automated and 

human-driven) traffic at priority T-intersections? 
4. How does mixed traffic affect the traffic efficiency of priority T-intersections? 

Understanding the driving behavior of HDVs in mixed traffic enables more accurate insights 
and more valid predictions of the impacts of AVs on traffic efficiency in mixed traffic. To 
achieve this, the interactions between HDVs and AVs must be investigated by examining 
different aspects of HDV driving behavior such as car-following, lane-changing, gap 
acceptance, in the presence of and while interacting with AVs in mixed traffic. When such an 
understanding is obtained, we could develop mathematical models that capture these 
interactions. These mathematical models could then be implemented in traffic simulations, so 
we can gain insights into the impacts on traffic efficiency of AVs in mixed traffic. 
This dissertation uses a combination of methods including literature review, stakeholders' input, 
experiment design methods, data collection using driving simulators and field test experiments, 
and simulation tools to address the research questions. This dissertation used an evidence-based 
approach to answer these research questions. Empirical data collection methods included 
driving simulators and controlled field test experiments which provided a strong underpinning 
for the analyses. Such controlled data collection methods were suitable because firstly they 
provided a high degree of control over the experiment conditions to test specific effects, and 
secondly, they were practically and ethically better suited due to the safety of people involved, 
compared to naturalistic studies or testing with AVs on public roads. Furthermore, 
microsimulation tools were also employed to address the final sub-research question. The 
chapters in this dissertation elaborate on the specific methodologies adopted for the 
corresponding research questions. 
This dissertation was part of a larger project that had a user committee comprising of partner 
organizations including road authorities, research organizations, consultancy companies, road 
infrastructure equipment manufacturer, and a car manufacturer. A close collaboration with these 
partners contributed to making the scope of this dissertation relevant to practice. It also provided 
practical insights and opportunities and resources to strengthen the research methodology.  
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1.6. Scientific contributions 

The work conducted in this dissertation could provide insight and inspiration for researchers 
and research organizations to not only use the methods, results, and insights in their own 
research but also to direct their research efforts in the subject of behavioral adaptation in mixed 
traffic, or in the impact assessment of AVs. This dissertation makes the following contributions 
to science: 

1. The research conducted in this dissertation provides new evidence of HDV behavior 
and the resulting behavioral adaptations in mixed traffic conditions. Existing evidence 
is still at a nascent stage thereby making such new insights in this topic valuable for 
better understanding of mixed traffic conditions. 

2. This dissertation investigates multiple human driving behavioral maneuvers in mixed 
traffic, namely car following behavior behind an AV compared to HDV, overtaking an 
AV compared to HDV, gap acceptance from standstill in front of AV compared to AV. 
Behavioral adaptations in all these driving maneuvers were studied. 

3. It provides empirical insights that have not been done before in this field, through the 
combination of field tests and driving simulator experiments that allowed drivers to 
perform different types of driving tasks such as car-following, overtaking, and gap 
acceptance. Findings from the different data collection methodologies allows for a 
clearer understanding of HDV behavior in mixed traffic. 

4. This dissertation investigates the implication of considering HDV behavioral adaptation 
in simulation studies of mixed traffic. To the best of our knowledge, this is the first study 
that implements the observed behavioral adaptation in traffic simulation to study the 
impact on traffic efficiency. Specifically, the traffic impacts were analyzed by 
comparing scenarios with and without behavioral adaptation considered. This 
comparison highlighted the significance of incorporating HDV behavioral adaptation, 
as it revealed the extent to which traffic impacts might be overestimated or 
underestimated if behavioral adaptation was ignored.  

5. This dissertation develops HDV behavioral models specific to mixed traffic conditions. 
In particular, models for car following and for gap acceptance at unsignalized 
intersections were estimated considering mixed traffic factors such as AV appearance, 
AV driving style, and trust in technology. These models can be used to inspire future 
research efforts by exploring methods and possibilities of capturing these interactions 
through modelling. Additionally, they can be implemented directly for mixed traffic 
studies. 

6. By focusing on the factors affecting HDV behavior, this dissertation provides insights 
into what aspects of AVs’ characteristics affect HDV behavior and how do they affect 
it. Particularly, how the recognizability of AVs and their driving styles affect HDV 
behavior. 

1.7. Contributions to practice 

This study makes the following contributions to practice: 
1. Road authorities could use the results of this dissertation in their decisions related to the 

management of road infrastructure. This dissertation’s insights into how HDVs drive in 
mixed traffic can have implications on road infrastructure. For instance, driving 
behavioral changes of HDVs can have a direct impact on traffic flow and therefore on 
capacity. Therefore, road authorities must take into consideration possible HDV 
behavioral adaptations in their decision-making processes. 
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2. Vehicle licensing authorities can understand the impact that AVs can have on HDVs. 
Specific aspects of AVs such as their appearance (recognizability) and their driving style 
can impact HDV driving behavior. Vehicle licensing authorities can consider 
implementing such insights in the vehicle standards and licensing or approval processes 
such that vehicle manufacturers can design AVs that are conducive to society’s traffic 
vision. 

3. Vehicle manufacturers could use the results of this dissertation to understand the impact 
that AVs can have on HDVs. This can help them to (re)consider critical decisions related 
to the design of AVs such as their appearance and their driving style. Such decisions can 
therefore be made with greater awareness of the implications it can have not only for 
the AV users but also HDVs present in the surrounding traffic, whose behavior 
ultimately also affects AV users. In this way, they can take a greater responsibility in 
creating more desirable traffic conditions in mixed traffic. 

4. Driving license authorities and driving instructors can also find the results of this 
dissertation useful in the training and licensing of drivers. The understanding of AVs’ 
characteristics, behavior, strengths and limitations, and the concept of behavioral 
adaptation of HDVs in mixed traffic could be useful in the design and development of 
driver training and education processes. In this way, driving license authorities and 
driving instructors can help human drivers in being better prepared for driving in mixed 
traffic conditions. 

1.8. Conceptual framework of this dissertation 

This dissertation focused on investigating the behavior of HDVs in mixed traffic and the 
resulting impacts on traffic efficiency. This can be seen as a process composed of three 
components: the factors affecting driving behavior, the driving behavior itself, and the impacts 
of driving behavior. Figure 1.1 depicts a conceptual framework for this research, which also 
serves as an outline for this dissertation. The HDV is positioned in the center, being the subject 
of this research. The HDV is affected by three groups of factors: the road environment, traffic 
conditions, and the characteristics of the human driver. These are depicted in the three circles 
that have arrows pointing to the HDV. The road environment consists of elements such as 
weather conditions (e.g., sunny, rainy, fog) and road infrastructure/situations (e.g., highway 
section, urban intersections, roundabouts). Traffic factors include the characteristics and 
behavior of other road users such as pedestrians, bikes, other cars, buses, and – in mixed traffic 
– AVs. Driver factors relate to the personal characteristics of the driver of the HDV (e.g., age, 
gender, driving style, mental workload, and situational awareness).  
All these three groups of factors together affect the HDV’s driving behavior. In Figure 1.1, the 
HDV’s behavior includes the following components: car-following, lane changing, overtaking, 
gap acceptance, and emergency braking. Car-following behavior relates to how the HDV 
follows its leader (i.e., the vehicle in front of it), and characterizes it in terms of variables such 
as time gap (the time difference between the rear of the leader and the front of the follower 
vehicle), acceleration behavior, and space gap (the distance between the rear of the leader and 
the front of the follower). Lane changing behavior refers to how the vehicle performs a change 
in the lane on the road. This comprises of the trigger for desiring the lane change (e.g., to 
maintain a desired speed or exit a motorway), an acceptable gap in the target lane, and the 
execution of the lane change itself in terms of aggressiveness for example. Overtaking behavior 
describes how a vehicle overtakes another vehicle driving in the same direction (either on the 
same lane or on a parallel lane). The overtaking behavior comprises of the trigger for desiring 
to overtake, the gap from the leader when starting to overtake, the lateral gap while overtaking, 
and the remaining gap from the following vehicle when returning to the lane after overtaking. 



 
 

Introduction  

 
 

8  

Gap acceptance, in this dissertation, describes the behavior of a vehicle that is approaching from 
a minor road and intending to enter a major road, searching for an acceptable gap in the major 
road traffic stream. Emergency braking refers to when the vehicle brakes at a high rate as a 
response to a critical situation endangering safety. 

 
Figure 1.1: Conceptual framework as an outline for this dissertation 
These driving maneuvers define the core behavior of the HDV in traffic. These driving 
behaviors of the HDV and of other vehicles (including AVs) in traffic has an impact on the state 
of the traffic at a macroscopic level. Vehicles driving very close to each other at high speeds 
may have a positive effect on traffic efficiency but a negative effect on traffic safety due to high 
risk of a crash. Vehicle behavior can have an impact on traffic safety, traffic efficiency, 
energy/emissions, accessibility/equity, and livability.  

An orange color shade highlights the scope of this dissertation in Figure 1.1. This scope 
considers the road situations in the “road environment” factor, AVs in the “traffic” factor, and 
personal characteristics of the driver as the “driver” factor. As for the type of behavior, this 
dissertation focused on car-following, overtaking, and gap acceptance. Finally, this dissertation 
studied the impact of gap acceptance on traffic efficiency. The research questions (RQs) are 
also depicted as thick arrows in Figure 1.1. 

1.9. Outline of dissertation – Chapter division 

This dissertation is organized in line with the RQs presented previously, which are connected 
to the chapters as follows: 
Chapter 2: Investigating behavioral adaptation: A field test experiment [RQ1] 

Chapter 3: Investigating car-following behavior: A driving simulator experiment[RQ2] 
Chapter 4: Investigating gap-acceptance behavior: A driving simulator experiment [RQ3] 
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Chapter 5: Investigating the impact of behavioral adaptation on traffic efficiency: A 
microsimulation approach [RQ4] 
Chapter 6: Discussion and Conclusions 
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Chapter 2 
Investigating Behavioral Adaptation:  A Controlled 

Field Test Experiment 
In this chapter, we conduct a first exploration of human drivers’ behavioral adaptation in mixed 
traffic. We set up a controlled field test where human drivers interact with an automated vehicle 
in a Wizard-of-Oz experiment during gap acceptance, car following, and overtaking maneuvers. 
Is there an effect of recognizability of AVs on human drivers’ behavior?  

 

 

Highlights 

• Human drivers’ interactions with automated vehicles were studied in a controlled field 
test. 

• Human drivers adapt their driving behavior when interacting with automated vehicles. 
• Drivers interacting with recognizable automated vehicles adopt smaller critical gaps. 
• After overtaking, drivers merge closer in front of recognizable automated vehicles. 
• There could be potential exploitation of automated vehicles by drivers in traffic. 

 

 

 
 

This chapter is based on the publication: Soni, S., Reddy, N., Tsapi, A., van Arem, B., & 
Farah, H. (2022). Behavioral adaptations of human drivers interacting with automated 
vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 86(February), 
48–64. https://doi.org/10.1016/j.trf.2022.02.002 
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2. Investigating Behavioral Adaptation:  A Controlled 
Field Test Experiment  

 

2.1. Introduction 

The topic of automated driving is currently in the limelight of researchers, policymakers, and 
vehicle manufacturers due to its potential benefits to road transportation, especially in terms of 
traffic flow and safety (Aria, Olstam, & Schwietering, 2016). These benefits result from the 
technological capabilities of AVs, such as the ability of platoon formation, shorter reaction 
times, shorter following headways, ability to continuously detect their surroundings, keeping 
track of all nearby road users, and smooth, stable, and predictable driving (Winkle, 2016). 
However, in the early phases of automation, mixed traffic will occur where both AVs and 
Human Driven Vehicles (HDVs) will coexist and interact. 
Various studies that predicted the benefits of AVs implicitly assumed that human drivers would 
not change their driving behavior while interacting with AVs (Friedrich, 2016; Winkle, 2016). 
However, the recognizability of AVs due to their appearance might play a role in the behavioral 
adaptation of interacting human drivers (Fuest, Feierle, Schmidt, & Bengler, 2020). Since 
human drivers may have mixed opinions and trust towards AVs, they might behave differently 
when interacting with an AV compared to when interacting with an HDV. The phenomenon of 
behavioral adaptation is defined as "unintended change in the behavior of the users with the 
introduction of a new system against the system’s intended designed operation" (OECD, 1990). 
Behavioral adaptation generally focuses on the negative effects of the phenomenon as it may 
jeopardize the intended benefits of the system (Saad, 2004). Behavioral adaptation can appear 
in many different forms when driving, such as speed management (Melman, Abbink, Van 
Paassen, Boer, & De Winter, 2018), following distance, the way of overtaking or lane changing, 
braking, level of attention, and gap acceptance (Draskóczy, 1994). 
A large number of studies have investigated how users of AVs take over control (Gold, 
Damböck, Lorenz, & Bengler, 2013; Varotto, Farah, Bogenberger, van Arem, & Hoogendoorn, 
2020; Winter, Stanton, Price, & Mistry, 2016) and how vulnerable road users respond to AVs 
(Fuest, Michalowski, Schmidt, & Bengler, 2019; Palmeiro et al., 2018; Velasco, de Vries, Farah, 
van Arem, & Hagenzieker, 2021; Velasco, Farah, van Arem, & Hagenzieker, 2019). However, 
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the behavioral adaptation of human drivers interacting with AVs is crucial to traffic safety and 
efficiency and has not been studied extensively yet. Some field tests and driving simulator 
studies have provided some evidence of behavioral adaptation of human drivers during their 
interaction with AVs (Gouy, Wiedemann, Stevens, Brunett, & Reed, 2014; Rahmati, Khajeh 
Hosseini, Talebpour, Swain, & Nelson, 2019; Trende, Unni, Weber, Rieger, & Luedtke, 2019; 
Zhao et al., 2020). These studies are summarized in Table 2.1. 
Car-following behavior has been studied more extensively than other types of driving 
behaviors. Few controlled field tests have been conducted to study one-on-one interactions 
between HDVs and AVs during car-following (Rahmati et al., 2019; Zhao et al., 2020). These 
studies found a reduction in headways while interacting with AVs, especially for drivers with 
higher trust in AVs. Similar findings were also observed in several driving simulator studies, 
where shorter headways were observed while driving near a platoon of automated vehicles 
(Gouy, 2013; Gouy et al., 2014; Schoenmakers, Yang, & Farah, 2021). 
A few studies focused on the gap acceptance behavior of human drivers interacting with AVs. 
A driving simulator study by Trende et al. (2019) found an increase in gap acceptance frequency 
while interacting with AVs at an intersection. This suggests drivers’ intentions to exploit the 
technological advantages of AVs and the AVs’ ability to perform safer maneuvers. Rad et al. 
(2021) studied human drivers’ behavior on motorways in three different scenarios in a driving 
simulator. In the first scenario the human drivers interacted with platoons of 2-3 connected and 
automated vehicles that are mixed in traffic consisting as well of manually driven vehicles 
(called ‘Mixed’ scenario). In the second scenario the platoons of connected and automated 
vehicles drove only on a dedicated lane, which was chosen to be the left most lane on a 
motorway consisting of 3 lanes (called Dedicated Lane scenario), while the third scenario 
consisted only of manually driven vehicles (called ‘Base’ scenario). It was found that human 
drivers accepted smaller gaps during lane changing maneuvers in the dedicated lane compared 
to the Mixed and Base scenarios, with up to 12.7% shorter gaps at on-ramps.  
In terms of lane-changing behavior, an increase in lane-change duration was observed when 
HDVs interacted with platoons of AVs (Lee & Oh, 2017; Lee et al., 2018). It was found that the 
participants experienced a higher psychological burden while driving near platoons of 
automated vehicles, leading to an increase in lane change duration (Lee & Oh, 2017). 
The above studies point to the behavioral adaptation of human drivers when they interact with 
AVs. However, these studies assume that AVs drive differently than HDVs. Also, most of these 
studies focused on AV platoons, while only a few on one-to-one HDV-AV interaction. 
Therefore, there is a need to study these behavioral adaptations further when AV behaves 
similarly to HDV and when drivers are provided with information regarding the AV.  
Trust in AVs plays a major role in shaping the expectations of human drivers towards the driving 
behavior of AVs. However, trust is highly influenced by the knowledge and information about 
AVs. Feldhütter, Gold, Hüger, and Bengler (2016) showed that trust in AVs was affected by 
media and personal experience. From their study, a significant change in trust was found when 
the participants received basic information about AVs, read media articles, and when they have 
personally experienced AVs in a driving simulator. Ward, Raue, Lee, D’Ambrosio, and 
Coughlin (2017) found that trust and acceptability of AV technology varied greatly with the age 
of people and their knowledge about AVs. When participants were provided with positive 
knowledge and insights about AV technology, their perceived benefits of AV technology 
increased, and their perceived risks decreased, leading to an overall improvement in their trust 
in AV technology. A similar relation between trust and knowledge was also found by Nuñez 
Velasco et al. (2019).  
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Table 2.1: Studies focusing on understanding the interactions between HDVs and AVs 

Study  Driving  
behavior  

Sample 
size 

Country Main Findings for Human drivers 

Controlled field tests 

Mahdina et al. 
(2021) 

Car-following 9 United States HDV drivers exhibit lower driving 
volatility in terms of speed and 
acceleration. HDV drivers maintain 
slightly smaller headways with AVs. 

Zhao et al. 
(2020) 

Car-following 10 China AV believers – Small headways 
maintained with AVs 
AV sceptics – Large headways 
maintained with AVs 
AV neutral – No difference in driving 
behavior between AVs and HDVs 

Rahmati et al. 
(2019) 

Car-following  9 United States Small headways and smoother driving 
while following AV in comparison to 
HDV 

Driving simulator studies 

Rad et al. (2021) Car-following and 
gap acceptance 

51 The Nether-
lands 

HDV drivers kept smaller headways 
during car-following and accepted 
shorter gaps during lane changing in a 
dedicated lane scenario compared to 
mixed and base (0% AVs) scenarios. 

Schoenmakers et 
al. (2021) 

Car-following 34 The Nether-
lands 

Shorter time headways near AV platoon 
when driving in the proximity of a 
continuous-access and limited-access 
dedicated lane compared to limited-
access dedicated lane with a guardrail 

Trende et al. 
(2019) 

Gap acceptance 17 Germany More frequent gaps are accepted at an 
intersection with AVs 

Lee, Oh, and 
Hong (2018) 

Lane change 30 Republic of 
Korea 

Increase in lane change duration with an 
increase in AV penetration rate 

Lee and Oh 
(2017) 

Lane change 30 Republic of 
Korea 

Increase in lane change duration near AV 
platoon due to psychological burden 

Gouy (2013); 
(Gouy et al., 
2014) 

Car-following 42 United King-
dom 

Decrease in time headways near AV 
platoon 

Hagenzieker et al. (2020) studied the impact of positive and neutral information on cyclists’ 
trust and perception towards interaction with AVs. It was found that positive information 
regarding AVs increased the trust of cyclists regarding interacting with AVs. In another study 
by Vlakveld et al. (2020), the bicyclists yielded to the AV more often when they were provided 
with negative information regarding AVs. This suggests that providing information about AVs 
affects the interacting actor’s perception of AVs. 
Several studies found an influence of recognizability of AVs on the behavioral adaptation of 
road users. Many of these focused, however, on the interactions between AVs and Vulnerable 
Road Users (VRUs) with no consensus regarding the impact of recognizability (Dey, Martens, 
Eggen, & Terken, 2019; Nuñez Velasco et al., 2019; Hagenzieker et al., 2020). In a simulation 
study by Fuest et al. (2020), no subjective or objective differences in driving behavior were 
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observed, when AV was made explicitly recognizable. Given the lack of research, the effect of 
recognizability still needs to be investigated further. 
Most of these studies used driving simulators, while only a few studies have collected empirical 
data from real-world driving (Rahmati et al., 2019; Zhao et al., 2020). Thus, more empirical 
research needs to be conducted to fill the research gaps regarding understanding the interactions 
between HDVs and AVs and in different maneuvers, such as car-following, lane-changing, and 
gap-acceptance. Therefore, this research investigates the potential behavioral adaptation of 
human drivers when interacting with recognizable AVs, with the help of a controlled field test.  
The rest of the paper is structured as follows. Section 2.2 presents the research main objective 
and the underlying research question. Section 2.3 discusses the research methodology, 
experimental design, and data collection process. Insights into the data processing and analysis 
method are provided in Section 2.4. Section 2.5 presents the results of behavioral adaptation 
observed in different types of driving behaviors. Finally, section 2.6 concludes this paper with 
a discussion and recommendations. 

2.2. Research Objective and Research Question 

The main objective of this study is to investigate one-on-one interactions between AVs and 
HDVs during early phases of automation when the penetration level of AVs in road traffic is 
not high enough to harvest the benefits of platooning. Therefore, the resulting research question 
is:  
What are the potential behavioral adaptations of human drivers during their interactions 
with an automated vehicle? 
This research focuses on three driving behaviors: 

• Gap acceptance at un-signalized intersections (critical gaps) 
• Car-following behavior (longitudinal control) 
• Overtaking behavior (longitudinal and lateral control) 

In addition, this research studies the effect of positive/negative information about AVs on the 
driving behavior of human drivers and the change in their trust in the AV over multiple 
interactions. 

2.3. Methods 

A controlled field test was conducted in which HDV drivers interacted with both HDVs and 
AVs. The HDV drivers are referred to in this study as ‘Participants’. The participants were asked 
to drive in their own vehicle (because of COVID-19 restrictions). During the field test, the 
participants interacted with an instrumented test vehicle that could be set up to appear as an AV. 
The instrumented test vehicle, referred to in this study as the ‘Test Vehicle’ (TV), collected data 
on the driving behavior of the participant during their interactions. The field test was approved 
by the Human Research Ethics Committee (HREC) of the Delft University of Technology, the 
Netherlands. 

2.3.1. Field test location 

The field test was conducted on a 3 km long straight road section in Noordzeeweg near the town 
of Rozenburg in the Netherlands. The selected location provided two parking lots on both sides 
of the road section, which were used as start/end locations of the participant and the TV. Also, 
a tower was present in the middle of the road section, which was used as a reference point. The 
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test route had one 3.5-m wide lane per direction separated by dashed lane markings (i.e., 
overtaking was allowed). The traffic intensity of the test location was very low (around 30 
vehicles per hour), and the speed limit of the road section was 60 km/h. 

2.3.2. Field test setup 

The experiment was designed in such a way that the participant drove between points A and B 
in his/her own vehicle, and the TV was driven between points 1 and 2 (see Figure 2.1). In a 
single run of the field test, the participant either drove from point A to point B or vice versa, 
whereas the TV was driven from point 1 to point 2 or vice versa, respectively. A single run, 
therefore, was defined as driving the road stretch in one direction. The TV always started from 
the parking lot near the start location of the participant. In each run of the field test, the 
participant interacted with the TV and the interactions included: gap acceptance, car-following 
and overtaking. The participants were instructed to reach their end location as described in 
Figure 2.1. 

 
Figure 2.1: The experiment field test plan (SP1, SP2 & SP3 indicate slow-down points). 
At the start of each run, the participant and TV positioned themselves in their respective starting 
locations. The participants were instructed to start from point A and reach point B while the TV 
drove from point 1 to point 2. The interactions between the participant and the TV took place 
in the following manner: 

1. Gap acceptance: A run began when the TV started driving from its start location point 1 
and approached the participant (point A) at a constant speed of 40 km/h. This speed 
provided ample opportunity for the participant to observe the type of vehicle (as 
anecdotally confirmed for all participants). From the participant’s perspective, the TV 
approached from its right-hand side in the opposite (further away) lane. When the TV 
was approaching the participant in the approach zone (blue zone in Figure 2.2), the 
participant was expected to indicate the last moment when she/he would decide to merge 
in front of the approaching TV, i.e., their critical gap. The participant indicated the 
critical gap by means of a hand gesture (putting the hand down when it was not safe to 
cross anymore (Figure 2.2, top)). However, the participant was not expected to take any 
action at this point for safety reasons. 

2. Car-following: Once the TV had crossed the parking lot at point A and entered the car-
following zone, the participant was instructed to start driving towards its end location 
(point B). When the participant started driving, the TV gradually accelerated from 40 
km/h to 60 km/h (speed limit of test location).  As the TV reached the speed limit of the 
road in this section, there was not enough incentive for the participant to overtake the 
TV. Thus, the participant followed the TV for approximately 1-kilometre distance (~1-
minute driving) at a speed of 60 km/h. 
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3. Overtaking: At the end of the car-following zone (recognized by the tower landmark), 
the TV gradually slowed down to 40 km/h, triggering the participant to overtake (Figure 
2.2, bottom). The slowing down took place at one of the three randomly chosen slow-
down points SP1, SP2, and SP3 (Figure 2.1). SP1 and SP3 were located 200 meters 
before and after the center of the landmark point (SP2). Within the overtaking zone, the 
participant had to decide whether and when to overtake the TV. Two types of overtaking 
maneuvers were identified: A flying overtaking maneuver in which the participant 
directly overtook the TV without the need to adjust its speed, and an accelerative 
overtaking when the participant followed the TV before overtaking (Hegeman, 2004). 
The overtaking was possible within the next 800 meters before reaching the end location 
of the participant. After an overtaking by the participant, the speed was restored to 60 
km/h, and the TV was driven behind the participant. 

 

 

 
Figure 2.2: (Top) Participant performing a hand gesture to indicate the last moment when 
she/he would decide to merge in front of the approaching vehicle. (Bottom) Start of 
overtaking near slow-down point (tower) from TV’s rear camera perspective. 
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After these sequential interactions, the participant stopped at its end location point B, and the 
TV proceeded straight to its end location point 2. In the next run of the experiment, the 
participant was driven from point B to point A. In this case, the approach zone was between 
point 2 and point B, followed by a car-following zone and an overtaking zone. The interaction 
at point B was similar to point A as the TV approached from the right of the participant and 
drove on the opposite (farther) lane. 

2.3.3. Scenarios 

To observe any differences in the driving behavior of the participants during their interactions 
with the AV, the interaction with the TV was carried out in two scenarios. In one scenario, the 
TV was driven as an HDV, whereas, in the other scenario, the TV was driven appearing as an 
AV. In practice, in both scenarios, the TV was driven manually by the same professional driver, 
but in AV scenarios, the driver held the lower part of the steering wheel, while in the HDV 
scenarios, he held the upper part of the steering wheel, making his hands clearly visible (Figure 
2.3, top vs. middle). The scenarios were named i-HDV and i-AV, where ‘i’ refers to interaction 
with the TV, either as an HDV or as an AV, respectively. The i-AV scenario was easily 
distinguishable from the i-HDV scenario by the fake LiDAR placed on the vehicle roof and a 
sticker saying “Self-driving” on the side of the vehicle (Figure 2.3, top vs middle). To ensure 
that the participants could differentiate the i-AV scenario from the i-HDV scenario, they were 
provided with a pre-experiment briefing, where they were shown a picture of the vehicle in i-
HDV and i-AV scenarios, and an explanation on how they could notice the differences.  
The experiment was designed carefully in such a way that the driving behavior of the TV in i-
HDV and i-AV scenarios, was similar. The following precautions were taken to minimize 
differences in the driving behavior: 

1. The TV was always driven by the same professional driver for all participants and in all 
scenarios. 

2. The TV speed was kept as constant as possible in the different road sections within all 
scenarios, i.e., 40 km/h in the approach zone, 60 km/h in the car-following zone, and 40 
km/h in the overtaking zone.  

3. In case any disturbances in the speed occurred due to unavoidable circumstances, such 
as interaction with other road users, the data from such run were removed from the 
analysis.  

Each participant interacted with the TV over 10 runs of which the first run was a trial run, 3 
runs were i-HDV scenarios, and 6 runs were i-AV scenarios. The scenario during the first run 
was always i-HDV. For the rest of the 9 runs, the scenarios (i-HDV and i-AV) were randomized 
to counterbalance the order of encountered scenarios. 
Before the last 3 runs of i-AV scenarios, positive or negative information regarding the AV 
behavior was provided to the participants in a written form (the information was provided only 
once). The type of information a participant would receive was randomly selected to achieve 
an equal number of positive and negative information recipients. The positive and negative 
information provided were as follows: 
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Figure 2.3: Test vehicle in i-HDV scenario (top) and i-AV scenario (middle and bottom). 
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Positive information: “The self-driving vehicle you are interacting with tends to avoid risks 
by driving very safely. It can fully detect its environment and it is able to accurately predict the 
behavior of other road users, which ensures safe driving.” 
Negative information: “The self-driving vehicle you are interacting with cannot always fully 
detect its environment. This may cause to not correctly predict changes in its environment, 
leading sometimes to unsafe situations.” 
Figure 2.4 summarizes the number of runs for each type of scenario. 

 
Figure 2.4: Scenario design for the field test and the number of runs for each type of 
scenario. 

2.3.4. Vehicle and test location instrumentation 

To collect data, a Toyota Prius (driven as TV) was instrumented with cameras, point Light 
Detection and Ranging (LiDAR) and Global Positioning System (GPS) module for data 
collection as shown in Figure 2.5. This vehicle was also instrumented with a detachable fake 
LiDAR and ‘Self-driving’ sticker to inform the participants whether it is driving in an AV or an 
HDV mode. 
The point LiDARs were installed on the left, right, and rear of the TV to measure the distances 
of the nearby vehicles. The left and right LiDARs were installed near the rear door’s handles, 
whereas the back LiDAR was installed on the rear bumper. The angle of the LiDARs was 
adjusted such that its beam stays parallel to the road surface, thus giving measurements only 
from reflection by objects. 
To capture the video footage of the interacting participants and the surroundings, four cameras 
were installed on the left, right, front, and rear sides of the TV. The TV had an inbuilt GPS 
module that recorded the location and speed of the vehicle. A GPS module was also placed in 
the participant vehicle to record its location and speed.  
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Figure 2.5: Test vehicle instrumentation. For the data collection of critical gaps, field 
cameras were fixed on both parking lots A and B facing towards the parking lot to capture 
the hand gesture of the participant indicating the last moment of merging. Also, traffic 
cones were placed in the approach zone to estimate the approximate distance of the TV at 
the time of critical gap indication (see Figure 2.6).   

 
Figure 2.6: Field camera and reference cone setup near the parking lot - point B.  

2.3.5. Participants 

A total of 18 male participants were recruited for the field test. The participants were asked to 
sign an informed consent form before taking part in the experiment. Fourteen participants were 
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between 35-60 years old, and 4 participants were younger than 35 years old. The participants 
were highly educated: 12 had a PhD or MSc, 4 had a BSc, and 2 had secondary education. 
Fifteen participants were employed full-time, out of whom 12 participants belonged to science, 
technology, or engineering field. The participants were experienced drivers with a minimum 
experience of 7 years, and 15 participants had a driving experience of more than 10 years. 
Several participants had driving experience with various Advanced Driving Assistant Systems 
(ADAS): 9 had experience with Adaptive Cruise Control (ACC), 9 with Lane-Keeping Systems 
(LKS), 6 with Forward Collision Warning (FCW), and 4 with Automatic Emergency Braking 
(AEB). One participant had experience with SAE level 2 automation.  

2.3.6. Data collection procedure 

Before the actual field test started, a pilot test was conducted on 14th July 2020, mostly to test 
the sensing equipment and the experimental procedure. After completing the pilot test, some 
small changes in the field test design were carried out. The final field test was carried out on 
21st, 22nd, and 23rd July 2020. During these three days, the weather was clear and sunny. The 
traffic intensity of the test route was very low (around 30 vehicles per hour) during the field test 
days. 
Before the field test, the participants were provided with pre-experiment questionnaires 
intended to collect their socio-demographics, general trust in AVs, and driving styles using the 
Multidimensional Driving Style Inventory (MDSI) developed by Taubman-Ben-Ari, 
Mikulincer, and Gillath (2004). The MDSI consists of 44 items that are ranked on a 6-point 
scale (‘‘not at all” to ‘‘very much”) and assesses four broad domains of driving styles: reckless 
and careless driving, anxious driving, angry and hostile driving, and patient and careful driving. 
When the participants arrived, a briefing was provided to them, and their vehicle was equipped 
with a GPS module. The participants were provided with information regarding their 
destination and route and the speed limit of the road (i.e., 60kmph). They were asked to drive 
as they would normally do in real life and were told that they could perform any necessary 
driving maneuvers. They were not explicitly told to overtake, but the speed reduction of the TV 
when approaching the overtaking section (as shown in Figure 2.1) triggered the participants to 
overtake. At the recruitment phase, the participants were not informed that they would be 
interacting with AVs during the experiment; rather, that they would need to drive their vehicle 
from one point to another interacting with different vehicles. This was done to ensure that the 
participants do not build any expectations or perform any preliminary research regarding AVs 
before the actual field test. However, on the day of the experiment, the following measures were 
taken to ensure that the participants could differentiate the i-AV scenario from the i-HDV 
scenario: 

1. The participants were briefed about how they could notice the difference between the 
AV and HDV vehicles, and they were shown pictures of the two vehicles that illustrate 
the differences (as in Figure 2.3). 

