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Uncertainty analysis in determining the position of a drill bit 
Het bepalen van de onzekerheden bij het bepalen van de positie van een boorkop  

Huy Van, Delft University of Technology (4358554) 

Abstract 
In well-bore engineering, oil-well boreholes are made using specialized drilling rigs. The posi-

tion of the drill bit needs to be indirectly determined through accelero- and magnetometer 

measurements. To this end, the measurement data is first converted into a survey of direction 

vectors by applying a series of coordinate transformations. Then, a method called Minimum 

Curvature Method (MCM) is applied, which outputs a close idealized approximation of the 

actual drill bit trajectory. However, systematic and random errors in the magnetometer meas-

urements result in error in position vectors.  

A novel solution called Multi-Station Analysis (MSA) determines the systematic (Scale and 

Bias) errors in the magnetometer measurement data. Using reference measurements, a non-

linear least squares error function is minimized, which is equivalent to solving a non-linear 

system of equations. This is done numerically by the Newton-Raphson algorithm. Subse-

quently, the measurement data is corrected. Reapplying survey conversion and MCM results 

in an improved estimate for the actual position vectors. 

The main objective of this thesis is to derive a method that describes the uncertainty of the 

MSA solution. This is primarily done through the method of Monte Carlo simulation. As part 

of validation, the effect of MSA on final drill bit position is studied and compared with results 

from an uncertainty model used by the well-bore industry. Secondary, a pessimistic quantifi-

cation of the uncertainty of MSA solution is given through condition numbers of Jacobian 

matrices from the Newton-Raphson algorithm applied to MSA, which measure the sensitivity 

of the non-linear least-squares error. The question whether these condition numbers are a 

representative measure of MSA solution quality is answered. Finally, further potential re-

search areas are described. 

Keywords: Multi-Station analysis, uncertainty analysis, Monte Carlo simulation, sensitivity 

analysis, non-linear regression, condition number 
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Preface 
Royal Dutch Shell, commonly known as Shell, is a British-Dutch multinational oil and gas com-

pany, and the most profitable company of the Netherlands. It is established in 1907 after the 

merger of the Dutch “Koninklijke Nederlandse Petroleum Maatschappij” and the British “Shell 

Transport and Trading Company Ltd”, under the resulting name “Koninklijke/Shell Groep”. 

Next to transportation, production and processing of gas and oil, present-day Shell is also 

involved in renewable energy and chemicals. 

Shell Global Solutions is a division of Shell, which provides services and technologies in the 

above areas. Other oil field service companies related to the oil and gas industry are e.g. Hal-

liburton Company and Baker Hughes. One of their main interests is the construction of oil 

wells, which is the main scope of this thesis. 

Wells are constructed for winning oil and gas, and for underground CO2 storage. To ensure 

that wells are correctly positioned below the Earth’s surface, well coordinates are needed. 

These coordinates are commonly determined by usage of a specialized measurement tool - 

Measurement While Drilling (MWD) tool - which is placed near the drilling bit. During drilling, 

the MWD sensors measures the drill bit acceleration and the Earth’s magnetic field in speci-

fied locations along the well, from which the well coordinates are derived. However, the sen-

sor measurements contain systematic and random errors, which result in uncertainty in de-

termining the well coordinates. This uncertainty can be expressed as an ellipsoid. 

To reduce sensor measurement errors, a widely used mathematical technique called Multi-

Station Analysis (MSA) is applied. With the aid of geomagnetic reference data, MSA poten-

tially reduces sensor measurement errors and its associated uncertainty. However, experi-

ence has shown that MSA can produce unstable solutions and poorly interpretable results. 

Despite extensive research on MSA, there is no standard in the oil and gas industry defining 

the correct use of MSA. In support of its stakeholders, e.g. Industry Steering Committee on 

Wellbore Survey Accuracy (ISCWSA), this thesis provides: 

• a brief and self-contained introduction in well-bore engineering, MSA and its mathe-

matical model. 

• a proposed solution for the application of MSA, by assessing  

o the systematic errors uncertainty after applying MSA 

o the well coordinate uncertainty after applying MSA  

The solution is based on Monte Carlo simulation.  

Additionally, the assessment of the systematic errors uncertainty is established by investigat-

ing if the condition number in the final iteration of Newton-Raphson algorithm is a reliable 

measure for the quality of MSA solution.  

The thesis is completed with conclusions and recommendations for further areas of research. 

Notes and in-chapter sources 

• Throughout this thesis, notes and in-chapter sources appear in separate sections at 

the end of each chapter whenever needed. 



 

  11 

• Basic information about Royal Dutch Shell and Shell Global Solutions has been ac-

quired from https://nl.wikipedia.org/wiki/Royal_Dutch_Shell and 

https://www.shell.com/business-customers/global-solutions.html respectively. 

Chapter 1 Introduction: basic concepts in well-bore engineering 
A source of petrochemical oil - petroleum - is oil wells, which are located far beneath the 

Earth’s surface. To extract the petroleum, a narrow three-dimensional cylindrical borehole 

(well-bore) must be drilled through the subsurface. This is done by a drilling rig, placed on-

shore (land operations) or offshore (sea operations) in vicinity of the oil well. The rig includes 

the following below surface components: 

• Drill bit: the part that does the actual drilling work and can cut through rock. Its diam-

eter is usually not wider than a meter. 

• Drill pipe: steel piping. Drilling fluid is pumped through it, which cools down the drill 

and transports excess drilled cuttings. 

• Bottom-Hole Assembly (BHA): a part between the drill bit and drill pipe which contains 

drill collars as well as Measurement While Drilling tools. 

o Non-Magnetic Drill Collar (NMDC): protective casing which minimizes the ef-

fect of magnetic interference in the MWD tools. 

o Measurement While Drilling (MWD) tools: tools like accelerometers and mag-

netometers which are used to determine the direction of BHA. 

• Drill string: BHA and drill pipe. It is the part connected to the drill bit. 

Figure 1-1 displays a schematic of a drilling rig, as well as its individual components, including 

the ones specified above. 

In this thesis, the position of a drill bit is considered, which is determined using indirect meas-

urements collected from the MWD tools in BHA. It is assumed that the position of BHA and 

drill bit coincide: these terms are used interchangeably in this thesis. 

https://nl.wikipedia.org/wiki/Royal_Dutch_Shell
https://www.shell.com/business-customers/global-solutions.html
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Figure 1-1: Drilling rig. Drill bit (11), drill string (9), drill collars (10), NMDCs (19) and (20). MWD tools are in (17). Source: 
(Brooks 1997) 

A short note on position coordinates and orientations 
The drill bit can be modelled as a cylinder. Its front face is called Tool Face. The turning angle 

around the middle axis with respect to the direction towards the Earth’s surface - High Side 

(HS) – is called Tool Face Angle, and the direction in which the drill bit is moving at any time 

is Downhole direction. High Side Right (HSR) is the remaining direction orthogonal to High Side 

lying across the Tool Face. 

All measurements by the MWD tools are done with respect to the orientation of BHA, which 

is written in terms of High Side + Tool Face Angle, High Side Right + Tool Face Angle and Down-

hole direction coordinates. See Figure 1-2. 
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Figure 1-2: Orientation of BHA. x=High Side + T, y=High Side Right + T, z=Downhole direction, T=Tool Face Angle. Source: 
(Boots & Coots International, Inc. 2010) 

Coordinate transformations are needed to convert the measurement data into the direction 

vectors. Instead of using rectangular ( , , )x y z -coordinates, the direction is measured in terms 

of two angles: 

• Azimuth: the clockwise angle in horizontal ( , )x y -plane with respect to Magnetic 

North. 

• Inclination Angle: the vertical clockwise angle (by right-hand rule) with respect to True 

Vertical Distance (TVD); the vertical component. 

Both types of angles are shown in Figure 1-3. 



 

  14 

 

Figure 1-3: Direction of drill bit in Downhole direction. Azimuth, Inclination Angle, True Vertical Distance. 

Once the size of TVD is known, then the vector representation of direction can be converted 

into its corresponding angular representation and vice versa. 

As for the drill bit position, again instead of using rectangular coordinates, the position is ex-

pressed in North, East and Vertical coordinates. Additionally, any vector in general can also 

be represented with two vectors: a horizontal component along the Earth’s surface and a 

vertical component, which is Earth’s reference frame. 

Overall methodology 
To determine the desired position of BHA, the following steps are taken: 

Step 1: A drilling trajectory is modelled in advance. This trajectory has finite length; it 

has a starting position and a final position. The drill bit can move in any direction: this 

type of drilling is called Directional Drilling. On the trajectory, a discrete amount of 

measurement positions is taken: these are called Stations. For example, they can be 

taken each 100 meters in actual travelled distance. The actual travelled distance be-

tween starting position and position of drill bit is Along-Hole Measured Depth (AHD), 

and is always known in every Station, simply by counting the amount of drill pipe joints 

inserted into the borehole. See Figure 1-4. 
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Figure 1-4: Modelled trajectory (green), including several Stations (yellow). AHD between origin and second Sta-
tion is length of red curve. 

Step 2: During drilling, it is assumed that the path taken by the drill bit is the modelled 

path. Measurements are made in each Station using the MWD tools: 

• Three magnetometers are available, which measure the local Earth’s magnetic 

field strength, from which the angle of incidence w.r.t. the Earth’s horizon (Dip 

Angle) can be inferred. One magnetometer per space component, and all mag-

netometers work independently from each other. The data collected by these 

magnetometers is used to calculate Azimuth. 

• Similarly, three accelerometers, which measure drill bit acceleration. The ac-

celerometer data is used in the calculation of both Azimuth and Inclination An-

gle. Additionally, the TVD can be determined by this data. 

Magneto- and accelerometers provide measurement data for six variables in each Sta-

tion: three magnetic field strengths variables and three acceleration variables. 

Step 3: The next step is to convert MWD measurement data into direction vectors 

using the earlier mentioned coordinate transforms, which involve matrix rotation op-

erations: involving a Tool Face matrix, an Inclination matrix and an Azimuth matrix. 

This model is fully described in (Boots & Coots International, Inc. 2010), and only its 

main results to be used in this thesis will be given. 

Thus, the result is a Survey containing the AHD, TVD, Inclination Angle and Azimuth 

for each Station. Examples of Surveys to be used in this thesis are given in chapter 

Data, on page 49. 

Step 4: The final step is to convert the Survey of direction data into the overall (con-

tinuous) trajectory of the drill bit. Various methods of trajectory approximation used 

in the well-bore industry exist: the standard mathematical method employed in this 
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thesis is called Minimum Curvature Method (Amorin and Broni-Bediako 2010), which 

gives a close approximation of the overall trajectory. 

 

Figure 1-5: Visual representation of Minimum Curvature Method (left). Dogleg Angle helper variable (right). 
Source: (Amorin and Broni-Bediako 2010) 

See Figure 1-5. In MCM, the trajectory taken between two consecutive Stations is as-

sumed to be part of a circular arc, preserving the directions at each Station. This thesis 

assumes that MCM returns no errors in determining the trajectory, that is, the out-

putted trajectory associated with the Survey of direction data is the actual trajectory 

taken. (Amorin and Broni-Bediako 2010) provides a full mathematical description. 

