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ARTICLE INFO ABSTRACT

Keywords: Driving heterogeneity significantly influences traffic performance, contributing to traffic disturbances, in-
Driving heterogeneity creased crash risks, and inefficient fuel use and emissions. With the growing availability of driving behaviour
Identification data, Machine Learning (ML) techniques have become widely used for analysing driving behaviour and
Machine Learning (ML)

identifying heterogeneity. This paper presents a systematic review of current ML-based methods for driving
heterogeneity identification. The review organises key concepts and categorisations of driving heterogeneity,
highlights strengths and drawbacks of various methods, and outlines applications of identification analysis.
Based on the literature review, we propose a structured framework that guides the ML-based identification
process. The framework starts with an extensive data collection and rigorous pre-processing process, followed
by feature selection techniques that identify features most indicative of driving behaviours. Sophisticated mod-
els including supervised, unsupervised, semi-supervised, and reinforcement learning techniques are discussed
with multi-perspective performance evaluation. This paper provides a comprehensive reference for researchers
and practitioners to understand driving heterogeneity, supporting the development of data-driven solutions for
improving traffic management and road safety.

Traffic flow
Traffic data analysis

1. Introduction weather. These data can come from various sources, including float-
ing car data (FCD) via smartphones and GPS, in-vehicle sensors, or

Driving behaviour plays a crucial role in shaping traffic flow, in- high-resolution imagery from roadside cameras and drones (Lee and
fluencing road safety, and the overall sustainability of transportation Jang, 2024). Based on driving behaviour data, heterogeneity analy-
systems (Khan and Das, 2024). The way a vehicle responds to driver  sis methods generally fall into two categories: subjective approaches
inputs, along with environmental factors and propulsion dynamics, (e.g., surveys and questionnaires) and objective approaches, which in-
forms the basis of the vehicle-driver interaction. Importantly, drivers clude rule-based logic, fuzzy systems, and increasingly, machine learn-
exhibit varying behaviours even under identical traffic conditions, a ing (ML) techniques (Priyadharshini and Josephin, 2020). With the

phenomenon known as driving heterogeneity. This variability has been
shown to impact traffic performance by increasing crash risk, disrupting
traffic flow, and contributing to higher fuel consumption and emis-
sions (Ossen et al., 2006; Yao et al., 2024b). For example, delayed
reaction times and reduced stimulus sensitivity have been linked to
an elevated risk of rear-end collisions (Zhang et al., 2019). In mixed
traffic environments where autonomous vehicles (AVs) and human-
driven vehicles (HDVs) coexist, overlooking HDV heterogeneity can
result in oversimplified AV behavioural models, thus increasing safety
issues (Calvert and van Arem, 2020). These issues underscore the need
for accurate identification and modelling of human driving variability
for both simulation and real-world applications. (Hoogendoorn a.nd Van .Arern, 2013). o .
Identifying driving heterogeneity requires rich data capturing a Several previous reviews have explored driving heterogeneity from
wide range of driver actions, such as speed, acceleration, and braking, different angles, such as distinguishing driving styles and manoeu-
as well as contextual factors like road conditions, traffic density, and vres (Bouhsissin et al., 2023; Abou Elassad et al., 2020), improving

rise of naturalistic driving datasets, ML techniques have become espe-
cially effective in capturing complex behavioural patterns due to their
flexibility, high accuracy, and adaptability (Fernandes et al., 2024).
Models such as Support Vector Machines (SVM), k-Nearest Neighbours
(KNN), and Feedforward Neural Networks (FFNN) have been widely
used to classify driving styles, often achieving accuracy rates above
90% (Sun et al., 2021; Zhang et al., 2010). Beyond traditional ML, deep
learning models, including Long Short-Term Memory (LSTM) networks,
have proven effective in modelling time-dependent behaviours, such as
driver responses to external incentives or changes in driving workload
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ADAS and safety systems (Lin et al., 2014; Martinez et al., 2017;
Kaplan et al., 2015; Tselentis and Papadimitriou, 2023), and evalu-
ating vehicle-cloud collaboration (Mei et al., 2025). However, these
studies often focus on specific subdomains and vary in how they
define and categorise driving heterogeneity. There remains a lack
of a unified conceptual framework that systematically organises key
definitions, methodologies, and application pathways. In particular,
ML-based approaches differ substantially in terms of data process-
ing, feature selection, and model design (Zhang et al.,, 2010; Wang
et al., 2018; Silva and Eugenio Naranjo, 2020), making it difficult
to determine which techniques are most suitable for a given traffic
context.

To address these gaps, this paper presents a comprehensive review
of ML-based driving heterogeneity identification and proposes a struc-
tured framework to support its practical implementation. Our review
focuses on longitudinal driving behaviours, especially in highway set-
tings, and covers various traffic and environmental conditions. The
goal is to advance data-driven strategies for understanding, classifying,
and modelling driving heterogeneity, ultimately enabling personalised
driver support, better traffic management, and safer vehicle automation
systems. The main contributions of this study are twofold:

(i) Comprehensive literature review: We consolidate existing knowl-
edge on driving heterogeneity, organising key concepts, behavioural
categories, and ML-based identification methods. This provides a foun-
dation for researchers to navigate and build upon existing work.

(ii) A framework for analysis: We propose a structural framework
that supports heterogeneity identification through data collection and
pre-processing, feature selection, model training, and performance eval-
uation. The framework incorporates supervised, unsupervised, semi-
supervised, and reinforcement learning techniques, with a focus on
their strengths, limitations, and suitability for different data types and
use cases.

The remainder of this paper is organised as follows: Section 2
outlines concepts of driving heterogeneity and discusses categorisation,
applications, and identification tasks. Section 3 introduces the proposed
ML-based framework for identifying driving heterogeneity. Section 4
presents key findings, implementation challenges, and directions for fu-
ture research. Finally, Section 5 concludes the paper with implications
for a safer, more efficient, and sustainable intelligent transportation
system.

2. An overview of driving heterogeneity & identification

This section presents an overview of the review, as illustrated in
Fig. 1. The need for driving heterogeneity identification (WHY) stems
from its relevance to real-world applications including traffic manage-
ment, personalised ADAS, and human-like AV design. The review then
organises key concepts of driving heterogeneity (WHAT) in multiple
dimensions. Finally, we introduce the methodological process (HOW)
for ML-based driving heterogeneity identification. This visual guide
provides a structured foundation for the rest of the paper and sets the
stage for the proposed analytical framework.

2.1. Applications of driving heterogeneity identification

Identifying driving heterogeneity has practical values in improving
traffic management, enhancing road safety, and enabling personalised
driver support systems. In traffic operations, understanding variations
in driver behaviour allows for better predictions of congestion and
more effective control strategies, such as adaptive signal timings or
alternative route recommendations. It also helps in detecting unusual
or high-risk behaviours, which can support real-time interventions such
as issuing warnings to nearby vehicles or alerting authorities (Ma
et al., 2019; Abbas et al., 2011). In vehicle technology, heterogeneity
identification enhances the customisation of Advanced Driver Assis-
tance Systems (ADAS). For example, systems can adapt their feedback

Transportation Research Interdisciplinary Perspectives 32 (2025) 101511

based on an individual’s driving tendencies, providing earlier alerts to
those prone to hard braking or enhanced lane assistance for frequent
lane-changers (Feng et al., 2019; Zhang et al., 2021). Similarly, for
automated vehicles (AVs), recognising and responding to diverse hu-
man driving styles enables AVs to behave more naturally and safely in
mixed traffic environments (Martinez et al., 2017). These applications
influence how we define and study driving heterogeneity by directing
attention to specific behavioural differences and shaping the design of
identification methods.