2. When the experiment began, the participants started driving once they saw the TV 
crossing in front of them.  

3. At the end of the first run with i-AV scenario, the participants were asked whether they 
were able to recognize the AV in contrast to the HDV. 

4. At the end of the experiment, the participants were asked again in an interview if they 
had any difficulty recognizing the type of vehicle scenario. All the participants shared 
verbally that they were able to identify the type of vehicle by the fake LiDAR and sticker 
on the side of the vehicle. 
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After the briefing, the experiment started, following the field test setup previously discussed in 
Section 2.3.2. Other road users were also present during the experiment, which contributed to 
the realism in the experiment. However, the experiment was only started when other road users 
were not nearby. At the end of each run, the participant drove to its end location, where a team 
member assisted the participants in the realignment of their vehicle for the next run and 
reminded them to fill out the questionnaire regarding trust in the interacting TV and stress 
during the run. The TV drove to its end location out of sight of the participant, and it was 
prepared for the next run of the test by putting/removing the self-driving sticker and mounting 
the fake LiDAR.  At the end of the experiment, the participant was provided with a post-
experiment questionnaire and was interviewed for details about their observations and choices. 

2.4. Data Processing and Analysis 

The data processing included the processing of the sensor data and the questionnaire data. 

2.4.1. Sensor data processing and analysis 

The sensor data collected from multiple sources were synchronized using the timestamp 
indicated on the videos and the other devices. The sensor data was processed to collect various 
driving behavior indicators, as summarized in Table 2.2.  

Table 2.2: Calculated driving behavior indicators and calculation methodology 
Driving behavior Indicator Unit Calculation methodology 
Gap acceptance  Critical gap s Based on GPS distance between the 

participant vehicle and TV at the 
moment the critical gap is indicated, and 
the speed of the TV 

Car-following  Car-following headway s Median of time headway during car-
following 

Overtaking  Overtaking duration s Derived from the video 
Overtaking lateral gap m Based on distance measured by LiDAR 
Headway at start/end of 
overtaking 

s Based on the distance from camera 
observations and GPS speed 

Relative speed during overtaking km/h Based on GPS speed 

These indicators were calculated for each participant in each run. One observation of car-
following behavior refers to the median of car-following headway for one participant for each 
run. To study the overtaking behavior, given its complexity, multiple indicators were defined 
and calculated, as illustrated in Figure 2.7. These included the headway at the start of overtaking 
(A), the lateral gap during overtaking when the vehicles were in parallel positions (B), and the 
headway at the end of overtaking (C). The start of the overtaking was defined as when the front-
left wheel of the participant vehicle crossed the center line of the road, and the end of the 
overtaking was when the rear-left wheel crossed the center line of the road. 
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Figure 2.7: An illustration of various indicators calculated to capture overtaking behavior. 
As point LiDARs were used for data collection, due to the curved vehicle front body of the 
participant vehicle, the light cannot always reflect to the LiDAR, leading to inaccurate readings.  
Thus, GPS location was used for the time headway calculation. Headways larger than 6 seconds 
were considered to fall within a free-flow regime and were not considered as car-following 
(Vogel, 2002). Each GPS sensor had an accuracy of 4 meters. Due to this high GPS error, 
headways at the start/end of overtaking were derived from videos manually. The lane markings 
of the road were used to approximate the distances. 
During the data processing and calculations of the different indicators, disturbances and invalid 
observations such as participants failing to indicate the critical gap, disturbances by other road 
users, participants driving too far from the TV, and participants overtaking along with other 
road users were identified and removed from further analysis leading to a different number of 
observations per scenario and driving maneuver. 
A detailed analysis of the processed dataset was carried out using descriptive statistics from 
which several insights regarding potential behavioral adaptation were gained. Furthermore, 
non-parametric statistical testing was performed to test the significance of the findings 
regarding drivers’ behavioral adaptation. 

2.4.2. MDSI questionnaire data processing and analysis 

A score for each of the four driving styles for each participant was calculated based on the 
participants’ answers, and the factor loadings provided by Taubman-Ben-Ari et al. (2004). 
Figure 2.8 shows the box-whisker plot of self-reported scores of the four driving styles for all 
18 participants.  
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Figure 2.8: Box-whisker plot of self-reported scores falling in different driving style 
categories (score range 0-5). 
Thus, to classify the participants based on their self-reported scores recorded for the MDSI 
questionnaire, a cluster analysis was carried out. The K-mean clustering resulted in 2 clusters 
of participants highlighting significant differences in terms of "Reckless and careless" and 
"Angry" driving styles. This indicated that the two clusters of participants differ in their 
aggression while driving, and thus, the participants were categorized into two groups: less 
aggressive (11 participants) and more aggressive (7 participants) drivers. 

2.4.3. Drivers’ characteristics as per information group 

The participants were randomly assigned to the positive and negative information groups at the 
beginning of the field experiment. To check whether there is a significant difference in the 
characteristics of the drivers assigned to the two information groups, their age and driving styles 
were examined. No significant difference in age was found between the positive (mean age = 
43.5, SD = 9.2) and negative (mean age = 41.2, SD = 10) information groups. Within the 
positive information recipients, there were 4 more aggressive drivers and 5 less aggressive 
drivers, while within the negative information recipients there were 2 more aggressive drivers 
and 6 less aggressive drivers. One participant who did not receive any positive or negative 
information due to technical difficulty during the experiment was also categorized as more 
aggressive driver.  

2.5. Results 

Table 2.3 shows the number of valid observations per driving behavior per scenario after 
processing the collected data. The processed data were analyzed to gain insights into the three 
main driving behaviors: Gap acceptance, car-following, and overtaking.  
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Table 2.3: Number of observations per scenario 

Driving behavior Indicator 

Number of valid observations per scenario  

i-HDV* 
i-AV* 

Total No 
info 

Positive 
info 

Negative 
info 

Gap acceptance Critical gap [s] 69 51 24 23 167 
Car-following Car-following headway [s] 53 40 14 21 128 

Overtaking 

Overtaking duration [s] 53 39 18 22 132 
Overtaking lateral gap [m] 48 35 15 22 120 
Headway at start of overtaking [s] 51 38 19 22 130 
Headway at end of overtaking [s] 51 38 18 22 129 
Relative speed during overtaking 
[km/h] 52 38 19 22 131 

* i refers to interaction with the test vehicle 

2.5.1. Gap acceptance behavior 

Figure 2.9 presents a boxplot of the indicated critical gaps of different participants in i-HDV 
and i-AV scenarios. It can be seen that the observed indicated critical gaps vary between the i-
HDV and i-AV scenarios for the same individual. Due to differences in driving styles and 
personal characteristics, variation among the indicated critical gaps was also found between 
participants. 

 
Figure 2.9: Participants’ indicated critical gaps in both scenarios i-HDV and i-AV. 
Figure 2.10 (left) shows the boxplot of the indicated critical gaps in i-HDV and i-AV scenarios 
for all participants. The mean indicated critical gap in i-AV scenarios is significantly smaller 
than i-HDV scenarios (Wilcoxon Signed Ranks test, 𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−3.419, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.001).  
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Figure 2.10: Boxplot of average indicated critical gaps for 18 participants in i-HDV and i-
AV scenarios (left) and within different information groups (right). 
Figure 2.10 (right) shows the boxplot of the indicated critical gaps of participants receiving 
negative and positive information. The mean indicated critical gap was also found significantly 
smaller in i-AV scenarios without information in comparison to i-HDV scenarios (Wilcoxon 
Signed Ranks test, 𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−5.232, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.001). The indicated critical gap values 
differ marginally between the two groups because of individual differences between the 
participants that belong to each group. The group receiving positive information is more 
balanced in terms of an equal number of more and less aggressive drivers, potentially leading 
to a wider spread of critical gap observations. However, the group receiving negative 
information is primarily dominated by the less aggressive participants, leading to less spread in 
critical gap observations. It was expected that the less aggressive drivers which mostly dominate 
the negative information group would accept larger critical gaps in comparison to the more 
aggressive drivers especially in i-HDV and i-AV + No info scenarios. However, the results in 
Figure 2.10 (right) show the opposite trend. This counterintuitive observation could be due to 
small numbers of participants in each of these groups. 
To test the effect of information, Wilcoxon signed ranks test was performed to compare the 
indicated critical gaps in the i-AV scenario just before providing information and just after 
providing information. It was found that the indicated critical gaps decreased significantly just 
after providing positive information (Wilcoxon Signed Ranks test, 𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−2.033, 𝑝 −
𝑣𝑎𝑙𝑢𝑒 = 0.042) (Figure 2.10, right). However, no significant difference was found for the 
group that received negative information (Wilcoxon Signed Ranks test, 𝑍	𝑣𝑎𝑙𝑢𝑒 =
	−1.014, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.310). Figure 2.11 illustrates this again, but for each interaction. For i-
AV scenario, there was also a significant difference in the mean indicated critical gap between 
positive and negative information groups (Wilcoxon Signed Ranks test, 𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−3.621,
𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001). 
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Figure 2.11: Indicated critical gap per interaction with AV for different information 
groups 
The more aggressive driver group showed a reduction in the mean indicated critical gaps during 
their interactions with the AV. A significant negative correlation was found between the mean 
indicated critical gap and the mean reported trust in the AV over the multiple interactions 
(Pearson’s 𝑟 = 	−0.343, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.032, 𝑁 = 39). However, in contrast, no significant 
correlation was found between their mean indicated critical gap and their mean reported trust 
when interacting with the HDV ( 𝑟 = 	−0.326,  𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.104 , 𝑁 = 26 ). A similar 
correlation for the less aggressive drivers was observed during their multiple interactions with 
the AV (𝑟 = 	−0.372 , 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.004 , 𝑁 = 58 ). However, this group also showed a 
significant negative correlation between the mean indicated critical gap and the mean reported 
trust when interacting with the HDV (𝑟 = 	−0.316, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.039, 𝑁 = 43).  

2.5.2. Car-following behavior 

In order to gain insights into the car-following behavior, median time headway during car-
following was calculated for each participant and scenario. The speed profile of the TV was 
kept similar within all the scenarios. From the GPS analysis in the car-following zone, it was 
observed that the speed of the TV in the i-HDV scenario (mean = 52.3 km/h, median = 53.8 
km/h, SD =8.9 km/h) was very similar to the speed in the i-AV scenario (mean = 53.4 km/h, 
median = 54.8 km/h, SD = 6.7 km/h). Figure 2.12 shows the scatter plot and box and whisker 
plot of car-following headway observations for all participants in different scenarios. From the 
plots, it can be seen that half of the participants maintained higher headways with AVs than with 
HDVs, while the other half had the opposite trend. No statistically significant difference was 
found in car-following behavior between the two scenarios (Wilcoxon Signed Ranks test, 
𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−0.355, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.722).  
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Figure 2.12: Scatter plot (left) and boxplot (right) of median car-following headways in 
different scenarios (sample size is 17 as one participant had missing data). 

2.5.3. Overtaking behavior 

Overtaking behavior was studied in terms of overtaking duration, overtaking lateral gap, 
relative speed during overtaking, headway at the start of overtaking, and headway at the end of 
overtaking. Mainly two different overtaking styles were observed during the experiment: flying 
and accelerative. Flying overtaking was witnessed more frequently than the accelerative 
overtaking style. 
A significant difference was observed in the overtaking behavior in terms of headways at the 
end of overtaking between AVs and HDVs. Figure 2.13  presents the analysis of the mean time 
headway at the end of overtaking over the multiple interactions with the AV before and after 
receiving the information regarding the AV. It can be observed that the participants adopted 
significantly lower headways at the end of overtaking maneuvers of the AV (mean = 1.3 s) in 
the case of positive information scenario in comparison to the no-information scenarios (mean 
= 1.7 s) (Dunn’s pairwise test, 𝑍	𝑣𝑎𝑙𝑢𝑒 = 	19.625, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.007), while for negative 
information, no significant difference was found (Dunn’s pairwise test, 𝑍	𝑣𝑎𝑙𝑢𝑒 = 	8.375, 𝑝 −
𝑣𝑎𝑙𝑢𝑒 = 0.997). 
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Figure 2.13: Headway at the end of overtaking over multiple interactions with AV (within 
information groups) (Error Bars: 95% CI; Sample size = 17) 
Also, headways at the end of overtaking maneuvers decreased over consecutive interactions 
with AVs (Figure 2.14) within the accelerative overtaking style (𝑟 = 	−0.509, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
0.005, 𝑁 = 29), while for the flying overtaking style, no significant difference was found (𝑟 =
	−0.051, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.728, 𝑁 = 49). 

 
Figure 2.14: Headway at the end of overtaking maneuver over multiple interactions with 
AV (Within different overtaking styles) ; Error Bars: 95% CI; Sample size = 17 
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2.5.4. Trust 

To study the effect of trust within scenarios of different information, Wilcoxon signed ranks 
tests were performed. No significant difference was observed in the reported trust between AV 
and HDV scenarios ( 𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−0.028, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.977). Within the group that received 
positive information, it was found that the reported trust was significantly higher in i-AV 
scenarios after providing positive information (Mean = 8.4, SD = 1.5) in comparison to the 
reported trust in scenarios before receiving this positive information (Mean = 7.9, SD = 2.2), 
(𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−2.117, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.034). However, no significant difference in trust was 
seen for the participants receiving negative information (Mean = 8.2, SD = 2.1) in comparison 
to the reported trust in scenarios before receiving this negative information (Mean = 8.0, SD = 
2.0), (𝑍	𝑣𝑎𝑙𝑢𝑒 = 	−0.137, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.891).  

2.6. Discussion  

In this study, the behavioral adaptation of human drivers when encountering AVs was observed 
in terms of gap acceptance and overtaking behavior but not in car-following behavior. For gap 
acceptance behavior, it was observed that the critical gap of drivers significantly decreased 
when they interacted with AVs compared to when they interacted with HDVs. This decrease in 
the critical gap was more prominent when positive information on the AV behavior was 
provided to the participants in comparison to no information. A similar impact was found for 
the headways at the end of overtaking maneuver, with the headway significantly decreasing 
when positive information regarding the interacting AV was provided. Therefore, positive 
information regarding the AV played a role in that drivers had smaller critical gaps and 
maintained significantly shorter headways at the end of overtaking. For the accelerative 
overtaking style, the headways at the end of overtaking decreased significantly with multiple 
interactions with the AV. For car-following behavior, there was no significant difference in the 
median headway when following an AV compared to when following an HDV. Furthermore, 
there were no significant differences in the overtaking duration, overtaking lateral gap, headway 
at the beginning of the overtaking, and the relative speed during overtaking. 
The key finding of this research is that both interactions, gap-acceptance and merging back into 
the lane at the end of overtaking, are similar in the sense that the participants interacted with 
AVs in the “forward field of view” of the AV. These interactions differ from the other examined 
interactions (car-following, lateral gap, speed during overtaking, and headway at the beginning 
of overtaking) in that during the latter interactions, the participants have more control of the 
situation in terms of actively performing safe maneuvers and are responsible for maintaining 
safe distances from the test vehicle. However, in the former interactions, since the test vehicle 
drives behind the subject vehicle, the participants expect the test vehicle to take more control 
of the situation and maintain safe distances. The consistency of these findings further enhances 
the presence of behavioral adaptation.  
The finding of no significant difference in the car-following behavior of drivers is opposite to 
findings from previous studies, which indicated that HDV drivers reduced their car-following 
headways while interacting with AVs or a platoon of AVs (Gouy, 2013; Gouy et al., 2014; 
Rahmati et al., 2019; Schoenmakers et al., 2021; Zhao et al., 2020). This could be due to the 
low accuracy of GPS sensors in this study or the relatively simple test environment. Also, the 
experiment was designed to maintain a constant speed of 60 km/h during car-following, which 
made it difficult to study car-following headways during different speed regimes. Therefore, 
further research is needed.  
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No significant difference was observed in the reported trust between AV and HDV scenarios. 
However, within the group that received positive information, it was found that the reported 
trust was significantly higher in i-AV scenarios after providing the positive information, while 
this was not the case for the negative information. This could indicate a possible interaction 
effect between trust and information. From the analysis, it was observed that trust and 
information are two significant factors influencing the critical gap of the participants. While the 
positive information seem to significantly decrease indicated critical gap, trust also has a 
significant negative correlation with indicated critical gaps of participants interacting with AVs, 
especially for more aggressive drivers. As AVs are expected to be designed to interact safely 
and to drive defensively, these findings indicate potential exploitation of the technological 
advantages of AVs by the road users for their advantage. 
Half of the participants in this study were also provided with negative information regarding 
the interacting AV. However, no significant effect of negative information was observed in their 
driving behavior and trust. One possible reason for this is the presence of a driver inside the test 
vehicle. The participants said that they were confident regarding the safety as a driver was 
always present for takeover in case something goes wrong. Another factor indicated by the 
participants is the simplicity of the test environment - the road having low traffic volumes, clear 
lane markings, and clear weather - in which it is less likely for the AV to fail with its 
environment detection. 
The findings of this research are in line with some findings in the literature. A driving simulator 
study by Trende et al. (2019) found that human drivers accepted more frequent gaps when 
interacting with AVs than HDVs and suggested that AVs can be technologically exploited by 
the HDV users for their advantage, which is in line with our findings. The studies relating to 
lane change behavior indicated an increase in lane change duration while driving near a platoon 
of AVs (Lee & Oh, 2017; Lee et al., 2018). However, we did not observe any difference in terms 
of overtaking duration while interacting with the AV. This could be because we studied the 
interactions with one AV and not a platoon of AVs. Thus, an increase in overtaking duration 
may be attributed to higher penetration rates of AVs where platooning is possible. The only 
significant difference was observed in terms of headways at the end of overtaking, which 
indicated closer interactions with AVs. 
AVs are perceived to have a greater ability to respond and are expected to take more control in 
performing safe driving interactions. This is also corroborated by the findings in Trende et al. 
(2019). With positive information, the trust in AV further increased and drivers had closer 
interactions with the AV. From a behavioral adaptation perspective, it can be concluded that 
closer (and more opportunistic) interactions with AVs can be expected in comparison to HDVs. 
More specifically, smaller gaps in front of the AV will be accepted. Thus, there is a potential for 
exploitation of AVs technology by human drivers, and more abrupt merging (cut-offs) can be 
expected with AVs. For interactions from the rear and sides of the AV, no significant difference 
in driving behavior is expected based on the results of this study.  
One immediate implementation of the results from this research is to investigate the effect of 
this behavioral adaptation on traffic flow and safety by using the empirical findings to adapt the 
parameters of the behavioral models in microscopic traffic simulation. 
Various other factors such as age, driving experience, education, reported stress during the run, 
reported stress in different maneuvers, and weather were also taken into account for the analysis 
of behavioral adaptation. However, most of the participants had similar personal characteristics. 
In addition, the weather was sunny on the days of the experiment. The participants were also 
asked about their stress levels (on a scale of 1 to 10) while performing different maneuvers. 
However, most of them did not report any differences in the stress between different scenarios. 
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Therefore, the variation within these factors was not sufficient to observe any statistically 
significant differences in driving behavior.  

2.7. Research limitations and future work  

In this research, there are few limitations. First, in order to ensure that human drivers could 
clearly recognize the AV during the interaction based on its physical features (fake LiDAR and 
sticker on the side of the vehicle), pre-experiment briefing was provided to the participants. 
However, recognizability of AV without providing any information is still questionable and 
needs to be investigated in future studies. Second, the sample of participants is not 
representative of the population as all the participants were male and experienced drivers. Also, 
the participants were mostly from the background of science and technology and therefore were 
capable of better understanding the technology of AVs. Therefore, it is recommended to 
investigate the behavior of groups of participants with a non-technological background.  
Another area of future research is to study the effects of other influencing factors such as human 
drivers’ characteristics, subject vehicle characteristics, and external factors on the change in 
driving behavior. Statistical models can be designed to identify the effect of individual or groups 
of factors contributing to behavioral adaptations. These models then can be implemented in 
microscopic traffic simulations to investigate the effect of such behavioral adaptations on traffic 
flow and safety. Furthermore, more data need to be collected to take into account different 
driving behaviors of AVs, absence of a driver in AVs, different road types and speed limits, the 
presence of other road users, different recognizability of AVs, and different environmental 
conditions such as weather, time of day, visibility, to cover the entire spectrum of behavioral 
adaptation with AVs. These factors may have a major influence on the decisions of HDV 
drivers. Additionally, behavioral adaptation is more associated with long-term interactions, and 
it is important to study various effects over longer periods. Thus, more field tests (and in more 
naturalistic settings) need to be conducted.  
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Chapter 3 
Investigating car-following behavior: A driving 

simulator experiment 
 
In Chapter 2, we found first evidence that human drivers experience behavioral adaptation in 
mixed traffic. In Chapter 3, we focus on car following behavior. A driving simulator experiment 
is set up where drivers follow a lead vehicle appearing either as an automated vehicle or human-
driven vehicle. In addition, we estimated the Intelligent Driver Model (IDM) and the IDM+ to 
get insights into driving behavior parameters.  

 
 

Highlights 

• Human drivers’ car following behavior in mixed traffic was studied in a driving 
simulator experiment. 

• Drivers have smaller desired velocity, smaller jam spacing, and smaller safe time 
headway when the leader’s appearance is AV compared to HDV. 

• AV driving style of leader results in smaller desired velocity than HDV driving style 
• When leader follows AV driving style, the desired velocity is larger for drivers having 

greater trust in AVs. 
 

 
This chapter is based on the [submitted for publication] paper: Reddy, N., Hoogendoorn, 
S. P., & Farah, H. (2024). Investigating car-following behavior: A driving simulator 
experiment.  
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3. Investigating car-following behavior: A driving 
simulator experiment 

3.1. Introduction 

In recent years, AVs have been the focus of the public, the automotive industry, and the research 
discourse due to their several expected benefits in terms of traffic safety, traffic flow efficiency, 
accessibility, and environmental impact (Greenblatt & Shaheen, 2015; Piao et al., 2016). 
Despite this, the pace of their deployment on public roads has been slow and gradual. This is 
not unexpected as along with their anticipated benefits, many challenges are associated with 
their deployment, among these safety concerns stand out. Crashes involving AVs on public 
roads (Favarò et al., 2017) have raised caution and increased skepticism towards what would 
really be the impact of AVs on public roads, especially when operating alongside and interacting 
with human-driven vehicles (HDVs) and with vulnerable road users (e.g., cyclists, pedestrians). 
Investigations into crashes involving AVs revealed that AVs have more than double the crash 
rate than conventional vehicles (Schoettle & Sivak, 2015). Another study reported that the most 
occurring type of crash between AVs and HDVs is when the AV is at standstill while the HDV 
is moving straight behind the AV, resulting in rear-end collisions (Xu et al., 2019). The reason 
was said to be the sudden braking of the AV when encountering situations such as pedestrian 
crossing the road, which the following HDV driver fails to take timely notice of. 
There is a need to investigate the impact of AVs’ deployment on public roads on mixed traffic 
(traffic containing AVs and HDVs) safety and efficiency. A critical part of this investigation 
involves studying the (microscopic) interactions between AVs and HDVs. Studying these 
interactions would provide insights into the effects of AVs on the behavior of HDVs, and vice 
versa. These interactions could generally be characterized in, for example, car-following 
behavior, or lane changing behavior. Such mathematical models are currently, however, scarce. 
There is a lack of HDV models that consider mixed traffic-specific factors. Moreover, there is 
not yet a clear understanding of the need for models dedicated to mixed traffic conditions. To 
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address these shortcomings, we focus in this paper on car-following behavior of HDVs when 
following AVs.  

3.2. Literature Review 

This chapter presents first the literature with respect to car-following behavior, followed by a 
review of studies that focused on the effects of AVs on HDVs, and ends with the identified 
research gaps and research questions 

3.2.1. Car-following behavior 

Car-following refers to a vehicles’ longitudinal driving behavior, describing how a vehicle 
follows its leader, including how responsive/sensitive it is to its leader’s (changing) state. The 
scientific literature contains several models to describe the car-following behavior. Several 
researchers have already conducted extensive review studies and discussions on the various car-
following models (Aghabayk et al., 2015; Brackstone & McDonald, 1999; Y. Li & Sun, 2012; 
Saifuzzaman & Zheng, 2014). Saifuzzaman & Zheng (2014) broadly classifies car-following 
models as having two perspectives: engineering perspective and human factors perspective. 
Models such as Gipps (Gipps, 1981), Intelligent Driver Model (IDM) (Treiber et al., 2000) , 
Optimum Velocity (OV) (Bando et al., 1995), and Nagel-Schreckenberg (Nagel & 
Schreckenberg, 1992) fall under the engineering perspective, and models such as Wiedemann 
(Wiedemann, 1974), visual angle (Michaels, 1963), prospect theory fall (Kahneman & Tversky, 
2013) under the human factors perspective as in addition to observable external traffic 
engineering aspects such as distance spacing and speed difference, these models include aspects 
such as human decision making process or mechanisms of visual perception. Studying and 
discussing these various existing models is out of the scope of this paper. 
The vast majority of existing car-following models are developed and calibrated for HDVs in 
conventional traffic (i.e., traffic composed of only HDVs). Such models are also used in 
microscopic simulation studies to predict mixed traffic performance (S. C. Calvert et al., 2017; 
Guériau & Dusparic, 2020; Hu et al., 2020; Jiang et al., 2021; Nishimura et al., 2019; Olia et 
al., 2018; Talebpour & Mahmassani, 2016; Yan et al., 2021). These studies rely on the (implicit) 
assumption that HDVs will drive similarly in mixed traffic as they do in conventional traffic. 
To our knowledge, only two studies have implemented different/modified car-following models 
for HDVs in (micro)simulation of mixed traffic (Hua et al., 2020; Li et al., 2023). Hua et al. 
(2020) studied the impact of different exclusive lane policies in mixed traffic conditions. They 
modelled HDVs using the Two-state Safe-speed Mode (Tian et al., 2016). Here, they 
differentiated HDVs following HDVs/AVs by using longer following gaps when following AVs 
(2.4 s) than when following HDVs (1.8 s). Li et al. (2023) set up a numerical simulation study 
to model the interactions in mixed traffic and to study the traffic flow characteristics. They had 
different models for HDVs and AVs when their lead vehicle was an HDV or AV.  For HDVs, 
they used the Gipps’s model (Gipps, 1981b) but modified it such that HDVs would keep an 
extra distance away (maximum 10 m) when following AVs due to an assumption that HDVs in 
this case would be more cautious. 
In summary, there are several available models used to describe car-following behavior. 
However, the focus is on conventional traffic conditions. When it comes to mixed traffic 
conditions, to the best of our knowledge only two studies adopted different car-following 
models, and both did it by explicitly modifying either the following distance or the following 
time gap when following AVs or HDVs. 
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3.2.2. Impact of AVs on HDVs 

Empirical based studies have investigated the impact of AVs on car-following behavior of 
HDVs in mixed traffic and have found evidence for modifying HDVs’ car-following behavior. 
These studies employed different research methodologies, including driving simulators, field 
test experiments, and naturalistic driving datasets.  
Zhao et al. (2020) set up a field test experiment and investigated the car-following behavior of 
HDVs when following an AV that differed in its appearance from an HDV. A recognizable AV 
resulted in smaller time headways maintained by AV-believers. Larger time headways were 
maintained by AV-skeptics. No differences were found in car-following behavior when the AV 
was not recognizable. Mahdinia et al. (2021) analyzed the field test experiment data of Rahmati 
et al. (2019) where HDVs followed a lead vehicle exhibiting an AV or HDV speed profile (AV 
not recognizable). They found that HDVs exhibit on average 18.8 % ± 6.8 % (95% confidence 
level) lower volatility in speed, and on average 23.5 % ± 5.3 % lower volatility in acceleration 
when following an AV as compared to following an HDV. Razmi Rad et al. (2021) investigated 
the car-following behavior of HDVs when driving next to a dedicated lane for AVs in a driving 
simulator experiment and compared this to a scenario in which the AVs did not have a dedicated 
lane but were rather mixed with other traffic. The authors found that the time headway of HDVs 
driving in the middle lane adjacent to the dedicated AV lane, was 0.058 s shorter compared to 
when they were driving on the right most lane, farther from the dedicated AV lane. Aramrattana 
et al. (2022) conducted a driving simulator experiment and found that the average car-following 
headway of HDVs increased from 3 to 3.5 seconds when driving among AVs in the main 
highway scenario but decreased from 2.3 s to 1.3 s when driving among AVs in the on-ramps 
scenario, both compared to driving the same scenario in HDV traffic. AVs were not 
distinguishable from HDVs and generally had a longer time gap and lesser lane change 
propensity than HDVs. de Zwart et al. (2023) also set up a driving simulator experiment and 
found that HDVs adopt a shorter median time headway (1.35 s) in 100% AV penetration level 
condition, compared to in the 50% AV penetration level condition (1.70 s), or the 0% AV 
penetration level condition (2.09 s). AVs were not visibly recognizable. However, they had 
shorter time headways compared to HDVs and faster reaction times. Also, they strictly adhered 
to the speed limit, while HDVs had randomly slightly smaller or larger speeds. There was also 
a smaller average velocity difference with the lead vehicle in the 100% AV penetration level 
condition (median -0.23 m/s), compared to the 50% AV penetration level condition (median -
0.76 m/s), and the 0% AV penetration level condition (median -1.31 m/s). Wen et al. (2022) 
analyzed a naturalistic open dataset (Waymo, 2019) and found that at lower speeds, HDVs 
following an AV had larger standard deviations in speed (0.8 – 1.5 m/s), while at larger speeds, 
they had smaller standard deviations in speed (0.3 – 0.5 m/s), when compared to following an 
HDV. The following time headway of HDVs when following AVs was shorter (2.23 s) than 
when following other HDVs (2.38 s). 
In summary, some studies have looked at behavioral adaptation of HDVs in mixed traffic and 
found some evidence for this. These studies adopted different methodologies ranging from 
driving simulator studies to naturalistic driving data. In the next section, we present the research 
gaps that we have identified, and based on that the research questions. 

3.2.3. Research gaps and research questions 

The evidence that there is indeed an impact of AVs/mixed traffic on car-following HDV 
behavior is at a nascent stage. Research studies have only recently started to explore this issue. 
They have found that HDVs do adapt their car-following behavior due to interactions with AVs 
(Aramrattana et al., 2022; de Zwart et al., 2023; Mahdinia et al., 2021; Razmi Rad et al., 2021; 
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Wen et al., 2022; Zhao et al., 2020). However, the precise nature of these impacts and their 
contributing factors is still vastly unexplored. Therefore, there is a need to further investigate 
the impact of AVs on HDVs’ car-following behavior. 
Moreover, microscopic simulation studies use car-following models to describe HDVs’ 
longitudinal behavior in mixed traffic. However, most of these studies use the same HDV 
models that are used and calibrated for conventional traffic. This remains an assumption that 
still needs to be validated. Especially that some empirical studies have found evidence that 
human drivers do change their behavior when interacting with AVs and interact differently with 
these vehicles compared to when interacting with HDVs. We found only two simulation studies 
(Hua et al., 2020; Li et al., 2023) that implemented different HDV models depending on whether 
the leader was an HDV or AV, thus recognizing that there is HDV behavioral adaptation. 
However, they do not provide empirical evidence for the specific changes they make. Also, it 
leaves open the question of how does do models with modified HDV behavior compare to not 
having modified HDV behavior. Hence, there is a need for HDV models that consider mixed 
traffic-specific factors. Or at least, there is a need to investigate whether such modified HDV 
models are significantly/meaningfully different from the HDV models in conventional traffic. 
Such new HDV models could be developed either by making some informed assumptions on 
the parameters of existing models, by calibrating the models using empirical data, or by 
designing completely new models (S. Calvert et al., 2017) . 
Based on these identified research gaps, this study addresses the following three research 
questions: 

1. How can car-following model parameters capture the changes that occur in the behavior 
of HDVs in mixed traffic?  

2. How does the choice of the car-following model affect the measured impact of mixed 
traffic on HDV car-following behavior?  

3. What is the effect of mixed traffic on car-following behavior of HDVs?  

3.2.4. General approach and outline of the paper 

We take the following approach to address the research questions. First, we collect empirical 
data on drivers’ car-following behavior in mixed traffic through a driving simulator experiment. 
Then, to capture the observed behavior mathematically, we estimate car-following models to 
describe the observed car-following behavior in the different scenarios. Finally, we estimate 
regression models for the estimated car-following parameters to gain insights into the specific 
factors affecting these parameters, which ultimately provide understanding on the effect of 
mixed traffic factors on car-following behavior of HDVs.  
The rest of the paper is structured as follows. Section 3.3 describes the set-up of the experiment 
(data collection). Section 3.4 discusses the estimation of the car-following models and findings. 
Section 3.5 presents the estimated regression models for the parameters. Section 3.6 discusses 
all the results, organized by the research questions, and the limitations. Finally, Section 3.7 
presents the conclusions and recommendations.  

