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SUMMARY

Unmanned Aerial Vehicles (UAVs) are being integrated into all spheres of life, for a wide
range of application in civil, commercial and military applications in both indoor and
outdoor environments. UAV onboard intelligence is a paramount requirement in the re-
alisation of UAV Traffic Management System (UTM) and Air Traffic Management (ATM)
integration. The UAV onboard intelligence requirement is more envisaged in indoor ap-
plications where the use of Global Positioning Systems (GPS) is severely restricted and
more complex localisation technology is required and traffic management systems are
less supportive.

For UAVs to be considered for specific tasks, their use must positively outweigh the
use of other established, conventional systems. A key feature for UAVs would be a ca-
pability to perform autonomous, onboard real–time path planning. Path planning is
defined as the process of automatically generating feasible and optimal paths to a pre-
defined goal point in view of static and dynamic environmental and model constraints
and uncertainties. This functionality allows UAVs to require minimal human interven-
tion once its working environment and goals are defined. Therefore, autonomous and
robust path planning is fundamental for UAVs to be considered for indoor applications
in industrial, commercial, military and home applications.

The need for autonomous path planning initiated with the introduction of robotics
in industrial repetitive applications several decades ago. Since then, path planning ex-
tended outside factory floors evolving from 2D to 3D, operating in both static and dy-
namic environments with a wide spectrum of constraints and uncertainties. Path plan-
ning algorithms for autonomous vehicles can be broadly categorised into three main
categories: Graph–based or Grid–based algorithms; Sampling–based algorithms and In-
terpolation algorithms.

Although the use of UAVs has increased, the UAVs’ potential is far from reached. This
can be mainly attributed to a number of challenges that have not been fully tackled and
are hindering the use of small UAVs in indoor environments. This research will focus on
path planning challenges in indoor, obstacle–rich environments with no UTM availabil-
ity except for goal point definitions. In such scenario’s, the UAV is expected to operate
using only onboard facilities. In this regard, three challenges are identified, which can
be summarised as follows:

Construct in real-time, non-colliding paths from the current UAV position to a
goal position using only onboard UAV resources in the presence of both static
and dynamic obstacles and in the presence of uncertainties.

The following research goal is formulated to address these three challenges for the
realisation of path planning algorithm of UAVs in indoor environments.

xi



xii SUMMARY

Assess the performance of state-of-the-art path planning rationales in the con-
text of UAVs operating in 3D real–time, dynamic indoor environments in the
presence of uncertainty and identify a customised configuration based on the
application.

To tackle this research goal, five research questions are formulated:

Research Question 1: What is the state-of-the-art in the field of path planning for
UAVs in 3D and how do these algorithms compare?

To investigate the potential of different path planning algorithms, the current state-
of-the-art in all fields of engineering are considered. The literature review shows that
graph–based and sampling–based methods are potential candidates for 3D UAV path
planning. The most often utilised algorithms from each category, that is the A* and
Rapidly– Exploring Random Tree (RRT), and their variants, namely RRT without step
size constraints and the Multiple RRT (MRRT) are tested in 3D scenarios of different
complexity. A path smoothing interpolation algorithm is also developed to attenuate
non–optimal paths, especially for the sampling-based methods.

The same path smoothing algorithm is implemented on each path planning variant
with the same parameters to offer a fair comparison. These algorithms are tested on
the same set of different complexity 3D scenarios using the same computer. For com-
parison, the path length and the computational time are the considered performance
measures.

The A* with a spectrum of resolutions, the standard RRT with different step–size con-
straints, RRT without step size constraints and the Multiple RRT (MRRT) with various
seeds are implemented and their performance measures compared. For A*, tests show
an inherent ripple in path length with change in resolution for all scenarios. This results
due to the grid-based nature of the A* algorithm that creates situations in which a small
increase in resolution, which theoretically shall slightly decrease the path length, effec-
tively generates longer or shorter paths. This ripple is mitigated by randomly shifting
the environment in all three dimensions by a distance varying between zero and half the
distance between adjacent graph points.

Results confirm that all algorithms are able to generate a path in all scenarios for all
resolutions, step sizes and seeds considered. In comparison, the A* algorithm gener-
ates shorter paths in less time with respect to RRT algorithms, although the A* algorithm
only explores areas necessary for path construction while RRT algorithms explore the
environment evenly. Results show that A* outperformed the RRT, both in terms of path
length and path generation time in offline situations with static obstacles, with 100%
success rate for both in all scenarios considered.

A* allows the environment to be discretised differently according to different exigen-
cies of different parts of the scenario, making optimal use of resources. Oppositely, RRT
and its variants are suited to generate paths efficiently in evenly distributed and focused
3D area exploration applications. Based on the results obtained, and their implication
to UAV path planning, the second research question is tackled.
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Research Question 2: Can the selected path planning algorithms be applied in
real-time static environments using the computational resources onboard small
UAVs?

This research question assumes that all path planning computation, sensing and en-
vironmental modelling and actuator controls must be computed onboard and in real–
time. Another implication is that the path planner can only visualise the environment
within the sensing distance determined by the on-board sensing systems and therefore
can only construct, if possible, a path to an intermediate goal point.

For the scope of this research question, a sphere equal to the sensing range of the
UAV is considered, assuming that the sensing system has a 360o field-of-view (FOV) in all
three dimensions. It is further assumed that static obstacles within the sensing range are
known with certainty, while other obstacles are unknown and become visible only if the
UAV moves in their direction. To simulate real-time path planning, the computational
time must be less than or equal to the time needed by the UAV to move from the current
position to a new position. The same test environment used to tackle Research Question
1 is used, using the same performance measures.

Results show that the A* algorithm again outperforms the RRT algorithm in both path
length and computational time for all scenarios considered, with the difference increas-
ing with scenario complexity. A* is successful 90% or more of all tests for all scenarios
considered provided the look-ahead distance is at least double the distance moved per
iterate. In general, the RRT algorithm results in a lower success rate than A* owing to the
longer computational time required to construct intermediate paths with respect to A*.

The UAV speed, sensor range and computational power are defined based on dif-
ferent studies that analyse these parameters onboard a range of UAVs [1–3]. The path
planning results, based on these UAV parameters, show that 3D real-time path planning
can be realised using only UAV onboard systems. The results outline the best empirical
values for the different parameters. The setting of these parameters will configure the 3D
real-time path planning platform, optimising its performance to each particular indoor
application.

Research Question 2 considered only static obstacles but in real UAV application ob-
stacles can move and rotate, hence a dynamic environment needs to be considered to
assess the usability of the developed 3D real-time UAV path planning algorithm. This
requirement is investigated in the following research question:

Research Question 3: What is the effect on path planning performance if static
obstacles are replaced with dynamic obstacles?

The inclusion of dynamic environments is external to the path planning algorithm
but it can affect the path that the UAV will traverse. Dynamic obstacles within an indoor
environment can be represented by symmetrical shapes. For the scope of this work, four
different scenarios with different complexity are constructed. These incorporate rotating
and non-rotating cubes, rotating V-shaped obstacles and static 2D planes with windows.

Both obstacle movement and orientation are considered in the dynamic environ-
ment modelling. The random obstacle movement speed is assumed to be smaller than
or equal to the speed of the UAV, as otherwise obstacle avoidance is not possible.



xiv SUMMARY

A real-time environment with a limited range creates situations where an interme-
diate goal point is not available. In this regard, two different rationales are developed to
mitigate this situation. In the waiting rationale, the UAV waits in its current position until
the defined intermediate goal position becomes available. In the moving rationale, the
intermediate goal position is moved closed to the current UAV position, consequently
increasing the chances of the UAV moving closer to the final goal position. Both ratio-
nales are integrated within the A* and RRT path planning algorithms and tested in all
scenarios with dynamic obstacles.

Results show that the moving option yields better overall results in terms of path
length, computational time and success rate for A* and RRT with respect to the wait-
ing option. Both A* and RRT produce similar results in relatively simple scenarios with
RRT recording better results in path length, computational time and success rate. For
complex scenarios, the RRT is better if time is not limited while the A* algorithm is less
susceptible to time constraints. Also, as speed increases in complex scenarios the suc-
cess rate drops due to lack of path planning time in both A* and RRT.

The results show that the developed 3D real-time path planning platform with both
A* and RRT algorithms has potential to be used in low obstacle density dynamic obsta-
cle scenarios. The waiting variant is suited in situations where safety is paramount. In
home environments, this is usually the case as the UAV cannot collide with obstacles, es-
pecially if these are humans. The moving variant would be ideal in situations where goal
achievement is more important than safety. Such situations include search and rescue.

Until now it is assumed that no uncertainties are present within the UAV systems. In
real scenarios a range of uncertainties are present. In the next research question, uncer-
tainty in a UAV operating in an indoor environment is investigated.

Research Question 4: Do uncertainties affect 3D path planning of UAVs? If yes,
how can these uncertainties be modelled?

This research question queries whether uncertainties affect path planning of UAVs in
indoor environments. This requires a thorough literature survey and consequently the
identification and modelling of uncertainty sources that might affect path planning per-
formance. For the scope of this work, only uncertainties within the UAV model and the
environment (perceived through UAV onboard sensing systems), are considered. Other
uncertainties, such as communication with user/s, are not considered as they are out of
scope for this analysis.

Literature identifies the need for uncertainty consideration in real-time 3D UAV path
planning, due to the possible negative implications on path planning performance if
uncertainties are neglected. The fidelity with which uncertainties can be predicted is es-
sential in determining the usability of the proposed path planning algorithms. Further-
more, literature portrays the bounding shapes and probabilistic distributions methods
as key candidates for uncertainty modelling in UAV applications. After considering the
characteristics of both methods, uncertainty is modelled using bounded shapes around
the current UAV position and obstacle volume.

Once uncertainty sources are identified, estimated and modelled, the developed 3D
real-time path planning algorithms are assessed in the presence of dynamic obstacles
and uncertainties.
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Research Question 5: Can uncertainties be mitigated to ensure collision-free 3D
path planning of UAVs in real-time in the presence of dynamic obstacles?

The same test environment constructed to assess Research Question 3 is consid-
ered using the same real-time 3D UAV path planning platform. Tests are performed us-
ing both A* and RRT path planning algorithms with the moving method. Uncertainty
bounds are quantified based on literature and varied between 2% and 20% for both UAV
position and obstacles. Uncertainty is included by adding an offset to the actual respec-
tive parameter. The effect of each uncertainty source will be analysed independently and
collectively with dynamic obstacles to identify how real-time path planning algorithms
can safely operate.

Results show that both sources of uncertainty (UAV position and obstacles), deterio-
rate path planning performance of both A* and RRT algorithms, for all scenarios consid-
ered, with RRT exhibiting the larger effect. The concurrent inclusion of both uncertainty
sources further deteriorates path planning performance. RRT results in the fastest and
shortest paths, with approximately the same success rate as A*, for relatively simpler sce-
narios, while A* performs better in the relatively complex case. Furthermore, RRT has a
higher risk of collision than A* as RRT nears obstacles more often than A*.

From the results it is confirmed that uncertainty must be considered as it has an
effect on path planning performance. The accuracy with which uncertainty is modelled
affects path planning performance for both path planning rationales considered.

In this thesis, each research question built on the previous one, in such a way to
reach the final research goal and tackling the research challenges. In the process of as-
sessing the path planning performance (first part of research goal) of each algorithm, the
response of each method with respect to each additional complication, can be indepen-
dently analysed. This knowledge can be used to guide future UAV designers in selecting
the best configuration, based on their application, hence reaching the second part of the
research goal.

The implementation of the developed 3D real-time path planning algorithms to con-
figure a real UAV for autonomous 3D UAV navigation in an indoor, obstacle-rich environ-
ment is the ultimate future goal that can lead into the commercialisation of this system
for use in domestic applications. Moreover, this real-time 3D UAV path planning system
can be proposed for integration in outdoor UAVs. Finally, this dissertation’s ultimate aim
is to contribute in reducing the gap that still exists to integrate UAVs into domestic envi-
ronments with the aim of improving current and future services that rely on UAVs with
the ultimate aim of enhancing people in their daily lives.
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SAMENVATTING

Onbemande luchtvaartuigen (UAV’s) worden steeds verder geïntegreerd in de samen-
leving. UAVs worden gebruikt voor een breed scala aan civiele, commerciële en mili-
taire toepassingen, zowel binnenshuis als buiten. Voor integratie van UAVs in een UAV-
verkeersleidingssyteem (UTM) en integratie in bestaande luchtverkeersmanagement sys-
temen (ATM) is een mate van intelligentie aan boord van de UAV vereist. De noodzaak
voor deze intelligentie is sterker voor toepassingen binnen in gebouwen, waar onder-
steuning van luchtverkeersleidingssystemen minder is en het gebruik van positiebepa-
lingssystemen zoals GPS beperkt is, waardoor meer complexe lokaliseringstechnieken
nodig zijn.

Voordat inzet van een UAV voor een bepaalde taak overwogen wordt, moeten eerst
de voordelen daarvan ten opzichte van conventionele systemen afgewogen worden. Een
belangrijke eigenschap van een UAV is de mogelijkheid om autonoom en real-time het
pad te plannen dat gevlogen dient te worden. Pad-planning is gedefinieerd als het au-
tomatisch genereren van optimale paden tot een van te voren gedefinieerd doel, onder
invloed van statische en dynamische onzekerheden en beperkingen in de UAV en in de
omgeving. Deze functionaliteit staat toe dat minimale interventie van menselijke be-
stuurders nodig is zodra de omgeving en het doel gedefinieerd zijn. Om deze reden is
het autonoom en robuust plannen van het te vliegen pad een fundamentele eigenschap
van UAV’s die bepaalt of de UAV ingezet kan worden voor toepassingen binnenshuis,
zowel industrieel, commercieel, militair, als in de thuissituatie.

De vraag naar autonome pad-planningsalgoritmes kwam op gang door de introduc-
tie van robots in industriële toepassingen enkele decennia geleden. Sindsdien hebben
pad-planningsalgoritmes zich verspreid buiten de fabriekstoepassingen, van 2-dimensionaal
naar 3-dimensionaal, zowel in statische als dynamische omgevingen met een breed scala
aan beperkingen en onzekerheden. Pad-planningsalgoritmes voor autonome voertui-
gen kunnen in drie hoofdcategorieën verdeeld worden: Graaf-methodes, rooster-methodes
en interpolatiemethodes.

Ondanks de groei in het gebruik van UAV’s, is het volledige potentieel van UAV’s nog
lang niet benut. Dit kan voornamelijk verklaard worden door een aantal uitdagingen
die nog niet volledig aangepakt zijn en die het gebruik van kleine UAV’s binnenshuis
beperken. Dit onderzoek legt de focus op de uitdaging van binnenshuis pad-plannen
in omgevingen met veel obstakels en een gebrek aan verkeersleidingsystemen, afgezien
van een definitie van de doel-positie van de UAV. In zulke scenario’s wordt de UAV geacht
zelfstandig te vliegen door alleen gebruikt te maken van systemen aan boord van de UAV.
In dit licht kunnen drie uitdagingen geïdentificeerd worden, welke als volgt samengevat
kunnen worden:

xvii
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Creëer, in real-time, een pad zonder botsingen van de huidige UAV positie naar
een doel-positie, waarbij alleen systemen aan boord van de UAV gebruikt mo-
gen worden, in een omgeving met zowel statische als dynamicsche obstakels en
onzekerheden.

Het volgende onderzoeksdoel is geformuleerd om deze drie uitdagingen aan te pak-
ken en daarmee pad-plannen van UAV’s binnen gebouwen mogelijk te maken.

Beoordeel de prestaties van state-of-the-art pad-planningsalgoritmes in de con-
text van UAV’s in een 3-D real-time, dynamische omgeving met onzekerheden
en identificeer een configuratie op basis van de toepassing.

Om dit onderzoeksdoel te bereiken zijn vijf onderzoeksvragen geformuleerd:

Onderzoeksvraag 1: Wat is de state-of-the-art op het gebied van 3-D pad-planning
voor UAV’s en hoe vergelijken deze algoritmes zich tot elkaar?

Om het potentieel van de verschillende pad-planningsalgoritmes te onderzoeken,
wordt de state-of-the-art in alle technische vakgebieden overwogen. Het literatuuron-
derzoek laat zien dat graaf-methodes en bemonsterings-methodes potentiële kandida-
ten zijn voor 3-D UAV pad-planning. Het meest gebruikte algoritme uit ieder van deze
categorieen, A* en Rapidly– Exploring Random Tree (RRT) en hun varianten, de RRT zon-
der stapgrootte-beperking en Multiple RRT (MRRT), worden getest in 3-D scenario’s van
verschillende complexiteit. En pad-afvlak interpolatiealgoritme is ontwikkeld om niet-
optimale paden te verminderen, in het bijzonder voor de bemonsterings-methodes.

Hetzelfde pad-afvlak interpolatiealgoritme is toegepast op elke pad-planning vari-
ant met dezelfde parameters, om zo een eerlijke vergelijking te kunnen maken. Deze
algoritmes zijn getest op dezelfde set van 3-D scenario’s op dezelfde computer. In de
vergelijking worden de pad lengte en de rekentijd beschouwd als maat voor de prestatie
van het algoritme.

Het A* algoritme, met een set van resoluties, de standaard RRT met verschillende
stapgrootte, de RRT zonder stapgroottebeperking en de MRRT zijn geïmplementeerd en
de prestaties zijn vergeleken. Testen met A* laten voor alle scenario’s een rimpelachtige
pad lengte zien met veranderingen in resolutie. Dit wordt veroorzaakt door het rooster
waar het algoritme op gedefinieerd is, waardoor een kleine toename in resolutie, die the-
oretisch de pad lengte zou moeten verkleinen, effectief een langer pad geeft. Het effect
van deze rimpel in pad lengte is verminderd door het rooster een willekeurige afstand
(ergens tussen 0 en de halve afstand tussen punten in het rooster) te verplaatsten in alle
drie dimensies.

De resultaten bevestigen dat alle algoritmes een pad kunnen genereren voor alle sce-
nario’s, voor iedere resolutie, stapgrootte, en MRRT startpunt. A* genereert kortere pa-
den in minder tijd vergeleken met RRT algoritmes, ook al ontdekt A* alleen gebieden die
noodzakelijk zijn voor de constructie van het pad, terwijl RRT de omgeving gelijkmatig
ontdekt. Resultaten laten zien dat A* beter presteert dan RRT, zowel in pad lengte als
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padconstructie-tijd, in offline situaties met statische obstakels, met een 100% succes-
kans voor beide algoritmes in alle scenario’s.

A* staat toe dat de omgeving gediscretiseerd wordt naar gelang de behoefte van ver-
schillende delen van het scenario en maakt daarmee optimaal gebruikt van de middelen.
In tegenstelling zijn RRT en varianten geschikt om efficiënt paden te construeren in ge-
lijk verdeelde 3-D toepassingen. Op basis van de resultaten en de impact hiervan op UAV
pad-planning, wordt de tweede onderzoeksvraag opgesteld.

Onderzoeksvraag 2: Kunnen de gekozen pad-planningsalgoritmes toegepast wor-
den in real-time statische omgevingen door alleen gebruik te maken van systemen
aan boord van kleine UAV’s?

Deze onderzoeksvraag gaat ervan uit dat alle berekeningen, metingen en modelle-
ring van omgeving aan boord in real-time gedaan moeten worden. Bovendien kan de
pad-planning alleen een beeld vormen van de omgeving die binnen het bereik van de
sensoren valt en daarmee alleen een pad plannen tot een tussentijdse doel-locatie.

Voor deze onderzoeksvraag word een bol met straal gelijk aan het bereik van de sen-
soren van de UAV gekozen, met als aanname dat het bereik van de sensoren in alle rich-
tingen gelijk is. Bovendien wordt aangenomen dat statisch obstakels binnen het bereik
van de sensoren met zekerheid bekend zijn, terwijl overige obstakels onbekend zijn en
pas zichtbaar worden als de UAV dichtbij genoeg is. Om real-time pad-planning te ga-
randeren moet de rekentijd kleiner zijn dan de tijd die de UAV nodig heeft om het pad te
vliegen. Dezelfde testomgeving als bij onderzoeksvraag 1 wordt gebruikt, met dezelfde
prestatiemetrieken.

Resultaten laten zien dat A* opnieuw voor alle scenario’s beter presteert dan RRT, in
zowel pad lengte als rekentijd, waarbij het verschil groter wordt bij toenemende com-
plexiteit van het scenario. A* is voor 90% of meer van alle testen succesvol mits het sen-
sorbereik ten minste tweemaal de afstand is die gevlogen wordt per iteratie. In het alge-
meen heeft RRT een lagere succeskans dan A* doordat de rekentijd voor het construeren
van het pad langer is dan bij A*.

De snelheid, het sensorbereik en de beschikbare rekenkracht van UAV’s zijn gedefini-
eerd volgens verschillende studies die deze eigenschappen bestudeerd hebben voor een
scala aan UAV’s[1–3]. De pad-planning resultaten, op basis van deze UAV parameters,
laten zien dat 3-D real-time pad-planning gerealiseerd kan worden met enkel gebruik
van systemen aan boord van de UAV. De resultaten geven richtlijnen voor de empiri-
sche waarden van deze parameters. De waardes van deze parameters configureren het
3-D real-time pad-planningsplatform, waarbij de prestaties geoptimaliseerd worden per
toepassing van binnenshuis vliegen.

Onderzoeksvraag 2 beschouwt alleen statische obstakels, maar in werkelijkheid kun-
nen obstakels ook bewegen en roteren, dus een dynamische omgeving is nodig om de
bruikbaarheid van het ontwikkelde 3-D pad-planningsalgoritme te evalueren. Deze voor-
waarde is in de volgende onderzoeksvraag verder onderzocht:

Onderzoeksvraag 3: Wat is het effect op de prestatie van het pad-planningsalgoritme
als statische obstakels worden vervangen door dynamische?



xx SAMENVATTING

Het toevoegen van dynamische omgevingen is extern aan het pad-planningsalgoritme,
maar het kan het pad beïnvloeden dat de UAV af gaat leggen. Dynamische obstakels bin-
nenin een gebouw kunnen gerepresenteerd worden door symmetrische vormen. Voor
de scope van dit werk zijn vier verschillende scenario’s met verschillende complexiteit
geconstrueerd. Deze bestaan uit roterende en niet-roterende kubussen, roterende V-
vormen en statische 2-D vlakken met raamvormige openingen.

Zowel de oriëntatie als de beweging van obstakels worden meegenomen in de mo-
dellering van de dynamische omgeving. De snelheid van obstakels is willekeurig geko-
zen, maar kleiner dan of gelijk aan de snelheid van de UAV, omdat ontwijken van de
obstakels anders niet mogelijk is.

Een real-time omgeving met een beperkt sensorbereik kan situaties opleveren waar
een tussentijds doel-locatie niet beschikbaar is. In deze situatie zijn er twee mogelijkhe-
den tot een oplossing. In de wacht-optie zal de UAV wachten in de huidige positie totdat
de tussentijdse doel-locatie beschikbaar wordt. In de beweeg-optie wordt de tussentijdse
doel-locatie dichterbij de UAV gebracht, waarmee de kans groter wordt dat de UAV dich-
ter bij het einddoel komt. Beide opties zijn geïntegreerd in zowel A* als RRT en getest op
alle scenario’s met dynamische obstakels.

Resultaten laten zien dat de beweeg-optie in het algemeen betere resultaten geeft ten
opzichte van de wacht-optie in termen van pad lengte, rekentijd en succesratio voor A*
en RRT. Zowel A* als RRT produceren soortgelijke resultaten in simpele scenario’s, waar
RRT betere resultaten heeft in termen van pad lengte, rekentijd en succesratio. For com-
plexe scenario’s is RRT beter als er geen tijdslimiet is, terwijl A* minder gevoelig is voor
tijdsbeperkingen. Wanneer de snelheid van de UAV toeneemt in complexe scenario’s,
daalt de succesratio voor zowel A* als RRT door gebrek aan planningstijd.

De resultaten laten zien dat de ontwikkelde pad-planningsalgoritmes op basis van
A* en RRT de potentie hebben om gebruikt te worden in scenario’s met lage obstakel-
dichtheid. De wacht-optie is geschikt in situaties waar veiligheid het meest belangrijk
is. Dit is vaak het geval in toepassingen binnenin gebouwen, aangezien de UAV hier niet
met obstakels mag botsen, vooral als dit mensen zijn. De beweeg-optie is ideaal wanneer
het bereiken van de doel-locatie belangrijker is dan veiligheid. Zulke situaties bestaan
bijvoorbeeld uit zoek- en reddingsvluchten.

Tot nu toe is aangenomen dat er geen onzekerheden zijn in de UAV systemen. In
echte toepassingen zijn echter meerdere soorten onzekerheden. In de volgende onder-
zoeksvraag zal onzekerheid in UAV systemen worden onderzocht.

Onderzoeksvraag 4: Hebben onzekerheden invloed op de pad-planning van UAV’s?
Zo ja, hoe kunnen deze onzekerheden gemodelleerd worden?

Deze onderzoeksvraag bekijkt of onzekerheden effect hebben op pad-planning van
UAV’s voor toepassingen binnen gebouwen. Dit vereist een grondige literatuurstudie
waaruit de bronnen van onzekerheden geïdentificeerd en gemodelleerd kunnen wor-
den. Voor de scope van dit onderzoek worden alleen onzekerheden onderzocht in het
UAV model en in de omgeving, zoals waargenomen door de sensoren aan boord van de
UAV. Overige onzekerheden, zoals onzekerheden in communicatie met gebruikers, wor-
den niet beschouwd.

Uit de literatuur blijkt dat er een noodzaak is tot het meenemen van onzekerhe-
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den, aangezien deze negatieve gevolgen voor de prestatie van het 3-D real-time pad-
planningsalgoritme hebben. De betrouwbaarheid van de voorspelling van onzekerhe-
den is essentieel voor het bepalen van de bruikbaarheid van een pad-planningalgoritme.

De literatuur laat twee categorieën van onzekerheidsmodellering zien, enerzijds door
het modelleren van de limieten van de onzekerheid, anderzijds door het modelleren van
de distributie van onzekerheid. Na de karakteristieken van deze twee categorieën ver-
geleken zijn, is gekozen voor het modelleren van de limieten van de onzekerheden met
bepaalde geometrische vormen rondom de huidige UAV positie en rondom de obstakels.

Wanneer de onzekerheden geïdentificeerd, geschat en gemodelleerd zijn, kunnen de
3-D real-time pad-planningsalgoritmes geëvalueerd worden in omgevingen met dyna-
mische obstakels en onzekerheden.

Onderzoeksvraag 5: Kan het effect van onzekerheden verminderd worden zodat er
gegarandeerd geen botsingen optreden in het 3-D real-time pad-planningsalgoritme
wanneer er dynamische obstakels zijn?

Voor onderzoeksvraag 5 wordt dezelfde testomgeving gebruikt als bij onderzoeks-
vraag 3, met hetzelfde 3-D real-time UAV pad-planningsplatform. Testen zijn uitgevoerd
met zowel A* als RRT met de beweeg-optie. Onzekerheidslimieten zijn vastgesteld op ba-
sis van literatuur en variëren van 2% tot 20% voor zowel UAV-positie als obstakel-positie.
De onzekerheid is meegenomen door een offset toe te voegen aan de echte parameter.
Het effect van elke onzekerheid wordt zowel onafhankelijk als collectief met dynamische
obstakels onderzocht, om zo te identificeren hoe real-time pad-planningsalgoritmes vei-
lig kunnen werken.

De resultaten van de testen laten zien dat beide onzekerheden (UAV- en obstakel
positie) zorgen voor een slechtere prestatie van zowel A* als RRT, voor alle scenario’s,
waarbij er op RRT en groter effect is. Het tegelijkertijd meenemen van beide onzekerhe-
den verslechtert de prestatie nog meer. RRT geeft de snelste en kortste paden voor de
simpele scenario’s, met ongeveer dezelfde succeskans als A*, terwijl A* beter presteert in
complexere scenario’s. Bovendien heeft RRT een grotere kans op botsingen met obsta-
kels en nadert RRT de obstakels dichter en vaker dan A*.

De resultaten bevestigen dat onzekerheden meegenomen moeten worden, aange-
zien deze een effect hebben op de prestaties van het pad-planningsalgoritme. De nauw-
keurigheid waarmee onzekerheden gemodelleerd worden heeft effect op de prestaties
van beide pad-planningsalgoritmes.

In dit proefschrift bouwt iedere onderzoeksvraag voort op de voorgaande, om zo tot
het hoofddoel te komen. Door de prestaties van ieder algoritme te evalueren voor iedere
toevoeging van complexiteit/realisme, kan het effect hiervan onafhankelijk geanalyseerd
worden. Deze kennis kan gebruikt worden door toekomstige UAV-ontwerpers om de
configuratie te selecteren die het beste past bij de toepassing.

De implementatie van de ontwikkelde 3-D real-time pad-planningsalgoritmes om
een echte UAV te configureren voor navigatie in een obstakelrijke omgeving binnen een
gebouw, is het ultieme doel wat kan zorgen voor commercialisering van dit systeem voor
huiselijke toepassingen. Bovendien kan dit 3-D real-time UAV pad-planningssysteem
ook gebruikt worden voor toepassingen buitenshuis. Tot slot is het ultieme doel van dit
proefschrift om de integratie van UAV’s in thuissituaties dichterbij te brengen, met als
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doel om toekomstige diensten en taken van UAV’s mogelijk te maken die het dagelijkse
leven van mensen kunnen verbeteren.
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1
INTRODUCTION

One, remember to look up at the stars and not down at your feet. Two, never give up
work. Work gives you meaning and purpose and life is empty without it. Three, if you are

lucky enough to find love, remember it is there and don’t throw it away.

Stephen Hawking
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2 1. INTRODUCTION

1.1. BACKGROUND

1.1.1. DEFINITIONS

Unmanned or Uninhabited Aerial Vehicles (UAVs), Unmanned Aircraft or more com-
monly known as drones are defined by the International Civil Aviation Organisation
(ICAO) as “pilotless aircraft, in the sense of Article 8 of the Convention on International
Civil Aviation, which is flown without a pilot-in-command on-board and is either re-
motely and fully controlled from another place (ground, another aircraft, space) or pro-
grammed and fully autonomous” [1], page B-6. Moreover, Unmanned Aircraft Systems
(UAS) extend beyond the aircraft and incorporate all associated elements necessary to
operate efficiently and safely an aircraft without a pilot on board [2].

1.1.2. NEED FOR PATH PLANNING

The definition of what constitutes a UAV incorporates a wide spectrum of vehicles that
have been, are currently existing and are being proposed to be used in a wide range
of civil, commercial and military applications. The first unmanned flight of about 10
minutes with a range of 2km and altitude of 5,200 to 6,600ft (not within ICAO definition)
was demonstrated to a crowd of dignitaries in Annonay, France on 4th June, 1783, by
Joseph-Michel and Jacques-Étienne Montgolfier [3]. Later, on the 19th September, 1783
the flight was repeated in Versailles in the presence of the French king, Marie Antoinette
and a crowd of 130,000, see Figure 1.1b. This time the flight lasted 8 minutes, travelled
for 3.2km and carried a sheep, a duck and a rooster [3].

In military applications, the use of unmanned aerial vehicles (not within ICAO def-
inition) have been recorded since 1849 when the Austrian army used balloons carrying
explosives to attack Venice [4, 5]. Figure 1.1b illustrates an artistic impression of their
design. These vehicles were not controlled and the first controlled pilotless aircraft was
developed during World War I [4] and illustrated in Figure 1.1c. Since then the use, per-
formance, capabilities and applications in military have increased. On the civil and com-
mercial side, the price drop of UAVs (to less than $100 in 2016 [4]), owing to the increasing
demand and reduced production costs, have resulted in a surge in UAV numbers over the
last two decades. The Federal Aviation Administration (FAA) noted that by 10th March
2020 in the US, over 1.1M and 440k UAVs are registered for recreational and commercial
use, respectively [6]. Furthermore, over 170,000 persons are certified remote pilots [6].

These ever-increasing numbers are a consequence of the advantages that these ve-
hicles have in comparison to more traditional ways of doing the same task. But, the
integration of UAVs into the airspace requires robust guidance, navigation and control
(GNC) systems, because of the increasing numbers but also due to the wide variety of
sizes, shapes, performance, capabilities, accuracy, precision of the vehicle, and last but
not least, the abilities of the UAV pilot. The resultant UAV Traffic Management System
(UTM) must ensure safe navigation in view of uncertainties for all UAVs in the pres-
ence of piloted aircraft, ground constraints (buildings, ground vehicles, trees) and peo-
ple present within the volume the UTM system is expected to manage.

In the USA, the National Aeronautics and Space Administration (NASA) embarked
into the UAS Traffic management project in partnership with the FAA, other federal agen-
cies, academics and research partners with the aim of understanding the requirements
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(a) First Hot Air Balloon flight

(b) Unmanned Austrian Balloons (c) Hewitt-Sperry Automatic Airplane

Figure 1.1: Early UAVs: An artistic impression of the first balloon flight with non human passengers (a sheep,
a duck and a rooster) that took off on September 19, 1783 © National Air and Space Museum, Smithsonian
Institution, (b) An artistic impression of the design of the unmanned Austrian balloons that attached Venice ©
Prof. Jurij Drushnin, Monash University and (c) The Hewitt-Sperry Automatic Airplane developed in 1916 ©
warhistoryonline.com
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to safely integrate UAVs in complex low-altitude airspace [7]. The envisioned system is
expected to provide situational awareness, enhance communication with UAV opera-
tors, allow UAV pilots to submit flight plans and consequently determine the safety of
the proposed flight plan [8]. Figure 1.2 illustrates the proof of concept of this proposed
system. The project is currently in the final stages of completion having started Tech-
nical Capability Level (TCL) 4 testing in May 2019 [7]. Owing to the importance and
success, this project was awarded, in June 2020, the 2020 NASA Government Invention
of the Year. Similar projects are currently pursued in other countries such as the Con-
cept of Operation for European Unmanned Aerial Vehicle Traffic Management Systems
(CORUS) within SESAR in the EU [9], the Civil Unmanned Aircraft System Operation
Management System (UOMS) in China [10] and the Low-altitude UTM Development
and Demonstration Test for Safe Operation of UAS developed by the Korea Institute of
Aviation Safety Technology (KIAST) in South Korea [11].

Figure 1.2: NASA’s Drone Traffic Management System © NASA

The UTM framework must automatically assign safe, time-stamped corridors to dif-
ferent UAV operators and/or UAV autonomous systems. The integration of such a UTM
framework within the existing Air Traffic Management (ATM) systems requires UAVs to
operate safely beyond the visual line of sight (BVLOS). Therefore, UAVs must be equip-
ped with autonomous onboard or ground board support systems that assist the UAV to
operate safely within the assigned environment. UAS research over the last two decades
focused on enhancing UAS automation capabilities, with improvements expected to ma-
ture in the next two decades [12]. The study by Sigala et al. [12] discusses prospective
future UAS capabilities between experts in operations, acquisitions and academia. It
concludes that research on UAS capabilities should focus on intelligence, surveillance,
and reconnaissance, datalinks and sense and avoid technologies [12].

UAV onboard intelligence is a paramount requirement in the realisation of UTM and
ATM integration. The UAV onboard intelligence requirement is more envisaged in in-
door applications where the use of Global Positioning Systems (GPS) is restricted [13, 14]
and more complex localisation technology is required [15, 16]. Furthermore, the UTM
framework capabilities which require customisation may be either less supportive or not
available at all since its funding is more restrictive than a national UTM framework. On
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the positive side, in indoor applications UAVs are not subject to weather conditions [13]
and governmental flying restrictions [17]. The current and prospective use of UAVs in
indoor applications vary from industrial setups such as item delivery in different parts
within the same factory building [18] or within the same factory area requiring both
indoor and outdoor capabilities [19] (Figure 1.3a) to home assistance such as window
cleaning [20] (Figure 1.3b).

(a) Spare parts delivery within the same factory (b) Window cleaning drone

Figure 1.3: UAV Applications: (a) A drone supplying spare parts in ZF which is the first company in Germany to
receive official approval for automated UAV flights over factory premises © ZF and (b) A window cleaning UAV
that can be used for both commercial and personal use © AERONES

In indoor environments the use of UAVs in specific tasks is mainly determined by the
owners and/or users. For UAVs to be considered for specific tasks, their use must pos-
itively outweigh the use of other established, conventional systems. One key feature in
the intelligence category that makes the UAV option attractive is autonomous, onboard
real-time path planning.

Path Planning Definition

Path planning is defined as the process of automatically generating feasible and
optimal paths to a predefined goal point, in the presence of static and dynamic
environmental and model constraints and uncertainties [21].

This functionality allows UAVs to require minimal human intervention once its work-
ing environment and goals are defined, reducing operational costs. It would allow mak-
ing more efficient use of the upper parts of the floor area which are otherwise rarely
used, reducing traffic on the floor area thus increasing the working potential there. In
fact, real-time path planning is considered as a desirable feature [22], a requirement [23]
and even paramount [24] for real-time autonomous manoeuvring of vehicles let alone
UAVs in real, dynamic environments [25]. In conclusion, autonomous and robust path
planning is fundamental for UAVs to be considered for indoor applications in industrial,
commercial and home applications.
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1.1.3. HISTORY OF PATH PLANNING
The need for autonomous path planning emerged with the introduction of robotics in
industrial repetitive applications. As the drive for enhanced industrial automation in-
creased to cater for more complex tasks, the GNC capabilities improved over the last few
decades shifting from 2-Dimensional (2D) setups [26] to 3-Dimensional (3D) ones [27].
The use of robotics was extended to outside factory floors and finally to homes with for
example cleaning robots since 2001 [28]. In such transition, path planning algorithms
evolved to operate in the presence of only fixed obstacle [29, 30] to dynamic obstacle en-
vironments [31, 32] with and without a priori knowledge of the environment. The use of
these path planning algorithms can be extended from robotics to UAVs, but UAVs must
often operate within a wider spectrum of time variant and time invariant constraints and
uncertainties [21].

Path planning algorithms for autonomous vehicles can be broadly categorised into
three main categories:

1. Graph-based or Grid-based algorithms,

2. Sampling-based algorithms, and

3. Interpolation algorithms. [21]

Graph-based or grid-based algorithms were first introduced by the Dijkstra algo-
rithm in 1959 [33]. Since then the A* algorithm and its numerous variants were devel-
oped to enhance the path planning performance and applicability of graph-based algo-
rithms. These algorithms define the state-space into an occupancy grid and define ob-
stacles as inaccessible grid positions. Then algorithms search the available grid points
giving a solution if a path exist [34].

Sampling-based methods were first introduced through the Probabilistic Roadmap
Method (PRM) [35] followed by the Rapidly-Exploring Random Tree (RRT) [36] and their
respective numerous variants by creating cyclic and acyclic random graphs, respectively.
These algorithms select a non-structural finite number of points in the configuration
space and create connections between these points [37, 38].

The path constructed by both graph-based and sampling-based methods requires
path optimisation to cater for vehicle, mission and environmental kinematic and dy-
namic constraints [34, 39]. Interpolation methods have been developed as a post-path
planning stage, to improve and/or customise trajectory based on the application.

Since the development of the Dijkstra algorithm, path planning algorithms have im-
proved in terms of their capabilities towards optimisation, flexibility and versatility. How-
ever, a number of challenges still remain for UAVs to be safely operated within indoor
environments in the presence of time variant constraints and uncertainties.

1.2. CHALLENGES
Although the use of UAVs in industrial, commercial and personal applications has in-
creased over the past decades, their potential is far from reached. The relatively slow
integration into everyday life can be attributed to a number of challenges that have not
been fully tackled and are hindering the use of small UAVs in indoor environments.
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This thesis focuses on path planning challenges in indoor, obstacle-rich environ-
ments with no UTM availability except for target point assignment. Thus, apart from
knowing ’where to go’, the UAV is assumed to operate using only onboard facilities.

1.2.1. CHALLENGE 1

Challenge 1

Construct in real-time, non-colliding paths from the current UAV position to a
target position in initially unknown environments using only onboard UAV re-
sources in the presence of static obstacles.

In unknown environments, real-time path planning is essential as the obstacle sens-
ing systems have a limited range and the target position may not be within the sensing
range of the sensing system at the start of the mission. In such situation, the path plan-
ner is continuously exploring the environment which is assumed fixed. Besides, some
sensing suites like camera-based systems, limit the Field of View (FOV) to less than 360o

in all 3 dimensions, reducing further the situational awareness of the path planning al-
gorithm.

A path planner is considered to be real-time if the time required to generate a path
is smaller than the time required to traverse the path [40–42]. This time depends upon
UAV speed and onboard computational resources. Speed is governed by both mission
requirements and UAV speed limitations while onboard computational resources only
depend on the UAV specifications. The bottleneck for real-time path planning is mainly
onboard computational resources, as small UAVs can typically achieve a speed higher
than required in indoor environments with typical associated payloads.

Real-time path planning in unknown indoor environments requires accurate sensing
technologies to provide the path planning algorithm with adequate real-time situation
awareness. In conjunction, the computational resources need to be used to control the
UAV actuator systems so that the UAV can reach the final or intermediate goal point.
Since computational resources need to be shared between the sensing, actuator and
path planning systems in real-time, this emphasises the need for increasing onboard
computational capacity and the use of computationally efficient systems.

1.2.2. CHALLENGE 2

Challenge 2

Construct in real-time, non-colliding paths from the current UAV position to a
target position using only onboard UAV resources in the presence of both static
and dynamic moving obstacles.

Challenge 1 only considered obstacles within the environment as static for the du-
ration of the flight. In indoor environments, the UAVs must share space with other ma-
chines and people, besides fixed stationary obstacles. Usually the trajectories of moving
obstacles are unknown and difficult to predict especially when humans are involved.
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Furthermore, stationary obstacles like furniture may be moved from one place to an-
other during the flight.

The ability of the path planning algorithm to operate in time-variant environments
requires the path planning algorithm to continuously update the generated path based
on new information, to evade collisions with obstacles. This can be achieved when real-
time path planning is possible and the UAV can move with the same or larger speed
with respect to the moving obstacles. Without this ability, UAVs will be restricted to un-
occupied indoor environments and/or dedicated spaces with a separate space for each
moving obstacle to operate, limiting the potential amount of traffic in operation at the
same time.

1.2.3. CHALLENGE 3

Challenge 3

Construct in real-time, non-colliding paths from the current UAV position to a
goal position using only onboard UAV resources in the presence of both static
and dynamic obstacles in the presence of uncertainties.

No sensing technology can provide state information accurately without uncertainty.
Over the decades uncertainty estimation and bounds have been improved, but uncer-
tainties can never be completely eliminated. Especially for small UAVs, their onboard
sensing systems are such that the level of uncertainty cannot be neglected. If not consid-
ered, this may lead to collisions, jeopardising the robustness and consequently their use
in indoor environments. Uncertainty is present within the sensing of the environment
and within UAVs’ internal capabilities such as the algorithms involved in the position,
orientation and manoeuvring systems.

This challenge requires the path planning system to model uncertainties in both the
UAV model and the environment when constructing paths to goal position. Again, this
process must be performed in real-time, using onboard computational resources since
the environment may change every time the sensing and UAV state estimation systems
generate new readings.

The explained challenges portray the requirements of a path planning algorithm
guiding a UAV in indoor environments. Although different researchers have considered
this niche, a gap for further improvement exists between the current state-of-the-art and
the robustness and safety requirements necessary to operate small UAVs in indoor envi-
ronments in close proximity to people.

Different researchers have developed and implemented a wide range of path plan-
ning algorithms originating from either graph-based or sampling-based rationales with-
out directly comparing both rationales in view of real-time 3D UAV path planning in the
presence of both static and dynamic obstacles. Furthermore, the uncertainty aspect was
neglected in the majority of the studies. When uncertainty was considered, the research
focused on uncertainty identification and modelling and not on the different effects of
individual uncertainty sources and their combination on path planning performance of
graph-based and sampling-based methods. These research gaps will be investigated in
this thesis with the ultimate aim of assisting UAV designers in using the ideal path plan-
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ning configuration for indoor applications.

1.3. RESEARCH GOAL AND RESEARCH QUESTIONS

1.3.1. RESEARCH GOAL

The challenges put forward in Section 1.2 motivate the research goal of this thesis.

Research Goal

Assess the performance of state-of-the-art path planning algorithms in the con-
text of UAVs operating in 3D real-time, dynamic indoor environments in the pres-
ence of uncertainty and identify a customised UAV path planning configuration
based on the application.

The research goal can be divided into two main tasks:

1. Performance assessment of state-of-the-art path planning algorithms in dynamic
and uncertain environments; and

2. Use the assessment outcomes to guide future UAV designers to select the best path
planning configuration available for their specific application.

To address the research goal, the following research questions were formulated.

1.3.2. RESEARCH QUESTION 1

Research Question 1

What is the state-of-the-art in the field of path planning for UAVs in 3D, and how
do these algorithms compare?

To investigate the potential of different path planning algorithms, the current state-
of-the-art in all fields of robotics needs to be investigated. This will highlight the poten-
tial path planning performance, robustness and applicability to the field of 3D UAV path
planning. The majority of path planning algorithms were developed for 2D applications
even when applied in 3D environments by assuming one dimension to be constant. Al-
though some algorithms were adapted to handle 3D environments, others require fur-
ther work to handle the additional dimension. This can result in a higher deterioration
in performance with respect to other algorithms.

Furthermore, to fairly assess the prospective algorithms, a 3D environment with ob-
stacles simulating typical indoor environments needs to be constructed. In typical in-
door environments various objects with different sizes exist that can be estimated us-
ing polyhedrons. The most promising algorithms must be tested on the same platform
with different shapes and positions, in the most obstacle-dense environment which the
prospective indoor UAV is expected to handle.
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1.3.3. RESEARCH QUESTION 2

Research Question 2

Can the selected path planning algorithms be applied in real-time environments
using the computational capabilities onboard small UAVs?

To fully mitigate Challenge 1 described in Section 1.2.1, the most prominent path
planning algorithms of Research Question 1 need to be tested in real-time scenarios.
Challenge 1 is mitigated if both Research Questions 1 and 2 are fully tackled.

To answer Research Question 1, the environment can be static and fully known prior
the initiation of the flight, implying that path planning can be done offline without any
time restrictions. Through Research Question 2, all path planning computation, sensing
and environmental modelling and actuator controls must be computed onboard and in
real-time.

The same scenarios developed to answer Research Question 1 can be used to tackle
Research Question 2. But in Research Question 2 only part of the environment within the
sensing distance, determined by the sensing systems, is available, in 3D, to the path plan-
ning algorithm. In such a situation, the path planning algorithm can only, if possible,
construct a non-colliding path to an intermediate goal point within the sensing range of
the sensing system, approaching the final goal position as the UAV moves through the
constructed path segments in the direction of this position.

1.3.4. RESEARCH QUESTION 3

Research Question 3

What is the effect on path planning performance if static obstacles are replaced
with dynamic obstacles?

This research question directly links with Challenge 2. To tackle Research Questions
1 and 2, obstacles within the environment were assumed to remain invariant in position,
and orientation throughout the total flight time. As discussed in Section 1.1 in real in-
door environments this is rarely the case and therefore the selected real-time path plan-
ning algorithms shall be tested in dynamic environments in which obstacles change in
position and orientation.

The inclusion of dynamic environments is external to the path planning algorithm
but it can affect the path that the UAV will traverse. While in static environments the
generated path from the current UAV position to intermediate or final goal points will
remain constant from one iteration to another, with the inclusion of dynamic obsta-
cles the path planning algorithm needs to continuously update the previously generated
path so as to avoid collisions.
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1.3.5. RESEARCH QUESTION 4

Research Question 4

What uncertainties affect 3D path planning of UAVs? How can these uncertain-
ties be modelled?

This research question addresses Challenge 3 described in Section 1.2.3. Answering
this research question requires investigating whether different uncertainty sources influ-
ence 3D path planning performance of UAVs operating in indoor environments. These
uncertainty sources, in both the UAV model and environment, must be identified, esti-
mated and modelled such that their affects can be incorporated into path planning con-
straints. The fidelity with which these uncertainties can be predicted will then ultimately
determine the usefulness of each potential path planning algorithm.

1.3.6. RESEARCH QUESTION 5

Research Question 5

How can uncertainties be mitigated to ensure collision-free 3D path planning of
UAVs in real-time in the presence of dynamic obstacles?

This research question is a continuation of Research Question 4 and in conjunction
with it addresses Challenge 3 described in Section 1.2.3. Once uncertainty sources are
identified, estimated and modelled for small UAVs in typical indoor environments, the
developed 3D real-time path planning algorithms can be assessed in the presence of
dynamic obstacles and uncertainties. This research question must answer whether the
real-time path planning algorithms considered allow the UAV to safely operate within
an indoor environment. By answering this research question the proposed overarching
thesis research goal will be achieved.

Each research question proposed builds on the previous one to ultimately reach the
final research goal. In the process of assessing the path planning performance (first part
of research goal) of each algorithm under review, the response of each method with re-
spect to each additional complicating feature (dynamic obstacles, uncertainty) can be
independently analysed, highlighting the characteristics of each method. This informa-
tion can be used to help future UAV designers in selecting the best configuration based
on their application, satisfying the second part of the research goal.

