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 A B S T R A C T

Driving heterogeneity significantly influences traffic performance, contributing to traffic disturbances, in-
creased crash risks, and inefficient fuel use and emissions. With the growing availability of driving behaviour 
data, Machine Learning (ML) techniques have become widely used for analysing driving behaviour and 
identifying heterogeneity. This paper presents a systematic review of current ML-based methods for driving 
heterogeneity identification. The review organises key concepts and categorisations of driving heterogeneity, 
highlights strengths and drawbacks of various methods, and outlines applications of identification analysis. 
Based on the literature review, we propose a structured framework that guides the ML-based identification 
process. The framework starts with an extensive data collection and rigorous pre-processing process, followed 
by feature selection techniques that identify features most indicative of driving behaviours. Sophisticated mod-
els including supervised, unsupervised, semi-supervised, and reinforcement learning techniques are discussed 
with multi-perspective performance evaluation. This paper provides a comprehensive reference for researchers 
and practitioners to understand driving heterogeneity, supporting the development of data-driven solutions for 
improving traffic management and road safety.
1. Introduction

Driving behaviour plays a crucial role in shaping traffic flow, in-
fluencing road safety, and the overall sustainability of transportation 
systems (Khan and Das, 2024). The way a vehicle responds to driver 
inputs, along with environmental factors and propulsion dynamics, 
forms the basis of the vehicle-driver interaction. Importantly, drivers 
exhibit varying behaviours even under identical traffic conditions, a 
phenomenon known as driving heterogeneity. This variability has been 
shown to impact traffic performance by increasing crash risk, disrupting 
traffic flow, and contributing to higher fuel consumption and emis-
sions (Ossen et al., 2006; Yao et al., 2024b). For example, delayed 
reaction times and reduced stimulus sensitivity have been linked to 
an elevated risk of rear-end collisions (Zhang et al., 2019). In mixed 
traffic environments where autonomous vehicles (AVs) and human-
driven vehicles (HDVs) coexist, overlooking HDV heterogeneity can 
result in oversimplified AV behavioural models, thus increasing safety 
issues (Calvert and van Arem, 2020). These issues underscore the need 
for accurate identification and modelling of human driving variability 
for both simulation and real-world applications. 

Identifying driving heterogeneity requires rich data capturing a 
wide range of driver actions, such as speed, acceleration, and braking, 
as well as contextual factors like road conditions, traffic density, and 
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weather. These data can come from various sources, including float-
ing car data (FCD) via smartphones and GPS, in-vehicle sensors, or 
high-resolution imagery from roadside cameras and drones (Lee and 
Jang, 2024). Based on driving behaviour data, heterogeneity analy-
sis methods generally fall into two categories: subjective approaches 
(e.g., surveys and questionnaires) and objective approaches, which in-
clude rule-based logic, fuzzy systems, and increasingly, machine learn-
ing (ML) techniques (Priyadharshini and Josephin, 2020). With the 
rise of naturalistic driving datasets, ML techniques have become espe-
cially effective in capturing complex behavioural patterns due to their 
flexibility, high accuracy, and adaptability (Fernandes et al., 2024). 
Models such as Support Vector Machines (SVM), k-Nearest Neighbours 
(KNN), and Feedforward Neural Networks (FFNN) have been widely 
used to classify driving styles, often achieving accuracy rates above 
90% (Sun et al., 2021; Zhang et al., 2010). Beyond traditional ML, deep 
learning models, including Long Short-Term Memory (LSTM) networks, 
have proven effective in modelling time-dependent behaviours, such as 
driver responses to external incentives or changes in driving workload 
(Hoogendoorn and Van Arem, 2013). 

Several previous reviews have explored driving heterogeneity from 
different angles, such as distinguishing driving styles and manoeu-
vres (Bouhsissin et al., 2023; Abou Elassad et al., 2020), improving 
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ADAS and safety systems (Lin et al., 2014; Martinez et al., 2017; 
Kaplan et al., 2015; Tselentis and Papadimitriou, 2023), and evalu-
ating vehicle–cloud collaboration (Mei et al., 2025). However, these 
studies often focus on specific subdomains and vary in how they 
define and categorise driving heterogeneity. There remains a lack 
of a unified conceptual framework that systematically organises key 
definitions, methodologies, and application pathways. In particular, 
ML-based approaches differ substantially in terms of data process-
ing, feature selection, and model design (Zhang et al., 2010; Wang 
et al., 2018; Silva and Eugenio Naranjo, 2020), making it difficult 
to determine which techniques are most suitable for a given traffic 
context.

To address these gaps, this paper presents a comprehensive review 
of ML-based driving heterogeneity identification and proposes a struc-
tured framework to support its practical implementation. Our review 
focuses on longitudinal driving behaviours, especially in highway set-
tings, and covers various traffic and environmental conditions. The 
goal is to advance data-driven strategies for understanding, classifying, 
and modelling driving heterogeneity, ultimately enabling personalised 
driver support, better traffic management, and safer vehicle automation 
systems. The main contributions of this study are twofold:

(i) Comprehensive literature review: We consolidate existing knowl-
edge on driving heterogeneity, organising key concepts, behavioural 
categories, and ML-based identification methods. This provides a foun-
dation for researchers to navigate and build upon existing work. 

(ii) A framework for analysis: We propose a structural framework 
that supports heterogeneity identification through data collection and 
pre-processing, feature selection, model training, and performance eval-
uation. The framework incorporates supervised, unsupervised, semi-
supervised, and reinforcement learning techniques, with a focus on 
their strengths, limitations, and suitability for different data types and 
use cases.

The remainder of this paper is organised as follows: Section 2 
outlines concepts of driving heterogeneity and discusses categorisation, 
applications, and identification tasks. Section 3 introduces the proposed 
ML-based framework for identifying driving heterogeneity. Section 4 
presents key findings, implementation challenges, and directions for fu-
ture research. Finally, Section 5 concludes the paper with implications 
for a safer, more efficient, and sustainable intelligent transportation 
system.

2. An overview of driving heterogeneity & identification

This section presents an overview of the review, as illustrated in 
Fig.  1. The need for driving heterogeneity identification (WHY) stems 
from its relevance to real-world applications including traffic manage-
ment, personalised ADAS, and human-like AV design. The review then 
organises key concepts of driving heterogeneity (WHAT) in multiple 
dimensions. Finally, we introduce the methodological process (HOW) 
for ML-based driving heterogeneity identification. This visual guide 
provides a structured foundation for the rest of the paper and sets the 
stage for the proposed analytical framework. 

2.1. Applications of driving heterogeneity identification

Identifying driving heterogeneity has practical values in improving 
traffic management, enhancing road safety, and enabling personalised 
driver support systems. In traffic operations, understanding variations 
in driver behaviour allows for better predictions of congestion and 
more effective control strategies, such as adaptive signal timings or 
alternative route recommendations. It also helps in detecting unusual 
or high-risk behaviours, which can support real-time interventions such 
as issuing warnings to nearby vehicles or alerting authorities (Ma 
et al., 2019; Abbas et al., 2011). In vehicle technology, heterogeneity 
identification enhances the customisation of Advanced Driver Assis-
tance Systems (ADAS). For example, systems can adapt their feedback 
2 
based on an individual’s driving tendencies, providing earlier alerts to 
those prone to hard braking or enhanced lane assistance for frequent 
lane-changers (Feng et al., 2019; Zhang et al., 2021). Similarly, for 
automated vehicles (AVs), recognising and responding to diverse hu-
man driving styles enables AVs to behave more naturally and safely in 
mixed traffic environments (Martinez et al., 2017). These applications 
influence how we define and study driving heterogeneity by directing 
attention to specific behavioural differences and shaping the design of 
identification methods.