3.3. Experiment set-up and data collection 

3.3.1. Apparatus 

A driving simulator experiment was designed to collect data  on the car-following behavior of 
HDVs in the different scenarios. The driving simulator used (Figure 3.1) is located at the 
Transport & Planning department of Delft University in the Netherlands. It operates using the 
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SCANeR (v1.9) software by AV Simulation. It is a fixed base driving simulator equipped with 
a Fanatec steering wheel and pedals, a dashboard mock-up, and three 4 K high-resolution 
screens which approximately provide 180° vision. 

 
Figure 3.1:The driving simulator used for data collection 

3.3.2. Protocol and Questionnaires 

After the approval from the Human Research Ethics Committee of TU Delft, participants were 
recruited with the support of the Municipality of Delft, with a selection process ensuring an age 
and gender balance. A valid driving license was needed to participate in the experiment. Prior 
to the driving simulator session, participants filled in questionnaires to collect their 
demographics, and driving style (MDSI – which consists of 44 questions that allows to score 
drivers on different driving styles such as Reckless, Anxious, Angry, and Careful) (Taubman-
Ben-Ari et al., 2004). We also had questions to measure their trust in technology (Hagenzieker 
et al., 2020; Merritt et al., 2013), trust in AVs (Payre et al., 2015), Knowledge of AVs, and 
Experience with AVs.  For the Knowledge and Experience with AVs, the participants were asked 
to rate their knowledge about and experience using the following systems on a 6-level scale: 
Cruise Control, Lane Departure Warning, Adaptive Cruise Control, Lane-Keeping Assist, Lane 
Change Assist, and Forward collision-avoidance. On arrival at the experiment room, 
participants were asked to read the information sheet and to sign the consent form. Then, the 
researcher instructed them on the driving simulator equipment and guided them through a 
familiarization drive (which generally lasted around 8 minutes). When the participants felt 
comfortable, the experiment began where participants drove 4 different scenarios, with 
adequate breaks in between. On average a scenario took about 10 minutes.  After the driving 
simulator experiment, participants filled in two additional questionnaires to measure their 
simulation sickness (only 2 participants had to stop earlier due to simulation sickness) and 
realism in the driving simulator environment. Every participant received a compensation of 15 
euros as a gesture of gratitude at the end of the experiment. 
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3.3.3. Route 

Drivers followed a route that consisted of 3 parts. Part 1: 3 motorway on-ramps (excluding an 
initial on-ramp), Part 2: 3 provincial road signalized intersections, and Part 3: a straight road 
section. Figure 3.2 depicts the route. The scope of this study is limited to Part 3, the straight 
road section (single lane, about 5.5 km long), focusing on car-following behavior.  

 
Figure 3.2: Sketch of the route developed in the driving simulator. 

3.3.4. Scenarios 

When drivers approached the car-following section, they found themselves behind a few slow-
moving vehicles (mimicking a traffic jam) and were instructed to follow their lead vehicle (car-
following) as they would do in real life. The scenario ended after some minutes (Mean 5.73 
minutes, SD 1.42 minutes) of car-following. The standard deviation is somewhat large because 
some drives had to be stopped short due to issues with the simulator. 
Each driver drove four scenarios, excluding an initial familiarization scenario. The four 
scenarios varied in terms of the appearance of the vehicle interacting with the human driver and 
its driving style as shown in Table 3.1. The AV was chosen to be white colored because the 
white color for vehicles has a relatively neutral score on aggressiveness scales (Davies & Patel, 
2005). If for some reason, the participant had to stop mid-way (due to error in following the 
instructions, or simulator technical issues), then that scenario would be repeated starting from 
the next Part. For example, if a scenario was stopped in Part 2 (due to technical issues), then 
the participant would drive the same scenario but starting from Part 3. We noted this under a 
variable “Trial”. A participant could therefore do multiple “trials” for the same scenario. It is to 
be noted that multiple trials rarely occurred. 
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Table 3.1: Scenarios with their appearance and driving styles of the interacting vehicle 

Scenario code Appearance Driving Style 

HDV HDV HDV HDV 

HDV AV HDV AV 

AV AV AV AV 

AV HDV AV HDV 

3.3.5. Vehicle behaviors 

Globally, we classified the behavior of the interacting vehicle as HDV style or AV style.  In the 
route prior to the car-following section, the interacting vehicles drove differently as per the 
scenario. In general, AV driving style meant strictly following the speed limit and maintaining 
consistent and constant time headways (decided based on ACC settings found in several 
commercial car manuals). HDV driving style meant slightly exceeding speed limit and varying 
time headways (derived from real world data on provincial roads provided by the Province of 
Noord Holland). When the participant merged to the motorway from an on-ramp, AVs 
approaching the on-ramp on the motorway maintained a fixed time gaps of 2 s, while HDVs 
had alternating gaps of 1 s, 2 s, and 3 s. This is important to note as even though the scope of 
this paper is limited to the car-following section, drivers experience the conditions of the 
scenario (their interactions with AVs or HDVs) earlier in the route which could affect the way 
they drive in the car-following section. 
The car-following section consisted of a single lane road, and a platoon of 4 vehicles was 
preplaced, where the lead vehicle (vehicle 4) was defined to follow a specific speed profile. The 
other vehicles’ desired velocities being larger than the speed limit ensured they follow the lead 
vehicle actively. The last vehicle in the platoon (vehicle 1) became the lead vehicle for the 
participating driver. Vehicle 1’s appearance was as HDV or AV as per the scenario, with no 
other difference. We designed the speed profile for vehicle 4 aiming at a “complete trajectory”, 
considering the need for calibrating a car-following model (Sharma et al., 2018). Figure 3.3 
shows the 2 speed profiles of the lead vehicle experienced by drivers. Drivers encountered one 
of these 2 speed profiles randomly, to prevent anticipation. 
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Figure 3.3: The two speed profiles of the lead vehicle. 
 

3.3.6. Data export and handling 

The simulator allows the export of data per scenario. This data consists of state variables of 
every vehicle in the scenario. State variables include vehicle ID, timestamp, position, speed, 
acceleration, lane ID, et cetera. We first exported the data at a frequency of 4 Hz (4 observations 
every second), which is sufficient for this type of analysis. Then, we renamed the data files to 
code using the participant numbers and scenario numbers. After that, using the road IDs, we 
filtered the dataset only for the car-following road section, and using vehicle IDs, we extracted 
only the lead vehicle and subject vehicle state variables. Furthermore, we filtered the dataset 
for relevant state variables only, namely, vehicle ID, position, speed, acceleration, lane ID, lane 
abscissa (position of vehicle in the lane along curvature), and timestamp. Using state variables 
that describe the vehicle positions and speeds, we calculated the space and time headways of 
the subject vehicle. Finally, this resulted in a dataset that consisted of all the state variables 
(those obtained directly from the simulator and the ones we calculated), for all drivers, for all 
scenarios. We also included the order in which drivers encountered the scenarios in the dataset. 
The final dataset consisted of 204164 observations, for 47 participants.  

3.3.7. Participants 

In total 47 drivers took part in the driving simulator experiment. We categorized them into three 
age categories. There were 16 younger (25 - 45) drivers (8 male, 8 female), 16 middle-aged (45 
– 65) drivers (8 male, 8 female), and 15 older (70+) drivers (10 male, 5 female). In general, 
there was a relatively good representation of the different age and gender groups. Figure 3.4 
shows the driving style distribution across all the drivers, calculated from the MDSI driving 
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style evaluation questionnaire. One thing that stands out is that most drivers have a higher extent 
of the Patient and Careful driving style. 
 

 
Figure 3.4: Participants’ driving styles distribution (violin plot) calculated from the MDSI 
driving style evaluation questionnaire. 

 

3.4. Estimation of car-following model 

To understand the car-following behavior of drivers in the different scenarios, we decided to 
estimate a car-following model per scenario. The estimated parameters of the car-following 
model give insights into the nature of car-following behavior, and differences in these 
parameters between different scenarios would reveal the effect of the factors investigated in this 
study. In this section, we first select an appropriate car-following model, then describe the 
estimation process, and finally examine the estimated parameters. 

3.4.1. Model selection 

We selected the Intelligent Driver Model (IDM) (Treiber et al., 2000), and its adapted version, 
the IDM+ (Schakel et al., 2010) as the car-following models to be investigated in this study. 
The IDM is a frequently used model that considers both the desired velocity and the desired 
space headway of the driver; and is known to perform relatively well when compared to 
observed car-following behavior (Punzo et al., 2021; Saifuzzaman & Zheng, 2014). Also, the 
model is more suitable for estimation since it is smooth (continuously differentiable) and has 
no explicit delay, which makes it more convenient for some optimization methods. The IDM+ 
offers more reasonable capacity values, and with no large acceleration differences from the 
IDM in most cases (except when the speed is much larger than the desired velocity and the 
spacing is much smaller than the desired spacing), (Schakel et al., 2010). The IDM+ achieves 
this by applying a minimization between the free flow term and the interaction term of the IDM. 
This makes the smooth topped equilibrium fundamental diagram of the IDM changed to a 
triangular shape. However, due to the minimum operator, the IDM+ is not continuous 
differentiable, which for our optimization method was not a problem. Equations 1 and 2 
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describe the IDM and the IDM+ models, respectively, with Equation 3 belonging to both the 
IDM and IDM+. 
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Where 𝛼 is a vehicle, 𝜈̇! is its acceleration, 𝑎(!)is the maximum acceleration (termed as ‘alpha’ 
henceforth), 𝑣! is the velocity, 𝑣+

(!) is the desired velocity (termed as v0 henceforth, 𝛿 is the 
acceleration exponent, 𝑠∗(𝑣! , 𝛥𝑣!) is the desired minimum gap, 𝑠! is the actual gap, 𝑠+

(!) and 
𝑠,
(!) are the jam distance (where 𝑠,

(!)is the speed-dependent part of jam distance, which is set 
to 0 for simplicity (Treiber et al., 2000)) (𝑠+

(!) termed as s0 henceforth), 𝑣 is the velocity, 𝑇! is 
the safe time gap (termed as T henceforth), 𝛥𝑣 is the velocity difference, 𝑏(!) is the comfortable 
deceleration (termed as ‘beta’ henceforth). 

3.4.2. Estimation procedure and outcome  

We used the data from the driving simulator to estimate the IDM and IDM+. The process of 
estimation can be described as follows: 

1. Definition of the IDM and IDM+ models 
2. Identification of the input variables (speed, headway, etc.) (termed as state variables). 
3. Identification of the output variable – in our case, it is acceleration of the ego vehicle. 
4. Identification of the parameters to be estimated (v0 desired velocity, T safe time gap, 

𝑠+	jam spacing,	alpha max acceleration, beta comfortable deceleration), along with their 
feasibility constraints (for example, the parameter must be non-zero) 

5. Deciding on an initial set of parameters. 
6. Using this initial set of parameters, along with the state variables of the vehicle in the 

current time step as input to the IDM and IDM+ models, calculation of the acceleration 
(output variable). 

7. Using the calculated acceleration, updating the state variables of the vehicle at the next 
time step (new position, new speed, etc.). 

8. Measuring the difference (error) between the calculated state variable and the actual 
state variable (from the data). The selected state variable is termed as Measure of 
Performance (MoP) and the error indicator Goodness of Fit (GoF). 

9. Updating the initial parameter values with the intention to minimize the error. 
10. Continuing steps 4-7, until satisfactory conditions are met. 
11. Resulting in the final “best” set of parameter estimates. 
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This estimation process required some decisions to be made. As Measure of Performance 
(MoP), we selected spacing. As Goodness of Fit (GoF) indicator, we selected Root Mean 
Squared Error (RMSE). As the optimization method, we selected the Genetic Algorithm. These 
decisions were made based on appropriateness and best practices for calibration of car-
following models, as identified in Punzo et al. (2021). We applied the estimation process on 
one single trajectory at a time. This results in a different set of parameter estimates for every 
driver-scenario combination. The estimation process was performed using the Delft Blue 
supercomputer (Delft High Performance Computing Centre (DHPC), 2024). 
The parameters estimation procedure was run on all driver-scenario combinations. In total, car-
following parameters for 219 trajectories were estimated. Excluding the familiarization drive 
and the trajectories that had extremely large following time headway (greater than 10 seconds) 
and distance headway (greater than 300 meters) resulted in a final set of 173 trajectories with 
their estimated parameters. Figure 3.5 shows how these final trajectories were distributed 
between the 4 scenarios, the 4 orders, and the trails. Overall, there is a good balance between 
the scenarios and orders, therefore vastly reducing any bias in these variables. 

 
Figure 3.5: Distribution of final set of trajectories over the different scenarios, order, and 
trial. It shows the number of individual car-following trajectories in the final data used 
for modelling and analysis. (Scenarios coded as Appearance and Driving style) 
Figure 3.6 shows the overall boxplot distributions of the parameters over all scenarios for the 
IDM (a), and for the IDM+ (b). The distributions between the two models look similar. 
Comparing the median values of IDM with that of IDM+ shows that for the IDM+, the safe 
time gap (T) is 0.5 s larger, the comfortable deceleration (beta) is 0.3 m/s2 smaller, the desired 
velocity (v0) is smaller by about 16 km/h, and the jam spacing (s0) and maximum acceleration 
(alpha) are very similar. Also, the inter-quartile range for the comfortable deceleration is larger 
for the IDM compared to the IDM+. 
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Figure 3.6: Boxplot distributions of the estimated parameters for the IDM (on previous 
page) and IDM+ (the above plot). 

3.5. Estimated parameters 

To help further interpret the results, these parameters were aggregated per scenario. Figure 3.7 
and Figure 3.8 show boxplots of the parameter estimates, per scenario, for the IDM and IDM+ 
respectively. Certain differences can be observed. For instance, the jam spacing for the 
scenarios in which the lead vehicle is recognizable as AV, i.e., AV AV (AV Appearance, AV 
Driving style) and AV HDV (AV Appearance, HDV Driving style), seem smaller than the other 
two scenarios in which the lead vehicle is recognizable as HDV. Also, the safe time gap 
especially for AV AV scenario seems smaller. The median comfortable deceleration for the 
scenario AV HDV seems larger than the others. The largest visible changes are for the desired 
velocity, with the conventional traffic scenario HDV HDV having the largest median desired 
velocity, and the least median desired velocities are for the scenarios AV AV and AV HDV (in 
both scenarios, the vehicle is recognizable as AV). The changes in desired velocity medians are 
less noticeable in the IDM+ compared to the IDM. 

 
Figure 3.7: Boxplot distribution of the IDM parameters grouped by Scenario  (Scenarios 
coded as Appearance and Driving style) . 
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Figure 3.8: Boxplot distribution of the IDM+ parameters grouped by Scenario  (Scenarios 
coded as Appearance and Driving style). 
 
Table 3.2 and Table 3.3 present the median and standard deviation of the parameters for the 
different scenarios, and the differences from the base HDV-HDV scenario for the IDM and 
IDM+, respectively. What is notable is that the AV AV and AV HDV scenarios have the largest 
number of green shaded cells, indicating that the largest differences occurred in these scenarios 
where the AV was recognizable. This is noticeable for both the IDM and IDM+, but in particular 
for the IDM+. Additionally, the predominantly white cells in the Values column for AV AV show 
that except for median jam spacing, median max acceleration, and SD comfortable deceleration, 
the AV AV scenario had the smallest values for almost all parameters. 

 
Table 3.2: Parameter estimates for IDM. Color shading is greyscale for the absolute 
“Values” per indicator (median and SD) between different scenarios. The other color 
shading is from green (max difference) to white (min difference) applicable for 
"Difference with HDV HDV" columns. (Scenarios coded as Appearance and Driving 
style) 

Parameter  Indicator Values Difference with HDV 
HDV 

  HDV 
HDV 

HDV 
AV 

AV 
AV 

AV 
HDV 

HDV 
AV AV AV AV 

HDV 

Jam spacing s0 (m ) Median 13,36 14,58 12,72 10,76 1.23 -0.64 -2.60 
SD 4,80 4,76 4,10 4,49 -0.03 -0.70 -0.31 

Safe time gap T (s) Median 1,70 1,68 1,25 1,52 -0.02 -0.45 -0.18 
SD 1,44 1,78 0,93 1,14 0.35 -0.51 -0.30 

Max acceleration alpha 
(m/s2) 

Median 1,68 1,61 1,67 1,62 -0.07 -0.01 -0.06 
SD 0,71 0,66 0,59 0,63 -0.05 -0.12 -0.08 

Comfortable deceleration 
beta (m/s2) 

Median 1,30 1,13 0,91 1,68 -0.17 -0.40 0.38 
SD 2,23 2,19 2,34 2,38 -0.04 0.11 0.15 

Desired velocity v0 (km/h) Median 105,45 97,96 90,43 87,82 -7.49 -15.02 -17.63 
SD 20,37 18,11 15,63 17,62 -2.26 -4.74 -2.75 
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Table 3.3: Parameter estimates for IDM+. Color shading is greyscale for the absolute 
“Values” per indicator (median and SD) between different scenarios. The other color 
shading is from green(max) to white(min) applicable for "Difference with HDV HDV" 
columns. (Scenarios coded as Appearance and Driving style) 

Parameter  Indicator Values Difference with HDV 
HDV 

  HDV 
HDV 

HDV 
AV 

AV 
AV 

AV 
HDV 

HDV 
AV 

AV 
AV 

AV 
HDV 

Jam spacing s0 (m ) Median 13,27 14,41 12,50 9,21 1.15 -0.77 -4.06 
SD 4,80 4,50 4,02 5,20 -0.30 -0.78 0.40 

Safe time gap T (s) Median 2,01 1,98 1,72 2,11 -0.03 -0.29 0.10 
SD 1,48 1,88 1,11 1,23 0.40 -0.38 -0.25 

Max acceleration alpha (m/s2) Median 1,81 1,64 1,67 1,58 -0.17 -0.15 -0.23 
SD 0,68 0,67 0,55 0,63 -0.01 -0.13 -0.06 

Comfortable deceleration beta 
(m/s2) 

Median 1,00 1,04 0,87 1,32 0.04 -0.13 0.32 
SD 1,96 2,30 2,07 2,24 0.34 0.11 0.29 

Desired velocity v0 (km/h) Median 80,38 77,40 75,28 74,45 -2.98 -5.10 -5.94 
SD 21,32 17,44 15,22 19,82 -3.88 -6.10 -1.50 

To get a better insight regarding the differences between the IDM and IDM+, Table 3.4 presents 
the IDM and IDM+ car-following model parameters and their values for the different scenarios. 
Also, the third column for each scenario shows the differences in parameters values between 
the IDM and IDM+. Additionally, the RMSE, which is the goodness of fit indicator is also 
reported for all the scenarios for the two models. The columns indicating the differences are 
shaded from green (greatest positive difference) to red (greatest negative difference). Overall, 
there are some differences that are notable. The median desired velocity has the greatest 
differences, with the IDM+ having in general smaller desired velocities compared to the IDM 
for all scenarios. Also, the median time headway is greater for the IDM+ compared to the IDM, 
for all scenarios. As for goodness of fit (RMSE), both models have similar values in general for 
all scenarios. The RMSE for both models is presented in the form of boxplot distribution in 
Figure 3.9, which shows the similarity. Given that the actual spacing had a Mean of 56.5 m and 
SD 41.1 m, the RMSEs are generally around 25% of the mean spacing, which is reasonably 
good and also similar to previous estimations using genetic algorithm for the IDM (Kesting & 
Treiber, 2008). 
Table 3.4: Comparing estimates and goodness of fit of IDM and IDM+ (Diff relate to the 
difference in estimates between IDM and IDM+) (Scenarios coded as Appearance and 
Driving style) 
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Figure 3.9: Boxplots for RMSE of parameters estimation using IDM and IDM+. 

3.6. Regression modelling of parameters 

The estimation process resulted in a unique set of parameters for every driver-scenario-trial 
combination. Our goal is to understand the effect of mixed traffic on the parameters of the IDM 
and IDM+, and hence on the car-following behavior. We estimated 5 univariate linear mixed 
models that can handle random effects (in this case, random effect parameter for the intercept). 
We adopted a linear mixed model for each of the 5 parameter estimates, because all the 5 
parameters are continuous variables. The dependent variables are the 5 parameters: s0 (jam 
spacing), T (safe time gap), alpha (maximum acceleration), beta (comfortable deceleration), 
and v0 (desired velocity). The independent variables were the  scenario related variables which 
included the  AV appearance and AV driving style. In addition,  the demographic variables and 
driving styles were considered. The variables “Trial”, “Years Driving NL”, “Education Level”, 
and “Employment status” were excluded due to relatively low variation in the dataset. The 
remaining demographic variables were tested for multicollinearity. Figure 3.10 shows the 
correlation matrix between the demographic variables and the Pearson correlation coefficients, 
with only the statistically significant correlations cells being highlighted (p-value less than 
0.05). If two variables were significantly and highly correlated, the one having a larger number 
of other correlated variables was removed. Based on this, the following variables were 
excluded: “Knowledge AVs”, “Driving comfort NL”, “Anxious”, “Dissociative and Distress-
reducing”.   
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Figure 3.10: Correlation matrix between continuous demographic variables (only 
significant correlations displayed with the Pearson correlation coefficients) 
The variables that were kept were: “Gender”, “Age Group”, “Angry and Hostile”, “Patient and 
Careful”, “Trust_Tech”, “Trust AVs”, “Experience AV”, “AV appearance”, “AV driving style”, 
“Order of Scenario”. The “Participant number” was also kept. After this, correlations with 
categorical variables were also tested. Table 3.5 presents the results. All were not significant, 
so all these variables were kept. 
 

Table 3.5: Correlations of categorical variables (all not statistically significant) 
Variable 1 Variable 2 Test type Result 
Age Group Gender Chi-squared Chi2 = 1.15, p-value = 0.56 
Age Group AV appearance Chi-squared Chi2 = 1.17, p-value = 0.56 
Age Group AV driving style Chi-squared Chi2 = 0.44, p-value = 0.8 
Gender AV appearance Chi-squared Chi2 = 0.03, p-value = 0.86 
Gender AV driving style Chi-squared Chi2 = 0.05, p-value = 0.83 
Age Group Trust Tech Kruskal Wallis H-statistic: 0.07, p-value: 0.96 
Age Group Angry and Hostile Kruskal Wallis H-statistic: 0.57, p-value: 0.75 
Age Group Patient and Careful Kruskal Wallis H-statistic: 5.0, p-value: 0.08 
Gender Trust Tech Kruskal Wallis H-statistic: 1.71, p-value: 0.19 
Gender Angry and Hostile Kruskal Wallis H-statistic: 4.27, p-value: 0.04 
Gender Patient and Careful Kruskal Wallis H-statistic: 0.14, p-value: 0.71 

With the remaining variables,  univariate linear mixed models were estimated. First, the 
categorical variables were dummy coded appropriately. Univariate linear mixed effects models 
were estimated for s0, T, alpha, beta, and v0. Participants number was used  as random intercept 
to account for repeated measures for every participant. The best model was selected based on 
the combination of the following criteria: theoretical domain knowledge, importance of the 
variable, the significance (p-values) of the estimates, and the Akaike Information Criteria 
(AIC). We added back Trust_AVs as it was relevant even though it had a correlation with 
Trust_Tech and tested for different model options. Even though the multicollinearity test using 
the Variance Inflation Factor (VIF) found that it was okay to have both variables in the model, 
the Condition Index (CI) showed there were multicollinearity problems. Hence, we decided to 
only keep Trust_AVs as this is the main variable of interest (the model performed almost the 
same as the one that had only Trust_Tech). Table 3.6 and Table 3.7 present the coefficient 
estimates for the 5 parameters, using IDM and IDM+ respectively.  
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Table 3.6: Coefficient estimates for IDM based univariate linear mixed models for the 5 
parameters (p-values in brackets). DS – driving style, App -– Appearance 

  

Jam spacing s0 
(m) 

Safe time 
gap T (s) 

Max accel. 
alpha 
(m/s2) 

Comfortable 
deceleration 
beta (m/s2) 

Desired velocity 
v0 (km/h)  

Intercept 7,35 (0,22) -0,68 (0,73) 2,21 (0,02) * 0,38 (0,9) 107,51 (<0,01)** 
Gender: Female 1,12 (0,26) 0,58 (0,08) . 0,02 (0,92) 0,01 (0,98) -2,71 (0,53) 
Age: Middle aged 
45 to 65 

0,83 (0,49) 0,12 (0,76) -0,16 (0,38) 0,01 (0,99) -2,98 (0,57) 

Age: Older 70+ 4,1 (<0,01)** 0,87 (0,03) * 0,18 (0,34) -0,88 (0,15) -11,5 (0,03) * 
Driver DS: Angry 
and Hostile 

-0,91 (0,24) -0,31 (0,22) -0,09 (0,47) 0,55 (0,16) -0,86 (0,8) 

Driver DS: Patient 
and Careful 

1,13 (0,29) 0,53 (0,13) -0,06 (0,74) 0,29 (0,58) 0,53 (0,91) 

Trust in AVs 0,07 (0,95) -0,54 (0,12) 0,13 (0,43) -0,88 (0,13) 4,74 (0,32) 
Vehicle App: AV -1,34 (0,05) * -0,06 (0,79) -0,02 (0,83) 0,23 (0,58) -6,36 (0,04) * 
Vehicle DS: AV -0,35 (0,6) 0,06 (0,76) -0,14 (0,2) 0,15 (0,71) -3,75 (0,22) 
Order: 2 -2,12 (<0,01)** 0,08 (0,71) 0,05 (0,67) -0,46 (0,26) 2,34 (0,44) 
Order: 3 -0,72 (0,26) 0 (0,99) -0,19 (0,07) . -0,22 (0,58) -1,61 (0,59) 
Order: 4 -2,4 (<0,01)** 0,08 (0,73) 0,06 (0,6) -0,81 (0,07) . -4,26 (0,2) 
Trust in AVs * 
Vehicle App: AV 

-1,69 (0,05) . 0,01 (0,98) -0,06 (0,68) 1,01 (0,06) . -4,13 (0,3) 

Trust in AVs * 
Vehicle DS: AV 

-0,69 (0,42) 0,16 (0,56) 0,12 (0,39) -0,24 (0,65) -2,97 (0,45) 

Vehicle App: AV * 
Vehicle DS: AV 

1,35 (0,15) -0,33 (0,27) 0,1 (0,51) -0,47 (0,43) 1,72 (0,69) 

Group variance for 
Participant ID: 
Intercept (Residual) 

2,71 (2,99) 0,9 (0,94) 0,42 (0,49) 1,2 (1,9) 11,48 (14) 

AIC 919,45 564,79 356,66 759,45 1392,07 
Log-likelihood -442,72 -265,39 -161,33 -362,72 -679,04 
  . <0.1     * < 0.05     ** < 0.01 

 
 
Table 3.6 and 3.7  reveal some significant parameters, at significance levels <0.1, <0.05, and 
<0.01. The AV appearance was found to reduce jam spacing and desired velocity. The 
interaction term with trust in AVs showed that when drivers have higher levels of trust in AVs, 
an AV appearance further reduced the jam spacing. Additionally, when the trust in AVs was 
higher, an AV appearance also resulted in larger comfortable deceleration. As for personal 
characteristics, older drivers tended to have larger jam spacing, larger safe time gap, and smaller 
desired speeds compared to younger drivers. Female drivers had larger safe time gaps than male 
drivers. As for driving style, drivers with greater inclination to patient and careful driving styles 
had larger safe time gaps. Finally, the group variance for Participant ID is significant, showing 
that significant differences were observed between participants at the level of the subjects, 
which the mixed model correctly considered. The order of the scenarios also played a role. 
Scenarios with Order 2 shows smaller jam spacing compared to Order 1. Scenarios with Order 
3 saw smaller max acceleration, and scenarios with Order 4 saw smaller jam spacing and 
smaller comfortable deceleration compared to Order 1. In the next section, we discuss the main 
implications from all these results. 
 

 
 



 
  

Investigating car-following behavior: A driving simulator experiment 

 
 

56  

Table 3.7: Coefficient estimates for IDM+ based univariate linear mixed models for the 5 
parameters (p-values in brackets). DS – driving style, App -– Appearance 

  

Jam spacing s0 
(m) 

Safe time gap 
T (s) 

Max accel. 
alpha (m/s2) 

Comfortable 
deceleration 
beta (m/s2) 

Desired 
velocity v0 
(km/h)  

Intercept 9,28 (0,13) -1,48 (0,47) 2,39 (<0,01)** -1,05 (0,68) 94,65 (<0,01)** 
Gender: Female 0,97 (0,34) 0,68 (0,05) * -0,07 (0,62) -0,17 (0,68) -0,67 (0,87) 
Age: Middle aged 
45 to 65 

0,85 (0,49) 0,28 (0,49) -0,1 (0,55) 0,44 (0,38) -0,89 (0,86) 

Age: Older 70+ 3,67 (<0,01)** 1,11 (<0,01)** 0,2 (0,26) -0,3 (0,56) -9,71 (0,06) . 
Driver DS: Angry 
and Hostile 

-0,91 (0,25) -0,21 (0,42) -0,06 (0,59) 0,44 (0,19) 2,85 (0,38) 

Driver DS: 
Patient and 
Careful 

0,79 (0,47) 0,7 (0,06) . -0,09 (0,56) 0,49 (0,28) -1,43 (0,75) 

Trust in AVs 0,22 (0,84) -0,6 (0,1) 0,01 (0,93) -0,56 (0,29) 3,94 (0,4) 
Vehicle App: AV -1,56 (0,03) * 0,1 (0,66) -0,09 (0,46) 0,37 (0,39) -1,55 (0,64) 
Vehicle DS: AV -0,24 (0,73) 0,08 (0,72) -0,08 (0,48) 0,57 (0,18) -3,66 (0,27) 
Order: 2 -2,5 (<0,01)** 0,06 (0,77) 0 (0,98) -0,46 (0,28) 4,59 (0,16) 
Order: 3 -0,85 (0,21) -0,18 (0,4) -0,19 (0,1) . -0,24 (0,56) -4,13 (0,2) 
Order: 4 -2,82 (<0,01)** 0,04 (0,87) 0,07 (0,59) -1,04 (0,02) * 0,29 (0,93) 
Trust in AVs * 
Vehicle App: AV 

-1,25 (0,17) 0,09 (0,77) 0,04 (0,8) 0,7 (0,21) -1,16 (0,79) 

Trust in AVs * 
Vehicle DS: AV 

-1,37 (0,12) 0,13 (0,65) 0,09 (0,55) -0,53 (0,34) -7,15 (0,09) . 

Vehicle App: AV 
* Vehicle DS: AV 

1,45 (0,14) -0,4 (0,22) 0,08 (0,6) -0,98 (0,11) -1,62 (0,73) 

Group variance 
for Participant ID: 
Intercept 
(Residual) 

2,74 (3,13) 0,91 (1,03) 0,36 (0,53) 0,84 (1,95) 10,39 (15,03) 

AIC 931,35 588,04 365,27 752,45 1405,21 
Log-likelihood -448,67 -277,02 -165,63 -359,23 -685,61 
  . <0.1     * < 0.05     ** < 0.01 

 

3.7. Discussion and Limitations 

In this section, we discuss the results in line with the research questions that were defined and 
the literature. Later, we discuss some key limitations to this research. 

1. How can car-following model parameters capture the changes that occur in the 
behavior of HDVs in mixed traffic? 

We attempted to capture HDV car-following behavior in mixed traffic using car-following 
models. We selected two models, the IDM and the IDM+, and estimated them for different 
mixed traffic conditions: AVs non-recognizable and driving like HDVs (Scenario code HDV 
HDV), AVs non-recognizable and driving differently from HDVs (Scenario code HDV AV), 
AVs recognizable and driving differently from HDVs (Scenario code AV AV), and AVs 
recognizable and driving like HDVs (Scenario code AV HDV). We presented the median and 
standard deviation values of the parameters for the different scenarios for both models. These 
parameters collectively describe the nature of car-following in mixed traffic conditions. 
Moreover, future studies wanting to implement the IDM or IDM+ models for such mixed traffic 
conditions can use these parameter estimates to model HDV driving behavior in mixed traffic. 
It is important to use models that are estimated for mixed traffic because they capture the effects 
of mixed traffic-specific factors such as Vehicle appearance (AV or HDV), Vehicle driving style 



 
 

Investigating car-following behavior: A driving simulator experiment 

 

57 

 

(AV or HDV), and trust in AVs, among other factors. These AV-specific factors, turning out to 
have statistically significant effects on the model parameters justify the necessity of using mixed 
traffic specific models. 
While this study used two existing models (IDM and IDM+), it is also important to consider 
the necessity and possibility of designing models specific for mixed traffic conditions. Such 
models could have a totally different mechanism altogether, as opposed to estimating a new set 
of parameters as what we did in this study. 

2. How does the choice of the car-following model affect the measured impact of 
mixed traffic on HDV car-following behavior? 