The overall methodology results in one of the main quantities of interest in this thesis: the 

final position (at the last Station) of the drill bit. 

Notes and in-chapter sources 

• The various definitions mentioned in the beginning can be found in several Wikipedia 

articles, which are only provided for clarification and are not of great importance in 

the overall thesis, since the focus is not on the engineering side of things. 

o https://en.wikipedia.org/wiki/Borehole 

o https://en.wikipedia.org/wiki/Measurement_while_drilling 

o https://en.wikipedia.org/wiki/Drill_bit_(well) 

o https://en.wikipedia.org/wiki/Drill_pipe 

o https://en.wikipedia.org/wiki/Drill_string 

o https://en.wikipedia.org/wiki/Drilling_fluid 

o https://en.wikipedia.org/wiki/Bottom_hole_assembly 

• The two sections “A short note on position coordinates and orientations” and “Overall 

methodology” are cited from (Boots & Coots International, Inc. 2010) and (Elshabrawy 

2018), respectively. 

• When dealing with Azimuth, it is possible to use True North instead of Magnetic North. 

The difference in Azimuth then becomes Declination Angle. A second kind of North is 

Grid North. True and Grid North are outside the scope of this thesis. 

• The curvature of Earth is disregarded. 

https://en.wikipedia.org/wiki/Borehole
https://en.wikipedia.org/wiki/Measurement_while_drilling
https://en.wikipedia.org/wiki/Drill_bit_(well)
https://en.wikipedia.org/wiki/Drill_pipe
https://en.wikipedia.org/wiki/Drill_string
https://en.wikipedia.org/wiki/Drilling_fluid
https://en.wikipedia.org/wiki/Bottom_hole_assembly
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• In this thesis, the capitalized term “Survey” refers exclusively to Survey of direction 

vectors. In practice, it may also be associated with measurement data. 

Chapter 2 Errors, Multi-Station Analysis, problem formulation and re-

search questions 
Measurement errors in Step 2 of the overall methodology (page 14) lead to errors in deter-

mining the final position of the drill bit. Causes of measurement errors, as well as several 

solutions, are included in the following table: 

Type Factors Solutions 

External Magnetic interference of objects near drill 
(ex.: steel drill string), self-magnetization, 
background noise 

NMDC (physical), 
MIC (mathematical) 

Internal Systematic measurement errors in magne-
tometers and/or accelerometers (calibra-
tion), misalignment and/or displacement of 
MWD tools with respect to drill bit 

Multi-Station Analysis 
(mathematical) 

Other Errors in control, manual displacement or ex-
ternal forces (earthquakes/shifting) 

Not applicable 

Table 1: Potential measurement error factors involved in uncertainty of final position. External factors and internal factors 
cited from (Elshabrawy 2018). 

A Non-Magnetic Drill Collar minimizes magnetization effects. Its usage requires that its length 

needs to be of sufficient size, but this has severe drawbacks (Elshabrawy 2018), including: 

• Long NMDC may make Directional Drilling control more difficult 

• NMDCs are less strong than steel drill collars 

• High costs of both usage and potential loss of NMDC 

To keep NMDC length small, other solution techniques are employed: Magnetic Interference 

Correction (MIC) and Multi-Station Analysis, which are both independent methods to correct 

erroneous measurement data. Both methods reduce the error of the final position.  

Below some brief descriptions of two MIC techniques: 

• Axial MIC (a.k.a. Single-Station Analysis/SSA): a mathematical method in which only 

the Downhole direction measurements are corrected, independently for each Station. 

• Cross-Axial MIC: method to reduce measurement errors in Tool Face plane (High 

Side/High Side Right) by taking multiple “rotational shots” in each Station: a minimum 

of four is recommended. 

Both MIC methods are recommended by the drilling industry, however, the usage thereof has 

limitations: see (Elshabrawy 2018), chapter 2. 

Multi-Station Analysis 
This thesis will solely focus on Multi-Station Analysis, which is a mathematical method that 

seeks to determine the systematic errors in the magnetometer data, caused internally by the 
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magnetometers (Elshabrawy 2018). It also relies on the assumption that no errors are present 

in the accelerometer data (at least for the purposes of this thesis).  

The systematic errors in the magnetometer data are divided in two parts: 

• A scale error, which is modelled through a Scale Factor. 

• A bias error, which is modelled through a Bias Factor. 

Both are due to signal gain and signal offset respectively, because of signal processing in the 

magnetometers. They are consistent in each Station, that is, they do not change across dif-

ferent Stations. The effect of Scale/Bias Factors can be seen in Figure 2-1. 

 

Figure 2-1: Total effect of Scale and Bias Factor in one magnetometer measurement (field strength) 

Since there are three magnetometers in total, there are three Scale Factors and three Bias 

Errors, which may differ from each other due to their independence. 

In addition to systematic errors, noise may also affect the magnetometer data. All in all, each 

Station produces local errors in the magnetometer data, composed of both systematic and 

random errors. The local measurement errors can accumulate as more measurements are 

taken and thus may produce errors in determining the final position. (This is formally called 

the propagation of errors.) 

Execution steps and problem issues of Multi-Station Analysis 
The mathematical process of MSA is based on the patent (Brooks 1997) and worked out in 

(Noy 2018). Assumed prior knowledge of mathematics is included for reference in Background 

information on page 46. In layman terms, MSA does the following: 

Step A: Start with erroneous measurement data produced in Step 2 of the overall meth-

odology (page 14), which can either be acquired through:  

1. Direct measurement with MWD tools on location, that is, at an actual drilling site 

2. Simulation by calculating measurement data based on modelled trajectory and ar-

tificial addition of Scale/Bias Factors and noise 
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Since the local measurement errors are not given a priori, MSA also requires local geo-

magnetic reference measurements - High Definition Geomagnetic Model (HDGM) - to be 

able to compare measurements. This model consists of one magnetometer measurement 

at the Earth’s surface, represented in Earth’s reference frame. The associated field 

strength and Dip Angle are assumed to be constant in all Stations. 

Step B: Next, a minimizing function for the local errors is set up, written in terms of the 

six Scale and Bias Factors, which are independent variables of the function. This involves 

the least squares error between corrected measurement data and HDGM reference. 

Step C: Minimizing this function yields the best Scale and Bias Factors, that is, the param-

eters that fit the data best, which is the MSA solution. Mathematically, the MSA solution 

is a stationary minimum of the least squares error function: each partial derivative with 

respect to each variable evaluated in the MSA solution is equal to zero. Thus, a system of 

non-linear equations needs to be solved. This can be done numerically through the 

method of Newton-Raphson, which is the algorithm of interest in this thesis. 

Step D: The MSA solution is used to correct erroneous data. Finally, a drill operator can 

recalibrate the magnetometers, so that future drilling operations are improved. 

However, MSA as described here is not fully without flaws: 

• It does not obtain the (random) noise errors. 

• HDGM reference is subject to measurement errors. 

• To ensure that MSA yields improved results and to prevent misapplication, erroneous 

magnetometer measurement data has to satisfy certain minimum conditions before 

it can be applied (Nyrnes, Torkildsen, and Wilson 2009). These conditions are specified 

in Table 2, page 6 of the paper. Examples of parameters where such conditions apply 

include: 

o MSA solution: Scale/Bias parameters. 

o maximum noise. 

o maximum error in a single Survey. 

In practice, not all minimum conditions may be satisfied: the parameters of those that 

are not satisfied cannot be determined reliably through MSA. The paper suggests sev-

eral modifications to the overall methodology (for example, clean-up), which takes 

these minimum conditions into account: these are specified on Figure D-1, page 12. 

• The Newton-Raphson algorithm requires an approximate starting MSA solution close 

to the actual MSA solution to produce an output. However, in practice, the MSA solu-

tion is not known beforehand. If the starting MSA solution is not chosen well, then the 

Newton-Raphson algorithm may produce an unacceptable (local) MSA solution, which 

does not fully minimize the non-linear least-squares error function, or the algorithm 

may not terminate and not produce a solution at all. Therefore, MSA algorithm is an 

ill-posed problem. 

• MSA is ill-conditioned. This is described in Chapter 6. 

• MSA solution may also contain numerical errors caused by termination at final itera-

tion of the Newton-Raphson algorithm: these are iteration errors. 
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• To a lesser extent: errors by utilization of a computer, like rounding errors. While there 

have been real-world instances in which rounding errors has led to catastrophic re-

sults, these have not been observed during this research and as such this thesis does 

not cover this aspect. 

Thus, MSA will result in the presence of a global error in final drill bit position but it is expected 

that this error is reduced in comparison to not applying MSA. Unfortunately, there are in-

stances in which position error increases after applying MSA: an example is found on page 41. 

Implementation of MSA in overall methodology 
Once MSA has been applied on the erroneous measurement data, step 3 and 4 in the overall 

methodology (page 14) are carried out on the corrected measurement data. Figure 2-2 is a 

conceptual visualization of the overall methodology, including the MSA process. 

 

Figure 2-2: Summary of overall methodology. (1) Erroneous measurement data. (2) Partial or full correction with MSA. (3) 
Conversion to Survey of directions. (4) Minimum Curvature Method yields estimated trajectory of drill bit 

It is noted that this process can be done in backwards order, starting with the modelled tra-

jectory of the drill bit. Once the Stations are specified, a Survey of direction vectors is ac-

quired, which is then converted to measurement data using modelled HDGM. This allows for 

simulation of uncertainties. 

Table 2 summarizes the data that is being tracked in this process: 

Measurement data Survey of directions Trajectory (after MCM) 
AHD AHD AHD 
Accelerometer data Azimuth Position vectors 
Magnetometer data Inclination Angle (w.r.t. rectangular 
(w.r.t. BHA orientation) Tool Face coordinates) 

Table 2: Tracked quantities of overall methodology 

The effect of MSA is shown in Figure 2-3, showing three different types of drill bit trajectories. 
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Figure 2-3: Effect of MSA. Trajectory based on erroneous data (red), correction after MSA (orange), actual trajectory taken 
by drill bit (green). Trajectories not on scale and greatly exaggerated. 

The overall methodology results in the presence of two types of global error in the final posi-

tion: one before applying MSA and one after. The latter is of interest in this thesis and will be 

explained in Chapter 4, on page 29. 

What has been done so far 
A master’s thesis has been written on MSA - a Microsoft® Excel spreadsheet has been pre-

pared, in which the effect of MSA’s ability to correct errors is tested on five Surveys in five 

different MSA-scenarios (Elshabrawy 2018): 

1. All five Surveys, all 3 Bias errors only, no HDGM error, no noise. 

2. All five Surveys, all 6 Scale and Bias errors, no HDGM error, no noise. 

3. All five Surveys, all 6 Scale and Bias errors, with HDGM error, no noise. 

4. All five Surveys, only Bias error in Downhole direction, with HDGM error, no noise. 

5. One Survey, with HDGM error, with noise: 

a. All 6 Scale and Bias errors 

b. All 3 Bias errors only 

c. Only Bias error in Downhole direction. 