1.4. RESEARCH SCOPE
The research scope of this dissertation is to achieve the research goal set in Section 1.3.1
by answering Research Questions 1 to 5 explained in Section 1.3.2 - Section 1.3.6. To
fairly test these algorithms, a common test platform is required. All modelling and sim-
ulations are performed on the same MATLAB version (R2014b) using the same personal
computer (PC) an Intel Xeon ES-1650, 3.2GHz. In this section some of the main assump-
tions are discussed.
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1.4.1. RESEARCH QUESTION 1: 3D UAV PATH PLANNING
In relation to Research Question 1, a literature review of the different path planning algo-
rithms that can potentially be applied to 3D UAV path planning will yield a list of poten-
tial algorithms and their variants. The two algorithms, and the most promising variants
of each that best fit the application at hand will be assessed.

The focus of this work is to assist UAV designers by outlining guidelines in config-
uring the ideal path planning algorithm for a UAV operating in an indoor environment.
The modelling and analysis of the sensing and control capabilities and constraints of a
specific UAV that will be used in the specific indoor environment is application-specific.
For this reason and the fact that only small UAVs will be considered, the UAV is approx-
imated by a point-mass model with generic sensing and control capabilities and con-
straints will be considered. In this regard, for the scope of all research questions unless
otherwise specified, it will be assumed that:

1. The UAV can turn in all 3 dimensions while remaining at the same position;

2. The UAV can move at the same constant speed defined prior mission initiation;

3. The UAV occupies just one point in space with infinitesimally small volume;

4. The UAV movement does not affect the position of obstacles in its vicinity;

5. The UAV is not affected by external factors (example: obstacles and crosswind);

6. The UAV can stop in mid-air and wait;

7. The UAV sensing systems can provide a spherical 360° sensing in all directions;

8. The UAV can accurately follow straight line segments;

9. The UAV has no dominant/preferred orientation; and

10. The sensing and control algorithms’ computational time is dependent upon the
type of UAV framework required for the specific application. This framework dif-
fers from one UAV to another and therefore the sensing and control algorithms’
computational time is not considered for the scope of this work and only the path
planning time is considered.

The environment is designed beforehand, for all tests considered and the scenario
loading computational time is neglected in the path planning computational time. Also
it is assumed that the movement time of the UAV from one path node to the next is
independent of the path planning time, in line with assumption Item 10.

Ideally, the path planning performance of the algorithms shall be tested in a large
number of different scenarios so as to fully assess their performance. Owing to space
and time limitations, a representative set of worst case scenarios was designed and mod-
elled. These consisted of both simple cubes and vertical and horizontal planes with small
openings through which the UAV needs to pass to reach the goal position. A dimension-
less environment is defined as a 1x1x1 box with obstacles occupying a predefined volume
or area. This dimensionless approach is considered for other parameters such as path
length, making tests easily transferable to real test scenarios by scaling.



1.4. RESEARCH SCOPE

1

13

1.4.2. RESEARCH QUESTION 2: REAL-TIME UAV PATH PLANNING

The shift from Research Question 1 to 2 mainly affects the UAV environmental visibil-
ity and introduces computational constraints. For the scope of this research question a
sphere with radius equal to the sensing range of the UAV is considered. Obstacles within
this sphere are known with certainty while other obstacles are unknown and can become
visible only when the UAV moves in their direction. All other UAV assumptions explained
in Section 1.4.1 remain relevant.

For the scope of Research Question 1, UAV movement time was not considered as
path planning was generated offline. But, to simulate real-time path planning, it is re-
quired that the path planning computational time is less than or equal to the time needed
by the UAV to move from the current position to a new position. As explained in Sec-
tion 1.4.1 the environment creation and loading for each iteration is neglected in com-
putational time calculation. In real situations, environmental sensing, path planning
and UAV control all use the limited computational power of the UAV.

Since the environment remains static, the same environment as in Section 1.4.1 is
considered. Since for the scope of Research Question 1, paths are constructed offline, the
UAV speed is irrelevant for the scope of path planning. However, in real-time situations,
this is not the case as speed will determine the maximum computational time for the
UAV to traverse from the current UAV position to new UAV position. Modular speed shall
be defined in view of state-of-the-art small UAVs proposed for indoor environments.

1.4.3. RESEARCH QUESTION 3: REAL-TIME PATH PLANNING OF UAVS IN

DYNAMIC ENVIRONMENTS

Research Question 3 introduces dynamic obstacles to the real-time 3D UAV path plan-
ning in indoor environments problem. Dynamic obstacles within an indoor environ-
ment can be estimated by symmetrical shapes. For the scope of this work, a set of sce-
narios consisting of cubes and V-shaped obstacle shapes together with static planes with
windows discussed in Section 1.4.1 is considered. The obstacle density is selected also in
view of real indoor environments within which the UAV is expected to operate, although
some extreme scenarios are also considered to assess the robustness of the algorithms.

Both obstacle movement and orientation are considered in the dynamic environ-
ment modelling. The random obstacle movement speed is smaller than or equal to the
speed of the UAV. This assumption is required as otherwise situations can exist in which
the UAV can never evade the obstacle. Apart from the magnitude restriction, obstacle
movement direction and orientation random changes are not restricted.

The dynamic environment is created offline so as not to affect the path planning
computational time. During the path construction from the current UAV position to
the intermediate goal point, the environment is assumed to be static with obstacles re-
maining stationary. In reality, sensing systems will provide discontinuous time-stamped
screenshots of the environment and in-between these screenshots the planner has to
rely on the last shot. This assumption is only valid if the time of construction of path
segments is small enough, such that obstacles do not move into the constructed path
segment. This is difficult to estimate since the time-varying speed and orientation of
obstacles are random and unknown to the planner.
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1.4.4. RESEARCH QUESTION 4: UNCERTAINTY IDENTIFICATION AND MOD-
ELLING

Research Question 4 deals with the effect of uncertainty present within UAVs operating
in indoor environments in real-time. This requires a second literature analysis to iden-
tify and model uncertainty sources that might also effect path planning performance.
Modelling of uncertainty sources must be integrated within the development of the test
platform up to Research Question 3. For the scope of this work, uncertainties are only
considered within the UAV model and the environment (perceived through UAV onboard
sensing systems only) within which it is expected to operate. Other uncertainties such as
communication with user(s) and/or other interface technologies will not be considered.

1.4.5. RESEARCH QUESTION 5: UNCERTAINTY INTEGRATION
Research Question 5 builds on the previous question as it involves integrating uncer-
tainty sources within the real-time 3D path planning algorithms framework. A number
of uncertainties in UAV and obstacle environment will be analysed for a set of uncer-
tainty values. Uncertainty is included by adding a bounded, randomised offset to the
actual respective parameter. The effect of each uncertainty source will be analysed inde-
pendently and collectively with dynamic obstacles for both path planning rationales so
as to identify how real-time path planning algorithms can safely operate.

In the next section, the main contributions of this dissertation will be defined, ex-
plained and analysed.

1.5. MAIN CONTRIBUTIONS
The main contributions of this dissertation can be categorised into: path planning algo-
rithms, real-time path planning, dynamic obstacle modelling and uncertainty identifi-
cation and modelling.

1.5.1. CONTRIBUTIONS TO PATH PLANNING ALGORITHMS
• Literature review of different graph-based and sampling-based path planning meth-

ods that can be applied for 3D UAV path planning in indoor environments;

• Direct comparison and analysis of the A* and RRT algorithms, and their variants.
The A* and RRT algorithms represent the state-of-the-art for the graph-based and
sampling-based rationales;

• Novel adaptions and improvements to the standard A* and RRT algorithms, to of-
fer a fairer comparison and to mitigate shortcomings in the A* and RRT path plan-
ning algorithms;

• Analysis of the effects of path smoothing, using the same smoothing algorithm,
on the path planning performance for both the A* and RRT algorithms and their
variants; and

• Direct comparison between the A* and RRT algorithms on the same real-time plat-
form in different scenarios with static and dynamic obstacles with and without
uncertainties.
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1.5.2. CONTRIBUTIONS TO REAL-TIME PATH PLANNING
• A real-time path planning literature review confirmed the need for real-time path

planning for UAVs operating in indoor environments;

• Modelling of environment sensing with limited range and UAV movement emulat-
ing real-time behaviour;

• Effects on UAV parameter definition between offline and real-time 3D UAV path
planning; and

• Relational guidelines between each UAV parameter and path planning performance
for both A* and RRT algorithms.

1.5.3. CONTRIBUTIONS TO DYNAMIC OBSTACLE MODELLING
• Analysis of the different obstacle shapes and sizes present within typical indoor

environments;

• Modelling of different 2D and 3D dynamic obstacles randomly in view of compu-
tational limitations; and

• Identification of common challenges that UAV path planning algorithms can en-
counter and how these can be mitigated in real-time.

1.5.4. CONTRIBUTIONS TO UNCERTAINTY IDENTIFICATION AND MODEL-
LING

• Understanding of the need of incorporating uncertainty in path planning of a UAV
operating in indoor environments. Uncertainty is sometimes neglected although
literature and this work show that uncertainty effects are not negligible;

• Identification of the main uncertainty sources and their respective ranges present
in a UAV and its sensing and communication systems operating in an indoor en-
vironment;

• Modelling of uncertainties and their incorporation into a modular real-time path
planning algorithm; and

• Identification of the deterioration level, if any, of individual uncertainty sources
both independently and holistically on 3D path planning of UAVs in indoor envi-
ronments.

1.6. THESIS OUTLINE
The main body of this dissertation is based on a collection of peer-reviewed journal and
conference papers. Because of this, some overlap is present in the respective introduc-
tions relating to the general motivation of UAV path planning and the definition of the
A* and RRT algorithms. Each chapter builds upon the previous one, but was written
independently and therefore can also be read individually.
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Each chapter starts with an abstract, followed by an introduction to the goal targeting
the particular research question. Figure 1.4 illustrates the dissertation outline, with each
chapter depending and evolving from the knowledge gained in the previous chapters
with the aim of reaching the ultimate goal of this dissertation.

Figure 1.4: Dissertation Outline

Chapter 2 will present a thorough literature review of the different path planning
rationales and their variants that can potentially be applied in the field of 3D UAV path
planning in indoor environments. The two state-of-the-art rationales and their most
promising variants will be implemented, tested and their path planning performance
analysed. In this process, inherent shortcomings of both rationales will be mitigated
to enhance path planning performance. This chapter is intended to answer Research
Question 1 derived from Challenge 1.

Chapter 3 builds upon the knowledge gained in Chapter 2 and develops the two most
promising path planning rationales in view of real-time path planning. This chapter
presents a detailed literature review of the approaches considered in real-time path plan-
ning whilst highlighting the need of real-time consideration. It proposes, develops, tests
and implements real-time path planning with static obstacles analysing the effects of dif-
ferent parameters on path planning performance. This chapter aims to answer Research
Question 2 also derived from Challenge 1.

In Chapter 4, obstacles are changed from static to dynamic. As in the previous chap-
ters, this chapter initiates with a literature review highlighting the need of dynamic ob-
stacle consideration in indoor environments and presents the state-of-the-art in dy-
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namic obstacle modelling. Typical dynamic obstacles are modelled and their effects
on real-time path planning performance are assessed. This chapter aims to answer Re-
search Question 3 derived from Challenge 2.

Chapter 5 introduces uncertainty in the 3D real-time path planning problem. This
chapter identifies and explains the need for uncertainty considerations, the sources of
uncertainty and their quantification in view of UAVs operating in indoor environments.
The relevant uncertainties within the research scope are identified, modelled and inte-
grated with the 3D real-time environment developed in Chapter 4. The chapter will con-
clude with an analysis of the effect of path planning performance of each uncertainty
source independently and concurrently that is expected to help future indoor UAV man-
ufacturers in the design of more robust indoor UAVs. Through the work of this chapter,
Research Questions 4 and 5 derived from Challenge 3 are expected to be answered. Con-
sequently, the research goal of this dissertation will be reached.

Chapter 6 presents the final conclusions, discussions and future recommendations
of this dissertation. Figure 1.5 graphically summarises the links between the challenges,
research questions and chapters using the same colours for clarity.

Figure 1.5: An illustration showing the mapping of Challenges to Research Questions and from Research Ques-
tions to Chapters
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[34] Gonzàlez, D., Pèr ez, J., Milanès, V., and Nashashibi, F., “A Review of Motion Plan-
ning Techniques for Automated Vehicles”, IEEE Transactions on Intelligent Trans-
portation Systems, Vol. 17, No. 4, pp. 1135-1145, 2016.
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COMPARISON BETWEEN A* AND

RRT ALGORITHMS FOR 3D PATH

PLANNING

The first research question addresses the current state-of-the-art path plan-

ning algorithms and how these algorithms compare will be addressed in

this chapter. A literature review of the different path planning algorithms

that can be potentially applied for 3D UAV path planning in indoor en-

vironment will be presented in this chapter. For this review, two state-of-

the-art rationales and their most promising variants will be implemented,

tested and their path planning performance analysed. In this process, in-

herent shortcomings of both rationales will be mitigated to enhance path

planning performance.

This chapter is based on two conference papers published as:
Zammit, C. and van Kampen, E., “Comparison between A* and RRT Algorithms forUAV Path Planning”, Pro-
ceedings of AIAA Guidance, Navigation and Control, Kissimmee, FL, 8-12 Jan., 2018, AIAA 2018-1846.

Zammit, C. and van Kampen, E., “Advancements for A* and RRT in 3D path planning of UAVs”, Proceedings of
AIAA Guidance, Navigation and Control, San Diego, CA, 7-11 Jan., 2019, AIAA 2019-0920.

The contents of this chapter are accepted for publication:
Zammit, C. and van Kampen, E., “Comparison between A* and RRT Algorithms for 3D UAV Path Planning”,
Journal of Unmanned Systems.
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This chapter aims to present a comparative analysis of the most utilised graph-
based and sampling-based algorithm and their variants, in view of 3D UAV path plan-
ning in complex indoor environment. The findings of this analysis outline the usabil-
ity of the methods and can assist future UAV path planning designers to select the best
algorithm with the best parameter configuration in relation to the specific applica-
tion. An extensive literature review of graph-based and sampling-based methods and
their variants is first presented. The most utilised algorithms which are the A* for
graph-based methods and Rapidly-Exploring Random Tree (RRT) for the sampling-
based methods, are defined. A set of variants are also developed to mitigate inher-
ent shortcomings in the standard algorithms. All algorithms are then tested in the
same scenarios and analysed using the same performance measures. The A* algo-
rithm generates shorter paths with respect to the RRT algorithm. The A* algorithm
only explores volumes required for path generation while the RRT algorithms explore
the space evenly. The A* algorithm exhibits an oscillatory behaviour at different res-
olutions for the same scenario that is attenuated with the novel A* ripple reduction
algorithm. The Multiple RRT generated longer unsmoothed paths in shorter planning
times but required more smoothing over RRT. This work presents a novel comparison
between graph-based and sampling-based algorithms in 3D path planning of UAVs.
Furthermore, this work addresses shortcomings in both A* and RRT standard algo-
rithms by developing a novel A* ripple reduction algorithm, a novel RRT variant and a
specifically designed smoothing algorithm.

2.1. INTRODUCTION
Since the first industrial revolution, automation has been integrated into everyday life
ranging from basic traffic lights to autonomous navigation of submarines. The intro-
duction of these systems into military, industrial, commercial and private use requires
such systems to be robust and reliable to ensure a safe operation. These autonomous
systems which can vary in scope, size and shape, are equipped with different sensory
systems requiring various levels of intelligence depending upon their application. Ad-
vancements in control and navigation technologies and cost-reduction in hardware have
made it possible for autonomous systems to operate safely and efficiently in a range of
applications. The ever-increasing availability of autonomous systems will require more
complex path planning systems so that all these systems can work efficiently without
hindrance and possibly enhance the operation of one another.

One aspect of autonomous systems is path planning. Path planning algorithms con-
struct optimal paths to a preset goal point in the presence of time invariant and time
variant environmental and vehicular constraints and uncertainties [1]. Path planning
initiated as a 2D problem to generate paths for ground vehicles [2–4] or to approximate
3D path planning problems with 2D by assuming that 1 dimension is constant [5–9].
Eventually, with the introduction of complex 3D environmental and model constraints,
research shifted its focus to 3D path planning methods [9–13]. The path planning system
in 2D and 3D environments must deal with a set of constraints and requirements includ-
ing static [14–16] and moving obstacles [17–19], moving targets[20, 21], weather [22, 23],
no go zones [24, 25], communication [27–29], fuel [5, 25] and other model specific con-
straints [26, 30]. Some of these constraints, such as static obstacles and no go zones,
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can be accurately defined prior mission initiation. But in real situations the majority of
constraints can only be modelled with uncertainty, primarily weather and dynamic ob-
stacles, although fuel consumption rate and vehicular state also incorporate an element
of uncertainty. Besides, in real situations, constraints can change or even new ones pop-
up and consequently the path planning system needs to adapt in real-time to ensure safe
guidance to the final goal position [24].

To ensure safe and efficient path planning, numerous algorithms were proposed
which can be segmented into two main approaches: Graph-based and Sampling-based
algorithms. Graph-based methods define the environmental space by a set of grid points.
Points residing on obstacles are defined as inaccessible grid points. The algorithm searches
through the accessible grid points to construct a path from start to goal position if such
a path is possible[31]. Graph-based methods guarantee a path from start to goal only
for an adequate grid resolution [32]. Sampling-based methods select a random number
of points in the environmental space and creates connections between them [32, 33].
Sampling-based algorithms are simple, efficient and probabilistically complete, i.e. they
guarantee a solution at infinite time [32].

This paper provides a literature review of the current state-of-the-art path planning
algorithms in the graph-based and sampling-based categories. The two most researched
path planning methods, namely the A* (A star) and the Rapidly-Exploring Random Tree
(RRT) from the graph-based and sampling-based categories respectively, will be describ-
ed, tested and analysed in view of 3D UAV path planning. Furthermore, this paper aims
to reduce the resultant path length ripple effects at different resolutions for the A* algo-
rithm and the efficiency of the smoothing algorithm since in particular runs the reduc-
tion in path length is less than 0.1% even after numerous smoothing iteration attempts.

In this study, the performance parameters are the path length and computational
time. Path length determines the time of traversal of a path and consequently the time
the vehicle takes to arrive at the goal point. Fuel capacity and fuel efficiency determine
the flight range. This is a primary constraint to full autonomy. This implies that path
length will determine the effective range of the UAV. Ideally, the path planning time is as
low as possible especially in dynamic environments with moving obstacles, since during
path planning the environmental situation may significantly vary. Path planning time
will impinge on the responsiveness of the path following algorithm to mitigate with both
agent and environmental changes. Computational power onboard UAVs may also be
very limited and it must be shared with other computationally expensive algorithms and
sensing technologies. In this regard, the computational burden of path planning algo-
rithms shall be as low as possible. The main contribution of this paper is an analysis of
the A* and RRT algorithms in view of their suitability for 3D UAV path planning.

This chapter will be organised as follows. Section 2.2 defines the standard A* and RRT
algorithms, followed by the state-of-the-art graph-based and sampling-based methods
in Section 2.3. Section 2.4 defines the A* ripple reduction (A∗

R ) algorithm, RRT variants,
the improved smoothing algorithm, vehicle model definition and the testing scenar-
ios with their associated obstacle avoidance constraints. In Section 2.5, the results are
analysed followed by Section 2.6, which summarises this paper by outlining the main
strengths and weaknesses of the A* and RRT algorithms in view of real-time 3D UAV path
planning.
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2.2. THE A* AND RRT ALGORITHMS

2.2.1. THE A* ALGORITHM
The development of the A* algorithm started in 1964 with the invention of the A1 algo-
rithm by Nils Nilsson that aimed to increase the speed of the Dijkstra’s algorithm. Then
in 1967, Bertram Raphael enhanced performance by developing the A2 algorithm but
failed to show optimality. In 1968, Peter E.Hart added some minor amendments to A2 to
proof its optimality, naming the new algorithm A* [34].

The A* algorithm constructs an optimal path based on an evaluation function f (n)
which calculates the actual cost of the path passing through generic node n, initiating
from the starting point xi ni t to the goal node of n in M-Dimensional space such that
xi ni t ∈ RM and xg oal ∈ RM [35, 36]. As described by the below formula, f (n) is the sum
of the actual costs from xi ni t to a node n (g (n)) and from n to the goal point of n (h(n)),
where f, g, h: ∈ RM → R:

f (n) = g (n)+h(n) (2.1)

As the cost of the evaluation function f (n) is a function of resolution, g (n) and h(n)
can only be estimated. The estimated costs are denoted by ĝ (n) and ĥ(n), respectively,
where the estimated evaluation function denoted by f̂ (n) equates to:

f̂ (n) = ĝ (n)+ ĥ(n) (2.2)

As the resolution →∞, the evaluation function f̂ (n) → f (n).
Algorithm 1 defines and Figure 2.1 shows the rationale behind the A* Algorithm [35].

The A* algorithm starts by defining the start and goal nodes, xi ni t and xg oal , respectively.

Then, f̂ (xi ni t ) is evaluated for all possible “Open” nodes ni ∈ RM and the node with the
smallest cost ci ∈ R is assigned to n. “Open” nodes include all nodes ni except for nodes
that reside on an obstacle and nodes already forming part of the optimal path. These are
referred to as “Closed” nodes. No path exists if f̂ (xi ni t ) is empt y implying that the cost
to all “Open” nodes is null . The A* algorithm continues by generating successive nodes
using the successor operator (Γ). Through this operator, a set of successor nodes ni ∈
RM and their associated cost ci ∈R for each node n, are calculated based on a predefined
heuristic graph movement, such that RM × R→ RM , provided the current node is not an
element of xg oal otherwise the path from start to goal nodes is found [35].

2.2.2. RAPIDLY-EXPLORING RANDOM TREE (RRT) ALGORITHM
The standard RRT algorithm grows a tree from the start point, by randomly planting
seeds (nodes) in the configuration space, consequently growing tree branches creating a
feasible path [37]. This kinodynmic path planning algorithm, was developed by Steven
M. LaValle and James J. Kuffner between 1998 and 2001 [37, 38].

Algorithm 2 defines and Figure 2.2 illustrates the rationale behind the RRT algorithm.
The following will describe the parameters that are used to describe the standard RRT al-
gorithm. τ ∈ (RM , RM × R) refers to tree nodes and their edges with the first element at
the starting node. X f r ee refers to unoccupied points in the environment space. xi ni t ∈
RM : start node, xg oal ∈ RM : goal node, xr and ∈ RM : random node selected to construct
new branches, xnear ∈ RM : nearest node to xr and , lnear ∈ RM : nearest point on edge to



2.2. THE A* AND RRT ALGORITHMS

2

27

1: Assign xi ni t as an open node
2: Calculate f̂ (xi ni t ) from the start node xi ni t to all open nodes ni

3: Select the node n with the smallest f̂ (xi ni t )
4: If f̂ (xi ni t ) == empty
5: No path is possible
6: End
7: While n 6∈ xg oal

8: Mark node n as closed
9: Apply the successor operator Γ
10: Re-calculate f̂ function for successor nodes of n and mark these nodes

as open
11: If f̂ is empty
12: No path is possible
13: Else If f̂ (ni ) is now smaller than when ni was closed
14: Remark successor closed nodes of n as open
15: End
16:End
17:Parent node n is closed (Path Found) [35]

Algorithm 1: A* Algorithm

Figure 2.1: Two planning iterations of the A* Algorithm: (a) 1st Iteration and (b) 2nd Iteration
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xr and , xed g e ∈ RM : nearest node on edge, xnew ∈ RM : new tree node D distance from
xnear or lnear equal to the preset tree branch length and K : predefined maximum num-
ber of iterates to construct a tree from start to goal.

1: Assign xi ni t to first node of tree τ
2: While i < K AND xg oal 6∈ τ

3: Randomly generate xr and ∈ X f r ee

4: Find the nearest node xnear and edge lnear to xr and .
5: If Distance (xnear to xr and ) > Distance(lnear to xr and ), then
6: Calculate xnew , a distance D from xnear to xr and .
7: If Line connecting xnear to xnew does not result into a collision then
8: Add new node xnew to τ

9: End
10: Else Re-calculate xnew , a distance D from the nearest node on

lnear , xed g e to xr and

11: If Line connecting xed g e to xnew does not result into a collision then
12: Add new node xnew to τ

13: End
14: End
15: If Distance from (xnew to xg oal ) < D AND line xnew to xg oal is free then
16: xg oal ∈ τ

17: End
18: i ++;
19: End
20: If xg oal ∈ τ then path is found
21: Else No path found
22: End

Algorithm 2: Pseudo Code of the RRT Algorithm

2.3. LITERATURE REVIEW
The main scope of this literature review is to identify potential path planning algorithms
for 3D UAV path planning of small UAVs operating in indoor environments using limited
onboard computational resources. Current literature reviews discuss and compare path
planning algorithms either generically or in view of a specific application with a specific
2D or 3D robot. This differs with the scope of this work that presents a literature review in
view of 3D UAV applications that is independent of the UAV model and focuses primarily
on path planning performance. In this regard, this section will focus on the implemen-
tation, utilisation, advantages and disadvantages of graph-based and sampling-based
path planning approaches and their variants in line with the scope. This review will
conclude with a direct comparison of graph-based and sampling-based approaches in a
common scenario.
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Figure 2.2: Two planning iterations of the RRT Algorithm: (a) 1st Iteration and (b) 2nd Iteration

2.3.1. GRAPH-BASED APPROACHES
Graph-based methods have been extensively employed for path planning in different
engineering problems due to their relative simplicity. A pioneer on graph-based search
algorithms was the Dijkstra algorithm [39]. The A* algorithm, an advancement over the
Dijkstra’s algorithm, combines the benefit of heuristic methods with the Dijkstra’s algo-
rithm [40, 42].

DIJKSTRA ALGORITHM

Dijkstra’s algorithm searches all possible options to find the minimum cost paths from
two points [39]. The Continuous Dijkstra, a variant of the original Dijkstra algorithm,
finds the shortest path at boundaries through an analogy with Snell’s Law of Refraction
[43]. An improved Dijkstra algorithm uses the Fibonacci technique to sequentially select
ideal path planning positions resulting in faster, smaller weight paths [44]. The Dijk-
stra’s algorithm was used for path planning in urban environments [45], in multi-agent
scenarios [46] and for autonomous driving in the DARPA challenge [47, 48].

A* ALGORITHM AND ITS VARIANTS

The A* algorithm is computationally efficient and guarantees the shortest possible path
[40]. Path planning in both grid and visibility graphs can be computed using the A*
algorithm. It was successfully implemented even for multi agent systems in dynamic
environments [41]. A number of A* variants were developed to handle dynamic graph
changes [42]. One variant, the Dynamic A* (D*) only updates new nodes, reducing com-
putational demand [49]. Similarly, the focused D*, reduces computational demand by
heuristically searching previous search results [50]. Also, the Lifelong Planning A* (LPA*),
an incremental A* variant, makes use of invariant parts from previous searches to reduce
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search time [51]. An advancement of the LPA is the D* Lite that uses one requirement to
compare path planning priorities. The computational demand of D* lite is efficient at
least as D* [52]. Another variant, the field D*, re-plans using linear-interpolation tech-
niques to efficiently construct smooth paths [53]. The L* algorithm, a faster variant than
A*, ensures linear computational complexity and can be applied in global path planning
situations [54].

The Theta* is another variant of A*. Two variants of Theta* exist namely: the Basic
Theta* and the Angle-Propagation Theta*[55]. The Basic Theta* is relatively computa-
tionally efficient although it does not ensure that an optimal path is constructed [55].
Oppositely, the Angle-Propagation Theta* generates slower, more complex and longer
paths with respect to the Basic Theta* although it generates better worst-case complex-
ity per vertex [55]. The Phi*, a variant of the standard Theta*, re-plans by searching in
all angles using only nodes within line-of-sight of their respective parents [56]. Overall
it requires more calculation time than the basic Theta* [56]. This time can be reduced
by using the Incremental Phi* which uses a pre-processing stage [56] developed for the
Differential A* algorithm [57]. Another variant, the Lazy Theta*, developed by Nash et al.
[58] reduces the number of line-of-sight checks effectively reducing planning time. This
algorithm was used to operate a UAV in real-time outdoor environments [59].

Another variant, the Block A*, first smooths predefined short paths available in a
look-up table and then starts the standard A* search [60]. This approach is consequently
faster than both A* and Theta* but owing that path construction is dependent upon the
look-up table, this approach does not guarantee a solution [56]. Another fast approach is
the Jump Point Search (JPS) which exploits symmetries but neglects neighbouring cells
and does not search in every direction [61, 62].

The idea of using previous information to reduce computational time is the basis of
other A* variants including Differential A* [57] and Fringe-Saving A* [64]. These meth-
ods initiate by re-planning iterations in the largest static area by comparing previous
planning iterations [63]. Moreover, incremental heuristic algorithms, such as the Gen-
eralized Adaptive A* [65] and Path- and Tree-Adaptive A* [66], also use knowledge ac-
quired from previous searches to enhance heuristics ultimately reducing computational
demand. Such heuristics are a function of cost edges [63].

Anytime and truncated incremental techniques were also integrated with A* and its
variants to improve performance. The integration of Anytime methods on A* and D*
is realised in the Anytime Repairing A* (ARA*), Anytime Tree Restoring A* (ATRA*) and
Anytime D* (AD*). These variants construct sub-optimal paths within a predefined short
time frame [4]. Similarly, Truncated Incremental Search methods were integrated with
LPA* (TLPA*), D* (TD*) and D* Lite (TD* Lite). These techniques utilise information from
previous iterations to focus the search expansion based on sub-optimal target bounds
[67]. These variants improve performance at the expense of increasing computational
demand and therefore these methods suffer in high-dimensional environments [53].

This review shows that the standard A* algorithm has been extensively applied in var-
ious fields through the evolution of its variants and its integration with other techniques.
Its extensive use is derived from the low computational and optimal path benefits that
this algorithm can construct.
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2.3.2. SAMPLING-BASED APPROACHES
Sampling-based methods are extensively used in various fields due to their relative low
computational requirements and guarantee of convergence [32]. The most commonly
used sampling-based methods are the Probabilistic Roadmap Method (PRM) [68] and
the Rapidly-Exploring Random Tree (RRT) [38]. These methods construct cyclic and
acyclic random trees respectively [32].

PROBABILISTIC ROADMAP METHOD (PRM)
The PRM algorithm is made up of two phases: the learning and the query phase. In
the learning phase, a local planner connects sample points to form a roadmap while the
query phase make use of the previously constructed roadmap to search a feasible path
from start to goal point using a graph search algorithm [68].

To improve the performance of the standard PRM method, a set of variants was in-
troduced. The PRM* improves path optimality by making use of a variant distance con-
straint [69]. To ease computational demand, the Lazy PRM initiates by neglecting all
obstacles in the environmental space. Consequently, the algorithm constructs a path
from start to goal and then checks for collision. Nodes and edges resulting in a collision
are eliminated from the roadmap [70]. Similarly, the Dynamic Roadmap (DRM) method
generates a roadmap by mapping the workspace maps to roadmap edges assuming an
obstacle-free space as in the Lazy PRM. During online re-planning edges residing on
obstacles are neglected [71]. The cell-based PRM (CPRM) method segments the envi-
ronmental space into cells, assigning high priority to cells close to both straight path
segments and disconnected components. For faster re-planning, searches are biased to
solution areas [72]. In this regard, Pomarlan et al. [73] allocates higher costs for edges
residing near colliding edges diverging the planner away from obstacle zones.

More PRM variants include the Reactive Deformation Roadmap (RDR) which gen-
erates a roadmap attracted by time-variant sub-targets and repelled by obstacles. Sub-
targets and their respective reactive links are added and removed to ensure roadmap
connectivity [74]. The Flexible Anytime Dynamic PRM (FADPRM) selects desirable areas
by environment segregation. An A* search continuously improves the solution through
priority heuristics focused in the vicinity of frontier edges [75]. The Elastic Roadmap
variant connects roadmap points in a dynamic environment through feedback control
[76]. The Grid Path Planning Roadmap Planning (GPRM) and the Particle Probabilistic
Roadmap (PPRM) are another two variants with the former producing a grid environ-
ment and the latter utilising a probabilistic approach [77].

RAPIDLY-EXPLORING RANDOM TREE (RRT)
The Rapidly-Exploring Random Tree (RRT) [38] constructs a unidirectional search tree
starting from the start node by randomly generating and connecting states not residing
on obstacles until one tree branch extends to the goal node. A distinguished advantage
of the RRT with respect to the PRM is the consideration of kinematic and dynamic con-
straints in the path planning process [38]. Paths constructed using the standard RRT
are computationally efficient even in complex situations although they suffer from path
optimality [78–80]. The RRT trees grow evenly in free spaces unless restrictions or po-
tentials are included in the random generation of nodes [81]. This allows the RRT al-
gorithm to be used in non-holonomic and restricted environments. In this regard, the
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standard RRT algorithm was successfully implemented to construct collision-free paths
in the presence of static obstacles [16].

The lack of optimality is one of the major drawbacks of the standard RRT. To tackle
this drawback, the RRT* [82] was developed. RRT* exhibits asymptotic optimality by
introducing a minimum length cost, although it lacks in ensuring a local optimum at
the start node [69]. During sampling the RRT* neglects the configuration-cost function
and considers only the quality of the path when introducing or removing nodes. Due
to its asymptotic optimality, RRT* is slow in achieving an optimal path in complex high-
dimensional environments [83]. The RRT*-Smart variant was developed to improve con-
vergence with respect to RRT*, by constructing quasi optimum or optimum paths in a
smaller time frame [84]. Another RRT* variant was developed to add probabilistic guar-
antees of completeness and optimality by constructing tree edges based on vehicle con-
trol inputs[85].

The bidirectional or RRT-Connect grows two trees, one starting from the start and the
other from the goal node [86]. The Artificial Field algorithm was integrated with the RRT-
Connect algorithm to optimise path length [87] and with the RRT* algorithm to optimise
convergence speed [88]. The Execution Extended RRT (ERRT) variant efficiently re-plans
to improve path quality by using both cost priority search and previous nodes [89]. Also,
Martin et al. [90] proposed the integration of evolutionary algorithms with bidirectional
RRT creating the bi-directional Rapidly Exploring Evolutionary Trees (RET). By search-
ing in the vicinity of neighbouring nodes through balanced Spatial KD-Trees and using
apriori environmental knowledge, results show an improvement in time variant environ-
ments [89, 90]. Gros et al. concludes that bidirectional trees are inherently less flexible
in cluttered environments than unidirectional search tree algorithms [11].

Another RRT variant neglects the connection to the nearest node rule and connects
a new tree node to all obstacle-free nodes [91]. Re-planning is done using an obstacle-
free distance cost function in a predefined time and provided that no collisions exist
prior re-planning. Just as for the cell-based PRM, the cell-based RRT uses probabilistic
techniques and decomposes the environment for efficient path planning [92]. A set of
decomposition granularities were assessed and results show that biasing the search in
the vicinity of the goal improves success rate and reduces path length [92]. By using pre-
viously constructed path segments and applying intelligent decomposition techniques
based on the environmental situation, performance was improved [92].

The Transition-based RRT (T-RRT) variant adds nodes to low cost areas to focus the
search to these regions using a Metropolis-like transition test [79]. By eliminating the
path quality requirement in the construction of edges, path optimality is negatively af-
fected [79]. An advancement over T-RRT, the Transition-based RRT* (T-RRT*) combines
low-cost area biasing of the T-RRT algorithm with the path quality constraint of the RRT*
algorithm [79]. In T-RRT* different physical such as road limits and environmental in-
cluding obstacles restrictions were used to formulate biases for efficient tree growth
[2, 93, 94]. Similarly, Shang et al. [95] used previous planning knowledge to bias the
search in a high-complexity 3D environment.

As with graph-based paradigms, Anytime methods integrated with RRT algorithms
[96–98] use previous searches to efficiently construct a path that is optimal, converging
and feasible. In this regard, the Anytime T-RRT (AT-RRT) uses the Anytime paradigm to T-
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RRT for path re-planning to converge the path to optimum [79]. An Anytime integration
to RRT is the RRT-Roadmap (RRM) which compromises between exploration and path
quality based on RRT* [99]. This meta-approach amalgamates short-cutting with path
hybridization [100]. The Dynamic RRT (DRRT) neglects child nodes of invalid tree nodes
and re-plans from goal to current node [101]. Furthermore, the Anytime Dynamic RRT
(AD-RRT), exploits the strengths of both techniques [102]. A further enhancement, the
multipartite RRT (MP-RRT) designed for unknown or dynamic environments, samples
and re-plans as in ERRT, removing invalid nodes as in DRRT [103].

Due to their benefits, RRT algorithms are also applied in real-time path planning ap-
plications. In this regard, the RRTX a real-time asymptotic optimum re-planning algo-
rithm continuously constructs non-colliding and optimal paths in time-varying environ-
ments. The path from start to goal is re-planned by updating search tree when a potential
collision is detected [104]. The Partial Motion Planner (PMP) dedicates a fixed time win-
dow for both path planning and traversal. Similarly to RRTX , this real-time path planner,
constructs current to goal node path segments of predefined length. Then the environ-
mental model is updated and the re-planning process restarts [105]. Another real-time
planner, the Closed Loop RRT (CL-RRT), re-plans a tree from the current position in a
predetermined time window using a closed-loop feedback method. This algorithm can
be applied even for non-linear controllers and agent models with unstable dynamics.
The stabilisation controller associated with CL-RRT improves prediction accuracy and
rejects disturbances acting on the vehicles [2].

The Greedy Incremental Path-Directed (GRIP) algorithm constructs a path prior move-
ment by growing a tree from current point in predetermined time by considering only
kinodynamic constraints [106]. During movement, the algorithm uses free nodes found
in previous planning stages to update the tree. The search is greedy biased provided that
state-space exploration is probabilistically ensured [106]. Similarly, Taheri et al. [107]
developed a Fuzzy Greedy RRT (FG-RRT) path planning algorithm that controls the tree
edge propagation in configuration space, resulting in lower path planning time and com-
plexity with respect to the greedy RRT algorithm.

Reconfigurable Random Forests (RRF) algorithm applies the underlying principles
of MP-RRT and separates and grows disconnected trees, with the aim of interconnecting
them when trees grow [108]. To mitigate with moving obstacles the Lazy Reconfigurable
Forest (LRF) keeps a forest of trees. As opposed to DRRT which validates the entire forest,
LRF validates only path edges [109]. Similarly, Multiple RRTs (MRRT) algorithm simulta-
neously grows a set of trees starting from predetermined points including the start and
goal points. The ultimate goal is to improve path planning and exploration [81]. The
Multiple Incremental RRTs (MIRRT) variant uses incremental paradigms to keep trees
constructed in previous iterations that may be used in future path planning [81].

The evolution of PRMs to RRTs to numerous sampling-based subcategories that even
integrate with other techniques show the maturity and flexibility of sampling-based tech-
niques. This literature review showed that these methods were applied for path planning
in 2D and 3D in both static and dynamic environments using different vehicle model.
Therefore, sampling-based methods can be considered as candidates for feasible path
planning using a wide spectrum of vehicular systems.
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2.3.3. COMPARING APPROACHES
Studies compared path planning performance of inherent graph-based with sampling-
based techniques. In this regard, Tsai et al. [110] firstly implemented the RRT algorithm
for 3D path planning of multirotor Umannned Aerial Vehicles (UAVs) and the Dijkstra
algorithm for path length reduction. In a second implementation using the same sys-
tem, 3D path planning was achieved using the RRT-Connect algorithm. Path length was
reduced through an A* variant that only made use of the flight path angle without grid
discretization. In both cases Bézier Curves were employed for 3D path smoothing. Tsai
et al. [110] noted an improvement of computational demand and path efficiency by us-
ing RRT-Connect instead of the standard RRT, the amended A* instead of the Dijkstra
algorithm and the addition of path smoothing through the Bézier Curves [110].

Similarly, Rao et al. [111] compared the RRT-Connect and A* path planning algo-
rithms for Autonomous Underwater Vehicles (AUVs) to generate feasible energy-optimal
2D paths biased by ocean currents. An Iterative k-Nearest RRT (IkRRT) considered k-
neighbours to adjust heuristics required to set up the Voronoi-biased RRT-Connect tree
[112]. Rao et al. [111] concluded that both RRT-Connect and A* algorithms are potential
candidates for this application. RRT methods found it difficult to find solutions in view
of Voronoi-bias although the planner was able to avoid shallow regions. Oppositely, the
A* methods performed well in strong current situations [111].

Graph-based and sampling-based paradigms employ different methodologies to con-
struct a path from start to goal. Both have their inherent advantages and disadvantages
which make each method ideal for different applications. Mainly, graph-based methods
discretise the environment, reducing computational cost but limiting the possibility of
available nodes based on the resolution that is selected. Oppositely, the non-discretised
sampling-nature of the other method, may be computationally expensive in a relatively
large obstacle-rich environment but will gradually converge to a solution (if possible)
provided there are no time restrictions. In conclusion, it is adequate to analyse both
rationales to best select the most promising method for the considered scenarios.

2.4. PATH PLANNING ALGORITHM ENHANCEMENTS AND TEST

ENVIRONMENT

2.4.1. INTRODUCTION
The main aim of this part is to describe the A* and RRT variants that are implemented
to provide a better comparison between graph-based and sampling-based paradigms.
Moreover, to investigate the effects of path smoothing and for fair comparison, the same
smoothing algorithm is applied to both A* and RRT variants. Finally, the test environ-
ment constructed to assess the performance of each path planning algorithm is de-
scribed.

2.4.2. THE A* RIPPLE REDUCTION ALGORITHM (A∗
R )

The A*’s algorithm graph-based paradigm described in Section 2.2.1 introduces situa-
tions where a small increase in resolution results in a much longer or shorter unsmoothed
path and vice-versa. This effect is explained in our previous work [113].

To attenuate this, all free graph points are shifted by a random distance varying be-
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tween zero and half the distance between adjacent grid points. Obstacle planes are not
shifted with the same distance. This creates a different grid layout for the same situation.
This techniques will ultimately average out large variations in path length segments cre-
ated by the discretision nature of the A* algorithm.

In A*, each situation is repeated 100 times in each scenario and resolution yielding
the same path in all 100 tests. In A∗

R , a different random shift is added for each situation
(scenario and resolution) creating 100 different paths. The mean path length for these
100 paths will effectively reduce the path length ripple. Refer to [113] for further details.

2.4.3. THE RRT ALGORITHM WITHOUT STEP SIZE CONSTRAINT
In this variant, the RRT algorithm’s tree branch length defined in Section 2.2.2 is limited
by the step size. In an alternative approach, the step size constraint is neglected and tree
branches are connected between the nearest and randomly generated nodes through
straight lines only if a collision-free path connecting these two points exists. The path
following algorithm shall segment the path into trajectories in view of vehicle’s kinematic
and dynamic constraints. This algorithm is intended to offer a comparison between the
standard RRT and Multiple RRT (MRRT) algorithms.

2.4.4. MULTIPLE RAPIDLY-EXPLORING RANDOM TREE (MRRT)
The MRRT algorithm constructs a predetermined number of trees that are simultane-
ously expanded. Tree seeds are placed at start and goal positions with the others placed
at random or preset positions [81]. Trees grow per iteration in the direction of the randomly-
generated node as in RRT and ultimately interconnect neglecting step size constraints.
Similar to the RRT, this algorithm terminates when a single tree connects the start and
goal nodes.

2.4.5. SMOOTHING ALGORITHM
A smoothing algorithm is applied to all the path planning algorithms considered in this
study. This post path planning algorithm randomly selects two path points and ran-
domly selects a point from each line connecting the selected node to their respective
next path point. Path points in between the latter two points are neglected if a collision-
free interconnection is possible. Path planning test results show that after 100 smoothing
iterations the path length improvement is less than 5%. Based on this analysis, the itera-
tions are set to 1000.

Path planning analysis of the A*-based and RRT-based algorithms show that A* meth-
ods require fewer smoothing iterations to reach a point where path length reduction is
negligible when compared with RRT-based methods. For fair comparison the smoothing
iteration stopping condition must be set at a point where the prospective improvement
of future iterations is negligible for the problem scope. An indication of the prospective
improvement of future iterations can be provided from the path length reduction of the
previous set of smoothing iterations. In fact, analysis shows that path length asymptot-
ically approaches a minimum with the number of iterates. This rationale is used in the
development of a variant of the smoothing algorithm.

This new smoothing variant is governed by the path length reduction improvement
over a preset value of iterations, defined by excess and set to 20. The smoothing algo-
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rithm is required to compute at least excess number of iterations. If the smoothing al-
gorithm has computed more than excess and improvement is below a predefined value
(set at 1%) the smoothing process is finished otherwise the smoothing algorithm com-
putes a new iteration. The smoothing process also stops when the smoothing iteration
reaches the maximum preset value (set at 1000). For further details of this algorithm and
discussion about the empirical definition of the described parameters, please refer to
[113].

2.4.6. VEHICLE MODEL DEFINITION

The main scope of this study is to assess, compare and possibly enhance the perfor-
mance of graph-based and sampling-based algorithms in static 3D environments. A
generic approach is considered in both environmental and vehicular model definitions.
As both methods and their variants were applied to wide spectrum of vehicles, we con-
sidered the simplest and most generic type of model, namely the point model, to atten-
uate or possibly eliminate the vehicle model’s kinematic and dynamic effects and their
estimations on the path planning performance for both algorithms.

The point model considered assumed that:

1. The vehicle can rotate any angle in all 3 dimensions on itself without changing
position.

2. The vehicle has no orientation and is symmetrical in all dimensions.

The path planning algorithm generates a set of points that, when interconnected,
connects the start and goal positions. The interconnection of these points can be done
by any line or curve depending upon the kinematic and dynamic capabilities of the vehi-
cle. The vehicle dependent trajectories shall then be constructed by an associated path
following algorithm using path points generated from the path planning algorithm. Ulti-
mately, the path following algorithm will be integrated with the path planning algorithm,
as in [114]. For the scope of analysis we assumed that path segments connecting con-
secutive points are linked by straight lines.

Furthermore, in path construction it is assumed that the point model can reside a
buffer distance from the nearest point on obstacle planes without colliding with them. If
a prospective path point or a point on the line intersecting two consecutive path points
reside within a smaller distance than the described buffer distance, the path planner
will invalidate the last created node and the path planner re-plans. This obstacle avoid-
ance rationale is applied to all algorithms including the post processing smoothing algo-
rithms. This distance is empirically defined as half the distance between grid positions
in A*. To offer a fair comparison the same distance is considered for RRT-based meth-
ods. Depending upon the kinematic and dynamic constraints and vehicle dimensions of
the considered vehicular system, this buffer distance can be increased or decreased ap-
propriately. Also, a generic unit cube is considered in the definition of the environment.
This allows the tests to be scaled to any environment and consequently adapt the buffer
distance between vehicular path and obstacles.
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2.4.7. EXPERIMENTAL SCENARIOS

A unity cube with generic units is considered as the environmental space. The centre of
the cube is at the origin with limits from -0.5 to 0.5 in all 3 dimensions. The normalisation
of the environmental space allows the testing environment to be exported to real-life
environmental spaces. The test scenarios that will be considered in this study where
developed by by Clifton et al. [115]. These are available online at [116]. The start and goal
points are set at [0,-0.5,0] and [0,0.5,0], respectively, for all tests. The following obstacle
scenarios, illustrated in Figure 2.3 are considered:

1. Scenario 1: Two obstacle planes on the X-Z axis with 0.2x0.2 square openings;

2. Scenario 2: Three obstacle planes on the X-Z axis with 0.2x0.2 square openings and
two obstacle planes in the X-Y planes with no openings; and

3. Scenario 3: Five obstacle planes in the X-Z axis with 0.2x0.2 square openings and
two obstacle planes in the X-Y planes with no openings.

The considered control parameters are the resolution for A*, the step size per iterate
for RRT and the number of seeds per axis for MRRT. The resolution is varied between 11
and 29 in steps of 2 for A* and consequently the step size per iterate for RRT is varied
between 1

10 and 1
28 in steps of 1

10+(2i ) where i=0,1,...,9. The number of seeds per axis for
MRRT is varied between 2 and 20 in steps of 2.

The same random sequence generator is considered for RRT for unbiased compar-
ison. The following formula, developed in [116], is used to evaluate the maximum tree
number (N) as a function of the number of seeds per axis (K ):

N = 3(K 3)+2 (2.3)

The minimum number of trees is 2, one at the start and another at the goal nodes. The
multiplication and power factors of 3 are a result of the three dimensional environment
the path planning algorithms will operate in.

Each test for all algorithms is repeated for 100 times. Path length before and after
smoothing and computational time are the performance measures that are considered.
Owing to the generic environment, the subsequent results can be extrapolated to assess
real applications. 1.