There are many popular models available to describe car-following behavior. Through this 
research question, we wanted to explore the implication of selecting a specific car-following 
model over another model. In our study, we selected the IDM and IDM+. Both models having 
the same parameters, it helps to observe the differences between the parameters between the 
two models thus helping to understand the implications of model formulation. We presented the 
differences in the estimates between the IDM and IDM+ for each scenario, in addition to the 
parameter estimates. Differences were mainly observed for the parameters safe time gap and 
desired velocity. Compared to that for the IDM, the median safe time gap for the IDM+ was 
larger by 0.31 seconds for the scenario HDV HDV, by 0.30 seconds for the scenario HDV AV, 
by 0.47 seconds for the scenario AV AV, and by 0.59 seconds for the scenario AV HDV. 
Compared to that for the IDM, the median desired velocity for the IDM+ was smaller by 25.07 
km/h for the scenario HDV HDV, by 20.56 km/h for the scenario HDV AV, by 15.15 km/h for 
the scenario AV AV, and by 13.38 km/h for the scenario AV HDV. The goodness of fit (RMSE) 
was mostly the same between the IDM and IDM+. 
Therefore, the choice of the model type affects how the HDV behavior in mixed traffic is 
modelled, and thereby resulting in implications on the impacts (on traffic flow or safety) that 
could later be measured through simulations. For example, to study a scenario where AV are 
recognizable and have an AV-like driving style (scenario AV AV), choosing the IDM+ instead 
of IDM would mean simulating HDVs that drive having about 15 km/h lower desired velocities, 
with about 0.5 seconds larger safe time gaps. So, it is important to be careful in the choice of 
the models. A nuance must be made here on the reason why the two models provide different 
desired velocity values. This has to do with how the desired velocity parameter plays a role in 
the calibration of the models. The IDM+ has a constraint that puts a limit on acceleration, which 
makes it more conservative than the IDM. The IDM, not having this constraint, can produce 
higher desired velocities. Therefore, the desired velocity parameter should not be strictly 
viewed as representing the true velocity at which drivers would like to drive at free-flow, but 
more as a parameter that compensates for the errors or artefacts in the model. Hence, the 
parameters should not be taken out separately and applied as they are defined, but they should 
be used together with the model context where they belong. 

3. What is the effect of mixed traffic on car-following behavior of HDVs? 
To understand the effects of mixed traffic factors on the car-following behavior of HDVs, we 
estimated univariate linear mixed regression models for the parameters of the IDM and IDM+. 
This provided insight into the precise magnitude and direction of the effects of mixed traffic 
factors on each of the car-following parameters. We estimated the parameters of the IDM and 
IDM+ models separately. Generally, the effects of the various considered factors are similar for 
both models, with statistically significant effects seen for all parameters. We combine the 
insights from both models to understand the impacts of the various mixed traffic factors on the 
car-following model parameters. We also discuss the impact of the drivers’ personal 
characteristics on these parameters, along with the effect of scenario order.  
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Three factors are attributed to mixed traffic conditions, namely, the Vehicle appearance (AV or 
HDV), the Vehicle driving style (AV or HDV), and trust in AVs. Significant effects were 
observed for these factors on jam spacing, comfortable deceleration, and the desired speed. 
When the AV was recognizable as AV (appearance AV), then the participants maintained smaller 
jam spacing (smaller by around 1.5 m) compared to the scenarios in which the lead vehicle was 
recognizable as HDV. This means that drivers are comfortable keeping a closer distance to the 
AV compared to the HDV when at standstill, suggesting higher trust in AVs (the safe time gap 
was also smaller when AV was recognizable). Also, in the safe time gap parameter estimates, 
we found that for the IDM, the safe time gap estimates were smaller for scenarios where the AV 
was recognizable.  This is also seen in previous literature (Wen et al., 2022; Zhao et al., 2020). 
For example, Zhao et al. (2020) also found that those who trust AVs more maintain a shorter 
following distance with the AV leader. The fact that drivers keep a closer distance due to higher 
trust, is supported by the observation that when the trust in AVs was higher, the jam spacing 
further reduced (by around 2 m).  While AV appearance reduced the jam spacing, it also reduced 
the desired velocity (by approx. 6 km/h). This finding is interesting as higher trust would mean 
drivers would drive faster when following a lead vehicle. However, this is not the case because 
in the experiment, drivers were constrained by the lead vehicle and could not overtake. 
Therefore, it is possible that drivers thought AVs had a more conservative driving style (which 
they did when they followed AV driving style). Drivers having greater trust in AVs also had 
further smaller desired velocity (by approx. 7 km/h) when the vehicle had an AV driving style 
(more conservative). These findings are consistent in supporting the explanation that drivers 
perceived AVs as safe and conservative. Therefore, they were more comfortable to keep a close 
distance (indicated by smaller standstill distance) but when constrained (due to lack of 
opportunity for overtaking), they had smaller desired velocities. Another finding was that when 
trust in AVs was higher, it resulted in a larger comfortable deceleration when the vehicle had 
AV appearance (by about 1 m/s2). This suggests that drivers had higher braking magnitudes 
when following an AV appearing vehicle than when following an HDV appearing vehicle. This 
result is in line with the smaller jam distance, as if drivers follow AVs closer, then it is likely 
that they brake harder. This also points to some traffic safety implications. A connection can be 
made with the study on real-world crashes between AVs and HDVs which found that most 
crashes occur when HDV is following an AV that comes to a stop (Xu et al., 2019). Finally, it 
is also important to notice that mixed traffic factors had no effect on the safe time gap, which 
was mainly influenced by the personal characteristics. However, the distribution of safe time 
gap in Figure 3.7 and Figure 3.8 suggest that the safe time gap was smallest for the scenario 
App AV DS AV. This was not reflected however in the model. A nuance on desired velocity is 
also of relevance here. For the same model, there were differences observed in desired velocity 
parameter between the scenarios. This could ap pear unnatural as a driver's desired velocity 
when in free flow should be independent of the type of vehicle driving in front. Still, we found 
differences. This suggests that drivers may, at least, temporarily, have different desired 
velocities as a consequence of how they perceive the lead vehicle. This could be similar to the 
effect that drivers may wish to drive at higher than their normal speeds when following a slow 
moving car. 
As for personal characteristics, age, gender, and driving style influenced some of the car-
following parameters. Compared to younger drivers, older drivers had significantly larger jam 
spacing (by about 4 m), larger safe time gap (by about 1 s), and lower desired speed (by about 
10 km/h). These show that older drivers had a more conservative / less aggressive driving style 
than younger drivers. These findings are consistent with existing literature (Cantin et al., 2009; 
Singh & Kathuria, 2021). Female drivers had significantly larger safe time gaps (by about 0.6 
s) than male drivers, indicating a less aggressive driving style which is also as anticipated in 
literature (Zolali et al., 2022). As for driving style, drivers having a larger tendency of patient 
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and careful driving style had significantly larger safe time gaps (by about 0.7 s), which is also 
as would be expected.  Finally, a note on the effect of scenario order even though it is not 
relevant for mixed traffic specifically but provides an insight on learning effect. The jam 
spacing was smaller compared to Order 1 in Order 2 and Order 4 (both by about 2.5 m). This 
can be attributed to becoming more familiar comfortable in the simulator environment (Colonna 
et al., 2016). In Order 3, a smaller maximum acceleration was noticed as compared to Order 1 
(by about 0.2 m/s2) 
While the above results and discussion is in light of the model results, it must not be taken 
directly that the factors having statistically insignificant effects will have no effects on driving 
behavior. It is certain that with further research and more data, deeper insights into their effects 
can be gained. For example, it may be that the model shows that vehicle appearance has a 
significant effect on desired velocity. However, it is still possible this also results in a change in 
safe time gap, which is not captured in the model. But the differences in these parameters can 
be observed in the descriptive overview across the scenarios. For example, the safe time gap in 
comparison to the HDV HDV scenario, was: 0.45 seconds smaller for the AV AV scenario, 0.18 
seconds smaller for the AV HDV scenario, and almost equal to the HDV AV scenario. Therefore, 
the AV being recognizable resulted in a reduction of the safe time gaps. This of course, needs 
to be statistically tested with future research. 

3.8. Limitations 

Firstly, we conducted one driving simulator experiment in which participants drove four 
different scenarios. While this provides useful insights into the drivers’ behavior in mixed 
traffic, it leaves an open question of whether the observed behavior remains unchanged over 
time. For this, a longer-term study is needed. Secondly, we used only two models, the IDM and 
IDM+. While this allowed a comparison of similar but specifically different models, we did not 
compare other models that have a different mechanism altogether (such as the Gipps model or 
the psychophysical model). Thirdly, in the car-following section, drivers drove based on the 
experience /expectations they had gained from driving in mixed traffic in the prior route. 
Therefore, the car-following section measured what could be termed as the behavior based on 
learning or developed expectations. It is possible that drivers could behave differently if they 
had closer and longer interactions with AVs specifically and could observe the way the AV was 
following its leader in the car-following section. Fourth, all observed behavior depends on the 
set up of the experiment. Particularly, the way we defined AV driving behavior would directly 
affect how participants perceive and interact with the AVs. In real life however, AVs have 
different driving styles which are also different between different manufacturers. Finally, 
general limitations applicable to driving simulator studies concerning their realism and validity 
also apply to the results of this research. 

3.9. Potential Applications & Recommendations 

This section discusses possible applications of this research for potential stakeholders and 
recommendations for future research. 

3.9.1. Potential applications 

Researchers can use the results of this study that show how various factors affect HDVs’ car-
following behavior. These factors include both the mixed traffic related factors as well as the 
demographic and driving styles factors. Such insights can help researchers to incorporate (or 
exclude) these factors in their studies. The estimated parameters of the IDM and IDM+ for 
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different mixed traffic conditions can be directly implemented for modelling car-following 
behavior in various types of studies. For instance, they can be implemented in simulation studies 
focusing on mixed traffic to gain insights into the implications on traffic safety and efficiency.  
Vehicle licensing authorities interested in setting functional and operating standards for AVs 
can use the insights in this study to understand what factors related to mixed traffic affect HDVs. 
This could help in making decisions on setting functional and operational standards for AVs.  
Vehicle manufacturers can use the results of this study in the design and development of their 
AVs in two ways. First, they can make better informed decisions on aspects such as the 
appearance and driving style of their AVs, by understanding the potential impacts on HDVs. 
Second, they can use the HDV car-following models in the training of AV driving behavior, 
depending on their goals.   
Driving license authorities and driving schools can use the findings of this study to not only 
understand how human drivers’ car-following behavior is affected in mixed traffic, but also in 
the training of drivers to make them more aware of their driving and how they can be affected 
in mixed traffic. 

3.9.2. Recommendations for future research 

Firstly, we recommend some good practices that we incorporated in this study in future research 
too. For instance, defining a “complete trajectory” for the lead vehicle, and using standard best 
practices for estimating car-following models in terms of using the measure of performance 
(using spacing) and goodness of fit (using RMSE) measures allows both a more correct 
investigation approach and for meaningful comparisons of future studies. Secondly, going 
beyond studying drivers’ car-following behavior in a single driving simulator experiment, it 
would be insightful to study the behavior and change in behavior over a longer term. This would 
allow a more long-term robust understanding of the way mixed traffic affects HDV car-
following behavior. Third, collecting data from field tests or naturalistic driving studies would 
allow validation of the findings of this study and potentially lead to new findings. Fourth, 
different appearances and driving styles of AVs could be tested to see how that affects HDV 
car-following behavior, providing a more comprehensive understanding. Fifth, while we used 
the IDM and IDM+, other car-following models can also be tested to firstly create a wider 
collection of usable car-following models for mixed traffic, and secondly to allow a broader 
comparison of the choice of models. Sixth, in addition to estimating parameters of existing car-
following models, future research can attempt to modify existing models or design new models 
to capture mixed traffic impacts through different mechanisms. Seventh, models for other 
behaviors such as lane changing models or integrated models (car-following + lane changing) 
can be estimated to provide exhaustive possibilities to investigate and model HDV behavior in 
mixed traffic. This could be especially relevant when there are multiple lanes, giving drivers 
the opportunity to overtake the AV. Therefore, different behaviors on different road types would 
also be an important research direction. Finally,  implementing the developed behavioral and 
mathematical models which characterize these interactions in microscopic traffic simulation 
this would enable evaluating the impacts on traffic flow efficiency, safety, and emissions (Ard 
et al., 2020; Makridis et al., 2020; Raju & Farah, 2021; Stogios et al., 2019).  
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Chapter 4: 
Investigating gap-acceptance behavior: A driving 

simulator experiment 
 
Chapter 3 investigated car following behavior. In Chapter 4, we focus on gap acceptance 
behavior at priority-T intersections. In a driving simulator experiment, drivers were asked to 
enter a major road from a minor road, which involved waiting for an acceptable gap on the 
major road traffic. We performed descriptive analyses to study the effect of AV recognizability 
and AV driving style on human drivers’ gap acceptance behavior.  

 

Highlights 

• Human drivers' gap acceptance behavior was studied in a driving simulator. 
• Traffic included human driven vehicles and automated vehicles (AVs) 
• Recognizable and aggressive AVs resulted in larger accepted and critical gaps. 
• Non-recognizable and aggressive AVs resulted in smaller critical gaps. 
• Results suggest that AVs' appearance and driving styles affect human driving behavior 

during gap acceptance. 

 
 

 
 

This chapter is based on the publication: Reddy, N., Hoogendoorn, S. P., & Farah, H. (2022). 
How do the recognizability and driving styles of automated vehicles affect human drivers’ 
gap acceptance at T- Intersections? Transportation Research Part F: Traffic Psychology and 
Behaviour, 90, 451–465. https://doi.org/10.1016/J.TRF.2022.09.018 
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4. Investigating gap-acceptance behavior: A driving 
simulator experiment 

4.1. Introduction 

The introduction of Automated Vehicles (AVs) on public roads has been fueled by expected 
positive impacts on traffic safety, reduction in traffic congestion, and lower environmental 
impacts (Greenblatt & Shaheen, 2015; Piao et al., 2016). One probable scenario is that AVs are 
deployed on the existing infrastructure, therefore driving alongside Human Driven Vehicles 
(HDVs). Such a “mixed” traffic environment consisting of both HDVs and AVs could result in 
interactions of a different nature. This would especially be noticeable in critical scenarios such 
as discontinuities (e.g., intersections, weaving sections, on-ramps, and off-ramps) and may 
positively or negatively affect traffic flow operations and safety. Therefore, road authorities and 
policymakers desire to predict the potential consequences of mixed traffic to take appropriate 
measures that not only minimize and possibly prevent negative and dangerous effects but also 
that may drive positive effects. For this, an in-depth understanding of how human drivers might 
adapt and change their behavior when interacting with AVs compared to when interacting with 
other HDVs is needed.  
Existing studies that aim to predict the traffic flow operations and traffic safety in mixed traffic 
generally model human driving using models that are developed for 100% human-driven traffic 
(Papadoulis et al., 2019; Yao et al., 2020; Ye & Yamamoto, 2018). Recent studies, which are 
later discussed, including field test experiments, have shown that human drivers adapt their 
driving behavior in the presence of AVs. Behavioral adaptation is defined as “any change of 
driver, traveler, and travel behaviors that occurs following user interaction with a change to the 
road traffic system, in addition to those behaviors specifically and immediately targeted by the 
initiators of the change” (Kulmala & Rama, 2013). While studies have looked at behavioral 
adaptation in mixed traffic, the focus has primarily been on car-following and lane-changing 
behavior on straight road sections, while limited attention has been given to discontinuities. A 
crucial behavior for traffic safety and efficiency at priority T-intersections is gap acceptance of 
a vehicle on a minor road (approach) that wishes to merge onto a major road. Priority 
intersections are a critical part of the road network that affect the network’s traffic efficiency 
and safety (29% of road deaths in the Netherlands occurred at intersections (Road Deaths in the 
Netherlands. SWOV Factsheet, 2022).  At a priority T-intersection, the minor road vehicle 
generally comes to a complete stop or slows down (before a Stop sign or a Give-Way sign, 
respectively) and waits until it finds an appropriate gap in the major road traffic stream.  
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Gap acceptance behavior at priority-controlled intersections in conventional traffic conditions 
has been extensively studied in the literature. These studies have focused on observing rejected 
gaps, observing and modeling accepted gaps (Beanland et al., 2013; Yan et al., 2007), estimating 
critical gaps, and modeling critical gaps (Gattis & Low, 1999; Guo & Lin, 2011; Pollatschek et 
al., 2002; Rossi et al., 2020). The size of the gaps offered was found to be the most influencing 
factor in gap acceptance behavior (Beanland et al., 2013). Most existing studies on gap 
acceptance at priority intersections have looked at conventional traffic conditions. A limited 
number of studies have investigated the potential behavioral adaptation of human drivers’ gap 
acceptance at unsignalized intersections when interacting with AVs. (Trende et al., 2019) used 
a driving simulator to compare the gap acceptance of drivers at priority intersections in front of 
HDVs and front of AVs. Drivers more frequently accepted gaps in front of AVs (drivers were 
informed that AVs avoided collisions), although all cars drove similarly. (Soni, 2020) studied 
similar gap acceptance behavior in a controlled field test using the Wizard of Oz method. 
Drivers were found to have significantly lower critical gaps when merging in front of AVs 
compared to HDVs, which further reduced when positive information about AVs was provided. 
Most other studies focused on investigating drivers’ potential behavioral adaptation when 
interacting with AVs in car-following behaviors, and few on lane-changing behavior. 
Considering the limited studies on gap acceptance, insights from the studies on car-following 
and lane-changing behavior are summarized below as these can still be useful and relevant for 
the current study.  
Lee et al. (2018) studied human drivers’ lane-changing in an AV platoon environment using a 
driving simulator. They found that human drivers drove more radically as indicated by greater 
steering magnitude and steering velocity during lane-changing. Duration of lane change 
preparation tended to increase with increasing AV penetration rate. For example, an increase in 
AV penetration rate from 0% to 50% led to a 60% increase in lane change preparation duration. 
Moreover, females and older drivers were less likely to successfully change lanes in general 
across the different penetration rates.  Other studies (Fuest et al., 2020; Gouy et al., 2014; 
Rahmati et al., 2019; Razmi Rad et al., 2021; Schoenmakers et al., 2021; Stange et al., 2022; 
Zhao et al., 2020) have looked at such behavioral adaptation of human drivers (mainly car-
following and lane-changing behaviors) in mixed traffic considering recognizability and driving 
style of AVs. Gouy et al. (2014) studied the car-following behavior of HDVs when driving next 
to AV platoons using a driving simulator. They found that drivers adopted smaller average and 
minimum time headways, and kept a time headway below a threshold of 1s for a longer duration 
when driving next to platoons of AVs that maintained time headways of 0.3 s compared to 
platoons that maintained time headways of 1.4 s. Zhao et al. (2020) conducted a field 
experiment to study HDVs’ car-following behavior when following an AV considering its 
recognizability. When AV was recognizable, AV-believers maintained smaller time headways, 
AV skeptics maintained larger time headways. When the AV was not recognizable, no difference 
in behavior was found. Rahmati et al. (2019) also conducted a field experiment to study HDVs’ 
car-following behavior when following a vehicle that drove like an HDV, and also when 
following a vehicle that drove like an AV (according to a predefined model). When following 
the AV-like driving vehicle, drivers maintained smoother speed profiles, maintained a smaller 
gap with the AV, and drove with less abrupt accelerations and decelerations, as compared to 
when following the HDV-like driving vehicle. Zhong et al. (2019) adopted microsimulation to 
study the effect of two CACC driving strategies (ad-hoc coordination, and local coordination) 
on human-driven vehicles, as well as throughput (vehicles per hour) and productivity (ratio of 
vehicle miles traveled to vehicle hours traveled) of a highway segment. In general, they 
observed an increase in throughput and productivity with an increasing penetration rate of AVs. 
The lane change frequency of human-driven vehicles decreased with the increasing penetration 
rate of AVs. Additionally, the distribution of hard braking observations for human-driven 
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vehicles between the two CACC coordination strategies was significantly different when HDVs 
follow the AVs but not different when HDVs follow other HDVs. 
Razmi Rad et al. (2021) studied HDV car-following and lane-changing behavior in a driving 
simulator study when driving next to a dedicated lane for AVs and compared that to a mixed 
traffic situation with no dedicated lanes. The authors found that HDVs adopted shorter time 
headways with the leader when driving on the lane next to the dedicated lane (i.e., the middle 
lane) and accepted shorter gaps when lane-changing. Moreover, younger male drivers kept 
smaller headways compared to older female drivers. Schoenmakers et al. (2021) also studied 
the car-following behavior of HDVs when driving next to a dedicated lane for AVs and found 
that drivers maintained significantly lower headways when driving next to AV platoons driving 
on dedicated lanes. Fuest et al. (2020), using a driving simulator, studied the differences in 
perception of AVs and actual driving behavior of drivers around AVs in roadworks, traffic jams, 
and lane change situations, considering AV recognizability. They found that the recognizability 
of AVs did not affect the way they are perceived by human drivers in all situations. However, 
most drivers stated that they preferred that AVs would be marked (i.e., recognizable). 
Additionally, drivers did not change their lane change behavior (measured by the number of 
lane changes and time until lane change) and their car-following behavior (measured by time 
headway) when the AVs were recognizable versus when they were not recognizable. Stange et 
al. (2022) performed a driving simulator experiment to study the subjective experience and 
driving behavior of human drivers in mixed traffic with different appearances (using eHMIs) 
and penetration rate of AVs. They found that drivers experienced mixed traffic with higher AV 
penetration levels as less comfortable and less efficient, but not as dangerous as conventional 
traffic and lower AV penetration levels scenarios. Appearance differences through eHMIs did 
not affect driver behavior. However, drivers’ average speed decreased when the AV penetration 
rate was 25% and higher, and the percentage of safety-critical interactions with their lead 
vehicle increased with increasing AV penetration rate.  
Useful insights into human-AV interactions can also be derived from studies looking at 
vulnerable road users. Hagenzieker et al. (2020) conducted a photo experiment to study the 
expectations and behavioral intentions of cyclists when interacting with AVs (two types of 
appearances) as compared to manually driven vehicles. They found that participants were less 
confident to be noticed when interacting with both the AV types as compared to the manually 
driven vehicle, and looked significantly longer at the AVs during the first interactions. In the 
second interaction, participants were more confident that the AVs would stop for them. Zhao et 
al. (2022) studied pedestrians’ intention to cross the road in front of AVs in risky situations 
using a questionnaire. They found that pedestrians had significantly higher intentions to cross 
in front of AVs as compared to HDVs. They also reported lower risk perception and greater 
trust in this type of vehicle. 
From the existing literature, it emerges that human drivers tend to change their behavior when 
AVs are in their surroundings in traffic. Factors such as the AV appearance (recognizable and 
not recognizable), its driving style (most studies assume AVs to have shorter time headways 
and smoother driving profiles), personal characteristics of human drivers such as age and gender 
seem to affect the observed behavioral adaptation. With the increasing deployment of AVs in 
traffic, knowledge of such interactions at priority intersections is required, especially crucial 
aspects of AVs such as their recognizability and driving style. Understanding potential changes 
in human driving behavior in mixed AV-HDV traffic is crucial as policymakers and car 
manufacturers use the results of such simulation studies to take (proactive) critical decisions. 
In this paper, the notion of behavioral adaptation is used to describe any change in gap 
acceptance behavior of drivers in mixed traffic due to aspects such as recognizability and the 
driving style of AVs. An example of such behavioral adaptation could be that drivers accept 
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significantly smaller gaps when they merge in front of an AV as compared to the gaps they 
accepted in HDV-only traffic. 

4.2. Scope and research questions 

This paper focuses on studying the gap acceptance behavior of human drivers in mixed traffic 
at priority T-intersections using a driving simulator. Following the identification of the research 
gaps, the main research question is defined as follows:  
How do human drivers perform gap acceptance maneuvers in mixed (automated and 
human-driven) traffic at priority T-intersections? 
To answer the main research question, the following sub-research questions were defined 
(considering priority T-intersections in mixed traffic): 

1. Does the recognizability of AVs by itself affect human drivers’ accepted gaps? 
2. Does the driving style of AVs by itself affect human drivers’ accepted gaps? 
3. How does the recognizability and driving style of AVs, together, affect human drivers’ 

accepted gaps? 
4. How do the above factors affect human drivers’ critical gaps at priority T-intersections 

in mixed traffic? 
This research makes certain assumptions to answer the research questions. Firstly, the 
penetration rate of AVs is fixed at 50% to characterize a balanced HDV-AV traffic mix. 
Secondly, the driving behavioral differences between AVs and HDVs are defined by their 
desired speeds and their following time gaps. The next section explains the research 
methodology and elaborates on these design parameters. 

4.3. Research methodology 

A driving simulator experiment was designed to answer the formulated research questions. This 
section describes the set-up of the experiment, the experimental design, and the data collection 
and data processing. 

4.3.1. Experiment set-up & participants’ recruitment 

A virtual reality experiment was set up using the driving simulator located at the Transport & 
Planning department, Delft University of Technology, the Netherlands. The software SCANeR 
(v1.9) by AV Simulation was used to design the scenarios in the driving simulator. The driving 
simulator, as shown in Figure 4.1, is a fixed base driving simulator comprised of a dashboard 
mock-up with three 4K high-resolution screens, providing approximately a 180° vision, with a 
Fanatec steering wheel and pedals. 
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Figure 4.1: A participant using the driving simulator. 
The experiment also included a pre-experiment and a post-experiment questionnaire. The pre-
experiment questionnaire collected information on the participants’ demographics. The post-
experiment questionnaire collected information on whether the participant experienced motion 
sickness (Kennedy et al., 1993) and their experienced presence in the simulator (Witmer & 
Singer, 1998) during the experiment. The experiment was approved by the Human Resource 
and Ethics Committee (HREC) of the Delft University of Technology.  
Participants for the experiment were recruited through advertisements in social media and 
newspapers. Anyone with a valid driving license could participate. The experiment per 
participant lasted between 60 and 90 minutes, including a briefing, familiarization drive, the 
experiment scenarios with sufficient breaks, and post-experiment questionnaires. The 
participants were compensated with a voucher of 15€ each. A total of 114 participants took part 
in the study.  

4.3.2. Route 

The route was designed to allow drivers to sufficiently experience the traffic conditions before 
approaching the intersections. It consisted of several motorway sections, provincial (regional) 
road sections, and three priority T-intersections. Each T-intersection consisted of an urban road 
(the minor road) intersecting with a provincial road (the major road). The defined speed limit 
was 100 km/h on the motorway, 80 km/h on the provincial roads, and 50 km/h on urban roads. 
These were defined as per the current Dutch road system. Figure 4.2 depicts a sketch of the 
route designed in the driving simulator. This paper focuses on analyzing the behavior of the 
participants at the three priority T-intersections. A stop sign placed before each intersection 
ensured that drivers came to a full stop before navigating the intersection. These intersections 
are positioned towards the end of the route. This allows the participants to drive and experience 
different traffic conditions in the respective scenarios before reaching the intersections. Figure 
4.3 shows an example situation at a T-intersection in the driving simulator environment. 
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Figure 4.2: Depiction of the route driven by the participants in the experiment. 

 
Figure 4.3: Situation at a T-intersection in the simulator (left) Driver in the red car waiting 
to turn right onto the major road) (right) a picture from the actual simulator where the 
driver is waiting to turn right. 

4.3.3. Participant Groups 

Two variables primarily varied in the experiment: the driving style of AVs, and their 
recognizability. The participants were assigned randomly to one of three groups: Defensive 
AVs, Aggressive AVs, and Mixed AVs. The group determined the driving style of AVs that a 
participant encountered in the experiment. For example, participants in the defensive AVs group 
only encountered defensive AVs. In the scenario of mixed AVs, both defensive and aggressive 
AVs were present in the volume ratio of 3:2. Throughout the experiment the penetration level 
of AVs was fixed at 50%. Table 4.1 shows the differences in the driving behaviors between 
HDVs and AVs in the experiment. The desired car-following time gap parameters of AVs were 
fixed based on a range of commercial ACC systems that were openly available (Makridis et al., 
2021; Raju et al., 2022a). The headway for HDVs were based on (Taieb-Maimon & Shinar, 
2016; Winkelbauer et al., 2019). The desired speed of both Defensive and Aggressive AVs was 
set to speed limit as we expect that AVs would not be explicitly designed to exceed a legal speed 
limit.  
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Table 4.1: Driving behavior parameters of AVs and HDVs in the experiment. 
Vehicle Desired speed Desired car-following time gap (s) 
HDVs Between 90% and 110% of the speed limit, 

drawn randomly 
Minimum 0.5; Maximum 1.5; Truncated 
negative exponential distribution 

Defensive AVs Set to speed limit 3.5 
Aggressive AVs Set to speed limit 1.5 
Mixed AVs This group had both Defensive and Aggressive AVs in a volume ratio of 3:2 

4.3.4. Scenarios 

The experiment design aimed to separately observe the effects of AVs’ recognizability and their 
driving style on human driving behavior as well as their combined effects. Each participant 
drove four scenarios, excluding a familiarization drive. The scenarios differed in two aspects: 
the recognizability and the driving style of AVs. Table 4.2 provides an overview of the four 
scenarios. Figure 4.4: Overview of the division of drivers over the three groups and depiction 
of the four scenarios (S1-S4)provides an overview of the groups and the scenarios. 
Table 4.2: Scenarios and their definition. 
Scenario 
number 

Description Recognizability of AVs Driving style 
of AVs 

Nomenclature/code 

S1 Only HDVs - - App (HDV) DS (HDV) 
S2 HDVs & NR–AVs DS-AV Not recognizable (NR) AV App (HDV) DS (AV) 
S3 HDVs & R-AVs DS AV Recognizable (R) AV App (AV) DS (AV) 
S4 HDVs & R-AVs DS- HDV Recognizable (R) HDV App (AV) DS (HDV) 

*App – Appearance; DS – Driving style 

 
Figure 4.4: Overview of the division of drivers over the three groups and depiction of the 
four scenarios (S1-S4) 
At the three T-intersections, traffic on the major road was generated with gaps drawn randomly 
between 3 and 10 seconds from a uniform distribution to ensure that the offered gaps were not 
too small nor too large (Beanland et al., 2013). Therefore, the distinction between Aggressive 
and Defensive AVs did not apply to traffic on the major road at the T-intersections. As the 
participants drive on the motorway and the provincial road before approaching the T-
intersections, their resulting decisions of gap acceptance are expected to be influenced by the 
kind of traffic they interacted with in that scenario, i.e., by a “carry-over” effect. In scenarios 1 
and 2, all vehicles appeared as HDVs, including the vehicles on the major roads at the T-
intersections. In Scenarios 3 and 4, 50% of the traffic appeared as AVs. The vehicles on the 
major roads at the T-intersections can therefore appear as AVs or as HDVs in these scenarios. 
Figure 4.5 shows the appearance of AVs (a) and HDVs (b) in the driving simulator. Participants 
were informed of the appearance of AVs in the experiment and were able to differentiate AVs 
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from the other traffic. The participants did not receive any explicit information regarding the 
driving style of the AVs that they will encounter. AVs in the aggressive, defensive, and mixed 
groups had the same appearance when they were recognizable. Each scenario lasted, on 
average, between 10 and 12 minutes. There were sufficient breaks provided in between 
scenarios. Additionally, to counter the learning effect, the participants experienced the scenarios 
in random order. 

    
Figure 4.5: Appearance of vehicles in the driving simulator environment. Automated 
Vehicles (left) and Human-Driven Vehicles (right) 

4.3.5. Experiment procedure 

Before the start of the experiment, drivers signed a consent form and completed the pre-
questionnaire. Then, they drove a familiarization drive to get acquainted with the driving 
simulator environment and the vehicle controls. After every scenario, drivers were asked to take 
a break. At the end of the experiment, drivers filled in the post-experiment questionnaire. In the 
experiment, the participating drivers were instructed to drive as they normally do on a work 
commute assuming they had to attend a meeting when they get there, to induce a sense of time 
pressure as can be expected on everyday commutes. Additionally, a message sign was displayed 
in the middle of the scenario and once again at the end of the motorway section (as displayed 
in Figure 4.2), and before approaching the priority T-intersections, stating that they were a few 
minutes late, to prevent drivers from being “too relaxed” in the simulator. 