All noise errors have been simulated: they are assumed to be independent and identically 

distributed (i.i.d.) to be generated from a uniform distribution. Only Azimuth error in each 

Station has been determined, on which sensitivity analysis is performed: Azimuth error in the 

final Station is compared with the condition number of the Jacobian evaluated in the MSA 

solution. Additionally, a relationship between said condition number and quality of MSA so-

lution is speculated (Noy 2018). 

Overview of this thesis 
The main research question of this thesis is: What is the uncertainty of the MSA solution, i.e. 

the uncertainty of the bias solution and the scale factor solution? 
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The main objective of the thesis is to derive a method that describes this uncertainty. Also, its 

effect on determining the final drill bit position is studied. To this end, the project mentors 

have provided the following background sources: 

• Partial excerpts of aforementioned master’s thesis on MSA (Elshabrawy 2018) 

• Microsoft® PowerPoint slides on MSA (internal Shell document) 

• Two additional Microsoft® Excel spreadsheets, which requires activation of the “Solver 

Add-in”, provided by default in Excel: 

o Spreadsheet 1: basic implementation and application of only MSA + MSA sen-

sitivity analysis, used in (Elshabrawy 2018) 

o Spreadsheet 2: implementation of overall methodology: MSA + MSA sensitivity 

analysis + MCM 

• Additional Surveys of direction data for testing MSA in this thesis, as well as accompa-

nying final position vectors uncertainties without MSA from a proprietary model by 

the drilling industry 

• Various digital research papers regarding: 

o Measurement data to Survey conversion process (Boots & Coots International, 

Inc. 2010) 

o Minimum Curvature Method (Amorin and Broni-Bediako 2010) 

o Minimum requirements of MSA (Nyrnes, Torkildsen, and Wilson 2009) 

o Validation of MSA (Hanak, Wilson, and Gjertsen 2015) 

o HDGM error model (Maus et al. 2012) 

This thesis consists of two parts, the details of which will be explained later: 

1. Quantifying MSA solution uncertainty with Monte Carlo simulation as well as its effect 

on final drill bit position uncertainty. 

2. Establishing quality control of MSA: determining whether condition number in New-

ton-Raphson in MSA solution is a representative measure of MSA solution quality. 

All results are compared with an uncertainty model from the well-bore industry. 

Stakeholders in drilling technologies hope that the techniques of MSA described in this thesis 

will supplement and/or replace previously existing methodologies like SSA or SUCOP (internal 

method developed by Shell). 
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Chapter 3 Model description 
In this chapter, the ideas explained thus far will be formalized by giving a complete well-for-

mulated mathematical description. First, the variables used in the model are defined. Next, 

the relations between these variables are cited, without proof. 

Variables 
This thesis utilizes the following quantities and units: 

Quantity Unit Shorthand 

Distance meters m 

Acceleration meters per second squared m/s2 

G-force g g 

Angle radians (default) 
degrees 

rad 
° 

Field strength tesla 
microtesla (default) 
nanotesla 

T = Vs/m2 
µT = 10-6 T 
nT = 10-3 µT = 10-9 T 

Table 3: Used quantities and units 

Table 4, Table 5 and Table 6 denote the most important variables used throughout this thesis: 

one table for each relevant step in the process. 

 Variable Domain Description 

Input N   amount of Stations 

i   index for Station, 1 i N   

Input HDGM 
reference 

hrB   horizontal component magnetic field HDGM ref-
erence in all Stations 

vrB   vertical component magnetic field HDGM refer-
ence in all Stations 

Input erroneous 
measurement 
data 

xicB   measured uncorrected x-component magnetom-
eter in Station i  

yicB   measured uncorrected y-component magnetom-
eter in Station i  

zicB   measured uncorrected z-component magnetome-
ter in Station i  

xicG   measured exact x-component accelerometer in 
Station i  

yicG   measured exact y-component accelerometer in 
Station i  

zicG   measured exact z-component accelerometer in 
Station i  

Output cor-
rected meas-
urement data 

xiB   corrected x-component magnetometer in Station 
i  

yiB   corrected y-component magnetometer in Station 
i  

ziB   corrected z-component magnetometer in Station 
i  
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viB   corrected vertical component magnetometer in 
Station i  

hiB   corrected horizontal component magnetometer 
in Station i  

Output MSA so-
lution 

xS   x-Scale Factor magnetometer in all Stations 

yS   y-Scale Factor magnetometer in all Stations 

zS   z-Scale Factor magnetometer in all Stations 

xB   x-Bias Factor magnetometer in all Stations 

yB   y-Bias Factor magnetometer in all Stations 

zB   z-Bias Factor magnetometer in all Stations 

Table 4: MSA variables, w.r.t. orientation of BHA: x=HS + Tool Face Angle, y=HSR + Tool Face Angle, z=Downhole direction 

 Variable Domain Description 

Input (erroneous) measurement data. See also MSA variables. 

Output 
Survey 

T   Tool Face Angle 

I   Inclination Angle 

A   Azimuth 
Table 5: Variables for conversion between data and Survey. 

 Variable Domain Description 

Input Survey of direction vectors. See also MSA variables and conversion be-
tween data and Survey. 

1I   Inclination Angle in a Station 

2I   Inclination Angle in next Station 

1A   Azimuth in a Station 

2A   Azimuth in next Station 

MD   measured distance (length) between Stations 
(which is taken from differences in AHD) 

Output 
ic   Dogleg Angle (helper variable) 

RF   Ratio factor (helper variable) 

E   displacement drill bit in East direction 

N   displacement drill bit in North direction 

V   displacement drill bit in True Vertical direction 
Table 6: Variables for Minimum Curvature Method, outputting displacements in rectangular coordinates. 

Formulas and equations 
The equations to be described are consistent with the provided Excel spreadsheets. Modelled 

position vectors are assumed to be contained in one quadrant of 3D space. However, due to 

measurement errors, it leaves open the possibility that erroneous and corrected drill bit tra-

jectories leave this quadrant. 

MSA: magnetometer error model 

MSA assumes the presence of systematic errors in the three magnetometers, which is the 

MSA solution, and are mathematically modelled by Scale and Bias Factors: the variables 
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, , , , ,xB yB zB xS yS zS  as in Table 4. Based on Figure 2-1, the relations between uncorrected 

and corrected magnetometer data are: 

 

[ ( , )] :

[ ( , )] :

[ ( , )] :

xic xS xB xS xi xB

yic yS yB yS yi yB

zic zS zB zS zi zB

E B B

E B B

E B B

= +

= +

= +

   (3.1) 

Uncorrected measurements , ,xic yic zicB B B  include additional stochastic error terms, repre-

senting random noise. The probability distribution of these error terms will have to be speci-

fied. Throughout the remainder of this thesis, they are assumed to be i.i.d. and normally dis-

tributed with zero mean, justifying the use of the expectation operators on the left-hand side 

of (3.1). Even though MSA does not find the outcome of the stochastic noise terms in errone-

ous measurement data, the above equations will still be used for correction, leading to these 

correction formulas: 

 

xic xB
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B

−
=

−
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−
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  (3.2) 

where , , , , ,xB yB zB xS yS zS  are found by MSA. If these coincide with actual MSA solution, 

then only random errors remain, which are small compared to the systematic errors. 

MSA: HDGM error model 

HDGM reference measurements are composed of field strength B  and Dip Angle  . Equiv-

alent HDGM reference measurements ,hr vrB B  - with respect to Earth’s reference frame - are 

extracted by performing the following coordinate transformation with polar coordinates, 

which is easily derived using geometric arguments from Figure 3-1: 

 
cos( )

sin( )

hr

vr

B

BB

B= 

= 
  (3.3) 

Once errors are incorporated in field strength and Dip Angle, this yields erroneous HDGM 

measurements, from which the measurement data is compared against in MSA. Again, these 

errors come from stochastic error terms, which are also assumed to be normal with mean 

zero. 

MSA: mathematical process 

Defining the following helper variables, from (Noy 2018), sourced from (Brooks 1997): 
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  (3.4) 
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These represent, respectively, the vertical and horizontal component of measured magne-

tometer data, which can be seen in Figure 3-1. Similar formulas hold for corrected magne-

tometer data ,vi hiB B . 

 

Figure 3-1: Vertical and horizontal component of magnetometer data. Source: (Brooks 1997), Figure 4. 

Using these helper variables, the MSA solution associated with erroneous magnetometer 

measurements is found by minimizing the following non-linear least squares error function, 

where corrected measurement data is compared against provided HDGM reference meas-

urements: 

 
1

2 2( , , , ) : ( ) ( ), ,xB yB zB y

N

i

xS S zS hi hr vi vrL B B B B
=

= − + −   (3.5) 

This is done by setting its partial derivatives to zero, yielding a system of non-linear equations, 

which is then solved with Newton-Raphson. The algorithm is specified in full on page 46. In 

each iteration, Newton-Raphson involves the calculation of multiple real symmetric Jacobian 

matrices. The condition number of the Jacobian in the final iteration is of interest, which is to 

be calculated using eigenvalues (see page 47). All formulas required for the calculation of the 

Jacobian matrix are stated in (Noy 2018). 

In this thesis, uncertainty in the HDGM reference measurements is assumed. Therefore, the 

measurements ,hr vrB B  in (3.5) refer to erroneous measurements. 

Simulation: conversion of Survey to measurement data 

To be able to perform simulation, Surveys of direction data of modelled trajectories need to 

be converted to measurement data using HDGM, which are then used as MSA input. The 

equations needed are coordinate transforms (Boots & Coots International, Inc. 2010), page 

28: 
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  (3.6) 

The variable g  represents a gravitational constant, which in simulation is set to 1, since g  

does not affect the direction vectors of the drill bit. Also, the HDGM reference measurement 

data ,hr vrB B  in (3.6) refer to modelled HDGM reference measurements, not erroneous HDGM 

measurements. 

Conversion of measurement data to Survey 

Conversely, the HDGM measurements ,B   can be extracted from known , ,x y zB B B  using 

the following equations, both derived from Figure 3-1 using geometric arguments: 
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  (3.7) 

Also, all three types of measurement data (erroneous data, corrected data after applying 

MSA, as well as data from a modelled trajectory acquired from the method described in the 

previous paragraph) can be converted to a Survey of direction vectors using the following 

equations: I  from geometric arguments and ,T A  from (Boots & Coots International, Inc. 

2010): 
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  (3.8) 

with ,hsr hsB B  defined by: 
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  (3.9) 

From (3.8), note that there are no errors in Tool Face Angle and Inclination measurements - 

all measurement errors in magnetometer measurements lead to Azimuth errors. However, 

due to the presence of arctangent in Azimuth, if arctangent is treated as an ordinary function, 

then its range is restricted from -90 to 90 degrees, which leads to position degeneracy when 

modelled Azimuth is close to these values: see Figure 3-2. In the Excel simulation to be 
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performed in subsequent chapters of this thesis, this scenario is avoided by using the atan2 

function. 

 

Figure 3-2: Effect of position degeneracy due to incorrect calculation of Azimuth. 

Minimum Curvature Method 

Given a Survey of direction vectors, define the following helper variables (Dogleg Angle and 

Ratio Factor respectively) for two consecutive Stations: 
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  (3.10) 

Then, these equations for the displacement hold (Amorin and Broni-Bediako 2010): 
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  (3.11) 

In (Amorin and Broni-Bediako 2010) is also mentioned that whenever 
1

4
ic  , then 1RF =  

is set to avoid singularities. In this thesis, this is done when 0ic = .  