2.2. Concepts and categorisation of driving heterogeneity

Driving heterogeneity refers to the variability in driver traits,
decision-making, and control actions. This variability manifests in both
space and time (Zou et al., 2022), and can be categorised along three
main dimensions: (i) inter-driver vs. intra-driver heterogeneity, (ii)
long-term vs. short-term heterogeneity, and (iii) global vs. special
behavioural patterns.

Inter-driver heterogeneity describes differences among drivers in
similar conditions. For instance, some may accelerate more aggressively
or maintain smaller headways than others (Ossen et al., 2006; Sun
et al, 2021). In contrast, intra-driver heterogeneity refers to how
the same driver may behave differently over time or across situa-
tions (Ossen and Hoogendoorn, 2011; Taylor et al.,, 2015). From a
temporal perspective, long-term heterogeneity relates to persistent be-
havioural tendencies or driving skills developed over months or years,
while short-term heterogeneity reflects temporary states like distrac-
tion or fatigue during a specific trip (Azadani and Boukerche, 2021).
Lastly, global heterogeneity captures overall behaviour over a trip or
time period, such as consistent car-following strategies (Sun et al.,
2021), whereas special heterogeneity focuses on specific manoeuvres
or behaviours, such as harsh braking or sharp turns (Sagberg et al.,
2015).

Delineating these concepts provides a fundamental insight into
understanding driving heterogeneity, which helps to describe hetero-
geneity in a human-comprehend manner. To operationalise these ideas,
researchers identify driving heterogeneity using categories including:
Driving style (e.g., aggressive, normal, mild), Risk level (e.g., safe, risky),
Driving skill (e.g., novice, expert), Irregular behaviours (e.g., harsh brak-
ing), and Driving patterns (e.g., acceleration phases, lane changes).
Table 1 summarises these categories, their descriptors, and the type
of driving heterogeneity they address. Each plays a distinct role in
capturing variability across time, context, and individual differences.
For example, driving styles are often associated with inter-driver and
long-term global heterogeneity, while risk level and irregular behaviour
focus on short-term, situational variability. Additionally, driving pat-
tern recognition provides a flexible tool for capturing both intra-driver
variation and broader behavioural tendencies.

Together, these concepts and descriptors for identifying driving
heterogeneity not only enhance our understanding of the multifaceted
nature of driver behaviour but also facilitate the interpretation and
development of ML-based interventions aimed at improving road safety
and traffic management.

2.3. Methodologies for driving heterogeneity identification

Identifying driving heterogeneity is typically formulated as a classi-
fication problem, using behavioural data to distinguish among different
drivers or driving patterns. Based on the literature review, three main
methodological approaches can be distinguished:

1. Classifying driving behaviours into distinct groups to specific
driving profiles.

2. Creating an extensive set for driving states without interpreta-
tion.
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Fig. 1. An overview of the literature review paper.
Table 1
Categorisation of driving heterogeneity identification.
Categorisation Descriptors Inter Intra Long-term Short-term Global Special
Driving style classification Aggressive, radical, normal, v v v v v v
cautious, etc.
Risk level evaluation High-moderate-low risk, etc. v v v v v
Driving skill characterisation Expert, typical, etc. v v v
Irregular behaviour detection Aggressive braking, aggressive v v v
acceleration, etc.
Driving pattern recognition Closing in, closing in, keeping, v v v v v

falling behind, etc.

3. Decomposing complex driving behaviour into simpler, more fun-
damental patterns with interpretation.

The first approach assigns drivers to predefined categories or clus-
ters, often based on discrete scales (e.g., 2 to 5 groups) or numerical
indices (e.g., a score from 0 to 10). For example, drivers may be
classified into aggressive (also termed radical), normal (moderate, con-
ventional), or mild (timid, conservative) styles (Sun et al., 2021; Bejani
and Ghatee, 2019; Liu et al., 2020; Feng et al., 2019; Liang et al., 2022).
Similarly, driver skill levels have been grouped as novice, typical, or
expert (Chandrasiri et al., 2016; Zhang et al., 2010; Zhu et al., 2018).
While these classifications offer clear and interpretable outputs, they
are limited in capturing the full range of behavioural diversity due
to their coarse granularity. Furthermore, the thresholds used to define
these categories are often subjective, potentially introducing bias into
the identification process.

Instead of directly classifying or clustering, the second approach
creates a broad space of behavioural profiles to represent driving
heterogeneity more flexibly. For instance, Qi et al. (2019) proposed
a high-dimensional style space containing over 20 behavioural types.
Similarly, modelled individual behaviour using probabilistic distribu-
tions over different driving states rather than discrete groups (Ding
et al., 2022). By acknowledging more characteristics, this approach can
detect a wider range of variations in driving behaviour. However, this

extensive categorisation approach might compromise the interpretation
of driving profiles, thus limiting its implementation. This highlights the
need for methods that can balance complexity and interpretability in
behaviour modelling.

The third approach decomposes driving behaviour into simpler,
fundamental components, commonly referred to as “primitives”, to
analyse heterogeneity at a finer resolution. These primitives represent
short, distinct behavioural segments with identifiable characteristics.
For example, Wang et al. (2018) extracted primitives such as ‘“fol-
lowing behind”, “closing”, “gentle acceleration”, and “aggressive de-
celeration” to model driving heterogeneity. Yao et al. (2023, 2025)
introduced the concept of “action phases” as basic units to describe
transitions in driving behaviour, enabling a clearer interpretation of
behaviour dynamics. This approach allows for detailed analysis of
intra- and inter-driver variability while maintaining semantic clarity,
making it well-suited for both theoretical development and practical
applications.

In summary, methodologies for identifying driving heterogeneity
differ in their emphasis on interpretability, flexibility, and granularity.
Category-based methods are simple and interpretable but limited in
detail of behavioural characteristics; continuous profiling offers richer
representation but lacks clarity; and pattern decomposition provides
high interpretability with fine granularity. Machine learning (ML) tech-
niques are commonly used across these approaches due to their capa-
bility to model complex behaviours and handle large datasets. In the
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Fig. 2. A framework for ML-based driving heterogeneity identification.

next sections, we explore how ML is applied to support and enhance
these methodologies.

3. A framework for driving heterogeneity analysis

In this section, we introduce the proposed framework for identifying
driving heterogeneity using Machine Learning (ML) techniques. The
framework is developed based on a comprehensive review of existing
literature and consists of four main steps: Trajectory Data Preparation,
Traffic Feature Selection, Identification Models of ML, and Performance
Evaluation, as illustrated in Fig. 2. The initial step involves collecting,
cleaning, and pre-processing raw driving data to ensure it accurately
represents real-world driving behaviour. This step is essential for reduc-
ing errors and improving the quality of subsequent analysis. The second
step, Traffic Feature Selection, focuses on identifying relevant variables
from the pre-processed data that are most informative for modelling
driving behaviour. Effective feature selection enhances model accuracy
and reduces computational complexity. The third step, Identification
Models of ML, applies the selected features to train ML models capable
of detecting and classifying different driving behaviour patterns. This
is the core step where heterogeneity is identified using various ML
learning algorithms. Finally, Performance Evaluation assesses the effec-
tiveness of the ML models. This includes not only traditional accuracy
metrics but also interpretability, generalisation to new data, and real-
time applicability in the real-world. The following sub-sections describe
each step in detail, discussing the methods used in the literature along
with their respective advantages and limitations.