2.2. Concepts and categorisation of driving heterogeneity

Driving heterogeneity refers to the variability in driver traits,
decision-making, and control actions. This variability manifests in both 
space and time (Zou et al., 2022), and can be categorised along three 
main dimensions: (i) inter-driver vs. intra-driver heterogeneity, (ii)
long-term vs. short-term heterogeneity, and (iii) global vs. special
behavioural patterns.

Inter-driver heterogeneity describes differences among drivers in 
similar conditions. For instance, some may accelerate more aggressively 
or maintain smaller headways than others (Ossen et al., 2006; Sun 
et al., 2021). In contrast, intra-driver heterogeneity refers to how 
the same driver may behave differently over time or across situa-
tions (Ossen and Hoogendoorn, 2011; Taylor et al., 2015). From a 
temporal perspective, long-term heterogeneity relates to persistent be-
havioural tendencies or driving skills developed over months or years, 
while short-term heterogeneity reflects temporary states like distrac-
tion or fatigue during a specific trip (Azadani and Boukerche, 2021). 
Lastly, global heterogeneity captures overall behaviour over a trip or 
time period, such as consistent car-following strategies (Sun et al., 
2021), whereas special heterogeneity focuses on specific manoeuvres 
or behaviours, such as harsh braking or sharp turns (Sagberg et al., 
2015).

Delineating these concepts provides a fundamental insight into 
understanding driving heterogeneity, which helps to describe hetero-
geneity in a human-comprehend manner. To operationalise these ideas, 
researchers identify driving heterogeneity using categories including:
Driving style (e.g., aggressive, normal, mild), Risk level (e.g., safe, risky),
Driving skill (e.g., novice, expert), Irregular behaviours (e.g., harsh brak-
ing), and Driving patterns (e.g., acceleration phases, lane changes). 
Table  1 summarises these categories, their descriptors, and the type 
of driving heterogeneity they address. Each plays a distinct role in 
capturing variability across time, context, and individual differences. 
For example, driving styles are often associated with inter-driver and 
long-term global heterogeneity, while risk level and irregular behaviour 
focus on short-term, situational variability. Additionally, driving pat-
tern recognition provides a flexible tool for capturing both intra-driver 
variation and broader behavioural tendencies. 

Together, these concepts and descriptors for identifying driving 
heterogeneity not only enhance our understanding of the multifaceted 
nature of driver behaviour but also facilitate the interpretation and 
development of ML-based interventions aimed at improving road safety 
and traffic management.

2.3. Methodologies for driving heterogeneity identification

Identifying driving heterogeneity is typically formulated as a classi-
fication problem, using behavioural data to distinguish among different 
drivers or driving patterns. Based on the literature review, three main 
methodological approaches can be distinguished:

1. Classifying driving behaviours into distinct groups to specific 
driving profiles.

2. Creating an extensive set for driving states without interpreta-
tion.
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Fig. 1. An overview of the literature review paper.
Table 1
Categorisation of driving heterogeneity identification.
 Categorisation Descriptors Inter Intra Long-term Short-term Global Special 
 Driving style classification Aggressive, radical, normal, 

cautious, etc.
✓ ✓ ✓ ✓ ✓ ✓  

 Risk level evaluation High-moderate-low risk, etc. ✓ ✓ ✓ ✓ ✓  
 Driving skill characterisation Expert, typical, etc. ✓ ✓ ✓  
 Irregular behaviour detection Aggressive braking, aggressive 

acceleration, etc.
✓ ✓ ✓  

 Driving pattern recognition Closing in, closing in, keeping, 
falling behind, etc.

✓ ✓ ✓ ✓ ✓  
3. Decomposing complex driving behaviour into simpler, more fun-
damental patterns with interpretation.

The first approach assigns drivers to predefined categories or clus-
ters, often based on discrete scales (e.g., 2 to 5 groups) or numerical 
indices (e.g., a score from 0 to 10). For example, drivers may be 
classified into aggressive (also termed radical), normal (moderate, con-
ventional), or mild (timid, conservative) styles (Sun et al., 2021; Bejani 
and Ghatee, 2019; Liu et al., 2020; Feng et al., 2019; Liang et al., 2022). 
Similarly, driver skill levels have been grouped as novice, typical, or 
expert (Chandrasiri et al., 2016; Zhang et al., 2010; Zhu et al., 2018). 
While these classifications offer clear and interpretable outputs, they 
are limited in capturing the full range of behavioural diversity due 
to their coarse granularity. Furthermore, the thresholds used to define 
these categories are often subjective, potentially introducing bias into 
the identification process.

Instead of directly classifying or clustering, the second approach 
creates a broad space of behavioural profiles to represent driving 
heterogeneity more flexibly. For instance, Qi et al. (2019) proposed 
a high-dimensional style space containing over 20 behavioural types. 
Similarly, modelled individual behaviour using probabilistic distribu-
tions over different driving states rather than discrete groups (Ding 
et al., 2022). By acknowledging more characteristics, this approach can 
detect a wider range of variations in driving behaviour. However, this 
3 
extensive categorisation approach might compromise the interpretation 
of driving profiles, thus limiting its implementation. This highlights the 
need for methods that can balance complexity and interpretability in 
behaviour modelling.

The third approach decomposes driving behaviour into simpler, 
fundamental components, commonly referred to as ‘‘primitives’’, to 
analyse heterogeneity at a finer resolution. These primitives represent 
short, distinct behavioural segments with identifiable characteristics. 
For example, Wang et al. (2018) extracted primitives such as ‘‘fol-
lowing behind’’, ‘‘closing’’, ‘‘gentle acceleration’’, and ‘‘aggressive de-
celeration’’ to model driving heterogeneity. Yao et al. (2023, 2025) 
introduced the concept of ‘‘action phases’’ as basic units to describe 
transitions in driving behaviour, enabling a clearer interpretation of 
behaviour dynamics. This approach allows for detailed analysis of 
intra- and inter-driver variability while maintaining semantic clarity, 
making it well-suited for both theoretical development and practical 
applications. 

In summary, methodologies for identifying driving heterogeneity 
differ in their emphasis on interpretability, flexibility, and granularity. 
Category-based methods are simple and interpretable but limited in 
detail of behavioural characteristics; continuous profiling offers richer 
representation but lacks clarity; and pattern decomposition provides 
high interpretability with fine granularity. Machine learning (ML) tech-
niques are commonly used across these approaches due to their capa-
bility to model complex behaviours and handle large datasets. In the 
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Fig. 2. A framework for ML-based driving heterogeneity identification.

next sections, we explore how ML is applied to support and enhance 
these methodologies. 

3. A framework for driving heterogeneity analysis

In this section, we introduce the proposed framework for identifying 
driving heterogeneity using Machine Learning (ML) techniques. The 
framework is developed based on a comprehensive review of existing 
literature and consists of four main steps: Trajectory Data Preparation,
Traffic Feature Selection, Identification Models of ML, and Performance 
Evaluation, as illustrated in Fig.  2. The initial step involves collecting, 
cleaning, and pre-processing raw driving data to ensure it accurately 
represents real-world driving behaviour. This step is essential for reduc-
ing errors and improving the quality of subsequent analysis. The second 
step, Traffic Feature Selection, focuses on identifying relevant variables 
from the pre-processed data that are most informative for modelling 
driving behaviour. Effective feature selection enhances model accuracy 
and reduces computational complexity. The third step, Identification 
Models of ML, applies the selected features to train ML models capable 
of detecting and classifying different driving behaviour patterns. This 
is the core step where heterogeneity is identified using various ML 
learning algorithms. Finally, Performance Evaluation assesses the effec-
tiveness of the ML models. This includes not only traditional accuracy 
metrics but also interpretability, generalisation to new data, and real-
time applicability in the real-world. The following sub-sections describe 
each step in detail, discussing the methods used in the literature along 
with their respective advantages and limitations.