The displacement equations yield an iterative algorithm which steps from the first Station 

right up until the second-last Station, determining approximate displacement and therefore 

the position vector of the drill bit in each next Station, all with respect to rectangular coordi-

nates. The starting position is assumed to be the origin, but one may choose a different start-

ing position if needed. If the first Station has a non-zero AHD, then the trajectory can only be 

partially determined. In the end, the desired final position follows. 
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Notes and in-chapter references 

• A complete state-of-the-art reference guide regarding well-bore positioning and 

Multi-Station Analysis is “An Introduction to Wellbore Positioning” by Angus Jamieson 

et al., located at https://www.uhi.ac.uk/en/t4-media/one-web/university/re-

search/eBook_V9_10_2017-redux.pdf. 

• In (Noy 2018; Brooks 1997), Scale Factor terms (1 )xS+  etc. are used instead of xS  

etc. as in (3.1), where the latter xS  etc. only represents percental change. Also, the 

Bias Factor errors in (3.1) are stated with a minus sign instead. These minor alterations 

do not lead to issues. 

• The formula for North displacement is wrongly stated in (Amorin and Broni-Bediako 

2010) and is corrected in this thesis. 

Chapter 4 Mathematical methods of uncertainty analysis 

Uncertainty analysis 
The first goal is to find: 

1. Uncertainty of MSA solution 

2. Uncertainty of final drill bit position after MSA 

Uncertainty analysis is employed, which is a branch of (pure) mathematics that studies func-

tions of random variables: it quantifies uncertainties in the function image caused by uncer-

tainties in its domain. A measure of uncertainty is any quantity that can be derived from the 

cumulative distribution function of the random variable (de Rocquigny, Devictor, and Taran-

tola 2008), chapter 1.2.3, page 9. Examples: standard deviation, or variance, or - in case of 

normality - deviation of a confidence interval. In this thesis, the latter definition has been 

chosen to allow for comparisons done in Chapter 5. 

There are various methods to calculate uncertainty. Here, the main simulation method cho-

sen is Monte Carlo simulation. 

Uncertainty of MSA solution 
As mentioned in section Implementation of MSA in overall methodology (page 20), the pro-

cess to turn measurement data into drill bit trajectory can be reversed. In modelling, the ac-

tual final position of interest is known. From the conversion process, the measurement data 

follows. Scale/Bias Factors are modelled in advance. These are then incorporated, and back-

ground noise is generated and added. This yields artificial erroneous measurement data, 

which is assumed to be representative for measurement on location. The erroneous meas-

urement data is then partially or fully corrected by MSA. 

In simulation, this process can be generated repeatedly, yielding a sample of MSA solutions, 

which can be plotted in a histogram. After scaling, this histogram approximates a probability 

density function for MSA solution, which describes the MSA solution uncertainty.  Approxi-

mated values for MSA solution uncertainty are calculated from the sample. 

https://www.uhi.ac.uk/en/t4-media/one-web/university/research/eBook_V9_10_2017-redux.pdf
https://www.uhi.ac.uk/en/t4-media/one-web/university/research/eBook_V9_10_2017-redux.pdf
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Uncertainty of final drill bit position 
A similar method applies for the uncertainty of the final position. Repeating the steps above: 

after applying MSA, conversion from measurement data to Survey and finally MCM yields a 

corrected trajectory, as well as new final position. Again, simulation yields uncertainty of final 

position. 

Since the uncertainty of the final position is bounded, it can be geometrically represented as 

an ellipsoid centered around the actual final position. The accompanying deviations from the 

actual final position along its axes of symmetry form a measure for the maximum global error 

uncertainty in each axis. Depending on the error model, MSA process enables shrinking of the 

position uncertainty ellipsoid: the result is the final position uncertainty after MSA. The MSA 

position uncertainty ellipsoid needs to be determined, which is specified through the absolute 

global error uncertainties. See Figure 4-1. 

 

Figure 4-1: Uncertainty ellipsoid after MSA. Actual trajectory (green), trajectory after MSA (orange). Absolute global error 
uncertainties (purple). 

Transformation to borehole coordinates 
However, what may occur is that the MSA uncertainty ellipsoid is slightly tilted (not aligned 

in Downhole direction), whereas uncertainty is determined from position vectors that are 

represented in rectangular coordinates. The equations to transform position uncertainties 

from North, East and Vertical coordinates to borehole HS, HSR, Downhole coordinates are 

given in (Williamson 2000), Appendix A: 
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where ,hla nevCC  are covariance matrices, both related by the above orthogonal transfor-

mation. These equations are not considered in the sequel: this thesis only considers North, 

East and Vertical uncertainties. 

Monte Carlo simulation: theory on averages 
In general, the expectation of a real single-valued random variable X  can be calculated di-

rectly by definition of ( )E X . In case of a continuous random variable, ( )E X  is an integral. 

To evaluate this, Monte Carlo simulation provides a probabilistic way: from M  replications 

iX X , independent and identically distributed, the average is taken: 
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1
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a X
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Ma  is an unbiased estimator for ( )E X , which has variance 
( )iV X

M
.  

An unbiased estimator for the variance ( )V X  is: 
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Based on the central limit theorem, for large values of M , the estimator Ma  has approxi-

mately a normal distribution, from which a 95% confidence interval for ( )E X  can be con-

structed, given by: 

 
1.96 1.96

,M M
M M

b b
a a

M M

 
− + 

 
 

The choice of M  affects, and therefore also controls, the quality of estimating the expecta-

tion. A trade-off between computational power and precision must be made. 

This theory can be generalized for multi-valued random variables. In application, X  either 

represents the MSA solution or the final drill bit position. Their expectations should be close 

to their modelled quantities, which is representative for the quality of MSA performance. 

Monte Carlo simulation: uncertainty 
Additionally, if X  is normally distributed, then one may verify that a 95% confidence interval 

of X  is given by: 

  1.96 , 1.96M M M Ma b a b− +  

The deviation 1.96 Mb  represents the uncertainty in X . Simulation gives an approximation of 

both 95% confidence interval and uncertainty. 

The number 1.96 is a critical value, associated with 95% confidence level. These values are 

assumed throughout this thesis. However, if a different percentage confidence level is 

needed, then all values 1.96 need to be replaced with: 
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Confidence level (%) Critical value (approximates) 

95 1.96 

95.44 2 

99 2.57 or 2.58 

99.74 3 
Table 7: Table of critical values 

In case the normal condition does not hold, but good enough as an approximation, then the 

above deviation of the confidence interval can still be used as a representative measure of 

uncertainty. Additional analysis like transformation and probability density fitting methods 

can be employed to improve the uncertainties: these are not employed here in this thesis.  

If none of the above is possible, then only standard deviation is used as a measure of uncer-

tainty. However, most probability density functions in this thesis turn out to approximately 

follow a normal distribution, which can be seen visually in plots and/or using normality tests. 

In cases where this does not hold true, standard deviation is acquired by dividing 95% confi-

dence deviation uncertainty results by critical value 1.96. 

Homotopy method (optional) 
As mentioned in Chapter 2, MSA is ill-posed. To acquire an MSA starting solution that is close 

enough to the unknown MSA solution associated with erroneous measurement data, the ho-

motopy method for systems of non-linear equations is employed. A description of this 

method is found in (Kan, Segal, and Vermolen 2014), chapter 9.7.3, stated here with minor 

alterations. First, a starting function with a known root is required, which is taken to be: 

 2 2 2 2 2 2( 1) ( 1) ( 1)( , , , , , )xB yB zB xS yS zS xS yS zS xB yB zBf −  −  −   =   

and the goal function is the MSA least-squares error function (3.5). Then, a reasonably large 

finite number k  equations of the form 

 ,( ) (1 ) ( ) 0, , , , , , , , ,xB yB zB xS yS zS xB yB zB xS yS zSf L + − =   

is constructed, where 0, , 2 ,...,1h h =  and 0 1h   such that 1kh =  . Solving each of these 

equations sequentially yields a desired starting solution. In application, since the least-

squares error function may not have a root, instead of solving the above equations, the left-

hand side is minimized instead. 

Notes and in-chapter references 

• For more general information regarding various methodologies and case studies of 

uncertainty and sensitivity analysis, see (de Rocquigny, Devictor, and Tarantola 2008) 

and (de Rocquigny 2012). 

• The theory of Monte Carlo simulation is taken from (Higham 2004), chapter 15. 

• The usage of Monte Carlo on a computer introduces additional sampling errors in de-

termining the required uncertainties, due to:  

1. finite number of replications 

2. the usage of a pseudo random number generation algorithm 
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Usage of pseudo random generator may also lead to dependencies between random 

errors, violating the assumption of independency. 

Ultimately, the determination of sampling errors is not considered here. To counter 

for these errors, a high number of replications is needed. Additionally, the uncertainty 

analysis can be repeated many times over again by resampling, leading to a bootstrap 

procedure which determines the variability and therefore the reliability of the results. 

This procedure has not been carried out in full by the author due to computational 

time. 

However, based on the above criteria, by trial and error and no further knowledge of 

the variance to be determined, the author estimates a minimum of 900 replications 

for each simulation round is needed. Only 300 replications are performed for this the-

sis due to time constraints, where one simulation round has taken between 5 to 30 

minutes, on average 10 minutes. 

Chapter 5 Determining MSA solutions and final positions 

Implementation in Excel 
To apply Monte Carlo simulation, Spreadsheet 2 is used as basis for experimental setup, which 

simulates errors and performs MSA on erroneous measurement data. 

For the purposes of this thesis, Spreadsheet 2 has been modified in various ways: 

• Merged worksheet “Minimum Curvature Method” (Figure 8-3) in worksheet “MSA” 

(Figure 8-1, Figure 8-2). MCM is applied to modelled Survey, erroneous Survey and 

corrected Survey. 

• Changed generation of background noise errors from uniform distribution to normal 

distribution, by applying a transform: see Background information, page 48. 

• Separated columns for noise errors from erroneous measurement data. 

• Implemented HDGM error model. 

• Corrected erroneous copy-paste formulas. 

• Increased the amount of Survey Stations that can be inserted as input. 

• Implemented Monte Carlo simulation for both determining the uncertainty in MSA 

solution as well as final position uncertainty, using macros written in Microsoft Visual 

Basic for Applications 7.1 as well as MATLAB® R2018a code, communicating from and 

to Excel through MATLAB’s Spreadsheet Link® software.  

• Implemented a small user interface (UI) for control of functionalities as well as various 

configuration settings. See Figure 8-4 and Figure 8-6. 

• Implemented eigenvalue and condition number calculation by using matrix.xla, a 

third-party Excel add-in. 

• Implemented robust MSA starting solution homotopy method. 

• Removed redundant calculations. 

• Implemented condition number heat plots using MATLAB. 

The modified spreadsheet has the following major UI functionalities: 

• Generate noise errors: done for magnetometer measurement data and HDGM. 
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• Get MSA starting solution: acquires MSA starting solution using either  

1. homotopy method (page 32) 

2. random guess close to modelled MSA starting solution 

depending on the user’s configuration. 