2.5. RESULTS

2.5.1. INTRODUCTION

This section aims to identify the best configurations for the realisation of 3D path plan-
ning. Therefore, this section will present, analyse, discuss and compare the path plan-
ning performance of the A* and RRT algorithms, their variants and the smoothing algo-
rithm. This will help identify the strengths and weaknesses of each configuration in 3D
path planning in both generic and specific environments with associated mission con-
straints.
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(a) (b)

(c)

Figure 2.3: The different scenarios: (a) Scenario 1 (b) Scenario 2 and (c) Scenario 3
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Figure 2.4: Results for A* with 95% Confidence Interval (CI): (a) Non-smoothed path length, (b) Smoothed path
length, (c) Planning Time and (d) Cumulative Smoothing Time for 100 Iterations

2.5.2. A* ALGORITHM

The A* path planner constructs a path from start to goal points in all scenarios and
resolutions. This may imply that using the A* algorithm a solution will always be guar-
anteed. But as remarked in literature [40], this is not the case as a solution depends also
upon the selected resolution. From Figure 2.4 (a) it can be deduced that path length
prior smoothing is a function of scenario complexity. In this regard, the path lengths for
Scenarios 2 and 3 are 50% and 100% longer with respect to Scenario 1, since the path
planner must pass through three and five windows in opposite obstacle plane extremes
instead of two windows respectively, as can be deduced from Figure 2.3.

The direct relationship between path length and scenario complexity is further
confirmed in the path length after smoothing results illustrated in Figure 2.4 (b). The
ripple effect in path length is reduced at smoothing stage since path segment length and
grid position restrictions are eliminated. A comparison between the mean smoothed
and unsmoothed path lengths show a 12%, 16% and 17% decrease for Scenarios 1 to 3 re-
spectively, with respect to the unsmoothed path lengths. Tests show that increasing the
number of smoothing iterates beyond 1000 increases computational time proportion-
ally without any significant improvement in path length. Moreover, through smoothing
iterate increase, the number of path points increase consequently increasing path navi-
gation complexity and ultimately reducing navigation performance.

From Figure 2.4 (c) it can be concluded that path planning time is a function of
resolution and scenario difficulty, with resolution having the major dependence. Res-
olution is directly proportional with the number of grid points and therefore the more

1An Intel Xeon ES-1650, 3.2GHz is used for testing
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time is required by the A* path planner to generate a path. Similarly, scenario com-
plexity increases path planning time as more options need to be considered for a non-
colliding path to be computed. The path construction time is much larger than the
path smoothing time and therefore the latter effect on computational time is negli-
gible. Scenario complexity also effects path smoothing time as can be deduced from
Figure 2.4 (d).

2.5.3. A* RIPPLE REDUCTION ALGORITHM (A∗
R )

As illustrated in Figure 2.4 (a) the variance limits at 95% confidence interval for the un-
smoothed path length is 0. This results since each test for the same resolution and sce-
nario is repeated for 100 times using the same start and goal positions. Therefore all
100 runs will yield the same path. Oppositely, with the introduction of A∗

R , each run
is different leading to a non-zero 95% confidence interval as illustrated in Figure 2.5.
An asymptotic relationship between path length and resolution can be deduced from
Figure 2.5 (a). From a theoretical perspective, as the resolution increases the distance
between graph nodes reduces, increasing the number of graph points in the same envi-
ronmental space and therefore more optimised paths can be constructed. This confirms
the conclusion drawn from the tests that path length and resolution have an inversely
proportional relationship.

Resolution [Grid Points/Unit Length]

(a)

10 12 14 16 18 20 22 24 26 28 30

P
a

th
 L

e
n

g
th

 P
ri
o

r 
S

m
o

o
th

in
g

 A
* 

[-
]

1

1.5

2

2.5

3

3.5
Scenario 1

Scenario 2

Scenario 3

Resolution [Grid Points/Unit Length]

(b)

10 12 14 16 18 20 22 24 26 28 30

P
a

th
 L

e
n

g
th

 A
ft

e
r 

S
m

o
o

th
in

g
 A

* 
[-

]

1

1.5

2

2.5

3

3.5

Scenario 1

Scenario 2

Scenario 3

Resolution [Grid Points/Unit Length]

(c)

10 12 14 16 18 20 22 24 26 28 30

C
o

m
p

u
ta

ti
o

n
a

l 
T

im
e

 A
* 

(s
)

0

5

10

15

20

25

30

Scenario 1

Scenario 2

Scenario 3

Resolution [Grid Points/Unit Length]

(d)

10 12 14 16 18 20 22 24 26 28 30

S
m

o
o

th
in

g
 C

o
m

p
u

ta
ti
o

n
a

l 
T

im
e

 A
*

fo
r 

1
0

0
 I

te
ra

te
s
 (

s
)

2.6

2.8

3

3.2

3.4

3.6

3.8
Scenario 1

Scenario 2

Scenario 3

Figure 2.5: Results for A* Ripple Reduction Algorithm (A∗
R ) with 95% CI: (a) Non-smoothed path length, (b)

Smoothed path length, (c) Planning Time and (d) Cumulative Smoothing Time for 100 Iterations

An asymptotic behaviour in confidence interval with increase in resolution is also ex-
hibited for the smoothed path length (Figure 2.5 (b)) since with increase in resolution the
path length variance in possible path options reduces. Similar to path generation time
results of A*, the confidence interval for path generation time increases exponentially as
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for A*. In terms of confidence interval, the resolution has a minimal effect on smooth-
ing time. The smoothing algorithm is not restricted by grid positions and therefore is
independent of resolution.

A path length ripple reduction of 46%, 46% and 48% in terms of standard deviation
for Scenarios 1 to 3 respectively, is introduced by the A∗

R algorithm with respect to the
standard A* algorithm. This result is confirmed using a different random seed generator.
This result confirms that path length ripple exhibited by the A* algorithm is the result of
a plane residing exactly on a plane of grid positions with the only available grid points
residing at the respective obstacle windows. Using the A∗

R algorithm that normalises
such iterations, a fairer A* performance response results.

With the addition of the smoothing algorithm the path length ripple is further re-
duced by 3 to 4 times for all scenarios but never reaches 0. Results show that the ripple
reduction in amplitude due to the smoothing algorithm is higher for the standard A* with
respect to A∗

R , since in A* the ripple is higher. This behaviour shows that the smoothing
algorithm’s path length reduction reduces as the path reaches its optimal length.

A marginal mean increase of 1%, 2% and 2% for Scenarios 1 to 3 respectively, results
in unsmoothed path length for A∗

R with respect to A* algorithms. This increase is a con-
sequence of obstacle modelling that defines a buffer of half the distance between nodes.
Without this buffer, planes not residing exactly on nodes will be neglected, but this buffer
can create situations where one obstacle plane is modelled by 2 obstacle planes.

The mean smoothed path length shows 1%, 3% and 4% increase for Scenarios 1 to 3
respectively, for the A∗

R with respect to A*. This increase correlates with the path length
increase in the unsmoothed path length of both A* and A∗

R algorithms. The path plan-
ning time is 5% shorter and 49% and 4% longer for the A∗

R algorithm with respect to the
A* algorithm. The major increase in path planning time for Scenario 2 is a consequence
of the obstacle grid point estimation as explained earlier in [113]. The path smoothing
time is 9% longer, 2% shorter and 5% shorter for the A∗

R algorithm with respect to the A*
algorithm. This marginal difference is a consequence of the environmental shifting and
the associate possibility of different paths. Further details are provided in [113].

In conclusion, it can be stated that the A∗
R algorithm reduces path length ripple

with respect to the A* algorithm. This reduction is not achieved at the expense of
longer path length or computational time. These results are confirmed through tests
conducted on different complexity 3D scenarios.

2.5.4. RAPIDLY-EXPLORING RANDOM TREES (RRT)
Figure 2.6 shows that the RRT algorithm finds a path solution in all scenarios and for all
considered step sizes. This supports the notion that the RRT algorithm is probabilisti-
cally complete [32]. Figure 2.6 (a) shows that the path length prior smoothing is mainly
independent of the step size for all scenarios. The step size determines the tree branch
length. Therefore the zig-zagging amplitude is directly proportional with the step size.
The sampling-based nature of the RRT algorithm in constructing a path using standard
length tree branches shows the algorithm’s lack of optimality emphasised in literature
[32]. The smoothing algorithm reduces the mean path length by 46%, 50% and 49% for
scenarios 1 to 3 respectively.

Overall, the A* algorithm constructed shorter unsmoothed paths with respect to
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RRT for all scenarios. Although both A* and RRT algorithms are restricted in move-
ment, A* can only pass through predefined grid positions while RRT can use any non-
obstacle space, provided that this is distant by the step size constraint from the parent
node. Therefore path length results cannot be compared directly. Similarly for both al-
gorithms, the path construction time exhibits an inverse relationship with resolution or
step size since the number of path segments for equal volume increases with increase in
resolution and decrease in step size. Although the smoothing time for both algorithms
consumes only a small fraction of the total path generation time with resolution and step
size constraints neglected, scenario complexity also increases smoothing time.
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Figure 2.6: Results for RRT with 95% CI: (a) Non-smoothed path length, (b) Smoothed path length, (c) Planning
Time and (d) Cumulative Smoothing Time for 100 Iterations

2.5.5. RAPIDLY-EXPLORING RANDOM TREES (RRT) WITHOUT STEP SIZE

Table 2.1 tabulates the mean results for all three scenarios for 100 iterations with no lim-
its on tree branch length. The unsmoothed path length is 17%, 11% and 4% longer for
Scenarios 1 to 3 respectively, for the unconstrained RRT variant with respect to the stan-
dard RRT. The difference reduced significantly to 1%, 0.4% and <0.1%, for Scenarios 1
to 3 respectively when the smoothed path lengths of the variant and standard RRT are
compared, with the latter remaining the shorter. Therefore it can be concluded that
path length is deteriorated by removing constraints, with the major deterioration re-
sulting in low obstacle density scenarios as long zig-zagging path segments are con-
structed which would have been attenuated if tree branch lengths are constrained.

Path planning time for this RRT variant is reduced by an average of 450, 7 and 10
times with respect to the standard RRT for Scenarios 1 to 3, respectively. This result
shows that the tree branch length constraint limits the propagation to the goal position
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Table 2.1: RRT without step size constraints

Parameter Scenario 1 Scenario 2 Scenario 3

Non-smoothed path length [-] 1.83 3.38 5.27
Smoothed path length [-] 1.13 1.88 2.81

Path planning time (s) 0.01 0.67 1.64
Average smoothing time per iterate (ms) 35.97 46.57 51.69

especially in simple scenarios where only a small amount of manoeuvres are acquired to
reach the goal. An increase of 18%, 43% and 42% in smoothing time is exhibited for the
RRT without step size constraint with respect to the standard RRT. A slight increase in
smoothing time is exhibited for the unconstraint RRT in comparison with the constraint
RRT mainly due to the zig-zagging in the low obstacle density paths. Path planning time
for A* is also larger than for this RRT variant since the latter is not limited by grid po-
sitions. The difference is more emphasised at low resolutions in simple scenarios. In
addition, this RRT variant’s smoothing time is less than half of A* for the same scenarios.

2.5.6. MULTIPLE RAPIDLY-EXPLORING RANDOM TREES (MRRT)

Figure 2.7 shows that a non–colliding path from start to goal is constructed for all sce-
narios. Results show that scenario difficulty is the main factor affecting path length while
this parameter is not affected by the number of seeds per axis. MRRT constructs longer
unsmoothed paths when compared with the unconstrained RRT for all scenarios. In
MRRT, trees can be interconnected with no length restrictions. These lack-of-length re-
strictions result in zig-zagging paths prior smoothing, increasing in amplitude at low
complexity scenarios, similar to the unconstrained RRT results.

The smoothed path length for MRRT remains longer than that for RRT for each re-
spective scenario, although the difference in mean path length between the two methods
is reduced through the smoothing algorithm. For A*, the mean unsmoothed path length
is less than half with respect to MRRT for all scenarios. As in other algorithms discussed
in this study, the path planning time for MRRT depends on scenario difficulty. Further-
more, the planning time is directly proportional with seeds-per-axis value.

Overall, the MRRT algorithm constructed a path in less time than both A* and RRT
with the major difference exhibited in low complexity scenarios. This results since
the MRRT tree propagation and interconnection is unrestricted as opposed to both A*
and RRT which are restricted in path points and tree branch length, respectively. The
unconstrained RRT constructed the path in multiple less times as opposed to MRRT. To
construct a path, the MRRT requires more nodes than both RRTs, resulting in a longer
smoothing time. In comparison with A*, the MRRT required less smoothing time owing
that A* constructs almost optimal paths and therefore the smoothing algorithm requires
more time to find path segments which can improve the path.
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Figure 2.7: Results for MRRT with 95% CI: (a) Non-smoothed path length, (b) Smoothed path length, (c) Plan-
ning Time and (d) Cumulative Smoothing Time for 100 Iterations

2.5.7. NEW SMOOTHING ALGORITHM
The new smoothing algorithm is computationally more efficient than the older smooth-
ing algorithm version. For the A* algorithm, results show that the lower the scenario
complexity, the more smoothing iterations are required since the stopping condition
(<1% reduction in last 20 iterations) is reached. This results since in low obstacle density
scenarios, the environmental space is primarily obstacle free as opposed to high obsta-
cle density scenarios where path improvement is more restricted. Also, grid point restric-
tions are neglected by the smoothing algorithms, therefore path planning restriction due
resolution are eliminated. For complex situations, such as Scenario 3, the minimum of
20 iterations is too low as sometimes, owing to scenario complexity, it is too difficult to
find a set of points in 20 iterations on the path segments to construct a shorter overall
path. For more results and further analysis please refer to [113].

The new smoothing algorithm requires more time for RRT with respect to A* for all
step sizes/resolutions and scenarios under review. Step size constraints minimally af-
fect the number of smoothing iterations since the stopping condition is reached. This
results for the same reason explained for A*. Smoothing results for RRT in simple sce-
narios show a reduction of between 13-19 times with a minor increase in smoothed path
length. Results show that in complex scenarios the minimum of 20 smoothing itera-
tions is too low and shall be increased as is it difficult to find shorter non-colliding path
segments, explained for A*. The smoothed paths resulting from the A* algorithm outper-
form those from the RRT algorithm in terms of both length and smoothed time since the
unsmoothed path generated by the A* is better than that for RRT. The elimination of the
tree branch length in RRT has no effect on smoothed path length and time.

For MRRT, scenario complexity increases the number of smoothing iterates until the
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stopping condition is reached. This is attributed to the lack of path optimality con-
structed by the RRT-based algorithms. MRRT’s seeds per axis parameter have no effect
on the smoothing algorithm’s stopping condition since it neglects nodal and path seg-
ment length constraints. Through the new smoothing algorithm smoothing time has
decreased by 22,17 and 24 times for Scenarios 1 to 3 respectively, with respect to the
original smoothing algorithm.

In conclusion, results show that a path length reduction of 20% - 50% can be achieved
at a small percentage of the path construction time. Furthermore this analysis high-
lights the direct relationship between smoothing iterations and path length. This can
guide in custom tuning the amount of path length reduction based on the application
requirements and computational power availability.

2.5.8. CONCLUSION
This section discussed the path planning performance of the different path planning
algorithms and their variants presented in Section 2.2 and Section 2.4 and outlined the
main outcomes derived from the tests presented in this section. In summary, it was
concluded that:

1. All algorithms constructed a path in all scenarios considered.

2. The A∗
R algorithm is able to reduce the ripple in path length introduced by the

original A* without compromising on path length and time.

3. The unsmoothed path length for A* is shorter than that for RRT in all scenario
complexities.

4. The RRT without step size constraints reduced the path generation time by multi-
ple oders of magnitude with respect to the standard RRT at the expense of increas-
ing path ripple.

5. The MRRT algorithm constructed longer path in less path planning time with re-
spect to the standard A* and RRT.

6. The new smoothing algorithm presents an improvement (by multiple times) in
terms of computational time over the original smoothing algorithm.

Table 2.2 summarises the results presented in this section by ranking from 1 to 5 all
the considered path planning algorithms in terms of path length and path planning time.

2.6. CONCLUSION
This work analyses the path planning performance of the A* and RRT based algorithms
with an associated smoothing algorithm in different complexity 3D environments. In
line with literature, the A* algorithm constructed more optimal paths than RRT. The A*
algorithm searches volumes in the line of sight of the goal while the RRT algorithms
searches evenly throughout the environment. The paths constructed by the A* algorithm
are shorter, also after smoothing, and constructed in less time than RRT. The A* algo-
rithm exhibits path length ripples as resolution is varied for the same scenario. Through



2

46 REFERENCES

Table 2.2: Ranking of path planning algorithm in terms of path planning performance

Parameter Path Length Planning Time Ripple Amplitude
A* 1 3 2
A∗

R 2 4 1
RRT 3 5 3
RRT without step size 5 1 5
MRRT 4 2 4

A* ripple reduction algorithm, a 46% to 48% path ripple reduction is recorded for all
situations considered with respect to the A* algorithm. This improvement is achieved
without increasing path length and planning time. The unconstrained RRT variant re-
duced path planning time especially in low obstacle density scenarios. Moreover, the
evenly-distributed MRRT generated longer unsmoothed paths in shorter planning times
but required more smoothing over RRT for all considered scenarios. The new smoothing
algorithm, developed to eliminate unnecessary smoothing iterates, shows a 90% reduc-
tion in smoothing time for all algorithms. This smoothing time reduction is achieved
with a path length increase of less than 10% for A* and between 25% and 45% for all RRT
algorithms.

In addition to path length optimality and non-colliding paths, the path planning time
is also an important factor especially in time-varying environments. In such situations,
the path must be continuously checked, optimised and if a potential collision is possi-
ble, re-planned using only available and limited onboard resources. This work highlights
A*’s potential as an online 3D path planning algorithm in dynamic environments owing
to its optimality and low computational demand. A*’s environmental discretisation na-
ture allows it to be tuned based on mission requirements and agent onboard resources.
RRT-based methods can construct efficient paths in both evenly and focused exploration
situations. Their performance in these situations can outperform A*’s, in terms of path
length and time, if tree propagation nodes are empirically selected based on obstacles’
current and prospective future states. Finally, the new smoothing algorithm further im-
proves path construction in all algorithms by taking <1% of the total path planning time.

Furthermore, the inclusion of both kinematic and dynamic agent models, sensor
limitations, time-invariant and time-varying obstacle positions, speed and orientation
in addition to uncertainty in agent, sensor and environment will further determine the
A*-based and RRT-based algorithms’ applicability in static and dynamic 3D environ-
ments for different vehicular systems including UAVs and AUVs.
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3
COMPARISON OF A* AND RRT IN

REAL-TIME 3D PATH PLANNING OF

UAVS

This Chapter builds upon the analysis carried out in the previous chapter

to answer Research Question 2, derived to tackle Challenge 1, that queries

whether path planning algorithms can be applied in real-time. From the

analysis in Chapter 2, the two most promising path planning rationales

are selected in view of real-time path planning. Furthermore, this chapter

presents a detailed literature review of the approaches considered in real-

time path planning whilst highlighting the need of real-time considera-

tion. This chapter proposes, develops, tests and implements real-time path

planning with static obstacles analysing the effects of different parameters

on path planning performance.

The contents of this chapter have been published as:
Zammit, C. and van Kampen, E., “Comparison of A* and RRT in real-time 3D path planning of UAVs”, Proceed-
ings of AIAA Guidance, Navigation and Control, Orlando, FL, 6-10 Jan., 2020, AIAA-2020-0861.

A summary of this chapter will be submitted as:
Zammit, C. and van Kampen, E., “A Comparative Analysis of the A* and RRT Algorithms in Real-time 3D UAV
path planning”, Journal of Aerospace Science and Technology

57



3

58 3. COMPARISON OF A* AND RRT IN REAL-TIME 3D PATH PLANNING OF UAVS

Unmanned Aerial Vehicles (UAVs) are being integrated into a wide range of mil-
itary, industrial and commercial applications. Some of these applications require
faultless autonomous systems to coordinate, guide, navigate and control different UAVs
of different sizes, designed for different purposes with different capabilities. In this
regard, path planning algorithms are developed to furnish UAVs with collision-free
paths. The paramount path planning algorithms are the A* and the RRT algorithms,
a graph-based and a sampling-based algorithm respectively. These algorithms shall
ideally operate in real-time to supply the UAV navigation system with valid, obstacle-
free paths in view of changes in the environment or other external or user-defined
restrictions. Owing to this need, this paper developed a real-time algorithm to assess
the performance of the A* and RRT algorithms with an associated smoothing algo-
rithm using 3D obstacle environments of different complexity using time and sensory
range constraints, emulating navigational restrictions experienced by UAVs operat-
ing in real-time. Results show that the A* outperforms the RRT algorithm in both
path length and computational time for all scenarios considered, with difference in-
creasing with scenario complexity. Furthermore, this work investigates the relation
between path planning performance and user-defined, system-defined and internal
parameters. This analysis can help determine the best configuration for UAV design-
ers, in view of application requirements and constraints. In fact, results show that
both path planning algorithms can achieve a success rate close to 100%, if parame-
ters, such as speed, computational power and sensory range are attentively selected
based on the analysis of the consequences of the selected parameter values on path
planning performance.

3.1. INTRODUCTION
Unmanned Aerial Vehicle (UAVs) are potential candidates for a wide range of applica-
tions in both civil and military setups. In these scenarios, different UAVs require vary-
ing levels of autonomy, reliability and efficiency based on the assigned task. To reach a
goal or set of goals, UAVs are equipped with sensory, processing and actuator systems
with different accuracy, redundancy, preciseness, latency, reliability and computational
power.

Real-time, efficient and reliable paths are fundamental to ensure that the UAV au-
tonomously reaches the goal safely and in due time. Path planning is the process of
automatically generating feasible and optimal 2D [1, 2] or 3D [3, 4] paths. Different UAVs
have different levels of path planning autonomy varying from solely human-controlled
[5] and shared human-controlled [6] systems to fully autonomous goal-oriented systems
[7, 8] designed for different applications. Some of these applications include: agricul-
tural remote sensing [9], ground vehicle tracking [10], traffic surveillance [11], package
delivery [12, 13], medicinal delivery in remote areas [14] and ambulance drone [15].
Moreover, UAVs can be utilised in situations where the mission is too difficult or too dan-
gerous for human pilots such as monitor critical structures in natural disasters, search
and rescue and monitor weather inside a storm [16].

The path planning algorithms utilise sensory, processing and actuator systems to
generate paths in view of different kinematic, dynamic [17, 18] and environmental [19,
20] time invariant and time-varying constraints. Once a path is generated through the
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path planning algorithm, a path following algorithm will generate the control parame-
ters for the UAV to follow the generated path. Although these control parameters can be
generated offline, real-time path planning allows the path following algorithm to amend
navigational instructions in view of unpredictable and/or uncertain model and envi-
ronmental changes. Currently, UAV systems incorporate advanced control algorithms
that allow UAVs to manoeuvre in cluttered environments if the control algorithm is pro-
vided with accurate, timely and efficient real-time state information. This goal-driven,
autonomous UAV can be realised via a real-time path planning algorithm governed by
state-of-the-art path following and control systems.

Even in indoor applications, UAVs are expected to operate in a time-varying environ-
ment. A UAV may encounter obstacles moving in an unpredictable way, such as persons,
door and window openings and other UAVs as well as internal unpredictable events such
as fuel limitations, loss of movement in 1 or more Degrees of Freedom (DoF) and loss
of partial or complete sensory information. In these real-life situations the control, path
following and planning algorithms must operate safely and efficiently irrespective of any
shortcomings in the sensory and actuator systems [21]. To cater for these situations real-
time control and path planning are a must.

The contribution of this paper is to compare the A* with the ripple reduction en-
hancement and the RRT algorithm in view of real-time 3D UAV path planning perfor-
mance as a function of UAV parameters. An extensive literature review of the state-
of-the-art path planning algorithms, presented in [22], concluded that A* and RRT are
the most utilised graph-based and sampling-based path planning methods, respectively.
Further analysis in [22, 23] showed that these algorithms and their variants are key can-
didates for 3D UAV path planning. Therefore, these two algorithms will be assessed for
performance mainly in terms of computational time, success rate and path length. The
outcomes of this paper will help determine the ideal path planning configuration and
UAV selection, in view of mission requirements and constraints.

The paper will be organised as follows. Section 3.2 will present the state-of-the-art
in real-time path planning. Section 3.3 provides a brief resume of the considered path
planning algorithms (A* and RRT) and the smoothing algorithm defined in depth in our
previous work [22, 23]. Section 3.4 will formulate the real-time path problem and conse-
quently define the theoretical aspect of the developed algorithm designed to assess the
appropriateness of the considered path planning algorithms in real-time applications.
Section 3.5 will define the experimental scenario with the associated arbitrary-defined
parameters. The following section (Section 3.6), will present, analyse and assess the
results in view of 3D UAV path planning in real-time. The paper will conclude by Sec-
tion 3.7 which based on the benefits and shortcomings will rate the appropriateness of
the implemented algorithm for 3D UAV path planning in real-time.

3.2. REAL-TIME PATH PLANNING LITERATURE REVIEW

3.2.1. INTRODUCTION

Real-time path planning is considered as a desirable feature [24], a requirement [25] and
paramount [26] for real-time autonomous manoeuvring of vehicles let alone UAVs in
real, dynamic environments. Real-time path planners are requested to generate paths
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in the presence of other cooperative or non-cooperative UAVs, unexpected UAV dam-
age, altering model constraints and definitions, and in view of uncertainties in the en-
vironment in which they operate [3, 24, 25]. Furthermore, the path planner must make
optimal use of available resources such as computational power and fuel [27, 28].

A path planner is considered to be real-time if the time required to generate a path is
smaller than the time to traverse the path [3, 29, 30]. For Short et. al. [31] a realistic path
planner must react in synchronisation with information update from the sensory sys-
tems. Furthermore, such path planner must generate a path even with restricted global
information [21].

As computational time is the bottleneck of real-time path planning, Karaman and
Frazzoli [32], remarked that computational time per iterate shall be bounded. In certain
iterates, longer computational times may be required due to fewer path solutions. If not
tackled these will increase the overall computational time making the path planning al-
gorithm unsuitable for real-time path planning. Sub-bounds will attenuate this situation
even if a solution is not found in that iterate, but a minor movement on the previously
generated path may yield a path possibly in less time.

Real-time path planning of UAVs requires high fidelity modelling of the environment.
Simultaneous Localisation and Mapping (SLAM) algorithms can be utilised to generate
maps for realistic environments to facilitate real-time path planning. Such algorithms
can be utilised to mitigate absence or partial absence of GPS information, discontinuity
of sensor information and noise [33].

This literature review will be segmented into three main path planning categories:
Optimisation algorithms, graph-based methods and sampling-based methods. Their
application in 3D real-time path planning will be analysed and assessed.

3.2.2. OPTIMISATION ALGORITHMS

In both real-time and offline applications there is no guarantee of convergence to the
goal let alone in a predetermined time either because no path exists, the environment is
not known enough or the path planning algorithm intrinsically cannot generate the path
in the particular situation [27]. In such situations, a trade-off between computational
time and optimality was considered by Frazzoli [27] for a finite-state automation method
to compute trajectories for multiple UAVs in safety-critical, high performance vehicles
with complex dynamics.

Disturbances from external torques initiating through for example wind shears, sen-
sor inaccuracies and parameter uncertainties will further increase the path planning and
following demands of complex systems such as UAVs [26]. Real-time applications of op-
timal control theory showed that feedback control will enhance performance in such
complex nonlinear systems [34, 35]. Furthermore, through sensor fusion, the accuracy
and responsiveness of the sensing system will be improved [26]. Gong et. al. [35] and
Bollino et. al. [26] utilised a pseudospectral method for optimal control and path plan-
ning of complex systems, respectively. Simulation results of this method show that al-
though pseudospectral methods are mainly utilised for path following providing optimal
control instructions, they can be utilised for autonomous path planning [26].

A single optimisation method cannot simultaneously guarantee target tracking and
obstacle avoidance [30], especially in 3D UAV path planning environments. Yao et. al.
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[30] proposed a combination of improved Lyapunov Guidance Vector Field (LGVF), the
Interfered Fluid Dynamical System (IFDS) and the strategy of varying receding-horizon
optimisation based on Model Predictive Control (MPC) to generate 3D paths for a UAV
in dynamic environments under constraints. This hybrid algorithm was proposed since
although MPC were successfully applied to generate suboptimal paths in real-time [36,
37] and to generate paths in 2D scenarios, the computational efficiency and smoothness
will deteriorate in 3D environments [30].

Furthermore, Roberge et. al. [38], compared Particle Swarm Optimisation (PSO) and
Genetic algorithms (GA) in real-time for the automatic path planning of fixed-wing UAVs
in complex 3D environments. Both algorithms generated feasible and quasi-optimal
trajectories in view of vehicle dynamics. Execution time was reduced through single-
program, multiple-data on an 8 core processor. Although both algorithms generated a
path within 10s (a preset path planning time), GA produced statistically better trajecto-
ries with respect to PSO in terms of distance travelled, average altitude and danger zones
avoidance. Roberge et. al. [38] remarked that both algorithms can generate a path for
cruising the fastest fixed wing UAV available at the time of writing.

In dynamic real-world populated environments and considering the disturbances
and eventualities mentioned above, 10s is too long to react and generate a new non-
colliding path. Solving complex optimisation problems arising from these scenarios will
result in high computational load [39].

3.2.3. GRAPH-BASED METHODS

Real-time path planning of complex dynamic environments still remains a challenge
even for 2D environment, let alone 3D [40]. Kuwata et. al. [40] remarked that it is very
difficult to model nonlinear dynamics especially for demanding manoeuvres when us-
ing generic graph-based path planning methods. This is because generic graph-based
methods such as the original A* assume the environment to be static [41]. Similarly,
Singh et. al. [33], remarked that although graph-based methods are effective in con-
figured environments, it is unsuitable for real-time path planning in large or complex
environments. Local approaches of such graph-based methods can stall in local minima
[33].

Although as remarked by Kuwata et. al. [40], graph-based methods are not opti-
mal for real-time path planning, the differential A* [42], based on the A* algorithm (a
graph-based method), was developed. More efficient results in the majority of cases
were achieved when compared to A*, proposing the algorithm as a candidate for real-
time dynamic, re-planning [42].

Fernandes et. al. [41], extended the A* algorithm in cell decomposition, considering
both position and orientation in the computation of the path. This approach made it
possible to reduce the computational time while maintaining the same configuration
space [41].

A parallel non-deterministic adaptation of the Dijkstra algorithm, a pioneer graph-
based method, was applied to generate an energy efficient, global re-planner for real-
time UAV rescue operations in dynamic environments with an area of 200m2 utilising a
map discretization of 1m2 [43]. Results show tens of multiple times improvement over
the sequential Dijkstra algorithm with an average path cost error of less than 1.2% [43].
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3.2.4. SAMPLING-BASED METHODS

Sampling-based methods are applicable to general dynamical models. Their incremen-
tal nature makes them inherent for use in real-time applications whilst guaranteeing a
solution. Furthermore, sampling-based methods do not require enumeration of con-
straints allowing trajectory-wise checking of complex constraints [44, 45].

Advancements in sampling-based methods have proposed these algorithms for real-
time path planning in dynamic and unknown environments [31]. Re-planning is essen-
tial in these situations as the environment is only partially known at one point in time,
revealing more detail in the direction of the goal with every vehicle movement. This
can also create situations, in which a previous non-colliding path may lead to a collision
with more details in the environment. Therefore, the planner must react in real-time to
mitigate these situations whilst the UAV is moving. According to Kunz et. al. [46], this
reaction time shall not exceed 200ms to mimic human reaction.

Since according to Kuwata et. al. [45] the standard RRT is not able to generate
safe and feasible paths in the presence of uncertainty in real-time for 2D applications,
the latter proposed a closed-loop prediction in the framework of RRT, with a low-level
Proportional-Integral speed controller and a pure pursuit steering controller to manoeu-
vre the vehicle based on real-time path planning information. Real-time execution re-
quires reusing information from previous iterations [47, 48]. Otherwise only a sparse tree
will be created when compared to the reuse approach in which computational resources
are used to add new improved branches to the existing tree [45]. A non-colliding path
is retained as long as possible to firstly limit “no path” situations and secondly to grant
the necessary time for the path planning algorithm to generate efficient trajectories [40].
This closed loop RRT technique shows that real-time path planning is the bottleneck
even in 2D environments.

3.2.5. CONCLUSION

This review first highlighted that 3D path planning algorithms shall successfully and ef-
ficiently operate in real-time with restricted computational power, lack of onboard re-
sources, sensor low responsiveness and inaccuracy and environmental uncertainties.
Optimisation algorithms are prospective candidates for 3D UAV path planning in real-
time. Although results are promising, this approach requires knowledge of UAV dynam-
ics and non-linearities. Graph-based methods are intrinsically designed for static en-
vironments although amendments to the basic algorithms can extend their application
to real-time situations due to their relative computational simplicity. Sampling-based
methods and their adaptations are also worth considering especially if re-usability of
previous non-colliding paths or branches are retained. Furthermore, hybrid approaches
combining different algorithms with different strengths can be utilised to mitigate inher-
ent shortcomings of one of the three discussed approaches.

3.3. THE A*, RRT AND SMOOTHING ALGORITHMS
Graph-based methods divide the working space into an occupancy grid with obstacles
defined as inaccessible grid points [44, 49]. Such methods do not offer a guarantee of
solution [50]. Oppositely, sampling-based methods create a path by connecting un-
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evenly selected points from the configuration space [31, 44]. The A* and RRT are the
most utilised algorithms for the graph-based and sampling-based methods, respectively
[22]. Although a number of A* and RRT variants were developed to mitigate with inher-
ent shortcomings of both algorithms, the standard A* and RRT algorithms are selected
in view of their maturity and relatively lower complexity and computational demand
which are essential for real-time implementation. The A* and RRT path planning algo-
rithms construct path segments which consist of a set of discrete points stored in order
of traversal that when interconnected generates a path from current position to an inter-
mediate or final goal point. To optimise the path a smoothing algorithm was developed
and applied to both algorithms, in our previous work [22, 23].

3.3.1. THE A* ALGORITHM
The standard A* algorithm constructs an optimal path based on an evaluation function
f (n) that calculates the actual cost of an optimal path constrained to pass through n,
from a point xi ni t to the goal node of n, xg oal ∈ RM [51, 52]. n is any node and xi ni t is
the starting node in the M-Dimensional available space such that n, xi ni t ∈ RM . This
evaluation function f (n) is the summation of the actual cost from xi ni t to a node, n
(g (n)), and the actual cost from n to the goal point of n, (h(n)), where f, g, h: ∈ RM → R:

f (n) = g (n)+h(n) (3.1)

The A* algorithm computes these evaluation functions ( f (n)) to all possible obstacle-
free nodes and selects the node n with the smallest cost.

3.3.2. THE RRT ALGORITHM
The RRT algorithm grows trees of feasible trajectories by randomly planting a number of
seeds. Seeds are only considered if they lie on an obstacle free point. A point a predefined
distance from the nearest seed is selected if the direct path to the latter does not collide
with an obstacle. Ultimately a tree that interconnects the start and goal points will define
a feasible path [53–55]. Paths generated by RRT are not optimal [56, 57] as opposed to A*
which can generate more optimal paths [22].

3.3.3. THE SMOOTHING ALGORITHM
The smoothing algorithm randomly selects two path points and consequently defines
two points on the lines connecting these path points with their respective next path
point. If an interconnection is possible without collision with obstacles then interme-
diate points between these two path points are eliminated.

Reference is made to Chapter 2 and our previous work [22] for a more in depth under-
standing of the working principle for the A*, RRT and smoothing algorithms. In addition,
a detailed literature review of the current state-of-the-art in graph-based and sampling-
based methods is available.

3.4. THE REAL-TIME ALGORITHM
Both path planning algorithms were successfully implemented in static offline appli-
cations. Furthermore, the RRT without step-size constraints and the Multiple Rapidly-
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Exploring Random Tree (MRRT) algorithms were also considered in our previous works
[22, 23]. The characteristics, strengths and weaknesses of these algorithms were identi-
fied, assessed and analysed through the use of different experimental scenarios in view
of 3D UAV path planning [22, 23].

As concluded in Section 3.2, real-time path planning is a must for UAV’s to autonomously
reach a goal, especially in the presence of static and dynamic obstacles [24–26]. There-
fore, a testing framework is set up to assess and possibly improve the performance of the
most utilised graph-based and sampling-based method.

3.4.1. PROBLEM STATEMENT

Consider a cubic airspace W ⊆ R3 with a number of obstacles (Oo ⊆ R2,o = 1,2, ...,n).
Obstacles size, position and orientation are assumed to remain constant through the
duration of the mission. The UAV speed is assumed constant. The UAV sensing system
is assumed to have a limited range and a 360o field-of-view (FOV). In order to reach
the final goal node, the real-time path planning algorithm must define an intermediate
obstacle-free goal point (di nt_g oal ) within the sensing range, since outside this spherical
zone, the environment is unknown.

Figure 3.1 graphically illustrates the problem a real-time path planning algorithm
with limited range is expected to solve. The UAV sensory system has a limited range
(green-dotted circle) into which prospective new intermediate goal points can be se-
lected. It is assumed that obstacles in this area are known (Olive green dots). In this
illustration it is assumed that the UAV is equipped with a 360o FOV sensory system but
the principle can be applied to smaller FOV sensory systems provided that the final goal
position is known.

In real-life path planning, the UAV path generation system must generate and/or up-
date the existing path to goal ideally every few milliseconds, irrespective of changes in
the UAV position and obstacles. Such approach demands high update rate. Such rate
is beyond the computational power available onboard state-of-the-art UAVs. Therefore,
the real-time path planning algorithm only updates at predetermined time intervals de-
rived from the nominal speed of the UAV. Although it is assumed that the UAV actuator
system will move the UAV a predetermined distance defined by the preset time step in
a certain direction set by the generated path, if variations exists due to internal (speed
controller) or external factors (weather), the real-time path planning system can make
use of updated positional information when updating the path in the subsequent iterate.

As explained in Section 3.2, the real-time path planning algorithm must construct
a non-colliding path segment within the time needed to traverse the same path seg-
ment. A maximum time (ti ter ate_max ) to generate a path to a goal, within the sensing
range (g oal_i nt ), depends on UAV speed, computational power and the distance to be
travelled by the UAV in one planning iteration. For path planning to be successful, the
UAV must reach the final goal position without never exceeding ti ter ate_max in all plan-
ning iterations and never colliding with obstacles. The path planning performance of
the algorithms and the effects of different parameters on path planning performance is
assessed in terms of path length from start to goal, planning time and success rates.
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Figure 3.1: Real-time path planning with finite limited look-ahead distance

3.4.2. PARAMETER DEFINITION AND INITIATION

Firstly, the real-time algorithm initiates by defining the start (st ar t ) and goal (g oal ) po-
sitions and the considered resolution (r es). In RRT, since the randomly generated point
can reside anywhere within an environmental space, the equivalent of resolution is the
step size which denotes the distance that the current path point can move in the direc-
tion of the generated path point. This will be denoted by dstep_RRT . For clarity r es will
be considered in the definition of other parameters.

In real-time the UAV path planning system has a finite time to generate a feasible
path to the final goal as otherwise the UAV must either stop intermittently in mid-air (if
a quadrotor is considered) or the path planning algorithm becomes unfeasible. As cited
in Section 3.2, a real-time path planner must generate a path segment in less than the
time to traverse it [3, 29, 30]. For a real-time path planner stopping in mid-air is not an
option. Therefore the maximum time between iterates needs to be defined based on
the following two assumptions. The UAV moves at a constant nominal speed of vU AV

in a cubic environmental space of length denv_space in all 3D dimensions. Based on this
work space the time to generate a path between iterates ti ter ate_max is:

ti ter ate_max (s) = 60×60×denv_space

(r es −1)× vU AV
(3.2)

This equation is derived from t i me = di st ance
speed . The distance moved in 1 iterate

equates to the step size 1
(r es−1) multiplied by the total size of one axial dimension of
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the environmental space denv_space . Speed is measured in [-]/hr therefore it must be
changed to [-]/s hence the inclusion of the 60×60 term.

The time to generate a path between iterates ti ter ate_max is directly related to the
available computational power. Analysis of this parameter can determine whether a
specific computational power is enough for a specific situation and/or conversely what
computational power is required to ensure that a path segment can be constructed in
the allocated time for the same situation.

Another constant parameter closely related to ti ter ate_max is the distance covered by
the UAV in every iterate (ds_step ). This value is a function of the UAV speed and com-
putational power assuming no external factors such as weather are affecting the UAV.
Based on the above rationale the distance covered in ti ter ate_max shall be ≤ ds_step . This
modular unit value is arbitrary chosen although it can be varied based on the fidelity and
confidence of the UAV sensory and actuator systems and environmental model.

Besides the maximum time to generate a path segment between iterates ti ter ate_max ,
the maximum time allocated to reach the goal point from the start position tpath_g en_max

is set based on the application’s requirements. This upper time limit is included as situ-
ations can arise in which the UAV will venture around obstacles without actually getting
closer to the goal. Moreover, UAV fuel autonomy is finite. This value shall denote double
the time required to traverse the diagonal distance between two extreme points of the
environmental space.

Moreover, di nt_g oal denotes the distance between the current UAV position and the
prospective intermediate goal point. This value is a function of the range of the sen-
sory system which shall ensure that in di nt_g oal all obstacles are know with certainty.
In certain instances the resultant intermediate goal position may reside on an obsta-
cle. In such situations, a new intermediate goal point must be defined. As the maximum
look-ahead distance is defined by di nt_g oal , the new intermediate goal point must reside
nearer to the current UAV position. Therefore a distance reduction factor, d f actor < 1 (set
at 0.9) is defined. Finally, l i m defines the 3D boundaries of the working environment
which may vary due to the shifting introduced by the A* ripple reduction algorithm Sec-
tion 2.5.3.

After these constants are defined the A* ripple reduction algorithm is applied in case
the A* algorithm is under review. An in depth definition of this algorithm is available in
our previous work [23]. The new 3D limits introduced by this algorithm are assigned to
l i m. The current UAV position scur is set to st ar t . In the case of the A* algorithm, the
st ar t location will vary by a maximum of half the distance between grid positions, in all
3 dimensions, due to the shifting introduced by the A* ripple reduction algorithm. Fur-
thermore, the path possibility flag ( f l agpath), signals whether a path could be created
in future iterates (=1) or not as either a path has been created or no possibility of a path
exist (=0). Furthermore, the total path computational time t i me is set to 0s.

The real-time application of path planning algorithms initiates with path planning
to an intermediate goal point, followed by the smoothing of the planned path. Then the
UAV is moved to a new position on the smoothed path. This new UAV position will be
fed into the path planning algorithm to plan a new path. Figure 3.2 graphically illustrates
this process. This process continues provided the following conditions are satisfied:

1. Distance between the current UAV position and the final goal point (di nt_s−to−g )
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is larger than the distance between three consecutive grid points (two step sizes).
For the A* algorithm to construct a path at least the start and goal points must be
separated by one node as otherwise a trivial path having only the start and goal
node results. This requirement is therefore included to eliminate this instance,
converging to a solution faster. This requirement is considered for A* but to offer
a fair comparison it is also included for RRT; and

2. Computational time since the start of the path generation process (t i me) has not
exceeded tpath_g en_max ; and

3. Allotted time to generate an intermediate path between the current UAV position
and the intermediate goal point ti ter ate_max has not been exceeded; and

4. A path is possible f l agpath == 1.

In case these conditions are not satisfied, either the goal has been or cannot be reached.
In either case, the iterate is stopped.

Figure 3.2: High level illustration of the real-time application of the path planning algorithms

3.4.3. THE MOVE FUNCTION
If the current UAV position has moved beyond the start position, the UAV shall be moved
a predetermined distance in the direction of the previously smoothed path. The move
function defined in Algorithm 3 considers all the situations in defining feasible next iter-
ates’ UAV position. Table 3.1 defines the parameters considered in the formulation of the
move function algorithm. Besides the constants defined earlier, environmental param-
eters namely the size of the environmental space and the size and position of obstacles
in the environmental space are imported into the Move function. In A*, as opposed to
RRT, the size and position of obstacles may vary slightly due to the discretisation of the
environmental space.

The move function initiates by checking that the distance to the intermediate goal
point from the current UAV position is larger than the distance the UAV is expected to
move per iteration as otherwise no path is possible or the UAV has reached the goal point.
The algorithm adds up the distances of consecutive nodes on the previously smoothed
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Figure 3.3: Illustration of the move function

path until the expected UAV distance moved per iterate is exceeded or the previously
smoothed path has been fully traversed. In the former case, the UAV position in the
next iteration will reside in the segment connecting the node to the previous node in the
smoothed path constructed in the previous iterate when the distance addition stops. In
case the whole path is traversed, either the prospective UAV position is nearer to the goal
by less than the expected UAV distance moved per iterate or no path has been created.
Figure 3.3 graphically illustrates this rationale in case where the UAV position in the next
iteration resides between the 2nd and 3rd node of the previously smoothed path (first
node of the smoothed path is the UAV current position).

A situation can exist when the prospective UAV position resides within an unsafe
distance of ± 0.5

(r es−1) from the obstacle planes. This buffer is included due to the envi-
ronmental discretisation of the A* algorithm. Theoretically, the UAV position in the next
iteration should never reside on an obstacle since the UAV position in the next iteration
is a point on an obstacle free path. But, if this buffer is not included situations exist in
which the UAV would be placed in a position less than half the distance from obstacle
planes. This will potentially yield a new starting position on an obstacle plane after the
discretisation of the UAV position and the intermediate goal points in the next iteration.

In case, the UAV position in the next iterate is within a distance of ± 0.5
(r es−1) from

the obstacle planes then the predetermined distance moved by the UAV in one iterate
is multiplied by a predetermined distance factor between 0 and 1. This process is re-
peated each time reducing the distance moved by the UAV in the specific iterate, until an
obstacle-free UAV position for the next iterate is found.
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Table 3.1: Parameter Definition for the Move Function

Parameter Description

scur Current UAV position

envpar a

Environmental parameters namely the size of the environmental
space and the size and position of obstacles in the environmental
space

ds_step Distance covered by the UAV in every iterate
pathsmooth Constructed and smoothed path in the current iteration
pathsmooth_pr e Constructed path in the previous iteration
di nt_s−to−g Distance between the current UAV position and the final goal point
i Iterate count

dtot al
Distance from scur to a previous smoothed path point in
pathsmooth_pr e (i )

ds_step_par t
Distance to be moved by the UAV (ds_step − dtot al ) from
pathsmooth_pr e (i )

f l agsmal l
A Boolean parameter that denotes whether the distance between
ds_step is smaller than pathsmooth_pr e (1) and pathsmooth_pr e (2)

di nt_(i )−to−(i+1) Distance between the smoothed path points i th to (i +1)th

npath_poi nt s Number of points in the previously generated smoothed path

dmov
Distance the UAV will move from the current position. The new
point will be the current UAV position at the next iteration

scur _new Next iterate UAV’s current UAV position
d f actor Distance reduction factor
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scur = move(envpar a ,ds_step , pathsmooth_pr e , g oal ,di nt_s−to−g )

01: if di nt_s−to−g > ds_step

02: i = 1;dtot al = 0;ds_step_par t = ds_step ; f l agsmal l = 0
03: Find di nt_(i )−to−(i+1) and npath_poi nt s

04: while (dtot al < ds_step ) and (i < npath_poi nt s )
05: if i > 1 then find di nt_(i )−to−(i+1) end
06: ds_step_par t = ds_step −dtot al

07: dtot al = di nt_(i )−to−(i+1) +dtot al ; i ++; f l agsmal l = 1
08: end
09: if f l agsmal l == 1 then i −−; dmov = ds_step_par t

else dmov = ds_step end
10: Define scur _new , dmov from pathsmooth_pr e (i )
11: while scur _new is on obstacle (check envpar a)
12: dmov = dmov ×d f actor

13: Define scur _new , dmov from pathsmooth_pr e (i )
14: end
15: else if pathsmooth is empty then scur = N aN
16: else if pathsmooth_pr e (npath_poi nt s ) == g oal then scur = g oal
17: else scur = pathsmooth_pr e (npath_poi nt s ) end
18: end
19: end

Algorithm 3: Move Function
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If the UAV is nearer to the intermediate goal point by less than the distance to be
moved by the UAV per iterate, either no path has been created since either UAV position
and/or intermediate goal point are on an obstacle or no path is possible that can connect
the UAV to the intermediate goal point. In these cases, the UAV position in the next
iterate is assigned to N aN since the algorithm need to stop for the particular test case.
In such case the algorithm is not successful in generating a feasible path. In case the
last point in the previously generated smoothed path is the goal node, then the UAV
position in the next iterate is assigned to the goal node and then the iterate is stopped
in the main algorithm as a path to goal has been found. Otherwise, the UAV position
in the next iterate is assigned to the last point in the smoothed path constructed in the
previous iterate. The resultant UAV position is input into the main real-time algorithm
to generate a smoothed path in the current iteration. After the UAV position for the next
iterate has been defined the new distance between the latter and the intermediate goal
point is re-calculated.