3.1. Step 1: Traffic data preparation

Since ML models rely on data to learn and make predictions, the 
quality of input data is critical to successful driving heterogeneity 
identification. Therefore, the first step in the framework is preparing 
trajectory data, which includes data collection and pre-processing. This 
step ensures that the data used is clean, reliable, and representative of 
actual driving behaviours.
4 
3.1.1. Data collection
Driving behaviour data is commonly collected using four meth-

ods: driving simulator, in-vehicle camera, sensor or hardware, traffic 
images, and floating car data (FCD, e.g., smartphone-based). These 
methods vary in controllability, data richness, quality, validity, and 
cost, as summarised in Table  2.

Controllability refers to how much researchers can influence the 
data collection environment. Driving simulators offer the highest con-
trol, allowing for designed experiments under specific conditions
(Chandrasiri et al., 2016). In-vehicle equipment allows to collect driv-
ing data in certain traffic scenarios, such as curving sections or ramps 
(Liu et al., 2017), while unpredictable situations could happen in real-
world data collection, thus with lower controllability than a driving 
simulator. Traffic images and FCD methods rely entirely on naturalistic 
driving, making them the least controllable. Data richness relates 
to the diversity and quantity of details available within a specific 
dataset. Driving simulators and in-vehicle equipment methods can 
provide driver information and manoeuvre-specific data and allow for 
repeatable data collection, but are limited in scale due to time and 
financial constraints. Conversely, traffic images and FCD methods cap-
ture large-scale driving behaviour but with less details about driver and 
manoeuvre information. Quality concerns the precision and objectivity 
of datasets. Data from driving simulators and in-vehicle equipment 
may suffer from observer effects. For example, drivers know they are 
observed and might exhibit different driving behaviours compared to 
driving in a real-world setting, thus reducing the objectivity of collected 
data (Higgs and Abbas, 2013). Traffic images and FCD capture real-
world behaviours but face issues with sensor accuracy, video resolution, 
and post-processing errors. Validity measures how accurately the 
data reflects actual driving behaviour. Driving simulators have low 
validity due to artificial environments, whereas in-vehicle equipment, 
traffic images, and FCD provide higher validity by capturing real-world 
driving under diverse conditions. Cost refers to the expenses, time, 
and human effort needed for data collection. Driving simulators are 
expensive due to equipment and participant costs. In-vehicle systems 
range from affordable GPS devices to costly telematics. Traffic images 
require expensive infrastructure and high data-processing costs. FCD, 
utilising built-in smartphone sensors, is the most cost-effective but 
raises privacy concerns (Eren et al., 2012).

Each method offers trade-offs in terms of control, scale, and pre-
cision. Researchers can leverage these insights to tailor their data 
collection strategies effectively, aligning with their research goals and 
specific research questions. For instance, Studies focusing on detailed 
driver behaviour may prioritise driving simulators or in-vehicle equip-
ment, while traffic management and policy research may favour traffic 
images or FCD for broader behavioural insights. 

Fig.  3 shows the use of various data collection methods over the 
years in the reviewed papers. Thanks to the development of technolo-
gies such as telematics, GPS systems, and 5G, there is an increase in 
the availability and application of both FCD and in-vehicle equipment 
methods. The latter, in particular, has seen a trend towards more 
consistent and long-term usage in studies. As increasing numbers of 
publicly naturalistic driving datasets have become available since 2018, 
studies based on traffic image data have increased. Correspondingly, 
the use of driving simulator experiments and datasets has declined due 
to more available naturalistic data.

3.1.2. Data pre-processing
Collected driving trajectory data often contains noise and inaccura-

cies due to sensor errors, video quality limitations, and data extraction 
inconsistencies (Xie et al., 2020; Chen et al., 2020). These issues 
can distort analysis results and misrepresent driving behaviour. To 
enhance data reliability, various pre-processing techniques are applied 
to maintain data integrity and optimise input quality for ML-based 
driving behaviour analysis. Table  3 provides a summary of techniques 
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Table 2
Comparison analysis of driving trajectory data collection method.
 Method Controllability Data richness Quality Validity Cost  
 Driving simulator High ∙ Scale: Small 

∙ Repeatability: Easy 
∙ Specific manoeuvres: Easy 
∙ Driver information: Easy

Affected by 
∙ Scenarios design 
∙ Observer effect

Low High  

 In-vehicle equipment Low ∙ Scale: Small 
∙ Repeatability: Easy 
∙ Specific manoeuvres: Easy 
∙ Driver information: Easy

Affected by 
∙ Observer effects

High Moderate to high 

 Traffic images No ∙ Scale: Large 
∙ Repeatability: Hard 
∙ Specific manoeuvres: Hard 
∙ Driver information: Hard

Affected by 
∙ Observation errors 
∙ Parsing errors

High Moderate to high 

 FCD (Smartphone-based 
method)

No ∙ Scale: Large 
∙ Repeatability: Hard 
∙ Specific manoeuvres: Hard 
∙ Driver information: Hard

Affected by 
∙ Sensor accuracy

High Low  
Fig. 3. Statistics of data collection methods over the year.
for outlier elimination, filtering, and data synchronisation. Regression-
based methods and cubic interpolation are commonly used to detect 
and correct outliers by either adjusting values based on predictive 
modelling or estimating missing points from surrounding data (Sun 
et al., 2021; Ma et al., 2021). Additionally, filtering techniques, such 
as the Butterworth filter and Savitzky-Golay filter, are employed to 
smooth out noise while preserving critical data patterns (Guyonvarch 
et al., 2018; Lyu et al., 2022). To ensure temporal consistency, data 
synchronisation techniques adjust the sampling rates of datasets. Up-
sampling is applied to sparse data to increase resolution and retain 
essential behavioural details, while down-sampling simplifies large-
scale datasets, improving computational efficiency without significant 
information loss (Saleh et al., 2017; Ma et al., 2021). 

Overall, each data pre-processing method has its specific purpose 
when dealing with noise and maintaining data integrity. To ensure 
that the data is accurately represented to derive meaningful driving 
characteristics, the selection of data pre-processing methods should be 
carefully chosen according to the nature of the dataset involved. 

3.2. Step 2: Traffic feature selection

The second step in the proposed framework is traffic feature selec-
tion, which aims to reduce dimensionality by selecting relevant vari-
ables from the pre-processed dataset. While datasets often include many 
features, not all of them contribute meaningfully to identifying driving 
heterogeneity. Using irrelevant or redundant features can reduce model 
accuracy and increase computational cost. Therefore, feature selection 
is essential to improve model performance and interpretability.

3.2.1. Traffic variable extraction
There is currently no universally agreed-upon sets of metrics for 

driving behaviour analysis in literature. According to Abou Elassad 
et al. (2020), metrics used in driving studies can be grouped into four 
5 
categories: vehicle-based, behavioural, physiological, and subjective. 
Since this study focuses on trajectory-based analysis, we consider only 
vehicle-based variables, which include vehicle kinematic and dynamic 
features. Kinematic variables describe the vehicle’s motion, such as 
speed and acceleration, while dynamic variables reflect the driver’s 
control inputs, such as braking and throttle use. Both types of vari-
ables are widely used to characterise driving behaviour and detect 
heterogeneity (Taylor et al., 2015; Kim et al., 2013).