4.4. Data collection, data processing & analysis method 

The collected data in the driving simulator contained the timestamp along with variables such 
as speed, acceleration, and position for every vehicle in the scenario. These raw data, which 
were collected at a frequency 20 Hz, was later reduced to 4 Hz to reduce processing times while 
still maintaining 4 data points per second. These reduced data were then processed using Python 
code to appropriately identify moments in time and relevant indicators for studying gap 
acceptance behavior. The resulting indicators from the simulator data were then matched to the 
appropriate questionnaire responses by the participants. The analysis was divided into two 
parts: accepted gap analysis, and critical gap analysis.  
T-intersections are generally characterized by two conflicting roads, a major road, and a minor 
road, according to the magnitude of their traffic volumes. When a sufficient gap arises on the 
major road, drivers on the minor road accept the gap by merging onto the major road. The 
vehicle on the major road that the minor road driver merges in front of is termed the “follower”, 
and the vehicle in front of the driver after accepting the gap is termed the “leader”. The gap that 
is accepted is termed as “accepted gap”, defined as the time gap (in seconds) between the front 
of the follower and the rear of the leader. The gaps that the drivers do not accept are termed 
“rejected gaps”. Drivers are also presumed to have a critical gap which is the minimum gap 
they are willing to accept. The critical gap is a hard threshold below which the driver always 
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rejects the gap. Accepted gaps and rejected gaps can be observed, but the critical gap can only 
be estimated. In this research, the accepted gap analysis consisted of statistical testing and 
modeling. Wherever relevant, analyses were separated according to within groups/scenarios 
and between groups/scenarios. Appropriate statistical tests were used, such as the Friedman’s 
Test (comparing means of multiple scenarios within subjects), the Wilcoxon Signed Ranks Test 
(post hoc analysis after Friedman’s Test), the Kruskal-Wallis Test (comparing means of groups 
between subjects), the Mann-Whitney Test (Post hoc analysis after Kruskal Wallis Test), and 
the Levene’s Test (comparing variance between subjects). For modeling, a generalized linear 
model was adopted. The critical gap estimation was performed using Wu’s method (Wu, 2006). 
This method was found to give similar results of the mean critical gap as compared to the 
Maximum Likelihood, and without requiring any major assumptions on the consistency and 
homogeneity of drivers (Amin & Maurya, 2015). However, to use the method, the minimum 
accepted gap must be smaller than the maximum rejected gap. Statistical testing of the estimated 
critical gaps was performed using the Kolmogorov–Smirnov test. The significance level was 
kept at 0.05. 
While presenting the results, specific nomenclature is used. The four scenarios differ in the 
appearance (App) of the AVs and their driving styles (DS). As an example, App (AV) DS (HDV) 
describes the scenario where AVs appear as AVs (that is, they are recognizable) and drive the 
same as HDVs. At the intersections, it is also interesting to study the type of vehicle the 
participant merged in front of, that is, the immediately following vehicle after the participant 
accepts a gap. The appearance of this vehicle could be AV or HDV. The results also present an 
analysis of gap acceptance for different types of followers within the same scenario. For 
instance, App (AV) DS (AV) Follower App (HDV) describes the gap acceptance observations 
for the scenario where AVs were recognizable, driving according to the AV driving style, but 
the participant accepted a gap at the intersection in front of an HDV. As there are three groups, 
namely Aggressive (Agg), Defensive (Def), and Mixed (Mix) AVs, this may also be specified 
in the nomenclature as DS (Agg AV), DS (Def AV), or DS (Mix AV), respectively. 

4.5. Results 

The results are structured as follows. First, the gender and age distributions of the participants 
are shown. Next, descriptive statistics of accepted gaps at the three intersections, for the 
different scenarios and groups are presented. Then, the analyses and results for each sub-
research question are presented separately. 

4.5.1. Participants 

Of the 114 participants who participated, 12 (10.5%) experienced severe nausea and/or were 
unable to complete the experiment, and therefore were excluded from the analysis. Moreover, 
7 participants were also excluded due to erroneous behavior at the intersections (not following 
instructions), or for very poor driving behavior (abnormal driving). This resulted in a final gap 
acceptance dataset of 95 participants of which 71 (74.7%) were male and 24 females. Figure 
4.6 (left) shows the distribution of the participants by age group. The age groups were combined 
into three age categories: Younger (18-29), Middle-aged (30-54), and Older (55+) to ensure a 
reasonable number in each category. It was also attempted to have both gender groups in each 
of these age categories (Figure 4.6 (right)). 
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Figure 4.6: Age group distribution (95 participants) (left); Participants split between age 
categories and gender (right). 

4.5.2. Descriptive statistics of accepted gaps 

Table 4.3 shows the number of accepted gap and rejected gap observations recorded for 
different conditions in the experiment. The total number of accepted gap observations in the 
dataset is 948 (excluding the familiarization drive).  

Table 4.3: The number of Gap Acceptance Observations in the Dataset. 
Condition Number of accepted gap 

observations 
Number of rejected 
gap observations 

% Accepted gaps 

Complete dataset 948 2092 31% 
App (HDV) DS (HDV) 242 524 32% 
App (HDV) DS (AV) 240 501 32% 
App (AV) DS (AV) 241 569 30% 
App (AV) DS (HDV) 225 498 31% 
Def 269 608 31% 
Agg 318 760 29% 
Mix 361 724 33% 
Follower App (HDV) 709 1537 32% 
Follower App (AV) 239 555 30% 

In this study, gap acceptance behavior is measured by the total accepted gap (in seconds), 
henceforth referred to as just the “accepted gap”. Accepted gap is defined by the sum of the lag 
(with follower) and the lead (with leader) time gap at the instant the subject vehicle entered the 
major road. This is calculated using the speed and distance to the intersection of the leader and 
follower vehicles at the instant the subject vehicle entered the major road. The speeds of the 
vehicles on the major road were constant until the subject vehicle merged into the major road. 
For statistical analysis, the three accepted gap observations at the three intersections for every 
scenario (for every participant) were averaged. The mean accepted gaps at the three 
intersections ranged between 7.13 s and 7.31 s with the standard deviation ranging between 
1.44 s and 1.55 s. Friedman’s test showed that there was no statistically significant difference 
in the accepted gaps between the three intersections χ2(3) = 2.831, p = 0.243. Therefore, no 
significant information was lost by averaging the observations at the three intersections. 
However, for modeling, observations at all three intersections were considered. 

4.5.3. Does the AV recognizability by itself affect drivers’ accepted gaps? 

For statistically testing the effect of AV recognizability by itself, first, the accepted gaps of 
scenarios App (AV) DS (AV) and App (HDV) DS (AV) were compared for each of the three 
groups, that is, aggressive, defensive, and mixed. Table 4.4 presents the median and standard 
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deviation of the accepted gaps for the two scenarios for the three groups as well as the Wilcoxon 
signed rank test results.  
There were no significant differences found in the accepted gaps between the two scenarios for 
the defensive, aggressive, and mixed groups. This suggested that irrespective of the driving 
style of AVs, their recognizability did not significantly affect drivers’ accepted gaps. The 
difference for the aggressive group, however, was close to being significant (at the 95% 
confidence level). The same was tested for different age and gender categories. There were no 
significant differences for any of the categories.  
The two scenarios App (AV) DS (HDV) and App (HDV) DS (HDV) were also compared for 
each of the three groups. The results are presented in Table 4.4. There were no significant 
differences found in the accepted gaps for these two scenarios for the defensive, the aggressive, 
and the mixed groups. This suggests that when AVs have the same driving style as HDVs, their 
appearance by itself does not have a significant effect on human drivers’ accepted gaps. 
Table 4.4: Accepted gaps for scenarios App (AV) DS (AV) and App (HDV) DS (AV) within 
the three groups. 

Group 
Median (and standard deviation) of accepted gap 
App (AV) DS (AV) App (HDV) DS (AV) Wilcoxon signed rank test 

Defensive AV Group  7.43 (0.79) 6.89 (0.82) Z = -0.179, p = 0.858   
Aggressive AV Group  7.97 (0.93) 6.98 (0.89) Z = -1.825, p = 0.068  
Mixed AV Group  7.32 (0.97) 7.28 (1.18) Z = -0.168, p = 0.866  

 App (AV) DS (HDV) App (HDV) DS (HDV)  
Defensive AV Group 6.89 (0.82) 7.22 (0.96) Z = -0.155, p = 0.877 
Aggressive AV Group 6.98 (0.89) 7.82 (1.19) Z = -0.958, p = 0.338 
Mixed AV Group 7.28 (1.18) 7.33 (1.06) Z = -0.308, p = 0.758 

4.5.4. Does the AV driving style by itself affect drivers’ accepted gaps? 

For statistically testing the effect of AV driving style by itself, the accepted gaps of the 
defensive, aggressive, and mixed groups were compared for the scenarios App (AV) DS (AV) 
and App (HDV) DS (AV). The Kruskal Wallis test was used to test the differences between the 
three groups for the two scenarios. Table 4.5 presents these results. Both scenarios App (AV) 
DS (AV) and App (HDV) DS (AV) were not significantly different between the three groups. 
This suggests that the AV driving style by itself does not affect drivers’ accepted gaps, for both 
recognizable and unrecognizable AVs. 
The same was tested for the different age and gender categories for the two scenarios. No 
significant differences were observed between the three groups for any of the age and gender 
categories.  
Table 4.5: Accepted gaps for scenarios App (AV) DS (AV) and App (HDV) DS (AV) 
between the three groups. 

Scenario 
Median (and standard deviation) of accepted gap for different groups 

Defensive Aggressive Mixed Kruskal-Wallis test 
App (AV) DS (AV) 7.43 (0.79) 7.97 (0.93) 7.32 (0.97) H (2) = 2.965, p = 0.227 
App (HDV) DS (AV) 6.89 (0.82) 6.98 (0.89) 7.28 (1.18) H(2) = 1.528, p = 0.466 
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4.5.5. How do the recognizability and driving style of AVs, together, affect drivers’ 
accepted gaps? 

Figure 4.7 presents the box plot of accepted gaps for scenario-group combinations.  In Figure 
4.7, driving styles are color coded so that the groups with aggressive AVs are in a range of red, 
those with defensive AVs are in a range of green, and those with mixed AVs are in a range of 
blue. HDVs are color-coded in a range of grey. The lighter and darker shades indicate whether 
the AVs are non-recognizable or recognizable, respectively. It is observed that drivers accept 
larger gaps when interacting with a vehicle that appears as an AV and has an aggressive driving 
style (App (AV) DS (Agg AV)).  

 
Figure 4.7: Accepted gap for different scenario-groups (boxplots illustrate the distribution 
of the data represented by the “minimum”, first quartile (Q1), median, third quartile 
(Q3), and the “maximum”. The dots (outside the whiskers) indicate outliers. 
A generalized linear model was estimated to understand the effects of recognizability and 
driving style on the accepted gaps. For this, accepted gap observations from scenarios App (AV) 
DS (AV) and App (HDV) DS (AV) were used. Table 4.6 presents the estimated model. The 
reference condition is App (AV) Follower App (AV) DS (Agg AV). The model contains three 
types of terms: first, the combination of appearance (App) and follower appearance (Follower 
App), second, the AV driving style (DS), and third, the interaction between these two terms. 
Drivers accept smaller gaps when driving in the conditions App (AV) Follower App (HDV) and 
App (HDV) Follower App (HDV) compared to the gaps they accept in the App (AV) Follower 
App (AV) condition. Drivers also tend to accept smaller gaps in the condition DS (Def AV) and 
DS (Mix AV) compared to the DS (Agg AV) condition. Considering the interaction terms, the 
condition App (AV) Follower App (AV) with DS (Agg AV) results in the largest accepted gaps 
compared to any other condition.  
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Table 4.6: Generalized linear model results for accepted gap for scenarios App (AV) DS 
(AV) and App (HDV) DS (AV). 

Coefficients Estimate Std. error t value Pr (>|t|) 
(Intercept) 7.918      0.236   33.556   < 2e-16 *** 
App (AV) Follower App (HDV) -0.738 0.355   -2.079  0.038 *   
App (HDV) Follower App (HDV) -0.817   0.293   -2.790  0.005 ** 
DS (Def) -0.862    0.374 -2.302  0.021 * 
DS (Mix) -1.004  0.315 -3.181  0.001 ** 
App (AV) Follower App (HDV) DS (Def AV) 1.022      0.516    1.980    0.048 *   
App (HDV) Follower App (HDV) DS (Def AV) 0.975        0.452    2.156    0.031 * 
App (AV) Follower App (HDV) DS (Mix AV) 1.403      0.466    3.011    0.002 ** 
App (HDV) Follower App (HDV) DS (Mix AV) 1.157      0.390    2.963    0.003 ** 

AIC: 1621.6 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
In Figure 4.8, the respective scenario-group (indicated by App and DS) and follower appearance 
(indicated by Follower App) for each boxplot is indicated by a tabular x axis label. It can be 
observed that the median accepted gap for the case App (AV) DS (Agg AV) Follower App (AV) 
is the highest. 

 
Figure 4.8: Accepted gap for different scenario-group-follower appearance combinations. 

4.5.6. How do the above factors affect human drivers’ critical gaps at priority T-
intersections in mixed traffic? 

Wu’s method was used to estimate the critical gaps for different conditions. Wu’s method 
provides cumulative distribution functions for the critical gaps. Figure 4.9 presents an example 
of the cumulative density functions of rejected, critical, and accepted gaps for the App (AV) DS 
(AV) condition. Figure 4.10 presents the cumulative density functions of critical gaps for 
different conditions. 
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Figure 4.9: CDF of rejected, critical, and accepted gaps for the App (AV) DS (AV) 
condition 

 

 
Figure 4.10: CDF of critical gaps for different groups (recognizable AVs) when merging 
in front of (a) an AV follower, (b) an HDV follower, and (c) when in traffic with non-
recognizable AVs. 
The mean and standard deviation of the distributions can also be computed. Table 4.7 presents 
the calculated mean and standard deviations of the critical gaps for different conditions. As can 
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be noticed the mean critical gap for the scenario App (AV) DS (Def AV) Follower App (AV) is 
the lowest, while for App (AV) DS (Agg AV) Follower App (AV) is the highest. The 2-sample 
Kolmogorov–Smirnov test was used to test differences between the distributions of critical gaps 
of different conditions. As the KS test assumes independent samples, groups of conditions, 
described in Table 4.7, that could be compared were (5, 6, 7), (8, 9, 10), (11, 12, 13), (14, 15, 
16), (17, 18), and (19, 20, 21).  
Table 4.7: Critical gap mean and standard deviation for different conditions 

Condition no. Description Critical gap (s) 
   Mean SD 
Scenarios 
1 App (HDV) DS (HDV) 6.43 1.43 
2 App (HDV) DS (AV) 6.44 1.36 
3 App (AV) DS (AV) 6.59 1.42 
4 App (AV) DS (HDV) 6.33 1.52 
Groups 

   

5 Def 6.43 1.42 
6 Agg 6.41 1.42 
7 Mix 6.51 1.46 
Scenario-Group-Follower App 
8 App (AV) DS (Def AV) Follower App (AV) 6.15 1.38 
9 App (AV) DS (Agg AV) Follower App (AV) 6.86 1.22 
10 App (AV) DS (Mix AV) Follower App (AV) 6.32 1.64 
11 App (AV) DS (Def AV) Follower App (HDV) 6.66 1.37 
12 App (AV) DS (Agg AV) Follower App (HDV) 6.69 1.69 
13 App (AV) DS (Mix AV) Follower App (HDV) 6.76 1.34 
14 App (HDV) DS (Def AV) Follower App (HDV) 6.53 1.30 
15 App (HDV) DS (Agg AV) Follower App (HDV) 6.31 1.30 
16 App (HDV) DS (Mix AV) Follower App (HDV) 6.48 1.43 
Gender and age    
17 Female drivers 6.50 1.46 
18 Male drivers 6.44 1.41 
19 Younger drivers 6.40 1.47 
20 Middle-aged drivers 6.49 1.41 
21 Older drivers 6.43 1.33 

The 2-sample K-S test was used to check significant differences. As Wu’s method yields the 
cumulative density function values the 2-sample KS test was manually performed in Python. 
Using linear interpolation, the CDF values for the same gap sizes were computed and their 
difference was measured between two conditions. Table 4.8 presents the results with the largest 
difference (D-statistic) and the critical D values for the conducted tests. Firstly, there was no 
significant difference between the different groups (i.e., conditions 5, 6, and 7). This indicated 
that at an aggregate level over all the scenarios, critical gaps of drivers in the defensive, 
aggressive, and mixed group were not significantly different. Secondly, when merging in front 
of a recognizable AV, the critical gap of drivers driving in the recognizable and aggressive AV 
traffic environment (i.e., condition 9) is significantly larger than that of drivers driving in the 
defensive and mixed traffic environment (i.e., conditions 8 and 10).  A significant difference in 
critical gaps was also found between defensive (i.e., condition 14) and aggressive (i.e., 
condition 15) AV traffic when AVs were not recognizable. Interestingly here, the critical gaps 
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in the aggressive condition were smaller than in the defensive condition. This suggests that 
drivers tended to follow headways of the surrounding traffic when aggressive AVs were not 
recognizable. There was no significant difference between conditions 11, 12, 13 and between 
conditions 14, 16 and 15,16. This indicates that when merging in front of an HDV, there was 
no difference in the critical gap of drivers when driving in Defensive, Aggressive, or Mixed 
recognizable AV traffic. There was also no significant difference in the critical gap of drivers 
between Defensive and Mixed non-recognizable AV traffic. Testing between gender and age 
groups revealed no significant difference between Female and Male drivers and no significant 
difference between Younger, Middle-aged, and Older drivers. This indicates that gender and 
age did not affect critical gaps. 
Table 4.8: Critical gap mean and standard deviation for different conditions. 

Condition 1 Condition 2 D-stat Critical D Inference on distributions 
Def Agg 0.041 0.070 Similar 
Def Mix 0.046 0.070 Similar 
Agg Mix 0.056 0.067 Similar  
(AV)(Def AV)(AV)* (AV)(Agg AV)(AV)* 0.300 0.169 Different  
(AV)(Def AV)(AV)* (AV)(Mix AV)(AV)* 0.144 0.176 Similar  
(AV)(Agg AV)(AV)* (AV)(Mix AV)(AV)* 0.205 0.158 Different  
(AV)(Def AV)(HDV)* (AV)(Agg AV)(HDV)* 0.128 0.181 Similar  
(AV)(Def AV)(HDV)* (AV)(Mix AV)(HDV)* 0.113 0.166 Similar  
(AV)(Agg AV)(HDV)* (AV)(Mix AV)(HDV)* 0.131 0.176 Similar  
(HDV)(Def AV)(HDV)* (HDV)(Agg AV)(HDV)* 0.131 0.130 Different  
(HDV)(Def AV)(HDV)* (HDV)(Mix AV)(HDV)* 0.065 0.129 Similar  
(HDV)(Agg AV)(HDV)* (HDV)(Mix AV)(HDV)* 0.118 0.123 Similar  
Female Male 0.034 0.064 Similar  
Younger Middle-aged 0.057 0.066 Similar  
Younger Older 0.057 0.074 Similar  
Middle-aged Older 0.054 0.080 Similar  

*(Appearance)(Driving style)(Follower appearance) 

4.6. Discussion & conclusions 

A driving simulator experiment was designed to study whether and how the recognizability and 
the driving style of AVs affect (HDV) drivers’ accepted gaps and critical gaps at priority T-
intersections. This section first summarizes the key findings as answers to the research 
questions and then reflects on these findings with respect to findings from previous studies. The 
study’s limitations are also discussed. 

4.6.1. Summary of findings 

Testing the effect of recognizability of AVs (research question 1) revealed that recognizability 
by itself did not have any effect on the accepted gaps. This is the case as well for each of the 
three groups (aggressive AVs, defensive AVs, mixed AVs), indicating that for all of the three 
groups recognizability by itself did not affect drivers’ accepted gaps, irrespective of whether 
the AVs drove like HDVs or according to their respective AV driving style. However, drivers 
were observed to have close to significantly larger gaps when aggressive AVs were recognizable 
compared to when they were not recognizable. No effects of recognizability were found also 
for any age and gender category. 
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Testing the effect of driving style of AVs (research question 2) revealed that the driving style 
by itself did not have any effect on drivers’ accepted gaps. No significant differences in accepted 
gaps were observed between aggressive, defensive, and mixed AV driving styles. This was the 
case for both when the AVs were recognizable and when they were not recognizable. No 
significant effects of AV driving style were found for the age and gender categories. 
The combined effect of recognizability and driving style of AVs, along with the appearance of 
the follower (research questions 3) was tested. AVs driving according to aggressive style tended 
to result in significantly larger accepted gaps than defensive or mixed AVs. When AVs were not 
recognizable, or when they were recognizable, but the follower vehicle was an HDV, accepted 
gaps tended to be smaller than when AVs were recognizable, and the follower vehicle was an 
AV. The largest accepted gaps were observed when AVs were recognizable, driving according 
to the aggressive style, and the follower was an AV. 
Studying the effect on the critical gap (research question 4) revealed that the critical gaps were 
not significantly different at an aggregate level over all scenarios between the defensive, 
aggressive, and mixed AV groups. Critical gaps of drivers in aggressive and recognizable AV 
traffic were significantly larger than those in defensive and mixed recognizable AV traffic when 
merging in front of a recognizable AV. This was similar to the accepted gaps analysis. When 
traffic had recognizable AVs, critical gaps of drivers when merging in front of an HDV were 
not significantly different between defensive, aggressive, and mixed AV traffic. For this 
condition, it may be noted that the standard deviation of the critical gaps in the aggressive group 
stood out (1.69) compared to the defensive (1.37) and the mixed group (1.34). A similar 
observation was made in the accepted gaps analysis. However, when traffic had non-
recognizable AVs, critical gaps of drivers were significantly smaller when traffic was composed 
of aggressive AVs as compared to defensive AVs. This indicates that when traffic has 
recognizable AVs, their aggressive driving style may induce defensive driving behavior among 
human drivers as suggested by the increase in their critical gaps. When traffic has non-
recognizable AVs, their aggressive driving style may induce aggressive driving among human 
drivers as suggested by the decrease in their critical gaps. This indicates that aggressive driving 
style and recognizability of AVs, together affect the critical gap of drivers at T-intersections. 
Gender and age group did not affect drivers’ critical gaps. 

4.6.2. Discussion 

While (Trende et al., 2019) and (Soni, 2020) found drivers willing to accept shorter gaps in 
front of AVs, drivers in this experiment accepted larger gaps in front of AVs only when AVs 
were aggressive and recognizable. When AVs were not recognizable, drivers’ critical gaps were 
smaller when AVs were aggressive compared to defensive. This suggests that the interaction of 
recognizability and driving style of AVs is important to consider. It is interesting to note that in 
(Trende et al., 2019) and (Soni, 2020), drivers were provided information to bias their 
perception of AVs, and in this experiment, driving on the route before the intersections likely 
affected the perception of AVs. While conclusive comparisons are difficult to draw, a common 
underlying perceptual mechanism that makes drivers accept larger/smaller gaps when they 
perceive AVs as relatively unsafe/safe respectively cannot be ruled out. An interesting 
observation was that aggressive AVs induce more defensive (larger critical gap) driving among 
human drivers when they are recognizable and induce more aggressive (smaller critical gap) 
driving when they are not recognizable. Besides comparing the results of this study with 
previous gap acceptance related research, it is also difficult to reflect on previous studies on 
car-following behavior as behavioral adaptations in this experiment occurred due to the “carry-
over effect” of driving before approaching the intersections. This could also be the reason for 
the many statistically insignificant findings. Drivers first drove on the route and interacted with 
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traffic, including AVs before they reached and navigated the intersections. Therefore, any 
behavioral adaptation that could have occurred would be shaped by the drivers’ experience 
before approaching the intersections. It may be expected that there would be more noticeable 
effects in other behaviors such as car-following or lane-changing where there is more “live” 
interaction between the drivers and the surrounding traffic. At the same time, statistical 
insignificance is by itself an important finding that suggests a lack of strong effect of a particular 
factor. Still, further research that targeted on some of the factors addressed in this research can 
lead to findings that can yield statistically significant effects. Along with the results of this 
study, the study limitations are important to consider. Firstly, the driving behavior of AVs of 
different driving styles was defined only using a desired car-following time gap parameter. That 
is, a specifically chosen car-following and lane-changing models were not used. Secondly, the 
appearance of AVs could have had some effect on their perceived (un)safety. The model and the 
color of the AVs used in this experiment could have affected the way they were perceived. These 
were, however, not changed between Defensive and Aggressive AVs. Thirdly, the realism of 
simulator environments has always been much debated. The control equipment such as the 
steering wheel and the gas and brake pedals were experienced by participants to be slightly 
different from their real-world driving experience. Also, the time pressure that drivers felt in 
the simulator could be different from real-world driving. Still, any potential simulator learning 
effect was attempted to be compensated by randomizing the scenarios and having a 
familiarization drive at the start. Additionally, translation of such simulator-environment results 
into real-world results needs to be done carefully, one of the reasons being the much lower 
experienced risk in a simulator compared to reality. Finally, although a decent number of 
participants took part in the study, the sample size may still not have been large enough to 
satisfactorily check the several considered variables.  

4.7. Future research and implications for practice  

Future work should study gap acceptance behavior with traffic present on the approach road, 
both lead and lag gaps. Gap acceptance behavior at left turns where drivers need to consider the 
traffic from both directions before accepting a gap increases the complexity of the gap 
acceptance behavior and would be an important direction to explore. In addition, the effect of 
different penetration levels of AVs in traffic could have implications on the magnitude of human 
drivers’ behavioral adaptation. Given such behavioral adaptation of human drivers around AVs, 
AV drivers could have different preferences concerning, for example, ACC settings. Decisions 
of AV drivers in combination with the resulting behavioral adaptations of human drivers are 
expected to affect traffic efficiency and safety, and therefore important to study. For instance, 
short (aggressive) headway settings of AVs can be expected to increase traffic efficiency. This 
must, however, be weighed against the decrease in traffic efficiency caused by defensive 
maneuvers of other human drivers when AVs are recognizable.  
When short (aggressive) headway settings are active for the ACC of recognizable AVs, other 
human drivers perform maneuvers further away from the AV. This may encourage AV users to 
keep such short settings as their individual travel experience could become better. This could 
suggest the exploitation of other (HDV) traffic by AV users. On the contrary, when aggressive 
AVs were not-recognizable, other human drivers performed more aggressive maneuvers. This 
could lead to the exploitation of AVs by other human drivers. At the same time, in (Trende et 
al., 2019) and (Soni, 2020), drivers were observed to perform closer maneuvers around AVs 
when they are recognizable when drivers have a positive opinion of AVs. This may also be the 
case when longer (defensive) headway settings are active for the ACC of recognizable AVs. 
Therefore, other human drivers could exploit AVs also when they are recognizable. Vehicle 
manufacturers could consider monitoring the attention of AV drivers more frequently, so they 
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are prepared to take over if necessary. External Human-Machine Interfaces could also be a way 
to control risky cut-ins by other HDVs. One important implication from this study is that if AVs 
drive aggressively, a behavioral adaptation of other human drivers is most likely to occur both 
when they are recognizable and not recognizable. 
Road authorities are increasingly considering Infrastructure to Vehicle (I2V) communication. 
Such information could not only include the state of the road downstream, but also explicit 
instructions for the AV to drive in a certain way. When authorities provide such instructions to 
AVs in mixed traffic, they need to consider the possible behavioral adaptations. For instance, 
asking (recognizable) AVs to decrease their headway could cause HDVs to drive in a way that 
can even decrease traffic efficiency. On the other hand, asking (recognizable) AVs to increase 
their headway may cause other HDVs to perform risky maneuvers. Examples of V2I situations 
where this could be relevant are the provision of Variable Speed Limits to AVs upstream, and 
the provision of time to green information from intelligent intersection controllers to AVs. 
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Chapter 5: 
Investigating the impact of behavioral adaptation on 

traffic efficiency: A microsimulation approach 
 
In Chapter 4, we investigated human drivers’ gap acceptance behavior in mixed traffic. In 
Chapter 5, we model human drivers’ gap acceptance behavior and implement that in a traffic 
microsimulation network. Here, we studied the impact of automated vehicles’ recognizability, 
their driving style, and their penetration rate on the traffic efficiency of the intersection. 

 

Highlights 

• We studied drivers' gap acceptance behavior at T-intersections in mixed traffic 
• The observed behavior in the driving simulator was modelled in SUMO 

microsimulation 
• Delay for minor road vehicles increased with AV penetration rate on the major road 
• The recognizability of aggressive AVs increased the delay for minor road vehicles  
• Ignoring behavioral adaptation underestimates the minor vehicle's delay by up to 75% 

 
 This chapter is based on the publication: Reddy, N., Raju, N., Farah, H., & Hoogendoorn, 

S. (2025). Incorporating Behavioral Adaptation of Human Drivers in Predicting Traffic 
Efficiency of Mixed Traffic: A Case Study of Priority T-Intersections. European Journal of 
Transport and Infrastructure Research, 25(2). https://doi.org/10.59490/ejtir.2025.25.2.7557  



 
   

Investigating gap-acceptance behavior: A driving simulator experiment 

 
 

92  

Chapter 5 
Table of Contents 

5.1. Introduction 95 

5.1.1. Human Drivers’ Behavioral Adaptation in Mixed Traffic 95 

5.1.2. Microscopic Simulation Studies of Mixed Traffic 97 

5.1.3. Summary and Research Gaps 97 

5.2. Research Questions and Approach 98 

5.3. Driving Simulator Experiment 99 

5.3.1. Equipment and Promotion 99 

5.3.2. Route 99 

5.3.3. Experiment design 100 

5.3.4. Collection and Processing of Data 101 

5.4. Gap Acceptance Modelling and Estimation 101 

5.4.1. Modelling Approach 101 

5.4.2. Modelling Results 102 

5.4.3. Insights from the Models 103 

5.5. Microscopic Traffic Simulation Set-Up 104 

5.5.1. Network 104 

5.5.2. Vehicle Types and Attributes 104 

5.5.3. Simulation Conditions 107 

5.5.4. Performance Indicators 107 

5.6. Results 108 

5.6.1. Minor Road Delay 108 

5.6.2. Major Road Delay 113 

5.6.3. Queue Length on Minor Road 116 

5.7. Discussion & Conclusion 117 



 
 

Investigating gap-acceptance behavior: A driving simulator experiment 

 

93 

 

5.7.1. What Is the Effect of AVs’ Penetration Rate on the Efficiency of Mixed 
Traffic at Priority T-Intersection? 

118 

5.7.2. What Is the Effect of AVs’ Recognizability on the Efficiency of Mixed 
Traffic at Priority T-Intersection? 

118 

5.7.3. What Is the Effect of AVs’ Driving Style on the Efficiency of Mixed Traffic 
at Priority T-Intersection? 

119 

5.7.4. What Is the Effect of Considering Human Drivers’ Behavioral Adaptation 
in Mixed Traffic in the Context of the Above Questions? 

119 

5.8. Threats to Validity of Results 120 

5.9. Recommendations for Policy and Future Research 121 

5.10 Author contribution statement 123 

5.11. References 123 

5.12. Appendix 126 

 
  



 
   

 

 
 

 



 
 

 

 95 

 

5. Investigating the impact of behavioral adaptation 
on traffic efficiency: A microsimulation approach 

5.1. Introduction 

It is expected that the presence of Automated Vehicles (AVs) will increase in traffic in the 
coming decades due to their anticipated benefits to traffic safety, traffic efficiency, and the 
environment (Greenblatt & Shaheen, 2015; Piao et al., 2016). This will result in a mixed traffic 
condition, in which HDVs will interact with AVs in different road situations.  Human drivers’ 
behavior could be influenced by the driving styles and the recognizability of AVs, and as a result 
change their driving behavior (Arvin et al., 2020; Nyholm & Smids, 2020; Reddy et al., 2022). 
We refer to this change in driving behavior as behavioral adaptation, which (Kulmala & Rama, 
2013) define as ‘any change of driver, traveler, and travel behaviors that occurs following user 
interaction with a change to the road traffic system, in addition to those behaviors specifically 
and immediately targeted by the initiators of the change’. Therefore, behavioral adaptation 
could influence the nature of traffic interactions, which in result could influence traffic safety 
and efficiency. Earlier studies employed microscopic traffic simulation to predict the 
performance of mixed traffic. However, these studies did not consider possible behavioral 
adaptation to gain an accurate prediction of the performance of mixed traffic. This will be the 
main aim of this study. 
The following sub-sections first describe findings from earlier studies on the existence of 
human drivers’ behavioral adaptation in mixed traffic followed by works focusing on 
microscopic simulation of mixed traffic. 