• MSA solve: performs minimization using the Solver add-in using an inputted MSA 

starting solution and returns MSA solution associated with measured data. 

• Monte Carlo simulation: the above three functions are repeated M  times, where M  

is configurable by the user. Its results are stored away in a separate sheet. 

• Plot trajectory/Plot error distributions: generates plots of position vectors in several 

final Stations of modelled Survey, corrected MSA positions, MSA solutions. Histograms 

are also plotted. 

Application of Monte Carlo simulation in MSA solution and global position uncertainty 

analysis 
To acquire the uncertainties, Monte Carlo simulation is applied in the following way: 

Input: Modelled Survey of direction data, modelled MSA solution, HDGM model, 

HDGM and magnetometer error model 

Algorithm:  

1. Insert modelled Survey of direction data in Excel spreadsheet. 

2. Modelled Survey of direction data is automatically converted by Excel spread-

sheet to modelled measurement data, and application of MCM gives modelled 

final position vector. 

3. After pressing the “Monte Carlo simulation” button, M  samples are gener-

ated in the following way: 

a. Generate normal errors in HDGM, as well as magnetometer noise 

b. Add errors to modelled measurement data, giving erroneous measure-

ment data. 

c. Conversion is automatically applied to erroneous measurement data, 

giving erroneous final position vector. 

d. Retrieve and set MSA starting solution. 

e. Apply MSA, which returns MSA solution. 

f. The corrected measurement data is automatically calculated. 

g. Conversion is automatically applied to corrected measurement data, 

giving corrected final position vector. 

A list of M  MSA solutions and corrected final position vectors has thus been 

acquired. 

4. The required uncertainties are calculated by the methods in the previous chap-

ter. 

Output: uncertainty of MSA solution, uncertainty of final drill bit position vector. Op-

tionally, with the modelled final position vector at hand, the uncertainty of absolute 

global error of final position vector can also be calculated. 
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Figure 5-1 summarizes the steps taken: 

 

Figure 5-1: Simulation overview, starting from the modelled drill bit trajectory (top right). 

In the MSA application step, a few assumptions are set: 

• Given the high sensitivity of MSA, a six-decimal digit (0.000001) precision is configured 

in the Solver add-in. This ensures that numerical errors are minimal compared to ran-

dom errors.  

• Additionally, the Solver add-in utilizes relative convergence (see Background infor-

mation): the default relative convergence of 0.0001 is used. A lower value is preferable 

- one can verify its sufficiency from the resulting MSA solution plots. The trade-off is 

that a lower value incurs additional iterations. 

• During testing, in getting an MSA starting solution, the author did not perceive any 

quantitative differences using either the homotopy method (page 32) or using a ran-

dom guess: for the results in this chapter, the latter is used. 

• MSA solution existence and uniqueness in erroneous measurement data is assumed: 

only one set of systematic errors is artificially added to modelled measurement data. 

Scenarios and results 
Table 8 shows the parameters that have been used: 

 Parameter Expected value Deviation 

Modelled Scale Factor X 1.1  



 

  36 

systematic er-
rors (MSA solu-
tion) 

Scale Factor Y 0.95  
± 0.25 (starting MSA random 
guess) 
 

Scale Factor Z 1.25 

Bias Factor X 0.25 

Bias Factor Y 0.295 

Bias Factor Z -0.335 

Random errors Noise bias 0 nT Scenario 1, 2 and 3: 3.3 nT 
(standard dev.) 
Scenario 4: 0.3 nT 

Modelled 
HDGM 

Total field strength 51 µT 107 nT (standard dev.) 

Dip Angle 72° 0.16° (standard dev.) 

Monte Carlo # replications 300 - 
Table 8: Parameters for Monte Carlo simulation. 

The above modelled MSA solution are test parameters: any MSA solution with Scale Factors 

close to 1 and Bias Factors close to 0 can be chosen. The above HDGM error model is conform 

(Maus et al. 2012). The noise bias standard deviations are provided by a magnetometer expert 

at Baker Hughes, where scenario 4 represents expected future developments in magnetom-

eter technology. 

The following seven Surveys have been tested (also included on page 49), each of which are 

characterized by: 

1. increasing Inclination and high Azimuth 

2. increasing Inclination and low Azimuth 

3. high Azimuth, different AHD starting position (missing data) 

4. high amount of Surveys and bent trajectory (ISCWSA) 

5. ill-behaved data 

6. ill-behaved data 

7. minimum Tool Face variation 

Four scenarios are compared:  

1. without HDGM error, with 3.3 nT sigma noise 

2. with HDGM error (field strength only), with 3.3 nT sigma noise 

3. with HDGM error (field strength and Dip), with 3.3 nT sigma noise 

4. with HDGM error (field strength and Dip), with 0.3 nT sigma noise 

The simulation results are stated in Table 9, Table 10, Table 11 and Table 12 below. 
 

Coordinates 95% uncertainty: deviation (=1.96*st.dev)  
Position MSA solution Position [m] Scale Factor Bias Factor [µT] 

1 x (North) (HS+TFA) 0.3109277968 0.0001444448 0.0017329007 

y (East) (HSR+TFA) 0.0271702194 0.0001121859 0.0016850436 

z (Vertical) (Downhole) 0.0000028044 0.0004581051 0.0215095284 

2 x 
 

0.0086939433 0.0001530296 0.0022345990 

y 
 

0.0993546099 0.0001341054 0.0018543374 

z 
 

0.0000038756 0.0003464094 0.0165417379 

3 x 
 

5.7703611906 0.0001433809 0.0017607830 



 

  37 

y 
 

0.5008533508 0.0001193468 0.0018200622 

z 
 

0.0000047198 0.0135909274 0.1422877297 

4 x 
 

1.0762884964 0.0000305400 0.0007952551 

y 
 

0.2883791747 0.0000295519 0.0007245822 

z 
 

0.0000043641 0.0001320746 0.0057570424 

5 x 
 

0.0936122578 0.0000542927 0.0012910149 

y 
 

0.1281182716 0.0000495341 0.0011491656 

z 
 

0.0012805838 0.0000757368 0.0031003945 

6 x 
 

0.0965467684 0.0000477918 0.0012225929 

y 
 

0.1234545406 0.0000476216 0.0012662441 

z 
 

0.0011204412 0.0000366883 0.0016446892 

7 x 
 

61.5533830810 0.0304358845 0.2385140111 

y 
 

61.3123001880 0.0029148284 0.1386723699 

z 
 

0.0001296745 0.0442446047 2.3292780399 
Table 9: Uncertainty of MSA solutions and final position vectors as acquired by Monte Carlo, scenario 1. 

 
Coordinates 95% uncertainty: deviation (=1.96*st.dev)  
Position MSA solution Position [m] Scale Factor Bias Factor [µT] 

1 x (North) (HS+TFA) 0.3027900293 0.0047357332 0.0017100604 

y (East) (HSR+TFA) 0.0264643082 0.0040715450 0.0017653756 

z (Vertical) (Downhole) 0.0000025334 0.0053646537 0.0216185311 

2 x 
 

0.0085415525 0.0044753490 0.0020325229 

y 
 

0.0976233712 0.0038534171 0.0017917457 

z 
 

0.0000043571 0.0051201905 0.0165381444 

3 x 
 

22.3615675464 0.0042858312 0.0022955486 

y 
 

1.1926539734 0.0037010757 0.0021524405 

z 
 

0.0000502291 0.0296044653 0.3975887296 

4 x 
 

1.0315293046 0.0045099006 0.0007954642 

y 
 

0.2763797137 0.0038927626 0.0007596106 

z 
 

0.0000041968 0.0051301571 0.0053928946 

5 x 
 

0.0905855730 0.0044899493 0.0012856242 

y 
 

0.1258882982 0.0038810833 0.0011884926 

z 
 

0.0012313492 0.0051009998 0.0030069338 

6 x 
 

0.1024260586 0.0042989473 0.0012502042 

y 
 

0.1266085712 0.0037071573 0.0012231948 

z 
 

0.0012359169 0.0048854966 0.0016407844 

7 x 
 

58.0922786630 0.0305542020 0.2914765825 

y 
 

56.9748850574 0.0048759336 0.1256160620 

z 
 

0.0001215315 0.0424976054 2.2043456709 
Table 10: Uncertainty of MSA solutions and final position vectors as acquired by Monte Carlo, scenario 2. 

 
Coordinates 95% uncertainty: deviation (=1.96*st.dev)  
Position MSA solution Position [m] Scale Factor Bias Factor [µT] 

1 x (North) (HS+TFA) 57.3218846347 0.0224444802 0.0038464143 

y (East) (HSR+TFA) 5.1828159573 0.0191109321 0.0067440619 

z (Vertical) (Downhole) 0.0009472730 0.0717863236 3.5853179645 

2 x 
 

0.1063992451 0.0084498420 0.0078667033 
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y 
 

1.2132958111 0.0079875160 0.0219137831 

z 
 

0.0000921307 0.0247086209 1.1829501750 

3 x 
 

247.0477227996 0.0076965664 0.0104214029 

y 
 

28.0227316487 0.0065552702 0.0057056378 

z 
 

0.0001692815 0.1905380299 3.7735904895 

4 x 
 

188.3934431287 0.0054709165 0.0014198121 

y 
 

50.9278344440 0.0047243912 0.0041355067 

z 
 

0.0005893930 0.0272680837 1.1287146363 

5 x 
 

9.6202073670 0.0054656668 0.0025110855 

y 
 

9.8646625936 0.0047611952 0.0056288028 

z 
 

0.0133553696 0.0125974499 0.5837494007 

6 x 
 

4.7141270573 0.0047373716 0.0114796376 

y 
 

1.2976959702 0.0041106437 0.0030162983 

z 
 

0.0093800964 0.0062231946 0.1410950087 

7 x 
 

84.5564948884 0.0342942677 0.7120746884 

y 
 

114.3540286438 0.0102024099 0.5594878675 

z 
 

0.0001765971 0.0510761751 2.7374584009 
Table 11: Uncertainty of MSA solutions and final position vectors as acquired by Monte Carlo, scenario 3. 

 
Coordinates 95% uncertainty: deviation (=1.96*st.dev)  
Position MSA solution Position [m] Scale Factor Bias Factor [µT] 

1 x (North) (HS+TFA) 54.6866816670 0.0218176635 0.0029280105 

y (East) (HSR+TFA) 5.0297032000 0.0185894180 0.0062936052 

z (Vertical) (Downhole) 0.0008119924 0.0691567239 3.4298256810 

2 x 
 

0.1004190033 0.0075849772 0.0074005872 

y 
 

1.1478654955 0.0071775307 0.0207309127 

z 
 

0.0000836039 0.0227534567 1.1259554406 

3 x 
 

262.4902477587 0.0073202671 0.0097186589 

y 
 

28.3138221014 0.0062104873 0.0050141376 

z 
 

0.0002636360 0.1964205923 3.9095359410 

4 x 
 

202.6169769977 0.0048392297 0.0012865961 

y 
 

54.4887082366 0.0041819661 0.0043289785 

z 
 

0.0007301175 0.0289007361 1.2123712608 

5 x 
 

10.0479875294 0.0057388974 0.0023276912 

y 
 

10.3122819720 0.0049978189 0.0057753799 

z 
 

0.0137944424 0.0133938448 0.6103900652 

6 x 
 

4.3788883724 0.0046017571 0.0106856228 

y 
 

1.1968892406 0.0039932924 0.0025666695 

z 
 

0.0085658774 0.0059863580 0.1310910120 

7 x 
 

70.1850525483 0.0360555059 0.3056452396 

y 
 

70.6664886402 0.0057351010 0.3508352218 

z 
 

0.0001786466 0.0499537412 2.6098036249 
Table 12: Uncertainty of MSA solutions and final position vectors as acquired by Monte Carlo, scenario 4. 