Fig.  4 summarises the use of these variables in existing studies. 
Kinematic variables are used more frequently than dynamic ones due 
to their strong correlation with driver responses to traffic situations. 
Velocity (used in 61 studies) and acceleration (57) are the most com-
mon variables for identifying driving heterogeneity. Among dynamic 
variables, braking (21), steering wheel angle (18), and throttle position 
(17) are frequently used because they provide direct information about 
driving behaviours. The importance of these variables depends on the 
specific type of heterogeneity being studied. For instance, throttle usage 
has been found to be a strong indicator of aggressive driving (Shi 
et al., 2015), while combining RPM, speed, and acceleration improves 
driving style classification (Moosavi et al., 2021). Moreover, integrating 
acceleration and brake events can increase classification accuracy by 
up to 10% according to Van Ly et al. (2013). Therefore, variable 
selection should align with the specific behavioural characteristics and 
heterogeneity concepts under investigation. 

3.2.2. Feature selection for ML
Machine learning (ML) models rely on carefully selected traffic 

features to improve predictive accuracy and computational efficiency. 
Driving behaviour studies often generate extensive feature sets by 
incorporating various statistical descriptors such as maximum, mini-
mum, and average values. For instance, one study derived 117 features 
from three acceleration signals (Vaitkus et al., 2014), while another 
extracted 58 brake-event-based features to classify driving behaviour 
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Fig. 4. Statistics of traffic variables used in literature.
Table 3
Techniques for pre-processing driving behaviour data.
 Category Technique Characteristic  
 Outlier elimination Regression 

(Sun et al., 2021)
- Identifies and adjusts anomalies by fitting a predictive model to the data.  

 Cubic interpolation 
(Ma et al., 2021)

- Fills missing values by estimating them based on nearby data points, preserving 
dataset smoothness.

 

 Filtering Butterworth filter 
(Guyonvarch et al., 
2018)

- Smooth response in the passband, preserving the true characteristics of driving data 
while effectively removing noise

 

 Savitzky-Golay filter 
(Lyu et al., 2022)

- Retains data distribution shape for pattern consistency  

 Data synchronisation Up-sampling 
(Saleh et al., 2017)

- Increases the sampling rate in smaller datasets to capture more detailed 
information while maintaining consistency

 

 Down-sampling 
(Ma et al., 2021)

- Reduces the sampling rate in large-scale datasets, enhancing computational 
efficiency without significant data loss

 

Table 4
Feature selection techniques used for driving heterogeneity identification.
 Method Prons (✓) & Cons (7) Reference  
 
Statistical 
methods

FA
✓ Computationally efficient 
✓ Interpretable results 
7 Miss feature interactions 
7 Questionable assumptions

Zhang et al. (2021)  
 DFT Zhang et al. (2010), Zou et al. (2022) and Xue et al. (2019)  
 DTW Feng et al. (2019), Xue et al. (2019) and Eftekhari and Ghatee (2018) 
 WT Zhang et al. (2010) and Zheng et al. (2022)  
 PCA Sun et al. (2021), Liu et al. (2020) and Deng et al. (2020)  
 Model-based 
methods

Tree-based ✓ Capture feature interactions 
✓ Yield better model performance 
7 Computationally intensive 
7 Risk of overfitting

Figueira and Larocca (2020)  
 GMM Wahab et al. (2009)  
 SFFS Vaitkus et al. (2014)  

 Deep learning- 
based methods

Autoencoder ✓ Handle complex patterns 
✓ Good for high-dimensional data 
7 Computationally expensive 
7 Challengable interpretability

Guo et al. (2018)  
 RNN Moukafih et al. (2019) and Moosavi et al. (2021)  

Abbreviations:
FA - Factor Analysis; GMM - Gaussian Mixture Method; SFFS - Sequential Forward Feature Selection - RNN - Recurrent Neural Network.
(Gahr et al., 2018). Given the complexity of high-dimensional datasets, 
feature selection techniques play a crucial role in refining inputs for 
ML models. These techniques can be broadly categorised into statistical 
methods, model-based approaches, and deep learning-based strategies, 
as summarised in Table  4. 

Statistical methods, including Principal Component Analysis (PCA), 
Discrete Fourier Transform (DFT) (Tang, 2009), and Dynamic Time 
Warping (DTW), are widely applied in driving behaviour analysis. 
These techniques enhance computational efficiency while providing 
interpretable results. PCA, for example, transforms data into a new 
coordinate system, simplifying visualisation and feature ranking (Sun 
et al., 2021). Similarly, DFT analyses signals in the frequency do-
main to minimise information loss (Xue et al., 2019). Some studies 
integrate multiple techniques, such as combining Wavelet Transform 
6 
(WT) with PCA (Zheng et al., 2022) or DFT with Discrete Wavelet 
Transform (DWT) (Xue et al., 2019), to improve feature selection 
accuracy. However, these methods often assume linear relationships 
in data, making them less effective in capturing complex feature in-
teractions. Model-based methods, such as decision trees (DT), random 
forests (RF), and Gaussian Mixture Models (GMM), offer an alternative 
by directly assessing feature importance within predictive ML mod-
els. These approaches can identify non-linear dependencies between 
variables, leading to better model performance. However, they can be 
computationally intensive and susceptible to overfitting, particularly 
in small datasets. For high-dimensional and complex datasets, deep 
learning-based methods provide advanced feature selection capabili-
ties. Techniques such as autoencoders and Recurrent Neural Networks 
(RNNs) effectively capture intricate relationships between features and 
adapt to evolving driving patterns (Guo et al., 2018; Moukafih et al., 
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2019). While these methods improve feature representation, they are 
computationally demanding and often lack interpretability. In a word, 
selecting the appropriate feature selection technique requires balancing 
computational efficiency, interpretability, and accuracy based on the 
specific objectives of driving heterogeneity identification. 

3.3. Step 3: Identification methods of ML

The third step of the framework focuses on applying machine learn-
ing (ML) models to identify driving heterogeneity based on the traffic 
features selected in Step 2. In literature, ML techniques methods used 
for this purpose are generally classified into four categories: supervised 
learning (SL), unsupervised learning (USL), semi-supervised learning 
(SSL), and reinforcement learning (RL), which we elaborate further on 
below.

3.3.1. Supervised learning methods
Supervised learning (SL) techniques train models to learn the re-

lationship between input features and output labels, allowing them to 
make predictions or decisions on new, unlabelled data. This process 
requires training data to be labelled in advance, which is obtained from 
expert knowledge. Some studies use rule-based strategies to label data 
by measuring physical variable changes, such as vehicle steering angle 
or brake/accelerator pedal positions (Wang et al., 2018). Threshold 
values for variables in rule-based labelling are typically determined 
by data analysts’ prior knowledge and sometimes combined with other 
tools, such as driving style questionnaire (DSQ) (Wahab et al., 2009). 
K-means is also often employed for unsupervised learning labelling 
to group drivers and then label these clusters based on statistical 
analyses. For instance, Deng et al. (2020) classified 30 participants into 
cautious, moderate, and aggressive drivers based on the PCA and K-
means clustering before training models for driving style recognition. In 
these labelling processes, strict thresholds are usually set to distinguish 
different groups. A downside of this is that it can result in inaccurate 
classifications since there are not always clear-cut boundaries between 
different driving profiles. To improve this, approaches such as fuzzy 
logic can be adopted in some studies (Eftekhari and Ghatee, 2018). 
Unlike the definitive nature of classical binary logic, fuzzy logic sys-
tems bridge inputs to outputs using a set of rules, which allows for 
establishments of conditions like 𝑖𝑓 (𝐴&𝐵) ⇒ 𝐶, where 𝐴, 𝐵, and 
𝐶 represent different driving profiles. Such an approach avoids the 
constraints of rigid categories, offering a more accurate classification 
of driving heterogeneity.