3.1. Step 1: Traffic data preparation

Since ML models rely on data to learn and make predictions, the
quality of input data is critical to successful driving heterogeneity
identification. Therefore, the first step in the framework is preparing
trajectory data, which includes data collection and pre-processing. This
step ensures that the data used is clean, reliable, and representative of
actual driving behaviours.

Transportation Research Interdisciplinary Perspectives 32 (2025) 101511

3.1.1. Data collection

Driving behaviour data is commonly collected using four meth-
ods: driving simulator, in-vehicle camera, sensor or hardware, traffic
images, and floating car data (FCD, e.g., smartphone-based). These
methods vary in controllability, data richness, quality, validity, and
cost, as summarised in Table 2.

Controllability refers to how much researchers can influence the
data collection environment. Driving simulators offer the highest con-
trol, allowing for designed experiments under specific conditions
(Chandrasiri et al., 2016). In-vehicle equipment allows to collect driv-
ing data in certain traffic scenarios, such as curving sections or ramps
(Liu et al., 2017), while unpredictable situations could happen in real-
world data collection, thus with lower controllability than a driving
simulator. Traffic images and FCD methods rely entirely on naturalistic
driving, making them the least controllable. Data richness relates
to the diversity and quantity of details available within a specific
dataset. Driving simulators and in-vehicle equipment methods can
provide driver information and manoeuvre-specific data and allow for
repeatable data collection, but are limited in scale due to time and
financial constraints. Conversely, traffic images and FCD methods cap-
ture large-scale driving behaviour but with less details about driver and
manoeuvre information. Quality concerns the precision and objectivity
of datasets. Data from driving simulators and in-vehicle equipment
may suffer from observer effects. For example, drivers know they are
observed and might exhibit different driving behaviours compared to
driving in a real-world setting, thus reducing the objectivity of collected
data (Higgs and Abbas, 2013). Traffic images and FCD capture real-
world behaviours but face issues with sensor accuracy, video resolution,
and post-processing errors. Validity measures how accurately the
data reflects actual driving behaviour. Driving simulators have low
validity due to artificial environments, whereas in-vehicle equipment,
traffic images, and FCD provide higher validity by capturing real-world
driving under diverse conditions. Cost refers to the expenses, time,
and human effort needed for data collection. Driving simulators are
expensive due to equipment and participant costs. In-vehicle systems
range from affordable GPS devices to costly telematics. Traffic images
require expensive infrastructure and high data-processing costs. FCD,
utilising built-in smartphone sensors, is the most cost-effective but
raises privacy concerns (Eren et al., 2012).

Each method offers trade-offs in terms of control, scale, and pre-
cision. Researchers can leverage these insights to tailor their data
collection strategies effectively, aligning with their research goals and
specific research questions. For instance, Studies focusing on detailed
driver behaviour may prioritise driving simulators or in-vehicle equip-
ment, while traffic management and policy research may favour traffic
images or FCD for broader behavioural insights.

Fig. 3 shows the use of various data collection methods over the
years in the reviewed papers. Thanks to the development of technolo-
gies such as telematics, GPS systems, and 5G, there is an increase in
the availability and application of both FCD and in-vehicle equipment
methods. The latter, in particular, has seen a trend towards more
consistent and long-term usage in studies. As increasing numbers of
publicly naturalistic driving datasets have become available since 2018,
studies based on traffic image data have increased. Correspondingly,
the use of driving simulator experiments and datasets has declined due
to more available naturalistic data.

3.1.2. Data pre-processing

Collected driving trajectory data often contains noise and inaccura-
cies due to sensor errors, video quality limitations, and data extraction
inconsistencies (Xie et al.,, 2020; Chen et al., 2020). These issues
can distort analysis results and misrepresent driving behaviour. To
enhance data reliability, various pre-processing techniques are applied
to maintain data integrity and optimise input quality for ML-based
driving behaviour analysis. Table 3 provides a summary of techniques
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Table 2
Comparison analysis of driving trajectory data collection method.
Method Controllability Data richness Quality Validity Cost
Driving simulator High « Scale: Small Affected by Low High
« Repeatability: Easy « Scenarios design
« Specific manoeuvres: Easy « Observer effect
« Driver information: Easy
In-vehicle equipment Low « Scale: Small Affected by High Moderate to high
« Repeatability: Easy « Observer effects
« Specific manoeuvres: Easy
« Driver information: Easy
Traffic images No « Scale: Large Affected by High Moderate to high
« Repeatability: Hard « Observation errors
« Specific manoeuvres: Hard « Parsing errors
« Driver information: Hard
FCD (Smartphone-based No « Scale: Large Affected by High Low
method) « Repeatability: Hard « Sensor accuracy
« Specific manoeuvres: Hard
« Driver information: Hard
FCD(Smartphone-based) A
In-Veh equipment . .. '. . (
Traffic images A
Driving simulator {
2010 2012 2014 2016 2018 2020 2022 2024

Fig. 3. Statistics of data collection methods over the year.

for outlier elimination, filtering, and data synchronisation. Regression-
based methods and cubic interpolation are commonly used to detect
and correct outliers by either adjusting values based on predictive
modelling or estimating missing points from surrounding data (Sun
et al.,, 2021; Ma et al., 2021). Additionally, filtering techniques, such
as the Butterworth filter and Savitzky-Golay filter, are employed to
smooth out noise while preserving critical data patterns (Guyonvarch
et al., 2018; Lyu et al., 2022). To ensure temporal consistency, data
synchronisation techniques adjust the sampling rates of datasets. Up-
sampling is applied to sparse data to increase resolution and retain
essential behavioural details, while down-sampling simplifies large-
scale datasets, improving computational efficiency without significant
information loss (Saleh et al., 2017; Ma et al., 2021).

Overall, each data pre-processing method has its specific purpose
when dealing with noise and maintaining data integrity. To ensure
that the data is accurately represented to derive meaningful driving
characteristics, the selection of data pre-processing methods should be
carefully chosen according to the nature of the dataset involved.

3.2. Step 2: Traffic feature selection

The second step in the proposed framework is traffic feature selec-
tion, which aims to reduce dimensionality by selecting relevant vari-
ables from the pre-processed dataset. While datasets often include many
features, not all of them contribute meaningfully to identifying driving
heterogeneity. Using irrelevant or redundant features can reduce model
accuracy and increase computational cost. Therefore, feature selection
is essential to improve model performance and interpretability.

3.2.1. Traffic variable extraction

There is currently no universally agreed-upon sets of metrics for
driving behaviour analysis in literature. According to Abou Elassad
et al. (2020), metrics used in driving studies can be grouped into four

categories: vehicle-based, behavioural, physiological, and subjective.
Since this study focuses on trajectory-based analysis, we consider only
vehicle-based variables, which include vehicle kinematic and dynamic
features. Kinematic variables describe the vehicle’s motion, such as
speed and acceleration, while dynamic variables reflect the driver’s
control inputs, such as braking and throttle use. Both types of vari-
ables are widely used to characterise driving behaviour and detect
heterogeneity (Taylor et al., 2015; Kim et al., 2013).