These results can be compared with results from existing industry uncertainty models that 

determine final position uncertainty. In this thesis, the following results were used, provided 

by one of the project mentors: 
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Coordinate Scale Bias 

High Side 0.008 35 nT 

High Side Right 0.008 35 nT 

Downhole direction 0.008 35 nT 
Table 13: Uncertainty standard deviations in MSA solution: input in industry model. 

Survey 1 2 3 4 7 

Uncertainty North [m] 10.1 0.4 42.8 107.5 15.0 

Uncertainty East [m] 0.9 4.8 3.7 28.8 15.0 
Table 14: 95% uncertainty deviations in MSA solution according to industry model. 

An advantage of the above chosen industrial model is its non-requirement of stochastics. Its 

only input is a modelled Survey, the MSA solution uncertainties specified in Table 13 and a 

total field strength error uncertainty. The industrial model does not account for Dip Angle 

uncertainties, whereas the model proposed in this thesis does. 

Conclusions 
Various plots of the Monte Carlo simulation are included in the Appendix, starting from page 

54. Errors in vertical position are negligible in all four scenarios. Additionally, 

1. In the first scenario, MSA has detected the modelled MSA solution to a high degree. 

Except for Scale and Bias Factor Z uncertainty in scenarios 3 and 7, these results do 

agree with the MSA uncertainty deviations from the industry model.  

The first four Surveys shows an overly optimistic improvement in position uncertainty 

over the results from industry model. In Survey 7, the opposite case applies. This is 

consistent with the assertion that Tool Face variation is key to position determination, 

based on Case 1 in the master thesis (Elshabrawy 2018). 

2. Despite the worse results than the first scenario with regards to MSA uncertainty de-

viations, the second scenario yields comparable results in position uncertainty except 

for Survey 3. Again, the MSA uncertainty deviations agree with the industry model. 

3. In the third scenario, in the first four Surveys, significantly higher deviations in final 

position were observed compared to the previous scenario and returns worse MSA 

solution uncertainties than the industry model. Also, in all scenarios, Bias Factor Z un-

certainty is significantly worse compared to Bias Factor X and Bias Factor Y uncer-

tainty. 

4. The fourth scenario yields similar conclusions as in the third scenario. 

All in all, HDGM Dip Angle uncertainty is the most significant source for position uncertainty. 

From here onward, only scenario 4 will be considered. 

Notes 

• Not all digits in the above uncertainty results are significant. 

• Since the above results contain sampling errors: to verify that the fourth scenario re-

turns similar results as the third scenario, one would have to repeat the Monte Carlo 

simulation sufficiently many times over again to yield samples from probability distri-

butions of the MSA solution/final position uncertainty of both scenarios, after which 
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a two-sample t-test should be performed. However, this procedure is computationally 

expensive, and therefore not done in this thesis. 

Chapter 6 Quality control of MSA solution: the link between condition 

numbers and MSA solution error 
Established in the previous chapter, Monte Carlo simulation gives an approximation of MSA 

solution uncertainties. The main benefit is that no major analysis of the mathematical model 

is required, however the exact cause for the presence of MSA solution errors remains hidden. 

As mentioned in Chapter 2, the condition number in the Newton-Raphson algorithm is spec-

ulated to be related to the MSA solution error. During testing of Monte Carlo simulation, large 

values of these condition numbers were observed, implying ill-conditioning of MSA. Continu-

ing from the previous chapter, for scenario 4, these values are summarized in the condition 

number plots on page 66, where each corrected position is associated with its condition num-

ber, represented as color: colors tending towards light yellow correspond to large condition 

numbers, and colors tending towards dark blue correspond to small condition numbers. 

From Survey 1, an ideal situation can be inferred: a large condition number when both cor-

rected position and MSA solution are close to the modelled position and MSA solution, small 

otherwise, behaving in a continuous manner, and minimal near the extreme endpoints of the 

position/MSA solution set. 

However, from Surveys 4, 5 and 6, this is not the case: the largest condition number appears 

at an extreme endpoint. Also, Scale Factors do not appear to follow the ideal behavior as well. 

Survey 4 contains a high amount of potential outlying condition numbers, but the correspond-

ing Scale Factors do not appear at the extreme ends. 

Surveys 2, 3, and 7 contain replications with large outlying condition numbers, resulting in 

most of the condition numbers appearing to seemingly have low condition numbers. In Sur-

vey 2 specifically, the set of Scale Factors associated with the major outlying condition num-

ber is not an outlier, and close to the modelled MSA solution, thus it cannot be removed. In 

Survey 7, the MSA solutions corresponding to large condition numbers are scattered close 

towards the modelled MSA solution and cannot be generally classed as outliers. 

Based on these observations, the conclusion is that condition number - on its own without 

further post-processing - cannot be used to determine MSA solution quality. 

Notes 

• After initial acquirement of measurement data, it may be possible to acquire a second 

set of measurement data when the drill is transported back to the surface. From here, 

the condition numbers in both sets can be compared to each other to determine which 

set is more reliable. However, this practice is not common in the well-bore industry, 

as it incurs additional time and expenses. 

• The condition number plots of Survey 3 contain only a few outlying condition num-

bers, which could be attributed to random chance. However, its Bias Factor plot con-

tains many deviating points, relatively more in comparison to the other Surveys, which 

suggest that an insufficient amount of numerical algorithm iterations have been 
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executed. So, the Monte Carlo simulation of the previous chapter is repeated, with 

the only parameter change being relative convergence in Excel Solver, which is set to 

0.000001. This yields the following condition number plot, in which the above anom-

alies disappear: 

 

Figure 6-1: Condition plot of Survey 3, with improved relative convergence. 

However, by analyzing the Scale Factors plot, the overall conclusion still holds. 

• If a single drill is used for drilling one single borehole section, as for example in Survey 

1, condition number may indeed be a reliable measure for determining MSA solution 

quality (as well as drill bit position). However, in practice, large depth boreholes are 

drilled in multiple sections, and potentially, multiple drills are used. In such case, one 

will also have to apply MSA on Surveys similarly to Survey 3, where parts of data are 

missing. Comparing the condition plots corresponding to those Surveys, again the 

overall conclusion still holds. 

 

Chapter 7 Conclusion, recommendations and final remarks 
In this thesis, the trajectory of a drill bit has been studied, which is determined by indirect 

measurements from accelero- and magnetometers. Erroneous measurements in the magne-

tometer data result in error in determining the final position of the drill bit. 

Multi-Station Analysis is considered as a potential solution to improve the position uncer-

tainty ellipsoid. With the aid of HDGM reference measurements, this method determines the 

systematic Scale/Bias Factors that are present in the magnetometer data, which is then used 

to correct the data. 

The main objective of this thesis is to determine the uncertainty in the MSA solution and pro-

vide a method to do so. Here, it is based on Monte Carlo simulation. This method generates 

multiple replications of erroneous measurement data from modelled measurement data, 

each of which is representative of in-field measurements. Aside from the MSA solution 
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uncertainty, the effect of MSA on the final position vector of the drill bit has also been con-

sidered. A prototype implementation of this method is done in Excel in conjunction with 

MATLAB. 

This thesis has established that while on average, MSA as presented here is able to correct 

erroneous well-bore trajectories towards the modelled trajectory, it is however not adequate 

to counter for extreme erroneous cases, due to HDGM Dip Angle uncertainty. To compare 

and validate, a position uncertainty model from the well-bore industry produces significantly 

lower and therefore inaccurate uncertainties, as it does not account for HDGM Dip Angle un-

certainty. Additionally, it is also established that the condition number in the final iteration of 

Newton-Raphson is not a reliable measure for the quality of MSA solution. 

Further areas of potential research 
In addition to the various problems mentioned but not covered throughout this thesis, the 

following areas has been identified by the author to be of potential interest regarding the 

overall well-bore drill position methodology: 

1. A major disadvantage of the Monte Carlo simulation applied on the MSA problem is 

its dependence on a modelled trajectory/measurement data, which is typically not 

known in practice, where only one replication of erroneous measurement data is avail-

able. The worst-case scenario is when after applying MSA, a poor approximation is 

yielded due to improper determination of the actual Scale and Bias Factors in the er-

roneous measurement data. 

However, if the MSA solution uncertainty analysis does not depend on the modelled 

MSA solution, then the corrected measurement data with associated MSA solution 

can be used as modelled measurement data instead. While the MSA solution uncer-

tainty can change due to difference between the corresponding trajectories, due to 

continuity, it is hypothesized that the resulting position uncertainty is close to the ac-

tual position uncertainty. Since only one set of modelling parameters has been used 

in this thesis, one should retest the Monte Carlo simulation with different parameters 

to verify the above independency. 

2. In linear regression, as part of the subfield of regression diagnostics, the condition 

number of the design matrix is a measure for the presence of collinearity (near-singu-

larities in the design matrix) in a regression problem: large condition numbers result 

in poor estimates of the regression coefficients (Rawlings, Pantula, and Dickey 1998), 

chapters 10.6, 11.3 and 13.  Causes for collinearity include the presence of near-linear 

dependencies among the regression variables and inadequate sampling. To remedy 

collinearity, biased regression can be employed, which involves constructing regres-

sion coefficient estimators with smaller mean square error but include bias. An exam-

ple of a biased regression method is principal component regression, which - after 

transformation of the regression variables into so-called principal components - elim-

inates the principal components that cause the collinearity problem. 

Based on the plots generated through Monte Carlo simulation performed in this the-

sis, there is a clear near-linear relationship among Scale Factor X and Scale Factor Y, 

suggesting that at least one of these variables can be reliably predicted from the 
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others. After performing the principal component regression, it is thus expected that 

MSA solution uncertainty is reduced, yielding a more representative position uncer-

tainty ellipsoid. 

3. In general, for single and multiple linear least squares regression methods, estimators 

for the unknown regression coefficients can be constructed analytically, from which a 

confidence interval is derived (Rice 2007), chapter 14. Bounds for the relative error of 

the least squares solution can be written in terms of the condition number of the de-

sign matrix, if the latter has full rank (Golub and Loan 2013), chapter 5.3. Can the re-

gression uncertainty analysis be done analytically? Below are several helpful facts on 

regression: 

• Non-linear regression models can be linearized using transformations and/or using 

Taylor expansion methods. The former may lead to loss of normality in residuals. 