5.1.1. Human drivers’ behavioral adaptation in mixed traffic  

There is an increasing evidence of HDVs’ behavioral adaptation due to interaction with AVs. 
Both field tests as well as driving simulator studies were conducted to investigate behavioral 
adaptation.  
Several studies used data from controlled field tests or real-life data. For example, (Mahdinia 
et al., 2021) studied in a field test the effect of HDVs following behavior of AVs on traffic safety 
and environmental impact. They found that HDVs followed AVs with lower speed and 
acceleration volatility resulting in a more stable traffic flow behavior. They also found that the 
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time-to-collision improved significantly and fuel consumption and emissions reduced when an 
HDV followed an AV compared to following an HDV. Wen et al. (2022) used real-world 
naturalistic driving data (Waymo Open Dataset from the United States) that consisted of 
trajectories of the SAE Level 4 AVs and surrounding vehicles at 10-Hz frequency. They also 
found that HDVs exhibit lower driving volatility (velocity, acceleration/deceleration) and larger 
time-to-collision values when following AVs. Moreover, they also found that HDVs adopt 
shorter time headways when following AVs. Chunxi et al. (2022) used the same dataset to study 
HDVs interactions with AVs during car-following and car-passing events. They found that 
drivers kept larger distance gap and time gap when they interacted with AVs as compared to 
when they interacted with HDVs. However, HDVs had larger standard deviation in speed and 
smaller time-to-collision when following AVs compared to HDVs which the authors interpret 
that it is caused by drivers’ difficulty to anticipate AVs’ speed changes. Wang et al. (2023) also 
used the same dataset to study HDVs following AVs at signalized intersections. They found that 
HDVs maintained a shorter standstill distance behind an AV (1.73 m) compared to behind an 
HDV (2.77 m). The reaction time for HDVs when starting to accelerate behind AVs (0.49 s) 
was shorter than that behind HDVs (1.04 s). Other field tests investigated the effect of the 
driving style and recognizability of AVs (Rahmati et al., 2019; Zhao et al., 2020). They focused 
on HDVs’ car following behavioral adaptation and found that human drivers adopt shorter time 
headways in car-following when following AVs. In their study, Rahmati et al. (2019) adopted a 
deterministic acceleration model to model AVs; the speed profile of AVs was less volatile than 
HDVs. Additionally, there was no difference in appearance of the AV and HDV. In the study of 
Zhao et al. (2020), the appearance of the AV was changed to make it recognizable and non-
recognizable when necessary. Soni et al. (2022) executed a controlled field test to investigate 
the gap acceptance behavior using the Wizard of Oz method (in the AV scenario, the vehicle 
was recognizable as an AV). They found that human drivers’ critical gaps (measured as the last 
moment the human driver indicated it would still be safe to merge) were significantly smaller 
when they merged in front of an AV compared to when they merged in front of an HDV. The 
critical gaps further reduced when drivers were provided with positive information about AVs. 
Hensch et al. (2023) studied drivers gap acceptance behavior during parking maneuvers in 
mixed traffic and found effects of factors such as vehicle size, approach speed, and personal 
driver characteristics; and from the perspective of AVs, they suggested that AVs should offer 
various driving style profiles that cater to individual driver preferences. 
Other studies conducted driving simulator experiments to investigate behavioral adaptation. For 
example, Stange et al. (2022) executed a driving simulator experiment to investigate the effect 
of driving in mixed traffic with level 3 AVs on the driving behavior of HDVs. They varied AV 
penetration rate and appearance of the AVs using external human-machine interfaces (eHMIs). 
With increasing AV penetration rate, the average speed of HDVs was found to significantly 
decrease, (in the simulation, AVs had desired speeds closer to the speed limit while HDVs had 
higher desired speeds) while the percentage of safety critical interactions (<1 s time headway) 
with AVs as lead vehicles was found to increase, in line with the results of (Chunxi et al., 2022). 
Ma & Zhang (2022) studied drivers’ subjective feelings and stated decision-making in mixed 
traffic by showing people videos of scenarios recorded from a driving simulator. The drivers’ 
driving style was found to affect their subjective feelings and decision-making. Aggressive and 
moderate drivers felt more anxious and less comfortable in HDV-AV interactions than in HDV-
HDV interactions. They also were more likely to take advantage of AVs. While for defensive 
drivers no difference was found. Other driving simulator studies investigated the effect of the 
driving style and recognizability of AVs (Fuest et al., 2020; Gouy et al., 2014a; Razmi Rad et 
al., 2021; Schoenmakers et al., 2021b). They focused on HDVs’ car following behavioral 
adaptation; Razmi Rad et al. (2021) also investigated lane changing behavior; (Fuest et al., 
2020) looked at road works, traffic jam situations, and lane changes. In general, they observed 
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that human drivers adopt shorter time headways in car-following when following AVs or when 
driving alongside AV platoons.  Trende et al. (2019) investigated human drivers’ gap acceptance 
at intersections, adopting a driving simulator. They observed that human drivers accepted gaps 
more frequently in front of recognizable AVs than in front of HDVs. Although AVs and HDVs 
drove similarly in their study, drivers were provided information that that AVs drove to avoid 
collisions.  
These studies indicate that human driving behavior changes when interacting with AVs in their 
road environment. While most of these studies focused on understanding the behavioral 
adaptation of HDVs when interacting with AVs, scaling up of these interactions is needed to 
understand the effects of such behavioral adaptation on traffic performance. Several studies 
used microscopic traffic simulation for insights into performance of mixed traffic. We now 
discuss some of these studies. 

5.1.2. Microscopic simulation studies of mixed traffic 

Microscopic simulation studies have investigated traffic efficiency and safety in mixed traffic. 
Papadoulis et al. (2019) used microscopic traffic simulation (VISSIM) to study the safety 
impact of connected and automated vehicles (CAVs) on a motorway corridor. In their study, 
CAVs detected other nearby CAVs and formed platoons of smaller headways than HDVs. They 
found that the estimated traffic conflicts reduced by 12-47% to 90-94% when the CAV 
penetration rates increased from 25% to 100%, compared to conventional traffic conditions. 
Calvert et al. (2017) found that at low penetration levels, AVs had small negative effects on 
traffic flow and road capacity due to larger car-following time gaps; improvements were seen 
only at penetration levels above 70%. Olia et al. (2017) found that road capacity was largely 
insensitive to the penetration rate increase of regular AVs. However, cooperative AVs (i.e., 
CAVs) significantly increased highway capacity with penetration rates higher than 30%. 
Schakel et al. (2010) studied the effect of Cooperative Adaptive Cruise Control (CACC) on 
traffic flow stability. They found that the duration of shockwaves reduced with increase in 
CACC penetration rate (0% to 50% and 100%). Ye & Yamamoto (2018) found that up to an AV 
penetration rate of 30% in microscopic traffic simulation, road capacity increased gradually, 
and the time headway of AVs had no large effect. Over 30%, the time headway of AV had a 
crucial impact on the road capacity. Arvin et al. (2020) investigated the safety impacts at 
intersections in mixed traffic consisting of HDVs, ACC vehicles, and CACC vehicles. They 
used the number of longitudinal conflicts and driving volatility (velocity and 
acceleration/deceleration) as safety indicators. They found significant safety improvements 
when the penetration rate of ACC was above 40%. The average speed and travel time at 
intersections also improved with increasing ACC/CACC vehicles.  

5.1.3. Summary and research gaps 

Most existing studies investigating behavioral adaptation focused on car-following behavior, 
with some studies also looking at lane-changing behavior. However, there is not yet a good 
understanding of the effect of recognizability and driving style of AVs on HDVs’ driving 
behavior. Overall, there is evidence that shows that human drivers adopt their driving behavior 
when they interact with AVs in mixed traffic. Barring a few studies (Soni et al., 2022; Trende 
et al., 2019), the behavioral adaptation of HDVs in mixed traffic is not yet considerably 
investigated at intersections. Also, existing microscopic traffic simulation studies that targeted 
to predict traffic flow efficiency and traffic safety of mixed traffic mainly focused on the effect 
of AV penetration rate, and vastly model the behavior of human drivers using models that were 
developed and calibrated for completely human-driven traffic. To our knowledge, to date there 
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has not been a microscopic traffic simulation study to investigate the effect of mixed traffic at 
priority intersections considering behavioral adaptation in gap acceptance behavior. Therefore, 
the research gaps can be summarized as follows: 

1. Current studies on human drivers’ behavioral adaptation in mixed traffic focus mainly 
on the car-following and lane changing behavior, not behavior at intersections. 

2. Microsimulation studies focus on the effect of AV penetration rate, not on aspects such 
as AVs recognizability and driving style. 

3. Microsimulation studies assume no behavioral adaptation in HDV driving behavior. 
In our previous study (Reddy et al., 2022), we focused on studying gap acceptance behavior at 
priority T-intersections in mixed traffic. Adopting a driving simulator, the effects of AV-related 
factors such as AVs’ driving styles and recognizability on drivers’ gap acceptance behavior were 
investigated. In this study we estimate gap-acceptance models and implement them in a 
microscopic traffic simulation to study the impacts on traffic efficiency in different future 
scenarios. We investigate the effects of AV penetration rate, AV driving style, AV 
recognizability, and the effect of considering versus ignoring behavioral adaptation on traffic 
efficiency. 

5.2. Research questions and approach 

This study focuses on studying gap acceptance behavior at priority T-intersections in mixed 
traffic. To predict the effects on traffic efficiency, different scenarios were simulated focusing 
on mixed traffic factors such as AV driving styles, AV recognizability, and AV penetration rates. 
Therefore, the main research question is:  
How does mixed traffic affect the traffic efficiency of priority T-intersections? 

The sub research questions are: 
1. What is the effect of AVs’ penetration rate on the efficiency of mixed traffic at priority 

T-intersection? 
2. What is the effect of AVs’ recognizability on the efficiency of mixed traffic at priority 

T-intersection?  
3. What is the effect of AVs’ driving style on the efficiency of mixed traffic at priority T-

intersection?  
4. What is the effect of considering human drivers’ behavioral adaptation in mixed traffic 

in the context of the above questions? 
To answer the research questions, we first set-up a driving simulator experiment to study human 
drivers’ gap acceptance behavior at priority T-intersections in mixed traffic (Reddy et al., 2022). 
Using the data from the driving simulator experiment, in this paper we estimate gap acceptance 
models to mathematically describe human drivers’ interactions with AVs and their gap 
acceptance behavior. To scale-up these interactions and study the effect of mixed traffic on 
traffic efficiency, we set-up a simulation network of a T-intersection. We then implement the 
estimated models in the simulation, and measure traffic efficiency indicators.  
The structure of the rest of this paper is as follows. First, we explain in Section 5.3 the driving 
simulator experiment used to collect data of human drivers’ gap acceptance behavior in mixed 
traffic. Then in Section 5.4 we present the results of the estimated gap acceptance models using 
the collected data. In Section 5.5 we explain the set-up of the microscopic traffic simulation 
experiments. Then in Section 5.6 we present the results of the simulation experiments and 
discuss them in the light of the research questions. Then we consider the threats to the validity 
of the results. Finally, we propose recommendations for policy and future research. 
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5.3. Driving simulator experiment 

The following section briefly explains the driving simulator experiment set-up, as well as the 
data collection and processing. A more detailed description of this experiment can be found in 
our earlier publication (Reddy et al., 2022). 

5.3.1. Equipment and promotion  

We used the driving simulator located at the Faculty of Civil Engineering of Delft University 
of Technology in the Netherlands. This driving simulator has a fixed base and three screens of 
4K resolution that provide about 180-degree view. It has pedals and a Fanatec steering control 
wheel. The scenarios were designed using the software SCANeR (v1.9) from AV Simulation.  
The Human Resource and Ethics Committee (HREC) of Delft University of Technology 
provided ethical approval for carrying on the experiment. We recruited the participants by 
promoting the experiment in printed local newspaper and online social networking platforms. 
Drivers were required to have a valid driving license to take part in the experiment. The duration 
of the experiment per participant was between 60 to 90 minutes. This included a pre-experiment 
questionnaire, briefing about the experiment, a practice drive (to get familiar with the driving 
simulator), the experiment scenarios, adequate breaks between scenarios, and post-experiment 
questionnaires. Each participant was compensated with a 15€ voucher at the end of the 
experiment. One hundred and fourteen participants took part in the experiment.  

5.3.2. Route 

The route (depicted in Figure 5.1) that the participants drove on consisted of motorway driving, 
regional road driving, and non-signalised T-intersections with priority. The speed limits were 
100 km/h on the motorway, 80 km/h on the regional road, and 50 km/h on the urban road. This 
paper focuses on the three T-intersections. Before each intersection, a stop sign on the minor 
road made sure that drivers stopped completely before proceeding to enter the intersection. 
Positioning the intersections after the motorway and regional road sections ensured that drivers 
sufficiently experienced the traffic condition of that scenario beforehand. 

 
Figure 5.1: A sketch of the route in the driving simulator (Reddy et al., 2022). 
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5.3.3. Experiment design 

Scenarios in the experiment differed in the AVs’ recognizability and their driving styles. Each 
participant experienced four scenarios. Table 5.1 shows a description of the scenarios. 

Table 5.1: Description of Scenarios 

Number Vehicle types Were AVs Recognizable?  AV Driving style 
1 Only HDVs - - 
2 HDVs & AVs Not recognizable (NR) AV 
3 HDVs & AVs Recognizable (R) AV 
4 HDVs & AVs Recognizable (R) HDV 

Groups of participants were made to experience different AV driving styles. Participants were 
divided into three groups which reflect the AV driving style scenario they experienced: More 
defensive AVs, Less defensive AVs, and Mixed AVs. Drivers in the group of More defensive/ 
Less defensive AVs only experienced AVs of the respective driving style in mixed traffic. The 
Mixed AVs scenario had More defensive and Less defensive AVs in a 3:2 proportion. This paper 
focuses on the Less defensive and More defensive AVs groups only as the same participants did 
not experience the three different traffic conditions (i.e., More defensive, less defensive, and 
Mixed AVs). All the scenarios had a 50% AV penetration rate.  
The Driving behavior of AVs and HDVs are described in Table 5.2. The target time gaps when 
car following of AVs were chosen from publicly accessible information about ACC settings of 
commercial vehicles ((Makridis et al., 2021; Raju et al., 2022). The target car-following time 
gaps for HDVs were decided from earlier studies (Taieb-Maimon & Shinar, 2016); Winkelbauer 
et al., 2019). As we expect that AVs would not exceed legal speed limits, their desired speeds 
were set to the speed limit. We were unable to change other parameters such as maximum 
acceleration/ deceleration or lane changing behaviors in the driving simulator. 

Table 5.2: Driving Behaviors of HDVs and AVs 

Vehicle type Target speed (desired) Target following gap (s) (time gap when 
car following) 

HDV Randomly drawn between a factor 
0.9 and 1.1 of the speed limit 

Min 0.5 s; Max 1.5 s; Distribution: negative 
exponential (truncated) 

More defensive AV Equal to the speed limit 3.5 s 

Less defensive AV Equal to the speed limit 1.5 s 

Mixed AV A mix of More defensive and Less defensive AVs in a 3:2 proportion 

The gaps between vehicles on the major road at the intersections were randomly drawn from a 
uniform distribution between 3 and 10 seconds so that the gaps available were neither very 
small nor very large (Beanland et al., 2013). All vehicles on the major road had gaps from this 
distribution, even if the vehicles were Less defensive or More defensive AVs. This was to ensure 
a fair comparison because the gap size significantly influences the acceptance or rejection of a 
gap (Beanland et al., 2013). Consequently, the effects of the recognizability of AVs and that of 
the driving style of AVs were separated. 
Appearance of the AVs was therefore the only distinction between AVs and HDVs on the major 
road in scenarios where the AVs were set to be recognizable (i.e., distinguishable from HDVs), 
they were yellow in color. The participants were shown the appearance of AVs in the driving 
simulator prior to the start of their drive. Hence, they could identify and distinguish the 
recognizable AVs from other HDVs. No other explicit information on AVs’ driving style was 
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provided to the drivers. Both, More defensive and Less defensive AVs, had the same appearance 
when they were recognizable.  
Before approaching the intersections, drivers passed through the motorway and the regional 
road. The type of traffic that the participants interacted with in these earlier sections was 
expected to affect their resulting gap acceptance behavior, therefore being a “carry-over” effect 
(Reddy et al., 2022). In the 1st and 2nd scenarios, all vehicles had the appearance of HDVs, 
which includes the major road vehicles at the intersections. In the 3rd and 4th scenarios, half of 
the vehicles in traffic appeared as AVs. Therefore, 50% of the major road vehicles were 
recognizable as AVs. However, the gaps between all the major road vehicles in all scenarios 
were drawn from the same uniform distribution as specified before. Each scenario lasted 
between 10 and 12 minutes on average. In between scenarios, sufficient breaks were provided 
to the participants. The order of the scenarios was randomized to counter any learning effect. 

5.3.4. Collection and Processing of Data  

The data consisted of the following: the simulator timestamp, speed, acceleration, and position 
(x, y, z) for all vehicles within that scenario. These data were collected at 20 Hz frequency and 
then converted to 4 Hz (4 data points per second) to decrease processing time. Twelve 
participants out of the 114 experienced severe nausea and/or did not finish the experiment. Also, 
7 participants behaved erroneously at the T-intersections (did not follow instructions) or drove 
abnormally. These drivers were excluded from the dataset. The final dataset of gap acceptance 
had 95 participants. Seventy- one of them were males, and 24 females. Thirty-eight participants 
were Younger (18-29 years), 27 were Middle aged (30-54 years), 25 were Older (55+ years), 
and 5 of Unknown age. 

5.4. Gap acceptance modelling and estimation 

5.4.1. Modelling approach 

Gap acceptance is a binomial process wherein for every offered gap, a driver decides on 
accepting or rejecting the gap. We adopted a generalized linear model (logistic regression) 
because the predicted variable was binomial (we predicted the probability that a driver accepts 
a gap), while the explanatory variables could be continuous and/or categorical (Dutta & Ahmed, 
2018; Zohdy et al., 2010). To model gap acceptance behavior, we estimated three models using 
R (RStudio Team, 2022) that predict the probability of accepting an offered gap, using 
maximum likelihood estimation method. The first model (Model 1: conventional traffic) was 
the gap acceptance model for HDVs only traffic. For this, observations from scenario 1 (only 
HDVs) in Table 5.1 were used. The second model (Model 2: Less defensive AV traffic) was the 
gap acceptance model of drivers when driving in traffic with Less defensive AVs. The 
observations from scenarios 2 and 3 in Table 5.1from the drivers of the Less defensive group 
were used to estimate this model. The third model (Model 3: More defensive AV traffic) was 
the gap acceptance model of human drivers when driving in mixed traffic with More defensive 
AVs. The observations from scenarios 2 and 3 in Table 5.1 from the drivers of the More 
defensive group were used to estimate this model. As the drivers in the Less defensive and More 
defensive groups were different (mutually exclusive), it was possible to estimate two separate 
models for Less defensive and More defensive AV traffic. Table 5.3 presents the variables that 
were used for the gap acceptance models. We used the AIC (Akaike Information Criterion), 
which considers both the predictive power and the frugality (using fewer variables) of the 
model, to test the statistical performance of the models. The model that performed best on AIC 
was selected. 
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Table 5.3: Description of the variables in the estimated gap acceptance models 
Model variable Description 
Gap The size of the gap on the major road offered to the minor road vehicle. It is the 

time gap (in seconds) between two consecutive vehicles on the major road. 
Driving style of human 
driver 

The driving style of the human driver (Anxious and dissociative, Careful and 
distress reducing, or Risky and aggressive) derived from the self-reported 
driving behavior questionnaire (Taubman-Ben-Ari et al., 2004) 

Scenario order The order of the scenario (1, 2, 3, or 4) that the participants encountered in the 
experiment 

Appearance of follower The appearance of the follower vehicle (i.e., AV or HDV) on the major road 
when the minor road vehicle accepted an offered gap. 

5.4.2. Modelling results 

Table 5.4, Table 5.5, and Table 5.6 present the coefficient estimates for Model 1 (Conventional 
traffic), Model 2 (Less defensive AV traffic), and Model 3 (More defensive AV traffic), 
respectively. All the models can be represented by the following equations: 

𝑝 = 0&(')

,1	0&(')
                    [1] 

𝑈(𝑥)  ∼  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  + ∑ 𝛽34
3 6 , ⋅ 𝑥3 + 	𝜀      [2] 

Where 𝑝  indicates the probability to accept a gap, 𝑥  indicates the vector of explanatory 
variables, U(x) indicates the utility function, 𝛽 indicates the row of coefficient parameters for 
the respective explanatory variables, 𝜀	indicates the error term, and 𝑁 indicates the number of 
explanatory variables.  
Table 5.4: Estimated coefficients of the generalized linear logistic model for gap 
acceptance in conventional traffic (Model 1: Conventional traffic) 

Coefficients Estimate Standard error z-value Pr (>z) 
(Intercept) -5.35 0.58 -9.22 < 0.001 
Gap                                          0.62     0.07    8.79   < 0.001 
Driving style of human driver (Ref.: Anxious and dissociative) 
Careful and distress reducing 0.64 0.29 2.18 0.029 
Risky and aggressive 0.62 0.34 1.84 0.065 
Order of encountering the scenario (Ref.: Scenario order 1) 
Scenario order 2 
 

0.37 0.33 1.12 0.264 

Scenario order 3 
 

0.57 0.31 1.81 0.069 

Scenario order 4 0.52 0.38 1.39 0.160 
AIC   436.30   
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Table 5.5: Estimated coefficients of the generalized linear logistic model for gap 
acceptance in mixed traffic with less defensive AVs (Model 2: Less defensive AV traffic) 

Coefficients Estimate Standard error z-value Pr (>z) 
(Intercept) -6.88 1.23 -5.59 <0.001 
Gap                                         0.85 0.16 5.30 <0.001 
Driving style of human driver (Ref.: Anxious and dissociative) 
Careful and distress reducing 0.31 0.29 1.06 0.289 
Risky and aggressive 0.21 0.32 0.65 0.510 
Appearance of the follower (Ref.: AV App (AV), Foll App (AV)) 
AV App (AV), Foll App (HDV) 2.76 1.48 1.86 0.063 
AV App (HDV), Foll App (HDV) 1.29 1.38 0.94 0.350 
Interaction term (Ref.: Gap & AV App (AV), Foll App (AV)) 
Gap & AV App (AV), Foll App (HDV) -0.40 0.21 -1.93 0.054 
Gap & AV App (HDV), Foll App (HDV) -0.14 0.19 -0.72 0.470 
Order of encountering the scenario (Ref.: Scenario order 1) 
Scenario order 2 0.44 0.34 1.29 0.194 
Scenario order 3 0.20 0.33 0.61 0.540 
Scenario order 4 0.65 0.37 1.77 0.077 
AIC   443.15   

Table 5.6: Estimated coefficients of the generalized linear logistic model for gap 
acceptance in mixed traffic with more defensive AVs (Model 3: More defensive AV traffic) 

Coefficients Estimate Standard error z-value Pr (>z) 
(Intercept) -4.83 0.50 -9.58 < 0.001 
Gap                                          0.64     0.07    8.63   < 0.001 
AIC                                                                409.64    

5.4.3. Insights from the models 

It can be observed from the gap acceptance model for the conventional traffic (Table 5.4) that 
the gap size has a very significant effect on gap acceptance, drivers have higher probability to 
accept larger gaps. Furthermore, drivers with careful and distress reducing driving style tend to 
accept larger gaps compared to drivers with anxious and dissociative driving style, while those 
with a risky and aggressive driving style did not differ significantly (at the 95% confidence 
level) in their gap acceptance tendency from those with anxious and dissociative driving style.  
The scenario order was not found to significantly affect the gap-acceptance probability, 
although at a 90% confidence level, gaps offered in Scenario order 3 tended to have a greater 
probability of being accepted compared to gaps offered in Scenario order 1. For the gap 
acceptance probability with Less defensive AV traffic (Table 5.5), the gap size again has the 
greatest influence on the probability to accept the gap. Also, in traffic having recognizable AVs, 
drivers have higher probability to accept gaps in front of HDVs compared to in front of 
recognizable Less defensive AVs (at a 90% confidence level). The scenario order was again not 
found to significantly affect the gap-acceptance probability, although at a 90% confidence level, 
gaps offered in Scenario order 4 tended to have a greater probability of being accepted 
compared to gaps offered in Scenario order 1. The driving styles of human drivers were not 
found to significantly affect the gap acceptance in this scenario. For the gap acceptance 
probability with More defensive AV traffic (Table 5.6), in terms of the best performing model, 
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the gap size was found to be the only variable determining the probability of gap acceptance. 
Larger gaps resulted in a greater probability of them being accepted. 

5.5. Microscopic traffic simulation set-up 

The estimated models were then implemented in microscopic traffic simulation. This section 
explains the configuration of the microscopic traffic simulation which includes the road 
network, vehicle types and driving behaviors. We used the SUMO simulation platform (Lopez 
et al., 2018) for this research as it is open-source, well documented and provides the possibility 
to program the behavioral models using TraCI (The Traffic Control Interface). In which, the 
TraCI script controls the gap acceptance behavior of the minor road vehicles entering the 
intersection based on the implemented gap-acceptance behavioral models. To capture the 
variability, simulation runs were carried out for 10 different seeds for each of the simulation 
scenarios. For a better understanding of the simulation set-up, the entire simulation process is 
detailed in Appendix of this chapter, in Figure A-1 which describes the TRACI python script, 
the simulation set-up and data outcome. 

5.5.1. Network 

The designed road network (Figure 5.2) is a simple priority T-intersection, with a major road 
and a minor road approaching each other at the intersection node, and the major road continuing 
straight to depart from the intersection node. Vehicles on the minor road are expected to stop 
and allow priority to major road vehicles. All the roads were single lane roads. The length of 
the major road approach leg was 670 m, that of the major road departure leg was 540 m, and 
that of the minor road was 360 m. Vehicles were generated at different desired speeds as will 
be explained further below. We designed a single T-intersection and not a network of connected 
T-intersections because the estimated gap acceptance models were applicable for human drivers 
only. A connected network of T-intersections on which mixed traffic is operating would require 
in addition defining how AVs conduct gap acceptance, which is out of the scope of this paper. 
However, the results at the single T-intersection are sufficient to illustrate the effect that mixed 
traffic has on traffic performance of a single T-intersection. 

 
Figure 5.2: T-intersection in SUMO with a vehicle on the minor road and two vehicles on 
the major road. 

5.5.2. Vehicle types and attributes 

Major road: Traffic on the major road consisted of both HDVs and AVs. Table 5.7 describes 
their attributes. The traffic volume on the major road was chosen such that it results in a gap 
distribution so that the vehicles on the minor road have reasonable opportunity to merge, at the 
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same time hindered to a certain extent by traffic on the major road. This was fixed at 600 
vehicles per hour. Gaps between vehicles on the major road were generated using a Poisson 
distribution. Figure 5.3 presents the headways distribution of generated vehicles on the major 
road. The total traffic volume and the distribution of generated headways on the major road 
remained the same irrespective of any simulation condition. Generated HDVs had a distribution 
of desired time gaps drawn randomly from [0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s] to result in a 
distribution shown in Figure 5.4, which presents the volume distribution of HDVs with different 
desired time gaps on the major road at different AV penetration rates. The desired time gaps 
refer to the distances with the preceding vehicle when car-following. This is different from the 
critical gaps, which is during gap acceptance.  All vehicles followed the Intelligent Driver 
Model (IDM) ((Treiber et al., 2000) with the parameters stated in Table 5.7 (additionally, the 
following parameters were used: Delta = 4, Tau = 0.5 s, Acceleration = 2.6 m/s2). Equations 3 
and 4 represent the IDM. 

𝜈̇! = 𝑎(!) <1 − = $!
$"
(!)>

%
− ?&

∗($!,($!)
&!

@
)
A     [3] 

 

𝑠∗(𝑣, 𝛥𝑣) = 𝑠+
(!) + 𝑠,

(!)
J

$

$"
(!) + 𝑇!𝑣 +

$($

)-.(!)/(!)
    [4] 

Where	𝜈̇! is the acceleration, 𝑎(!)is the maximum acceleration, 𝑣! is the velocity, 𝑣+
(!) is the 

desired velocity, 𝛿 is the acceleration exponent, 𝑠∗(𝑣! , 𝛥𝑣!) is the desired minimum gap, 𝑠!is 
the actual gap, 𝑠+

(!) and 𝑠,
(!)is the jam distance, 𝑣 is the velocity, 𝑇! is the safe time headway, 

𝛥𝑣 is the velocity difference, 𝑏(!) is the desired deceleration. 

Table 5.7: Attributes of vehicles on the major road 

Description Vehicle  
appearance 

Target speed Desired time gap 

HDV HDV Randomly drawn between a 
factor 0.9 and 1.1 of the speed 
limit (normal distribution) 

Drawn from  
[0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s] 

AVs driving like HDVs AV Randomly drawn between a 
factor 0.9 and 1.1 of the speed 
limit (normal distribution) 

Drawn from  
[0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s] 

Less defensive AVs AV Speed limit 1.5 s 

More defensive AVs AV Speed limit 3.5 s 

Less defensive AVs  
appearing as HDVs 

HDV Speed limit 1.5 s 

More defensive AVs  
appearing as HDVs 

HDV Speed limit 3.5 s 
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Figure 5.3: Headway distribution of all vehicles generated on the major road. 

 
Figure 5.4: Major road volume distribution of HDVs with different desired time headways 
at different AV penetration rates. 
Minor road: Traffic on the minor road always consisted of HDVs. Each of these HDVs was 
assigned one of the three Driving styles (Careful and distress-reducing, Anxious and 
dissociative, and Risky and aggressive), in equal proportion.  The driving style assigned to the 
HDVs only played a role in the gap acceptance behavior models. The vehicles followed the 
Intelligent Driver Model (IDM) ((Treiber et al., 2000) with the target speed randomly drawn 
between a factor 0.9 and 1.1 of the speed limit (normal distribution), and the desired time gap 
drawn from [0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s]. Additionally, the following parameters were used: 
Delta = 4, Tau = 0.5 s, Acceleration = 2.6 m/s2. Their gap acceptance behavior was as per the 
estimated models (Table 5.3, Table 5.4, Table 5.5). The traffic volume on the minor road was 
fixed to one third of the traffic volume of the major road, but only consisted of HDVs.  
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5.5.3. Simulation conditions 

Different simulation conditions were defined based on AV Penetration Rate, AV Driving style 
(i.e., Less defensive and More defensive), and AV recognizability. Table 5.8 presents these 
variables with their defined levels. Additionally, consideration of behavioral adaptation was 
also incorporated in these conditions.  

Table 5.8: Design parameters’ specifications for simulation set-up 

Variables Levels 
Traffic volume on major road 600 veh/h (fixed) 
Traffic volume on minor road 200 veh/h (fixed) 
AV Penetration Rate 0%, 25%, 50%, 75% 
AV Driving style More defensive, Less defensive  
AV recognizability Recognizable (R), Not Recognizable (NR) 
BA consideration BA considered (BA), BA not considered (NoBA) 

The simulation conditions were based on different combinations of the levels of these variables 
resulting in a total of 16 unique simulation conditions as presented in Table 5.9. 
Table 5.9: Simulation conditions definitions 

Condition  
number 

Code 
MPR_DS_R_BA* AV MPR* AV driving 

style* 

AV  
recognizabil-
ity* 

Behavioral  
Adaptation* 

1 Conventional - - - - 
2 25_LD_NoBA 

25% 
LD 

NR NoBA 

3 25_MD_NoBA MD 
4 50_ LD _NoBA 

50% 
LD 

5 50_ MD _NoBA MD 
6 75_ LD _NoBA 

75% 
LD 

7 75_ MD _NoBA MD 
8 25_ LD _NR_BA 

25% 
LD NR 

BA 

9 25_ LD _R_BA LD R 
10 25_ MD _BA MD R 
11 50_ LD _NR_BA 

50% 
LD NR 

12 50_ LD _R_BA LD R 
13 50_ MD _BA MD R 
14 75_ LD _NR_BA 

75% 
LD NR 

15 75_ LD _R_BA LD R 
16 75_ MD _BA MD R 

* MPR – Market Penetration Rate; DS – Driving Style; R – Recognizable; NR – Not Recognizable; BA – 
With Behavioral Adaptation; NoBA – Without Behavioral Adaptation; LD – less defensive; MD – more 
defensive 

5.5.4. Performance indicators 

To evaluate the traffic efficiency, four performance indicators were used:  
1. Delay per vehicle on the minor road (delay measured as the difference between the 

predicted and the actual travel time)  
2. Delay per HDV on the major road 
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3. Delay per AV on the major road 
4. Length of the queue on the minor road at the end of the simulation run (expressed in 

number of vehicles).  
Each simulation condition was run with 10 different seeds, and the results were averaged per 
condition. Every simulation run lasted for a duration of 1 hour. Every simulation run lasted for 
a duration of 1 hour. There was no cool down period, as we were interested in the difference 
between the scenarios and not the absolute indicator values. 

5.6. Results 

The results have the following structure: firstly, we present the results of delay for minor road 
vehicles; then we present the results of delay for major road vehicles; finally, the results of the 
queue length on the minor road. For presenting the delay results, we first show a boxplot of the 
delay per vehicle containing all simulation conditions. These are followed by tables that display 
the percentage changes in delays between different conditions, organized by the defined 
research questions. Then, we also present some boxplots for a subset of the conditions focusing 
on some interesting observations.  

5.6.1. Minor road delay 

Figure 5.5 presents boxplot distributions of the delay per vehicle on the minor road for the 
different conditions. There are noticeable differences between some conditions, indicating that 
there may be significant effects of penetration rate, driving style, recognizability, and 
consideration of behavioral adaptation. For example, in general there appears to be an increase 
in delay with increasing penetration rates. Also, there appear to be differences between the same 
condition, but with and without considering behavioral adaptation. Table 5.10 presents the 
percentage change in median delay between the different conditions, organized by the research 
questions. 