With labelled data, supervised learning classifiers are trained to 
identify driving heterogeneity. Commonly used traditional ML algo-
rithms include Support Vector Machine (SVM), Random Forest (RF), K-
Nearest Neighbours (KNN), and Multi-Layer Perceptron (MLP), among 
others. Xue et al. (2019) employed SVM for driving style recognition 
and revealed its advantage over RF, KNN, and MLP with an accuracy of 
91.7%. More recently, deep learning methods, such as ANNs, CNNs, and 
RNNs, have demonstrated superior performance in handling complex 
and high-dimensional driving data. According to Xie et al. (2021), the 
F1-score of CNN-based method is higher than both k-NN and RF-based 
methods in driving manoeuvre classification. Subsequently, enhanced 
CNN-based models, such as the adaptive regularised CNN (CNNAR) 
(Bejani and Ghatee, 2019), the parallel Convolutional Neural Network 
(PCNN) (Camlica et al., 2022), and the Residual Convolutional Network 
(RCN) (Abdennour et al., 2021) were introduced by boosting CNN’s 
capability in driving pattern recognition, showing impressive perfor-
mance by improving accuracy of 99.3% and reducing training time by 
two hours. Furthermore, Long Short-Term Memory (LSTM) networks 
are developed to overcome the vanishing gradient challenges of RNNs, 
exhibiting high accuracy in driving style classification, and unsafe 
driving behaviour detection, such as 91% as reported by Khodairy and 
Abosamra (2021) and 99% according to Saleh et al. (2017), which out-
perform traditional ML models like MLP and DT (Wijnands et al., 2018). 
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Additionally, hybrid deep learning approaches have shown significant 
improvements in classification accuracy. For example, by taking CNN’s 
ability to extract semantic driving patterns (e.g., turns) from input 
trajectories and employing an RNN on the sequential driving data 
to decode interrelationships among driving patterns, the proposed D-
CRNN model presented improved accuracies of 8%–31% in driving 
style identification compared to CNN and RNN models (Moosavi et al., 
2021).

Table  5 summarises SL applications in driving heterogeneity iden-
tification, detailing input data types, classifier choices, and output 
categories. Note that most SL studies focus on kinematic variables, with 
some integrating dynamic features to capture more driving behaviour 
feathers (Li et al., 2019; Khodairy and Abosamra, 2021). The output 
of SL models varies depending on the classification task. Some studies 
categorise drivers into styles-based groups (e.g., aggressive and normal) 
or risk-based groups (e.g., high, moderate, and low risk), while others 
identify specific behaviours such as braking or acceleration patterns 
(Xie et al., 2021). Additionally, some models focus on identifying 
drivers through driving states (Abdennour et al., 2021), while others 
detect unsafe behaviours like drowsy or distracted driving (Shahverdy 
et al., 2020).

3.3.2. Unsupervised learning methods
Unsupervised learning (UL) methods can derive driving profiles by 

directly examining unlabelled data, which is significantly less labour-
intensive and reduces potential labelling biases. Table  6 summarises 
key studies that employ clustering techniques. Clustering methods such 
as K-means and Fuzzy C-means (FCM) group drivers based on similar 
driving styles, offering interpretable categorisations such as aggres-
sive, normal, and defensive driving (Sun et al., 2021; Feng et al., 
2019). More advanced clustering techniques like Federated Learning 
K-means (FL-K-means) and Gaussian Mixture Models (GMM) improve 
identification precision by handling scattered and sensitive data (Lu 
et al., 2023; Zhang et al., 2021). Topic models, particularly Latent 
Dirichlet Allocation (LDA) and its variants (T-LDA, mLDA, mHLDA), 
segment naturalistic trajectories into behavioural ‘‘topics’’, enabling 
fine-grained identification of cautious and radical driving styles (Xie 
et al., 2018; Qi et al., 2019). HMM-based approaches, such as sticky 
HDP-HMM and BP-AR-HMM, capture temporal dependencies by seg-
menting driving trajectories into hidden states, representing distinct 
driving states (Wang et al., 2019; Hamada et al., 2016). Similarly, DAA-
based methods such as Double Articulation Analyser with Temporal 
Prediction (DAA-TP) and Nested Pitman–Yor Language Model (NPYLM) 
can decompose driving sequences into hierarchical structures, mirror-
ing linguistic pattern recognition for driver identification (Taniguchi 
et al., 2014, 2015). Other studies employed deep learning models, 
such as Deep Sparse Autoencoder (DSAE) and Autoencoders with Self-
Organised Maps (AESOM) to extract latent driving features, improving 
real-time recognition of high-risk and moderate-risk driving behaviours 
(Liu et al., 2017; Guo et al., 2018). 

Similar to SL methods, USL techniques primarily rely on kinematic 
vehicle data, such as speed, acceleration, and braking patterns, with 
some studies incorporating dynamic variables like yaw rate and lateral 
acceleration (Hamada et al., 2016; Liu et al., 2017). Clustering and 
topic models work well with aggregated statistical features to distin-
guish different groups (e.g., aggressive, normal, risky), while HMM and 
deep learning-based models process sequential driving data, enabling 
better recognition of behavioural transitions (Wang et al., 2019). 

3.3.3. Semi-supervised learning methods
Semi-supervised learning (SSL) methods train classifiers with a 

small amount of labelled data and a large volume of unlabelled data, 
making it a promising approach for identifying driving heterogene-
ity with reduced labelling efforts. For example, semi-supervised SVM 
(S3VM) has shown better performance than traditional SVM in driving 
style classification (Wang et al., 2017). Advanced SSL models, like the 
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Table 5
Identification of driving heterogeneity using supervised learning methods.
 Paper Input dataa ML modelsb Output  
 Kine. Dyna.  
 Xue et al. (2019) ✓ SVM, RF, KNN, MLP Aggressive, and normal driving  
 Li et al. (2017) ✓ RF High-, moderate-, and low-risk driving  
 Jafarnejad et al. (2017) ✓ ✓ AB, GB, RF, ET, SVM Aggressive/risky, and normal driving  
 Vaitkus et al. (2014) ✓ KNN Aggressive, and normal driving  
 Silva and Eugenio Naranjo (2020) ✓ SVM, ANN, KNN, FL, KNN, RF Aggressive, calm, and normal driving  
 Figueira and Larocca (2020) ✓ CART, SVM High-, moderate-, and low-risk driving  
 Tango and Botta (2013) ✓ ✓ SVM, ANFIS, LRNN, FFNN, LR Typical and skillful driver  
 Li et al. (2019) ✓ ✓ CNN, LSTM, pretrain-LSTM, SVM High-, moderate-, and low-risk driving  
 Shahverdy et al. (2020) ✓ ✓ 2D CNN Normal, aggressive, distracted, drowsy, and drunk driving  
 Xie et al. (2021) ✓ CNN, KNN, RF Driving manoeuvres: lane keeping, braking, turning, acceleration, 