Fig. 4 summarises the use of these variables in existing studies.
Kinematic variables are used more frequently than dynamic ones due
to their strong correlation with driver responses to traffic situations.
Velocity (used in 61 studies) and acceleration (57) are the most com-
mon variables for identifying driving heterogeneity. Among dynamic
variables, braking (21), steering wheel angle (18), and throttle position
(17) are frequently used because they provide direct information about
driving behaviours. The importance of these variables depends on the
specific type of heterogeneity being studied. For instance, throttle usage
has been found to be a strong indicator of aggressive driving (Shi
et al., 2015), while combining RPM, speed, and acceleration improves
driving style classification (Moosavi et al., 2021). Moreover, integrating
acceleration and brake events can increase classification accuracy by
up to 10% according to Van Ly et al. (2013). Therefore, variable
selection should align with the specific behavioural characteristics and
heterogeneity concepts under investigation.

3.2.2. Feature selection for ML

Machine learning (ML) models rely on carefully selected traffic
features to improve predictive accuracy and computational efficiency.
Driving behaviour studies often generate extensive feature sets by
incorporating various statistical descriptors such as maximum, mini-
mum, and average values. For instance, one study derived 117 features
from three acceleration signals (Vaitkus et al., 2014), while another
extracted 58 brake-event-based features to classify driving behaviour
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Fig. 4. Statistics of traffic variables used in literature.

Table 3
Techniques for pre-processing driving behaviour data.
Category Technique Characteristic
Regression - Identifies and adjusts anomalies by fitting a predictive model to the data.

Outlier elimination (Sun et al,, 2021)

Cubic interpolation
(Ma et al., 2021)

- Fills missing values by estimating them based on nearby data points, preserving
dataset smoothness.

Butterworth filter
(Guyonvarch et al.,
2018)
Savitzky-Golay filter
(Lyu et al., 2022)

Filtering

- Smooth response in the passband, preserving the true characteristics of driving data
while effectively removing noise

- Retains data distribution shape for pattern consistency

Up-sampling
(Saleh et al., 2017)
Down-sampling
(Ma et al., 2021)

Data synchronisation

- Increases the sampling rate in smaller datasets to capture more detailed
information while maintaining consistency

- Reduces the sampling rate in large-scale datasets, enhancing computational
efficiency without significant data loss

Table 4
Feature selection techniques used for driving heterogeneity identification.
Method Prons (v) & Cons (X) Reference
FA . . Zhang et al. (2021)
Statistical DFT ; f;:;p':zf;ﬁ’;ai};uelg“em Zhang et al. (2010), Zou et al. (2022) and Xue et al. (2019)
methods DTW X Miss If)eature interactions Feng et al. (2019), Xue et al. (2019) and Eftekhari and Ghatee (2018)
WT X Ouestionable assumptions Zhang et al. (2010) and Zheng et al. (2022)
PCA P Sun et al. (2021), Liu et al. (2020) and Deng et al. (2020)
Model-based Tree-based v Capture feature interactions Figueira and Larocca (2020)
methods GMM v Yield better model performance Wahab et al. (2009)
SFFS X Computationally intensive Vaitkus et al. (2014)
X Risk of overfitting
Deep learning- Autoencoder v Handle complex patterns Guo et al. (2018)
based methods RNN v Good for high-dimensional data Moukafih et al. (2019) and Moosavi et al. (2021)

X Computationally expensive
X Challengable interpretability

Abbreviations:

FA - Factor Analysis; GMM - Gaussian Mixture Method; SFFS - Sequential Forward Feature Selection - RNN - Recurrent Neural Network.

(Gahr et al., 2018). Given the complexity of high-dimensional datasets,
feature selection techniques play a crucial role in refining inputs for
ML models. These techniques can be broadly categorised into statistical
methods, model-based approaches, and deep learning-based strategies,
as summarised in Table 4.

Statistical methods, including Principal Component Analysis (PCA),
Discrete Fourier Transform (DFT) (Tang, 2009), and Dynamic Time
Warping (DTW), are widely applied in driving behaviour analysis.
These techniques enhance computational efficiency while providing
interpretable results. PCA, for example, transforms data into a new
coordinate system, simplifying visualisation and feature ranking (Sun
et al., 2021). Similarly, DFT analyses signals in the frequency do-
main to minimise information loss (Xue et al., 2019). Some studies
integrate multiple techniques, such as combining Wavelet Transform

(WT) with PCA (Zheng et al., 2022) or DFT with Discrete Wavelet
Transform (DWT) (Xue et al.,, 2019), to improve feature selection
accuracy. However, these methods often assume linear relationships
in data, making them less effective in capturing complex feature in-
teractions. Model-based methods, such as decision trees (DT), random
forests (RF), and Gaussian Mixture Models (GMM), offer an alternative
by directly assessing feature importance within predictive ML mod-
els. These approaches can identify non-linear dependencies between
variables, leading to better model performance. However, they can be
computationally intensive and susceptible to overfitting, particularly
in small datasets. For high-dimensional and complex datasets, deep
learning-based methods provide advanced feature selection capabili-
ties. Techniques such as autoencoders and Recurrent Neural Networks
(RNNGs) effectively capture intricate relationships between features and
adapt to evolving driving patterns (Guo et al., 2018; Moukafih et al.,
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2019). While these methods improve feature representation, they are
computationally demanding and often lack interpretability. In a word,
selecting the appropriate feature selection technique requires balancing
computational efficiency, interpretability, and accuracy based on the
specific objectives of driving heterogeneity identification.

3.3. Step 3: Identification methods of ML

The third step of the framework focuses on applying machine learn-
ing (ML) models to identify driving heterogeneity based on the traffic
features selected in Step 2. In literature, ML techniques methods used
for this purpose are generally classified into four categories: supervised
learning (SL), unsupervised learning (USL), semi-supervised learning
(SSL), and reinforcement learning (RL), which we elaborate further on
below.

3.3.1. Supervised learning methods

Supervised learning (SL) techniques train models to learn the re-
lationship between input features and output labels, allowing them to
make predictions or decisions on new, unlabelled data. This process
requires training data to be labelled in advance, which is obtained from
expert knowledge. Some studies use rule-based strategies to label data
by measuring physical variable changes, such as vehicle steering angle
or brake/accelerator pedal positions (Wang et al., 2018). Threshold
values for variables in rule-based labelling are typically determined
by data analysts’ prior knowledge and sometimes combined with other
tools, such as driving style questionnaire (DSQ) (Wahab et al., 2009).
K-means is also often employed for unsupervised learning labelling
to group drivers and then label these clusters based on statistical
analyses. For instance, Deng et al. (2020) classified 30 participants into
cautious, moderate, and aggressive drivers based on the PCA and K-
means clustering before training models for driving style recognition. In
these labelling processes, strict thresholds are usually set to distinguish
different groups. A downside of this is that it can result in inaccurate
classifications since there are not always clear-cut boundaries between
different driving profiles. To improve this, approaches such as fuzzy
logic can be adopted in some studies (Eftekhari and Ghatee, 2018).
Unlike the definitive nature of classical binary logic, fuzzy logic sys-
tems bridge inputs to outputs using a set of rules, which allows for
establishments of conditions like if(A&B) = C, where A, B, and
C represent different driving profiles. Such an approach avoids the
constraints of rigid categories, offering a more accurate classification
of driving heterogeneity.