The latter leads to the Gauss-Newton method, which is the application of Newton-

Raphson to least squares regression. For non-linear models, confidence intervals 

for the regression coefficients can also be established (Rawlings, Pantula, and 

Dickey 1998), chapter 15.3. 

• Residual analysis may reveal outliers. 

• Classical assumptions of regression include normality of residuals, homogeneous 

variance and independent errors. In case any of these are violated, robust regres-

sion techniques can be employed. 

There are several problems unique to the MSA regression model compared to the 

above standard regression models that complicate the regression analysis to be per-

formed: 

• Random errors and systematic error parameters in 
x y zB ,B ,B  variables, multiple 

least squares fitting of h vB ,B  variables against measured HDGM reference, thus 

potential loss of normality and lack of goodness-of-fit. 

• Random errors in measured HDGM reference. 

4. Key in finding the MSA solution associated with measured magnetometer data is the 

least-squares error function (3.5). Due to uncertainties covered throughout this thesis, 

the retrieved MSA solution may deviate significantly from the modelled MSA solution. 

Can a different error function be used? 

• The MSA solution found using the method described in this thesis can be used as 

an initial starting approximation, so the different error function needs to return an 

MSA solution close to it, leading to a constrained optimization problem. 

• Empirical observations during simulation testing: if the data is corrected using the 

modelled MSA solution, the corrected h vB ,B values yield approximately station-

ary time series, whereas correcting the data using the MSA solution found from 

the least-squares error function (3.5) yields non-stationary time series. Therefore, 

if a different error function is to be used, its solution should necessarily correct 

h vB ,B  values towards a stationary time series, with expectation close to meas-

ured HDGM reference. 

5. Based on the results of this thesis, the MSA solutions acquired from MSA can be math-

ematically interpreted as outcomes of an unbiased multivariate estimator 
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T

1 2 3 4 5 6, , ,[ , , ]X XX X X X X=  where, if possible (depending on Survey), each iX  is 

normally distributed. Under regularity conditions, the Fisher information matrix can 

then be used to establish the Cramér-Rao inequality, which is a lower bound on the 

variance of X , as well as all other unbiased MSA solution estimators, thus giving an 

optimality condition for minimum MSA solution uncertainty. 

6. Changing statistical assumptions: in this thesis, random measurement errors were as-

sumed to be normally distributed. In practice, inverse Gaussian and Laplacian distri-

butions are also suggested. Also, when measurements are done electronically through 

solid state tools, discrete distributions apply, leading to resolution errors due to digit-

ization. By correspondence with a survey specialist at Halliburton, magnetometer 

noise may unfortunately fall within resolution error, making detection harder, leading 

to underestimated uncertainties. Finally, this thesis has taken a frequentist approach: 

would a Bayesian approach yield more accurate results? 

7. To get reliable MSA solution uncertainties, the Monte Carlo simulation requires many 

replications. Without prior knowledge on the MSA solution distribution, one will have 

to guess on the minimum number of replications. Richardson extrapolation is a 

method to yield improved estimates from numerical processes of the form ( )Q h , if 

the numerical error can be expressed as a Taylor series in the variable h  with finite 

order, see for instance (Vuik et al. 2016), chapter 3.7. Can Richardson extrapolation 

be used to speed up the Monte Carlo simulation, while maintaining or improving ac-

curacy? And if so, can these results be reliable even when using a low number of rep-

lications? 

8. It is desirable that the overall methodology is fully automatized by computer, without 

the involvement of external operators. Establishing operator-independency of MSA is 

key to improving position determination. For example, in erroneous measurement 

data, one may ask whether manual clean-up is necessary before applying MSA: re-

moving outliers influences the MSA solution uncertainty. Which Survey Stations need 

to be removed to improve the MSA solution (and the drill bit position) and under 

which conditions? 

9. In this thesis, modelled drill bit trajectories and MSA solution were available to deter-

mine the quality of MSA. However, these are not available at hand in practice: in this 

scenario, the corrected measurement data after applying MSA can be validated 

through covariance analysis (Hanak, Wilson, and Gjertsen 2015). Can this technique 

be adapted for the MSA model described in this thesis? 

10. Measurement data can be retrieved from multiple MWD tools. Each set of measure-

ment data retrieved from one MWD tool is called a stand. Multiple MSA solutions are 

found by performing MSA on each stand separately. After correction, what is the over-

all effect on the uncertainty of the final drill bit position in this scenario? 

11. The MSA problem may be approached from different perspectives. In addition to the 

MSA mathematical model described on page 25, other formulations of MSA exist. For 

instance, a linear algebra approach is found in Appendix A and B of (Hanak, Wilson, 

and Gjertsen 2015). Further hypotheses: 
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• Instead of using non-linear regression to find the MSA solution, a generic sto-

chastic optimization method may be used, e.g. simulated annealing. 

• By letting the amount of Stations go to infinity, it might be possible to trans-

form the MSA problem into a stochastic differential equation. 

• A mathematical control system perspective, in which Kalman filters are used 

to proactively reduce the effect of noise and acquire an improved MSA solu-

tion. 

Notes and in-chapter references 

• For the usage of inverse Gaussian distributions, see for instance “Positioning and Po-

sition Error of Petroleum Wells”, Gjerde et. al., 2011. Laplacian distributions were sug-

gested by correspondence with a geomagnetism expert. 

Final remarks 
The author thanks Koen Noy and Kees Vuik for their insight and support throughout this pro-

ject. 
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Chapter 8 Appendix 

Notation 

 Symbol Description 

General   set of natural numbers 

  set of integer numbers 

  set of real numbers 

 
+

 set of positive real numbers including 0 

 :a b=  a  is defined by b  

 a b  a  close to b , with a b  

 a b  a  close to b , with a b  

 
1 sin−

 arcsine, inverse of sine function. 
Similar notation holds for arccosine and arctangent 

Linear algebra  v  column vector 

 Tv  row vector 

 v  Euclidean norm of vector 

 A  subordinate norm of matrix 

Probability  SI  indicator function on set S  

 X   X  having the probability distribution of  
 ( )E X  expectation of X  

 ( )P X a  probability of event X  being smaller than a 

 ( )V X  variance of X  

Background information 
This thesis requires knowledge of linear algebra, numerical analysis, probability and statistics 

at undergraduate level. Only relevant results used in this thesis are explained. 

Numerical analysis: The Newton-Raphson algorithm, systems of linear equations 

A system of n  non-linear equations in n  variables can be written in the form 

 ( ) ( ) ( )
T

1 2 1 20, , , , ,n i i nf x f f f f f f x x x= = =   

Its solutions are roots of the system. Assume a root p  exists, which needs to be found 

through Newton-Raphson. If f  is continuous and ( )’ 0f p  , then there exists 
nI   con-

taining p  such that the following algorithm finds the root: 

Input:  

• 0 +  tolerance error 

• Above system of equations 

• 
0v  A start approximation of root 

Algorithm: In each iteration i : 
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1. Calculate Jacobian 1iJ −  of f  evaluated in 
1iv −

. If this is done numerically, then the 

method is called Quasi-Newton. 

2. Solve ( )1 1i iJ e f v− −= − .  

3. Calculate new approximation 
1i iv v e−= +  

4. If e  , then halt, otherwise next iteration 1i + . 

Output: if the algorithm does not halt, then the start approximation has not been chosen 

well. Otherwise, a finite amount k  of iterations has run, 
kv  is output, and the conver-

gence of the sequence of approximations 
iv  is quadratic. 

In general, solutions for systems of (non-)linear equations are solved with methods like New-

ton-Raphson and Picard iteration. These involve a construction of a sequence of approxima-

tions that, given a suitable start approximation, will converge to the exact solution. Thus, one 

may pick any approximation within suitable tolerance compared to the exact solution. 

However, there is a trade-off: if the tolerance decreases, that is, if higher precision is required, 

then in the worst-case scenario, the algorithm that is being used requires more iterations. 

Therefore, it may not always be possible to set the tolerance to zero: an output approximation 

may thus contain an iteration error with respect to the exact solution. 

These algorithms are implemented in many mathematical software packages (as solver func-

tions). However, as of Excel 2016, it does not contain Newton-Raphson by default: General-

ized Reduced Gradient (GRG) Nonlinear solver is used instead. There are two differences in 

using GRG over Newton-Raphson within Excel: computation speed and relative stopping con-

dition. 

Numerical analysis: sensitivity analysis of linear systems, condition number 

Let Ax b=  be a system of linear equations, with invertible A  and unknown solution x . An 

error in the right-hand side results in a perturbation in x . From linearity, it follows: 

 A x b =   

Simple analysis using norm inequalities provides an upper bound for the relative error of x : 

 1
x b

A A
x b

−
 

   

Define ( ) 1A : A A −=   as the condition number of the matrix A . Then for small b , the 

following interpretations hold: 

• A small condition number implies potentially but not necessarily small relative error 

of the solution; thus, the system of equations is said to be ill-conditioned. 

• A small condition number implies small relative error of the solution; the system of 

equations is said to be well-conditioned. 
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A linear algebra theorem states that real symmetric matrices are orthogonally diagonalizable 

(Sadun 2001), theorem 7.8. Thus, if A  is symmetric, it is orthogonally diagonalizable, and it 

has a largest eigenvalue maxλ  of which its absolute value is equal to A  as well as a smallest 

eigenvalue minλ , of which the absolute value of its multiplicative inverse is equal to 1A− .  

Therefore, the condition number is easy to calculate: ( ) max

min

|

|

|λ
A

|λ
 = . This thesis computes the 

eigenvalues numerically using the QR algorithm, which is numerically stable. Its implementa-

tion is provided by “matrix.xla” Excel add-in. 

Probability and statistics 

Two standard probability distributions for a continuous random variable are: 

1. Uniform distribution ( ),U a b :  , ,a b a b  : 

 ( )  ,

1
x

a b
P U x I dx

b a
−

 =
−  

2. Normal distribution ( ),N   :  

 ( )

2
1

21

2

xa

P N a e dx





 

− 
−  

 

−

 =   

Standard normal distribution is ( )0,1N . 

In simulation, the following is needed: to generate numbers from a random variable X  from 

some uniform random variable from 0 to 1, it only needs to be transformed by applying the 

inverse cumulative distribution function of X . See (Rice 2007), Proposition D, page 63. 

Notes and in-chapter references 

• Linear algebra: (Sadun 2001) 

• Numerical analysis: (Vuik et al. 2016). Newton-Raphson is found in chapter 4. Condi-

tion numbers of linear systems are found in chapter 7, paragraph 3. 

o Bounds for the eigenvalues are provided by Gershgorin’s theorem. 

o A description of Excel GRG solver settings are found at 

https://www.solver.com/excel-solver-change-options-grg-nonlinear-solving-

method, and information about relative stopping condition at 

https://www.solver.com/excel-solver-grg-nonlinear-solving-method-stop-

ping-conditions. 