3.4.4. MAIN REAL-TIME ALGORITHM

Provided that the UAV position in the current iterate is defined and does not reside on
the goal node, the new intermediate goal point is defined as the final goal point (g oal ).
This is only possible if the distance between the current UAV position and the final goal
point is nearer by less than the predefined distance between the current UAV position
and a prospective intermediate goal point. Otherwise a new intermediate goal point a
predefined distance from the current UAV position is defined in the direction of the final
goal. In case, that this new intermediate goal point resides on an obstacle, the distance
from the current UAV position and the prospective intermediate goal point is reduced
by a distance factor, similar to the next iterate UAV position calculation. This process
is repeated each time reducing the previous UAV current position to intermediate goal
distance by the distance factor until a new obstacle-free intermediate goal point is found
provided that the distance between the current UAV and the intermediate goal point is
larger than the distance the UAV is expected to move in one iterate. If the latter condition
is not considered then a new intermediate goal point may reside nearer to the current
UAV position by less than 1 step ahead possibly even in the same position as the current
UAV position. This will effectively imply that the UAV will move by less than 1 step. In
such cases, no feasible path can be constructed.

The intermediate goal point can be selected in any direction from the current UAV
position only if it is assumed that the sensory system has a 360o field-of-view. With this
approach, the UAV will waste time and resources in exploring areas in the vicinity of
the start location, limiting progress towards the goal and increasing the risk of collision
or attack from obstacles and enemy, respectively. Therefore, new goal points shall be
selected in the direction of the goal point unless the new intermediate goal point resides
on an obstacle.

Once the current UAV position and a valid intermediate goal point are defined, the A*
or RRT algorithm is applied to generate a feasible path between the current UAV position
and the intermediate goal point. If a path is not generated, then the While loop of line
04 in Algorithm 4 is terminated. The intermediate time and the total time are noted
irrespective of whether a path has been created or not for analysis purposes. Then the
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previous UAV position is set to the new generated UAV position.
Finally, if the while loop at line 04 is terminated with the UAV reaching the goal po-

sition, then the algorithm is successful otherwise the UAV is not able to reach the goal
either because a path is not possible or the time allocated is not enough. Algorithm 4
and the associated parameter definition Table 3.2, defines the rationale explained in this
sub-section.

Table 3.2: Parameter Definition for the Real-time Algorithm

Parameter Description

r es Resolution
ti ter ate_max Maximum time to generate a path between iterates

tpath_g en_max
Maximum time allocated to reach the goal point from the start po-
sition

di nt_g oal
Distance between the current UAV position and the prospective
intermediate goal point

l i m Limits of 3D boundaries
f l agpath Path possibility flag
t i me Time counter
t i mei ter ate Iterate time
i ter ate Iterate number
g oali nt Intermediate goal point in the next iterate

3.4.5. CONCLUSION
The previous subsection presented an algorithm for the real-time implementation of the
A* and RRT algorithms applicable to a 3D environment. This generic real-time algorithm
is designed to assess the applicability of both path planning algorithms with respect
to time and sensory constraints. The UAV must be supplied with timely obstacle free
path segments whilst it is moving in a previously unknown environment with the aim of
reaching the final goal in the minimum time without being in a situation of standing still
waiting for new path segments to follow. The success of either or both A* and RRT al-
gorithms will depend upon the considered environment and most importantly the UAV
and its onboard systems. In the next section, the constants defined in Table 3.3 will be
correlated with the parameters of real UAVs utilised for indoor applications. Moreover,
the experimental scenarios considered will be defined.

3.5. PARAMETER DEFINITION AND EXPERIMENTAL SCENARIO

DEFINITION

3.5.1. REAL-TIME ALGORITHM PARAMETER ASSIGNMENT
In this section the different parameters associated with the implementation of the real-
time path planning algorithm are defined. In this regard, Table 3.3 defines the assigned
values (Maximum, Minimum and Nominal values) for each parameter considered in the
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01: Define st ar t , g oal , r es, ti ter ate_max , ds_step , tpath_g en_max ,
di nt_g oal , d f actor and l i m.

02: Apply the A* ripple reduction algorithm if A* is considered [23]. Update l i m.
03: scur = st ar t ; f l agpath = 1; t i me = 0
04: while di nt_s−to−g > 2

(r es−1) and t i me < tpath_g en_max

and t i mei ter ate < ti ter ate_max and f l agpath == 1 then
05: Re-set and start t i mei ter ate

06: if scur ! = st ar t then
07: scur _new = move(envpar a ,ds_step , pathsmooth_pr e , g oal ,di nt_s−to−g ).
08: if scur _new == N aN then f l agpath = 0 end
09: end
10: while ( f l agpath == 1) or scur == g oal
11: Update di nt_s−to−g

12: if di nt_s−to−g < di nt_g oal then g oali nt = g oal
13: else g oali nt is di nt_g oal from scur _new in the direction of g oal END
14: i ter ate = 1; ds−to−i nt_g oal = g oali nt

15: while g oali nt is on obstacle and ds−to−i nt_g oal > ds_step

16: g oali nt is di nt_g oal ×d f actor
i ter ate from scur _new

in the direction of g oal .
17: i ter ate = i ter ate + 1; Re-calculate ds−to−i nt_g oal

18: end
19: Apply the A* or RRT algorithms to define pathsmooth using as input

arguments the obstacle scenario, r es, scur _new , g oali nt ,
pathsmooth_pr e and l i m (refer [22])

20: if pathsmooth == NU LL then f l agpath = 0 end
21: Stop t i mei ter ate ; t i me = t i me + t i mei ter ate ; scur = scur _new .
22: end
23: end
24: if di nt_s−to−g < 2

(r es−1) and f l agpath == 1 then UAV reached g oal .
25: else g oal could not be reached end
26: end

Algorithm 4: Real-time Algorithm
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real-time path planning algorithm explained in Section 3.4. Some of the parameters are
inter-related and are derived from UAV path planning literature. The resolution (for A*)
(step size (for RRT), reciprocal of resolution) is set at 21. This nominal value is selected
based on the analysis of our previous work [22, 23].

Literature suggest that a 4s to 5s look-ahead is required for relatively low speed UAVs
<50km/hr [58] and more than 20s look-ahead for high speed UAVs >500km/hr [30]. Sen-
sor ranges define look-ahead distance. The UAV speed will determine how fast this dis-
tance can be covered. Therefore sensor ranges are a function of the UAV speeds. In low
speed application the range will be in the region of 10m [58, 59] although large obstacle
such as bushes and poles can be identified within a 20m to 25m range [58]. Oppositely,
in high speed application such range is extended to a few km [30]. The sensor update
rate is defined by researchers in UAV obstacle avoidance algorithms between 10Hz-25Hz
[6, 16, 45, 58]. Although the environment is continuously changing, for collision avoid-
ance the obstacle speed must be smaller than UAV speed. This requirement is included
since the UAV must be capable of moving at a higher speed than all the obstacles in the
environment as otherwise the UAV cannot move away from obstacles that can be un-
cooperative agents. In view of this requirement it is assumed that the environment is
refreshed between one step iterate and the next and in the mean time the environment
is static.

The environmental space in low speed applications is a cube in the range of 250-
350m [9, 59] increasing to 10-25km for high speed applications [26, 30]. Obstacle sizes
are intuitively defined based on the speed and environmental space. In fact obstacles are
defined by Yu et. al. [60] in a range of 16m×10×100m for medium-low speeds of 40km/hr
in a 700m×700m square. Similarly, Call [16] defined an obstacle of 60m×60m×60m for
a speed of 58km/hr in a 500m ×500m ×500m cube environment. The obstacles in high
speed environment are set to a few kilometres in all axes [30].

In our analysis of UAV path planning for indoor applications it is assumed that the
UAV will have a speed between 5km/h and 50km/h with a nominal value of 5km/hr. The
look-ahead distance limited by sensor range is varied from 0.108[-] to 0.3[-], for resolu-
tions between 29[points/-] to 11[points/-]. This translates to a look-ahead circle (as il-
lustrated in Figure 3.1) of 3 times the distance moved by the UAV in ti ter ate_max (ds_step ).
Theoretically, the look-ahead distance must be greater or equal to ds_step_mi n but some
buffer must be considered as otherwise the UAV can be placed in a point where the im-
mediate vicinity is unknown. When the UAV moves to this point, an obstacle can reside
just outside the known area and if it is moving towards the UAV a collision can result.
Ideally di nt_g oal > 0.01[−] to allow for this buffer. If this parameter is not under analysis
it will be set to 0.2[-] irrespective of the resolution considered.

The maximum time to generate a path segment (ti ter ate_max ) is dependent upon the
time for the UAV to move ds_step and UAV speed vU AV . This parameter is being assessed
to analyse the effect of different processing power on path planning performance. This
time will vary between 4.29s (highest UAV speed, with lowest ds_step ) and 36s (lowest

UAV speed, with highest ds_step ). If this parameter is not under analysis it is set to
ds_step

vU AV
.

Based on the above literature, for low to medium speeds in a 500m ×500m ×500m
environmental space, ds_step , the distance moved by the UAV in one iterate, is set to the
distance between three consequent graph points translating into a distance of 35.71m
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for a resolution of 29 per dimension [points/500m] until a distance of 300m for a reso-
lution of 11 per dimension [points/500m]. If a generic cubic environment of 1×1×1 is
considered, the speed range translates from 0.01[-/s] to 0.1[-/s] in steps of 0.01[-/s] and
ds_step translates to 0.07143[-] to 1[-] for resolutions of 29 to 11[points/-] per dimension.

The distance considered shall always be greater than the distance between two graph
points especially in A*, since after the discretisation of the environment or when the
new prospective UAV position resides on an obstacle and the distance reduction factor
is applied, the UAV future position may map to the current grid point and the UAV would
be blocked in the same position yielding no path. This further confirms the selection of
the nominal ds_step to the distance between three consecutive graph points.

The maximum time to generate the whole path (tpath_g en_max ) is set in a range of 45s
to 360s based upon factor of 10 × factor of ti ter ate_max . The distance factor reduction
applied in cases where the new intermediate goal point and/or the new UAV position
reside on an obstacle is set in a range of 0.5 to 0.95 and 0.8 if this parameter is fixed.

Table 3.3: Real-time algorithm parameter under analysis

Parameter Minimum Maximum
Nominal
Value

Units

External Parameters
UAV Speed
(vU AV )

0.01 0.1 0.03 [-/s]

Sensor Range
(di nt_g oal )

ds_step_mi n =
0.07143

0.3 0.2 [-]

Computational
Power
(ti ter ate_max )

ds_step_mi n×60×60
uU AV _max×1000 =

4.29
ds_step_max×60×60

uU AV _max×1000 = 36
ds_step×60×60

vU AV ×1000
s

Internal Parameters
Distance to
travel per iter-
ate (ds_step )

2
r esmax−1 = 0.07143

uU AV _max×1000×ti ter ate_max
60×60 =

1
2

r es−1 [-]

Maximum
time to
generate path
(tpath_g en_max )

10 ×
ti ter ate_max (mi n) =
45

10×ti ter ate_max (max) =
360

10 ×
ti ter ate_max

s

Distance re-
duction factor
(d f actor )

0.5 0.95 0.8 [-]

Based on this analysis, it can be concluded that the main parameters of interest to
decide which UAV is required for a specific situation are: UAV speed, sensor range and
computational power of the UAV. Other parameters including resolution, distance to
travel per iterate, maximum time to generate a path and the distance reduction factor
are equally important parameters in relation to the real implementation of the real-time
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path planning algorithm. The path length, path planning time and success rate are dic-
tated by the mission requirements. Therefore, in line with the scope of this work, the
UAV parameters will be investigated independently to outline the relationship between
these parameters and path planning performance. In this regard, parameter values are
generically defined as in Table 3.3 to facilitate the usability of the recommendations and
conclusions of this work.

3.5.2. EXPERIMENTAL SCENARIOS
The experimental space is defined as a cube with dimension of 1x1x1 in generic units
with centre (0,0,0) as in our previous work [22, 23]. The distance between two surfaces of
the cube can vary by up to ± 0.5

(r es−1) in case of the application of the A* ripple reduction
algorithm. The generic environmental space is normalised to arbitrary units so that the
test scenarios can be scaled to any environmental space. These test scenarios were orig-
inally developed by Clifton et. al. [61] and made available online in [62]. For all tests the
start and goal nodes are defined at [0,-0.5,0] and [0,0.5,0], respectively. In case the A* rip-
ple reduction algorithm is applied, the associated shifting is added to the start and goal
points. The same three different obstacle scenarios, defined in Chapter 2 and illustrated
in Figure 3.4 are considered:

1. Scenario 1: Two obstacle planes in the Y-Z axis with 0.2x0.2 square openings;

2. Scenario 2: Three obstacle planes in the Y-Z axis with 0.2x0.2 square openings and
two obstacle planes in the X-Y planes with no openings; and

3. Scenario 3: Five obstacle planes in the Y-Z axis with 0.2x0.2 square openings and
two obstacle planes in the X-Y planes with no openings.

3.6. RESULTS
The aim of this analysis is to assess the applicability of 3D UAV path planning in real-
time. This analysis will highlight the effects of the parameters mentioned in Table 3.3 to
help identify the best configuration for different UAV real-time path planning applica-
tions.

The real-time path planning algorithm defined in Section 3.4 is implemented using
both the A* and RRT algorithms in the experimental scenarios defined in Section 3.5.2
with the parameters defined in Section 3.5.1. Each section will analyse one parameter
separately keeping all other parameters constant so that its effect on path planning per-
formance in terms of path length computational time and success rate will be assessed
independently.

All tests are performed using a desktop computer equipped with an Intel Xeon ES-
1650, 3.2GHz. The same processor is used to test both path planning algorithms, im-
plying that a fair comparison can be made between the two algorithms. The process-
ing power in the mentioned processor is significantly larger than standard UAV onboard
processors. In this setup, the processor that is used is not totally dedicated to the MAT-
LAB code but must compute additional background tasks associated with Windows and
other programs. Moreover, in this work, a set of parameters tabulated in Section 3.5.1 are
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(a) (b)

(c)

Figure 3.4: Obstacle scenarios: (a) First Scenario (b) Second Scenario and (c) Third Scenario modified from
[22], consisting of obstacle planes in the X-Z with windows as openings and X-Y planes for scenarios 2 and 3
with no openings.
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generically defined in view of the mission constraints and processing power available.
If a different processor is available and/or different mission constraints are requested
these parameters can be tuned on the basis of the recommendations of this work to en-
sure real-time path planning.

3.6.1. SPEED (vU AV )
Speed is one of the variable parameters that is considered for analysis. Speed is varied
between 0.01[-/s] and 0.1[-/s] in steps of 0.01[-/s] while all the other parameters defined
in Table 3.3 are set at their nominal value. For each considered speed for both A* and
RRT algorithms the test is performed 100 times and the mean and 95% confidence in-
terval illustrated in Figure 3.5. Since both algorithms are not able to generate the path
in all considered scenarios, either because the time to generate a path between iterates
or the total time is exceeded, a bar graph showing the distribution of successful and un-
successful paths is illustrated in Figure 3.5 (c) and (f) for A* and RRT respectively. The
unsuccessful runs are not considered in the path length vs. speed and time vs. speed
plots.
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Figure 3.5: Performance parameters vs. speed: (a) Path Length for A*, (b) Computational Time for A*, (c)
Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time for RRT and (f) Success
and Failure rates for RRT for 100 iterates for each considered situation (speed and scenario) with 95% con-
fidence interval. (r es = 21,dstep_RRT = 0.01[−],ds_step = 0.01[−],di nt_g oal = 0.02[−],d f actor = 0.8 and
ti ter ate_max , tpath_g en_max are a function of the UAV speed).

The mean path length and standard deviation for A* remains almost constant for all
considered UAV speeds. Similarly for RRT, the mean path length remains constant for
all considered speeds although the success rate reduces with increase in speed for all
scenarios. The standard deviation remains constant except for the high-end speeds of
Scenario 3. This is attributed to the fact that as scenario complexity and speed increase
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the algorithm is less successful (refer to Figure 3.5 (f)) and therefore the mean and stan-
dard deviation are measured on a smaller sample made up of the best performance runs.
In fact in this case, the amount of successful runs decreases, reducing the sample size to
less than 10 with no successful runs at 0.09[-/s] and only 1 successful run for 0.08[-/s]
and 0.1[-/s].

The path length depends mainly on Scenario complexity for both the A* and RRT
algorithms as a longer path is required to traverse through obstacle plane windows re-
siding in alternating sides of obstacle planes [22, 23]. Furthermore, the mean path length
for A* is smaller than RRT, confirming, theory that the A* algorithm is more optimal than
RRT [44]. The difference in path length between the A* and RRT algorithms increases fur-
ther as the scenario complexity increases. A* generated paths are more optimal and the
path length reduction by the smoothing algorithm is less than that for RRT. In complex
scenarios the improvement introduced by the smoothing algorithm is limited since the
elimination of an intermediate node is more likely to generate colliding paths and there-
fore the oscillatory RRT-generated paths will be reduced by a lesser margin with respect
to A* for the same situation.

The time to generate a path for A* is independent of the speed for all scenarios. This
result confirms theory, since the algorithm will utilise the same amount of time to gen-
erate a path, as it considers approximately the same intermediate start and goal nodes,
irrespective of the time required by the UAV to travel to the next position, provided that
this time is longer than the time to generate the intermediate path. As complexity in-
creases the mean time increases to approximately 7 times and 4 times with respect to
Scenario 1, for Scenarios 2 and 3 respectively, while the standard deviation increases
proportionally. The mean path planning time for Scenario 3 is shorter than Scenario 2
although Scenario 3 is more complex. This results since the success rate of Scenario 2 is
larger than that of Scenario 3 and therefore only the easiest instances are successful in
Scenario 3 leading to a better mean path planning time than Scenario 2. For the consid-
ered scenarios, as the complexity increases the time increases, as it takes longer to find a
non-colliding path and an intermediate start and goal nodes.

For RRT the computational time reduces with increase in UAV speed for all scenarios.
This time reduction is attributed to the analysis described earlier that, the best perform-
ing runs for the same situation are considered, as other runs did not generate a path in
the allocated time. In fact the drop in computational time is in line with the drop in suc-
cessful runs (refer to Figure 3.5 (f)). The drop rate in successful runs for Scenario 2 with
increase in speed is lower than the drop rate for other scenarios. This lower drop rate
behaviour is exhibited in the computational time for Scenario 2 with respect to the other
scenarios.

Scenario 2 is the most successful scenario for RRT although it is more complex than
Scenario 1. From our previous results [22, 23], the difference in the path generation time
between Scenario 1 and 2 using the RRT algorithm is close to zero for all considered step
sizes. Furthermore, in simple scenarios with non-optimal resulting paths such as in RRT
the smoothing iterates required until the stopping condition is reached is larger than
that of the same path in an obstacle-rich environment since it is more likely in the latter
environment for a smoothed path segment to collide with an obstacle. The increase in
computational time due to smoothing increases the time to generate an intermediate
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path, exceeding the maximum intermediate time allocation. Since for Scenario 2, the
possibility of smoothing is lower than Scenario 1 while the difference in time to generate
a path between intermediate nodes is similar in both cases then this explains the result
that Scenario 2 is more successful than Scenario 1. Although more iterates are required
for a longer Scenario 2 path than Scenario 1, the bottleneck in RRT is the maximum inter-
mediate time and not the total time. For Scenario 3 the situation is different. From our
previous work [22, 23], a longer computational time (more than 5 times) was required
to generate a complete path due to the condensed obstacle space and very limited path
options. This had a major effect at high speeds as a longer path must be generated in the
same time with increase in speed.

The computational time for A* when compared to RRT is shorter by multiple times
for all scenarios. It can be concluded for the considered resolution/step size that the
computational time for Scenarios 1 and 2 is similarly increasing by a factor of 3 in Sce-
nario 3 for RRT with respect to A* [22, 23]. During path construction A* considers points
between the current UAV position and the intermediate goal point. On the other hand,
the RRT algorithm can produce seeds anywhere in the available space, although the tree
branch length is limited by dstep_RRT . This implies that the considered area in A* is much
smaller than RRT. Therefore, the allocated time must be increased by multiple times for
RRT with respect to A*. The difference in computational time for Scenarios 1 and 2 in-
creases by a factor of about 5 for RRT with respect to A*, as the whole environmental
space is 5 times the look-ahead distance. Similarly, for Scenario 3 the difference is even
larger since this 5 times factor is multiplied by the 3 times factor difference in compu-
tational time between Scenarios 1 and 2 with respect to Scenario 3 described earlier.
Furthermore, the RRT algorithm is less optimal than the A* and therefore more smooth-
ing iterates are required until less than 1% reduction results over the past 20 smoothing
iterates.

The A* algorithm is able to generate a path in the allocated maximum intermediate
and total time in a range between 96% to 100% with an average of 99%. The stopping
condition resulting in unsuccessful cases is triggered when the maximum time to gener-
ate the path is exceeded. Not the same can be deduced for RRT. As the speed increased
the success rate drops. For Scenario 2 the success rate drops to a minimum of 57% at
0.1[-/s], although the algorithm is able to generate a path in at least 94% of the cases
from low speeds up to 0.06[-/s]. The stopping condition triggered for all unsuccessful
situations is always that the maximum allocated intermediate time is exceeded. This
is mainly attributed to the lower optimality of the RRT algorithm with respect to the A*
algorithm and the fact described earlier that the RRT algorithm considers all environ-
mental space when generating an intermediate path. For Scenario 1 the success rate
drop starts even at low speeds of 0.02[-/s] increasing up to 11% at the highest speed. A
sharper drop is experienced in Scenario 3 where a 47% success rate is noted at a speed
of 0.03[-/s], dropping further to 5% at 0.06[-/s], reaching 0 successful runs at 0.09[-/s].

This result shows that A* can be applied for all speeds considered at a resolution
of 21 and maximum and intermediate time allocation, while RRT can only be success-
fully applied for low speeds not exceeding 0.02[-/s] for Scenarios 1 and 2 and less than
0.01[-/s] for Scenario 3 for a step size of 0.05[-] for the same time constraints as A*, un-
less the intermediate step size is increased. This situation does not eliminate the RRT
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algorithm from consideration as the amount of smoothing can be reduced, reducing
the intermediate time to generate a path, ultimately increasing the success rate.

3.6.2. LOOK-AHEAD DISTANCE (di nt _g oal )
The look-ahead distance, defined as the distance between the current UAV position and
a prospective intermediate goal point, is another parameter that affects the performance
of the path planning algorithms. This distance is mainly dependent upon the precision
and accuracy of sensory systems available on-board a UAV and thus can vary between
different UAV models. The look-ahead distance parameter is varied between the dis-
tance travelled by the UAV per iterate to 0.3[-] which for the considered resolution/step
size is 3 times the distance moved by the UAV in every step. In the former case the plan-
ner will define a path that will be totally traversed by the UAV in the next iterate while in
the latter only a third of the planned path will be traversed. In practice, the minimum
value considered can result in situations where the intermediate goal node will reside
exactly in the vicinity of an obstacle resulting in a collision and no solution in the next
iterate as no look-ahead will be considered.

Therefore, the look-ahead distance (di nt_g oal ) is varied from 0.1[-] to 0.3[-] in steps
of 0.02[-] while the other parameters defined in Table 3.3 are set to their nominal value.
For each considered distance for both A* and RRT algorithms the test is performed 100
times and the mean with a 95% confidence interval is illustrated in Figure 3.6. A similar
bar graph as in the previous results representing the successful and unsuccessful runs is
also illustrated in Figure 3.6 (c) and (f) for the A* and RRT algorithms, respectively.

The results in Figure 3.6 show that the path length for A* is mainly dependent upon
the scenario difficulty. Another interesting point is that, as the look-ahead distance in-
creases, the path length reduces for simple scenarios and slightly increases for complex
scenarios. For Scenario 1, an 8% difference in path length between the lowest and high-
est look-ahead distance with respect to the mean path length results. This difference
is attributed to the fact that the longer the look-ahead distance, the lower the variation
from the shortest line connecting the start and goal points when considering also that in
this scenario only an upper right turn (refer to Figure 3.4 (a)) is required to pass through
plane windows. On the other hand, for Scenario 2 and 3, the lower path length results at
the lowest look-ahead distance and as the look-ahead distance increases to 3×ds_step .
For obstacle-rich scenarios like Scenarios 2 and 3, a maximum occurs at 1.5×ds_step .
This results since in complex scenarios the intermediate goal point positions are very
limited especially in Scenario 3 and such a look-ahead distance can offset the interme-
diate goal point, which in the next iterate can change drastically. If this look-ahead dis-
tance is reduced to ds_step , then the next UAV position will be the current intermediate
goal point leading to very low overshoot in complex scenarios. For Scenario 3 this drop
in path length is more evident in Scenario 2 due to the drop in success rate for Scenario
3 at low look-ahead distances. For A* in Scenario 2, a drop in success rate is exhibited at
the path length maximum. Otherwise a close to 100% success rate results for Scenario
2 just as for RRT. Furthermore, as the look-ahead increases from 1.5×→ 3×ds_step , the
overshoot is limited as compared to the lower look-ahead distance cases due to the rea-
son described for Scenario 1. The path length reduction rate as the look-ahead distance
increases from 1.5×→ 3×ds_step is lower for Scenario 2 and 3 with respect to Scenario 1
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due to the limited free space.
As deduced in the above analysis A* produced shorter paths with respect to RRT

for all scenarios considered and the difference in length increases with an increase in
scenario complexity. In RRT the path length at the highest look-ahead distance is 16%
shorter with respect to the path length at the lowest look-ahead distance. This behaviour
is also exhibited in A* but with only 8% difference for the same scenario. In RRT interme-
diate goal points can reside on any obstacle-free point on the connecting line from the
current UAV position to the final goal point. This advantage over A*, which is limited by
grid positions, is bigger as the look-ahead distance increases, because the intermediate
goal point will reside on the line connecting the start and goal positions, limiting over-
shoot especially for simple scenarios. For Scenario 2, a lower drop of 6% in path length
is recorded due to a denser obstacle environment with increase in look-ahead distance.
Furthermore, the same maximum occurs at 1.5×ds_step for the same reasons described
for A*. Similar to Scenario 3, the same maximum is exhibited but the drop at low look-
ahead distance is lower with respect to A*, confirming that the drop in success rate for
A* in Scenario 3 is responsible for a reduction factor in path length at low look-ahead
distances.
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Figure 3.6: Performance parameters vs. Look-ahead distance (di nt_g oal ): (a) Path Length for A*, (b) Com-
putational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational
Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situation (speed
and scenario) with 95% confidence interval. (r es = 21,dstep_RRT = 0.1[−], vU AV = 0.03[−/s],ds_step =
0.1[−], ti ter ate_max = 12s, tpath_g en_max = 120s and d f actor = 0.8).

The computational time for both A* and RRT algorithms mainly depends upon the
scenario complexity although RRT Scenarios 1 and 2 yield almost the same result, as
more smoothing iterates are required in Scenario 1 than in Scenario 2, because Scenario
2 limits smoothing due to the obstacle-rich environment. The difference in computa-
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tional time between A* and RRT is the same as described earlier, with A* outperforming
RRT in all scenarios. The variation in computational time with respect to look-ahead
distance can be approximated by a parabola for all scenarios in both path planning al-
gorithms. For A* a local minimum in computational time is exhibited between 80m and
90m for all scenarios, whilst for RRT the lowest computational time is exhibited at 90m,
90m and 110m for Scenarios 1 to 3, respectively.

The success rate for A* is 100% for 0.18[-] in all scenarios. For Scenario 1, the success
rate remains 100% for look-ahead distance larger than 0.14[-] dropping by 2% for the
lowest considered resolution. For Scenario 2, a 90% success rate results at a look-ahead
distance of 0.14[-] with all other situations exhibiting a success rate of 95% or more. This
occurs at the maximum of path length for this particular scenario. For Scenario 3, a suc-
cessful rate of more than 92% is exhibited for look-ahead distances greater than 0.16[-].
For lower look-ahead distances the success rate drops to 40%. The maximum time is ex-
ceeded in all unsuccessful runs. For RRT in the first Scenario the success rate varies be-
tween 74% at 0.2[-] (di nt_g oal ) to 92% (di nt_g oal ). For Scenario 2, the success rate varies
from 97% to 100%. For Scenario 3, the success rate varies from 78% at 0.3[-] (di nt_g oal )
to 61% at 0.24[-] (di nt_g oal ). The maximum allowable intermediate time is exceeded in
all unsuccessful runs. In conclusion, between 0.18[-] and 0.2[-] both the A* and RRT
algorithms exhibited the best results.

From the path length, computational time and success rate results it can be con-
cluded that the optimal look-ahead distance for both algorithms for the considered
scenarios, resolution/step size and speed shall be 1.8× → 2× the distance moved per
iterate. In other words, the planner shall ideally define an obstacle-free position two
steps from the current position with knowledge of the environment within this dis-
tance.

3.6.3. MAXIMUM INTERMEDIATE TIME (ti ter ate_max )
The maximum intermediate time is the maximum time allocated for a path to be gener-
ated from the current UAV position to an intermediate goal point. As defined in Table 3.3,
it is mainly dependent upon speed and the distance moved between iterates ds_step . By
varying this parameter, the computational power onboard the UAV is indirectly analysed
to ultimately determine the required computational power for the particular situation.
From the results in Section 3.6.1 and Section 3.6.2, it can be concluded that this parame-
ter is the bottleneck, especially for RRT in complex scenarios. Therefore, to further assess
the effect of this parameter on performance it is varied between 0.006[-] and 0.024[-] in
steps of 0.002[-]. These values are defined in line with the minimum and maximum val-
ues defined in Table 3.3 assuming a constant speed of 0.03[-/s] and the distance moved
per iterate of double the distance between grid position or step size for A* and RRT, re-
spectively, that is 0.024[-]. Figure 3.7 illustrates the mean test results for 100 runs with a
95% confidence interval.

Results of Figure 3.7 (a) and (d) confirm the results described earlier that the path
length is mainly dependent upon the scenario complexity and that the A* algorithm
outperformed the RRT algorithm with the difference increasing with scenario complex-
ity. For Figure 3.7 (b) and (e), the same conclusions as above can be drawn, with the
A* outperforming the RRT in all scenarios considered with the difference increasing for
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Scenario 3.

The main scope of this analysis is to define the lowest intermediate time that shall
ensure that the UAV has time to generate an intermediate path in real time for all con-
sidered scenarios. The maximum intermediate time is defined based on real UAV pa-
rameters for a nominal speed and using an off-the-shelf processor. This parameter is
directly proportional to the distance moved per iterate and inversely proportional to the
UAV speed. Therefore when increasing the maximum allowable intermediate time either
the UAV speed is decreased or the distance moved per iterate is decreased or both. The
effect of each of these parameters on path planning performance was already described
in their respective sub-sections. Usually the UAV speed is defined by application and
therefore its range is restricted. The lower limit of the distance moved per iterate is lim-
ited by the resolution/step size and if resolution increases, so that the former parameter
decreases, the computational time will increase due to larger resolution for A*. The lim-
itation for RRT, a sampling-based algorithm is not that direct, although the shorter the
step size the more computational demand is required to generate a path for the same
distance.
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Figure 3.7: Performance parameters vs. Maximum Intermediate Time Allocated (ti ter ate_max ): (a) Path
Length for A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT,
(e) Computational Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each consid-
ered situation (speed and scenario) with 95% confidence interval. (r es = 21,dstep_RRT = 0.1[−], vU AV =
0.03[−/s],ds_step = 0.1[−],di nt_g oal = 0.2[−],d f actor = 0.8 and tpath_g en_max is a function (×10) of the max-
imum intermediate time allocated).

For the A*, for the considered resolution/step size, speed, distance travelled per
iterate and look-ahead distance, the planner is never limited by the allocated inter-
mediate time. The low percentage of unsuccessful runs (≤ 3%) occurs because the max-
imum time to generate the path is exceeded and not because the intermediate time is
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not enough. Therefore, the defined maximum intermediate time limit can be further re-
duced from 12s for all scenarios, possibly allowing the UAV to increase its speed and/or
in resolution.

Not the same can be concluded for RRT that is able to generate the path in less
than 35% for the maximum considered intermediate time allocation in Scenario 3.
For Scenario 1, at least 11s are required to achieve a success rate greater than 90% while
for Scenario 2, at least 4s are required to achieve a 90% success rate. For the considered
speed of 0.03[-/s] and ds_step = 0.1[−] the maximum intermediate computational time is
12s. This shows that for Scenario 3, the intermediate time must be increased by multiple
times, to achieve a success rate of 100%. For Scenario 1, this limit must be increased to
a higher value by either decreasing the speed of decreasing the RRT step size with the
latter leading to increase of computational time. For Scenario 2, the limit under analysis
can remain the same for the considered speed, distance moved per iterate and RRT step
size.

3.6.4. DISTANCE TO TRAVEL PER ITERATE (ds_step )
The distance to travel per iterate is a function of the UAV speed as the distance the UAV
travels in a pre-defined time dictates the maximum allowable time to generate a path.
The nominal value of this parameter is set to double the distance between grid positions
(A*) or double the step size (RRT). To assess the effect of this parameter on performance,
it is varied between this nominal value and the look ahead distance (di nt_g oal ). There-
fore, the distance to travel per iterate is varied from 0.1[-] to 0.2[-] in steps of 0.01[-] while
the other parameters listed in Table 3.3 are set to their nominal value. The longer the dis-
tance to travel per iterate the more intermediate time is allocated for the path planning
and smoothing algorithms. For each considered distance for both A* and RRT algorithms
the test is performed 100 times and the mean with a 95% confidence interval is illustrated
in Figure 3.8. A similar bar graph representing the successful and unsuccessful runs is
also illustrated in Figure 3.8 (c) and (f) for A* and RRT, respectively.

The mean and standard deviation in path length for both the A* and RRT algorithms
is independent of distance to travel per iterate (ds_step ) but depends primarily on sce-
nario complexity. The range of ds_step considered is equivalent to the distance of three
consecutive grid positions or 2 ×dstep_RRT . This relatively small variation and the rel-
atively small windows through which the planner must pass shall have minimal effect
on the path length, especially in obstacle-rich environments where the path options are
limited, since ds_step only dictates how the path is to be traversed not how it is con-
structed, as confirmed by the results of Figure 3.8 (a) and (d). Furthermore, the mean
path length for A* is shorter than RRT since A* is more optimal, with the difference in-
creasing with scenario complexity as deduced in Section 3.6.1.

For both algorithms the computational time is independent of ds_step although as
ds_step approaches its minimum value (distance between 3 consecutive grid points for
A* and equivalent for RRT), the computational time decreases. This minor improvement
results as the path planning task will be divided into a larger set of simpler sub-tasks.
This result is more evident for Scenario 3 of the RRT algorithm since the success rate
at low ds_step drops and therefore, as described in Section 3.6.1, the best performance
results are considered in the mean and standard deviation calculations. As deduced from
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literature [56, 57], and in line with the conclusions drawn in the speed analysis, the RRT
algorithm takes 4-10 times longer to compute a path with respect to A* algorithm for the
same conditions.

The A* algorithm is able to generate a path in all situations for Scenario 1 and in
at least 97% and 98% for Scenarios 2 and 3. The maximum computational time is the
stopping condition for unsuccessful runs. Not the same can be concluded for RRT as
the success rate drops especially for Scenario 3 due to insufficient intermediate time as
ds_step approaches its minimum value. A maximum minor drop of 5% results for Sce-
nario 1 while the RRT algorithm is 100% successful for Scenario 2. The result shows that
the RRT is more computationally intensive since, as ds_step approach its minimum value
and hence the allowable computational time is lowest (path planning algorithm needs
to generate a path in the time required to traverse double the step size dstep_RRT ), the
success rate drops.

The bottleneck in the considered path planners is the computational time, especially
for the RRT algorithm. The analysis carried out in this sub-section shows that the dis-
tance traversed by the UAV in each iterate will not affect the validity and optimality of
the generated path and is independent of the computational time required to generate
the path.
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Figure 3.8: Performance parameters vs. Distance to travel per iterate (ds_step ): (a) Path Length for A*, (b) Com-
putational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time for
RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situation (speed and scenario)
with 95% confidence interval. (r es = 21,dstep_RRT = 0.1[−], vU AV = 0.03[−/s],di nt_g oal = 0.2[−],d f actor =
0.8 and ti ter ate_max , tpath_g en_max are a function of the distance to travel per iterate).

From a practical point of view, increasing ds_step , will allow more time for the plan-
ner to generate a path improving the success rate without deteriorating the path length.
Therefore the longer ds_step the better. But the latter parameter is limited by the look-
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ahead distance which is governed by the sensory systems and provided that all obsta-
cles residing between the current and future UAV positions do not cross the path in
the time the UAV is traversing.

3.6.5. MAXIMUM TIME TO GENERATE A PATH (tpath_g en_max )
This parameter is a function of the length of the path from start to goal. In the test anal-
ysis in Section 3.6, this parameter is arbitrarily defined as 10× the maximum intermedi-
ate time, irrespective of the scenario difficulty. For this considered nominal value, only
a small percentage of runs for Scenario 3 are stopped due to this maximum time limi-
tation. Although this parameter can be defined as a function of the number of interme-
diate path generations, the path planning algorithm may waste time venturing around
prior to arriving to the goal. Moreover, the allocated time to reach a goal may be defined
by the application. Therefore to define the best value for each Scenario this parameter
is varied between 2× and 20× the maximum intermediate time (ti ter ate_max ) in steps
of 2. This implies that the maximum total time to generate a path is varied between 24
and 240 seconds. All the other parameters listed in Table 3.3 are set to their nominal
value. Figure 3.9 illustrates the mean test results in terms of path length, computational
time and success rate for 100 runs with a 95% confidence interval for both A* and RRT
algorithms.

Results of Figure 3.9 (a) and (d) confirm that the path length is mainly dependent
upon the scenario difficulty with the A* algorithm outperforming the RRT algorithm in
all scenarios with the percentage difference in path length increasing with scenario dif-
ficulty. Similarly, as can be deduced from Figure 3.9 (b) and (e) the computational time
is lower for A* with respect to RRT, for the respective scenarios, with the major difference
of multiple times present for Scenario 3.

The main scope of this analysis is to define an adequate maximum time for the UAV
to reach the goal point in view of a real time implementation. This parameter is depen-
dent on a number of unrelated or inter-related and bounded or unbounded parameters
namely scenario complexity, UAV speed, allocated, computational power, allocated in-
termediate time and the distance moved per iterate, assuming that the sensory system
update rate is much higher than the allocated intermediate time. Therefore this param-
eter must be chosen in view of these relationships and other external constraints such as
a user defined maximum mission duration.

For the A* algorithm, Scenario 1 is successful in all considered instances of maxi-
mum time allocation. This implies that for simple scenarios the A* algorithm can gen-
erate multiple path segment in 1× ti ter ate_max , planning the path to goal in less than
1 second. For Scenario 2, 5% of runs are unsuccessful since the total time is exceeded
prior to finding a solution. From Figure 3.9 (b), the upper bound in computational time
never exceeded 8s. Therefore it can be concluded that the A* will not be able to reach
the goal at some instances, as a collision or no possible path is possible, irrespective of
the allocated total time which in the lowest case is 2× the highest computational time
recorded. Similarly the same conclusions can be drawn for Scenario 3 although the fail-
ure rate is only 2% maximum. Although these values are low, A* could not guarantee a
100% solution for complex scenarios. This confirms theory that claims that A* does not
offer a guarantee of solution [50].
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For the RRT algorithm, the success rate improved as the maximum time to generate
the path increases from 24s to 240s. For Scenarios 1, 2 and 3 the success rate improved
from 84% to 95%, from 83% to 100% and from 0% to 72%, respectively. These results con-
firm that the RRT algorithm is computational intensive especially for complex scenarios.
Furthermore, if the allocated time is greater or equal to 36s, the maximum intermediate
time limitation is triggered and not the parameter under review. In fact, for Scenario 1
and 3 an improvement is present as the maximum time to generate the path increases,
but 5% and 28% of the runs, respectively remain unsuccessful and does not decrease
further unless the intermediate time is increased further. For Scenario 2, the maximum
intermediate time constraint is not limiting so the success rate increased to 100% as the
total allocated time to generate a path increased to more than 36s.
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Figure 3.9: Performance parameters vs. Maximum Total Time Allocated (tpath_g en_max ): (a) Path Length for
A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Compu-
tational Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situation
(speed and scenario) with 95% confidence interval. (r es = 21,dstep_RRT = 0.1[−], vU AV = 0.03[−/s],ds_step =
0.1[−],di nt_g oal = 0.2[−],d f actor = 0.8 and ti ter ate_max = 12s).

In conclusion although the maximum allowable time to reach the goal is increased,
neglecting real-time constraints, a solution cannot be guaranteed for all scenarios for
both algorithms, although a minimum of 95% success rate is recorded for A* for all
situations considered and the maximum time exceeded condition is never triggered
beyond 4× ti ter ate_max for all scenarios in RRT. Furthermore it can be concluded that
for both A* and RRT at 6 × ti ter ate_max and above, the maximum allowable time to
reach the goal has minimal to low effect on performance for the considered param-
eters listed in the caption of Figure 3.9.
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Success and Failure Rates vs. Distance Factor for RRT

Path Generated

Intermediate Time Exceeded

Maximum Time Exceeded

Figure 3.10: Performance parameters vs. Distance Factor (d f actor ): (a) Path Length for A*, (b) Computational
Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time for RRT and
(f) Success and Failure rates for RRT for 100 iterates for each considered situation (speed and scenario) with
95% confidence interval. (r es = 21,dstep_RRT = 0.1[−], vU AV = 0.03[−/s],ds_step = 0.1[−],di nt_g oal = 0.2[−],
ti ter ate_max = 12s and tpath_g en_max = 120s).

3.6.6. DISTANCE REDUCTION FACTOR (d f actor )
The distance reduction factor is a parameter utilised to re-evaluate the distance from the
current UAV position to the next UAV position and from the current UAV position to an
intermediate goal position as both may reside on an obstacle. When the next UAV posi-
tion is defined, this position is not on an obstacle, as this point is selected on the path
from the current UAV position to an intermediate goal point. But when the ripple reduc-
tion algorithm is applied, the current UAV position may reside on an obstacle. When the
intermediate goal node is defined based on a look-ahead distance from the current UAV
position, such a point can reside on an obstacle. The excessive reduction of both the
distance moved by the UAV in one iterate and the look-ahead distance can lead to longer
computational time to generate a path as shorter path segments are generated and/or
situations in which the UAV and the goal point will remain in the same position. On the
other hand, too low reductions will also increase computational time as each reduction
needs to be checked each time. Therefore, to best define this value this parameter is var-
ied between 0.5 to 0.95 in steps of 0.05 and applied to tests on the same test environment
as in the previous sub-sections and setting the other parameters described in Table 3.3
to their nominal value. Figure 3.10 illustrate the mean path length, computational time
and success rate test results for both A* and RRT algorithms.

Results in Figure 3.10 (a) and (d) show that the path length is mainly dependent upon
the scenario complexity and independent of the distance factor parameter for both al-
gorithms. This implies that irrespective of the reduction in length of path segments, in
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the case where the new intermediate goal point or current UAV position resides on an
obstacle, the path length shall not increase.

As the distance factor approaches unity the computational time shall increase as the
algorithm is required to consider more points in the line connecting the current and
future UAV position and/or the current and future intermediate goal points. For all sce-
narios in A*, an exponential increase in mean computational time with multiple times
increase in confidence interval is exhibited at different values of distance factor, namely
0.85, 0.65 and 0.6 for Scenarios 1 to 3, respectively, with Scenario 2 exhibiting the largest
(> ×3) increase. These results impose the need to best define this parameter based on
the different parameters considered and on the scenario in which the algorithm is re-
quired to operate. Furthermore, Figure 3.10 (c) shows that at certain instances of dis-
tance factor: 0.55, 0.8 and 0.95 the A* algorithm is 100% successful. Therefore, this show
that A* can offer a high success rate of 98% or better for the parameters considered if
the distance factor is appropriately selected.

For the RRT algorithm, the computational time is unaffected by the distance factor
as can be deduced from Figure 3.10 (e). As the RRT algorithm is a sampling based al-
gorithm, the environment is not quantised and therefore the possibility of the new UAV
position residing on an obstacle after the movement function is computed is not appli-
cable if a fixed obstacle environment is assumed. Not the same can be concluded for
the A* algorithm. Only the possibility that the new intermediate goal position will reside
on an obstacle remains. As obstacles are planes with 2 dimensions a slight deviation
on the line connecting the current UAV position to the final goal position will eliminate
this conflict. Therefore in the case of RRT only one step will be required irrespective if
the distance deduction (through the d f actor parameter) will be enough to produce an
obstacle-free intermediate goal point. Therefore, ideally a 0.95 factor shall be consid-
ered not to deviate too much from the predefined di nt_g oal distance.

3.6.7. CONCLUSION
This section analysed the results of the developed path planning algorithm defined in
Section 3.4 in terms of UAV speed, distance to travel per iterate, distance between current
UAV position and prospective intermediate goal point, maximum intermediate time,
maximum total time and distance factor for both algorithms in all 3 defined scenarios.
Results show that:

1. A* is less affected by increase in speed with respect to RRT.

2. The longer the distance moved per iterate, which is limited by look-ahead dis-
tance, the higher the success rate.

3. The ideal look-ahead distance shall be 1.8×→ 2× the distance moved per iterate.

4. The A* algorithm is never limited by the maximum intermediate time allocation
while RRT is able to generate the path in less than 35% of the cases.

5. For both A* and RRT 6× the maximum total time is enough.

6. Some runs remain unsuccessful even if the maximum total time is increased.
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7. A 0.95 distance reduction factor results in the best performance for both algo-
rithms.

These summarised results in conjunction with others show the strengths and weak-
nesses of both algorithms as each of the above mentioned parameters is varied keeping
other parameters constant. Table 3.4 summarises the results presented in this section
by showing the effect of each UAV parameter on path planning performance. A +- sign
shows that the effect of the UAV parameter on path planning performance measure is
minimal and a + or - notation imply that the UAV parameter and path planning perfor-
mance measure are directly or inversely proportional, respectively. The additional sign
shows that the UAV parameter highly effects the path planning performance measure.
For example, an increase in UAV speed for RRT will highly deteriorate the success rates.
Finally, through this analysis guidelines for the definition of parameter values, accord-
ing to mission requirements and constraints, are set out. These empirical values can be
scaled in view of user-defined and external demands such as UAV speed.

Table 3.4: Relational table between UAV parameters and path planning performance

Parameter Path Length Planning Time Success rate

A* RRT A* RRT A* RRT
External Parameters

UAV Speed (vU AV ) +- +- +- +- +- - -
Sensor Range
(di nt_g oal )

- - + + ++ +-

Computational
Power (ti ter ate_max )

+- +- +- + +- ++

Internal Parameters
Distance to travel
per iterate (ds_step )

+- +- + + +- +

Maximum time
to generate a path
(tpath_g en_max )

+- +- +- +- +- +

Distance reduction
factor (d f actor )

+- +- - - +- +

3.7. CONCLUSION AND FUTURE WORK
The aim of this paper is to develop a platform to assess the validity of the two most
utilised path planning algorithms (A* and RRT) in view of 3D UAV path planning in real-
time. Literature highlights the importance of real-time path planning for autonomous
2D systems [24–26]. UAVs have to manoeuvre in complex, dynamic environments and
therefore the need for real-time path planning is a must. Both path planning algorithms
are tested with a common smoothing algorithm in 3 different scenarios with varying
complexity. Real-time path planning is governed by a set of user-defined parameters
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such as speed and time to reach the goal node, system-defined parameters such as look-
ahead distance and computational power and internal constants such as resolution/step
size and the distance reduction factor. The effect of the salient parameters on perfor-
mance is assessed and analysed.

Results show that the A* algorithm outperforms the RRT algorithm in both path length
and computational time for all scenarios considered, with the difference increasing with
scenario complexity. Also the A* is successful in more than 90% of all tests for all scenar-
ios considered, provided the look-ahead distance is at least double the distance moved
per iterate. Oppositely, the RRT algorithm resulted in a lower success rate owing primar-
ily to the longer computational time required to produce paths from the current UAV po-
sition to an intermediate goal point. The analysis presented in Section 3.6 outlines the
best empirical values for each considered parameter if such parameter is not restricted
by user demands or hardware limitations. To conclude, this analysis showed that both
algorithms can be applied in real-time with a success rate up to 90% for all scenarios con-
sidered. It is up to the designer of the real-time 3D UAV path planning system to decide
the best configuration for the requested task/s based on the analysis of Section 3.6.

This work can be utilised in the future to configure a real UAV for autonomous 3D
UAV movement in indoor obstacle-rich environments emulating the considered scenar-
ios. The implementation can be extended to outdoor environments where other factors
such as wind and rain may influence the dynamics and sensory systems onboard the
UAV. Furthermore, the performance of the real-time A* and RRT algorithm with mov-
ing obstacles is a research area that requires further assessment of the robustness of the
developed real-time algorithm. The future trajectory, size and speed of such moving ob-
stacles may be known, known with a certain degree of uncertainty or totally unknown to
the path planning algorithm.
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4
3D REAL-TIME PATH PLANNING OF

UAVS IN DYNAMIC ENVIRONMENTS

Once a real-time path planning algorithm is constructed, tested and anal-

ysed in the previous chapter, Research Question 3, formulated to tackle

Challenge 2, that queries the effect on performance if the static environ-

ment is changed into a dynamic one will be addressed in this chapter. This

chapter initiates with a literature review highlighting the need of dynamic

obstacle consideration in indoor environments and presents the state-of-

the-art in dynamic obstacle modelling. Typical dynamic obstacles are mod-

elled and four different scenarios with different difficulties are constructed.