With labelled data, supervised learning classifiers are trained to
identify driving heterogeneity. Commonly used traditional ML algo-
rithms include Support Vector Machine (SVM), Random Forest (RF), K-
Nearest Neighbours (KNN), and Multi-Layer Perceptron (MLP), among
others. Xue et al. (2019) employed SVM for driving style recognition
and revealed its advantage over RF, KNN, and MLP with an accuracy of
91.7%. More recently, deep learning methods, such as ANNs, CNNs, and
RNNs, have demonstrated superior performance in handling complex
and high-dimensional driving data. According to Xie et al. (2021), the
F1-score of CNN-based method is higher than both k-NN and RF-based
methods in driving manoeuvre classification. Subsequently, enhanced
CNN-based models, such as the adaptive regularised CNN (CNNAR)
(Bejani and Ghatee, 2019), the parallel Convolutional Neural Network
(PCNN) (Camlica et al., 2022), and the Residual Convolutional Network
(RCN) (Abdennour et al., 2021) were introduced by boosting CNN’s
capability in driving pattern recognition, showing impressive perfor-
mance by improving accuracy of 99.3% and reducing training time by
two hours. Furthermore, Long Short-Term Memory (LSTM) networks
are developed to overcome the vanishing gradient challenges of RNNs,
exhibiting high accuracy in driving style classification, and unsafe
driving behaviour detection, such as 91% as reported by Khodairy and
Abosamra (2021) and 99% according to Saleh et al. (2017), which out-
perform traditional ML models like MLP and DT (Wijnands et al., 2018).
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Additionally, hybrid deep learning approaches have shown significant
improvements in classification accuracy. For example, by taking CNN’s
ability to extract semantic driving patterns (e.g., turns) from input
trajectories and employing an RNN on the sequential driving data
to decode interrelationships among driving patterns, the proposed D-
CRNN model presented improved accuracies of 8%-31% in driving
style identification compared to CNN and RNN models (Moosavi et al.,
2021).

Table 5 summarises SL applications in driving heterogeneity iden-
tification, detailing input data types, classifier choices, and output
categories. Note that most SL studies focus on kinematic variables, with
some integrating dynamic features to capture more driving behaviour
feathers (Li et al., 2019; Khodairy and Abosamra, 2021). The output
of SL models varies depending on the classification task. Some studies
categorise drivers into styles-based groups (e.g., aggressive and normal)
or risk-based groups (e.g., high, moderate, and low risk), while others
identify specific behaviours such as braking or acceleration patterns
(Xie et al., 2021). Additionally, some models focus on identifying
drivers through driving states (Abdennour et al., 2021), while others
detect unsafe behaviours like drowsy or distracted driving (Shahverdy
et al., 2020).

3.3.2. Unsupervised learning methods

Unsupervised learning (UL) methods can derive driving profiles by
directly examining unlabelled data, which is significantly less labour-
intensive and reduces potential labelling biases. Table 6 summarises
key studies that employ clustering techniques. Clustering methods such
as K-means and Fuzzy C-means (FCM) group drivers based on similar
driving styles, offering interpretable categorisations such as aggres-
sive, normal, and defensive driving (Sun et al., 2021; Feng et al.,
2019). More advanced clustering techniques like Federated Learning
K-means (FL-K-means) and Gaussian Mixture Models (GMM) improve
identification precision by handling scattered and sensitive data (Lu
et al.,, 2023; Zhang et al.,, 2021). Topic models, particularly Latent
Dirichlet Allocation (LDA) and its variants (T-LDA, mLDA, mHLDA),
segment naturalistic trajectories into behavioural “topics”, enabling
fine-grained identification of cautious and radical driving styles (Xie
et al., 2018; Qi et al., 2019). HMM-based approaches, such as sticky
HDP-HMM and BP-AR-HMM, capture temporal dependencies by seg-
menting driving trajectories into hidden states, representing distinct
driving states (Wang et al., 2019; Hamada et al., 2016). Similarly, DAA-
based methods such as Double Articulation Analyser with Temporal
Prediction (DAA-TP) and Nested Pitman-Yor Language Model (NPYLM)
can decompose driving sequences into hierarchical structures, mirror-
ing linguistic pattern recognition for driver identification (Taniguchi
et al., 2014, 2015). Other studies employed deep learning models,
such as Deep Sparse Autoencoder (DSAE) and Autoencoders with Self-
Organised Maps (AESOM) to extract latent driving features, improving
real-time recognition of high-risk and moderate-risk driving behaviours
(Liu et al., 2017; Guo et al., 2018).

Similar to SL methods, USL techniques primarily rely on kinematic
vehicle data, such as speed, acceleration, and braking patterns, with
some studies incorporating dynamic variables like yaw rate and lateral
acceleration (Hamada et al., 2016; Liu et al., 2017). Clustering and
topic models work well with aggregated statistical features to distin-
guish different groups (e.g., aggressive, normal, risky), while HMM and
deep learning-based models process sequential driving data, enabling
better recognition of behavioural transitions (Wang et al., 2019).

3.3.3. Semi-supervised learning methods

Semi-supervised learning (SSL) methods train classifiers with a
small amount of labelled data and a large volume of unlabelled data,
making it a promising approach for identifying driving heterogene-
ity with reduced labelling efforts. For example, semi-supervised SVM
(S3VM) has shown better performance than traditional SVM in driving
style classification (Wang et al., 2017). Advanced SSL models, like the
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Table 5
Identification of driving heterogeneity using supervised learning methods.
Paper Input data® ML models” Output
Kine. Dyna.

Xue et al. (2019) v SVM, RF, KNN, MLP Aggressive, and normal driving

Li et al. (2017) 4 RF High-, moderate-, and low-risk driving

Jafarnejad et al. (2017) v v AB, GB, RF, ET, SVM Aggressive/risky, and normal driving

Vaitkus et al. (2014) v KNN Aggressive, and normal driving

Silva and Eugenio Naranjo (2020) v SVM, ANN, KNN, FL, KNN, RF Aggressive, calm, and normal driving

Figueira and Larocca (2020) v CART, SVM High-, moderate-, and low-risk driving

Tango and Botta (2013) v v SVM, ANFIS, LRNN, FFNN, LR Typical and skillful driver

Li et al. (2019) v v CNN, LSTM, pretrain-LSTM, SVM High-, moderate-, and low-risk driving

Shahverdy et al. (2020) v v 2D CNN Normal, aggressive, distracted, drowsy, and drunk driving

Xie et al. (2021) v CNN, KNN, RF Driving manoeuvres: lane keeping, braking, turning, acceleration,
right lane change, and left lane change

Abdennour et al. (2021) v v DeepRCN, DeepCNN, DT, RF, SVM, MLP Driver recognition

Bejani and Ghatee (2019) v CNNAR, SVM, MLP, KNN, DT Cautious, moderate, and aggressive driving

Camlica et al. (2022) v PCNN, CNN, LSTM, HMM, SVM Aggressive, and non-aggressive driving

Khodairy and Abosamra (2021) v 3-CCM-LSTM, 2-CMM-LSTM Normal, drowsy, and aggressive driving

Saleh et al. (2017) v v stacked-LSTM, MLP, DT Normal, aggressive, and drowsy driving