 

 
Figure 5.5: Boxplot distribution of delay per vehicle on the minor road for all conditions 
(R – Recognizable; NR – Not Recognizable; BA – With Behavioral Adaptation; NoBA – 
Without Behavioral Adaptation; LessDef – Less defensive; MoreDef – More defensive). 
Studying Table 5.10 reveals that increasing penetration rates of AVs results in an increase in 
delay for minor road vehicles, particularly so when AVs have More defensive driving style. 
Also, interesting to note that when human drivers’ behavioral adaptation is considered, the 
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increase in delay for minor road vehicles when MPR of recognizable Less defensive AVs 
increases from 50% to 75% is much larger (62.49%), compared to the increase in delay 
(10.04%) when MPR increases from 25% to 50%. Also, the recognizability of Less defensive 
AVs results in a clear increase in delay compared to when these vehicles are not recognizable, 
at all penetration rates. An interesting observation is the effect of AV driving style. At low MPR 
of 25% and when behavioral adaptation is considered the More defensive AVs condition results 
in less delay (-38.28%) for minor road vehicles compared to the recognizable Less defensive 
AVs condition. However, at high MPR of 75% the comparison results in an opposite trend with 
More defensive AVs condition resulting in higher delays for the minor road vehicles (+25.68%) 
compared to the recognizable Less defensive AVs. . This best demonstrates the interplay 
between the effect of the gap acceptance model and the effect of the major road gaps 
distribution. 
Boxplots for subsets of conditions are presented next for a better perspective. Figure 5.6 
presents the effects of AV penetration rate and whether behavioral adaptation is considered or 
not on the delay per vehicle on the minor road when AVs are more defensive. In general, as the 
penetration rate of More defensive AVs increases, the delay for the minor road vehicles also 
increases. This is observed both when behavioral adaptation is considered and when it is not 
considered. Additionally, for the same penetration rate, there appears to be no significant 
difference in the delay between when behavioral adaptation is considered compared to when it 
is not. It may be recalled that recognizability did not play a role in affecting gap acceptance 
when AVs were More defensive.  
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Table 5.10: Percentage change in median delay between different conditions for vehicles 
on the minor road 

  Condition 
Change in median delay per vehicle (percentage) 

MPR from 25% to 50% MPR from 50% to 75% 

Effect of Market 
Penetration Rate  

NoBA, MD AVs  +54.97% +103.17% 

NoBA, LD AVs  +20.39% +38.15% 

BA, MD AVs  +79.44% +102.92% 

BA, NR LD AVs  +17% +48.29% 

BA, R LD AVs  +10.04% +62.49% 

  Recognizable compared to Not-Recognizable Less defensive AVs 

Effect of 
recognizability 

BA, MPR 25% +76.29% 

BA, MPR 50% +65.79% 

BA, MPR 75% +81.67% 

  More defensive compared to Less defensive AVs 

Effect of AV driving 
style 

NoBA, MPR 25% +6.29% 

NoBA, MPR 50% +36.83% 

NoBA, MPR 75% +101.23% 

More defensive AVs compared to Not-Recognizable Less defensive AVs 

BA, MPR 25% +8.80% 

BA, MPR 50% +66.86% 

BA, MPR 75% +128.33% 

More defensive AVs compared to Recognizable Less defensive AVs 

BA, MPR 25% -38.28% 

BA, MPR 50% +0.64% 

BA, MPR 75% +25.68% 

  With Behavioral Adaptation compared to Without Behavioral Adaptation 
Behavioral Adaptation compared to No Behavioral Adaptation 

Effect of 
considering 
behavioral 
adaptation 

MD AVs MPR 25% -5.19% 

MD AVs MPR 50% +9.77% 

MD AVs MPR 75% +9.64% 

NR LD AVs MPR 25% -7.38% 

NR LD AVs MPR 50% -9.98% 

NR LD AVs MPR 75% -3.37% 

R LD AVs MPR 25% +63.28% 

R LD AVs MPR 50% +49.24% 

R LD AVs MPR 75% +75.54% 
BA – With Behavioral Adaptation; NoBA – Without Behavioral Adaptation; MPR – Market Penetration Rate; 
MD – More defensive; LD – Less defensive; R – Recognizable; NR – Not-Recognizable 
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Figure 5.6: Boxplot of delay per vehicle on the minor road for More defensive AVs, with 
and without BA consideration, and for different penetration rates (BA – With Behavioral 
Adaptation; NoBA – Without Behavioral Adaptation; MoreDef – More defensive). 
Figure 5.7 presents the effects of AV penetration rate and AV recognizability on the delay per 
vehicle on the minor road when AVs are Less defensive and behavioral adaptation is considered. 
An increase in penetration rate of Less defensive AVs appears to result in an increase in delay 
both when the Less defensive AVs are recognizable and non-recognizable. At all penetration 
rates, the delay for the minor road vehicles is larger when the Less defensive AVs are 
recognizable compared to when they are non-recognizable.  

 
Figure 5.7: Boxplot of delay per vehicle on the minor road for Less defensive AVs condition 
and when considering behavioral adaptation, for recognizable vs not-recognizable AVs, 
and for different penetration rates (R – Recognizable; NR – Not Recognizable; BA – With 
Behavioral Adaptation; LessDef – Less defensive; MoreDef – More defensive). 
Figure 5.8 presents the effects of AV penetration rate and whether behavioral adaptation is 
considered or not on the delay per vehicle on the minor road, when AVs are Less defensive and 
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not-recognizable (Note: when behavioral adaptation is not considered, there is no impact if the 
vehicle is recognizable or not). Again, an increase in penetration rate leads to an increase in 
delay of minor road vehicle. This is the case both when behavioral adaptation is considered and 
when it is not considered. At the same penetration rate, the change in delay between when 
behavioral adaptation is considered and when it is not considered does not seem to be very large 
(when Less defensive AVs are non-recognizable).  

 
Figure 5.8: Boxplot of delay per vehicle on minor road for Less defensive AVs, with and 
without behavioral adaptation consideration when they are not-recognizable, and for 
different penetration rates (NR – Not Recognizable; BA – With Behavioral Adaptation; 
NoBA – Without Behavioral Adaptation; LessDef – Less defensive; MoreDef – More 
defensive). 
Figure 5.9 presents the effects of AV penetration rate and whether behavioral adaptation is 
considered or not on the total delay per vehicle on the minor road, when AVs are Less defensive 
and recognizable. Again, an increase in penetration rate of Less defensive and recognizable AVs 
leads to an increase in delay. This is the case both when behavioral adaptation is considered and 
when it is not considered. At the same penetration rate, the difference in delay between when 
behavioral adaptation is considered and when it is not considered seems noticeable (when Less 
defensive AVs are recognizable). That is, the delay seems to be larger when Less defensive AVs 
are recognizable and behavioral adaptation is considered.  
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Figure 5.9: Boxplot of delay per vehicle on minor road for Less defensive AVs, with and 
without BA consideration when they are recognizable, and for different penetration rates 
(R – Recognizable; BA – With Behavioral Adaptation; NoBA – Without Behavioral 
Adaptation; LessDef – Less defensive; MoreDef – More defensive). 

5.6.2. Major road delay 

Figure 5.10  presents the boxplot distribution of the delay per vehicle on the major road for AVs 
only. The effects of AV penetration rate, whether behavioral adaptation is considered or not, AV 
recognizability, and AV driving style can be observed. The magnitude of the delays compared 
to the minor road delays is much smaller. This is expected as vehicles on the major road have 
priority over vehicles on the minor road. From the boxplots, it appears that there are some 
differences in delays between different conditions.  

 
Figure 5.10: Boxplots of delay per vehicle for AVs on the major road (R – Recognizable; 
NR – Not Recognizable; BA – With Behavioral Adaptation; NoBA – Without Behavioral 
Adaptation; LessDef – Less defensive; MoreDef – More defensive). 
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Figure 5.11 presents the boxplot distribution of the delay per vehicle on the major road for 
HDVs only. A clear contrast with AVs (Figure 5.10) is that the delays do not seem to vary much 
between the different scenarios. Also, the magnitude of delays for HDVs seem to be smaller 
than the delays for AVs. The median delay in all scenarios is approximately between 1 and 2 
seconds, thus not very high (although for large traffic volumes over a longer period of time, it 
could be meaningful). Therefore, it appears that it is mainly AVs that experience changes in 
delays on the major road and are delayed by a larger magnitude than HDVs.  

 
Figure 5.11: Boxplots of delay per vehicle for HDVs on the major road (R – Recognizable; 
NR – Not Recognizable; BA – With Behavioral Adaptation; NoBA – Without Behavioral 
Adaptation; LessDef – Less defensive; MoreDef – More defensive). 
Table 5.11 presents the percentage change in median delay for AVs and HDVs on the major 
road between the different simulation conditions.  
A striking observation is how the AVs’ recognizability affects differently the delays for AVs and 
HDVs on the major road. When Less defensive AVs are recognizable, they experience lesser 
delays compared to when they are not-recognizable. On the other hands, HDVs on the major 
road experience larger delays when the Less defensive AVs are recognizable compared to when 
not-recognizable. 
It is also interesting to observe that the difference in delay between More defensive AVs and 
not-recognizable Less defensive AVs is small at lower penetration rates (e.g., ~1% at MPR 
25%). However, the delay difference between More defensive AVs and recognizable Less 
defensive AVs is much larger even at lower penetration rates (~40% at MPR 25%). 
It can also be observed that not considering behavioral adaptation results across all conditions 
in an underestimation of the delay for HDVs on the major road. However, for AVs on the major 
road, not considering behavioral adaptation generally results in an overestimation of their 
experienced delay. 

 
 

 
 

Conditions

D
el

ay
 p

er
 v

eh
ic

le
 fo

r H
D

V
s o

n 
th

e 
m

aj
or

 ro
ad

 (s
)

0

5

10

15

20

25

Conventional
25_LessDef_NoBA
25_LessDef_NR_BA
25_LessDef_R_BA
25_MoreDef_NoBA
25_MoreDef_BA
50_LessDef_NoBA
50_LessDef_NR_BA
50_LessDef_R_BA
50_MoreDef_NoBA
50_MoreDef_BA
75_LessDef_NoBA
75_LessDef_NR_BA
75_LessDef_R_BA
75_MoreDef_NoBA
75_MoreDef_BA



 
 

Investigating the impact of behavioral adaptation on traffic efficiency 

 

115 

 

Table 5.11: Percentage change in median delay between different conditions for AVs and 
HDVs on the major road 

  Condition Change in median delay per vehicle (percentage) 
 

  
MPR from 25% to 50% MPR from 50% to 75% 

 AVs HDVs AVs HDVs 

Effect of Market 
Penetration Rate 

No BA, MD AVs  +9.14% +15.07% +4.57% +5.95% 
BA, LD AVs  +4.17% +2.96% -3.50% -2.16% 
BA, MD AVs  +15.07% +30.59% +22.62% -19.37% 
BA, NR LD AVs  +3.81% +4.80% -3% -1.41% 
BA, R LD AVs  +9.13% +22.76% +12.78% +23.03% 

    Recognizable compared to Non- recognizable Less 
defensive AVs 

    AVs HDVs 

Effect of  
recognizability 

BA, MPR 25% -28.03% +7.01% 
BA, MPR 50% -24.33% +25.35% 
BA, MPR 75% -12.03% +56.43% 

    More defensive AVs compared to Less defensive AVs 
    AVs HDVs 

Effect of AV  
driving style 

No BA, MPR 25% +25.35% +8.15% 
No BA, MPR 50% +31.33% +20.86% 
No BA, MPR 75% +42.31% +30.88% 

  More defensive AVs compared to Non-recognizable Less 
defensive AVs 

  AVs HDVs 
BA, MPR 25% +1.04% +25.46% 
BA, MPR 50% +12% +56.34% 
BA, MPR 75% +41.58% +27.86% 

  More defensive AVs compared to Recognizable Less 
defensive AVs 

  AVs HDVs 
BA, MPR 25% +40.38% +17.24% 
BA, MPR 50% +48.02% +24.72% 
BA, MPR 75% +60.94% -18.26% 

    With BA compared to without BA 
    AVs HDVs 

Effect of  
considering  
behavioral  
adaptation  

MD AVs MPR 25% -19.11% +16.44% 
MD AVs MPR 50% -14.72% +32.14% 
MD AVs MPR 75% 0% +0.56% 
NR LD AVs MPR 25% +0.35% +0.37% 
NR LD AVs MPR 50% 0% +2.16% 
NR LD AVs MPR 75% +0.52% +2.94% 
R LD AVs MPR 25% -27.78% +7.41% 
R LD AVs MPR 50% -24.33% +28.06% 
R LD AVs MPR 75% -11.57% +61.03% 

*BA – With Behavioral Adaptation; NoBA – Without Behavioral Adaptation; MPR – Market Penetration 
rate; R – recognizable; NR – not-recognizable 
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5.6.3. Queue length on minor road 

At the end of each simulation run, there were vehicles remaining in the queue on the minor 
road. The number of vehicles remaining in queue is an indicator of the queue length on the 
minor road. Figure 5.12 shows the number of vehicles remaining in queue on the minor road in 
different conditions. The longest queue was found to be in conditions with More defensive AVs 
with a 75% penetration rate. The shortest queue was found in the conventional traffic condition. 
Table 5.12 presents the percentages differences in queue lengths between the different 
conditions organized by the research questions. 

 
Figure 5.12: Number of vehicles remaining in queue on the minor road in different 
conditions at the end of each simulation run (R – Recognizable; NR – Not Recognizable; 
BA – With Behavioral Adaptation; NoBA – Without Behavioral Adaptation; LessDef – 
Less defensive; MoreDef – More defensive). 
In general, an increase in MPR results in an increase in queue length on the minor road, except 
when behavioral adaptation is considered in non-recognizable Less defensive AV traffic. Also, 
the queue length is greater when Less defensive AVs are recognizable compared to when not. 
The queue length on the minor road is smaller when behavioral adaptation is considered 
compared to when it is not considered, except when Less defensive AVs are recognizable. 
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Table 5.12: Percentage change in queue length on the minor road between different 
conditions 

  Condition 
Change in queue length (percentage) 
MPR from 25% to 50% MPR from 50% to 75% 

Effect of Market 
Penetration Rate 

No BA, MD AVs  +31.25% +23.81% 
No BA, LD AVs  +12.50% +5.56% 
BA, MD AVs  +46.15% +26.32% 
BA, NR LD AVs  -7% +7.14% 
BA, R LD AVs  11.76% +15.79% 

  Recognizable Less defensive AVs compared to Non-Recognizable Less defensive AVs 

Effect of  
recognizability 

BA, MPR 25% +13.33% 
BA, MPR 50% +35.71% 
BA, MPR 75% +46.67% 

  More defensive AVs compared to Less defensive AVs 

Effect of AV 
driving style 

No BA, MPR 25% 0.00% 
No BA, MPR 50% +16.67% 
No BA, MPR 75% +36.84% 
More defensive AVs compared to Non-Recognizable Less defensive AVs 
BA, MPR 25% -13.33% 
BA, MPR 50% +35.71% 
BA, MPR 75% +60.00% 
More defensive AVs compared to Recognizable Less defensive AVs 
BA, MPR 25% -23.53% 
BA, MPR 50% 0.00% 
BA, MPR 75% +9.09% 

  With Behavioral adaptation compared to without behavioral adaptation 

Effect of  
considering  
behavioral  
adaptation 

MD AVs MPR 25% -18.75% 
MD AVs MPR 50% -9.52% 
MD AVs MPR 75% -7.69% 
NR LD AVs MPR 25% -6.25% 
NR LD AVs MPR 50% -22.22% 
NR LD AVs MPR 75% -21.05% 
R LD AVs MPR 25% +6.25% 
R LD AVs MPR 50% +5.56% 
R LD AVs MPR 75% +15.79% 

BA – Behavioral adaptation; MPR – Penetration rate; R – recognizable; NR – non-recognizable 

5.7. Discussion & Conclusion 

The discussion of the results is organized according to the research questions. For each research 
question, the results for the minor road are discussed first followed by the results for the major 
road. For the first three research questions, we discuss the results when behavioral adaptation 
is considered. In the fourth research question, we discuss the effect of considering or not 
considering behavioral adaptation on the performance indicators. 
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5.7.1. What is the effect of AVs’ penetration rate on the efficiency of mixed traffic at 
priority T-intersection? 

For vehicles on the minor road, the delay increases with an increase of AV penetration rate on 
the major road. This occurs both when AVs are More defensive and when they are Less 
defensive (recognizable and non-recognizable). This could be because both Less defensive and 
More defensive AVs as defined in this study have larger desired headways than most HDVs. 
Therefore, vehicles on the major road are more spread (but still not with an enough big gap to 
merge from the minor road) and have smaller gaps between groups (platoons) of vehicles 
arriving at the intersection. Therefore, more vehicles on the minor road end up waiting at the 
stop line before an acceptable gap is available. The increase in delay is especially high when 
AVs are More defensive, with more than a +100% increase in median delay per minor vehicle 
when the More defensive AV penetration rate increases from 50% to 75%. In absolute terms, 
this increase in median delay is approximately +100 seconds per minor road vehicle. As More 
defensive AVs have larger time headways than Less defensive AVs, the increase in delay for 
minor road vehicles with increasing penetration rate is larger for scenarios with More defensive 
AVs than scenarios with Less defensive AVs. Therefore, there is a clear trend that delay for 
minor road vehicles increases with an increase in AV penetration rate on the major road.  
The effects of AV penetration rate on the delay of AVs on the major road is much less noticeable. 
The largest increase in median delay per AV due to an increase in the penetration rate was 
+22.62% when the penetration rate of More defensive AVs increased from 50% to 75%. In 
absolute terms, this increase in median delay was only 0.76 seconds per AV on the major road. 
The effects of AV penetration rate on the delay of HDVs on the major road is mixed. The largest 
increase in HDVs’ median delay of +30.59% was in More defensive AV traffic, when the AV 
penetration rate increased from 25% to 50%. In absolute terms, this increase was only 0.52 
seconds per HDV on the major road. Therefore, increasing AV penetration rate does not seem 
to affect the delay of vehicles (both AVs and HDVs) on the major road in a meaningful way. 

5.7.2. What is the effect of AVs’ recognizability on the efficiency of mixed traffic at 
priority T-intersection?  

Recognizability significantly affected the gap acceptance behavior only in Less defensive AV 
traffic.  
For vehicles on the minor road, the median delay was larger when Less defensive AVs were 
recognizable compared to when being non-recognizable. This held true at all penetration rates. 
At a penetration rate of 75% Less defensive AVs, the median delay per minor road vehicle was 
+81.67% (74.9 seconds) larger when AVs were recognizable compared to when non-
recognizable. This is because minor road vehicles are less likely to accept a gap in front of a 
recognizable Less defensive AV, in-line with what was reported in (Reddy et al., 2022). Thus, 
Less defensive AVs result in increased delay for minor road vehicles when AVs are recognizable 
compared to non-recognizable.  
For Less defensive AVs on the major road, the median delay was smaller when they were 
recognizable compared to when they were not recognizable. This is because Less defensive AVs 
are less likely to be cut-off by minor road vehicles when they are recognizable compared to 
when they are non-recognizable. However, the difference in the median delays between 
recognizable and non-recognizable Less defensive AVs appeared to reduce with higher 
penetration rates. At a penetration rate of 25% Less defensive AVs, the median delay per AV 
vehicle was -28.03% (0.8 seconds) smaller when AVs were recognizable compared to when 
they were not recognizable. And at a penetration rate of 75% Less defensive AVs, the median 
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delay per AV vehicle was -12.03% smaller when AVs were recognizable compared to when they 
were not recognizable. Interestingly, for HDVs on the major road, the median delay was larger 
when Less defensive AVs were recognizable compared to non-recognizable. This is probably 
because HDVs in such a scenario would be more likely to accept a gap in front of an HDV than 
in front of a recognizable Less defensive AV. This difference in median delay increased with an 
increase in the penetration rate of Less defensive AVs. At a penetration rate of 75% Less 
defensive AVs, the median delay per major road HDV was +56.43% (0.8 seconds) larger when 
AVs were recognizable compared to when they were not recognizable. Although recognizability 
of Less defensive AVs seems to have an effect on the delay of major road vehicles, the 
magnitude of this effect appears to be very small. 

5.7.3. What is the effect of AVs’ driving style on the efficiency of mixed traffic at priority 
T-intersection?  

At higher penetration rates, minor road vehicles were found to experience larger delays when 
AVs were More defensive than when AVs were Less defensive and non-recognizable. The 
largest difference was at an AV penetration rate of 75% where the median delay per minor road 
vehicle was +128.3% (117.6 seconds) larger when AVs were More defensive compared to when 
AVs were Less defensive and non-recognizable. This trend was also observed with recognizable 
Less defensive AVs. The difference between the median delay per minor road vehicle when AVs 
were More defensive and when they were Less defensive and recognizable increased with 
increasing AV penetration rate (note that recognizability does not play a role in More defensive 
AVs). At a penetration rate of 25%, the median delay per minor road vehicle was -38.28% (35.7 
seconds) smaller when AVs were More defensive compared to when AVs were Less defensive 
and recognizable. On the other hand, at a penetration rate of 75%, the median delay per minor 
road vehicle was +25.68% (42.8 seconds) larger when AVs were More defensive compared to 
when AVs were Less defensive and recognizable. Therefore, at a larger penetration rate, the 
delay for minor road vehicles is larger when AVs are more defensive as compared to when AVs 
are recognizable and less defensive. In (Reddy et al., 2022), drivers’ critical gaps were the 
smallest for More defensive recognizable AVs and largest for Less defensive recognizable AVs. 
The difference with the current study is the traffic distribution of the approach road. While in 
the driving simulator, traffic was uniformly distributed, in the simulation, approaching road 
traffic followed a Poisson distribution as would be in real life. Hence, the delay effects are less 
straightforward to predict. 
For AVs on the major road, the median delay was larger for More defensive AVs compared to 
Less defensive AVs, especially at higher penetration rates. At a 75% penetration rate, the median 
delay per More defensive AV was +41.58% (1.2 seconds) larger than that for non-recognizable 
Less defensive AVs, and +60.94% (1.6 seconds) larger than that for recognizable Less defensive 
AVs. For HDVs on the major road, the median delay was generally larger in More defensive 
AVs traffic than in Less defensive AV traffic. The largest difference was at an AV penetration 
rate of 50%, where the median delay per major road HDV in More defensive AV traffic was 
+56.34% (0.8 seconds) larger than in non-recognizable Less defensive AV traffic. When the 
absolute change in delay is considered, it does not appear that there is a very meaningful 
difference in delay with AV driving style, for vehicles (both AVs and HDVs) on the major road. 

5.7.4. What is the effect of considering human drivers’ behavioral adaptation in mixed 
traffic in the context of the above questions? 

The effect of considering behavioral adaptation on the measured median delay for minor road 
vehicles is primarily noticeable when AVs are Less defensive and recognizable. Considering 
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behavioral adaptation results in an increase in median delay for minor road vehicles in 
recognizable Less defensive AV traffic, when compared to not considering behavioral 
adaptation. The increase in median delay per vehicle is +63.28% (36.1 seconds) at 25% 
penetration rate, +49.24% (33.8 seconds) at 50% penetration rate, and +75.54% (71.7 seconds) 
at 75% penetration rate. In other scenarios, the difference in median delay for minor road 
vehicles before and after considering behavioral adaptation is not considerable. Compared to 
conventional traffic scenario (100% HDV traffic), the median delay per minor road vehicle in 
recognizable Less defensive AV traffic considering behavioral adaptation is +138.9% (54.2 
seconds) larger at 25% penetration rate, +162.9% (63.5 seconds) larger at 50% penetration rate, 
and +327.3% (127.6 seconds) larger at 75% penetration rate. If behavioral adaptation was not 
considered, the median delay per minor road vehicle in conventional traffic compared to Less 
defensive AV traffic would be +46.4% (18 seconds) larger at 25% penetration rate, +76.2% 
(29.7 seconds) larger at 50% penetration rate, and +143.4% (55.9 seconds) larger at 75% 
penetration rate. Therefore, recognizable Less defensive AVs will result in a relatively large 
increase in delay for minor road vehicles compared to conventional traffic, when behavioral 
adaptation is considered. Considering behavioral adaptation results in a significant change in 
the measured delay for minor road traffic.  
For AVs on the major road, the effect of considering behavioral adaptation is relatively smaller. 
The general trend is that considering behavioral adaptation reduces the measured delay for AVs 
on the major road. The difference in median delay is relatively more noticeable for recognizable 
Less defensive AVs, with the largest decrease in median delay per AV after considering 
behavioral adaptation compared to not considering behavioral adaptation being -27.8% (0.8 
seconds in absolute terms). The decrease of 0.8 seconds does not seem very significant. For 
HDVs on the major road, the effect of considering behavioral adaptation is also relatively 
smaller. The most noticeable difference is in recognizable Less defensive AV traffic, where 
considering behavioral adaptation compared to not considering behavioral adaptation results in 
an increase in delay per HDV on the major road by 61% (0.83 seconds in absolute terms). 
Again, 0.83 seconds does not seem very significant. Therefore, considering behavioral 
adaptation does not seem to have a meaningful impact on the measured delay for AVs and HDVs 
on the major road, compared to not considering behavioral adaptation. 

5.8. Threats to validity of results  

This research made certain assumptions and has some limitations. Below, we discuss the threats 
to the validity of the results: 

• Short waiting time before gap acceptance: In the driving simulator experiment, 
drivers did not need to wait for a long time before accepting a gap. This made it 
impossible to get insights into the effect of minor road vehicle waiting time on their gap-
acceptance behavior. It may be expected that longer waiting times make drivers more 
impatient and accept smaller gaps (Zohdy et al., 2010), further encouraged by the “back 
pressure” from vehicles waiting behind in the queue. Minor road drivers accepting 
smaller gaps would cause larger delays to major road vehicles, and/or cause delays to a 
larger number of major road vehicles. Minor road vehicles could experience smaller 
delays as they accept smaller gaps. However, the disruption caused to the major road 
could reduce the available gaps on the major road further upstream causing smaller 
offered gaps, until the disruption is alleviated. This may consequently result in minor 
road vehicles waiting longer to get an offered gap.  

• Effect of the appearance of the AVs: AVs appearance (the color and the model) in the 
simulator could have had an effect on the gap acceptance behavior. It could be that 
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"ordinary” colors of the AV such as white or grey could lead drivers to perceive the AV 
as more defensive, as compared to a bright color such as yellow. Also, the build/model 
of the car could affect how they are perceived. A car with clearly visible LiDAR and 
camera sensors may suggest that the car can detect other vehicles well, thus increasing 
the trust in the AV. 

• We only considered human drivers gap acceptance: In this research, we only 
considered AVs to be present on the major road due to no insights on gap acceptance 
behavior of AVs on the minor road. In reality AVs would be mixed in traffic. This is also 
the reason why we modelled only one intersection as opposed to a network of 
intersections as otherwise we would need to define AVs gap acceptance behavior 
(because AVs on the major road would approach the following intersection as minor 
road traffic). It is possible that AVs have a more conservative gap acceptance behavior 
compared to HDVs resulting in acceptance of large gaps, which may be better for the 
major road vehicles, but can increase the delay and queue length for the minor road. 

• Limitations of using a driving simulator: The empirical data was collected from a 
driving simulator experiment. The experience in a driving simulator is different from 
driving in real life due to aspects such as the physical experience of risk and speed, the 
knowledge that one is being observed, and sense of urgency in real life to arrive at work 
or home. It could be that in real life driving, drivers drive safer (due to greater perception 
of risk), accepting larger gaps; or even riskier (due to not being observed, and/or because 
of greater time pressure), accepting smaller gaps. 

• Long term behavioral adaptation: Gap acceptance in this study was modelled based 
on the behavior of participants in a simulator on a specific day. In reality, there may be 
a long-term behavioral adaptation that could be different from the short-term behavioral 
adaptation. For instance, drivers may get used to recognizing AVs and understanding 
and anticipating their behavior. This could cause them to drive even more aggressively 
if they anticipate AVs to be defensive, thereby accepting smaller gaps in front of AVs 
(and possibly also in front of HDVs due to behavioral adaptation); or to drive more 
defensively if they anticipate AVs to be aggressive; thereby accepting larger gaps. 

• Driving style of AVs: The More defensive and Less defensive AVs in the driving 
simulator differed from the HDVs in their desired time headway and desired speed. It is 
probable that there will be more behavioral differences such as with acceleration and 
deceleration (Wang et al., 2023). This was not considered in this study. Considering 
these additional differences between the two AV driving styles are expected to result in 
an even more distinct interactions of HDVs with them. 

• Effect of penetration rate:  We assumed that the gap acceptance behavior (the model) 
of human drivers remains constant irrespective of the AV penetration rate. It is possible 
that greater penetration rates of AVs result in a different effect on gap acceptance 
behavior of human drivers.   

5.9. Recommendations for policy and future research 

AVs are expected to become increasingly present on our roads. Human drivers, who will share 
the road and interact with these AVs, might interact differently than when interacting with other 
HDVs. This could have implications for traffic efficiency and therefore on policy decisions 
relevant to the deployment of AVs. In this study, we investigated the potential impact on the 
traffic efficiency at priority T-intersections. Human driven vehicles on the minor road waited at 
a stop line to accept a suitable gap between vehicles on the major road composed of both AVs 
and HDVs. We found that the delay for vehicles on the major and minor roads is impacted by 
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aspects such as AVs penetration rate, AVs recognizability and driving style, and whether 
behavioral adaptation was considered in gap acceptance. 
Higher penetration rates lead to larger delays for minor road vehicles. Considering behavioral 
adaptation of minor road vehicles when AVs on the major road were recognizable and less 
defensive led to a change in the measured delay per vehicle compared to when behavioral 
adaptation was not considered. It is interesting to note that the lowest delay for minor road 
vehicles and for major road vehicles was in conventional traffic condition. Moreover, the 
number of vehicles remaining in the queue on the minor road was also the lowest in the 
conventional traffic condition. This suggests that as far as traffic efficiency is concerned at 
priority T-intersections, conventional traffic is the most efficient compared to any condition 
with the AVs considered in this study. This raises the question of the benefit of AVs for traffic 
efficiency. Policymakers must therefore gain an accurate understanding of the precise benefits 
brought by AVs. Another important insight is the difference between the delays for less 
defensive AVs and HDVs on the major road, with respect to the recognizability of AVs. When 
less defensive AVs are recognizable, their delays decrease, but the delays for the other HDVs 
on the major road increases. This raises an important question of equity, that must be considered 
by policymakers. 
There could be some practical measures that can improve traffic efficiency in mixed traffic. To 
reduce the delays at priority intersection, AVs may need to adjust their gaps while approaching 
the intersection. This would result in larger gaps between arriving platoons of major road 
vehicles, resulting in more opportunities for gap acceptance for minor road vehicles. The build-
up of queue on the minor road could be an issue when there is limited road length available on 
the minor road due to, for example, another intersection upstream. Infrastructure to Vehicle 
(I2V) and Vehicle to Vehicle (V2V) communication could be designed to trigger changes in the 
headways of AVs when the minor road queue length exceeds by a critical margin.  Road 
authorities and policymakers can take these aspects into consideration when making 
infrastructure-level decisions. 
The magnitude of the delay differences is important to note. The delays for minor road vehicles 
for the different conditions were much larger than the delays for major road vehicles, as was 
expected. Policymakers and road authorities should consider whether the delays and the 
differences in delays between different scenarios are meaningful (or important enough). The 
delay per vehicle in seconds could be converted to total delay in hours per year. For example, 
assuming a minor road peak hour traffic volume of 200 vehicles per hour, and 4 hours of peak 
hour traffic every day, the total delay for minor road vehicles for over a year can be calculated 
for different conditions. For the condition of 75% Less defensive AVs without considering 
behavioral adaptation, the total annual delay for all vehicles would be about 7700 hours (i.e., 
38.5 hours per vehicle per year), and for the condition of 75% Less defensive recognizable AVs 
with behavioral adaptation it would be about 13500 hours for all vehicles (i.e., 67.5 hours per 
vehicle per year). The difference is 5800 hours per year, which is the unaccounted delay if 
behavioral adaptation was not considered in recognizable Less defensive AV traffic. Similarly, 
the total annual delay for minor road vehicles in conventional traffic condition is about 3200 
hours, whereas for the condition 75% more defensive AVs with behavioral adaptation it is about 
17000 hours, resulting in a difference of about 13800 hours. It must be considered whether this 
is meaningful enough to adopt any countermeasures. This is for policymakers to decide. 
Future research on traffic efficiency effects of mixed traffic must consider behavioral adaptation 
when modelling gap acceptance behavior in mixed traffic as it was found that considering 
behavioral adaptation results in a large change in the measured delays for minor road vehicles 
when AVs were recognizable and less defensive in mixed traffic. Field tests must be conducted 
to study human drivers gap acceptance behavior in real life as compared to a simulator 
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environment. The effect of longer waiting times at the intersection in mixed traffic is also 
important to study, in combination with “back pressure” from vehicles waiting behind the 
subject vehicle. Future studies must design the appearance and driving styles of AVs to be more 
realistic and based on the current or realistic expected future driving styles of AVs. The effect 
of penetration rate on the gap acceptance behavior is an important topic to investigate. Also, 
future research in this direction should look at gap acceptance with AVs also on the minor road 
by defining gap acceptance behavior of AVs. It is also noteworthy to standardize the data 
collection methodology and analysis method for such gap acceptance behavior prediction 
studies, using benchmarking approaches such as the one described in Schumann et al. (2023). 
This would allow for a more systematic and complete evaluation of the models. Additionally, 
traffic safety indicators must be included in the analysis to gain traffic safety insights, and to 
further understand the balance between traffic efficiency and safety. Finally, long term 
behavioral adaptation would be important to study to understand whether and how human 
drivers change their behavior as they get more experienced with interacting with AVs and the 
implications on traffic efficiency and safety. 
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5.12. Appendix 

In the microsimulation environment, an unsignalized T intersection was initially generated by 
deactivating the priorities. Based on the framed simulation scenarios, traffic volumes were input 
in accordance with the distinct vehicle categories present, including Autonomous Vehicles 
(AVs) and Heavy Duty Vehicles (HDVs) on the main road, while HDVs exclusively on the 
minor road. Following this, iterative simulation runs were conducted for each scenario, 
employing a diverse set of ten seeds to ensure robust results. During the simulation process, the 
Traffic Control Interface (TRACI) script was invoked as vehicles originating from the minor 
road traverse into the intersection zone. It was at this juncture that the behavior of these vehicles, 
particularly their inclination to accept or reject available gaps in traffic flow, was steered by the 
gap acceptance model. This model served as a guiding principle, influencing how vehicles 
navigate through the intersection based on their assessment of viable gaps in the oncoming 
traffic.  
Further, to understand the traffic characteristics, the detailed trajectory information, 
comprehensive records of individual vehicle trips were recorded. These recorded data served 
as the foundation for evaluating the performance and behavior of the simulated traffic scenarios. 
Further, the processes are detailed in Figure A-1. 
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Figure A-1: Microscopic traffic simulation setup for modelling the gap acceptance 
behavior 
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6. Discussion and conclusions 

This chapter begins with the main Conclusions, which are primarily drawn from the research 
conducted in this thesis. However, these Conclusions go beyond merely presenting the direct 
findings. They are also informed by a discussion of the various results found in the individual 
chapters of the thesis, in combination with existing literature, and some degree of interpretation. 
Section 6.1 presents the main Conclusions, following which Section 6.2 discusses the answer 
to the main research question while performing a synthesis of the results, which forms the 
argumental basis for the main Conclusions. Additionally, Section 6.2 presents a tabular 
overview of all the individual results specifically from this thesis. Then, a reflection on the 
methodologies used in this study, and the limitations thereof are presented. Finally, potential 
implications or recommendations to various stakeholders are discussed, and avenues for future 
research are proposed. 