Using these scenarios, the effect on real-time path planning performance is

assessed.

The contents of this chapter have been published as:
Zammit, C. and van Kampen, E., “3D real-time path planning of UAVs in dynamic environments”, Proceedings
of AIAA Guidance, Navigation and Control, Nashville, TN, 11-15 Jan., 2021, AIAA 2021-1955.

Part of this chapter will be submitted to:
Zammit, C. and van Kampen, E., “Real-time 3D UAV path planning in dynamic environments in the presence
of uncertainty”, Journal of Guidance, Control and Dynamics
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Unmanned Aerial Vehicles (UAVs) are taking active roles in personal, commercial,
industrial and military applications due to their efficiency, availability and low-cost.
UAVs must operate safely and in real-time in both static and dynamic environments.
An extensive literature review, defines the dynamic environment term, the need for
dynamic path planning and reviews different solutions. This paper presents a 3D
real-time path planning algorithm to assess the performance of the A* and RRT al-
gorithms. Four test scenarios with varying difficulty are constructed consisting of V-
obstacles, cubes and 2D planes moving at time-varying speed, direction and orienta-
tion. Two rationales to either wait or move further in the direction of the goal when
an intermediate goal point is not available are considered. Results show that for both
A* and RRT the moving variant case performs better especially in complex scenarios.
RRT performs better in simple scenarios and complex scenarios at low speed while
A* performs better at high speeds in complex scenarios. A success rate of over 95% is
recorded for three scenarios for all considered speeds and for both algorithms.

4.1. INTRODUCTION
The ever increasing availability of different Unmanned Aerial Vehicles (UAVs) for a wide
range of personal, commercial, industrial and military applications, is increasing the
need for robust, reliable and autonomous guidance, navigation and control systems that
must operate in real-time even within obstacle-dense environments. The environment
in which a UAV is operating may contain fixed and/or moving obstacles that may vary in
size, speed and orientation. Furthermore, these characteristics can change as the UAV is
navigating to reach a pre-defined goal. Path planning algorithms are therefore required
to navigate the UAV in such time-varying environment with the available computational,
sensory and fuel resources available online.

In real indoor and outdoor environments, the UAV path planning algorithm must
generate or update a path in real time to reach an intermediate or final goal position.
These systems mainly rely on the real-time data of onboard sensory systems with their
associated inaccuracies, latency and uncertainty to update obstacle sizes and positions,
intermediate goal and current UAV positions.

In dynamic environments, the time varying obstacles properties may be known or
unknown beforehand. In the latter case, the UAV can only rely on the real-time data of
sensory systems. But in the former, the path planning algorithm can have apriori knowl-
edge of future obstacle positions, for example automatically operated doors or gates.
Furthermore, in the same environment in which the path planning algorithm is guiding
the assigned UAV, other UAVs may be operating. Their current and future assigned path
maybe fixed as their tasks would be very specific. For example, in a hospital environ-
ment delivering blood samples from the laboratory to the consultants’ office is normal
practice. In such cases a preassigned path maybe available or not to the path planning
algorithm apriori or in real-time. Oppositely other UAVs operating in the same environ-
ment may operate independently or belong to enemies.

In our previous work [1, 2] and previous Chapters of this dissertation fixed obstacle
2D planes with tight windows were considered to assess the performance of the most
utilised algorithms in the graph-based and sampling-based categories namely the A*
and Rapidly-Exploring Random Tree (RRT) algorithms which will be briefly explained
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in Section 4.3. The next natural step owing to the positive performance results of both
algorithms is to assess their validity in the dynamic environments described earlier. A
valid path planning system shall be able to ensure that the path to a goal position is al-
ways obstacle free. In this light, the path planning algorithm must be integrated within a
real-time or online algorithm. Such system shall re-assess already re-assigned paths and
if necessary re-evaluate to ensure that a path from the current UAV position to a goal
position is obstacle free based on real-time environmental awareness whilst the UAV is
traversing the respective path segment, if and only if a path exists. Such an assessment
method was developed in our previous work [3] and will be briefly explained in Sec-
tion 4.3.

The aim of this paper is to assess the performance and consequently the validity
of the A* and RRT algorithms for real-time 3D UAV path planning in dynamic environ-
ments. For the scope of this paper a single agent path planning system with no a priori
knowledge of the obstacles paths, including other UAVs, shall be considered. The path
length, computational time and success rates will be the performance measures consid-
ered to assess the usability of both the A* and RRT algorithms in dynamic environments.
In the context of this work, a dynamic environment will contain both fixed and moving
obstacles with the latter having either a time-variant size, position, speed or orientation
or any combination of these possibilities. Furthermore, a real-time path planner is re-
quired to generate a path in the same or less time than the time required by the UAV to
traverse the same path [4–6].

The paper will be organised as follows. Section 4.2 will present the state-of-the-art
in path planning in the presence of dynamic obstacles. Section 4.3 provides a brief re-
sume of the A* and RRT algorithms, the smoothing algorithm (a post-path generation
algorithm applied to the RRT algorithm) and the real-time path planning algorithm all
extensively defined in our previous works [1–3]. Section 4.4 will define the obstacle gen-
eration algorithm based on pre-defined static and dynamic obstacle characteristics. Sec-
tion 4.5 will describe the amendments to the developed real-time algorithm developed
in our previous work [3]. This will be followed by Section 4.6 which will present and
analyse the results based on pre-defined performance measures in view of real-time 3D
UAV path planning. Finally, this paper will conclude (Section 4.7) with a resume of the
performance results highlighting stengths and weaknesses of both algorithms and inte-
grated system’s applicability to real 3D UAV path planning in dynamic environments for
both algorithms. Furthermore, Section 4.7 identifies future work that can be conducted
to implement this system in a real UAV environment.

4.2. PATH PLANNING IN DYNAMIC ENVIRONMENTS REVIEW

4.2.1. INTRODUCTION

Autonomous path planning is the process of automatically generating a feasible path to
the final goal point even in the presence of static and dynamic constraints, obstacles and
threats (COT) [1, 7]. Therefore, a sound path planner must always guarantee that the UAV
will reach the goal node and remain at the goal point unless given instructions otherwise
in the presence of COTs and irrespective of sensing and control uncertainties [8]. Some
path planners focused on path optimisation in an obstacle–free environment [9–11] but
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in real situations the environment incorporates different COTs [12–14]. This review will
analyse dynamic environmental modelling with its various obstacle definitions in the
context of real–time 3D UAV path planning. It is not the scope of this work to review
path planning of UAVs. For an extensive literature review on different path planning
solutions refer to Zammit et al. [1].

4.2.2. DYNAMIC ENVIRONMENT DEFINITION

A dynamic environment may include a vast spectrum of static and time–varying con-
straints, obstacles and threats which can ’pop–up’ whilst the UAV is navigating through
such an environment [12, 15, 16]. These include wind, fuel, altitude constraints, flight
profile requirements, UAV kinematic and dynamic holonomic and non-holonomic con-
straints, no fly zones, buildings, vehicles, changing weather conditions, control failures,
moving targets, addition/removal of COTs, surface to air missiles, tanks, lane markings,
irrigation system, other aircraft or UAVs and quality, loss or delay in communication be-
tween agents in a swarm setup [7, 15–25]. Not all COTs incorporate the same level of
complexity. Goerzen et al. [8] defined obstacle–complexity in terms of obstacles edges
and vertices, number of obstacles in a specific area and memory storage required for
obstacle representation and acknowledged that is a commonly used metric. Fujimura
[26] identified three categories of dynamic environments: Moving obstacles in a known
environment, Static obstacles in an unknown environment and Moving obstacles in an
unknown environment. A combination of two or even all situations requires also dy-
namic motion planning.

4.2.3. THE NEED FOR DYNAMIC PATH PLANNING

Path planning can be segmented into two main categories: global and local path plan-
ning [27–29]. A global planner generates a low-resolution, long range offline path based
on a high fidelity situational awareness. This path planning strategy is inadequate for
a time–varying environment or in situations where obstacles, threats or constraints are
unknown apriori. In these situations the path is optimised before the execution of a path
[27, 30]. Oppositely, a local planner creates higher resolution paths in a smaller environ-
mental space based on real–time information from on-board sensors. This reactive path
planning approach is ideal for dynamic environments [27, 30]. A hybrid approach is sug-
gested to outweigh the weakness of one method with the strengths of the other [30–33].

A review on path planning over a span of 15 years (2000–2015) presented by Mac et
al. [27] showed that in 49% of the path planning projects, the obstacles and targets were
considered to be static while in only 18% of the projects considered a combination of
static and dynamic obstacles. 11% considered a dynamic target with 9% of which con-
sidered adaptive UAV velocity [27]. So although different studies considered dynamic
COTs, the majority considered the agent to move at constant speed [27, 34]. This high-
lights the need for path planning in dynamic environments, although path planning in
dynamic environments is still considered a challenging aspect for researchers [27].

In a dynamic and/or unknown environment, an autonomous path planning algo-
rithm must react and re–plan in real–time or over a predefined time window, utilising
local onboard system information, a collision free path to goal based on new previ-
ously unknown COT without the assistance of an operator or guidance ground systems
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[8, 12, 15, 16, 21, 24, 35, 36]. This obvious requirement [12], is a must for realistic path
planning applications [37]. Such path planners are referred to as reactive path planners
[8, 35, 36, 38]. According to Goerzen et al. [8] such planners are ideal to mitigate rapid
time–variant environment but suffer in global planning problems finding difficulty in
reaching the final goal position and therefore lacking in path length optimisation. Al-
though the future position of obstacles can be estimated in certain situations, such plan-
ner is required to ensure non–collision in a given time window if these obstacles change
state in an unexpected manner [39].

Ensuring safety in an unknown dynamic environment for a UAV operating in real–
time is an important requirement [24]. Kuwata et al. [24] defined safety as a state into
which a vehicle can remain indefinitely without colliding with static and moving ob-
stacles or breaching constraints, assuming a constant heading by moving obstacles. In
terms of safety, both control and obstacle avoidance systems must prove that they can
reach the goal node in all possible vehicular and environmental variations [14]. With-
out these capabilities the use of unmanned vehicular systems will be highly restricted to
time–invariant, a priori defined environments [14].

For realistic path planning the UAV must be equipped with an advanced sensory sys-
tem for environmental sensing that shall be able to detect new COTs as they appear in the
scenario space [12, 13, 16]. The sampling rate of such system is inversely proportional
to the distance at which COTs must be detected [25]. Furthermore, the path planning
system must be provided with appropriate COT representation and mapping through
mathematical models that incorporate kinematic and dynamic characteristics of obsta-
cles with minimal computational demand and a fast update rate to immediately detect
changes in the environment in harmonisation with the onboard environmental char-
acteristics database [21, 34, 35, 40]. This stresses the need for dynamic resolution that
will be able to automatically adjust to handle different COTs at different distances from
the onboard sensing system so as to make optimal use of computational resources while
accurately defining obstacles eliminating the risk of leaving small passages between ob-
stacles available [41]. Moreover, COT representation shall make use of approximations to
mitigate memory and computational power limitations [8]. The control algorithm must
also react simultaneously with the path planning algorithm to avert collisions, stressing
the need for an online implementation [36]. These requirements highlight the difficulty
for a UAV to operate in unknown areas. In fact, Dittrich et al. [12] remarked that the best
solutions have yet to be found.

4.2.4. ENVIRONMENTAL ASSUMPTIONS

It is assumed that the environmental space is made up of two disjoint subsets of either
free space or obstacle space [8]. Different research works consider either that the envi-
ronmental characteristics including obstacle geometry and locations are known a priori
[15, 42] or oppositely no a priori knowledge of the environment is provided to the path
planning algorithm [13, 24, 43] or a combination of both of the above [16, 35, 44].

In the first case, COT information is provided as the exploration area expands due
to moving target [15]. In the second case, the path planner can initially assume an
obstacle–free environment with obstacles known only within a finite receding–horizon,
re–planning a new non–colliding path when a new COT is detected from sensory sys-
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tems that violates the previously generated path [13, 21, 24, 43]. This option is ideal
for surveillance, moving targets and high time–variant environments [24]. In the third
case, paths are generated offline based on known environmental COT, triggering reac-
tive re–planning in the eventuality of randomly–generated COT pop–ups that will re-
sult in a collision or non–optimal paths if the offline generated path is not updated
[12, 16, 35, 41, 44–46]. In high time–variant dynamic environments the planner has to re–
plan frequently demanding more computational power consequently limiting the ability
of the path planning algorithm to be applied online.

4.2.5. CONSTRAINTS, OBSTACLE AND THREATS (COT) SENSING AND MOD-
ELLING SYSTEMS

Computational resources are very limited in real–time implementations and their ef-
ficient use is key for realistic implementations [35]. Therefore, COT modelling for dy-
namic re-planning in dynamic environments require efficient storage, fast addition and
deletion and fast and efficient collision checks [40]. These requirements depend also on
obstacle density which is dependent upon the environment into which the UAV will op-
erate. For example, Koenig et al. [47] considered an obstacle density of 30%. Amin et
al. [35] remarked that COT representations for unmanned vehicles in 2006 were in the
majority not suitable for real–time implementations such as [48, 49] and suggested that
systems developed for the video gaming industry shall be considered.

Obstacle representation formats can be classified into 3 main categories: (1) Raw
Data (e.g. vertices-edges sets); (2) Bounding Volumes (e.g. Oriented Bounding Boxes
(OBB) and their variants) and (3) Spatial Partitioning (e.g. Grids, Quadtrees and Octrees)
[35, 50].

RAW DATA

Stereo vision was used to build 3D occupancy maps that allowed dynamic re–planning to
be realised [51]. Dittrich et al. [12] utilised also a stereo camera based system to construct
polygonal lines or circles with a minimal safety distance from each detected obstacle.
Besides stereo vision, Scherer et al. [52] and Shim et al. [53] utilised laser range finders for
obstacle detection and re-planning. Owing to the weight of laser range finders, Hrabar
[51] remarked that stereo vision offers the best solution for small UAVs although such
obstacle detection system shall be capable of defining absolute range measurements.

Similarly, a depth map can be constructed using computer vision algorithms to de-
fine the time to collision estimates [43]. Consequently, an obstacle map can be built in
local frame of reference as a depth map can provide the range to the obstacle derived
from the airspeed and bearing to obstacle from the UAV current position [43]. Further-
more, Ya et al. [19] constructed a 500x500 cell environment utilising a variable probabil-
ity function (0% to 50%) that randomly places obstacles within each cell.

BOUNDING VOLUMES

Gottschalk et al. [54] modelled COTs using OBBs for fast and reliable dynamic collision
identification in a 2D environment. Similarly, Gros et al. [21] utilised the same obstacle
modelling technique with time-invariant COTs of fixed radius of 150m. Results in a high
density COT environment showed that real–time can be achieved with a Finite Receding-
Horizon Incremental-Sampling Tree (RHIST). Similarly, Ögren et al. [55] considered a
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constant obstacle margin of 15m was considered although in sparse environments this
margin was increased to 50m.

Foo et al. [7], defined a threat zone as a sphere for above ground and a hemisphere
for a ground vehicle of user–defined radius surrounding an obstacle. A radius of 20,000ft.
was arbitrary selected for such threats. The radius tolerance was reduced by a factor of
4 for non-enemy UAVs [7]. Similarly, Srikanthakumar et al. [14] considered spherical
obstacles with a safe radius greater than the actual radius by 25% and a variable influ-
ence range with a repulsive potential to divert the UAV from obstacles. Also, collision
cones are constructed for every obstacle which is also surrounded by a safety ball of 5m–
20m radius [36]. Similarly, Ok et al. [56] defined a low-level planner that adds repulsive
forces to obstacles governed by a higher level Generalized Vonoroi Diagram to construct
a collision–free path in the presence of uncertainty.

Bollino et al. [15, 57] defined obstacles by simple shapes including squares, dia-
monds, circles, ellipses and rectangles using the p-norm formulation. Similarly, to Foo et
al. [7] and Srikanthakumar et al. [14], Bollino et al. defined a distance–dependent buffer
to mitigate uncertainty in obstacle modelling [15]. Such buffer increases with increase
in distance to the obstacle from the UAV so as to emulate the uncertainty increases as
the UAV moves away from obstacles [15, 58]. Similarly, Likhachev et al. [44] considered
a buffer zone around obstacles with high costs that required the planner to stop and
conduct 90 degree turns to avoid obstacles.

Adolf et al. [13] considered an incremental heuristic path planner for a priori known
COTs and a reactive anytime path planning algorithm for incremental obstacle pop–ups
which were defined by 3D non–convex polyhedral surfaces. A 3D voxel grid was used to
index and update polygonal pop-up COTs. The helicopter model was considered to be
holonomic and the 3D path planning algorithm exhibited exponential runtime complex-
ity [13]. Consequently, anytime planners may lack in constantly generating new global
paths whenever the environment changes [44]. Similarly, Lee et al. [16] designed static
obstacles using polygons, moving obstacles using rectangular no–fly zones and pop–up
threats as circles with the latter designed using the Markov Chain method. Through a
Model Predictive Control method the agent was able to manoeuvre in a 9 pop–up threat
environment with 5 targets and 5 static obstacles. Also a first order Markov Chain was
developed in [45, 59] to generate the sequence of pop–ups.

SPATIAL PARTITIONING

Visibility maps build lines with all possible vertices from the agent position by consid-
ering that the shortest path touches polygonal obstacles at their vertices [8]. The Edge–
Sampled Visibility Graph, a variant of the primary method, defines a minimum edge
length to build a visibility graph by assigning multiple vertices along edges of polyhedral
obstacles [8]. Kim et al. [60] proposed the Quantized Visibility Graph (QVG) to model
polygon shaped obstacles. In a hybrid approach, the Freeway Method used bounding
cylinders around obstacles to build a map of lines. Results show that it is not limited to
2D but is incomplete and non–optimal [8]. Oppositely, the Silhoutte Method is complete
for any obstacle geometry with any dimension [8].

The visibility method in conjunction with a sparse uniform space sampling algo-
rithm was developed by Tsardoulias et al. [61] to model COTs. Sampling–based methods
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do not require explicit construction of obstacles when opposed to more deterministic
approaches reducing computational time [62]. Results showed that the A* algorithm for
3D path planning in combination with visibility graph for polygonal obstacles modelling
did not guarantee the shortest paths [63]. Moreover, Visibility and Voronoi diagrams can
only generate shortest paths with optimal clearances in low–dimensional spaces with
only polygonal obstacles [64, 65]. Voronoi diagrams were mainly used for static obsta-
cles although Roos et al. [66] added bounds to Voronoi channels to mitigate dynamic
COTs in 2D environments. Such approach can be extended for 3D environments [67].

A Quadtree data structure was utilised by Amin et al. [35] for obstacle representation.
This was integrated with a modified RRT algorithm for path planning. Another variant is
the grid map decomposition technique that offline defines obstacle–free rectangles and
replaces all nodes within with edges so as to improve path optimisation [68].

4.2.6. SOLUTIONS

Numerous researchers have tried to use classical approaches such as classical algorithms
such as cell decomposition, potential field, sampling–based and sub-goal networks to
achieve real–time path planning that can then be applied for dynamic re-planning [27,
69–71].

Graph–based approaches such as the Sparse A* Search path planning algorithm is
also a potential candidate for path planning in dynamic environments [72–74]. To miti-
gate the static nature of the A* algorithm, a mechanism named the Virtual Force was pro-
posed for dynamic re–planning [75]. Likhachev et al. [44] successfully implemented an
A* based anytime algorithm in a time–variant obstacle where targets are randomly gen-
erated. The trajectory planner was tested in a 500mx500m area with a constant speed of
5m/s. Trajectories included both parking, reverse manoeuvring in a dense environment.

Sampling–based methods were also proposed by a number of researchers for dy-
namic re-planning. Such methods are considered due to their asymptotic optimality,
efficiency although they cannot guarantee an optimal solution [27, 76, 77]. Hsu et al. [39]
developed an online Probabilistic Roadmap (PRM) that generates a new path in a prede-
fined time window when obstacle motion differs from estimated during execution. Sim-
ilarly, Otte et al. [78] developed an asymptotically optimal re–planning algorithm (RRTX )
that updates a goal rooted tree when new obstacles are detected. During re–planning the
environment is assumed static.

Heuristic methods, such as Artificial Neural Network, Fuzzy Logic and Nature–inspired
Methods can also generate optimal path planning in uncertain, partially unknown and
dynamic environments [27]. However, these methods require a learning phase and high
computational demand. The latter is highly limited in real–time applications especially
for small UAVs [27].

Different researchers model various different static and dynamic environments with
different degrees of complexity. Hrabar [51] defined a 40mx10mx6m environmental space
furnished with three 4m poles, a 1.5m wall and a rectangular obstacle. It was concluded
from this study that on average 0.15s were required to re-plan a new non-colliding path
when new obstacles were detected. Bollino et al. [57] considered a 32 obstacle 2D envi-
ronment into which the planner was allowed to travel backwards, solving problems that
otherwise would lead to no solutions. U-turns and backwards movements were also
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considered in [25].
A different approach is the velocity obstacle concept that assumes known velocities

of obstacles and considers a range of possible agent velocities based upon a predefined
maximum acceleration to generate collision paths offline [12, 79, 80]. This concept as-
signs discretises velocities and associated costs based on the vicinity to nearby velocity
obstacles [12, 79]. Similarly, Ögren et al. [55] considered a variable agent speed with a
maximum acceleration of 30m/s2 and a maximum speed of 100m/s with moving obsta-
cles at constant direction and speed of 30m/s. Results show that by increasing horizon
lengths performance is enhanced for both static and moving obstacles. Others devel-
oped the Directional Priority Sequential Selection [81] and Predictive Trajectory Plan-
ning algorithms [38] for 2D reactive trajectory planning in dynamic environments.

In the majority of the studies constant speed scenarios are considered [34]. For in-
spection purposes, UAV typically fly at low speed, lower than 5m/s or just hover in situ-
ations when they are acquiring images [13, 51]. Such situation differs from high altitude
problems as the agent is operating close to ground [12].

The pre–defined time window requirement of reactive obstacle avoidance was de-
fined by Chawla et al. [36] at 4s to 8s using a partial integrated guidance and control
approach using a real six–DOF model that executed in a single loop. It must be pointed
out that such parameter increases significantly from 2D to 3D. In fact, path planning
in 2D requires polynomial time while in 3D the solution is NP–hard for polygonal and
polyhedral obstacles respectively [82, 83].

Bohren et al. [25] developed a sensory system that is able to provide a sensing range
varying from 4 to 60m using 90 degree field of view sensors at a rate of 10Hz. Results in a
300x300m map showed that vehicles were detected out to 60m with an accuracy of 1m/s
and ground points within a 30m range in good conditions and depending on ground re-
flectivity. Furthermore, Benjamin et al. [84] implemented wireless communication to
provide the agent with real–time 2D obstacle information for real–time obstacle avoid-
ance in marine Unmanned Surface Vehicles (USVs). In the same field, Larson et al. [42]
developed real–time obstacle avoidance using the projected area method.

Different performance measures are used to assess the validity of different path plan-
ning algorithms. In our previous work, path length and computational time were con-
sidered [1–3]. Besides these two parameters in dynamic environment the clearance cri-
terion i.e. the minimum distance from the UAV to the COT was considered as a per-
formance measure [14, 36]. Simulations show that at least five times the radius of a
surrounding ball around the obstacle is required for safe operation [36]. Furthermore,
another performance measure is the deviation to the goal point for the mission to be
successful. In this regard, Chawla et al. [36] considered a maximum deviation of 0.5m
radius around the goal position.

4.2.7. CONCLUSION

This extensive literature review initiated with an overview of what different researchers
considered as a dynamic environment. Such environment constituted time–invariant
and time–variant COTs that are either known, partially known or unknown to the path
planner a priori. The need to generate a reactive real–time path in such an environment
was discussed in view of realistic UAV applications. This highlighted the importance of
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the UAV to be equipped with all the reliable sensory systems and adequate computa-
tional power. Then the review discussed the different COT sensing and modelling sys-
tems considered by different researchers to best represent the dynamic environment in
view of computational demand limitations and efficient path planning. Finally, the most
promising path planning solutions proposed by different researchers in 2D/3D dynamic
environments in different dynamic environments emulating reality even with USVs and
robots as agents were reviewed and discussed. This review will form the basis of our
3D real–time path planning in a dynamic environment that will be discussed in the next
sections.

4.3. A*, RRT, SMOOTHING AND REAL–TIME ALGORITHMS

4.3.1. INTRODUCTION

This section will briefly describe the most utilised graph–based and sampling–based
methods, namely the A* and RRT algorithms. Then the smoothing algorithm employed
to smoothen the non–optimal path generated by the RRT algorithm will be explained.
This section will conclude with a resume of the implementation of both path planning
algorithms emulating real–time situations.

4.3.2. THE A* ALGORITHM

Graph–based methods define the state space into an occupancy grid defining obstacles
residing in grid points as inaccessible points. Based on the free grid points, the graph–
based algorithms check whether a path connecting the start and goal position exists [85].
Graph–based algorithms only offer a guarantee of solution if an adequate resolution is
selected [77].

The standard A* algorithm uses a heuristic evaluation function ( f (n)) to determine
the cost of neighbouring grid points [22]. This evaluation function sums the cost from
the current position to a prospective future position and the cost from the latter to its
goal node [22, 86]. For a detailed explanation of this algorithm refer to our previous work
[1–3].

4.3.3. THE RAPIDLY–EXPLORING RANDOM TREE (RRT) ALGORITHM

Sampling–based methods generate a path by connecting unevenly selected obstacle–
free points in the configuration space [37, 77]. As opposed to graph–based methods,
such algorithms can generate a path within infinite time provided that a path exists [77].

The standard Rapidly–Exploring Random Tree (RRT) constructs a unidirectional tree
by randomly selecting obstacle–free points. A new tree branch is defined a predefined
distance from the nearest point on the tree if a direct path to the latter does not collide
with an obstacle. A path is formed when one of the tree branches reaches the goal node
and another connects to the start point [87–89]. Such algorithm is efficient in complex
high–dimensional environments although the non-optimal path generated by this algo-
rithm may require smoothing [64, 89, 90]. As for A* refer to our previous work for a more
detailed explanation of the RRT algorithm and its variants [1–3].
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4.3.4. THE SMOOTHING ALGORITHM

The smoothing algorithm randomly selects two path points and then randomly defines
two points on the path segment connecting the formerly selected points and their re-
spective next path points. If the interconnection of the latter two points results in an
obstacle–free line, then all points between these two points are neglected from the path.
This process is repeated until the percentage path length reduction over the last 20 iter-
ations is less than 1%. Please refer to our previous work for a more detailed explanation
and for assessing the algorithm’s effect on path planning performance [2, 3].

The smoothing algorithm is developed to target the non–optimality of paths gener-
ated by the RRT algorithm. Oppositely, the A* algorithm generates the shortest available
path based on the considered resolution. Therefore the smoothing algorithm can only
improve the path by eliminating the grid and assumes that each point in the free space
can be used to smoothen the path. From our previous work [1, 2] it was concluded that
the improvement is marginal. Furthermore, the implementation of the A* algorithm in
real–time situations can lead to non–colliding smoothed path points which are very near
to obstacles or reside on obstacles due to different frame of reference in the next iterate
when the start point is moved further into the path. Such situation can result in a colli-
sion.

4.3.5. THE REAL–TIME ALGORITHM

As remarked earlier, real–time path planning is fundamental for a UAV to reach the final
goal position in a dynamic environment [57, 91, 92]. In this light, an algorithm to emulate
real–time behaviour was developed in our previous work [3].

In a nutshell, this algorithm defines an obstacle–free intermediate goal point in the
direction of the final goal a predefined distance from the current UAV position based
upon the sensory system’s range and Field of View (FOV). An intermediate path, if pos-
sible, is generated by the A* or the RRT algorithm from the current position to the in-
termediate goal point. Consequently, the UAV’s new position is defined a predefined
distance along the generated path. This distance is selected based upon the UAV speed
and maximum allocated intermediate time and assuming that actuator systems are de-
fined with high fidelity and the UAV is not affected by external factors. Owing that the
time needed for the UAV to travel this arbitrary distance is very low it was assumed that
the environment will remain static in this time frame. The algorithm has a two layer time
limitation one to generate an intermediate path and another for the total duration of the
mission. Review our previous work [3] for a thorough explanation, parameter definition
and assignment and performance results with both A* and RRT algorithms.

4.3.6. CONCLUSION

This section provided an overview of the algorithms that are utilised to generate a real–
time path in a dynamic environment. The A* and RRT algorithms formed the backbone
of the path planning algorithms. The smoothing algorithm is considered to mitigate
the non–optimality of the RRT algorithm. Finally, the real–time algorithm provided a
method to assess the performance of both path planning algorithms in situations de-
rived from real life UAV applications.
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4.4. THE OBSTACLE GENERATION ALGORITHM

4.4.1. INTRODUCTION

The scope of this algorithm is to serve as a generic method where different obstacles
derived from real–life situations but not only are modelled with custom user–defined
fixed and time–variant characteristics to assess the validity of the holistic real–time path
planning algorithm. Although in this case the A* and RRT algorithms are considered,
this algorithm is modular enough to test any path planning algorithm using either the
previously developed real–time algorithm or any other algorithm.

The initial and future environments are estimated before the initiation of the real–
time path planning tests. In real–time path planning the environment is estimated by
the sensing and modelling system which is independent of the path planning system.
The computational demand required by the sensing and modelling system is beyond the
remit of this work and may vary depending upon the software and hardware utilised. The
maximum computational time to generate an intermediate path was selected in view of
the UAV speed, resolution and environmental size.

4.4.2. THEORETICAL RATIONALE

As derived from literature, in real–life situations every obstacle can be approximated by a
regular shape [7, 12, 14, 21]. The algorithm initiates with retrieving from a predefined file
the shape and size of each obstacle that will be present initially and at a future time in the
environment. The obstacle position in the obstacle characteristic file was initially set at
the middle of the environmental space. Each shape is modelled through a finite number
of planes which are interconnected to form closed or open shapes. This shape is then
replicated for a predetermined number of times and each copy is randomly placed in
the environmental space. In case that also rotation is considered, a rotation by a random
value different for all 3 dimensions about a random line is performed for each replica.

The next step is to differently shift and if requested rotate each of the generated repli-
cas by a random distance in a random direction for a finite number of times. In real
terms, this implies variable speed, roll, pitch and yaw obstacles. Each time all obsta-
cles within the environmental space are shifted implies that a predetermined amount of
time has elapsed. This time is equal to the time required by the UAV to traverse from the
current point to a new point on the intermediate path. Each environmental space is al-
located a time stamp to harmonise with the real–time algorithm. Obstacles are allowed
to move in and out of the environmental space and to combine into one another so as to
emulate real–life situations. The distance moved by obstacles is required to be less than
the distance to be covered by the UAV in the same time as otherwise the UAV will not be
able to avoid moving obstacles. This requirement is essential for randomly moving ob-
stacles whilst for non-random motion, a model can be estimated and even fast moving
obstacles can be avoided.

4.4.3. IMPLEMENTATION

In the implementation three shapes were considered, namely a cube, the V obstacle and
2D planes with small windows. The characteristics of each are tabulated in Table 4.1.
Modular dimensions with no units are considered to offer a direct scaling with respect to
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the environment volume. Four different scenarios with increasing complexity are con-
sidered, namely:

• Scenario 1. 10 cubes of 0.1x0.1x0.1 with no rotation;

• Scenario 2. 10 cubes the same size as Scenario 1 but with random rotation at defi-
nition stage and with changing independent rotation with time iterates;

• Scenario 3. 10 V obstacles constructed by adjoining one side of each of the two
planes with an angle of 53◦ between the planes. Each plane has a size of 0.1x0.112
and is randomly rotated as in Scenario 2. This plane size was considered so that it
fits exactly into the considered cube; and

• Scenario 4. Two planes on the Y–Z axis separated by 0.4 each with a window of
0.2x0.2 as well as the obstacles in Scenarios 2 and 3 combined.

Figure 4.1 illustrates each scenario for a random time iterate. The positions of each
obstacle for each scenario will change every iterate as described earlier.

Table 4.1: Obstacle shapes

Shape Size Number of Planes Closed/Open

Cube 0.05x0.05 6 Closed
V obstacle 0.05x0.05 2; (90o with each other) Open
Plane with window 1x1 1; window (0.05x0.05) Open

4.4.4. CONCLUSION
This section provided an overview of the rationale and implementation of the dynamic
obstacle generation algorithm. This modular algorithm was designed to emulate real–
life situations and the user can design the environment based on the already considered
obstacles or new ones. Furthermore, the number, characteristics, rotation and move-
ment can be individually defined in a time–variant nature. In flight pop-ups and real–
time obstacle elimination can also be modelled.

4.5. ENHANCEMENTS TO THE REAL–TIME PATH PLANNING AL-
GORITHM

The real–time algorithm thoroughly explained in [3] was adapted to integrate the obsta-
cle generation algorithm described in Section 4.4. Table 4.2 adapted from our previous
work [3] tabulates the nominal parameter values that are considered as constant for the
scope of this paper. Each parameter is defined in a modular way based on the rationale
described in our previous work [3]. All parameter assignments considered a 1x1x1 en-
vironment. Furthermore, for A* the environment and start and goal points were shifted
by a random distance between 0 and half the distance between grid points to eliminate
path length ripple as thoroughly explained in [2].
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(a) (b)

(c) (d)

Figure 4.1: Environmental scenarios: (a) Non-rotating cubes scenario, (b) Rotating cube scenarios, (c) V ob-
stacle rotating scenario and (d) Mixed scenario. These scenarios incorporate cubes, V obstacles and obstacle
planes in Y-Z with windows as openings.
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The resolution is defined as the amount of grid points per dimension. The RRT is
a sampling–based method and therefore every point in the available space is available.
The limitation is the distance the planner can move during intermediate path construc-
tion in the generated path direction. The distance to travel per iterate and the distance
between the current UAV position and an intermediate goal point are denoted by ds_step

and di nt_g oal , respectively. The maximum time to generate an intermediate path and
the maximum time to reach the goal from start position are denoted by ti ter ate_max and
tpath_g en_max , respectively. Finally, the distance reduction factor (d f actor ) is considered
to reduce the distance to the intermediate goal point and the new UAV position as the
latter may reside on an obstacle.

The UAV speed remains constant during the traversal of the path but is varied be-
tween one test and another for both algorithms and all scenarios. For the analysis this
modular parameter is varied between 0.01[-]/s and 0.1[-]/s in steps of 0.01[-]/s, where
[-] represent modular distance units. A 5000× 5000× 5000 distance unit environment
was considered. As described in [3], these values were determined based on the nominal
speeds for exploration situations in a nominal environment.

Table 4.2: Real–time algorithm parameter definition

Parameter Nominal Value Units

Resolution (r es) 21 [-]
Step size RRT (dstep_RRT ) 1

21−1 = 0.05 [-]
Distance to travel per iterate (ds_step ) 2

r es−1 [-]
Distance between current UAV position and
prospective new intermediate goal point (di nt_g oal )

0.4 and 0.6 for Mixed
case scenario

[-]

Maximum time to generate path segment
(ti ter ate_max )

ds_step×60×60
100×vU AV

s

Maximum time to generate path (tpath_g en_max ) 10× ti ter ate_max s
Distance reduction factor (d f actor ) 0.8 [-]

Once the above parameters are defined, the environment is generated apriori for a
predefined number of times based on the expected amount of iterates required which
varies significantly for different path planning algorithms, environmental scenarios and
random sequence that is different for different iterates but initiates using the same ran-
dom seed for both A* and RRT tests. Therefore, the number of environmental genera-
tions was defined with a large margin.

Unless the intermediate and total path generation time is less than ti ter ate_max and
tpath_g en_max , respectively the real–time algorithm can continue searching for a path
to intermediate goal otherwise no path is possible. In a nutshell, during this searching
process, the algorithm loads the respective environment, assigns a new intermediate
goal point, generates a path from the current UAV position to goal if possible and moves
the UAV to a new current position on the generated path.

The new intermediate goal point is determined by di nt_g oal in the direction of the
final goal provided that the selected point does not reside on an obstacle otherwise
di nt_g oal is reduced by d f actor . If although an intermediate goal point is available but
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a path cannot be constructed, the algorithm reduces di nt_g oal by d f actor to increases
the chances of generating a path. This process is repeated until the intermediate time
exceeds the maximum allowable intermediate time. Another option that is considered
is to wait at the current UAV position until the intermediate goal point is available. This
waiting process is halted if no solution to the intermediate goal point results in the al-
lowable maximum intermediate time. Both solutions will be assessed and the results
discussed in Section 4.6.

A similar approach was considered in defining a new UAV position based on the con-
structed path using either the A* or RRT algorithms to the intermediate goal point. Al-
though the intermediate path was obstacle free when constructed, in the next iteration
an obstacle may have moved in the path line. Therefore, the algorithm must re–check
that the path line ds_step distance from the current UAV position has remained obstacle–
free. Otherwise, the algorithm will need to move the UAV ds_step ×d f actor distance on
the path. In case, the path segment in consideration remained non–obstacle–free the
expression ds_step ×d f actor is further re–multiplied by d f actor . This process is repeated
until a non–colliding path segment to new UAV position is found or the maximum in-
termediate time has been exceeded. Only in the case of A*, a movement less than the
resolution can yield a no movement whatsoever, resulting in a waiting phase for the UAV.

In contrast with our previous implementation [3] that only considered 2D planes,
this implementation considered also open and closed 3D obstacles. 3D obstacles present
a new situation that makes it more difficult to determine whether the obstacle is closed
and therefore points within the obstacle are unavailable or opened from one part or an-
other of the 3D obstacle, implying that points within are freely available. This issue was
mitigated by checking that each point is not smaller than the maximum and not larger
than the minimum of coordinate in each plane for every dimension. In this case, the
point will reside inside the closed 3D obstacle. Besides this, for A*, a safety margin of
half the distance between grid positions was also considered.

4.6. RESULTS

4.6.1. INTRODUCTION

The whole algorithm described in the previous sections was implemented in MATLAB
and simulations were computed using an Intel Xeon ES–1650, 3.2GHz. The path length,
computational time and success rate are the performance measures considered. Each
constant parameter tabulated in Table 4.2 was assigned the values tabulated in Table 4.2
whilst the UAV speed was varied as described in Section 4.5.

4.6.2. A* RESULTS

Figure 4.2 illustrates the performance results of the A* algorithm for the two cases de-
scribed earlier that consider two contrasting rationales when a path to the intermediate
goal point is not available. In the first case, the real–time path planning system waits in
its current UAV position until a path to the intermediate goal point is available (A* wait-
ing). In the second case, the real–time path planning system defines a new intermediate
goal point a shorter distance (governed by d f actor ) towards the assigned UAV position
(A* moving).
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The path lengths for A* waiting and A* moving are similar for the first three scenar-
ios for all speeds considered although the mean of the A* waiting instances results in a
longer length of 0.6%, 0.1% and 0.3% as compared to A* moving for the first three sce-
narios, respectively. This shows that by moving nearer to the obstacle there is the pos-
sibility of finding shorter paths for the same environment. Another interesting point is
that the path length for the cube with no rotation is always less than the rotation case for
the moving algorithm. Oppositely, the waiting algorithm shows situations were the two
lengths are equal or even the rotating case is shorter with respect to the non–rotating
case. By nearing in the vicinity of obstacles, the planner can make optimal use of the
non–rotating factor creating a shorter path. By waiting for the obstacle to clear for the
prospective intermediate goal position, being a rotating or a non–rotating obstacle will
make lesser of a difference in terms of path length.

Overall, the shortest path length was recorded for the non–rotating cubes followed
by the rotating cube and the V–obstacle cases. Rotating objects virtually occupy a larger
volume than their actual size as opposed to non–rotating equivalent objects resulting
in longer paths as their effect on the generated path can be larger once their orientation
and position changes. Although the V–obstacle, being an open obstacle with 2, 2D planes
occupies a lower volume with respect to the cube cases, it may result in shorter paths,
but this is not the case as confirmed from the results. The definition of the V–obstacles
in a graph–based environment is dependent upon the resolution. For the considered
resolution, inside the V–obstacle the distance between the planes is at some parts (more
than 50%) lower than the distance between grid positions (a buffer of half the distance
between grid positions is considered for all planes). Also, the V–obstacle is rotating with
each plane larger than each side of the obstacle. These two factors combined conse-
quently increase the path length with respect to the cube cases. Speed for both cases
considered had no effect on the path length. This is attributed to the fact that irrespec-
tive of speed the planner allocates the shortest sub–path. With higher speeds the UAV
will travel this sub–path faster consequently not effecting path length at all.

For the Mixed cases, the waiting algorithm resulted in 0% success rate for the ma-
jority of the speeds considered with a maximum of 2% at 4 other different speeds. So
although from the successful runs it can be deduced that the path length increases by
approximately 1.5 times with respect to the first 3 scenarios, statistically the successful
sample is low to draw conclusions. From the moving case results, with an average suc-
cess rate of over 50%, the same conclusion as for the waiting case can be drawn. Owing
to the difficulty and lack of free space in the mixed scenario case, the planner has to tra-
verse a larger portion of the environmental space to reach the goal position resulting in
1.5 times path length with respect to the other scenarios. With increase in speed a drop
in path length is recorded for the moving situation. This does not imply that at higher
speeds the path length decreases but results since the higher the speed the lower the
success rate due to less intermediate time allocation. Therefore the best performing it-
erations as speed increases are considered in the path length analysis since the others
lead to the maximum intermediate time violation.

The computational time for A* moving for all scenarios for all speed considered is
longer by 2.31, 2.27, 6.32 and 7.19 times with respect to A* waiting for the non–rotating,
rotating, V–obstacle and Mixed cases respectively. The speed has no effect on compu-
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tational time for both A* waiting and A* moving for the reasons described earlier. If the
mixed case scenarios are neglected due to low success rate for the A* waiting algorithm,
results show that by waiting for the obstacle to clear the UAV will reach to a solution
faster. So if computational demand is the bottleneck and the scenario complexity is in
line with the first three scenarios, it is not worth the risk of nearing in the vicinity of an
obstacle as the success rate is in line with A* moving.

The maximum intermediate time allocated for the first three scenarios is absolutely
more than enough to generate an intermediate path. The lowest computational time
is recorded for the V–obstacle. It is only 8.0% and 21.8% of the non–rotating cube case
for the A* waiting and moving respectively. The V–obstacle scenario constitutes the low-
est obstacle restricted case since each obstacle consists of only two planes, therefore it
is easier to define the obstacle nodes in the graph space and check for collisions. The
obstacle avoidance sub–routines are the most computationally demanding parts of the
algorithm. Therefore, the inclusion of 3D obstacles will increase the computational bur-
den since besides a larger number of planes from 20 (V–obstacle) to 60 (cubes) the al-
gorithm need to model and check for collisions inside the cubes. Also from Figure 4.2 it
can be deduced that obstacle rotation increases computational time by 5.1% and 3.3%
for A* waiting and moving, respectively. This is attributed to the rationale described ear-
lier that with rotation the unavailable space changes in orientation between one iterate
and another causing more adaptions in the construction of the new intermediate path.
For the mixed case in the A* moving algorithm, a larger mean and variance is recorded
for the low speed situations. This is attributed to the higher success rate for low speed
situations due to the higher maximum intermediate time allocation.

For A* waiting the average success rate is 100%, 99.8%, 97.4% and 0.6% while for
A* moving the success rate is 99.7%, 100%, 98.7% and 66.2% for Scenarios 1 to 4, re-
spectively. The results show that A* moving outperforms A* waiting in the mixed case
scenario with an almost equal success rate close to 100% for the other scenarios. The
difference in success rate between the variants increases with the complexity of the sce-
nario. This can be attributed to the fact that the A* moving algorithm takes more risks
in approaching an obstacle with a greater chance of finding an available grid position
behind the obstacle while the A* waiting case is more vigilant and waits until a path is
available within its safe zone. Although the difference in success rate for the first three
scenarios is minimal this does not imply that by adding rotation the chances of finding a
path to goal remain the same. Results of success rate only show that the allocated max-
imum intermediate and total times are more than required for both. So the difference
is not visible. The rotating factor success rate reduction cannot be neglected if more
stringent times are applied, as is deduced in the computational time analysis.

Furthermore, the success rate is independent of speed for both variants for all sce-
narios except for the mixed case in A* moving. With lower speeds the planner is allocated
more time to find a path and therefore the chance of finding one is higher. This trend is
not shown in all cases except for the A* moving in the mixed case since the success rate
is saturated. For the A* moving mixed case a drop in success rate is visible mainly due
to the lower maximum intermediate time allocation. The main cause of unsuccessful
runs in both A* waiting and moving is the lack of intermediate time. A* moving success
rate results also in some total time violations for the mixed case as the path length is
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Figure 4.2: Performance parameters vs. speed: (a) Path Length for A* waiting, (b) Computational Time for
A* waiting, (c) Success and Failure rates for A* waiting, (d) Path Length for A* moving, (e) Computational
Time for A* moving and (f) Success and Failure rates for A* moving for 100 iterates for each considered
situation (speed and scenario) with 95% confidence interval. (r es = 21,di nt_g oal = 0.2,d f actor = 0.8 and
ti ter ate_max , tpath_g en_max are a function of the UAV speed).

longest for this scenario. This violation is never triggered in A* waiting. Oppositely, a No
path violation is recorded for A* waiting. A No path violation is recorded in 2 instances
out of 4000 where the planner waited but while waiting the obstacle moved towards her
causing a collision. This rare situation is very dangerous especially in non-combat appli-
cations. So the use of A* waiting should be used with caution to eliminate this possibility.
Otherwise it would be better to risk rather than get crashed into by an enemy or moving
obstacle.

In conclusion, the path length and computational time for both A* waiting and A*
moving are similar. The overall success rate is only equal for the first three scenarios
but better by 65.6% for A* moving with respect to A* waiting for Scenario 4. This shows
that there exists a better chance of reaching the final goal if the planner identifies a
closer intermediate goal point that will allow the UAV to extend its visual line of sight
at the expense of being nearer to the obstacle. As the speed of the UAV is assumed to
be equal or higher than that of an obstacle in the environmental space, the UAV will
always be safe to fly away from the obstacle. Speed has negligible effect on path length
and computational time for the considered speed range. Finally, obstacle density and
rotation have adverse affect on path length, computational time and success rate.

4.6.3. RRT RESULTS

Figure 4.3 illustrates the performance results for the RRT algorithm for the waiting and
moving cases for the scenarios described in the A* algorithm analysis. The lowest path
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length was exhibited for the cube case with no rotation, followed by the rotating cube
and V–obstacle scenarios with the mixed case exhibiting a multiple times larger path
length due to the multiple times higher scenario complexity with respect to the other
scenarios. Although the V–obstacle occupies less space than the cube, its two planes
are larger than each plane of the cube. Furthermore, since a path can be constructed
multiple times faster for the V–obstacle scenario than for both cube cases due to lower
obstacle density, the constructed path will not be as optimal since the requirement in our
path construction algorithm is to construct a non–colliding path in the minimum time
possible and the amount of restrictions to tree propagation in the V–obstacle case will be
less with respect to the cube cases. Although the smoothing algorithm will reduce sharp
turns in the path it will not achieve the same result as if the path was smoother from the
beginning.

The results in terms of mean and standard deviation for both RRT variants are equal
for all speeds considered for all scenarios except for the mixed case scenarios. The rel-
atively large path length difference for the moving configuration in the mixed case is
attributed to the higher obstacle density. Results show that path length is independent
of speed for all scenarios. This implies that irrespective of speed the path length is in-
variant although the path followed may differ depending on the random seed sequence.
Rotation adds to path length as can be deduced from the non–rotating and rotating sce-
narios. The addition is less than 0.1% for both RRT waiting and moving configurations.
These conclusions were also derived in the A* case.

The computational time for RRT waiting is 3.0%, 2.4% and 1.2% times longer with
respect to RRT moving for non–rotating cubes, rotating cubes and V–obstacle rotating,
respectively. For the mixed scenario, comparison cannot be made since the success rate
for the waiting configuration is 0% for all tests. Results for the first three scenarios show
that in terms of computational time, the RRT moving option is better than the RRT wait-
ing option for all cases. As for A*, the lowest computational time is recorded for the
V–obstacle case, 5.0 and 4.9 times lower than the second best performing scenario i.e.
non–rotating cube case for RRT waiting and moving, respectively. By introducing rota-
tion to the cubes the computational time increased by 32.3% and 33.0% for RRT waiting
and moving, respectively. The difference in computational time between the mixed case
and the other scenarios is multiple times longer for the moving case.