right lane change, and left lane change
 

 Abdennour et al. (2021) ✓ ✓ DeepRCN, DeepCNN, DT, RF, SVM, MLP Driver recognition  
 Bejani and Ghatee (2019) ✓ CNNAR, SVM, MLP, KNN, DT Cautious, moderate, and aggressive driving  
 Camlica et al. (2022) ✓ PCNN, CNN, LSTM, HMM, SVM Aggressive, and non-aggressive driving  
 Khodairy and Abosamra (2021) ✓ 3-CCM-LSTM, 2-CMM-LSTM Normal, drowsy, and aggressive driving  
 Saleh et al. (2017) ✓ ✓ stacked-LSTM, MLP, DT Normal, aggressive, and drowsy driving  
 Wijnands et al. (2018) ✓ LSTM Safe and unsafe driving  
 Moosavi et al. (2021) ✓ ✓ D-CRNN, CNN, RNN, ARNet, VRAE, GBDT Driver recognition  
 Moukafih et al. (2019) ✓ ✓ LSTM-FCN, RF, LSTM, AB, ResNet Aggressive and non-aggressive driving  
 Eftekhari and Ghatee (2018) ✓ ANFIS Safe, aggressive, and semi-aggressive driving  
 Schlegel et al. (2021) ✓ HDC-FFNN, SNN, KNN, SVM, LSTM Aggressive, and normal driving  
a Table headings: Kine. - Vehicle kinematic variable; Dyna. - Vehicle dynamic variable;
Dis. - discrete, the output of ML model is distinct groups; Con. - continuous, the output of ML model is continuous trajectories.
b ML models: ET - Extra Trees; FL - Fuzzy Logic; CART - Classification and Regression Tree; ANFIS - Adaptive Neuro-fuzzy Inference Systems; 3-CCM - Three-class Classification 
Model; VRAE - Variational Recurrent Auto-Encoder; FFNN - Feed-forward Neural Networks; SNN - Spiking Neural Networks; LRNN - Layer Recurrent Neural Networks.
Table 6
Identification of driving heterogeneity using unsupervised learning methods.
 Paper Input data ML modelsa Output  
 Kine. Dyna.  
 Higgs and Abbas (2013) ✓ K-means Driving states  
 Sun et al. (2021) ✓ Fuzzy C-means Aggressive, normal, and mild driving  
 Feng et al. (2019) ✓ SVC Aggressive, normal, and defensive driving  
 Lu et al. (2023) ✓ IFL K-means, FL K-means, FL-GMM, FFCM, MA K-means Aggressive, moderate, and calm driving  
 Zhang et al. (2021) ✓ HC-GMM, GMM, DBSCAN, HC, K-means Aggressive and normal driving  
 Bender et al. (2015) ✓ LDA Trajectory segmentation  
 Xie et al. (2018) ✓ T-LDA, LDA, pLSA Cautious, normal, radical, very radical driving 
 Qi et al. (2019) ✓ mLDA, mHLDA Extensive driving styles  
 Wang et al. (2019) ✓ sticky HDP-HMM Driving primitives  
 Hamada et al. (2016) ✓ ✓ BP-AR-HMM Driving states  
 Taniguchi et al. (2014) ✓ DAA-TP Driving states  
 Taniguchi et al. (2015) ✓ NPYLM Driver identification  
 Liu et al. (2017) ✓ ✓ DSAE Driving states  
 Guo et al. (2018) ✓ AESOM Slight, moderate, high risk driving  
a ML models: IFL - Improved Federated Learning; FFCM - Federated Fuzzy C-means Method; pLSA - Probabilistic Latent Semantic Analysis; DSAE - Deep Sparse Autoencoder.
HDP-HSMM, outperform supervised counterparts such as HDP-HMM in 
extracting driving patterns from high-dimensional data (Wang et al., 
2018). Similarly, Tri-CatBoost integrates pseudo-labelling through tri-
training, achieving higher accuracy than both supervised and unsuper-
vised baselines (Liu et al., 2020). Another approach, ARNet, leverages a 
limited number of labelled samples to guide a regularised autoencoder, 
improving accuracy by over 3% compared to traditional models. SSL 
methods are particularly useful when labelled data is scarce. Yet, 
their performance can be sensitive to noisy labels and data inconsis-
tency. Moreover, their added complexity often increases computational 
requirements and implementation difficulty. 

3.3.4. Reinforcement learning methods
Reinforcement Learning (RL) approaches driving behaviour as a 

Markov Decision Process (MDP), where agents learn to perform driving 
actions based on a system of rewards and penalties. Driving hetero-
geneity is identified by analysing variations in learned behaviours and 
reward responses. For example, different reward functions can rep-
resent different levels of driving aggressiveness (Vlachogiannis et al., 
2020). However, the lack of standard reward design and difficulty in 
validating learned behaviours are key challenges. Inverse Reinforce-
ment Learning (IRL) instead learns the reward functions directly from 
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observed driver behaviour. Techniques such as MLIRL and LogReg-
IRL recover style-related parameters from human driving data (Jiang 
et al., 2018; Kishikawa and Arai, 2021). More advanced methods, like 
SIRL (Rosbach et al., 2019) and NFACRL (Abbas et al., 2011), further 
enhance the robustness of driving style identification, particularly in 
dynamic or risky environments. While IRL offers deeper insights into 
individual driving preferences, its reliance on high-fidelity simulation 
environments, complex reward interpretation, and high computational 
cost limits its scalability in real-world applications.

3.3.5. Summary of ML methods
Each ML technique employs a distinct mechanism, as illustrated in 

Fig.  5. From a data processing perspective, SL, USL, and SSL focus 
on data-driven analysis, including classification and clustering (see 
Fig.  5(a)–(c)). In contrast, RL is primarily concerned with understand-
ing and modelling the decision-making processes of drivers, see Fig. 
5(d). Each ML technique has strengths and weaknesses and focuses 
on different aspects of driving heterogeneity, as summarised in Ta-
ble  7. SL methods rely on labelled data and learn from historical 
labelled examples to classify driving behaviours into specific categories 
(e.g., aggressive vs. normal driving). They are predominantly used 
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Fig. 5. Mechanism of different ML techniques.
Table 7
Comparison of ML techniques in driving heterogeneity identification.
 ML technique Main heterogeneity focus Strengths Weaknesses  
 SL Inter, short-term, global High interpretability, effective classification Requires labelled data, less adaptable  
 USL Intra, short-term, global, and special Captures hidden structures, scalable Lower interpretability  
 SSL Inter, short-term, and global Reduces need for labels, improves generalisation Susceptible to misclassification  
 RL Inter, short-term, global Adaptive, useful for AV behaviour modelling High computational cost, complex 

reward tuning
 

to characterise inter-driver heterogeneity, meaning variations among 
different drivers. They also frequently identify short-term and global 
heterogeneity, such as variations in acceleration or braking patterns 
across different traffic scenarios. USL methods identify patterns by clus-
tering similar driving behaviours or segmenting trajectories based on 
statistical properties, which are particularly useful for identifying intra-
driver heterogeneity (i.e., variations in an individual driver’s behaviour 
over time). They also effectively capture short-term heterogeneity and 
global driving behaviour trends by analysing large-scale datasets with-
out predefined categories. However, the lack of explicit labels makes 
their interpretability more challenging. SSL methods leverage both 
labelled and unlabelled data but can suffer from misclassification issues 
if the small labelled dataset does not represent the full heterogeneity of 
the driving population. RL-based models particularly emphasise short-
term and global heterogeneity, making them valuable for adaptive 
driving systems and autonomous vehicle behaviour modelling. 

3.4. Step 4: Performance evaluation

The final step of the framework is performance evaluation which 
justifies a model’s reliability, ensuring trustworthy and replicable out-
comes. This is not only about model accuracy but also interpretability, 
generalisation, and online processing which displays the model’s prac-
tical usability in real-world applications for ADAS, traffic management, 
and autonomous vehicle control.