6.1. The Main Conclusions 

The main Conclusions from this research on the nature of behavioral adaptation of HDVs in – 
and their effects on – mixed traffic: 

1. Forward field of view 
There is a larger tendency for behavioral adaptions to occur in the forward field of view of AVs, 
for instance while merging in front of the AV in gap acceptance, or merging in front of the AV. 
This still recognizes that behavioral adaptation occurs in other behaviors and directions too, 
only that the extent could be smaller than in the forward field of view. There are also effects on 
traffic efficiency resulting from this. That is, the behavioral adaptations would result in 
noticeable traffic efficiency impacts particularly in situations where vehicles interact with each 
other in the forward field of view. For instance, this could be not only during gap acceptance 
and overtaking, but also for example during lane changing (in front of AVs). The effects on 
traffic efficiency can flow further upstream, but the cause of this would primarily be in 
interactions in the forward field of view. 

2. Effect of imitation 
When drivers do not recognize a vehicle as an AV, then the effect of imitation comes into play, 
where drivers tend to follow the driving behavior of vehicles around them. For instance, drivers 
tend to keep shorter headways if vehicles around them also keeps shorter headways, and vice 
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versa. The effect of imitation points to human drivers potentially mimicking AVs driving 
behavior, when AVs are not recognizable.  AVs keeping larger headways can cause human 
drivers also to keep larger headways. This could reduce the capacity of motorways for example. 
This means that how AVs are designed to drive affects not only their behavior and implications 
on traffic efficiency, but also makes other human drivers around them drive in a similar fashion 
when not recognizable, thus exacerbating the effects on traffic flow.  

3. Mechanism of trust 
If drivers recognize a vehicle as an AV, then the mechanism of trust comes into play, where the 
direction and extent of the behavioral adaptations depend on the level of trust drivers have in 
AVs. The mechanism of trust also highlights the importance of the design of AVs. If AVs are 
recognizable, the perception that human drivers have of AVs affects how human drivers drive. 
This perception would be a combination of the general trust human drivers would have in AVs 
(derived from previous knowledge, coverage in media, public information, etc.), in combination 
with how they perceive the AVs driving on the road. This is critical as human drivers could 
exhibit a range of behaviors from “exploiting” the safe driving behavior of AVs by driving more 
aggressively around AVs, or “being exploited” by the “less defensive” driving style of AVs. All 
this can have large consequences on traffic efficiency. 

4. Impact of behavioral adaptation on mixed traffic efficiency 
Mixed traffic factors affect human drivers’ behaviors, which in turn has implications on traffic 
efficiency at a macroscopic level. Additionally, not considering behavioral adaptation of HDVs 
while predicting the traffic efficiency of mixed traffic could lead to inaccurate results. For 
example, not considering behavioral adaptations of HDVs in gap acceptance could lead to an 
underestimation of delay of minor road vehicles by about 75%. 
In addition to these Conclusions, this thesis also found specific effects of mixed traffic aspects 
such as AV recognizability, driving style, penetration rates, and considering behavioral 
adaptation in microsimulation. These will briefly be discussed in the next section, and presented 
in the tabular overview later, but for a more specific results, the reader is referred to the 
individual chapters (the tabular overview later in this chapter helps to guide the reader to the 
right chapter for further study). 

6.2. Synthesis of the results, and answering the main research question 

What are the impacts of automated vehicles on the driving behavior of human-driven 
vehicles, and its resulting consequences on mixed traffic efficiency? 
This section makes a synthesis of the different results found to see what kind of an overall 
picture do this dissertation’s findings paint. Previous literature is cited where relevant, although 
in the individual chapters of this dissertation, a detailed reflection on literature has been made. 
This section also forms the argumentation basis for the Conclusions made in sub-section 6.1. 
The discussion in this section is organized by the individual studies. 

On behavioral adaptation observed on real roads 

The critical gaps and headways after overtaking were smaller when merging in front of a 
recognizable AV compared to an HDV. Moreover, with the provision of positive information, 
the critical gaps and the headways after overtaking reduced. The first takeaway from this field 
test provides the Conclusion that there exists a mechanism of trust when drivers make driving 
decisions. A default higher trust in AVs resulted in closer interactions. And the positive 
information further increased drivers’ trust in AVs (measured by the increase in the reported 
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trust levels), resulting in further closer interactions. In a field experiment by Zhao et al. (2020), 
it was also found that AV-believers maintained smaller time headways behind recognizable AVs. 
The effect of trust has also been shown with pedestrians, where pedestrians having greater trust 
in AVs have a higher intention to cross in front of AVs (Hagenzieker et al. (2020); Nuñez 
Velasco et al., 2019; Zhao et al., 2022). Another takeaway from the field test was the conclusion 
that drivers adapt their behaviors when interacting with AVs only when they are in the forward 
field of view of AVs, in other words, in front of AVs, because no change was observed when 
following behind the AV or while driving next to it during overtaking. The first driving 
simulator experiment allowed these two Conclusions to be tested. 

On car-following behavior 

Drivers had smaller desired speeds when following the lead vehicle that appeared as an AV, and 
when it had the AV driving style (for drivers having higher trust in AVs). This was not because 
drivers trusted AVs less, but because of the conservative driving behavior of the AV and drivers’ 
inability to influence the AVs driving style when following it. This is explained by the finding 
that the larger the trust in AVs, the smaller was the jam spacing of drivers (also note that the 
safe time headways were larger when AV was recognizable). That is, drivers who trusted AVs 
more tended to keep a closer distance with the AV. Moreover, drivers having larger trust in AVs 
had smaller desired velocities when the lead vehicle had an AV driving style (more conservative 
driving style). Real world crash data also shows that most crashes between AVs and HDVs 
occurred when AV was at standstill while the HDV was driving straight behind the AV, thereby 
resulting in a rear-end collision (Xu et al., 2019). The findings of this dissertation could explain 
this as recognizable AVs could cause drivers to have smaller jam spacing and smaller safe time 
headways, particularly those having greater trust in AVs. Therefore, this underpins the 
mechanism of trust proposed earlier from the findings from the field test. However, this 
indicates that there is an effect of AV appearance on car-following behavior. But the earlier field 
test proposed that there is only behavioral adaptation in the forward field of view. Contrastingly, 
the driving simulator experiment showed closer maneuvers also while driving behind an AV. 
This can be explained as follows. In the field test, the test vehicle had the same driving style 
between the AV and HDV scenarios (in practice the vehicle was driven by the same human 
driver), and a human safety driver was always present inside. In the driving simulator, however, 
AVs and HDVs had different driving behaviors. The difference between safe time gap of AV 
HDV scenario and HDV HDV scenario, was about half as small as the difference between AV 
AV scenario and HDV HDV scenario (the HDV HDV scenario having larger values for both 
cases).  Therefore, this suggests that driving style differences were perceived. The driving 
simulator experiment also had a larger sample size (47) compared to the field test (18). So, the 
finding of the driving simulator experiment (closer interactions when car-following) carries 
significant additional importance. In existing literature, however, there is evidence of 
behavioral adaptation both in gap acceptance (Trende et al., 2019), lane changing (S. Lee et al., 
2018; S. Y. Lee & Oh, 2017; Razmi Rad et al., 2021) as well as in car following (Mahdinia et 
al., 2021; Rahmati et al., 2019; Zhao et al., 2020). We could consider lane changing to also be 
a forward field of view interaction as drivers merge in front of another vehicle. In any case, 
there is evidence also in literature for behavioral adaptations to occur both in the forward field 
of view as well as when driving behind the AV. However, I do not propose to reject the forward 
field of view Conclusion. It could still be possible that the impact of behavioral adaptation is 
greater in the forward field of view than when interacting from other directions. What both the 
field test and this driving simulator experiment point to is that there is a mechanism of trust in 
AVs that impacts the level of behavioral adaptation. 
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On gap acceptance behavior 

Neither the AV appearance nor the AV driving style independently affected drivers’ gap 
acceptance behavior, but only when combined. This supports the Conclusion that when AVs 
were not recognizable, there is an effect of imitation in human drivers, which nudges them to 
follow the behavior of drivers around them. Drivers were found to drive less defensively when 
AVs that were not recognizable drove less defensively, and vice versa. In the driving simulator 
experiment by Gouy et al. (2014), the authors found that drivers reduced their time headways 
when driving next to non-recognizable AV platoons that also had smaller time headways, 
therefore also pointing towards an imitation behavior. When AVs were recognizable, however, 
the experiment results suggested a mechanism of trust. When recognizable AVs drove more 
defensively, drivers drove less defensively, and when recognizable AVs drove less defensively, 
drivers drove more defensively (Hulse et al., 2018). The findings in Schoenmakers et al. (2021) 
also support this, where they found that drivers drove with significantly smaller time headways 
when driving in proximity of AV platoons.  In the first driving simulator experiment where AVs 
had a more conservative behavior than HDVs, higher trust in AVs resulted in smaller jam 
spacing. This supports the mechanism of trust Conclusion. Current literature also highlights the 
importance of risk perception with respect to AVs (Hulse et al., 2018). The concepts of trust and 
risk perception are closely related, as found in Zhang et al. (2019) where perceived risk had a 
negative effect on the acceptance of AVs through trust. 
There is additional evidence from the first driving simulator experiment for the effect of 
imitation. If the effect of imitation mechanism is valid, then compared to HDV HDV 
(Appearance, Driving style), drivers must drive more conservative in the HDV AV scenario (as 
AV driving style was more conservative than HDV driving style). Compared to the HDV HDV 
scenario, drivers had a larger jam spacing, almost the same safe time headway, and smaller max 
acceleration in the HDV AV scenario. This points towards more conservative driving, thus 
supporting the effect of imitation mechanism. And if the mechanism of trustis valid, then drivers 
must drive more aggressive in the AV AV scenario. Compared to the HDV HDV scenario, 
drivers had a smaller jam spacing and smaller safe time gap in the AV AV scenario. This points 
towards more risky driving, thus supporting the mechanism of trust.  
To conclude, we can say that firstly, there is a larger tendency for behavioral adaptions to occur 
in the forward field of view of AVs. This still recognizes that behavioral adaptation occurs in 
other behaviors and directions too, only that the extent could be smaller than in the forward 
field of view. Secondly, if drivers do not recognize a vehicle as an AV, then the effect of imitation 
comes into play, where drivers tend to follow the driving behavior of vehicles around them. 
Thirdly, if drivers recognize a vehicle as an AV, then the mechanism of trust comes into play, 
where the direction and extent of the behavioral adaptations depend on the level of trust drivers 
have in AVs.  

On the impact on traffic efficiency 

In general, AVs deteriorated traffic efficiency because of larger time headways than HDVs. 
Along the same lines, more defensive AVs have larger time headways and hence can cause 
greater delays to minor road vehicles. It was also found that not considering behavioral 
adaptation could result in a large underestimation of the measured delays for minor road 
vehicles. While these were the effects on traffic efficiency, I did not study the impacts on traffic 
safety, which could have different implications. 
With the results of the microsimulation study, two key aspects must be kept in mind. First, that 
it was a priority intersection, which means that the major road always had priority. Therefore, 
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the delays were almost completely experienced only by minor road vehicles. If it was not a 
priority intersection, then delays would have also been experienced more by traffic on the major 
road, and with larger AV time headways, there could be significant spillbacks on the major road. 
Second, we assumed that traffic arrives in platoons that are binomially distributed and in a semi-
congested traffic volume. If the major road traffic volume would be very low, there would be 
negligible delays. But if the major road were more congested, then the minor road vehicles 
would face very large delays, and in the real world, could even lead to forced entries due to the 
impossibility of finding a gap (this would apply also if there was a uniform distribution instead 
of a binomial distribution of major road vehicles). 
These findings show that AVs could deteriorate traffic efficiency at intersections, causing more 
delays and also longer queues building up on the minor road. This could have significant 
impacts especially where the road space is limited, leading to blocking the upstream road 
network/ intersections. The findings also show that behavioral adaptation must be considered 
when making any models or simulations or prediction studies on the impact of AVs on mixed 
traffic to gain an accurate understanding of future traffic situations.  
There are also traffic efficiency effects resulting from the Conclusions discussed before. The 
forward field of view Conclusion implies that traffic efficiency implications could also 
primarily occur in the forward field of view of AVs. This could be not only during gap 
acceptance and overtaking, but also for example during lane changing (in front of AVs). Lane 
changes particularly can affect traffic flow efficiency on motorways. The effect of imitation 
Conclusion also points to human drivers potentially mimicking AVs driving behavior, when 
AVs are not recognizable. This means that how AVs are designed to drive affects not only their 
behavior and implications on traffic efficiency, but also makes other human drivers around them 
drive in a similar fashion when not recognizable, thus exacerbating the effects on traffic flow. 
AVs keeping larger headways can cause human drivers also to keep larger headways. This could 
reduce the capacity of motorways for example. The mechanism of trust also highlights the 
importance the design of AVs. If AVs are recognizable, the perception that human drivers have 
of AVs affects how human drivers drive. This perception would be a combination of the general 
trust human drivers would have on AVs (derived from previous knowledge, coverage in media, 
public information, etc.), in combination with how they perceive the AVs driving on the road. 
This is critical as human drivers could exhibit a range of behaviors from “exploiting” the safe 
driving behavior of AVs by driving more aggressively around AVs or “being exploited” by the 
“less defensive” driving style of AVs. All this can have large consequences on traffic efficiency.  
A compilation of all the findings made across the different studies is presented in Table 6.1 and 
Table 6.2. It is an overview of all the behavioral adaptations and impacts observed as part of 
this dissertation. The tables only present the effects that resulted in a (significant) change in the 
indicators, only for mixed traffic specific factors. The factors did not have any significant effect 
on the other indicators. The complete list of factors considered in this dissertation were: Mixed 
traffic specific factors (AV appearance, AV driving style, trust in AVs, AV penetration rate, 
considering behavioral adaptation), general factors (Driver age, driver gender, driver driving 
style). The complete list of indicators investigated were: Car-following (Jam spacing, Desired 
velocity, Safe time headway, Maximum acceleration, Comfortable deceleration), Gap 
acceptance (Accepted gap size, Critical gap, probability of accepting a gap), Overtaking 
(Headway after overtaking, Lateral distance while overtaking), Traffic efficiency at priority T 
intersection(Delay per vehicle on minor road, Delay per vehicle on major road, Queue 
length).The limitations and reflections on the methods used in this research of this dissertation 
is discussed in the next section.  
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Table 6.1: Overview of the effects of mixed traffic factors on human driver car-following 
and overtaking behavior 
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Table 6.2: Overview of the effects of mixed traffic factors on human driver gap acceptance 
behavior and traffic efficiency 
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6.3. Reflection on methodology 

This dissertation fused a range of different methods to address the research questions. These 
ranged from a controlled field test, driving simulator experiments, modelling, calibration, and 
microsimulation. Each of these methods required several decisions to be made. And 
consequently, the methods had their own specific limitations. These limitations, on one hand, 
had implications on the validity of the results of the executed studies, and on the other hand 
also guide future studies that result from, or take inspiration from this dissertation. The exact 
limitations of the various studied conducted are already discussed in the relevant chapters. This 
section focuses more on some key learnings from the different studies that were conducted. 
One important insight is being conscious of what exactly is being measured. For example, in 
the driving simulator experiment to study gap acceptance, drivers made gap acceptance 
decisions at the intersections. However, they had driven on the route prior to the intersections 
where they had experienced the specific traffic conditions. Therefore, their prior experience on 
the route would influence their behavior at the intersections, in addition to the specific 
conditions at the intersections. Therefore, there is a combination of the “carry-over effect” and 
the effect of the condition encountered at the experiment. It is important to be aware of such 
aspects to not wrongly attribute the observed behavior to solely the immediate surroundings. 
Additionally, it is important to consider learning effects in experiments. Participants change 
their behavior between scenarios not only due to the scenario conditions but also due to being 
more familiar and comfortable in the experiment set up. We accounted for this by randomizing 
the scenario order. But there could also be other ways to take into account, especially if a 
specific order of scenarios is demanded, such as by including the cumulative number of 
kilometers driven as a variable during modelling. Also, it should be noted whether it is short 
term or long term effects that are being measured. This dissertation measured behavioral 
adaptations in the short term only. Long term effects studies would have to study participants 
over a longer period of time, which can have its own challenges. Adding to the point of being 
aware of what is being measured, the same applies to the measurement of trust. In this research, 
we measured trust in AVs. This primarily meant that participants in the experiment were 
explicitly asked to rate their trust in AVs. However, trust is a latent variable and difficult to 
measure. It is also prone to subjectivity in understanding of the object under assessment, and in 
the interpretation of the term “trust”, and in the self-assessment of the individual’s extent of 
trust. Therefore, the measurement of trust must be paid attention to. Another aspect that ties to 
this is risk perception. Lower trust in the AVs would lead to higher perceived risk of AVs, and 
vice versa. The definitional difference between trust and risk perception, and their relationship 
with each other, is still under debate (He et al., 2022; Nordhoff et al., 2021; Pyrialakou et al., 
2020; Xu et al., 2018). As far as this dissertation is concerned, I did not differentiate between 
these two concepts. When these terms were used in this research,  they point to the same 
concept. 
This dissertation used a combination of different data collection methods, such as the field test 
and driving simulator to study similar behaviors (gap acceptance and car-following). This 
combination of methods not only enriches the findings with new insights, but also allows the 
possibility to make a deeper analysis of the underlying mechanisms contributing to the 
behavioral adaptations (such as the forward field of view, effect of imitation, and mechanism 
of trust). Field tests offer more valid results, while driving simulators offer greater flexibility to 
test different conditions. A combination is therefore more powerful than a single method. 
Another critical aspect is the definitions of vehicle behaviors. This is not trivial and vehicle 
behaviors must be defined based on the goal set for the study. If the goal is to implement real 
life situation, then the behaviors of vehicles must be sourced from valid data of currently 
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operating vehicles (AVs and HDVs). If the goal is more to test the effects of different factors 
such as driving style, then the requirement to base it on current real-life data is less important, 
but it is still important that it does not deviate too much from reality, if the results are to be 
practically useful. Also, defining vehicle behaviors should consider going beyond the desired 
speed and desired time headway differences. For instance, differences in steering behavior, lane 
changing behavior, even gap acceptance behavior can improve the realism and differences of 
the driving behaviors between AVs and HDVs. 
The same applies to how AV appearance is defined. Conscious decisions must be made on 
firstly, the physical appearance of AVs in experiments (should it represent reality or test 
different appearance designs, similar to driving behavior); and secondly, on whether 
participants are made aware prior to the experiment on how to recognize an AV. In the 
experiments conducted in this dissertation, the effect of recognizing a vehicle as AV was tested. 
Hence, participants were aware of how an AV looked like. This allowed to test the effect of 
knowing which vehicle is an AV and which is not. The advantage was that it was known that 
participants could recognize an AV. What could not be tested however was whether a certain 
appearance design would allow participants to identify a vehicle as an AV without any other 
information.   
As for participants, the sample size and diversity of participants is also not trivial. This 
dissertation, and many previous literature, has found that different groups of people (for 
example: age, gender, driving style, knowledge of AVs) have different driving behaviors. It is 
important therefore to have a representative sample and to collect and report on the 
demographics and other personal attributes (driving style, knowledge and experience of AVs, 
etc.) of participants. 
Another aspect is the time pressure in research experiments. In real life, drivers are generally 
in a rush, especially during peak hours. Their driving behaviors, and any potential behavioral 
adaptations are different from the conditions present in research experiments where people tend 
to be more relaxed. To have more realistic conditions, we adopted a method in the third driving 
simulator experiment where we displayed a message sign during the middle of the experiment 
that said that the participant is a few minutes late. Other such methods include conditioning the 
compensation provided on finishing the experiment in time, or other rewards or punishments 
for being on time versus being late, respectively. Caution must be adopted to not affect the 
natural driving behavior of the drivers while employing these methods. 
Concerning the analysis of results, for experiments with repeated measures, that is, where the 
same set of participants drive different scenarios, estimating mixed models is a good approach 
because it allows a more accurate insight into the impacts of various factors. Mixed models 
correct for repeated measures. Therefore, it is not sufficient to base insights only from the 
resulting descriptive statistics, if a more accurate investigation is needed. As for car-following 
model estimation, a “complete trajectory” is recommended to be adopted in the experiment set 
up. This ensures that all different types of driving regimes are covered, and hence the resulting 
models will be more valid and generalizable. Moreover, decisions of estimation and calibration 
must be done with care, and best practices for estimations should be adopted. The first driving 
simulator experiment describes more about a complete trajectory and also best estimation 
practices for car-following models. 
Another aspect to consider is that transferring results from driving simulator to real world is not 
so easy and direct. As I conducted a controlled field test and a driving simulator experiment and 
measured the same variables (critical gap and car-following), I found that on one hand, there 
were similarities (the direction of effects on critical gap), but there were differences on the 
magnitude of effects. On the other hand, there can also be complete differences too (for example 
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car-following behavior, but this was most likely due to differences in experiment set up). The 
focus of this research was more to study different aspects affecting HDV behavior and not to 
compare results of a field test with those of a driving simulator. Hence, the exact same set up 
was not done. In general, effects in real life driving could have similar directions as those 
measured in driving simulators, but the magnitude could be different. Finally, there needs to be 
a difference made between statistical significance and practical significance. Statistical 
significance does not necessarily indicate practical significance, and not being statistically 
significant does not mean also not being practical significant. For example, additional delays 
caused due to behavioral adaptation in gap acceptance may not be statistically significant. But 
in practice, if it causes effects such as spillback and blocks the upstream road network, it could 
still be practically significant. 

6.4. Practical implications 

This section presents potential implications of the results of this research to different 
stakeholders.  

Drivers of manual vehicles 

Drivers of manual vehicles are directly affected by mixed traffic. Firstly, they will soon be able 
to distinguish AVs from HDVs, unless AVs are completely non-recognizable. If AVs have a 
distinct driving style, HDVs will adopt their behavior accordingly. They may find themselves 
driving more cautiously if AVs are less defensive. This would affect traffic efficiency, causing 
drivers to experience more delays. On the other hand, it could be that traffic safety would be 
improved due to drivers maintaining larger distances from AVs. It may also occur that because 
of more delays, drivers start driving less cautiously again to compensate for their delays. If AVs 
drive defensively however, then drivers make closer maneuvers, thereby improving traffic 
efficiency, potentially at the cost of traffic safety. Non-recognizable AVs would have an inverse 
effect, where drivers would mimic the AV driving style. 

Automated vehicle users 

Considering a basic level of AV such as Adaptive Cruise Control (ACC), short (less defensive) 
headway settings in a recognizable AVs causes other human drivers to perform maneuvers 
further away from the AV. This may encourage AV users to keep such short settings as their 
individual travel experience could become better. This could suggest the exploitation of other 
(HDV) traffic by AV users. However, this could be a temporary effect because human drivers 
adapt their behavior with time when becoming more familiar with and accustomed to less 
defensive AVs, and therefore can once again drive as they do normally or even more 
aggressively. On the contrary, when less defensive AVs are non-recognizable, other human 
drivers perform more aggressive maneuvers. This could lead to the exploitation of AVs by other 
human drivers (unintentionally). In essence, it appears that AV users could prefer AVs that are 
recognizable and keep smaller headway settings. This combination would best serve their 
needs. 

Road authorities 

Road authorities are increasingly considering Infrastructure to Vehicle (I2V) communication. 
Such information could not only include the state of the road downstream, but also explicit 
instructions for the AV to drive in a certain way. When authorities provide such instructions to 
AVs in mixed traffic, they need to consider the possible behavioral adaptations. For instance, 
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asking (recognizable) AVs to decrease their time headway could cause HDVs to drive in a way 
that can even decrease traffic efficiency. On the other hand, asking (recognizable) AVs to 
increase their time headway may cause other HDVs to perform risky maneuvers. Examples of 
I2V situations where this could be relevant are the provision of Variable Speed Limits to AVs 
upstream, and the provision of time to green information from intelligent intersection 
controllers to AVs.  
As found in this dissertation, at priority intersections, AVs can result in larger delays for minor 
road vehicles. This could mean larger spill back effects, affecting other parts of road network. 
Larger time headways of AVs could also mean reduction of capacity on also motorways and 
general road network. Therefore, road authorities must be conscious of such effects. At the same 
time, this is only traffic efficiency and not safety, which must be given paramount importance.  
It must also be considered whether the behavioral adaptations observed and the impacts on 
traffic efficiency measured are meaningful enough to adopt any countermeasures. Making road 
infrastructural changes is expensive and more long term. With rapidly changing AV technology, 
care must be taken to align long term road infrastructure decisions with the expected vehicle 
technology and behavior. 

Driving license and vehicle licensing authorities 

Driving license authorities are advised to help human drivers become more aware of potential 
behavioral adaptations they undergo, and to train them on how to drive in the presence of AVs. 
Drivers could be trained to try becoming more aware of driving consciously using existing 
techniques, for example defensive driving, specifically in the context of mixed traffic 
conditions. Additionally, being more conscious of aspects of effect of imitation and mechanism 
of trust would make drivers make more aware decisions. 
Vehicle licensing authorities are advised to consider whether AVs should be recognizable. In 
either way, there are implications on traffic efficiency. Also, it may be useful to develop a 
defined range of permitted settings for AV users. For example, users of an ACC would be 
allowed to choose a time gap between 1.5 and 3.5 s only, not smaller and not larger. This can 
allow for more homogeneity in AV behavior. Defining lower and upper limits also allows car 
manufacturers to still offer their customized options to their users. 

AV car manufacturers 

AV car manufacturers desire to have a comfortable experience for their users, while ensuring 
safety. While they satisfy the legal requirements, car manufacturers still have significant room 
to make decisions on the appearance and driving style of AVs. They must investigate the 
implications of such decisions and including the implications of having various driving settings. 
Specifically, how would the users respond and use these settings, and the resulting implications 
on the surrounding traffic. Also, car manufacturers could help make their users aware of the 
consequence of using their cars and keeping certain settings. If other drivers perceive AVs as 
defensive and safe, then drivers might drive more aggressively or make closer maneuvers in 
front of AVs. Therefore, vehicle manufacturers could consider monitoring the attention of AV 
drivers more frequently, so they are prepared to take over if necessary. External Human-
Machine Interfaces could also be a way to control risky cut-ins by other HDVs, such as by 
having a visible indication feature to warn the other human drivers that the AV’s current 
headway in insufficient to make a safe lane change in front of it. 
Ideally, a close collaboration between all stakeholders is required to ensure safe and comfortable 
driving conditions. 
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6.5. Avenues for future research 

To further continue research in this topic of behavioral adaptation and implications on traffic 
performance, there are several possible research directions. The individual chapters of this 
dissertation already provide avenues for future research. Also, section 3 of this chapter provided 
a reflection on methodology that would be of assistance to future research by highlighting some 
key aspects to consider while investigating this topic. This section provides some further key 
global additions based on the main research findings of this dissertation. 
Future research in this area is encouraged to further investigate and specify the Conclusions 
made in this thesis: forward field of view, effect of imitation, mechanism of trust, and impact 
of behavioral adaptation on mixed traffic efficiency. As for the forward field of view, it is 
important to define what behaviors exactly constitute the forward field of view (such as lane 
changing in front of AV, gap acceptance, merging). Then, it is interesting to investigate how the 
behavioral adaptations of different driving maneuvers within the forward field of view compare 
with each other in terms of their magnitudes and directions. Another interesting question is 
whether behavioral adaptation is always present in the forward field of view or are there 
conditions for it to occur. Finally, does the existence of behavioral adaptation in the forward 
field of view always imply behavioral adaptation in other directions. If not, then research should 
be done into what conditions or characteristics make the forward field of view more prone to 
behavioral adaptations. 
As for effect of imitation, firstly, the reasons for imitation must be investigated and well 
understood. Also, what type of behaviors are more prone to being complied with is an 
interesting topic. Moreover, to what extent does imitation occur, and if there are any limits to 
imitation is important. Finally, it should be tested whether imitation is different in different road 
situations or conditions. 
As for mechanism of trust, there are increasingly more methods to measure trust, which is not 
a trivial variable to measure. First, these measures must be investigated and further developed. 
These are not directly measurable variables, hence future research must understand these better, 
also by taking insights from other fields such as aviation. Also, more elaborately characterizing 
the effect of trust on behavior is important to understand their effect better. Moreover, future 
research could conduct sensitivity analysis of trust effect on the behavior. For example, do their 
effects on behavior have a limit; or does a change in trust have a linear effect on behavior. 
Another important aspect to research is to test and characterize the two components defined in 
this dissertation: 1) predisposed trust and 2) real time trust level changes. It would be interesting 
to see how they compare with each other. And also, how do these vary in different road 
situations and conditions. Finally, the effects of different types of information on trust is also a 
useful research topic. 
In addition to the above-mentioned topics, the overarching question of how these three 
Conclusions relate to and influence each other would be a crucial topic to research. Also, there 
could also be other factors that may be relevant such as sense of urgency. In any case, future 
studies are encouraged to report and interpret their results using these proposed concepts. 
More investigation for evidence of behavioral adaptation and the magnitude and direction of 
the effects is required as the current research is still at a nascent stage. Also, more simulation 
studies on the effect on traffic efficiency, considering behavioral adaptation is required. One 
key finding in this dissertation was that the less defensive driving style of recognizable AVs 
induces defensive driving in human drivers. This less defensive driving style of AVs can 
improve traffic efficiency. However, the defensive driving induced in other human drivers could 
compensate or cancel out any positive benefits brought by the AVs. Future research can delve 
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into this area and study how the ratio of less defensive and more defensive AVs affects 
behavioral adaptation, and the resulting implications on traffic efficiency. Effects on traffic 
efficiency including behavioral adaptation should be studied in other road situations such as 
straight road driving (motorways) and roundabouts. It would also be interesting to study the 
effects on other road users such as cyclists and pedestrians.  
The impacts on other performance indicators must be investigated, particularly traffic safety. 
Behavioral adaptations could have direct implications on traffic safety, particularly in critical 
maneuvers such as lane changing and gap acceptance. Existing measures of traffic could be 
used to get insights into this. As there is not much publicly available data for these kind of 
studies, data collection efforts must increase, and even if in controlled environments, indicators 
such as surrogate safety measures could lead to gaining insights into traffic safety. 
One important aspect is that the effect of considering or not considering behavioral adaptation 
needs to be further investigated. This has not been done yet to the best of my knowledge, except 
in this dissertation.  Also, the impacts on other performance indicators such as traffic safety, 
energy, and emissions could be investigated in future research. 
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