The low obstacle density of the V–obstacle case (open obstacle) is advantageous for
the RRT planner as the environment is almost free except for two planes per V–obstacle.
Computationally it is easier to check for collisions in tree branches, path segments and
new intermediate and UAV positions if obstacles are made of only 2D planes rather than
closed obstacles. In closed obstacles, besides checking for collisions with obstacle sur-
faces, the collision avoidance sub–algorithm must check if any part of the path segment
or the point lies inside the 3D obstacle. This explains the lower computational time of
the V-obstacle case with respect to the non–rotating cubes. Zooming in on Figure 4.3 (b)
and (e), shows that as the speed increases the computational time remains constant for
all scenarios except for the Mixed case Scenario in the moving case configuration. Only
the maximum intermediate and total times are a function of speed. The maximum in-
termediate and total times only determine the success rate. So independent of speed the
planner is required to construct a path a constant distance from the current UAV position
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to an intermediate goal point and determine the new UAV position also a constant dis-
tance from the current UAV position on the constructed path segment. This explains why
for the different speeds considered the computational time is invariant. For the mixed
case in the moving configuration the reduction in computational time with increase in
speed is a consequence of the drop in success rate due to lower maximum intermedi-
ate time allocation which is inversely proportional with speed. The computational time
to generate an intermediate path is mainly dependent upon scenario difficulty as can
be deduced from Figure 4.3. Therefore, it can be concluded that computational time is
independent of speed for both RRT variants.
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Figure 4.3: Performance parameters vs. speed: (a) Path Length for RRT waiting, (b) Computational Time for
RRT waiting, (c) Success and Failure rates for RRT waiting, (d) Path Length for RRT moving, (e) Computational
Time for RRT moving and (f) Success and Failure rates for RRT moving for 100 iterates for each considered
situation (speed and scenario) with 95% confidence interval. (ds_step = 0.05,di nt_g oal = 0.1,d f actor = 0.8
and ti ter ate_max , tpath_g en_max are a function of the UAV speed).

Figure 4.3 (c) and (f) illustrate the success rate for RRT waiting and moving, respec-
tively. The figure shows a 100% success rate for both configurations for the cube with and
without rotation and the V–obstacle scenarios. The results show the robustness of both
RRT variants and the look–ahead distance algorithm that is able to mitigate the effect of
moving obstacles. For the mixed case, the RRT waiting case showed no successful runs
while for the moving case a success rate of 98% was achieved for low speed reducing to 0
as the speed increases. This is attributed to the fact that in the waiting case the planner
waits until the intermediate goal point a predetermined distance from the current UAV
position is free from obstacles and a path to this intermediate goal point is possible. The
maximum intermediate time which is equal to the waiting time is then not enough for
the obstacle to move away from the intermediate goal position. For the moving case,
the planner reduces this distance by the distance reduction factor until an intermediate
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path to an intermediate goal point is possible. This effect is only visible for the mixed
case since in this situation the environment is crowded with obstacles and so the above
mentioned condition that an intermediate path is not possible is more frequent.

As described earlier, speed defines the maximum allowable intermediate and total
time for the planner to generate a path. For the first three scenarios, time was never the
bottleneck and the planner was able to construct the path in a fraction of the maximum
intermediate and total time. The planner in all situations will require a range of times
to generate intermediate paths as obstacles’ initial and time–variant positions change
during path construction from one run to another although the start and goal points,
environmental space and amount, size and shape of obstacles is constant for a particu-
lar scenario. Therefore as speed increases and therefore the maximum allowable inter-
mediate and maximum time reduces a higher percentage of runs for the Mixed case will
exceed the maximum allowable intermediate time at one instance, resulting in a maxi-
mum intermediate time violation. In fact, the majority of unsuccessful runs results due
to insufficient intermediate time. This explains the drop in success rate with increase in
speed.

Another aspect is that the RRT waiting case resulted in less No Path situations than
RRT moving. This is attributed to the fact that in the moving case the UAV is nearer
to moving obstacles than in the waiting case that waits until a path a predetermined
distance from the current UAV position is possible. This increases the risk of collision as
the obstacles can move into the new or current UAV position for the moving case with
respect to the waiting case.

In conclusion, results of both A* and RRT show that exploring further into the
vicinity of an obstacle increases the chances of finding a viable path vi s−a−vi s wait-
ing at the current position until a path to an intermediate point is possible. The mov-
ing tactic increases the risk of collision due to a number of factors possibly sensor
inaccuracy and unknown future obstacle state. On the other hand, waiting allows the
UAV to stay at a safer position from the obstacle in its vicinity, but the UAV cannot stop
forever and staying stationary will make the UAV an easy prey. Therefore, for the scope
of comparison between A* and RRT both moving cases will be considered as for both
A* and RRT the moving variant resulted in better success rates.

4.6.4. A* VS. RRT
Figure 4.4 illustrates the path length, computational time and success rate for the A* and
RRT algorithms for the moving variant. In terms of path length the RRT algorithm con-
structed shorter paths with respect to the A* algorithm, although the mean difference is
less than 1% for the cube cases increasing to 3.8% for the V-obstacle cases. For the mixed
case, the success rate at speed higher than 0.06[-]/s is 1% or less. If we consider the path
length for speeds from 0.01[-]/s to 0.05[-]/s the RRT algorithm constructed paths 23.3%
shorter with respect to A*. In terms of variance, RRT also exhibits lower variance for all
scenarios for all speeds with respect to A*, implying that the constructed path is less af-
fected by the movement of obstacles. The shorter path length and larger variance range
is mainly attributed to the graph–based nature of the A* algorithm. In A*, obstacles are
modelled as unavailable grid positions with a buffer equal to half the distance between
grid positions as otherwise during re–assignment a node which resides a distance lower
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than the buffer from an obstacle may be unavailable in the next iterate even if the en-
vironment remains static both due to quantisation and also due to the ripple reduction
algorithm [2]. The smoothing algorithm which was only applied for the RRT algorithm
cannot be applied to the A* algorithm since this will near the path to a distance less than
the buffer distance to the obstacles possibly resulting in collisions in the next iteration.
Refer to [1–3] for further details. Furthermore, for both algorithms the path length is in-
dependent of speed as speed only effects the maximum allocated time to construct the
path.

The computational time characteristics illustrated in Figure 4.4 (b) and (e) for A* and
RRT, respectively show that a longer mean computational time with a higher variance is
recorded for A* with respect to RRT. For both algorithms, the V–obstacle results in the
shortest path followed by the cube without and with rotation and the mixed case. Also
for both algorithms speed has no effect on performance. The mean computational time
for A* is 6.6, 5.1 and 7.0 times longer with respect to RRT for the first three scenarios
respectively and 17.9% shorter for A* with respect to RRT for speeds from 0.01[-]/s to
0.05[-]/s as success rate is very low for RRT at larger speeds. The variance is similar for
the first three scenarios but is larger for A* in the Mixed case with respect to RRT for small
speeds. This increase in variance is the result of the quantisation of the graph–based
nature of the A* algorithm.

From the computational time results it can be concluded that the RRT algorithm per-
formed better than the A* for the first three scenarios deteriorating at a faster rate than
A* as the obstacle complexity increases. In our previous analysis [1, 2] it was shown that
the A* algorithm was faster than RRT in finding a goal offline in the presence of 2D ob-
stacles. With the inclusion of 3D obstacles the computational demand to check whether
each node is within or residing at a distance smaller than half the distance between grid
positions has increased significantly. For RRT the difference in computational demand is
less as the planner is not required to model the environment within the sensory system
field of view but only check for collision once tree nodes and branches are to be con-
structed. Since the obstacle density in the first three scenarios is low this explains why
the RRT performed better than A*. For the RRT algorithm in the obstacle–rich Mixed
case scenario, the chance of collisions with obstacles is much larger and therefore more
time is required to find a sub–path. For A*, the difference is minimal as in all cases the
planner needs to check each node in the environment.

Figure 4.4 (c) and (f) show that the success rate is almost 100% for A* and 100% for
RRT for the first three scenarios for all speeds considered for both A* and RRT algorithms.
From the results it can be concluded that RRT will be able to generate a path in low com-
plexity environments while A* may not be able to offer this guarantee. The computa-
tional response shown in Figure 4.4 (b) and (e) shows that the allocated time is more
than enough for the majority of the situations and the non successful runs are a conse-
quence that no path could be constructed with the considered range and resolution in
A* in few situations for the first three scenarios irrespective of the allowable time.

For the Mixed case a drop in success rate is shown as speed increases with the ma-
jor drop exhibited for RRT. The Mixed case is at least three times more obstacle dense
than the other three scenarios. As scenario complexity increases the computational re-
quirements for RRT increases at a higher rate with respect to A* resulting in maximum
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intermediate time violations. This is attributed to the fact that A* must model all obsta-
cles within its range and FOV irrespective of the complexity of the environment while
the RRT only checks for collisions as described earlier.

Therefore it can be concluded that the RRT is more vulnerable to increase in obsta-
cle complexity with respect to RRT. The RRT algorithm is able to achieve a success rate
of 95% or better for the lowest three speeds considered. This high success rate is never
recorded for A*. From this it can be concluded that A* will not achieve the same level
of success rate as RRT if the latter is given appropriate time to construct sub–paths.
More computational time can be achieved by reducing the speed and/or increasing
the computational processing power. Another point is that the RRT issued No Path
violations for certain mixed case scenarios while A* never issued this violation. This
implies that a violation occurred since the UAV cannot move as no path is possible to
an intermediate goal point or that an obstacle collided into the UAV. This situation is
very dangerous as it could lead to the loss of the vehicle. For A* this situation never
resulted mainly due to the buffer distance considered for quantisation purposes and
the UAV although not reaching the path never collided or is at risk of colliding.
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Figure 4.4: Performance parameters vs. speed: (a) Path Length for A*, (b) Computational Time for A*, (c)
Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time for RRT and (f) Success and
Failure rates for RRT for 100 iterates for each considered situation (speed and scenario) with 95% confidence
interval. (r es = 21,ds_step = 0.05,di nt_g oal = 0.4 (for Scenarios 1,2 and 3) and di nt_g oal = 0.6 (for Scenario 4),
d f actor = 0.8 and ti ter ate_max , tpath_g en_max are a function of the UAV speed).

4.6.5. CONCLUSION
Throughout this section, the performance results of the A* and RRT algorithms using
both waiting and moving variants were illustrated, analysed and compared to select the
best option in view of 3D UAV path planning with moving obstacles. Results showed
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that:

1. The A* moving variant produced better results with respect to A* waiting variant
while similar results were recorded for RRT for both variants

2. RRT results in better or equal success rate for all scenarios at all speeds with respect
to A*, except for high speeds in the Mixed case scenario.

3. Results show that RRT is better suited for 3D real–time applications in dynamic
obstacle–rich environments provided that appropriate time is allocated.

4. The A* algorithm cannot be excluded from dynamic environments especially if
safety is a paramount requirement and the computational power in complex en-
vironments is limited. In such case the A* would lead to better results.

Table 4.3 summarises the results presented in this section by showing the effect of
the waiting and moving rationale on path planning performance.

Table 4.3: Relational table between UAV parameters and path planning performance

Parameter Path Length Planning Time Success rate

A* Waiting vs. A* Moving
Minor difference
Moving better

Major difference
Waiting better

Major difference
Moving better

RRT Waiting vs. RRT
Moving

No difference
Minor difference
Moving better

Major difference
Moving better

A* vs. RRT
Minor difference
RRT better

Major difference
RRT better

Minor difference
A* better

4.7. CONCLUSION AND FUTURE WORK
This paper implemented 3D real–time path planning A* and RRT algorithms in the pres-
ence of dynamic constraints, obstacles and threats. Literature confirms that dynamic
path planning is essential as UAVs are sometimes required to operate in time-variant
environments. In this regard, 4 different scenarios were considered with increasing diffi-
culty consisting of V–obstacles, enclosed cubes and 2D planes moving at different time–
varying speeds, direction and orientation. Only, obstacle characteristics a look–ahead
distance away from the current UAV position are known with certainty by the planner
with updates being provided as the UAV moves. This was done to emulate sensory sys-
tems onboard UAVs. The planner was time–limited both in the construction of individ-
ual path segments and in the overall path as the UAV is not allowed to stop and is required
to always have available the next position before moving from the current position. Two
rationales were considered and implemented for both A* and RRT planners in case an
intermediate goal point was not available, namely waiting until the defined intermedi-
ate goal point becomes available or moving to the intermediate goal point nearer to the
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current UAV position consequently increasing the chance of moving further towards the
final goal. Path length, computational time and success rate were considered as the per-
formance measures. These measures were assessed with UAV speed which was varied
between 0.01 and 0.1[-/s].

Results show that the moving option yielded better overall results in terms of path
length, computational time and success rate for A* and RRT with respect to the waiting
option especially for the Mixed case which recorded an almost 0% success rate for the
waiting case for both path planning algorithms. UAV speed determines the maximum
intermediate and total time, reducing as speed increases. Results show that as speed
increases success rate drops due to lack of path planning time for the Mixed case scenar-
ios in both A* and RRT as in these situations the required path planning time is near the
maximum while for the other scenarios the allocated time is much more than required.
Overall, both A* and RRT produced similar results for the first three scenarios with RRT
recording slightly better results in path length, computational time and success rate. For
the Mixed case, the RRT algorithm performed better at low speeds but worse than A* for
high speeds. Also, A* was only limited with time while the RRT resulted in No Path situ-
ations that can potentially lead to collisions. The results show that both algorithms can
be applied in low obstacle density environments in real–time in the presence of moving
obstacles. For complex scenarios the RRT is better suited if time is not limited while the
A* algorithm is less susceptible to time constraints. Finally, this work shows that 3D real–
time path planning in low and high obstacle density, moving obstacle environments is
possible.

Future enhancement shall include the analysis of the effects of other parameters on
the performance of path planners with both waiting and moving rationale. These pa-
rameters shall include, resolution and step–size in case of A* and RRT respectively, look–
ahead distance, distance to travel per iterate, intermediate and total time and the dis-
tance factor which defines the reduction factor of look–ahead distance and distance to
travel per iterate in case the intermediate goal point or the new UAV position resides on
an obstacle. This analysis will flag the best configuration for both algorithms in the con-
sidered test scenarios which offer a range of path construction difficulties. Furthermore,
real sensory systems sense the environment within a certain degree of uncertainty that
changes with a number of factors including: distance to the object, shape and light lev-
els. This uncertainty may have an effect on the performance of the 3D real–time path
planners as paths are generated only with a certain degree of non–collision. This can
generate unexpected collisions with obstacles that can ultimately result in the loss of the
UAV.
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5
3D REAL-TIME PATH PLANNING OF

UAVS IN DYNAMIC ENVIRONMENTS

IN THE PRESENCE OF

UNCERTAINTY

This chapter addresses Research Questions 4 and 5, queried to tackles Chal-

lenge 3, by investigating uncertainty effects in the 3D real–time UAV path

planning in indoor environments. This chapter identifies and explains the

need for uncertainty considerations, the sources of uncertainty and their

quantification in view of UAVs operating in indoor environments. The rel-

evant uncertainties within the research scope are identified, modelled and

integrated with the 3D real-time environment developed in Chapter 4. This

chapter will conclude with an analysis of the effect of path planning per-

formance of each uncertainty source independently and concurrently.

The contents of this chapter have been published as:
Zammit, C. and van Kampen, E., “3D real-time path planning of UAVs in dynamic environments in the pres-
ence of uncertainty”, Proceedings of AIAA Guidance, Navigation and Control, Nashville, TN, 11-15 Jan., 2021,
AIAA 2021-1956.
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Zammit, C. and van Kampen, E., “Real-time 3D UAV path planning in dynamic environments in the presence
of uncertainty”, Journal of Guidance, Control and Dynamics
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Unmanned Aerial Vehicles (UAVs) are being integrated into all spheres of life vary-
ing in a wide range of applications from military to civil. In such applications, UAVs
are expected to operate safely in the presence of uncertainties present in the dynamic
environment and the UAV itself. Based on literature different uncertainty sources are
identified, quantified and modelled using bounding shapes. The UAV model, path
planner parameters and four scenarios of different complexity are defined. For anal-
ysis uncertainty is varied between 2% and 20% for UAV position and obstacle position
and orientation. Results show that both types of uncertainty deteriorate path plan-
ning performance of both A* and RRT algorithms for all scenarios considered espe-
cially for RRT. RRT results in faster and shorter paths with approximately the same
success rate (>95%) as A* for simple scenarios. For complex scenarios A* performs
better.

5.1. INTRODUCTION
Unmanned or Uninhabited Aerial Vehicles (UAVs), Unmanned Aircraft or more com-
monly known as drones are defined by International Civil Aviation Organisation (ICAO)
as “pilotless aircraft, in the sense of Article 8 of the Convention on International Civil
Aviation, which is flown without a pilot-in-command on-board and is either remotely
and fully controlled from another place (ground, another aircraft, space) or programmed
and fully autonomous” [1]. Moreover, Unmanned Aircraft Systems (UAS) extend beyond
the aircraft and incorporate all associated elements necessary to operate efficiently and
safely an aircraft without a pilot on board [2].

The idea of UAVs has initiated and progressed concurrently with advances in avia-
tion. In fact, less than 14 years from the first flight of the Wright brothers on 17th De-
cember 1903 in North Carolina, on March 1917 A.M. Low launched the unmanned Rus-
ton Proctor AT using compressed air from Salisbury Plain, North England. Over the past
100 years the technology, purposes and use of Unmanned Aerial Vehicles (UAVs) have
evolved primarily in view of military demands which have been the main driver.

UAVs of different sizes and shapes are being integrated into all spheres of life. UAVs
are being proposed for a wide range of indoor and outdoor applications varying from
surveillance, search and rescue and other military to more civil applications including
aerial filming and photography, agriculture, postage delivery and leisure flying. The in-
clusion of UAVs into the civil airspace and high precision autonomous military appli-
cations requires robust autonomous guidance, navigation and control (GNC) systems
that shall ensure safe navigation in view of constraints and uncertainties present within
manned aircraft and associated supporting systems, UAV systems and the environment
in which they will operate. Oppositely to UAVs which were economically viable for the
mainstream only over the last decade, manned aircraft systems have been in civil oper-
ation for a century. As a result, Standard Operating Procedures (SOPs) for both fixed and
rotary wing manned aircraft are well defined mainly as a result of post-incident analy-
sis. In fact, although UAV manufacturers are pushing for integration as the commercial
prospect is unbounded, ICAO is cautious and is only foreseeing a medium-term integra-
tion of remotely-controlled UAVs within non-segregated and aerodrome environments.
Moreover, ICAO [2] indicates that fully autonomous UAVs will not be integrated within
civil aviation systems in the foreseeable future.
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One fundamental difference between a machine and a human is that the latter is ac-
customed to deal efficiently with uncertainty from early childhood improving his/her
skills through adequate training while programming machines to deal with uncertainty
in real time is not straight forward. Although certain constraints such as buildings, no-fly
zones and particular kinematic constraints can be defined accurately, in reality the ab-
solute majority can only be defined with an element of uncertainty, for example weather,
fuel consumption and vehicles’ position and state. Furthermore, constraints can pop-up
whilst in flight and the path planning algorithm shall be able to mitigate these a priori
unknown situations [3].

Uncertainty in path planning has been investigated for quite some time. In the be-
ginning uncertainty was considered as a domain of complaint control and uncertainty
was mitigated by allowing or requiring the agent to touch [4]. Although contact with an
obstacle can be accepted for gripping or manipulators, in UAV path planning applica-
tions this must be avoided at all costs [4]. However, different researchers stress the need
for robust and generic path planning solutions that can be applied in the presence of un-
certainty. Dadkhah et al. point out that while efficient algorithms offering solutions to
sub-problem exist, general real-time path planning solutions in the presence of uncer-
tainty is still pending [5]. Similarly, Goerzen et al. remark that more research is required
to deal with different uncertainty sources as till now this field has not been adequately
studied [4]. Furthermore, Vanegas et al. identified the need for a model and a system that
can incorporate sensing uncertainties in the UAV state calculation besides uncertainty
in target location [6].

These researchers and others outline the need to investigate the effect of uncertainty
in path planning of UAVs both for indoor and outdoor environments. This motivation
is key to the aim of this paper. Therefore the aim of this paper is to investigate the ef-
fect of uncertainty on the performance of real-time 3D UAV path planning in a dynamic
environment. For the scope of this study the most utilised path planning algorithm in
the graph-based and sampling-based categories will be assessed namely the A* and the
Rapidly-Exploring Random Trees (RRT) algorithms. It will be assumed that the planner
has no a priori knowledge of obstacle paths and/or future positions. Moreover, the un-
certainty if any of different parameters is not provided to the planner at initiation stage
and it can change while the UAV is constructing and traversing the path in real-time. For
real-time path planning, the planner must generate the path in at least the time required
by the UAV to traverse it [7–9]. The path length, computational time and success rate
will be the performance measures that will be considered to assess the performance of
the A* and RRT algorithms in a 3D real-time environment. The dynamic environments
developed in our previous work [10] will be considered.

The paper will be organised as follows. Section 5.2 will present the state-of-the-art
in path planning of UAVs in the presence of uncertainty. Section 5.3 provides a brief re-
sume of the A* and RRT algorithms, the smoothing algorithm which is only applied to
the RRT algorithm, the real-time path planning algorithm and the dynamic obstacle def-
inition framework all extensively described in our previous work [10–13]. Section 5.4 will
define the environmental scenarios, the UAV model and path planner parameters defi-
nitions and constraints and uncertainty modelling and quantification rationale in view
of 3D real-time path planning algorithm. Section 5.5 will present and analyse the re-
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sults in view of real-time 3D UAV path planning requirements. This paper will conclude
with Section 5.6 highlighting the main outcomes, strengths and weaknesses of this study
whilst pointing out future recommendations.

5.2. PATH PLANNING IN THE PRESENCE OF UNCERTAINTY RE-
VIEW

5.2.1. INTRODUCTION
This section will first identify the need for path planning in the presence of uncertainty.
Then a list of different uncertainty sources and their challenges to the path planning
problem will be explained. The following section will deal with the representation and
quantification of uncertainties proposed by different studies. This section will conclude
with a resume of the performance of different path planning algorithms in the presence
of uncertainty. This will help identify the strengths and weaknesses of each method in-
dependently and in relation to others.

5.2.2. THE NEED FOR PATH PLANNING IN THE PRESENCE OF UNCERTAINTY
A lot of things in this World are uncertain although uncertainty can be quantified to a
certain degree. Therefore in an indoor or outdoor environment a UAV path planning
system will have to deal with a number of factors some of which incorporate different
uncertainties. These include partially known environments, limited payload capacity,
limited on-board computational power, differential constraints, environmental distur-
bances and uncertainty in both state and measurement [5]. It is commonly assumed
that unknown space is occupied in path planning in unknown or partially known envi-
ronments [24].

An effective path planner in the presence of uncertainty must always guarantee that
the UAV will reach and stop at the goal region without colliding with any obstacle de-
spite uncertainty in sensing and control [19]. To achieve this, the planner must simul-
taneously consider the projected motion of obstacles and the time-varying uncertainty
in their location [27]. In addition, UAV state uncertainty including both perception and
dynamics shall also be considered [16, 21].

Different studies tried to incorporate uncertainty modelling within their path plan-
ning systems. Although as will be discussed in the next sub-sections different approaches
have been made to eliminate or heavily attenuate uncertainty effects on path planning
systems Kim et al. remark that path planners that require global or extensive local in-
formation may not guarantee satisfactory performance in the presence of uncertainty
[14]. Therefore, the issue of uncertainty in sensing and control cannot be neglected in
real UAV applications [4]. Goerzen et al. remark that uncertainty and robustness has not
been fully studied. This study considers these two fundamental aspects as paramount
in determining the prospect of an algorithm that must be efficient, optimal and robust
at the same time.

Cui et al. consider UAV dynamic path planning as extremely challenging due to dif-
ferent uncertainties, time variant magnitudes and interaction of these factors and con-
straints present within UAV utilisation environments [16]. The planner has to deal with
errors and imperfections of sensing systems to figure out threats and positional, kine-
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matics and dynamics information for state estimation in real-time. Moreover, UAV mis-
sion objectives and control modes of operation of UAVs further add to the complexity of
the problem [16].

5.2.3. UNCERTAINTY SOURCES
Different uncertainty sources were considered in different studies. LaValle et al seg-
mented uncertainty in robotic systems into 4 categories namely: uncertainty in robot
sensing, uncertainty in robot predictability, uncertainty in environment sensing and un-
certainty in environment predictability [17]. This implies that uncertainty sources are
derived from the sensing and prediction derived as well from the sensing of the agent
and the environment in which the agent resides. The same rationale can be applied to
3D UAV environments. In this study, uncertainty sources are segmented into 4 main cat-
egories: UAV model, UAV sensing system, environmental sensing and prediction, and
communication uncertainties:

UNCERTAINTY IN SENSING SYSTEM

- Generic sensor errors [18, 19];

- Uncertainty in attitude information both of UAV and target [5, 16, 21–23];

- Uncertainty in localisation, velocity and acceleration of both UAV and the target
[4, 16, 19, 20, 24, 25];

- Initial uncertainty state [16, 20, 21].

UNCERTAINTY IN UAV MODEL

- Uncertainty in system modelling including agent dynamics [5, 26];

- Disturbances from the nominal model [18];

- Uncertainty in system configuration sensing [21, 26];

- Uncertainty in command tracking precision [4, 5];

- Estimation Uncertainty [24];

- Uncertainty in the system error distribution [16].

UNCERTAINTY IN ENVIRONMENT SENSING AND PREDICTION

- Uncertainty in environmental situational awareness such as obstacle locations
and threats [4, 5, 19, 25, 26];

- Uncertainty in future environment prediction [26–28];

- External disturbances into the operational environment. For example wind, atmo-
spheric turbulence and rain [5, 6, 19].

UNCERTAINTY IN COMMUNICATION

- Communication errors, delays, packet dropouts,and finite communication ranges
[18].
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5.2.4. UNCERTAINTY MODELLING
The uncertainty sources described in the previous section need to be mathematically
modelled for the path planning algorithm to reach the target successfully. As the guid-
ance, navigation and control systems can be designed as modular sub-systems, modu-
larity can also be applied to segregate and individually define uncertainty sources even
based on mission requirement [5]. The uncertainty modelling strategy will have a direct
influence on the robustness of the path planning system. Uncertainty modelling can be
broadly categorised into two main categories: Bounded Shapes and Probabilistic Distri-
butions [24, 29].

BOUNDED SHAPES

Bounded shapes consider worst-case bounds to define the edges of the bounding shape
[24]. Bounded shapes were used to define both threats and obstacles but also state defi-
nitions. With reference to the latter, robustness in the presence of uncertainty can be en-
sured by attentively adjusting the safety margin between failure and nominal states [26].
Bounded uncertainties in state estimation and disturbances were modelled in [30, 31] to
verify non linear UAV models. Results show elegant formulations of verifiable planning
[30, 32]. Chance-constraint optimisation is a method used for path planning in the pres-
ence of uncertainty [33, 34]. This method upper bounds the probability of collision at
any time instant by a constraint in the optimisation process [24].

Bounded uncertainty can be modelled as time variant and time invariant. In fact,
Page et al. [35] modelled an extroceptive sensor that allowed a bounded time invariant
uncertainty in its sensing zone. Another study developed the use of "safe zones" that
reset to zero or quasi-zero the uncertainty bounds until the agent remains in the safe
zone [36]. In this case, uncertainty can be time variant as long as the extrapolation of
uncertainties is limited by visiting safe zones. Similarly, Larson et al. [37] defined a 2D
time variant obstacle area to simulate in real-time obstacle dynamic properties includ-
ing change in speed and direction in unmanned surface vehicles.

Different shapes were considered to estimate uncertainties. Lihua et al. [25] esti-
mated GPS position by a cylindrical region centred at the agent position with radius and
height equal to the horizontal and vertical position estimation accuracy. Yang et al. [38]
mitigated control and sensing uncertainties by modelling obstacles as ellipsoids in 2D
and a ball shaped regions in 3D. Similarly, ellipse were used to model uncertainty of in-
termediate points used in the construction of the path to the final goal while a bounding
box is defined around the vehicle to provide a safety margin for uncertainties in the vehi-
cle position [21]. This time variant bounding box is inflated by a multiple of the standard
deviation as uncertainty propagates during path following [21]. The rate of inflation de-
pends upon the distance from the origin (which is assumed to be known with certainty)
and the visual scale as the latter determines the quality of the position estimate [21].
Also, ellipsoids were used by Pepy et al. [39] to model state distribution uncertainty of
robot position and orientation at the configuration.

PROBABILISTIC DISTRIBUTIONS

Uncertainty in this category defines a specific or a set of unbounded distribution func-
tions to estimate uncertainty for different parameters or agent states [24, 30, 32]. Ro-
bustness in probabilistic estimations will limit the failure probability depending on the
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definition of distributions [26]. Van der Berg et al. [40] modelled obstacle uncertainty us-
ing a Linear-Quadratic-Gaussian (LQG). Positional uncertainty was also modelled with
an independent Gaussian distribution in [41]. In this study, fixed obstacles were mod-
elled using a constant measurement uncertainty. For quasi-static obstacles the centre
of position remains at the initial location while for moving obstacles at constant speed
the centres will move accordingly [41]. For both quasi-static and moving obstacles the
positional uncertainty will grow linearly with time as long as the obstacles are not con-
tinuously observed [41, 42]. Florence [24] considers only continuous depth information
in the local frame of reference for robustness in the presence of uncertainty in state esti-
mation.

A normal distribution around the mean take-off position was used in [6] to account
for initial uncertainty. A bounded normal distribution with mean about the desired
heading was considered in the same study to mitigate with motion uncertainty. Sim-
ilarly, Wen et al. [43] estimated the standard deviation of the probabilistic UAV state
distributions at each tree node by Linear Quadratic Gaussian Motion Planning (LQG-
MP). Uncertainty in threats were estimated by bounded circles with different risk factors.
These studies showed that hybrid approaches are also an option that can be considered
[43].

5.2.5. UNCERTAINTY QUANTIFICATION AND REDUCTION

Uncertainties for different parameters are linked with other mission, environmental and
UAV modelling constraints. This section provides a resume of a sample of implemen-
tations with the associated uncertainty values. Rathbun et al. [27] limited speed be-
tween 21m/s and 34m/s, turn radius to a minimum of 0.18km and 1.52 times the fuel
necessary to travel the distance from the initial position to goal. In the same work, the
authors concurrently considered a bounded obstacle positional uncertainty of 0.1km,
a bounded uncertainty for velocity of 5km/s and an uncertainty growth of 0.001km/s/s.
Similarly, Cui et al. [16] considered a variable speed UAV with predefined bounds (10m/s
to 50m/s) and initial speed of 25m/s in an obstacle free environment. Concurrently the
authors considered an initial distance error of 30m, 30m and 2m, respectively in all di-
mensions, a horizontal velocity error of 2m/s, an angle error of 0.5o and 10% distance
and 0.2% angle uncertainties in the system error distribution. Other work considered
a predefined holistic uncertainty. In this regard, Yang et al. [38] considered a bounded
control uncertainty of 0.5m. As regards to obstacle size quantification Zeng et al. [41]
represented each obstacle by a circle with a radius of 2× the standard deviation implying
a confidence interval of 95.4%.

From the implementations described in this section it is shown that uncertainties in
different parameters are defined at initiation stage propagating at predetermined rate
as the mission progresses. Some researchers have identified ways how such uncertainty
can be reduced. One way is by detecting using sensory vision systems identification
tags placed on static non-enemy obstacles. As these are fixed sensory errors can be re-
set [20]. Others make use of previous information to attenuate uncertainty in already
visited areas [6]. Another solution is to shorten the path planning time reducing un-
certainty increase at an expense of reducing the path planning success and optimality
and/or making the path planning solution more complex to compute [6]. Another ap-
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proach is to consider only the latest sensory measurement data with the scope of reduc-
ing time propagated uncertainty [44–46].

5.2.6. PATH PLANNING SOLUTIONS UNDER UNCERTAINTY
Researchers have implemented a number of path planning solutions to mitigate uncer-
tainties in different parameters. The following will outline the different path planning
methods that were proposed.

RAPIDLY-EXPLORING RANDOM TREE (RRT) ALGORITHM

The RRT algorithm is one of the most utilised path planning algorithms in the presence
of uncertainty. Although this method has been successful implemented to plan in com-
plex real world scenarios such as autonomous driving such as in the DARPA challenge
[47], this algorithm does not explicitly incorporate uncertainty [26]. This inherent char-
acteristic has encouraged researchers to apply the RRT algorithm in uncertain environ-
ments by adding uncertainty into the planned paths [48–50].

In this regard, the chance constraint RRT, an RRT variant, was developed and em-
ployed to handle uncertainty in model and environmental situational awareness in dif-
ferent implementations [24, 34]. This method is implemented to achieve robustness
against uncertainties by growing trees of state distributions. However this method re-
quires an accurate vehicle dynamics model to grow a tree of state distributions [26].

Another variant was developed by Yang et al. [38]. In this work the authors added
a guiding attraction factor to the RRT variant, RRT* to enhance path convergence and
smoothness in less computational time in the presence of fixed obstacles with uncer-
tainty in both 2D and 3D environments. Auode et al. [51] remarked that RRT-based es-
timators offer both accuracy and efficiency for long-term prediction of dynamic threats
in uncertain and partially unknown environments.

In another approach, Kothari et al. [26] generated probabilistically robust paths in
partially known environments using the RRT algorithm. Kothari et al. [26] stresses about
the need to modify the RRT algorithm to an anytime algorithm to arrive to a real time
solution. The authors remark that based on the results the computational time increases
approximately linearly with the number of obstacles.

The Dynamic Domain Rapidly-Exploring Random Tree (DDRRT) combined with a
linear Quadratic Gaussian Motion Planning (LQG-MP) is developed by Wen et al. [43]
to plan paths under threats and uncertainties. Static threats incorporating uncertainty
were modelled using intuitionistic fuzzy sets while dynamic threats were modelled using
the pursuit-evasion method. The path was further enhanced by the safety adjustment
method and the RRT* variant of RRT. Results show that this system was able to construct
online safe paths in uncertain and hostile environments.

Finally, Achtelik et al. [21] made use of the Rapidly-Exploring Random Belief trees
to evaluate offline multiple path hypothesis in a known map with fixed obstacles so as
to select a path exhibiting the motion required to estimate vehicle state. The planner
consequently selects paths that minimise uncertainty state estimation in the estimated
states without neglecting kinematic and dynamic model constraints. Also due to the
sampling based nature of this approach no assumptions on discontinuities in measure-
ment uncertainty with respect to vehicle position are considered. Results show that this
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approach improves the precision of state estimation and that a naive planner will not be
able to generate a successful path in an environment with bounded uncertainty in most
cases. Furthermore, it was noted that uncertainty is close to null at the start, increasing
during straight sections and when leaving feature-rich areas and decreasing at the goal
provided a perfectly working re-localisation system. Results show that the scaling fac-
tor of the monocular vision-based system, that requires excitation, was fundamental to
maintain the uncertainty within bounds whilst the UAV flew away from the origin. In
this regard, authors remark that uncertainty bounding boxes need to be significantly en-
larged when crossing unknown areas with uncertainty scale reducing in non direct paths
while remaining unchanged for direct paths.

A* ALGORITHM

The use of the A* path planner to plan in the presence of uncertainty is not frequently
used when compared to RRT and its variants. However this does not imply that this
graph-based method is unsuitable to operate in an uncertain environment. In this re-
gard, Liao et al. [19] developed a 3D, A* based, closed-loop path planning algorithm for
Vertical Take-Off and Landing (VTOL) UAVs in GPS-denied, obstacle-rich environments.
This algorithm provides collision-free shortest path from the current UAV position to any
final goal point. The authors remark that this method is implicitly robust to uncertainty
mainly due to the closed-loop approach.

MARKOV DECISION PROCESSES (MDP) AND PARTIALLY OBSERVABLE MARKOV DECISION

PROCESS (POMDP)
The MDP algorithms generate policies that allow the agent to formulate a series of ac-
tions to maximise return or minimise cost functions without neglecting uncertainties
[52]. MDP assume that states are completely observable while POMDPs incorporate un-
certainties in sensing and partial observability of the agent [53, 54]. Vanegas et al. [20]
developed an on-line POMDP algorithm that relies only on on-board localisation sen-
sors to generate UAV control actions in the presence of uncertainty. To improve the qual-
ity of the control actions the POMDP algorithm is allowed to calculate for longer times
although this will increase the uncertainty in motion due to longer prediction time [6].

SLIDING MODE CONTROL

Sliding mode control has inherent benefits that makes it a potential candidate for mobile
robotics. Such benefits include robustness against system uncertainties, good dynamic
response and stability under large disturbances [55]. Robustness against different un-
certainties such as matched uncertainty in nonlinear systems is achieved by the sliding
mode algorithm’s systematic approach [56].

LINEAR METHODS

Linear algorithms can handle disturbances system control and model uncertainties and
therefore can be used for path planning under uncertainty. These algorithms can de-
scribe the environment completely while modelling kinematic and dynamic constraints
[57]. In this regard, Mixed Integer Linear Programming (MILP) methods merge binary
and integer logical constraints to model the system and environment [57–59]. Optimal
control can be used to find a path based on a set of differential equations [60]. This
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method can be regarded as a variant of linear methods. In optimal control methods
there exist a infinite number of variables’ states as opposed to linear approaches. Using
linear chance constraints to model uncertainties in optimal methods makes the method
more computational efficient [57].

REACTIVE PATH PLANNING METHODS

Reactive path planning strategies are also potential candidates that can be employed to
mitigate uncertainty in real-time. This approach uses only local knowledge of obsta-
cles and threats to plan without generating a global plan either offline or at the initia-
tion stage [5]. Reactive path planning systems make use of either vision-based or depth
sensor-based systems to constantly update the path planning algorithm with real-time
environmental information. For better reactiveness to uncertainties or changing envi-
ronmental situation, feedback controllers can be employed. Reducing the complexity of
feedback controllers can enhance robustness [4].

POTENTIAL FIELDS AND PROBABILISTIC MAPS

Potential fields assign a potential function to free space with the agent reacting to forces
due to repelling potential from obstacles with the goal node having the lowest potential
[4]. A Laplacian potential field method was developed by Connolly [61] with the scope of
minimising collisions with obstacle fields during random movement. Similarly, Lazanas
et al. [62] considered potential fields to navigate through regions but with no uncertainty.
Oppositely, Lihua et al. [25] developed the Modified Artificial Potential Field (MAPF) to
navigate through an uncertain environment with randomly moving obstacles and pop-
up threats. Obstacles are modelled by non-isotropic spatial volume creating repulsion
potential fields. Results for test carried out at 5km altitude and maximum speed of 60m/s
show an improvement over the standard Artificial Potential Field approach [25].

In the same category as potential fields are probabilistic maps that define the expo-
sure to threats as a function of location and time. The undeterminisitic nature of dy-
namic environments has motivated Zengin et al. [63] to develop such a probabilistic
map any apply it to the problem of dynamic path planning. The authors use state-space
search to approach the goal location while avoiding threats.

OTHER METHODS

Path planning in dynamic environments with uncertainty are too complex for classical
approaches to guarantee a solution. These algorithms tend to be inefficient and may
lock in local minima without producing non-optimal paths [4].

Simultaneous Localisation and Mapping (SLAM) is important in situations of path
planning under uncertainty, although it does not directly address the planning phase [4].
This method is able to provide localisation information and hence attenuate the level of
uncertainty. SLAM has been used for real-time laser mapping in a remotely controlled
helicopter flight [64] and to provide situational awareness under uncertainty in real-time
in the DARPA Grand Challenge [65].

Receding Horizon Control (RHC) can also be employed for path planning under un-
certainty. Goerzen et al. [4] remark that an online RHC framework can modify an of-
fline generated path to handle in flight uncertainties that are either unknown or partially
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known at the initiation stage. In this regard, Kuwata et al. [66] used the RHC method to
generate trajectories for an agent under the influence of atmospheric turbulence.

Q-learning is an optimisation method used to deal with uncertainties. Cui et al. [16]
modelled uncertainties to control the acceleration and bank angle of a UAV using track-
ing error cost function optimised through Q-learning in a 2D environment without ob-
stacles.

Shell Space Decomposition (SSD) scheme is a method that decomposes the environ-
ment into concentric shells radiating out from the start to the goal location with single
or multiple control points in each shell region [41]. Zeng et al. [41] applied SSD with
a quantum-behaved particle swarm optimisation path planner for an Autonomous Un-
derwater Vehicle (AUV) with static, quasi-static and moving obstacles in a cluttered and
uncertain environment. Paths are generated offline and results show a better perfor-
mance with concentric circles and sphere algorithms [41].

Finally, in another approach, Schouwenaars et al. [67] developed a robust system
that accounts for uncertainty in manoeuvring of vehicles. This system is based on a con-
trol architecture developed by Frazzoli [68]. This control system is based on the quan-
tization of system dynamics to reduce computational complexity of motion planning in
nonlinear, high dimension environment.

5.2.7. CONCLUSION

This section highlighted the need to consider uncertainty during path planning espe-
cially in dynamic environments. The different uncertainty sources considered in various
work were divided into 4 main categories. The two main uncertainty modelling methods
namely bounded shapes and probabilistic distributions were explained based on their
applications in different environments with different obstacles and threats. Another
subsection presented a resume of parametric quantification of uncertainty in different
working environments. Also this part highlighted how different authors tried to reduce
uncertainty or its effects. Finally, the different path planning methods that were used in
different work not only for UAVs were presented and the resulting outcomes analysed
and compared. This review helps in defining a path planning strategy for an agent op-
erating within an environment with the respective kinematic and dynamic constraints
and uncertainties.

5.3. A*, RRT, SMOOTHING AND REAL-TIME ALGORITHMS

5.3.1. INTRODUCTION

This section will initiate with a brief definition of the two most utilised algorithms, namely
the graph-based A* and sampling-based RRT algorithms. The smoothing algorithm de-
veloped to mitigate the non-optimality of the RRT algorithm will then be explained. Fi-
nally, this section will conclude with a summary of the A* and RRT real-time path plan-
ning implementations.

5.3.2. THE A* ALGORITHM

Graph-based methods define the state space into an occupancy grid defining obstacles
residing in grid points as unavailable points. Graph-based algorithms check the possi-
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bility of a path between start and goal position using only obstacle-free grid points [69].
Graph-based algorithms only offer a guarantee of solution if an appropriate resolution
is selected [70].

The standard A* algorithm uses a heuristic evaluation function ( f (n)) to determine
the cost of neighbouring grid points [71]. This evaluation function sums the cost from
the current position to a prospective future position and the cost from the latter to its
goal node [71, 72]. For a detailed explanation of this algorithm refer to our previous work
[11–13].

5.3.3. THE RAPIDLY-EXPLORING RANDOM TREE (RRT) ALGORITHM

Sampling-based algorithms construct a path between start and goal positions by con-
necting randomly selected obstacle-free points in the configuration space [70, 73]. Op-
posite to graph-based methods, these algorithms offer a guarantee of solution within an
infinite time as opposed to graph-based methods provided that a path exists [70].

The standard Rapidly-Exploring Random Tree (RRT) constructs a unidirectional tree
by randomly planting seeds in obstacle-free points. A new tree branch is constructed
by selecting a new point a predefined distance from the nearest tree node on the line
interconnecting the latter node with the randomly selected point, provided that the line
from the nearest tree node and the new node is obstacle-free. A path from start to goal
points is formed when one tree branch reaches the goal provided the first tree node is
the start position [74–76]. The RRT algorithm is efficient in complex high-dimensional
environments but lacks optimality and requires smoothing [76–78]. Just as for the A*
algorithm, a more detailed explanation of the RRT algorithm and its variants is provided
in our previous work [11–13].

5.3.4. THE SMOOTHING ALGORITHM

The path generated by both A* and RRT algorithms is constructed by interconnecting
path points. The developed smoothing algorithm randomly selects two of these path
points and then randomly defines two points on the path segments connecting the ini-
tially selected path points with their respective next path points. If the interconnection
of the latter two points is obstacle-free then all path points in between are neglected,
creating a shorter path with lesser turns and lesser path points. This process is repeated
until the percentage path length reduction over the last 20 iterations is less than 1% and
for a minimum of 20 iterations. A more detailed explanation of this algorithm is provided
in our previous work [12, 13].

This post-path construction smoothing algorithm was developed to mitigate the non-
optimality characteristics of the RRT algorithm. Since in our previous work [11, 12], the
A* algorithm produced the shortest possible path with the considered resolution, im-
provement with the smoothing algorithm was only marginal. Moreover, in a real-time
A* implementation some parts of a smoothed, obstacle-free path which are very near to
obstacles, can produce collisions as the graph points can shift due to discretisation in
the next intermediate path construction as the UAV current position moves. Therefore,
this smoothing algorithm was only applied for the RRT algorithms.
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5.3.5. THE REAL-TIME ALGORITHM

Literature identifies the need for real-time path planning if the UAV is expected to travel
in dynamic environments especially if the environment is partially unknown or totally
unknown except for a limited Field of View (FOV) at the initiation stage [79–81]. Owing
that the scope of this work is to design a path planning algorithm for such scenarios, an
algorithm to emulate real-time behaviour was developed in a previous paper [13].

The developed real-time path planning algorithm selects an obstacle-free interme-
diate goal node in the direction of the final goal position a look-ahead distance from
the current UAV position. This look-ahead distance is governed by the sensory system’s
range and FOV. Consequently, a path from the current UAV position to the intermediate
goal node is constructed (if possible) using either the A* or RRT algorithms. The UAV cur-
rent position travels along the intermediate path a predetermined distance determined
from the UAV speed and maximum allocated intermediate time. It is assumed that actu-
ator systems’ response is modelled with high fidelity with no uncertainty and the UAV is
not affected by external factors. Furthermore it is assumed that in between intermediate
path planning iterations the environment remains static. This assumption is valid since
a low intermediate time is considered. No solution exists when either no intermediate
obstacle-free path is constructed in the allocated time, the total time to reach the goal
from the initial position has been exceeded, or when an obstacle collides with the UAV.
The various UAV parameter definitions are briefly explained in Section 5.4.3. For a more
detailed explanation of the described real-time algorithm and performance results for
both path planning algorithms, refer to our previous work [13].

5.3.6. CONCLUSION

This section briefly described the most utilised graph-based and sampling-based method,
i.e. the A* and RRT algorithms. To mitigate the non-optimality of the RRT algorithm a
smoothing algorithm was also developed. The real-time algorithm made up of either
the A* or RRT with the smoothing algorithm provided a test platform to assess the per-
formance of both configurations in view of real life UAV applications.

5.4. ENVIRONMENTAL SCENARIOS, UAV MODEL, PATH PLAN-
NER PARAMETER DEFINITION AND UNCERTAINTY MOD-
ELLING AND QUANTIFICATION

5.4.1. INTRODUCTION

This section will describe how uncertainty factors are integrated within the environmen-
tal and UAV model frameworks. This section will initiate with a description of the mod-
elled environmental scenarios. Then the UAV model and path planner’s parameter con-
straints will be described. Bounded uncertainty is then defined for size and obstacle po-
sitions while randomised but bounded uncertainty is considered for UAV positions. In
the final subsection, the percentage uncertainty bound values applied to both obstacles
and UAV position are described.
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5.4.2. ENVIRONMENTAL SCENARIOS
Four different scenarios with different complexities developed in our previous work [10]
are considered as a test platform to assess the performance of the A* and RRT algorithms.
These time variant environments are generated offline with an associated time stamp
before the initiation of path planning. Cubes, V shaped obstacles and 2D planes with
window openings are used in the development of these obstacle scenarios. The cubes
and V obstacles are randomly placed in the environment with each point having the
same probability of occupancy. The following list describes the construction of each of
the four scenarios, namely:

• Scenario 1. 10 cubes of 0.1x0.1x0.1 with no rotation;

• Scenario 2. 10 cubes the same size as Scenario 1 but with random rotation at defi-
nition stage and with changing independent rotation with time iterates;

• Scenario 3. 10 V obstacles constructed by adjoining one side of each of the two
planes with an angle of 53◦ between the planes. Each plane has a size of 0.1x0.112
and is randomly rotated as in Scenario 2. This plane size was considered so that it
fits exactly into the considered cube; and

• Scenario 4. Two planes on the Y-Z axis separated by 0.4 each with a window of
0.2x0.2 as well as the obstacles in Scenarios 2 and 3 combined.

Figure 5.1 illustrates pictorially each scenario for a random time iterate without con-
sidering any uncertainty bounds. Since moving obstacles are considered, the positions
of each obstacle for each scenario will change in every time iterate.

Table 5.1: Obstacle shapes

Shape Size Number of Planes Closed/Open

Cube 0.1x0.1x0.1 6 Closed
V obstacle 0.1x0.112 2; (53o with each other) Open
Plane with window 1x1 1; window (0.2x0.2) Open

5.4.3. UAV MODEL AND PATH PLANNER PARAMETER DEFINITIONS AND

CONSTRAINTS
To assess the performance of the A* and RRT algorithms, nominal UAV and path planner
parameter values tabulated in Table 5.2 and adapted from our previous work [13] are
derived after considering real UAV model characteristics, features and constraints.

A cube of 1x1x1 was considered as the environmental space, with fixed start and goal
points at (0,-0.5,0) and (0,0.5,0), respectively for all considered tests. For A* algorithm
the environment and start and goal points were shifted by a random distance between 0
and half the distance between grid points to eliminate path length ripple as explained in
[12].