Wijnands et al. (2018) v LSTM Safe and unsafe driving

Moosavi et al. (2021) v v D-CRNN, CNN, RNN, ARNet, VRAE, GBDT Driver recognition

Moukafih et al. (2019) v v LSTM-FCN, RF, LSTM, AB, ResNet Aggressive and non-aggressive driving

Eftekhari and Ghatee (2018) v ANFIS Safe, aggressive, and semi-aggressive driving

Schlegel et al. (2021) v HDC-FFNN, SNN, KNN, SVM, LSTM Aggressive, and normal driving

2 Table headings: Kine. - Vehicle kinematic variable; Dyna. - Vehicle dynamic variable;

Dis. - discrete, the output of ML model is distinct groups; Con. - continuous, the output of ML model is continuous trajectories.
b ML models: ET - Extra Trees; FL - Fuzzy Logic; CART - Classification and Regression Tree; ANFIS - Adaptive Neuro-fuzzy Inference Systems; 3-CCM - Three-class Classification
Model; VRAE - Variational Recurrent Auto-Encoder; FFNN - Feed-forward Neural Networks; SNN - Spiking Neural Networks; LRNN - Layer Recurrent Neural Networks.

Table 6
Identification of driving heterogeneity using unsupervised learning methods.
Paper Input data ML models® Output
Kine. Dyna.
Higgs and Abbas (2013) v K-means Driving states
Sun et al. (2021) v Fuzzy C-means Aggressive, normal, and mild driving
Feng et al. (2019) v SvC Aggressive, normal, and defensive driving
Lu et al. (2023) v IFL K-means, FL K-means, FL-GMM, FFCM, MA K-means Aggressive, moderate, and calm driving
Zhang et al. (2021) v HC-GMM, GMM, DBSCAN, HC, K-means Aggressive and normal driving
Bender et al. (2015) v LDA Trajectory segmentation
Xie et al. (2018) v T-LDA, LDA, pLSA Cautious, normal, radical, very radical driving
Qi et al. (2019) v mLDA, mHLDA Extensive driving styles
Wang et al. (2019) v sticky HDP-HMM Driving primitives
Hamada et al. (2016) v v BP-AR-HMM Driving states
Taniguchi et al. (2014) v DAA-TP Driving states
Taniguchi et al. (2015) v NPYLM Driver identification
Liu et al. (2017) v v DSAE Driving states
Guo et al. (2018) v AESOM Slight, moderate, high risk driving

a ML models: IFL - Improved Federated Learning; FFCM - Federated Fuzzy C-means Method; pLSA - Probabilistic Latent Semantic Analysis; DSAE - Deep Sparse Autoencoder.

HDP-HSMM, outperform supervised counterparts such as HDP-HMM in
extracting driving patterns from high-dimensional data (Wang et al.,
2018). Similarly, Tri-CatBoost integrates pseudo-labelling through tri-
training, achieving higher accuracy than both supervised and unsuper-
vised baselines (Liu et al., 2020). Another approach, ARNet, leverages a
limited number of labelled samples to guide a regularised autoencoder,
improving accuracy by over 3% compared to traditional models. SSL
methods are particularly useful when labelled data is scarce. Yet,
their performance can be sensitive to noisy labels and data inconsis-
tency. Moreover, their added complexity often increases computational
requirements and implementation difficulty.

3.3.4. Reinforcement learning methods

Reinforcement Learning (RL) approaches driving behaviour as a
Markov Decision Process (MDP), where agents learn to perform driving
actions based on a system of rewards and penalties. Driving hetero-
geneity is identified by analysing variations in learned behaviours and
reward responses. For example, different reward functions can rep-
resent different levels of driving aggressiveness (Vlachogiannis et al.,
2020). However, the lack of standard reward design and difficulty in
validating learned behaviours are key challenges. Inverse Reinforce-
ment Learning (IRL) instead learns the reward functions directly from

observed driver behaviour. Techniques such as MLIRL and LogReg-
IRL recover style-related parameters from human driving data (Jiang
et al., 2018; Kishikawa and Arai, 2021). More advanced methods, like
SIRL (Rosbach et al., 2019) and NFACRL (Abbas et al., 2011), further
enhance the robustness of driving style identification, particularly in
dynamic or risky environments. While IRL offers deeper insights into
individual driving preferences, its reliance on high-fidelity simulation
environments, complex reward interpretation, and high computational
cost limits its scalability in real-world applications.

3.3.5. Summary of ML methods

Each ML technique employs a distinct mechanism, as illustrated in
Fig. 5. From a data processing perspective, SL, USL, and SSL focus
on data-driven analysis, including classification and clustering (see
Fig. 5(a)-(c)). In contrast, RL is primarily concerned with understand-
ing and modelling the decision-making processes of drivers, see Fig.
5(d). Each ML technique has strengths and weaknesses and focuses
on different aspects of driving heterogeneity, as summarised in Ta-
ble 7. SL methods rely on labelled data and learn from historical
labelled examples to classify driving behaviours into specific categories
(e.g., aggressive vs. normal driving). They are predominantly used
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Fig. 5. Mechanism of different ML techniques.

Table 7
Comparison of ML techniques in driving heterogeneity identification.

ML technique Main heterogeneity focus Strengths

Weaknesses

SL Inter, short-term, global

USL Intra, short-term, global, and special
SSL Inter, short-term, and global

RL Inter, short-term, global

High interpretability, effective classification
Captures hidden structures, scalable

Reduces need for labels, improves generalisation
Adaptive, useful for AV behaviour modelling

Requires labelled data, less adaptable
Lower interpretability

Susceptible to misclassification

High computational cost, complex
reward tuning

to characterise inter-driver heterogeneity, meaning variations among
different drivers. They also frequently identify short-term and global
heterogeneity, such as variations in acceleration or braking patterns
across different traffic scenarios. USL methods identify patterns by clus-
tering similar driving behaviours or segmenting trajectories based on
statistical properties, which are particularly useful for identifying intra-
driver heterogeneity (i.e., variations in an individual driver’s behaviour
over time). They also effectively capture short-term heterogeneity and
global driving behaviour trends by analysing large-scale datasets with-
out predefined categories. However, the lack of explicit labels makes
their interpretability more challenging. SSL methods leverage both
labelled and unlabelled data but can suffer from misclassification issues
if the small labelled dataset does not represent the full heterogeneity of
the driving population. RL-based models particularly emphasise short-
term and global heterogeneity, making them valuable for adaptive
driving systems and autonomous vehicle behaviour modelling.

3.4. Step 4: Performance evaluation

The final step of the framework is performance evaluation which
justifies a model’s reliability, ensuring trustworthy and replicable out-
comes. This is not only about model accuracy but also interpretability,
generalisation, and online processing which displays the model’s prac-
tical usability in real-world applications for ADAS, traffic management,
and autonomous vehicle control.