3.4.1. Model accuracy
Evaluating model accuracy is crucial to finding the best performance 

for identifying driving heterogeneity. Classification models usually rely 
on Accuracy, Precision, Recall, F1-score, AUC-ROC, and Cohen’s Kappa 
to measure alignment with ground-truth labels (Xue et al., 2019; Fung 
et al., 2017; Ma et al., 2018; Silva and Eugenio Naranjo, 2020; Abden-
nour et al., 2021; Zhang et al., 2014). Various models such as SVM, RF, 
and KNN achieve an accuracy surpassing 85% when used to classify 
driving skills, some even exhibit better exceeding 95% (Chandrasiri 
et al., 2016; Jafarnejad et al., 2017; Kwon et al., 2021). Ranking-
based metrics like MRR and CRR assess the prioritisation of driving 
behaviours, crucial for driver feedback systems. MAE and MSE are used 
for continuous outcome predictions, where MSE minimises large errors 
while MAE offers straightforward model performance. For unsupervised 
learning, clustering performance is measured by the Silhouette Score, 
Davies–Bouldin Index, and Calinski–Harabasz Index, ensuring well-
separated clusters (Higgs and Abbas, 2014). RL models use cumulative 
reward and convergence time to assess learning efficiency, essential for 
adaptive ADAS and traffic control.
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Fig. 6. Analysis of ML techniques in model implementation.

Studies also employ benchmarking models from state-of-the-art to 
ensure performance validation, highlighting model strengths, and guid-
ing the selection of optimal algorithms for real-world applications 
while enabling continuous refinement. This is usually done by us-
ing advanced deep learning models and traditional ML algorithms 
to conduct the same identification tasks, as seen for example with 
the proposed CNNAR model, which was compared with SVM, MLP, 
and KNN to demonstrate its superiority in identifying driving hetero-
geneity (Moosavi et al., 2021). Other studies compare their improved 
ML models with corresponding foundational counterparts to illustrate 
enhancements (Moukafih et al., 2019; Qi et al., 2019).

3.4.2. Model implementation
Interpretability, generalisation, and online processing are crucial 

factors for real-world applications, influencing how well models can be 
understood, adapted to diverse driving environments and implemented 
in real-time driving scenarios. Interpretability ensures that the model’s 
predictions can be understood and trusted by researchers, policymak-
ers, and industry stakeholders. Generalisation determines whether an 
ML model can maintain its accuracy across different road conditions, 
weather patterns, and driver populations. And online Processing allows 
ML models to process incoming traffic data in real-time, making them 
applicable to adaptive traffic control, driver monitoring systems, and 
autonomous vehicle decision-making. Each ML approach has distinct 
strengths and limitations across these three dimensions, as illustrated 
in Fig.  6, influencing its suitability for various driving heterogeneity 
identification tasks. 
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Interpretability: SL and SSL methods offer the highest
interpretability, as they classify driving behaviours into well-defined 
categories, making them useful for safety assessments and driver feed-
back. USL and RL methods have lower interpretability because of no 
label, but their results can be analysed to have human-comprehensive 
meanings. For instance, interpretable identification results can be pro-
vided by conducting statistical analysis on a limited number of clusters 
and giving semantic meanings (Sun et al., 2021; Wang et al., 2018; 
Hamada et al., 2016). 

Generalisation: SL struggles with new environments due to re-
liance on predefined labels, while SSL improves adaptability by leverag-
ing unlabelled data. USL is highly generalisable, as it uncovers hidden 
driving patterns across diverse conditions. As presented by Ding et al. 
(2022), the proposed GMM-based driving style identification method 
demonstrated effectiveness when supplemented with new driving data. 
RL can generalise well but depends on carefully tuned reward functions, 
which can limit transferability to new scenarios.

Online processing: USL is best suited for real-time applications, 
as clustering can adapt incrementally without retraining. SL and SSL 
require batch processing, limiting their real-time use. For instance, 
incorporating more SVMs can distinguish more driving styles, while 
this complicates the algorithm and can overburden the computational 
capacity of on-board vehicle controllers (Chu et al., 2023). RL de-
mands extensive training and updates, making it difficult for immediate 
deployment in adaptive traffic systems.

In total, effective ML models for driving heterogeneity must bal-
ance interpretability, generalisation, and online processing for better 
real-world applications in traffic management, driver profiling, and 
autonomous driving. 

3.5. Summary

The proposed framework structures the ML-based identification pro-
cess using four inherently connected steps. Each step includes multiple 
methods, offering flexibility in approach selection based on research ob-
jectives. By systematically comparing these techniques, the framework 
facilitates optimised identification, balancing model effectiveness with 
practical application needs.

4. Discussion

In this section, we discuss the main findings of the literature re-
view and the proposed framework for driving heterogeneity analysis. 
Then we propose challenges and future recommendations towards 
implementing this framework for real-world applications.

4.1. Main findings

Driving heterogeneity identification involves three key aspects in-
cluding applications, concepts, and methodologies. A clear objective of 
each aspect ensures reliable identification. The main insights from this 
study are summarised below. 

4.1.1. Driver heterogeneity dimensions
Driving heterogeneity is categorised into three core concepts, 

with five identification tasks.  Inter- and intra- driving heterogeneity 
refers to differences among drivers and variations within individual 
drivers’ behaviour. Understanding driving heterogeneity from this per-
spective aids in improving traffic efficiency and road safety. Driving 
heterogeneity can be divided into long-term and short-term from a 
temporal perspective, which benefits the development of personalised 
ADAS. Additionally, Global and special driving heterogeneity are iden-
tified based on overall vehicle movements or specific driving events, 
which is important for AV design. The identification tasks include driv-
ing style classification, risk level evaluation, driving skill characterisation,
irregular behaviour detection, and driving pattern recognition. Clearly 
defining these concepts and identification tasks helps comprehensively 
understand the essence of driving heterogeneity and enhances the 
interpretability of ML models.
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4.1.2. ML-based heterogeneity identification
The ML-based driving heterogeneity identification process can 

be structured as a four-step framework, consisting of Trajectory 
Data Preparation, Traffic Feature Selection, Identification Models of 
ML, and Performance Evaluation. Each step includes multiple methods 
with unique strengths and limitations. Facilitating driving heterogene-
ity identification requires aligning them with the specific research 
objectives. Proper data collection, preprocessing, and feature selection 
are necessary to match the heterogeneity concept being studied. Since 
ML techniques differ in accuracy, interpretability, and real-time ap-
plicability, balancing these factors ensures an effective identification 
process, improving its practical relevance. 

4.1.3. Applications of the identification framework
The proposed identification framework is adaptable to various 

datasets, integrates diverse ML techniques, and supports real-
world applications. This flexibility allows for the incorporation of 
new models and data sources, enhancing identification performance. 
The framework emphasises interpretability and real-time recognition, 
encouraging researchers to evaluate methods across multiple dimen-
sions. By guiding the implementation of ML-based driving hetero-
geneity identification, it supports traffic management, personalised 
ADAS, and human-like AV designs, ultimately improving transportation 
systems.

4.2. Key issues and future research recommendations

While ML-based methods show strong potential in driving hetero-
geneity identification, practical deployment, especially in real-time and 
automated driving systems requires improvements in both data and 
model design. This section highlights key challenges and outlines future 
directions to enhance the applicability of the proposed framework in 
real-world settings.

4.2.1. Enhancing data quality and availability
Real-time and high-resolution data collection: ML models are 

highly sensitive to the quality and granularity of input data (Zhu 
et al., 2018). Traditional data sources, including traffic images and 
basic in-vehicle sensors, often suffer from noise and low sampling 
resolution. Industry-grade data collection systems, such as those used 
by Waymo, Mobileye, and Aurora, combine LiDAR, radar, and vision 
sensors with sub-millisecond-accurate logging via CAN or Ethernet net-
works (Waymo, 2024; Mobileye, 2024). These multi-sensor platforms 
enable large-scale collection of naturalistic driving data across diverse 
environments. 