The resolution, considered for graph-based methods such as the A* is defined as
the number of grid points per dimension. Oppositely in sampling-based methods all
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(a) (b)

(c) (d)

Figure 5.1: Environmental scenarios: (a) Non-rotating cubes scenario, (b) Rotating cube scenarios, (c) V ob-
stacle rotating scenario and (d) Mixed scenario. These scenarios incorporate cubes, V obstacles and obstacle
planes in the Y-Z with windows as openings.
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Table 5.2: Real-time algorithm parameter definition

Parameter Nominal Value Units

Resolution (r es) 21 [-]
Step size RRT (dstep_RRT ) 1

21−1 = 0.05 [-]
Distance to travel per iterate (ds_step ) 2

r es−1 = 0.1 [-]
Distance between current UAV position and
prospective new intermediate goal point (di nt_g oal )

0.4 and 0.6 for Mixed
case scenario

[-]

Maximum time to generate path segment
(ti ter ate_max )

ds_step×60×60
100×vU AV

s

Maximum time to generate path (tpath_g en_max ) 10× ti ter ate_max s
Distance reduction factor (d f actor ) 0.8 [-]

obstacle-free space is available for path construction. Therefore, the tree branch length
set as the distance between grid positions in A*, was considered for RRT to offer a fair
comparison between the two methods. The distance to travel per iterate (ds_step ) is set
at double the distance between grid positions and tree branch length while the distance
between the current UAV position and an intermediate goal point (di nt_g oal ) is set to
double ds_step . For the mixed scenario, di nt_g oal is increased from 0.4 to 0.6 since the
planner needs to be able to visualise the second plane window to construct a path to
the intermediate goal point that may result on final goal side of the second plane. If
this distance is not increased the window will not reside within the range of the planner
and consequently a no solution situation will result. All these parameters were set based
on performance analysis in our previous work [13]. The maximum time to generate a
path segment (ti ter ate_max ) was defined as the time needed for the UAV to travel ds_step

while the maximum time to generate the whole path (tpath_g en_max ) was set at 10 times
ti ter ate_max . Finally, the distance reduction factor is used to reduce the distance in cases
where prospective intermediate goal points or prospective UAV positions reside on an
obstacle. Again this parameter was empirically defined after performance analysis in
[13].

For each test situation the UAV speed remained constant. This parameter was var-
ied between 0.01[-]/s and 0.1[-]/s in steps of 0.01[-]/s, where [-] represent modular dis-
tance units. These values were determined based on the nominal speeds for explo-
ration situations in a nominal environment. The environmental time stamped space cre-
ated apr i or i , assumed that obstacles move in random directions with random speeds
smaller than the UAV speed.

5.4.4. BOUNDED UNCERTAINTY DEFINITIONS

In the literature review presented in Section 5.2, uncertainty was divided into four main
categories, namely uncertainty in sensing systems, UAV model, environment and com-
munication. The first three categories of uncertainties aforementioned will effect posi-
tion and orientation of the UAV and obstacles within the range of the UAV sensing sys-
tems. Therefore, by modelling probabilistic and/or bounded uncertainties in position
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and orientation of the UAV agent and obstacles, uncertainties in sensing systems, UAV
model and environment will be catered for, as illustrated in Figure 5.2. Owing that our
UAV is assumed to be stand-alone, no communication is exchanged with other third par-
ties and therefore communication uncertainties are out of scope for the purpose of this
work, as shown in Figure 5.2. Furthermore, for the scope of path planning it is assumed
that the UAV is a point model moving at a specific speed in the intermediate goal point
direction with no orientation. The actual UAV orientation will be taken into account
by the path following algorithm which is no considered within the scope of this work.
Therefore orientation uncertainty is also neglected.

Figure 5.2: Illustration of uncertainty sources categorisation (refer Section 5.2.3), showing how these uncer-
tainty sources are integrated within the developed uncertainty modelling environment

After considering both bounded and probabilistic uncertainty modelling methods,
bounded uncertainty was considered to model uncertainty in both obstacles and UAV
position. As described in literature, both methods were successfully applied to model
different kinds of uncertainty in all four categories described earlier. The real-time path
planning algorithms are designed to consider any point in the environmental space as
either unoccupied or occupied by an obstacle, implying that the latter point is either free
or unavailable. With probabilistic methods, each point has a probability based in the dis-
tribution function of either being free or unavailable and therefore the planner must de-
fine apr i or i or in real-time a threshold to assign such point as free or unavailable. This
will increase computational demand with respect to the bounded shape method which
only defines a bound around the obstacle or UAV position and assumes that within the
bound, parameters are known with certainty and outside the bound everything is totally
unknown. Therefore through this rationale the latter method was selected.

Figure 5.3 illustrates the bounded boxes around the different obstacle shapes and
the spherical bound around UAV position. 3D bounded boxes were considered since
obstacle shapes can be regarded as 2D square planes. Therefore, 3D bounded boxes
are shapes that offer equidistant bounds from the actual obstacle limits. A spherical
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bound was considered for UAV position estimation as for fair modelling the uncertainty
error must be equidistant in all directions for the estimated UAV position point. In this
work, we will assume that uncertainty is time invariant in both obstacle position and
orientation and UAV maximum deviation in position since we will assume that within
the look-ahead distance, the sensing accuracy and precision of the UAV sensing systems
and the UAV positional accuracy system are assumed to remain constant. Having said
this, the effect on performance by varying uncertainty will be analysed in Section 5.5.

The actual UAV position in real-time path planning is assumed to reside with equal
probability anywhere within the spherical bounds defined by the time invariant maxi-
mum deviation in position. Therefore for the scope of analysis, the current UAV position
is randomly selected within the spherical bounds of the estimated future UAV position
on the constructed path in the previous iterate. This randomisation process is repeated
in the construction of each path segment while each scenario with a specific speed is
repeated for 100 times.

(a) (b).(ii)

(c).(ii) (c).(iii)

(b).(iii)

(d)

x

y

z

(b).(i)

x

y

z

(c).(i)

Figure 5.3: 2D illustrations of uncertainty bounds for all three categories of 3D obstacle shapes and the UAV
position: (a) Cube (bounds are applied the same for all cube sides), (b) V-obstacle, (c) Planes in the X-Z with
windows as openings and (d) UAV position

5.4.5. UNCERTAINTY QUANTIFICATION
Uncertainty in obstacle position and orientation is governed by either the precision and
accuracy of the on-board UAV sensing systems only or by on-board sensing systems
fused with other ground or associated off-ground sensing systems. In both cases, en-
vironmental situational awareness is limited and provided to the path planner with a
degree of accuracy and precision depending upon the sensing capabilities of the afore-
mentioned system or systems.

The uncertainty bounds of 3D obstacles namely cubes incorporate uncertainty by in-
creasing the distance from the centre of the obstacle to each vertex by the predefined un-
certainty. The connection of these new vertices will form the cubic uncertainty bounds.
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The distance from the centre to the new vertex v (dobst_ver tex (v)) is computed by Equa-
tion 5.1, where %u denotes the percentage uncertainty, dobst_centr e denotes the distance
from the centre of the obstacle to vertex v :

dobst_ver tex (v) =
(
1+ %u

100

)
×dobst_centr e (v) (5.1)

The new obstacle vertex is dobst_ver tex (v) distance from the centre of the obstacle
on the line connecting the centre of the obstacle to the original obstacle vertex. The re-
sultant uncertainty bounds will increase the percentage cube volume by multiple times
with respect to the percentage uncertainty.

For the V-obstacle case, which is made of two 2D planes perpendicular to each other,
uncertainty bounds are quantified by 10 planes enclosing the V-obstacle from all sides
as illustrated in Figure 5.3 (b). Figure 5.3 (b).(i) illustrates the 3D view of the V-obstacle
while (ii) and (iii) shows the X-Y and X-Z views incorporating uncertainty bounds, re-
spectively. The percentage uncertainty factor in obstacle position is multiplied by the
distance between the centre of the shape and each node of the obstacle and then added
to the actual node position to identify the nodes of the 10 enclosing planes such that
the distance between any node on the V-obstacle planes and the respective bound limit
is equidistant. Therefore the uncertainty bounds of the enclosing planes around the V-
obstacles are calculated as the cube obstacles using Equation 5.1.

For the Mixed case, incorporating all shapes including 2D planes with windows, the
uncertainty bound for planes is constructed by using two other parallel planes with
smaller windows with the edges of the parallel planes connected with each other to form
a closed shape as illustrated in Figure 5.3 (c). Figure 5.3 (c).(i) shows the 3D view of the
plane with a window in the X-Z plane while (ii) and (iii) show the X-Z and X-Y views with
uncertainty bounds, respectively. The Mixed case scenario consists of two planes with
one window each. Each plane with a window consists of 4 planes each described by 4
vertices. Since the developed planes occupy 96% of the area in the particular plane, the
bounding planes cannot occupy more than 99% in the respective plane. Otherwise, the
bounding planes will completely block the whole space, leaving no space for the planner
to find a path to goal. In this regard, to ensure a bounding plane occupation of not more
than 99%, the maximum bound increase (boundmax ) is set at 0.05. The distance from
an original plane vertex v to the new vertex dpl ane_ver tex (v) is calculated using Equation
5.2. The positions of the new vertex for bounding planes are defined at dpl ane_ver tex (v)
distance from the original vertex.

dpl ane_ver tex (v) =
(
boundmax × %u

100

)
(5.2)

The nominal uncertainty percentage values of obstacle shapes are decided based
on the uncertainty quantification considered in different studies and presented in Sec-
tion 5.2.5. As regards, obstacle uncertainty three studies were presented one that con-
sidered probabilistic and the others considered bounded uncertainty. Yang et al. [38],
considered a constant circular and spherical uncertainty bound of an additional 0.5m
radii for 5m radii obstacles for 2D and 3D environments, respectively. This amounts to
10% uncertainty bounds. Rathbun et al. [27], considered a 0.1km positional uncertainty
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for obstacle aircraft which amounts to 2x the size of a medium sized passenger aircraft.
This environment is different from the environment under review since in this case the
size of obstacles and obstacle density is much larger with respect to the environmen-
tal space than Rathbun et al. study and thus only Yang et al. [38] is considered for the
definition of uncertainty bounds for obstacles.

The maximum uncertainty in UAV position is modelled as a sphere as illustrated in
Figure 5.3 (d). The radius of the uncertainty sphere ru_spher e is equal to the multiplica-
tion of the respective percentage uncertainty and the distance the UAV moves per iterate
ds_step , as defined in Equation 5.3.

ru_spher e =
%u

100
×ds_step (5.3)

Cui et al. [16], considered a 10% distance and 0.2% angle uncertainty in system er-
ror distribution in an obstacle free scenario. The selected spherical uncertainty bound
will be larger with respect to Cui et al. [16] for the considered speed since 0.2% angle
uncertainty will translate to approximately 1.3% lateral deviation and in our case we are
assuming a maximum deviation of 20%. This allows a safer navigation using a less accu-
rate and precise positioning systems.

For all considered scenarios the uncertainty in either obstacle position and/or UAV
position was varied between 2% and 20% in steps of 2% when the effect of this uncer-
tainty on performance is under review. Otherwise, it is assumed that uncertainty is ne-
glected.

5.4.6. CONCLUSION

This section presents the four different environmental scenarios with different difficul-
ties that are used to assess the effect on path planning performance in real-time in the
presence of time invariant uncertainty in both obstacle position and orientation as well
as UAV position using bounded shapes. The considered uncertainty factors and their
quantification incorporate a set of major uncertainty sources although other uncertainty
factors neglected in this study may negatively impact performance of the considered
path planning algorithms in real-time.

5.5. RESULTS

5.5.1. INTRODUCTION

The A* and RRT 3D real-time path planning algorithms, environmental scenarios and
uncertainty in UAV and obstacle position and obstacle orientation described in the pre-
vious sections were implemented in MATLAB and tested using an Intel Xeon ES-1650,
3.2GHz. The path length, computational time and success rate are the performance
measures considered. Unless uncertainty is under review, UAV speed is varied in steps
of 0.01[-]/s, starting from 0.01[-]/s to 0.1[-]/s as described in Section 5.4, otherwise the
UAV speed is set at 0.05[-]/s, while the parameters tabulated in Table 5.2 were assigned
to the nominal values.
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5.5.2. A* AND RRT WITH NO UNCERTAINTY

Before the inclusion of uncertainty in obstacle and UAV positions, the performance of
both the A* and RRT algorithms in real-time in the presence of moving obstacles is as-
sessed. This is important so as to compare the effect on performance of uncertainty
additions to both A* and RRT. Figure 5.4 adapted from [10] shows the path length, com-
putational time and success rate for A* and RRT as speed is varied between 0.01[-]/s to
0.1[-]/s for the constant parameters illustrated in Table 5.2.

The salient points that can be concluded from Figure 5.4 is that the path length for
the first three scenarios namely the cube with no rotation, the cube with rotation and
the V-obstacle produce a path very close to 1 for all scenarios for all speeds for both al-
gorithms. The shortest path length is recorded for the cube with no rotation followed by
the cube with rotation and the V-obstacle also for all speeds for both algorithms. The
straight line distance from start to goal is 1 implying that the planner only deviated by a
small percentage from the straight line owing that the obstacles are rarely in the line of
sight from start to goal. A major increase in path length is recorded for both A* and RRT
for all speeds as the planner needs to traverse through two planes with windows on op-
posite sides as illustrated in Figure 5.1. Overall the path length for RRT was shorter than
A* for all scenarios and all speeds considered. Also speed has no effect on path length
since speed only determines the maximum intermediate and total time allocation.
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The computational time for A* is longer than that for RRT for all scenarios for all
speeds. As for path length speed has no effect on computational time for both algorithms
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for the reason described previously. The V-obstacle resulted in the lowest computational
time followed by the cube without and with rotation for both algorithms with a major
increase for the Mixed case. This order is attributed to the computational difficulty as-
sociated with each scenario with the V-obstacle consisting of only two 2D planes while
cubes consist of 6 planes and the internally unavailable space. For both path length and
computational time A* results in higher variance with respect to RRT for all scenarios for
all speeds. This is attributed to the graph-based nature of the A* algorithm and the rip-
ple reduction algorithm that re-plans the environment each iteration. Refer to [10, 12]
for further details.

In terms of success rate both algorithms exhibit a near 100% success rate for the first
three scenarios with RRT exhibiting a 100% success rate for the mentioned scenarios for
all speeds while A* achieved a minimum of 95% success rate for the same set of scenarios.
For the Mixed case, the RRT achieved a success rate of a minimum of 95% for speeds
from 0.01[-]/s to 0.03[-]/s deteriorating to 0% as speed increases. The A* on the other
hand never achieved this high success rate of the RRT algorithm but maintained success
rate above 40% at the highest speed which is the worst case scenario. For further analysis
of these results refer to Chapter 4 and [10].

Overall the performance of both the A* and RRT algorithms show that they can
be applied to real-time path planning in the presence of moving obstacles as long as
the allocated intermediate and total time is appropriate. The next step is to include
uncertainty in UAV position as explained in Section 5.4.

5.5.3. A* AND RRT WITH UNCERTAINTY IN UAV POSITION

The inclusion of uncertainty in UAV position is factored as a percentage of the distance
that the UAV is expected to move per iterate which is predetermined. During planning
the path is expected not to reside less than this distance away from each obstacle. Fig-
ure 5.5 illustrates the performance response of the A* and RRT algorithms with uncer-
tainty in UAV position. In this test two inter-related parameters are changing concur-
rently. One is the maximum uncertainty in UAV position that dictates the safe distance
that the planner must keep to ensure a non-collision provided the obstacle remains
fixed. Secondly, when the UAV is simulated to traverse the path in real-time, a random
shift by a random distance in a random angle varying from 0 to the considered maximum
UAV positional uncertainty is added to the calculation of the next intermediate UAV po-
sition on the previously constructed path to the intermediate goal point. This random
distance is bounded between 0 and the maximum uncertainty defined in the horizontal
axis of Figure 5.5.

The mean shortest path length for A* results is recorded for the non-rotating cube
case increasing when rotation is introduced and increasing further in the V-obstacle and
Mixed cases. For RRT, the V-obstacle is the shortest followed by the cube without and
with rotation and the mixed scenario, although the difference in the first three scenarios
is small. This order is equivalent for the no uncertainty cases for A* but changes with
RRT mainly because the V-obstacle case experienced the largest deterioration. The V-
obstacle rotating case is made up of two planes with each one having an area greater
than each side of the cube. Due to the buffer distance the available volume between
planes is reduced and therefore the planner needs to pass from outside in a larger num-
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Figure 5.5: Performance parameters vs. Uncertainty in UAV position: (a) Path Length for A*, (b) Computational
Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time for RRT and
(f) Success and Failure rates for RRT for 100 iterates for each considered situation (obstacle uncertainty and
scenario) with 95% confidence interval. (r es = 21,ds_step = 0.05,di nt_g oal = 0.4 (for Scenarios 1,2 and 3) and
di nt_g oal = 0.6 (for Scenario 4), d f actor = 0.8, ti ter ate_max = 72s and tpath_g en_max = 720s.

ber of iterations, resulting in a longer path. As for the non uncertainty cases, it can be
concluded that rotation increases path length since the effective movement of the cube
is higher effectively requiring the UAV to travel further away to avoid collisions.

The path length for the first three scenarios is 2 times and 1.5 times for the Mixed case
with respect to the other cases for all speeds for the A* and RRT algorithms, respectively.
As for the no uncertainty cases this increase results since the planner needs to travel
through obstacle plane windows on opposite sides of two parallel planes spaced by 0.4[-
] from each other. Due to the graph-based nature of A* obstacles are defined with a buffer
of half the distance between grid positions while for RRT every point not on an obstacle
plane or within the object is accessible.

The mean path length for RRT is 7.4%, 6.9%, 4.0% longer and 18.4% shorter with re-
spect to A* for Scenarios 1 to 4, respectively. For Scenarios 1 to 3 the success rate is close
to 100% for both algorithms therefore a fair comparison can be made. But for the Mixed
case, A* exhibited a higher success rate that could effect the mean path length owing that
the easiest iterates (which are ultimately successful) are considered for RRT with more
difficult iterates besides the easiest ones are considered for A*. This is also applicable to
computational time analysis. Therefore, without uncertainty the path length recorded
for RRT was always smaller than that for A*. So with the inclusion of UAV positional
uncertainty both algorithms experienced an increase in path length with the major de-
terioration exhibited by the RRT algorithm. In fact, with the inclusion of uncertainty, A*
exhibited a mean increase of 1.8%, 1.7% and 1.2% and a decrease of 2.7% for Scenarios
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1 to 4, respectively for the same speed. A larger increase of 9.2%, 9.1%, 8.9% and 10.7%
is recorded for RRT for Scenarios 1 to 4, respectively for the same speed. The decrease in
path length for A* for the Mixed case is attributed to the lower success rate for A* for this
case and therefore the easiest iterates are considered as explained earlier.

Further analysis of Figure 5.5 (a) and (d) shows that for both algorithms for all sce-
narios the path length increases with percentage uncertainty in UAV position. Refer to
Section 5.4.5 for percentage uncertainty definitions. For A* the path length increases
by 2.7%, 2.8%, 1.2% and 4.8% for Scenarios 1 to 4, respectively for uncertainty increases
from 2% to 20%. A similar analysis for RRT shows that the path length increases by 16.7%,
18.2%, 16.7% and 20.4% for Scenarios 1 to 4, respectively. From this analysis, the com-
parison between the mean path length of A* and RRT and the comparison between the
A* and RRT with and without uncertainties, it can be concluded that both algorithms
experience an increase in path length with uncertainty and the RRT is more susceptible
to increase in uncertainty in UAV position with respect to A*. For A* a buffer distance in
obstacle definition is already considered even without uncertainty at half the distance
between grid positions which is equal to 0.05[-] for the considered resolution. Therefore,
for A* two buffer distances are added when uncertainty in position is under investigation
while for RRT only positional uncertainty is included leading to a larger risk of collision
for RRT with respect to A*. The major percentage path length increase is recorded for
the Mixed case since it incorporates more than double the obstacles, restricting the con-
struction of intermediate paths.

Computational time is lowest for the V-obstacle case for both algorithms for all ranges
of uncertainties considered since the planner needs to only check for collision with only
two planes per shape not six planes and their interior per shape as in the cube case.
As described for other situations rotation increases computational time as the effective
movement of the obstacle increases. Since the mixed case is more complex than the
other three cases the required computational time is higher as a consequence.

With the inclusion of uncertainty A* recorded a decrease in mean computational
time by 2.29 times, 2.29 times, 5.60 times and 3.7% for Scenarios 1 to 4, respectively
for the same speed. Oppositely, for RRT an increase of 16.3%, 8.9%, 13.1% and 11.6%
is recorded for Scenarios 1 to 4, respectively for the same speed. The decrease exhib-
ited for A* results since, with uncertainty, the planner keeps a larger distance from the
obstacles and therefore the chance of re-planning due to obstacle movement decreases
while the obstacle definition time and path planning remain the same. This reduces
computational time at the expense of longer path length. For RRT a smaller increase in
computational time results with increase in uncertainty. By increasing uncertainty in
RRT, tree branches are more restricted and therefore the planner requires more time to
construct the path although as for A* the re-planning time reduces. But since the path
construction time is greater than the re-planning time, the combined effect is that the
total computational time increases.

The mean computational time for A* is 2.43, 2.04, 1.13 and 0.704 times with respect
to RRT for Scenarios 1 to 4, respectively. As for the non-uncertainty case, for both algo-
rithms, the shortest computational time is recorded for the V-obstacle case followed by
the cube without rotation and with rotation and the Mixed cases. Although, without and
with uncertainty A* reduced and RRT increased in computational time, this difference is
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not enough for the A* to perform better than RRT in the first three scenarios. Also, results
confirm that for complex cases, the A* can construct a path in less time than RRT with
and without positional uncertainty. This is because irrespective of complexity the ob-
stacle definition in the graph environment is not affected as all points within the range
need to be checked for occupancy. Oppositely for RRT, the larger the size and number of
obstacles the higher the computational time required to check for collisions.

The success rate for the first three scenarios is over 90% for all percentage uncer-
tainties for both algorithms considered with all three scenarios. A deterioration of ap-
proximately 5% with increase in uncertainty is visible only for RRT with A*’s success rate
independent of uncertainty consideration. As remarked for path length and computa-
tional time with increase in buffer distance to obstacles the RRT is mainly affected as
such buffer restricts prospective tree branches while for A* it does not effect obstacle
definition within sensing range, the most computational intensive part of the algorithm.
For the Mixed case, a success rate between 52% and 70% and between 12% and 44% is
recorded for A* and RRT, respectively. This shows that for the range of uncertainties con-
sidered for the Mixed case, the A* has double the chance of finding a feasible path from
start to goal.

In comparison with the no uncertainty scenarios, an approximately 5% success rate
deterioration is recorded for both algorithms for the first three scenarios for all the range
of uncertainties considered. For the Mixed case, a success rate similar to the no uncer-
tainty case for the same speed is recorded for both algorithms for all the range of uncer-
tainties. As for the no uncertainty cases, the maximum intermediate time restriction is
the main violation, especially in the Mixed case scenario for both algorithms. For A* a
total time violation is also illustrated in less than 5% of the cases in the Mixed scenario.
Oppositely, for RRT a number of No Path solutions are recorded (also less than 5%) for
all scenarios increasing with increase in uncertainty. For A*, No Path solutions are less
probable as in addition to UAV positional uncertainty buffer distance another distance
equivalent to half the distance between grid positions is added to avoid quantisation
errors that could lead to erratic obstacle definitions.

In conclusion, both algorithms resulted in almost 100% success rate for the first
three scenarios for all uncertainty values considered with RRT resulting in shorter
path length and computational time with respect to A*. Both algorithms show an in-
crease in path length and computational time with increase in uncertainty bounds
with RRT showing the larger growth. For the Mixed case, A* is 2 times more success-
ful than RRT for all uncertainty bounds with respect to RRT although A* constructed
longer paths.

5.5.4. A* AND RRT WITH UNCERTAINTY IN OBSTACLE POSITION AND ORI-
ENTATION

Figure 5.6 illustrates the performance response of the A* and RRT algorithms with in-
crease in obstacle uncertainty bounds. The uncertainty bounds are modelled and calcu-
lated as described in Section 5.2.5.

Figure 5.6 (a) and (d) illustrate the path length for A* and RRT, respectively. The re-
sponse is similar to the no uncertainty cases with the difference that no results are illus-
trated for the Mixed case scenario for the RRT algorithm since no successful runs were
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recorded for this case. In fact, the mean path length for A* increased by only 0.6%, 0.3%,
1.7% and decreased by 1.5% for the cube without and with rotation, V-obstacles and
Mixed cases for the uncertainty with obstacle uncertainty with respect to the no uncer-
tainty cases. Similarly, the same comparison for RRT show that the mean path length
increased by only 0.3%, 0.2% and <0.1% for the first three scenarios. The small increase
in the first three scenarios is attributed to the relative small increase in obstacle volume
occupation. For the Mixed case, the decrease in mean path length results due to a reduc-
tion of more than 50% in success rate in the obstacle uncertainty test case with respect
to the no uncertainty test cases. With lower success rate the easier paths are successful.

In comparison with the UAV positional uncertainty cases a lower increase in path
length results for all scenarios for both algorithms as the uncertainty increases. In fact,
comparing the path length at 20% with respect to 2% uncertainty an increase of 0.2%,
0.2%, 0.2% and 2.2% results for the non-rotating and rotating cube, V-obstacle and Mixed
cases, respectively for the A* algorithm. A similar analysis for RRT showed an increase
of <0.1%, 0.4% and 0.1% for the first three scenarios, respectively. For both algorithms,
the variance is invariant with increase in obstacle uncertainty. Therefore, it can be con-
cluded that the inclusion of obstacle uncertainty bounds have minimal effect on path
length in the first three scenarios for both algorithms mainly due to the low occupation
and also for the Mixed case using the A* algorithm.
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Figure 5.6: Performance parameters vs. Uncertainty in obstacle position and orientation: (a) Path Length
for A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Com-
putational Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situa-
tion (obstacle uncertainty and scenario) with 95% confidence interval. (r es = 21,ds_step = 0.05,di nt_g oal =
0.4 (for Scenarios 1,2 and 3) and di nt_g oal = 0.6 (for Scenario 4), d f actor = 0.8, ti ter ate_max = 72s and
tpath_g en_max = 720s.

The computational time results illustrated in Figure 5.6 (b) and (e) show that the cube
with no rotation case exhibits the fastest time followed by the rotating cube, V-obstacle
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(a) (b)

Figure 5.7: Two Dimensional objects modelled with uncertainty in obstacle position and orientation (20% test
case): (a) V-obstacles (zoomed) and (b) Planes with windows constructed in Mixed Scenario.

and Mixed scenarios for both algorithms. This order is different for both algorithms to
both the no uncertainty cases and the uncertainty in UAV position test cases. In fact,
for A* the computational time is 0.427 and 0.429 times for the cube without and with
rotation, respectively and 3.72 and 1.49 times for the V-obstacle and Mixed scenarios,
respectively for the obstacle uncertainty case with respect to the no uncertainty cases.
A similar comparison for RRT shows that the computational time increased by 23.6%,
26.3% and 12.9 times for the first three scenarios, respectively.

The analysis shows that with the increase in effective inaccessible volume of the
cubes, A* required less computational time while RRT required more time with respect
to the no uncertainty case. Adding uncertainty bounds around obstacles makes it more
difficult to construct a path as the environment is more restrictive. This explains why
RRT requires more time to construct tree branches to find a path from start to goal. For
A*, the increase in the number of inaccessible grid positions will not increase the envi-
ronment grid definition time as explained earlier and will make it easier to find a path, if
possible, since fewer amount of free nodes are available.

For the V-obstacle case both algorithms experienced an increase with RRT showing
the larger increase. The inclusion of obstacle uncertainty has changed the V-obstacle
from a 2D shape to a 3D shape. This increases computational demand to define the grid
environment for A* since the grid definition sub-algorithm needs to check and assign
inaccessible grid points found internally within the obstacle. For RRT, the V-obstacle
restricted the environment making it more difficult to construct tree branches. For the
Mixed case scenario, the environment is more restrictive resulting in fewer options of
tree branch construction, leading to a 0% success rate. For A*, the increase in computa-
tional time is attributed to the increase in grid definition time due to the change of 2D to
3D obstacles for the V-obstacles and planes.

Although the RRT experienced the higher increase in computational time, as for the
non uncertainty situation, the RRT algorithm constructed the path in less time than the
A* algorithm for the first three scenarios, implying that A*’s time consumption in envi-
ronmental quantisation is larger and path construction than RRT’s approach even with
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the inclusion of uncertainty. This shows that the RRT algorithm remains more compu-
tationally efficient with respect to A* for simple scenarios with the inclusion of obstacle
uncertainty in real-time.

Comparing the effect on computational time for obstacle uncertainty with respect
to UAV positional uncertainty for A* shows a minor decrease of 2.1%, 1.6% and a rel-
atively larger increase of 20.9 times and 71.0% increase for the cube without and with
rotation, the V-obstacle and Mixed case scenarios, respectively. This results since the
increase of the cube size will increase the number of inaccessible grid positions for the
obstacle uncertainty case remaining the same size for the positional UAv uncertainty.
For the V-obstacle and Mixed cases the 2D to 3D shift in obstacle modelling for the ob-
stacle uncertainty case is the reason for the increase with respect to the UAV positional
uncertainty case in which the V-obstacles and planes remains 2D. A similar analysis for
RRT shows a 6.3%, 15.9% and 11.4 times increase for the first three scenarios, respectively
when comparing the mean computational time with obstacle uncertainty with respect
to UAV positional uncertainty. Obstacle uncertainty makes the environment more re-
strictive due to decrease in available volume resulting in larger computational demand
requirement especially for the V-obstacle case.

The success rates for both algorithms illustrated in Figure 5.6 (c) and (f) show that
a close to 100% success rate is recorded for both algorithms for the first three scenarios
with a major drop for the Mixed case scenario for A* and 0% success rate for RRT. This
shows that for the first 3 cases the success rate is indifferent for both algorithms in the
range of uncertainty considered. For complex cases A* outperforms the RRT algorithm.
The decrease in success rate as obstacle uncertainty increases is illustrated in the Mixed
case for A* with a drop from 30% to 14% at 2% and 20% obstacle uncertainty, respec-
tively. This is not shown for the other tests since the allocated time is either too high
(First 3 scenarios) or too low (Mixed case, RRT). In fact, the maximum intermediate time
violation is the major cause for unsuccessful runs.

In comparison with the no uncertainty cases, results for A* show no difference in
success rate for the cube cases with a minor drop from 99% to an average of 96.9% in
the V-obstacle due to the increased volume occupation. On the other hand a major drop
from 69% to 22.2% is recorded for the Mixed case. The latter case includes both planes
and V-obstacles that changed from 2D to 3D obstacles effectively increasing complexity.
A similar analysis for RRT shows that for the first three scenarios the mean success rate
with obstacle uncertainty is larger than 99.5% as opposed to 100% with no uncertainty.
This implies that the time restrictions are too large for these cases. For the Mixed case a
drop from 30% to 0% is recorded.

In comparison with UAV positional uncertainty, overall results show that obstacle un-
certainty deteriorates success rate more than UAV positional uncertainty for the whole
range of uncertainties considered for the Mixed cases with a less than 2% difference for
the first three cases for both algorithms. For A*, a difference of less than 1% is recorded
for the first 3 scenarios and a drop from 62.7% to 22.2% for the Mixed case for UAV posi-
tional and obstacle uncertainty, respectively. Similarly for RRT, a difference of less than
2% is recorded for the first 3 scenarios with a drop from 26% to 0% in mean success rate
for the Mixed case.

In conclusion, the result show that a larger deterioration than the UAV positional
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uncertainty results for the obstacle uncertainty especially for RRT mainly for the V-
obstacles and Mixed cases in terms of path length, computational time and success
rate.

5.5.5. A* AND RRT WITH UNCERTAINTY IN OBSTACLE POSITION AND ORI-
ENTATION AND UAV POSITION

Figure 5.8 illustrates the performance response of the A* and RRT algorithms with the
combined increase of obstacle position and orientation and UAV position uncertainties.
The modelling of these uncertainties is as described in the previous two sub-sections
and the scope of this analysis is to analyse the combined effect of these two unrelated
uncertainties on the path planning performance of both algorithms at a predetermined
speed.
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Figure 5.8: Performance parameters vs. Uncertainty in obstacle position and orientation and UAV posi-
tion: (a) Path Length for A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path
Length for RRT, (e) Computational Time for RRT and (f) Success and Failure rates for RRT for 100 iter-
ates for each considered situation (obstacle and UAV uncertainty and scenario) with 95% confidence inter-
val. (r es = 21,ds_step = 0.05,di nt_g oal = 0.4 (for Scenarios 1,2 and 3) and di nt_g oal = 0.6 (for Scenario 4),
d f actor = 0.8, ti ter ate_max = 72s and tpath_g en_max = 720s.

Figure 5.8 (a) and (d) illustrate the path length for A* and RRT, respectively. The re-
sponse in path length is a combination of the results of Figure 5.5 (a) and (d) and Fig-
ure 5.6 (a) and (d). For both A* and RRT algorithms an increase in path length results
with increase in uncertainty with the major increase shown for RRT. For both algorithms
the cube without rotation case produced the shortest path followed by the cube with ro-
tation, V-obstacle and Mixed scenarios. Path length increases by 3.3%, 3.4%, 3.3% and
4.2% for the cube without and with rotation, V-obstacle and Mixed case scenarios, re-
spectively for the A* algorithm as uncertainty increases from 2% to 20%. Similarly for
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RRT, an increase in path length of 16.7%, 15.4% and 17.8% is obtained for the first three
scenarios, respectively as uncertainty increases from 2% to 20%. For the Mixed case for
the RRT algorithm a 0% success rate is recorded as in the obstacle uncertainty test. This
mainly results due to the larger increase in path length for RRT with increase in uncer-
tainty. The RRT algorithm constructed shorter average paths of 7.2%, 7.2% and 4.4% with
respect to A* for the first three scenarios, respectively.

In comparison with the no uncertainty case, A* results show an average increase in
path length of 1.8%, 1.6%, 1.9% and 0.2% for the cube without and with rotation, V-
obstacle and Mixed case scenarios, respectively. The minor increase for the Mixed case
is attributed to the lower success rate (>50%) and therefore the best performing paths are
successful lowering the average path length. The UAV positional uncertainty tests result
in an increase of 1.8%, 1.7%, 1.2% and 2.7% while the obstacle uncertainty result in 0.6%,
0.3%, 1.7% increase and 1.5% decrease with respect to the no uncertainty cases for the
scenarios defined earlier, respectively. Analysis of these results show that both uncer-
tainty types contribute to path length increase with UAV positional uncertainty having
the predominant effect. Although the increase in obstacle size and buffer distance from
UAV are equal, UAV positional uncertainty is added at each intermediate UAV position
irrespective of whether an obstacle is in the vicinity or not. For the first three cases where
the environment is mainly empty the deviations due to obstacles occur in few situations
while deviations in UAV positional uncertainty occur at each intermediate UAV position.
This explains the predominant effect of the UAV positional uncertainty results. For the
Mixed case, which introduces a deviation from obstacle uncertainty at each intermedi-
ate UAV position due to the high obstacle density, results cannot be directly compared
due to different success rates for the uncertainty cases considered.

Similarly for RRT, a comparison with the no uncertainty cases shows an average in-
crease in path length of 9.1%, 9.4% and 10.2% for the first three scenarios, respectively.
The UAV positional uncertainty tests result in an increase of 9.2%, 9.1% and 46.6% while
for obstacle uncertainty an increase of 0.3%, 0.2% and <0.1% is recorded for the first three
scenarios, respectively with respect to the no uncertainty test case. As for A*, the major
increase is recorded due to UAV positional uncertainty with obstacle uncertainty adding
a low share to path length increase for the same reason described for A*. The difference
for the V-obstacle scenario is attributed to the lower success rate for the combined un-
certainty cases.

Figure 5.8 (b) and (e) illustrate the computational response time for the A* and RRT
algorithms, respectively. The cube without rotation is the fastest scenario followed by
the cube with rotation, V-obstacle and Mixed case scenarios (if success rate is not 0%) for
both algorithms for all the uncertainty range considered. This order is different from the
no uncertainty and UAV positional uncertainty tests and in line with the obstacle uncer-
tainty test cases. The computational time comparison for A* at 2% and 20% uncertainty
in obstacle and UAV position uncertainty results in a 4.4%, 6.2%, 2.2% increase and 2.4%
decrease for the non-rotating cube, rotating cube, V-obstacle and Mixed case scenarios,
respectively for 20% uncertainty with respect to 2% case. The decrease in Mixed case is
attributed to the decreasing success rate. A similar analysis for RRT shows an increase
of 35.1%, 27.9% and 7.6% for the first three scenarios implying that RRT’s computational
demand is more affected by uncertainty in comparison with A*. But RRT remains faster
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than A* for the first three scenarios by 74.8%, 33.9% and 53.6%, respectively mainly be-
cause of the time consuming grid definition of the environment.

A* results for combined obstacle and UAV positional uncertainties with respect to
the no uncertainty case show an average decrease in computational time by 2.51 and
2.50 times and an increase of 3.38 and 1.48 times for the cube without and with rota-
tion, V-obstacle and Mixed case scenarios, respectively. The decrease in the cube cases
is mainly attributed to the reduced number of accessible grid positions making it faster
to find a path, if possible. The shift from 2D to 3D obstacles in the V-obstacle and planes
(Mixed case) increases the computational time to define inaccessible grid positions re-
siding within obstacle bounds. Furthermore, the UAV positional uncertainty tests result
in a decrease of 2.29, 2.29, 5.60 and 1.15 times while the obstacle uncertainty results in
2.34 and 2.33 times decrease and a 3.72 and 1.49 increase with respect to the no uncer-
tainty cases for the scenarios defined earlier, respectively. This analysis shows that in
terms of computational time obstacle uncertainty is predominant for the V-obstacle and
Mixed cases since the environment grid definition is predominately time consuming in
3D obstacles.

Similarly for RRT, a comparison with the no uncertainty cases shows an average in-
crease in computational time of 47.7%, 51.8% and 15.8 times for the first three scenarios,
respectively. The UAV positional uncertainty tests result in an increase of 16.3%, 8.9%
and 13.1% while obstacle uncertainty test result show an increase of 23.6%, 26.3% and
12.9 times for the first three scenarios, respectively with respect to no uncertainty cases.
As both positional and obstacle uncertainties increase computational time their effect
in restricting path construction is summed up in the combined test case.

The success rates for both algorithms illustrated in Figure 5.8 (c) and (f) show a suc-
cess rate near 100% for the first three scenarios for both algorithms for the range of un-
certainties considered with a major drop for A* and a drop to 0% for RRT for the Mixed
case scenario in line with the obstacle uncertainty test cases. As concluded for the ob-
stacle uncertainty case, the success rate for the first three scenarios is the same for both
algorithms with A* performing better than RRT in the Mixed case scenario. For A* the
success rate drops by 5%, 4%, 5% and 7% for the cube without rotation, with rotation,
V-obstacle and Mixed case, respectively from 2% to 20% uncertainties. For the same
analysis, the RRT results in a success rate drop of 1%, 6%, 5% and 0% (0% success rate).
Therefore it can be concluded that success rate drops with increase in uncertainty for
both algorithms.

As previously, the maximum intermediate time violation is the major cause of unsuc-
cessful runs with 78 tests out of 4000 resulting in No Path solution only for RRT with the
number increasing with increase in percentage uncertainty. This violation only occurs
for RRT since the planner does not incorporate half the distance between grid position
as in A* and therefore the movement of an obstacle towards the UAV can result in a col-
lision, as explained earlier. This risk will improve path length but is dangerous and can
lead to a collision especially in the presence of uncertainty.

Comparing the success rates for the uncertainty in obstacle and position with respect
to the no uncertainty test cases for A* show a decrease of 0.7%, 1.3%, 3.8% and 46.7% for
the cube without rotation, with rotation, V-obstacle and Mixed case scenarios, respec-
tively. Also, the UAV positional uncertainty tests show a drop <7% for all scenarios and for
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obstacle uncertainty a drop <3% for the first three scenarios with a major drop of 46.8%
for the Mixed case scenario all with respect to no uncertainty cases. This analysis show
that success rate is hindered mainly by obstacle uncertainty especially in the Mixed case
since in this situation the environment is already obstacle dense without increase in the
obstacle bounds. In general, bounds will increase the inaccessible grid points making it
more difficult to find a solution while UAV positional uncertainty will only limit the min-
imum distance to the obstacle which is already buffered by half the distance between
grid positions.

A similar analysis for RRT shows a drop in success rate of 2.5%, 4.5%, 5.7% and 30%
for the combined obstacle and UAV positional uncertainty with respect to the no un-
certainty test case for the same speed for the cube without rotation, with rotation, V-
obstacles and Mixed case scenarios, respectively. The UAV positional uncertainty test
case results in a drop of 2.1%, 2.0%, 1.5% and 4% for the same scenarios as previously
while for the obstacle uncertainty test case results in a drop <1% (First three scenarios)
and 30% for the Mixed case with respect to the no uncertainty test cases. The analysis
shows that, as opposed to A*, both uncertainties contribute to the drop in success rate
owing to the nature of the RRT algorithm that both uncertainties will restrict tree branch
construction increasing the path planning time with the consequence increasing unsuc-
cessful runs.

In conclusion, with the inclusion of both obstacle and UAV positional uncertain-
ties path planning performance further deteriorates, especially for RRT, with respect
to the consideration of individual uncertainties.

5.5.6. CONCLUSION
This section presented, compared and analysed the real-time path planning performance
of both A* and RRT algorithms in 4 different scenarios with and without uncertainty in
obstacles and UAV position. Results show that:

1. Uncertainties deteriorate path length, computational time and success rate with
the larger deterioration exhibited for the RRT algorithm;

2. RRT performed better in the cube and V-obstacle scenarios in terms of path length
and computational time with A* performing better in complex scenarios;

3. The deteriorating factor of different uncertainty sources on path planning perfor-
mance is different;

4. The inclusion of both uncertainties at the same time further hinders performance,
especially for RRT.

In conclusion, this analysis confirms that uncertainties shall be considered in path
planning, as their effect especially in complex scenarios, will determine the safety and
success of the mission.

Table 5.3 summarises the results presented in this section by showing the effect of
each uncertainty type and their combined effect on path planning performance. A +-
sign shows that the effect of the uncertainty type on path planning performance mea-
sure is minimal and a + or - notation imply that the uncertainty type and path planning
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performance measure are directly or inversely proportional, respectively. The additional
sign show that the uncertainty type highly effects the path planning performance mea-
sure.

Table 5.3: Relational table between uncertainty type and path planning performance

Parameter Path Length Planning Time Success rate
A* RRT A* RRT A* RRT

UAV positional un-
certainty

+- + – + +- +-

Obstacle uncertainty +- +- +- ++ – –
UAV positional and
obstacle uncertainty

+- + +- ++ – –

5.6. CONCLUSION AND FUTURE WORK
This paper analysed the path planning performance of the A* and RRT algorithms in 3D
real-time UAV path planning in different complexity scenarios with moving obstacles in
the presence of uncertainties in UAV position and obstacle position and orientation. Lit-
erature identified the need to consider uncertainty sources in UAV path planning owing
to their effect on constraints and disturbances within which a UAV must safely operate.
In this regard, two different uncertainties, the UAV position and obstacle position and
orientation, that incorporated all identified uncertainty sources, for the considered UAV,
were quantified and modelled using bounded shapes. The effect on path planning of
these uncertainties was assessed at different UAV speeds. The UAV model, path plan-
ner parameters and four different complexity scenarios were defined in view of real UAV
models and the environment into which these are expected to operate. The path length,
computational time and success rate were the performance measures considered, as un-
certainty was varied between 2% and 20%.

Results show that both types of uncertainty deteriorate path planning performance
of both A* and RRT algorithms for all scenarios considered with RRT exhibiting the larger
effect on performance due to both types of uncertainties. RRT results in the fastest and
shortest paths with approximately the same success rate as A* (>95%) for the cube and
V-obstacle scenarios deteriorating significantly to even 0% success rate for the Mixed
scenario. In latter case A* performs better. The combination of both types of uncer-
tainty into the same test further deteriorates performance especially for RRT. Also owing
to RRT’s ability to shorter path nearer to obstacles with respect to A* results show that
RRT has a higher risk of collision than A*. The results show that both algorithms can be
applied in low obstacle density environments with moving obstacles in real-time path
planning in the presence of uncertainty. In complex scenarios more time is required,
especially for RRT, for comparable success rates. Finally, this work shows that 3D real-
time path planning in different obstacle density, moving obstacle environments in the
presence of uncertainty is possible.

Future enhancement shall include the analysis of the effects of other parameters
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including look-ahead distance, distance to travel per iterate and allocated time on the
performance of both path planning algorithms. A future work is the implementation
of the developed 3D real-time path planning algorithms to configure a real UAV for au-
tonomous 3D UAV navigation in an indoor obstacle-rich environment.

REFERENCES
[1] International Civil Aviation Organisation, “Global Air Traffic Management Opera-

tional Concept”, Doc. 9854, AN/458, Ed. 1, pp. 1-82, 2005.

[2] International Civil Aviation Organisation, “Unmanned Aircraft Systems (UAS)”, Cir.
328, AN/190, pp. 1-54, 2011.

[3] Boskovic, J. D., Knoebel, N., Moshtagh, N. and Larson, G.L., “Collaborative Mission
Planning & Autonomous Control Technology ( CoMPACT ) System Employing Swarms
of UAVs”, AIAA Guidance, Navigation and Control Conference, Chicago, IL, 10-13 Aug.,
2009, pp. 1-24.

[4] Goerzen, C., Kong, Z. and Mettler, B. “A Survey of Motion Planning Algorithms from
the Perspective of Autonomous UAV Guidance”, Journal of Intelligent & Robotic Sys-
tems, Vol. 57, pp. 65—100, 2010.

[5] Dadkhah, N. and Mettler, B., ‘Survey of Motion Planning Literature in the Presence
of Uncertainty: Considerations for UAV Guidance”, Journal of Intelligent & Robotic
Systems, Vol. 65, pp. 233—246, 2012.

[6] Vanegas, F. and Gonzalez, L. F., “Uncertainty based online planning for UAV target
finding in cluttered and GPS-denied environments”, IEEE Aerospace Conference, Big
Sky, MN, 5-12 Mar., 2016, pp. 1-9.

[7] Chakrabarty, A. and Langelaan, J. W., “Energy maps for long-range path planning for
small-and micro-uavs”, AIAA Guidance, Navigation and Control Conference, Chicago,
IL, 10-13 Aug., 2009, pp. 1-13.

[8] Benenson, R. Petti, S., Fraichard, T. and Parent, M., “Integrating Perception and Plan-
ning for Autonomous Navigation of Urban Vehicles,” IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Beijing, China, 9-15 Oct. 2006, pp. 98-104.

[9] Yao, P., Wang, H. and Su, Z., “Real-time path planning of unmanned aerial vehicle for
target tracking and obstacle avoidance in complex dynamic environment,” Aerospace
Science and Technology, Vol. 47, pp. 269-279, 2015.

[10] Zammit, C. and van Kampen, E. J., “3D real-time path planning of UAVs in dynamic
environments”, AIAA Guidance, Navigation and Control Conference, AIAA SciTech Fo-
rum, Kissimmee, FL, 8-12 Jan., 2021.

[11] Zammit, C. and van Kampen, E. J., “Comparison between A* and RRT Algorithms for
UAV Path Planning”, AIAA Guidance, Navigation and Control Conference, AIAA SciTech
Forum, Kissimmee, FL, 8-12 Jan., 2018, pp. 1-23.



REFERENCES

5

167

[12] Zammit, C. and van Kampen, E. J., “Advancements for A* and RRT in 3D path plan-
ning of UAVs”, AIAA Guidance, Navigation and Control Conference, AIAA SciTech Fo-
rum, San Diego, CA, 7-11 Jan., 2019, pp. 1-17.

[13] Zammit, C. and van Kampen, E. J., “Comparison of A* and RRT in real-time 3D path
planning of UAVs”, AIAA Guidance, Navigation and Control Conference, AIAA SciTech
Forum, Kissimmee, FL, 6-10 Jan., 2020.

[14] Kim, Y., Gu, D.-W., Postlethwaite, I., “Real-time path planning with limited informa-
tion for autonomous unmanned air vehicles”, Automatica, Vol. 44, No. 3, pp. 696—712,
2008.

[15] Hsu, D., Kindel R., Latombe J. C., Rock, S., “Randomized kinodynamic motion plan-
ning with moving obstacles”, International Journal Robotics Research, Vol. 21, No. 3,
pp. 233—255, 2002.

[16] Cui, J.-H., Wei, R.-X., Liu, Z.-C. and Zhou, K., “UAV Motion Strategies in Uncertain
Dynamic Environments: A Path Planning Method Based on Q-Learning Strategy”, Ap-
plied Sciences, Vol. 8, No. 11, pp. 2169, 2018.