3.4.1. Model accuracy

Evaluating model accuracy is crucial to finding the best performance
for identifying driving heterogeneity. Classification models usually rely
on Accuracy, Precision, Recall, F1-score, AUC-ROC, and Cohen’s Kappa
to measure alignment with ground-truth labels (Xue et al., 2019; Fung
et al., 2017; Ma et al., 2018; Silva and Eugenio Naranjo, 2020; Abden-
nour et al., 2021; Zhang et al., 2014). Various models such as SVM, RF,
and KNN achieve an accuracy surpassing 85% when used to classify
driving skills, some even exhibit better exceeding 95% (Chandrasiri
et al.,, 2016; Jafarnejad et al., 2017; Kwon et al., 2021). Ranking-
based metrics like MRR and CRR assess the prioritisation of driving
behaviours, crucial for driver feedback systems. MAE and MSE are used
for continuous outcome predictions, where MSE minimises large errors
while MAE offers straightforward model performance. For unsupervised
learning, clustering performance is measured by the Silhouette Score,
Davies-Bouldin Index, and Calinski-Harabasz Index, ensuring well-
separated clusters (Higgs and Abbas, 2014). RL models use cumulative
reward and convergence time to assess learning efficiency, essential for
adaptive ADAS and traffic control.

Interpretability

— SL

SSL

— UL

igh — RL
Moderate

QW

Online Proogssing Gengralisation

Fig. 6. Analysis of ML techniques in model implementation.

Studies also employ benchmarking models from state-of-the-art to
ensure performance validation, highlighting model strengths, and guid-
ing the selection of optimal algorithms for real-world applications
while enabling continuous refinement. This is usually done by us-
ing advanced deep learning models and traditional ML algorithms
to conduct the same identification tasks, as seen for example with
the proposed CNNAR model, which was compared with SVM, MLP,
and KNN to demonstrate its superiority in identifying driving hetero-
geneity (Moosavi et al., 2021). Other studies compare their improved
ML models with corresponding foundational counterparts to illustrate
enhancements (Moukafih et al., 2019; Qi et al., 2019).

3.4.2. Model implementation

Interpretability, generalisation, and online processing are crucial
factors for real-world applications, influencing how well models can be
understood, adapted to diverse driving environments and implemented
in real-time driving scenarios. Interpretability ensures that the model’s
predictions can be understood and trusted by researchers, policymak-
ers, and industry stakeholders. Generalisation determines whether an
ML model can maintain its accuracy across different road conditions,
weather patterns, and driver populations. And online Processing allows
ML models to process incoming traffic data in real-time, making them
applicable to adaptive traffic control, driver monitoring systems, and
autonomous vehicle decision-making. Each ML approach has distinct
strengths and limitations across these three dimensions, as illustrated
in Fig. 6, influencing its suitability for various driving heterogeneity
identification tasks.
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Interpretability: SL and SSL methods offer the highest
interpretability, as they classify driving behaviours into well-defined
categories, making them useful for safety assessments and driver feed-
back. USL and RL methods have lower interpretability because of no
label, but their results can be analysed to have human-comprehensive
meanings. For instance, interpretable identification results can be pro-
vided by conducting statistical analysis on a limited number of clusters
and giving semantic meanings (Sun et al., 2021; Wang et al., 2018;
Hamada et al., 2016).

Generalisation: SL struggles with new environments due to re-
liance on predefined labels, while SSL improves adaptability by leverag-
ing unlabelled data. USL is highly generalisable, as it uncovers hidden
driving patterns across diverse conditions. As presented by Ding et al.
(2022), the proposed GMM-based driving style identification method
demonstrated effectiveness when supplemented with new driving data.
RL can generalise well but depends on carefully tuned reward functions,
which can limit transferability to new scenarios.

Online processing: USL is best suited for real-time applications,
as clustering can adapt incrementally without retraining. SL and SSL
require batch processing, limiting their real-time use. For instance,
incorporating more SVMs can distinguish more driving styles, while
this complicates the algorithm and can overburden the computational
capacity of on-board vehicle controllers (Chu et al.,, 2023). RL de-
mands extensive training and updates, making it difficult for immediate
deployment in adaptive traffic systems.

In total, effective ML models for driving heterogeneity must bal-
ance interpretability, generalisation, and online processing for better
real-world applications in traffic management, driver profiling, and
autonomous driving.

3.5. Summary

The proposed framework structures the ML-based identification pro-
cess using four inherently connected steps. Each step includes multiple
methods, offering flexibility in approach selection based on research ob-
jectives. By systematically comparing these techniques, the framework
facilitates optimised identification, balancing model effectiveness with
practical application needs.

4. Discussion

In this section, we discuss the main findings of the literature re-
view and the proposed framework for driving heterogeneity analysis.
Then we propose challenges and future recommendations towards
implementing this framework for real-world applications.

4.1. Main findings

Driving heterogeneity identification involves three key aspects in-
cluding applications, concepts, and methodologies. A clear objective of
each aspect ensures reliable identification. The main insights from this
study are summarised below.

4.1.1. Driver heterogeneity dimensions

Driving heterogeneity is categorised into three core concepts,
with five identification tasks. Inter- and intra- driving heterogeneity
refers to differences among drivers and variations within individual
drivers’ behaviour. Understanding driving heterogeneity from this per-
spective aids in improving traffic efficiency and road safety. Driving
heterogeneity can be divided into long-term and short-term from a
temporal perspective, which benefits the development of personalised
ADAS. Additionally, Global and special driving heterogeneity are iden-
tified based on overall vehicle movements or specific driving events,
which is important for AV design. The identification tasks include driv-
ing style classification, risk level evaluation, driving skill characterisation,
irregular behaviour detection, and driving pattern recognition. Clearly
defining these concepts and identification tasks helps comprehensively
understand the essence of driving heterogeneity and enhances the
interpretability of ML models.
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4.1.2. ML-based heterogeneity identification

The ML-based driving heterogeneity identification process can
be structured as a four-step framework, consisting of Trajectory
Data Preparation, Traffic Feature Selection, Identification Models of
ML, and Performance Evaluation. Each step includes multiple methods
with unique strengths and limitations. Facilitating driving heterogene-
ity identification requires aligning them with the specific research
objectives. Proper data collection, preprocessing, and feature selection
are necessary to match the heterogeneity concept being studied. Since
ML techniques differ in accuracy, interpretability, and real-time ap-
plicability, balancing these factors ensures an effective identification
process, improving its practical relevance.

4.1.3. Applications of the identification framework

The proposed identification framework is adaptable to various
datasets, integrates diverse ML techniques, and supports real-
world applications. This flexibility allows for the incorporation of
new models and data sources, enhancing identification performance.
The framework emphasises interpretability and real-time recognition,
encouraging researchers to evaluate methods across multiple dimen-
sions. By guiding the implementation of ML-based driving hetero-
geneity identification, it supports traffic management, personalised
ADAS, and human-like AV designs, ultimately improving transportation
systems.

4.2. Key issues and future research recommendations

While ML-based methods show strong potential in driving hetero-
geneity identification, practical deployment, especially in real-time and
automated driving systems requires improvements in both data and
model design. This section highlights key challenges and outlines future
directions to enhance the applicability of the proposed framework in
real-world settings.

4.2.1. Enhancing data quality and availability

Real-time and high-resolution data collection: ML models are
highly sensitive to the quality and granularity of input data (Zhu
et al., 2018). Traditional data sources, including traffic images and
basic in-vehicle sensors, often suffer from noise and low sampling
resolution. Industry-grade data collection systems, such as those used
by Waymo, Mobileye, and Aurora, combine LiDAR, radar, and vision
sensors with sub-millisecond-accurate logging via CAN or Ethernet net-
works (Waymo, 2024; Mobileye, 2024). These multi-sensor platforms
enable large-scale collection of naturalistic driving data across diverse
environments.