Advanced preprocessing and anomaly detection: Noise filtering 
and outlier elimination remain essential for improving data reliability. 
However, commonly used filters such as Savitzky-Golay or Butter-
worth may smooth out useful behavioural variations. More adaptive 
preprocessing methods, including machine learning-based anomaly de-
tection and dynamic filtering strategies, are needed to better preserve 
meaningful heterogeneity in raw data.

Fusion of heterogeneous data sources: Combining data from 
simulators, traffic cameras, GPS, IMUs, and floating car data can yield a 
more holistic view of driving behaviour. However, successful integra-
tion depends on the development of unified data formats (e.g., ROS, 
JSON), synchronisation protocols (e.g., timestamp alignment), and 
cross-platform interoperability standards. Research should focus on 
frameworks that enable robust data fusion for training consistent ML 
models.

Balancing dataset use and development: Public datasets like 
NGSIM (U.S. Department of Transportation, Federal Highway Admin-
istration, 2006), HighD (Krajewski et al., 2018), KITTI (Geiger et al., 
2013), and Lyft5 (Wang et al., 2023b) are widely used due to their 
accessibility, but they vary in precision and collection context, which 
may introduce bias or limit generalisability. Future work should aim to 
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balance the reuse of open datasets with the creation of context-specific 
datasets that better represent traffic conditions.

Ethical data use and privacy protection: The use of person-
alised driving data raises concerns regarding privacy and data pro-
tection. Researchers must prioritise secure data handling practices, 
including anonymisation techniques (e.g., differential privacy), encryp-
tion, and compliance with international regulations such as the GDPR 
and CCPA (Villegas-Ch and García-Ortiz, 2023). Future work should 
explore privacy-preserving learning approaches that allow effective 
model training without compromising individual privacy.

4.2.2. Improving model design and performance
Context-aware and flexible labelling: Traditional labelling strate-

gies often rely on predefined thresholds or global statistics, potentially 
overlooking subtle, time-sensitive behavioural shifts (Sagberg et al., 
2015). Recent industry practices emphasise event-driven and context-
aware labelling techniques to capture the complexity of real-world 
driving behaviours. For instance, AI-powered systems analyse driver 
gaze, head movements, and body posture to detect distraction and 
drowsiness, enabling more nuanced labelling of driver states (Zhao 
et al., 2022). Future research should continue to explore such adaptive 
labelling methods to enhance model accuracy.

Feature representation and selection: High-dimensional data
with redundant variables can hinder model performance. Attention 
mechanisms, embedding layers, and spatio-temporal encoders should 
be employed to capture the most informative features. Domain knowl-
edge can also assist in selecting features that reflect heterogeneity 
across time, context, and driver type. 

Model interpretability vs. accuracy: While deep learning models 
such as CNNs and LSTMs often achieve high accuracy, they can lack 
transparency. Techniques like SHAP (SHapley Additive exPlanations) 
values, attention visualisation, and hybrid rule-based models can im-
prove interpretability without significant performance loss (Yao et al., 
2023). Enhancing explainability is essential for increasing trust in ML 
models, particularly in safety-critical applications.

Cross-disciplinary inspiration: Other domains, such as natural 
language processing (NLP) and biological modelling of gene expres-
sion, offer insights into pattern recognition and behavioural inference. 
Developing a taxonomy of driving behaviours, similar to biological 
annotation databases, could support better labelling and model val-
idation. For instance, techniques from NLP sentiment analysis have 
been adapted to understand driver emotions and intentions, enriching 
behaviour modelling (Taniguchi et al., 2015). 

Adoption of Emerging AI Techniques: Recent advancements in 
AI models such as Vision Transformers (ViT), Graph Neural Networks 
(GNNs), and Large Language Models (LLMs) offer promising capabili-
ties for driving behaviour analysis (Xiao et al., 2022). These models can 
capture long-range dependencies, learn contextual semantics, and re-
duce reliance on large labelled datasets through self-supervised or foun-
dation model approaches. As these techniques gain traction in industry, 
they are increasingly used to detect nuanced and high-level patterns in 
driving heterogeneity. When integrated with the proposed framework, 
these models can significantly enhance the scalability, adaptability, and 
reliability of driving behaviour identification in complex, real-world 
traffic scenarios.

4.2.3. Addressing heterogeneity in human-automated traffic
The emergence of automated vehicles in traffic introduces new chal-

lenges for driving heterogeneity analysis. Interactions between human-
driven vehicles (HDVs) and AVs create more complex behavioural 
dynamics, requiring the framework to adapt accordingly (Calvert and 
van Arem, 2020). 

Heterogeneity of HDVs in the presence of AVs: Empirical studies 
show that HDVs often adjust their driving styles, such as maintaining 
smoother speeds, longer headways, and more cautious manoeuvres, 
when following AVs (Wen et al., 2022; Wang et al., 2023a). These 
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behavioural shifts are further influenced by the external design of AVs 
(e.g., visibility of sensors) and the perceived assertiveness or caution 
in their driving style. Industrial companies such as Waymo and Cruise 
actively test human-AV interactions in mixed traffic using naturalistic 
testbeds and closed-loop simulations. Incorporating these behavioural 
adaptations as variables in heterogeneity models will improve their 
ability to reflect real-world traffic interactions. 

Heterogeneity of human-driven AVs: Drivers of partially auto-
mated vehicles (e.g., SAE Level 2–3) exhibit diverse attitudes towards 
automation, with variation in trust, comfort, and takeover behaviour. 
Misalignment between AV system behaviour and driver expectations 
may result in frequent manual overrides, reduced system efficiency, and 
safety concerns (Lee and See, 2004; Ma and Zhang, 2021). Industry 
solutions, such as Ford’s and Tesla’s driver monitoring systems, track 
gaze direction, head pose, and hand position to evaluate readiness 
for control transitions (Lee et al., 2024). Future heterogeneity models 
should incorporate variables such as trust level, takeover frequency, 
and driver compliance to better model human-in-the-loop behaviours. 

Overall, the proposed framework can be extended to address these 
evolving traffic conditions by integrating new feature variables (e.g.,
time headway to AVs, takeover intent), incorporating updated datasets 
from real-world or simulated mixed traffic scenarios, and refining 
model evaluation criteria to include human–system interaction dynam-
ics. This adaptation will support the design of safer, more personalised, 
and behaviourally aligned automated driving systems, thus ensuring 
better interaction between AVs and a diverse range of human drivers.

5. Conclusion

This study provides a comprehensive review of machine learning 
(ML) techniques for analysing driving behaviour heterogeneity and 
introduces a structured framework for identifying and interpreting het-
erogeneity in real-world traffic scenarios. By synthesising key concepts 
and state-of-the-art methodologies, the proposed framework serves as 
a systematic guide for data collection, preprocessing, feature selec-
tion, modelling, and evaluation, facilitating a more rigorous and inter-
pretable approach to driving heterogeneity identification. Additionally, 
the review serves as a roadmap for future research, encouraging further 
exploration of ML applications in traffic analysis with the potential 
to enhance traffic management, road safety, and vehicle automation. 
Specifically, a clear conceptualisation of driving heterogeneity deep-
ens our understanding of driver behaviour and lays the foundation 
for the development of personalised driving assistance systems and 
human-like autonomous vehicles. By reviewing various ML method-
ologies and assessing their strengths, limitations, and applicability to 
different driving contexts, this study emphasises the need to balance 
accuracy, interpretability, and real-time recognition for effective het-
erogeneity identification. Recognising individual driving characteristics 
allows for adaptive traffic control strategies, leading to more intelligent 
and responsive transportation solutions. 
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