[17] LaValle, S. M. and Sharma, R. “A Framework for Motion Planning in Stochastic En-
vironments: Modeling and Analysis”, IEEE lnternational Conference on Robotics and
Automation, Nagoya, Japan, 21-27, May 1995, pp. 3057-3062, 1995.

[18] Hoy, M., Matveev, A. S. and Savkin, A. V., “Algorithms for collision-free navigation of
mobile robots in complex cluttered environments: a survey”, Robotica, Vol. 33, No. 4,
pp. 463-497, 2014.

[19] Liao, F., Lai, S., Hu, Y., Cui, J., Wang, J. L., Teo, R. and Lin, F. “3D Motion Planning for
UAVs in GPS-Denied Unknown Forest Environment”, IEEE Intelligent Vehicles Sympo-
sium, Gothenburg, Sweden, 19-22, Jun. 2016, pp. 246-251.

[20] Vanegas, F., Campbell, D., Roy, N., Gaston, K. J. and Gonzalez, L. F., “UAV track-
ing and following a ground target under motion and localisation uncertainty”, IEEE
Aerospace Conference, Big Sky, MN, 4-11 Mar., 2017, pp. 1-10.

[21] Achtelik, M. W., Lynen, S., Weiss, S., Chli, M. and Siegwart, R., “Motion- and
Uncertainty-aware Path Planning for Micro Aerial Vehicles”, Journal of Field Robotics,
Vol. 31, No. 4, pp. 676-698, 2014.

[22] Prentice, S. and Roy, N. “The Belief Roadmap: Efficient Planning in Belief Space by
Factoring the Covariance” The International Journal of Robotics Research, Vol. 28, No.
11-12, pp. 1448-1465, 2009.

[23] He, R., Bachrach, A. and Roy, N., “Efficient planning under uncertainty for a target-
tracking micro-aerial vehicle”, IEEE International Conference on Robotics and Au-
tomation, Anchorage, AK, 3-7, May 2010, pp. 1-8.

[24] Florence, P. R.“Integrated Perception and Control at High Speed”, Master Disserta-
tion, Massachusetts Institute of Technology, Feb. 2017.



5

168 REFERENCES

[25] Lihua, Z., Xianghong, C. and Fuh-Gwo, Y. “A 3D collision avoidance strategy for UAV
with physical constraints” Measurement, Vol. 77, pp. 40-49, 2016.

[26] Kothari, M. and Postlethwaite, I., “A Probabilistically Robust Path Planning Al-
gorithm for UAVs Using Rapidly-Exploring Random Trees”, Journal of Intelligent &
Robotic Systems, Vol. 71, pp. 231-253, 2013.

[27] Rathbun, D., Kragelund, S., Pongpunwattana, A. and Capozzi, B., “An evolution
based path planning algorithm for autonomous motion of a UAV through uncertain
environments”, Digital Avionics Systems Conference, Irvine, CA, 27-31, Oct. 2002, pp.
8.D.2-1-8.D.2-12.

[28] LaValle, S. M. and Sharma, R. “A Framework for Motion Planning in Stochastic En-
vironments: Applications and Computational Issues ”, IEEE lnternational Conference
on Robotics and Automation, Nagoya, Japan, 21-27, May 1995, pp. 3063-3068.

[29] LaValle, S. M., Planning algorithms, Cambridge: Cambridge university press, 2006.

[30] Majumdar, A. and Tedrake, R. “Funnel libraries for real-time robust feedback mo-
tion planning”, The International Journal of Robotics Research, Vol. 36, No. 8, pp. 947-
982 2017.

[31] Moore, J., Cory, R. and Tedrake, R. “Robust post-stall perching with a simple fixed-
wing glider using LQR-Trees”, Bioinspiration & Biomimetics Journal, Vol. 9, No. 2, pp.
1-24 2014.

[32] Shah, S. K, Pahlajani, C. D., Lacock, N. A. and Tanner, H. G. “Stochastic receding
horizon control for robots with probabilistic state constraints”, International Confer-
ence on Robotics and Automation (ICRA), St. Paul, MN, 14-18, May, 2012, pp. 2893-
2898.

[33] Blackmore, L., Ono, M. and Williams, B. C. “Chance-constrained optimal path plan-
ning with obstacles”, IEEE Transactions on Robotics, Vol. 27, No. 6, pp. 1094-1080, 2011.

[34] Luders, B., Kothari, M. and How, J.P. “Chance constrained RRT for probabilistic
robustness to environmental uncertainty”, AIAA Guidance, Navigation, and Control
Conference and Exhibit, Toronto, Ontario, Canada, 02-05 Aug. 2010, pp. 1-21.

[35] Page, L. A. and Sanderson, A. C. “A path-space search algorithm for motion planning
with uncertainties”, IEEE International Symposium on Assembly and Task Planning,
Pittsburgh, PA, 2-5, Aug. 1995, pp. 334-340.

[36] Lazanas, A. and Latombe, J.-C. “Landmark-based robot navigation”, Algorithmica,
Vol. 13, No. 5, pp. 472-501, 1995.

[37] Larson, J., Bruch, M. and Ebken, J. “Autonomous navigation and obstacle avoidance
for unmanned surface vehicles”, Defense and Security Symposium, SPIE conference,
Kissimmee, Orlando, FL, 17—21, Apr. 2006, pp. 1-12.



REFERENCES

5

169

[38] Yang, L., QI, J., Jiang, Z., Song, D., Han, J. and Xiao, J. “Guiding Attraction based Ran-
dom Tree Path Planning under Uncertainty: Dedicate for UAV”, International Confer-
ence on Mechatronics and Automation, Tianjin, China, 3—6, Aug. 2014, pp. 1182-1187.

[39] Pepy, R. and Lambert, A. “Safe Path Planning in an Uncertain-Configuration Space
using RRT”, IEEE International Conference on Intelligent Robots and Systems, Beijing,
China, 9-15 Oct. 2006, pp. 5376-5381.

[40] van den Berg, J., Wilkie, D., Guy, S. J., Niethammer, M. and Manocha, D. “Lqg-
obstacles: Feedback Control with Collision Avoidance for Mobile Robots with Motion
and Sensing Uncertainty”, IEEE International Conference on Robotics and Automation,
St. Paul, MN, 4-18 May 2012, pp. 346-353.

[41] Zeng, Z., Lammas, A., Sammut, K., He, F. and Tang, Y. “Shell space decomposition
based path planning for AUVs operating in a variable environment”, Ocean Engineer-
ing, Vol. 91, pp. 181-195, 2014.

[42] Gonzalez, J. P. and Stentz, A., “Planning with uncertainty in position an optimal
and efficient planner”, IEEE/RSJ International Conference on Intelligent Robots and
Systems, Edmonton, Alta., Canada, 2-6 Aug. 2005, pp. 1-8.

[43] Wen, N., Xiaohong, S., Ma, P., Zhao, L. and Zhang, Y. “Online UAV path planning in
uncertain and hostile environments”, International Journal of Machine Learning and
Cybernetics, Vol. 8, pp. 469-487, 2017.

[44] Daftry, S., Zeng, S., Khan, A., Dey, D., Melik-Barkhudarov, N., Bagnell, J. A. and
Hebert, M. “Robust Monocular Flight in Cluttered Outdoor Environments”, ArXiv, Vol.
1604.04779, pp. 1-10, 2016.

[45] Matthies, L., Brockers, R., Kuwata, Y. and Weiss, S. “Stereo vision-based obstacle
avoidance for micro air vehicles using disparity space”, IEEE International Conference
on Robotics and Automation (ICRA), Hong Kong, China, 31 May-7 Jun. 2014, pp. 3242-
3249.

[46] Liu, S., Watterson, M., Tang, S. and Kumar, V. “High speed navigation for quadro-
tors with limited onboard sensing.”, IEEE International Conference on Robotics and
Automation (ICRA), Stockholm, Sweden, 16-21 May 2016, pp. 1484-3249.

[47] Kuwata, Y., Karaman, S., Teo, J., Frazzoli, E., How, J. and Fiore, G. “Real-Time Mo-
tion Planning With Applications to Autonomous Urban Driving”, IEEE Transactions on
Control Systems Technology, Vol. 17, No. 5, pp. 1105-1118, 2009.

[48] Fulgenzi, C., Tay, C., Spalanzani, A. and Laugier, C. “Probabilistic navigation in dy-
namic environment using rapidly-exploring random trees and Gaussian processes”,
IEEE International Conference on Intelligent Robots and Systems, Nice, France, 22-26
Sep. 2008, pp. 1056—1062.

[49] Kewlani, G., Ishigami, G. and Iagnemma, K. “Stochastic mobility-based path plan-
ning in uncertain environments”, IEEE International Conference on Intelligent Robots
and Systems, St. Louis, MO, 11-15 Oct. 2009, pp. 1183-1189.



5

170 REFERENCES

[50] Melchior, N.A. and Simmons, R. “Particle RRT for path planning with uncertainty”,
IEEE International Conference on Robotics and Automation, Rome, Italy, 10-14 Apr.
2007, pp. 1617-1624.

[51] Aoude, G. S., Joseph, J., Roy, N. and How, J.P. “Mobile Agent Trajectory Prediction us-
ing Bayesian Nonparametric Reachability Trees”, Infotech@ Aerospace, St. Louis, MO,
29-31 Mar. 2011, pp. 1587-1593.

[52] Papadimitriou, C. H. and Tsitsiklis, J. N. “The Complexity of Markov Decision Pro-
cesses”, Mathematics of Operations Research, Vol. 12, No. 3, pp. 441-450, 1987.

[53] Thrun, S., Burgard, W. and Fox, D. ‘Probabilistic Robotics’, Massachusetts: MIT
Press, 2005.

[54] Pineau, J., Gordon, G. and Thrun, S. “Anytime Point-Based Approximations for
Large POMDPs”, Jounal of Artificial Intelligence Research, Vol. 27, No. 1, pp. 335-380,
2006.

[55] Utkin, V. I. ‘liding Modes in Control Optimization’, Berlin: Springer–Verlag, 1992.

[56] Shah, M. Z., Samar, R. and Bhatti, A. I. “Guidance of Air Vehicles: A Sliding Mode
Approach”, IEEE Transactions on control system technology, Vol. 23, No. 1, pp. 231-244,
2015.

[57] Yang, L., Qi, J., Song, D., Xiao, J., Han, J. and Xia, Y. “Survey of Robot 3D Path Plan-
ning Algorithms”, Journal of Control Science and Engineering, Vol. 2016, pp. 1-22, 2016.

[58] Culligan, K., Valenti, M. Kuwata, Y. and How, J. P. “Three dimensional flight ex-
periments using on-line mixed-integer linear programming trajectory optimization”,
American Control Conference, New York, NY, 9-13 Jul. 2007, pp. 5322-5327.

[59] Masehian, E. and Habibi, G. “Robot path planning in 3D space using binary integer
programming”, International Journal of Mechanical System Science and Engineering,
Vol. 23, pp. 26-31, 2007.

[60] Anderson, S., J., Peters, S. C., Pilutti, T. E. and Iagnemma, K. “An optimal-control-
based framework for trajectory planning, threat assessment, and semi-autonomous
control of passenger vehicles in hazard avoidance Scenarios”, International Journal of
Vehicle Autonomous Systems, Vol. 8, No. 2-4, pp. 190-216, 2010.

[61] Connolly, C. I. “Harmonic functions and collision probabilities”, International Jour-
nal of Robotics Research, Vol. 16, No. 4, pp. 497-507, 1997.

[62] Lazanas, A. and Latombe, J. C. “Motion planning with uncertainty: a landmark ap-
proach”, Artificial Intelligence, Vol. 76, No. 1-2, pp. 287-317, 1995.

[63] Zengin, U. and Dogan, A., J. C. “Probabilistic trajectory planning for UAVs in dy-
namic environments”, AIAA “Unmanned Unlimited” Technical Conference, Workshop
and Exhibit, 20-23 Sep., 2004, Chicago, IL, pp. 1-12.



REFERENCES

5

171

[64] Thrun, S., Diel, M. and Hahnel, D. “Scan alignment and 3-D surface modelling
with a helicopter platform”, International Conference on Field and Service Robotics,
Yamanashi, Japan, 14-16 Jul. 2003, pp. 1-6.

[65] Thrun, S. and Montemerlo, M. “The graph slam algorithm with applications to
large-scale mapping of urban structures”, International Journal of Robotics Research,
Vol. 25, No. 5-6, pp. 403-429, 2006.

[66] Kuwata, Y., Schouwenaars, T., Richards, A. and How, J. “Robust constrained reced-
ing horizon control for trajectory planning”, AIAA Guidance, Navigation, and Control
Conference, San Francisco, CA, 15-18 Aug. 2005, pp. 1-12.

[67] Schouwenaars, T., Mettler, B., Feron, E. and How, J. P. “Robust Motion Planning
Using a Maneuver Automaton with Built-in Uncertainties”, American Control Confer-
ence, Denver, Co, 4-6 Jun. 2003, pp. 2211-2216.

[68] Frazzoli, E. ‘Robust Hybrid Control for Autonomous Vehicle Motion Planning’, Ph.
D. thesis, MIT, June 2001.
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The modelling and integration of uncertainties into the developed real-time 3D UAV
path planning algorithms concludes the planned research journey of this dissertation.
The contents of this dissertation started in Chapter 1 with the identification of challenges
hindering the use of UAVs in indoor environments. These challenges target: real-time 3D
UAV path planning (Challenge 1) in dynamic environments (Challenge 2) and including
uncertainty considerations (Challenge 3). The main research goal was formulated as:

Research Goal

Assess the performance of state-of-the-art path planning rationales in the con-
text of UAVs operating in 3D real–time, dynamic indoor environments in the
presence of uncertainty and identify a customised configuration based on the
application.

To reach this research goal, five research questions were posed in Chapter 1. These
research questions were addressed in Chapter 2 to Chapter 5 and the main findings and
the implications on UAV path planning in indoor environments will be summarised in
Section 6.1. Finally, Section 6.2 concludes this dissertation with an explanation of the
limitations of this work and future recommendations with the ultimate aim of reducing
the challenges that are hindering the use of UAVs in indoor environments.

6.1. CONCLUSIONS

6.1.1. MAIN FINDINGS
Research Question 1, stated below, targets the review and comparison of path planning
algorithms for UAVs, and was tackled in Chapter 2. It required a literature review of the
state-of-the-art 2D and 3D path planning algorithms that have a potential to be applied
to guide a UAV operating in typical indoor environments.

Research Question 1

What is the state-of-the-art in the field of path planning for UAVs in 3D and how
these algorithms compare?

The literature review presented in Chapter 2 shows that graph–based and sampling–
based methods are potential candidates for 3D UAV path planning. These two path plan-
ning rationales have developed into a number of variants with the A* and RRT being the
most utilised graph-based and sampling-based path planning algorithms, respectively.
These two algorithms, together with a static obstacle-rich 3D environment, were imple-
mented in MATLAB to allow the two algorithms to be tested in the same environment.

Tests showed that RRT algorithm’s tree propagation is limited by tree branch length.
Therefore, to assess the effect of this limitation this restriction is eliminated in the RRT
without step size constraint variant, developed originally in this work. Furthermore, the
MRRT algorithm, a variant of the RRT algorithm, which grows multiple trees, instead of
just one is also implemented.
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For A*, tests show an inherent ripple in path length with changes in resolution for
all scenarios. Analysis shows this ripple is the result of A*’s graph–based nature which
creates situations in which an increase in resolution, which theoretically shall slightly
decrease the path length, effectively generates longer or shorter paths. This ripple can
be mitigated by randomly shifting the environment in all three dimensions by a distance
varying between zero and half the distance between adjacent graph points.

Literature and tests show that the A* generates almost optimal paths while the RRT
generates non–optimal paths. Therefore, a smoothing algorithm is developed and ap-
plied to A* with the ripple reduction algorithm, RRT, RRT without step size constraint
and MRRT as a post path planning stage.

From the comparison of the graph-based and sampling-based rationales, addressed
in Chapter 2, it was concluded that:

1. All path planning algorithms construct a non-colliding path in all scenarios con-
sidered;

2. A* generates almost optimal paths while the RRT generates non–optimal paths;

3. A* only explores areas necessary for path construction while the RRT evenly ex-
plores the environment;

4. A* generates shorter paths in less time with respect to RRT, for all scenarios con-
sidered, even if the post path planning smoothing algorithm is considered;

5. The A* ripple reduction (A∗
R ) algorithm reduces ripple by 46% to 48% in terms

of standard deviation for all conditions considered, without an increase in path
length and computational time;

6. The RRT without step size constraint results in less path construction time with
respect to the standard RRT, but also leads to longer and oscillating paths which
require more smoothing, for all scenarios;

7. The evenly–distributed MRRT generates longer unsmoothed paths in shorter plan-
ning times but requires more smoothing with respect to RRT for all considered
scenarios; and

8. The developed smoothing algorithm takes less than 1% of the path generation
time and is mainly effective for sampling-based algorithms.

The algorithms developed to answer Research Question 1 are integral to address Re-
search Question 2, stated below and tackled in Chapter 3, through developing and as-
sessing a real–time 3D path planning platform in static environments.

Research Question 2

Can the selected path planing algorithms be applied in real-time environments
using the computational demand onboard small UAVs?
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The development of this platform is influenced by the conclusions drawn in Chap-
ter 2. A literature survey highlighted the need of real-time path planning of 2D au-
tonomous systems [1–3] emphasising the greater need for real–time path planning for
UAVs which need to manoeuvre in complex 3D environments. In Chapter 3, a real-
time path planning platform is constructed based on a set of user-defined parameters
and system constraints. This system assumes that, first, the environment within a look-
ahead distance from the UAV position is known with certainty while the remaining is
unknown and second, the path planning algorithm must construct a path in less than or
equal to the time required by the UAV to move one iteration.

In Chapter 2 it was concluded that the A* with ripple reduction and the standard
RRT are best performing path planning algorithms for the graph-based and sampling-
based rationales, respectively. In Chapter 3, these two algorithms with smoothing are
integrated within the real-time platform and tested in the same scenarios as in Chapter 2.
Results show that:

1. The A* algorithm outperforms the RRT algorithm in both path length and com-
putational time, for all scenarios considered, with the difference increasing with
scenario complexity;

2. A* is successful by more than 90% in all tests for all scenarios considered, provided
the look-ahead distance is at least double the distance moved per iterate;

3. The RRT algorithm results in a lower success rate than A* owing to the longer com-
putational time required to construct intermediate paths with respect to A*; and

4. For both algorithms, performance depends on the definition of empirical values
for each parameter.

This analysis triggered Research Question 3, stated below, that replaces static obstacles
with moving and rotating obstacles at a speed less than or equal to the UAV speed. In
Chapter 4 a dynamic environment is constructed to assess the path planning perfor-
mance of the 3D real–time path planning platform developed in Chapter 3.

Research Question 3

What is the effect, if any, on path planning performance if static obstacles are
replaced with dynamic obstacles?

The need to consider dynamic environments is underlined in literature owing that
UAVs must operate in time-varying environments [4]. Four different scenarios with dif-
ferent complexity made up of rotating and non-rotating cubes, rotating V-shaped obsta-
cles and static 2D planes with windows are considered.

A real-time environment with a limited sensing range creates situations where an
intermediate goal point is not available. Waiting for the intermediate goal point to be
clear in dynamic environments may result in the clearance or not of the intermediate
goal point due to obstacle movement. Two rationales were developed to mitigate this
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situation. In the waiting rationale, the UAV waits in its current position until the defined
intermediate goal position becomes available. In the moving rationale, the intermediate
goal position is neared to the current UAV position, consequently increasing the chances
of moving closer to the final goal position. These two rationales were integrated within
the two path planning rationales and tested in all scenarios with dynamic obstacles.

Results show that:

1. The moving option yields better overall results in terms of path length, computa-
tional time and success rate for A* and RRT with respect to the waiting option;

2. Both A* and RRT produce similar results in relatively simple scenarios with RRT
showing better results in path length, computational time and success rate;

3. As speed increases in complex scenarios the success rate drops due to lack of path
planning time in both A* and RRT; and

4. For complex scenarios the RRT is better in terms of path length provided time is
not limited, while the A* algorithm is less susceptible to time constraints.

Chapter 5 identifies the need of uncertainty consideration in real-time 3D UAV path
planning, owing that uncertainty may negatively impact path planning performance if
neglected [5]. This chapter tackles Research Question 4, stated below, by identifying and
describing the uncertainty sources present in the sensing systems, UAV model, environ-
mental sensing and prediction and communication.

Research Question 4

Do uncertainties effect 3D path planning of UAVs? If yes, how can these uncer-
tainties be modelled?

Literature suggested the bounding shapes and probabilistic distributions methods
as key candidates for uncertainty modelling in UAV applications. After considering their
characteristics, uncertainty is modelled using bounded shapes around the current UAV
position and obstacle volume.

Chapter 5 integrates the uncertainty into the real-time 3D UAV path planning algo-
rithm with dynamic obstacles developed in Chapter 4. Uncertainty bounds are quanti-
fied based on literature and varied between 2% and 20% for both the UAV position and
the position of obstacles. Tests are performed using both path planning rationales with
the moving method on the real-time path planning platform using the same scenarios
described in Chapter 4. The analysis with different uncertainty bounding percentages
will help understand the effect of uncertainties for a UAV operating within indoor envi-
ronments, suggesting how these uncertainties can be mitigated hence tackling Research
Question 5.
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Research Question 5

Can uncertainties be mitigated to ensure collision–free 3D path planning of UAVs
in real–time in the presence of dynamic obstacles?

The main findings are that:

1. Both sources of uncertainty (position of UAV and obstacles) deteriorate path plan-
ning performance of both A* and RRT algorithms for all scenarios considered with
RRT exhibiting the largest performance degradation;

2. The inclusion of both sources of uncertainty at the same time further deteriorates
performance, especially for RRT;

3. RRT results in the fastest and shortest paths with approximately the same success
rate as A* for relatively simpler scenarios;

4. A* performs better in terms of success rate in the relatively complex case; and

5. RRT has a higher risk of collision than A* as in RRT the UAV moves closer to obsta-
cles than with A*.

In the next subsection, the findings from each chapter will be further discussed in the
context of real UAV path planning in indoor environments.

6.1.2. IMPLICATIONS TO REAL UAV PATH PLANNING
In all the chapters, three performance measures where considered: path length, path
generation time and success rate. An optimal path length is desired, especially when fre-
quent re-charging is not possible or when the UAV is expected to travel long distances. In
such situations, UAV’s onboard energy resources become the bottleneck. A low path gen-
eration time is also desired especially in time-varying, obstacle-rich environments, since
the planner needs to continuously react to ensure a non-colliding path. Since in the con-
sidered application the UAV can only use onboard computational resources which must
be shared with the sensing and actuator systems, this performance parameter becomes
more important. Finally, the success rate will affect the safety and robustness of the path
planning system and its consideration for real implementation.

From Chapter 2, results show that A* performs better than RRT both in terms of path
length and path generation time in offline situations with static obstacles with 100%
success rate for both in all scenarios considered. This implies that A* shall be used in
situations where the UAV is expected to operate in a static environment and the path is
defined prior flight. Increasing resolution in A* and decreasing tree branch length in RRT
reduces path length and increases computational demand. Therefore, these parameters
shall be defined in view of mission requirements and environment sensing systems.

A* allows the environment to be discretised differently, making optimal use of re-
sources. Oppositely, RRT and its variants are suited to generate paths efficiently in evenly-
distributed and focused 3D area exploration applications. RRT and its variants can per-
form better in terms of path construction time and length than A*, if the randomly– se-
lected nodes are intelligently selected in view of obstacle shape, position and dynamics.
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Chapter 3 shows that 3D real-time path planning can be realised using standard UAV
onboard systems. This chapter develops a 3D real-time path planning platform and out-
lines the best empirical values for the different external and internal parameters, namely
UAV speed, sensor range, computational power, distance to travel per iterate, maximum
time to generate a path and distance factor. If not restricted by mission demands and/or
hardware limitations, the setting of these parameters will configure the developed 3D
real-time path planning platform, optimising its performance to a specific user-defined
indoor application.

Chapter 4 shows that the 3D real-time path planning platform with both A* and RRT
algorithms has potential to be used in low-density dynamic obstacle scenarios. Com-
putational demand increases with scenario complexity, especially for RRT. The waiting
variant is better suited where it is safer to remain in the current position than risking
a collision. In home environments this is usually the case as the UAV are not allowed
collide with obstacles, especially if these are persons. While the moving variant is ideal
in situations where goal achievement is paramount even at the expense of collision or
where other hostile objects are operating in the same space and therefore stopping will
make the UAV more vulnerable. Such situations include search and rescue and spying
inside buildings.

Finally, Chapter 5 deals with uncertainty modelling and integration. It shows that un-
certainty must be considered as it has a significant effect on path planning performance.
Performance depends on how accurate uncertainty can be modelled. With bounding
shapes, this depends on the maximum variants of each respective uncertainty. If the
UAV is to operate within the same environment throughout its lifetime, a learning al-
gorithm can fine-tune uncertainty bounds with experience. If the UAV is expected to
operate in different scenarios, uncertainty modelling can become a challenge.

This resume analysizes the main findings of this dissertation from an applications’
point of view. The intent is to guide future UAV designers to select the appropriate con-
figuration based on the application. This work has some limitations and future recom-
mendations that shall enhance its findings. These will be discussed in Section 6.2.

6.1.3. SUMMARISED CONCLUSIONS
The main finding of this thesis can be summarised as follows:

1. The A* algorithm performs better in terms of path length and computational time
than RRT in offline situations with static obstacles. The A* algorithm’s graph-based
nature allows the environment to be discretised according to mission requirements
and environmental situations, while the RRT algorithm evenly explores the envi-
ronment, wasting time in exploring areas not necessary for path construction.

2. The A* algorithm generates shorter paths in less time than RRT in real-time path
planning in the presence of static obstacles. The difference in performance in-
creases with environmental complexity. The path planning performance of both
algorithms depends on the definition of different parametric values, such as look-
ahead distance and speed.

3. In the presence of dynamic obstacles, for both algorithms, the moving variant,
that allows the UAV to move closer to obstacles, increasing the chance of collision,
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produces better real-time path planning results than the waiting variant. Both
variants can be used, however, depending on the mission requirements and con-
straints.

4. Both sources of uncertainty (UAV position and obstacles) independently deterio-
rate path planning performance of both algorithms, with RRT exhibiting the largest
performance degradation. Using the RRT algorithm leads to shorter, faster but also
riskier paths for relatively simple scenarios with respect to the A* algorithm, with
the situation reversing in complex scenarios.

6.2. LIMITATIONS, FUTURE WORK AND MAIN RECOMMENDA-
TIONS

This section will discuss the limitations of the developed real-time 3D UAV path plan-
ning and recommend future advancements that are expected to increase the potential
use of autonomous UAVs in indoor environments. It will conclude with the main rec-
ommendations for 3D real-time path planning of UAVs in dynamic environments in the
presence of uncertainty.

6.2.1. LIMITATIONS AND FUTURE WORK
In Chapter 2, different path planning algorithms presented in literature were discussed.
Although an extensive literature review is presented, a further in-depth and broader re-
view likely finds more algorithms within the graph-based and sampling-based classes.
Examples include the basic Theta* [6], Anytime D* [7], RRT* [8] and Transition-based
RRT [9] that can potentially attain an equivalent or even better performance.

The standard RRT, the RRT without step-size constraint and MRRT algorithms were
all implemented without any tree-branch biasing. Biasing on the line directly connecting
the start and goal points will potentially reduce the path length and planning time in a
low obstacles density environment [9].

The developed smoothing algorithm is relatively basic, and further work or the de-
velopment of a new smoothing algorithm could improve the final path. Care must be
taken, however, not to consider a computationally too intensive algorithm, as onboard
UAV computational resources are limited. Also, the smoothing algorithm shall be se-
lected upon the characteristics of the path following algorithm and the UAV actuator
systems.

In this dissertation, the constructed path from start to goal is made up of points,
that when connected, create a non-colliding path. This creates abrupt point turns that
requires the UAV to stop. This is not always possible, nor desired, and a path following
algorithm needs to be developed to construct smoother trajectories between path points
such that the UAV can follow at the speed requested by the application. Therefore, a path
following algorithm needs to be integrated with the developed path planning system in
view of UAV model constraints and mission specifications.

The mean UAV speed is assumed constant in this work although the effect of speed
on path planning performance is tested and analysed. This does not imply that the UAV
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will traverse the path points at constant speed but that the mean speed over the particu-
lar path segment is constant. This means UAV speed is used to determine the maximum
time to construct an intermediate path. The addition of a speed controller in combina-
tion with the path following algorithm will allow the UAV to follow the path better, as the
controller can adjust the speed based on the complexity of the path being followed.

The scenarios constructed are a representative set of the difficult to worst case sce-
narios which the UAV is expected to encounter in an indoor environment. Modelling of
real static environments, path planning using different start and goal points and the real
UAV traversing will further increase the value of this work.

In Chapter 3 the selected path planning algorithms were tested in a simulated real-
time environment assuming that the standard PC computational power is available on-
board the UAV. Although care is taken in limiting the use of the processor to only MAT-
LAB’s 3D path planning files, background processes could not be eliminated. The imple-
mentation of the 3D path planning platform into a real UAV will be of additional value.

It is further assumed in this chapter that the sensing system can accurately sense all
obstacles within its sensing range in all 3D and provide these data to the path planning
algorithm in real-time. A generic sensing range with a 360o FOV is considered in this
work and the sensing range effect on path planning performance analysed. But further
work on determination of this distance on a range of sensing technologies is required for
the implementation of the 3D real-time path planning algorithm in real life.

For the assessment of the real-time 3D path planning algorithm, a set of generic
shapes with different difficulty of evasion were considered in Chapter 4. More shapes
with different sizes and different obstacle-density scenarios can improve the robustness
of the results.

Further, it was assumed that obstacles remain static as the UAV moves from the
current to a future position. In parallel, the path planning algorithm is constructing a
new intermediate path. Real path planning tests in a typical environment using a stan-
dard UAV can confirm the selected maximum intermediate and total times and assess
whether such time is enough to ensure non-colliding paths in the specific application.
The maximum intermediate time can be reduced by increasing computational power.

Further work could analyse the effects of other parameters on the performance of
path planners with both waiting and moving rationale. These parameters shall include
resolution, look–ahead distance, distance to travel per iterate, intermediate and total
time and distance factor. This analysis will flag the best configuration for both algo-
rithms in the considered test scenarios, offer a range of path construction difficulties.

In Chapter 5, a set of uncertainties was modelled and tested. Future work should
involve assessing uncertainties in environment sensing and UAV position systems in a
typical environment using a standard UAV. This will help the UAV designer to predict the
path planning performance of the proposed system and adapt accordingly based on the
UAV and application.

Uncertainty is modelled using the bounding shapes method for all uncertainty sour-
ces. Further work into investigating and comparing both the bounding shape and the
probabilistic distribution methods, or possibly other techniques for each specific uncer-
tainty sources, will provide an overview of the best method to utilise for each uncertainty
source based on the environment and UAV model capabilities.
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The uncertainty sources are all grouped and integrated into obstacle and UAV posi-
tion uncertainties. Communication uncertainty is not studied in this thesis as the op-
eration of a single UAV is assumed. Also, UAV orientation uncertainty is neglected as a
UAV point model, moving at constant speed with no orientation is assumed. The actual
UAV orientation will be taken into account by the path following algorithm which is no
considered within the scope of this work. These two uncertainty sources, together with
the others listed, can be included to assess their effects in a multi UAV environment and
using UAVs of different shapes and characteristics.

Further analysis of the effects of other parameters, including look-ahead distance,
distance to travel per iterate and allocated time on the performance of both path plan-
ning algorithms will lead to more awareness and knowledge of the effects of uncertainty
on path planning performance.

6.2.2. MAIN RECOMMENDATIONS

Based on the limitations and future work discussed in the previous subsection, the fol-
lowing five main recommendations are drawn:

1. Develop a tree-branch seed algorithm to enhance the convergence rate of the RRT,
and also a better smoothing algorithm. Assess both performances independently
and concurrently with the standard RRT and the A* algorithms.

2. Integrate a path following algorithm with the path planning algorithm and assess
their combined performance in all situations and configurations considered.

3. Assess the performance of real onboard UAV sensing technologies, model the re-
sponse of the state-of-the-art, integrate within the developed real-time path plan-
ning platform and compare their performance with the generic 360o range sensor
considered for this work.

4. Analyse the effect of UAV parameters, such as look-ahead distance, on perfor-
mance using a larger set of regular and irregular shapes, without assuming that
obstacles remain static in between iterations.

5. Compare the effects on path planning performance of bounding shapes and prob-
abilistic distribution methods for uncertainty modelling, with a wider range of in-
dividual uncertainty sources, including communication uncertainty.

6.2.3. CLOSING STATEMENTS

The implementation of the developed 3D real-time path planning algorithms to config-
ure a real UAV for autonomous 3D UAV navigation in an indoor obstacle-rich environ-
ment is the ultimate future aim that can lead into the commercialisation of this system
for use in domestic applications such as assisting in video production, in-house item
delivery and potentially dangerous window and chimney cleaning.

Moreover, this real-time 3D UAV path planning system can also be proposed for
the integration in outdoor UAV applications. In outdoor environments the situation
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changes both in terms of obstacles, external factors such as wind and rain and also regu-
lation, as the UAV must share public space with other time-variant autonomous systems,
manually-controlled systems, static obstacles and people.

This dissertation’s ultimate goal derived from the research goal was to contribute in
reducing the gap that still exists to allow UAVs to be used in domestic environments,
to assist people in their everyday activities. Ultimately, this dissertation has made the
integration of UAVs a step closer to reality.
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[9] D. Devaurs, T. Siméon, and J. Cortés, Optimal Path Planning in Complex Cost Spaces
With Sampling-Based Algorithms, IEEE Trans. on Automation Science and Engineer-
ing, Institute of Electrical and Electronics Engineers, 13(2) (2015) 415–424.



ACKNOWLEDGEMENTS

This dissertation is the result of seven wonderful years at one of the best universities in
the World. It has been an honour for me to even be considered to study within TU Delft.
Although only one name is present on the cover of this dissertation, this work would not
have been possible without the direct and indirect contribution of a number of people
in Delft and outside.

My first thank you goes to my promotor Prof. ir. Max Mulder for believing in me from
day one and allowing me to pursue this Ph. D. remotely and part time while lecturing in
Malta. I vividly remember how happy I was to receive a reply for my email stating my in-
terest in pursuing a Ph. D. in TU Delft on the beginning of January 2015. I also remember
how tense I was in my first Skype interview with you, Dr. ir. Erik-Jan van Kampen and Dr.
Qi Ping Chu. But I really appreciate that all of you kept me calm and made me feel wel-
come. Since then you have always been available, always congratulating me in my small
achievements, motivating me in continuing to enhance my work and introducing me to
Dutch food. Your enthusiasm and sharp analytical skills deeply inspires me. Also, I am
very grateful for always encouraging me to attend conferences and exchanges with other
Universities that have improved my network and improved my discipline, research and
transferable skills. You always made sure that I had all the support possible even though
I was residing in Malta for the majority of the time.

My second thank you goes to my co-promotor and daily supervisor Dr. ir. Erik-Jan
van Kampen. Thank you for believing in me from day one. I remember the first time
that we met face-to-face at the old Delft station. At that time, I really appreciated the
care and support you treat your students with by cycling all the way from the furthest
faculty block to the train station and back just to welcome me in TU Delft. But this small
gesture was just the beginning. You have been always available 24/7, accompanying me
through this journey. Although residing remotely I knew that you were always with me,
I just had to drop you an email or a message. Thank you for listening to my technical
and not so technical issues and requests and to patiently try to understand and help me
out to a solution. Your time management and work attic are an example to everyone.
Thank you for always making me feel welcome at TU Delft, offering to share your office
with me while I am in Delft and introduce me and promoting me and my work with your
colleagues both in Delft and in the World.

My third thank you goes to Dr. Qi Ping Chu who I hope is enjoying his well deserved
retirement. Although we only met a couple of times, you also made feel welcome and was
always ready to exchange a discussion being technical or not. I think your enthusiastic
approach is an inspiration to all students. I vividly remember when we together with
Dr. ir. de Visser and Dr. Thomas Lombaerts enthusiastically drove to the 11pm Space-X
rocket launch and landing in Cape Canaveral on 7th January 2018.

Another thank you goes to all other academic staff within the Control & Simulation
department that I had the honour to meet whilst I was in Delft, namely Dr. ir. Daan M.

185



6

186 REFERENCES

Pool and Ir. Olaf Stroosma. I would like to thank Dr. ir. Pool for organising and including
me in the road trip along the Pacific Coast Highway, the visit to NASA Ames and the NBA
match. In regards, to the NASA Ames visit I would like to thank Dr. Thomas Lombaerts
and Dr. ir. Peter Zaal TU Delft Alumni for making this visit possible and for being our
guides throughout the whole visit. I would also like to thank all support staff, especially
Ms. Bertine Markus for always being available and assist me in the best possible way in
all the was required.

I would like to thank all my fellow Ph. D. candidates and M. Sc. students that I had the
opportunity to meet and exchange discussions with. A special thanks goes to Dirk van
Baelen for always being a point of reference with other students, for including me in all
extracurricular activities both in Delft and during conferences. Thank you for everything
that you did for us as a group and for always making me feel welcome. Moreover, I would
like to thank Wei, Tijmen, Marc, Martin, Twan, Xuerui, Tigran, Stephan, Imrul, Rowenna,
Luc and Daniel for making conference trips memorable.

Also, I would also like to thank the Graduate School administration both at the cen-
tral office and at our faculty. Thank you for being supportive although I was not residing
in TU Delft. Also I would like to congratulate all the lecturer in all the GS courses I fol-
lowed for enhancing my research and transferable skills. Another thanks goes to Mr.
Yetim from the International office that thoroughly assisted me in all that was required
in all my international exchanges.

During my Ph. D. journey I was mainly staying in Gozo, Malta working as a lecturer
at the Malta College of Arts, Science and Technology (MCAST). I would like to use this
opportunity to thank all my fellow colleagues at this campus for their encouragement
and for making it possible for me to travel to Delft and conferences by being flexible in
exchanging lecture slots. Also, I would like to thank Mr. Godwin Grech the campus direc-
tor for always being supportive in all my research ventures while keeping our students
as top priority.

Special thanks goes to my fiancée Ms. Liliana Borg for always being present, for sup-
porting me in all ups and downs, for continuously motivating me and for always listening
to my thoughts. Your brilliant mind helps me think outside the box. I am also grateful
to my fiance’s family especially Mr. Angelo Borg, Mrs. Maria Borg and Mrs. Carmela
Micallef for welcoming me in your houses and hearts.

I am deeply grateful to my sisters Mrs. Maria Cauchi and her husband Mr. Mario
Reno Cauchi and Ms. Pauline Zammit and my brother Mr. Joseph Zammit for supporting
me unconditionally. I would also like to thank my grandmother Mrs. Francesca Pace for
her encouragement in my studies. I am also grateful to my nieces Ms. Martina Cauchi
and Ms. Julia Cauchi for their company whilst writing this dissertation. Finally, but most
importantly, I am forever grateful to my parents, Mr. Vincent Zammit and Mrs. Josephine
Zammit for your unconditional love. Without you I would not be writing this today.

Christian Zammit
Victoria, Gozo, Malta, September 2021



CURRICULUM VITÆ

Christian ZAMMIT

27-09-1989 Born in Victoria, Gozo, Malta.

EDUCATION
2015–2021 Ph. D. in Aerospace Engineering

Delft University of Technology, The Netherlands
Thesis: 3D Path Planning for UAVs in Dynamic environments in the presence
of Uncertainties
Promotor: Prof. dr. M. Mulder

2015–2016 Graduate Teaching Certificate in Vocational Education and Training
(GTC in VET) with Distinction
Malta College of Arts, Science and Technology (MCAST)

2011–2014 Master of Science in Engineering (Cum Laude)
University of Malta, Malta
Thesis: An Algorithm for the Automatic Taxi of Fixed Wing Aircraft

2007–2011 Bachelor of Science in Engineering
University of Malta, Malta
Thesis: Idle State Detection in Motor Imagery Based BCI

AWARDS

2015 Best Paper of Session, 34th DASC
2007 Best Science Student, Sir M. A. Refalo, Institute for Further Education

187





LIST OF PUBLICATIONS

.1. JOURNAL PAPERS
3. C. Zammit and E. van Kampen, Real-time 3D UAV path planning in dynamic environments

in the presence of uncertainty, Journal of Guidance, Control and Dynamics, Submitted for
publication.

2. C. Zammit and E. van Kampen, A Comparative Analysis of the A* and RRT Algorithms in
Real-time 3D UAV path planning, Journal of Aerospace Science and Technology, Submitted
for publication.

1. C. Zammit and E. van Kampen, Comparison between A* and RRT Algorithms for 3D Path

Planning, Journal of Unmanned Systems, Accepted for publication.

.2. PEER-REVIEWED CONFERENCE PAPERS
9. C. Zammit and E. van Kampen, 3D real–time path planning of UAVs in dynamic environ-

ments in the presence of uncertainty, Proceedings of AIAA Guidance, Navigation and Control
Conference, Nashville, TN, 11-15 Jan., 2021, pp. 1-25, AIAA-2020-0861.

8. C. Zammit and E. van Kampen, 3D real–time path planning of UAVs in dynamic environ-
ments, Proceedings of AIAA Guidance, Navigation and Control Conference, Nashville, TN,
11-15 Jan., 2021, pp. 1-22, AIAA-2020-0861.

7. C. Zammit and E. van Kampen, Comparison of A* and RRT in real-time 3D path planning
of UAVs, Proceedings of AIAA Guidance, Navigation and Control Conference, Orlando, FL,
6-10 Jan., 2020, pp. 1-25, AIAA-2020-0861, doi:10.2514/6.2020-0861.

6. C. Zammit and E. van Kampen, Advancements for A* and RRT in 3D path planning of UAVs,
Proceedings of AIAA Guidance, Navigation and Control Conference, San Diego, CA, 7-11
Jan., 2019, pp. 1-17, AIAA-2019-0920, doi:10.2514/6.2019-0920.

5. C. Zammit and E. van Kampen, Comparison between A* and RRT Algorithms for UAV Path
Planning, Proceedings of AIAA Guidance, Navigation and Control Conference, Kissimmee,
FL, 8-12 Jan., 2018, pp. 1-23, AIAA-2018-1846, doi:10.2514/6.2018-1846.

4. N. Cauchi, K. Theuma, C. Zammit, J. Gauci and D. Zammit-Mangion, A Decision Support
tool for Weather and Terrain Avoidance during Departure, Proceedings of IEEE/AIAA 34th
Digital Avionics Systems Conference (DASC), Prague, Czech Republic, 13-17 Sep., 2015, pp.
1-15, doi:10.1109/DASC.2015.7311384. (Best Paper of Session).

3. C. Zammit and D. Zammit-Mangion, A control technique for automatic taxi for a fixed wing
aircraft, Proceedings of AIAA Intelligent Systems Conference, National Harbour, MD, 13-17
Jan., 2014, pp. 1-15, AIAA-201-1163, doi:10.2514/6.2014-1163.

189



190 LIST OF PUBLICATIONS

2. C. Zammit and D. Zammit-Mangion, An enhanced automatic taxi control system for a fixed
wing aircraft, Proceedings of AIAA Guidance, Navigation and Control Conference, National
Harbour, MD, 13-17 Jan., 2014, pp. 1-16, AIAA-2014-1300, doi:10.2514/6.2014-1300.

1. A. Alapetite, R. Fogh, D. Zammit-Mangion, C. Zammit, I. Agius, M. Fabbri, M. Pregnolato,

L. Becouam Direct tactile manipulation of the flight plan in a modern aircraft cockpit, In-

ternational Conference on Human-Computer Interaction in Aerospace (HCI-Aero 2012),

Brussels, Belgium, 12-14 Sep., 2012, pp. 1-4.


	Summary
	titleReferences

	Samenvatting
	titleReferences

	Introduction
	Background
	Definitions
	Need for Path Planning
	History of Path Planning

	Challenges
	Challenge 1
	Challenge 2
	Challenge 3

	Research Goal and Research Questions
	Research Goal
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4
	Research Question 5

	Research Scope
	Research Question 1: 3D UAV Path Planning
	Research Question 2: Real-time UAV Path Planning
	Research Question 3: Real-time Path Planning of UAVs in Dynamic Environments
	Research Question 4: Uncertainty Identification and Modelling
	Research Question 5: Uncertainty Integration

	Main Contributions
	Contributions to Path Planning Algorithms
	Contributions to Real-time Path Planning
	Contributions to Dynamic Obstacle Modelling
	Contributions to Uncertainty Identification and Modelling

	Thesis Outline
	titleReferences

	Comparison between A* and RRT Algorithms for 3D Path Planning
	Introduction
	The A* and RRT Algorithms
	The A* Algorithm
	Rapidly-Exploring Random Tree (RRT) Algorithm

	Literature Review
	Graph-based Approaches
	Sampling-based Approaches
	Comparing Approaches

	Path Planning Algorithm Enhancements and Test Environment
	Introduction
	The A* Ripple Reduction Algorithm (A*R)
	The RRT Algorithm without Step Size Constraint
	Multiple Rapidly-Exploring Random Tree (MRRT)
	Smoothing Algorithm
	Vehicle Model Definition
	Experimental Scenarios

	Results
	Introduction
	A* Algorithm
	A* Ripple Reduction Algorithm (A*R)
	Rapidly-Exploring Random Trees (RRT)
	Rapidly-Exploring Random Trees (RRT) without Step Size
	Multiple Rapidly-Exploring Random Trees (MRRT)
	New Smoothing Algorithm
	Conclusion

	Conclusion
	titleReferences

	Comparison of A* and RRT in Real-time 3D Path Planning of UAVs
	Introduction
	Real-time Path Planning Literature Review
	Introduction
	Optimisation Algorithms
	Graph-based Methods
	Sampling-based Methods
	Conclusion

	The A*, RRT and Smoothing Algorithms
	The A* Algorithm
	The RRT Algorithm
	The Smoothing Algorithm

	The Real-time Algorithm
	Problem statement
	Parameter Definition and Initiation
	The Move Function
	Main Real-time Algorithm
	Conclusion

	Parameter Definition and Experimental Scenario Definition
	Real-time Algorithm Parameter Assignment
	Experimental Scenarios

	Results
	Speed (vUAV)
	Look-ahead Distance (dint_goal)
	Maximum Intermediate Time (titerate_max)
	Distance to Travel per Iterate (ds_step)
	Maximum Time to Generate a Path (tpath_gen_max)
	Distance Reduction Factor (dfactor)
	Conclusion

	Conclusion and Future Work
	titleReferences

	3D Real-time Path Planning of UAVs in Dynamic Environments
	Introduction
	Path Planning in Dynamic Environments Review
	Introduction
	Dynamic Environment Definition
	The Need for Dynamic Path Planning
	Environmental Assumptions
	Constraints, Obstacle and Threats (COT) Sensing and Modelling Systems
	Solutions
	Conclusion

	A*, RRT, Smoothing and Real–time Algorithms
	Introduction
	The A* Algorithm
	The Rapidly–Exploring Random Tree (RRT) Algorithm
	The Smoothing Algorithm
	The Real–time Algorithm
	Conclusion

	The Obstacle Generation Algorithm
	Introduction
	Theoretical Rationale
	Implementation
	Conclusion

	Enhancements to the Real–time Path Planning Algorithm
	Results
	Introduction
	A* Results
	RRT Results
	A* vs. RRT
	Conclusion

	Conclusion and Future Work
	titleReferences

	3D Real-time Path Planning of UAVs in Dynamic Environments in the Presence of Uncertainty
	Introduction
	Path planning in the Presence of Uncertainty Review
	Introduction
	The Need for Path Planning in the Presence of Uncertainty
	Uncertainty Sources
	Uncertainty Modelling
	Uncertainty Quantification and Reduction
	Path planning Solutions under Uncertainty
	Conclusion

	A*, RRT, Smoothing and Real-time Algorithms
	Introduction
	The A* Algorithm
	The Rapidly-Exploring Random Tree (RRT) Algorithm
	The Smoothing Algorithm
	The Real-time Algorithm
	Conclusion

	Environmental Scenarios, UAV Model, Path Planner Parameter Definition and Uncertainty Modelling and Quantification
	Introduction
	Environmental Scenarios
	UAV Model and Path Planner Parameter Definitions and Constraints 
	Bounded Uncertainty Definitions
	Uncertainty Quantification
	Conclusion

	Results
	Introduction
	A* and RRT with No Uncertainty
	A* and RRT with Uncertainty in UAV Position
	A* and RRT with Uncertainty in Obstacle Position and Orientation
	A* and RRT with Uncertainty in Obstacle Position and Orientation and UAV Position
	Conclusion

	Conclusion and Future Work
	titleReferences

	Conclusions and Recommendations
	Conclusions
	Main Findings
	Implications to Real UAV Path Planning
	Summarised Conclusions

	Limitations, Future Work and Main Recommendations
	Limitations and Future Work
	Main Recommendations
	Closing Statements

	titleReferences

	Acknowledgements
	Curriculum Vitæ
	List of Publications
	Journal Papers
	Peer-Reviewed Conference Papers