Advanced preprocessing and anomaly detection: Noise filtering
and outlier elimination remain essential for improving data reliability.
However, commonly used filters such as Savitzky-Golay or Butter-
worth may smooth out useful behavioural variations. More adaptive
preprocessing methods, including machine learning-based anomaly de-
tection and dynamic filtering strategies, are needed to better preserve
meaningful heterogeneity in raw data.

Fusion of heterogeneous data sources: Combining data from
simulators, traffic cameras, GPS, IMUs, and floating car data can yield a
more holistic view of driving behaviour. However, successful integra-
tion depends on the development of unified data formats (e.g., ROS,
JSON), synchronisation protocols (e.g., timestamp alignment), and
cross-platform interoperability standards. Research should focus on
frameworks that enable robust data fusion for training consistent ML
models.

Balancing dataset use and development: Public datasets like
NGSIM (U.S. Department of Transportation, Federal Highway Admin-
istration, 2006), HighD (Krajewski et al., 2018), KITTI (Geiger et al.,
2013), and Lyft5 (Wang et al., 2023b) are widely used due to their
accessibility, but they vary in precision and collection context, which
may introduce bias or limit generalisability. Future work should aim to
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balance the reuse of open datasets with the creation of context-specific
datasets that better represent traffic conditions.

Ethical data use and privacy protection: The use of person-
alised driving data raises concerns regarding privacy and data pro-
tection. Researchers must prioritise secure data handling practices,
including anonymisation techniques (e.g., differential privacy), encryp-
tion, and compliance with international regulations such as the GDPR
and CCPA (Villegas-Ch and Garcia-Ortiz, 2023). Future work should
explore privacy-preserving learning approaches that allow effective
model training without compromising individual privacy.

4.2.2. Improving model design and performance

Context-aware and flexible labelling: Traditional labelling strate-
gies often rely on predefined thresholds or global statistics, potentially
overlooking subtle, time-sensitive behavioural shifts (Sagberg et al.,
2015). Recent industry practices emphasise event-driven and context-
aware labelling techniques to capture the complexity of real-world
driving behaviours. For instance, Al-powered systems analyse driver
gaze, head movements, and body posture to detect distraction and
drowsiness, enabling more nuanced labelling of driver states (Zhao
et al., 2022). Future research should continue to explore such adaptive
labelling methods to enhance model accuracy.

Feature representation and selection: High-dimensional data
with redundant variables can hinder model performance. Attention
mechanisms, embedding layers, and spatio-temporal encoders should
be employed to capture the most informative features. Domain knowl-
edge can also assist in selecting features that reflect heterogeneity
across time, context, and driver type.

Model interpretability vs. accuracy: While deep learning models
such as CNNs and LSTMs often achieve high accuracy, they can lack
transparency. Techniques like SHAP (SHapley Additive exPlanations)
values, attention visualisation, and hybrid rule-based models can im-
prove interpretability without significant performance loss (Yao et al.,
2023). Enhancing explainability is essential for increasing trust in ML
models, particularly in safety-critical applications.

Cross-disciplinary inspiration: Other domains, such as natural
language processing (NLP) and biological modelling of gene expres-
sion, offer insights into pattern recognition and behavioural inference.
Developing a taxonomy of driving behaviours, similar to biological
annotation databases, could support better labelling and model val-
idation. For instance, techniques from NLP sentiment analysis have
been adapted to understand driver emotions and intentions, enriching
behaviour modelling (Taniguchi et al., 2015).

Adoption of Emerging AI Techniques: Recent advancements in
Al models such as Vision Transformers (ViT), Graph Neural Networks
(GNNs), and Large Language Models (LLMs) offer promising capabili-
ties for driving behaviour analysis (Xiao et al., 2022). These models can
capture long-range dependencies, learn contextual semantics, and re-
duce reliance on large labelled datasets through self-supervised or foun-
dation model approaches. As these techniques gain traction in industry,
they are increasingly used to detect nuanced and high-level patterns in
driving heterogeneity. When integrated with the proposed framework,
these models can significantly enhance the scalability, adaptability, and
reliability of driving behaviour identification in complex, real-world
traffic scenarios.

4.2.3. Addressing heterogeneity in human-automated traffic

The emergence of automated vehicles in traffic introduces new chal-
lenges for driving heterogeneity analysis. Interactions between human-
driven vehicles (HDVs) and AVs create more complex behavioural
dynamics, requiring the framework to adapt accordingly (Calvert and
van Arem, 2020).

Heterogeneity of HDVs in the presence of AVs: Empirical studies
show that HDVs often adjust their driving styles, such as maintaining
smoother speeds, longer headways, and more cautious manoeuvres,
when following AVs (Wen et al., 2022; Wang et al., 2023a). These

11

Transportation Research Interdisciplinary Perspectives 32 (2025) 101511

behavioural shifts are further influenced by the external design of AVs
(e.g., visibility of sensors) and the perceived assertiveness or caution
in their driving style. Industrial companies such as Waymo and Cruise
actively test human-AV interactions in mixed traffic using naturalistic
testbeds and closed-loop simulations. Incorporating these behavioural
adaptations as variables in heterogeneity models will improve their
ability to reflect real-world traffic interactions.

Heterogeneity of human-driven AVs: Drivers of partially auto-
mated vehicles (e.g., SAE Level 2-3) exhibit diverse attitudes towards
automation, with variation in trust, comfort, and takeover behaviour.
Misalignment between AV system behaviour and driver expectations
may result in frequent manual overrides, reduced system efficiency, and
safety concerns (Lee and See, 2004; Ma and Zhang, 2021). Industry
solutions, such as Ford’s and Tesla’s driver monitoring systems, track
gaze direction, head pose, and hand position to evaluate readiness
for control transitions (Lee et al., 2024). Future heterogeneity models
should incorporate variables such as trust level, takeover frequency,
and driver compliance to better model human-in-the-loop behaviours.

Overall, the proposed framework can be extended to address these
evolving traffic conditions by integrating new feature variables (e.g.,
time headway to AVs, takeover intent), incorporating updated datasets
from real-world or simulated mixed traffic scenarios, and refining
model evaluation criteria to include human-system interaction dynam-
ics. This adaptation will support the design of safer, more personalised,
and behaviourally aligned automated driving systems, thus ensuring
better interaction between AVs and a diverse range of human drivers.

5. Conclusion

This study provides a comprehensive review of machine learning
(ML) techniques for analysing driving behaviour heterogeneity and
introduces a structured framework for identifying and interpreting het-
erogeneity in real-world traffic scenarios. By synthesising key concepts
and state-of-the-art methodologies, the proposed framework serves as
a systematic guide for data collection, preprocessing, feature selec-
tion, modelling, and evaluation, facilitating a more rigorous and inter-
pretable approach to driving heterogeneity identification. Additionally,
the review serves as a roadmap for future research, encouraging further
exploration of ML applications in traffic analysis with the potential
to enhance traffic management, road safety, and vehicle automation.
Specifically, a clear conceptualisation of driving heterogeneity deep-
ens our understanding of driver behaviour and lays the foundation
for the development of personalised driving assistance systems and
human-like autonomous vehicles. By reviewing various ML method-
ologies and assessing their strengths, limitations, and applicability to
different driving contexts, this study emphasises the need to balance
accuracy, interpretability, and real-time recognition for effective het-
erogeneity identification. Recognising individual driving characteristics
allows for adaptive traffic control strategies, leading to more intelligent
and responsive transportation solutions.
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