• Probability and statistics: (Rice 2007) 

  

https://www.solver.com/excel-solver-change-options-grg-nonlinear-solving-method
https://www.solver.com/excel-solver-change-options-grg-nonlinear-solving-method
https://www.solver.com/excel-solver-grg-nonlinear-solving-method-stopping-conditions
https://www.solver.com/excel-solver-grg-nonlinear-solving-method-stopping-conditions
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Data 
Survey 1

Along Hole Depth Toolface Inclination Azimuth

0.00 25.00 0.00 85.00

1000.00 115.00 0.00 85.00

1100.00 205.00 3.00 85.00

1200.00 295.00 6.00 85.00

1300.00 25.00 9.00 85.00

1400.00 115.00 12.00 85.00

1500.00 205.00 15.00 85.00

1600.00 295.00 18.00 85.00

1700.00 25.00 21.00 85.00

1800.00 115.00 24.00 85.00

1900.00 205.00 27.00 85.00

2000.00 295.00 30.00 85.00

2100.00 25.00 33.00 85.00

2200.00 115.00 36.00 85.00

2300.00 205.00 39.00 85.00

2400.00 295.00 42.00 85.00

2500.00 25.00 45.00 85.00

2600.00 115.00 48.00 85.00

2700.00 205.00 51.00 85.00

2800.00 295.00 54.00 85.00

2900.00 25.00 57.00 85.00

3000.00 115.00 60.00 85.00

Survey 2

Along Hole Depth Toolface Inclination Azimuth

0.00 25.00 0.00 5.00

1000.00 115.00 0.00 5.00

1100.00 205.00 3.00 5.00

1200.00 295.00 6.00 5.00

1300.00 25.00 9.00 5.00

1400.00 115.00 12.00 5.00

1500.00 205.00 15.00 5.00

1600.00 295.00 18.00 5.00

1700.00 25.00 21.00 5.00

1800.00 115.00 24.00 5.00

1900.00 205.00 27.00 5.00

2000.00 295.00 30.00 5.00

2100.00 25.00 33.00 5.00

2200.00 115.00 36.00 5.00

2300.00 205.00 39.00 5.00

2400.00 295.00 42.00 5.00

2500.00 25.00 45.00 5.00

2600.00 115.00 48.00 5.00

2700.00 205.00 51.00 5.00

2800.00 295.00 54.00 5.00

2900.00 25.00 57.00 5.00

3000.00 115.00 60.00 5.00  

Survey 3

Along Hole Depth Toolface Inclination Azimuth

900.00 25.00 77.50 85.00

1000.00 115.00 78.00 85.00

1100.00 205.00 78.50 85.00

1200.00 295.00 79.00 85.00

1300.00 25.00 79.50 85.00

1400.00 115.00 80.00 85.00

1500.00 205.00 80.50 85.00

1600.00 295.00 81.00 85.00

1700.00 25.00 81.50 85.00

1800.00 115.00 82.00 85.00

1900.00 205.00 82.50 85.00

2000.00 295.00 83.00 85.00

2100.00 25.00 83.50 85.00

2200.00 115.00 84.00 85.00

2300.00 205.00 84.50 85.00

2400.00 295.00 85.00 85.00

2500.00 25.00 85.50 85.00

2600.00 115.00 86.00 85.00

2700.00 205.00 86.50 85.00

2800.00 295.00 87.00 85.00

2900.00 25.00 87.50 85.00

3000.00 115.00 88.00 85.00

Survey 4

Along Hole Depth Toolface Inclination Azimuth

0.00 25.00 0.00 0.00

100.00 115.00 0.00 0.00

200.00 205.00 0.00 0.00

300.00 295.00 0.00 0.00

400.00 25.00 0.00 0.00

500.00 115.00 0.00 0.00

600.00 205.00 0.00 0.00

700.00 295.00 0.00 0.00

800.00 25.00 0.00 0.00

900.00 115.00 0.00 0.00

1000.00 205.00 0.00 0.00

1100.00 295.00 0.00 0.00

1200.00 25.00 0.00 75.00

1300.00 115.00 6.67 75.00

1400.00 205.00 13.33 75.00

1500.00 295.00 20.00 75.00

1600.00 25.00 26.67 75.00

1700.00 115.00 33.33 75.00

1800.00 205.00 40.00 75.00

1900.00 295.00 46.67 75.00

2000.00 25.00 53.33 75.00

2100.00 115.00 60.00 75.00  
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Survey 4

Along Hole Depth Toolface Inclination Azimuth

2200.00 205.00 60.00 75.00

2300.00 295.00 60.00 75.00

2400.00 25.00 60.00 75.00

2500.00 115.00 60.00 75.00

2600.00 205.00 60.00 75.00

2700.00 295.00 60.00 75.00

2800.00 25.00 60.00 75.00

2900.00 115.00 60.00 75.00

3000.00 205.00 60.00 75.00

3100.00 295.00 60.00 75.00

3200.00 25.00 60.00 75.00

3300.00 115.00 60.00 75.00

3400.00 205.00 60.00 75.00

3500.00 295.00 60.00 75.00

3600.00 25.00 60.00 75.00

3700.00 115.00 60.00 75.00

3800.00 205.00 60.00 75.00

3900.00 295.00 60.00 75.00

4000.00 25.00 60.00 75.00

4100.00 115.00 60.00 75.00

4200.00 205.00 60.00 75.00

4300.00 295.00 60.00 75.00

Survey 4

Along Hole Depth Toolface Inclination Azimuth

4400.00 25.00 60.00 75.00

4500.00 115.00 60.00 75.00

4600.00 205.00 60.00 75.00

4700.00 295.00 60.00 75.00

4800.00 25.00 60.00 75.00

4900.00 115.00 60.00 75.00

5000.00 205.00 60.00 75.00

5100.00 295.00 60.00 75.00

5200.00 25.00 70.00 75.00

5300.00 115.00 80.00 75.00

5400.00 205.00 90.00 75.00

5500.00 295.00 90.00 75.00

5600.00 25.00 90.00 75.00

5700.00 115.00 90.00 75.00

5800.00 205.00 90.00 75.00

5900.00 295.00 90.00 75.00

6000.00 25.00 90.00 75.00

6100.00 115.00 90.00 75.00

6200.00 205.00 90.00 75.00

6300.00 295.00 90.00 75.00

6400.00 25.00 90.00 75.00

6500.00 115.00 90.00 75.00  

Survey 4

Along Hole Depth Toolface Inclination Azimuth

6600.00 205.00 90.00 75.00

6700.00 295.00 90.00 75.00

6800.00 25.00 90.00 75.00

6900.00 115.00 90.00 75.00

7000.00 205.00 90.00 75.00

7100.00 295.00 90.00 75.00

7200.00 25.00 90.00 75.00

7300.00 115.00 90.00 75.00

7400.00 205.00 90.00 75.00

7500.00 295.00 90.00 75.00

7600.00 25.00 90.00 75.00

7700.00 115.00 90.00 75.00

7800.00 205.00 90.00 75.00

7900.00 295.00 90.00 75.00

8000.00 25.00 90.00 75.00

Survey 5

Along Hole Depth Toolface Inclination Azimuth

0.00 25.00 0.00 0.00

100.00 115.00 0.00 0.00

200.00 205.00 0.00 0.00

300.00 295.00 0.00 0.00

400.00 25.00 0.00 0.00

500.00 115.00 0.00 0.00

600.00 205.00 0.00 0.00

609.60 295.00 0.00 0.00

700.00 25.00 5.93 2.00

800.00 115.00 12.49 2.00

900.00 205.00 19.06 2.00

1000.00 295.00 25.62 2.00

1097.28 25.00 32.00 2.00

1100.00 115.00 32.00 2.00

1200.00 205.00 32.00 2.00

1300.00 295.00 32.00 2.00

1400.00 25.00 32.00 2.00

1500.00 115.00 32.00 2.00

1524.00 205.00 32.00 2.00

1600.00 295.00 31.12 16.22

1684.18 25.00 32.00 32.00

1700.00 115.00 31.69 34.89

1800.00 205.00 31.29 53.78

1844.37 295.00 32.00 62.00

1900.00 25.00 31.20 72.35  
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Survey 5

Along Hole Depth Toolface Inclination Azimuth

2000.00 115.00 31.90 91.17

2004.55 205.00 32.00 92.00

2100.00 295.00 31.15 109.92

2164.74 25.00 32.00 122.00

2200.00 115.00 30.78 128.24

2300.00 205.00 29.16 147.75

2400.00 295.00 30.49 167.44

2500.00 25.00 34.43 184.32

2600.00 115.00 40.21 197.50

2700.00 205.00 47.16 207.64

2800.00 295.00 54.81 215.62

2864.66 25.00 60.00 220.00

2900.00 115.00 60.00 220.00

3000.00 205.00 60.00 220.00

3100.00 295.00 60.00 220.00

3200.00 25.00 60.00 220.00

3300.00 115.00 60.00 220.00

3400.00 205.00 60.00 220.00

3500.00 295.00 60.00 220.00

3600.00 25.00 60.00 220.00

3700.00 115.00 60.00 220.00

3800.00 205.00 60.00 220.00

3810.00 295.00 60.00 220.00

Survey 6

Along Hole Depth Toolface Inclination Azimuth

0.00 25.00 0.00 0.00

100.00 115.00 0.00 0.00

200.00 205.00 0.00 0.00

300.00 295.00 0.00 0.00

400.00 25.00 0.00 0.00

500.00 115.00 0.00 0.00

600.00 205.00 8.33 0.00

700.00 295.00 16.67 0.00

800.00 25.00 25.00 0.00

900.00 115.00 33.33 0.00

1000.00 205.00 41.67 0.00

1100.00 295.00 50.00 0.00

1200.00 25.00 50.00 0.00

1300.00 115.00 50.00 0.00

1400.00 205.00 50.00 0.00

1500.00 295.00 50.00 0.00

1600.00 25.00 50.00 0.00

1700.00 115.00 50.00 0.00

1800.00 205.00 43.33 0.00

1900.00 295.00 36.67 0.00

2000.00 25.00 30.00 0.00

2100.00 115.00 23.33 0.00

2200.00 205.00 16.67 0.00

2300.00 295.00 10.00 0.00  

Survey 6

Along Hole Depth Toolface Inclination Azimuth

2400.00 25.00 3.33 0.00

2450.00 115.00 0.00 0.00

2500.00 205.00 0.00 0.00

2600.00 295.00 0.00 0.00

2700.00 25.00 0.00 0.00

2800.00 115.00 0.00 0.00

2850.00 205.00 0.00 0.00

2900.00 295.00 25.00 283.00

3000.00 25.00 75.00 283.00

3030.00 115.00 90.00 283.00

3100.00 205.00 90.00 283.00

3200.00 295.00 90.00 283.00

3300.00 25.00 90.00 283.00

3400.00 115.00 90.00 283.00

3430.00 205.00 90.00 283.00

3500.00 295.00 97.04 263.16

3600.00 25.00 105.41 233.75

3700.00 115.00 109.74 202.57

3730.00 205.00 110.00 193.00

3800.00 295.00 110.00 193.00

3900.00 25.00 110.00 193.00

4000.00 115.00 110.00 193.00

4030.00 205.00 110.00 193.00

Survey 7

Along Hole Depth Toolface Inclination Azimuth

0.00 25.00 25.00 45.00

100.00 26.00 26.00 45.00

200.00 27.00 27.00 45.00

300.00 28.00 28.00 45.00

400.00 29.00 29.00 45.00

500.00 30.00 30.00 45.00

600.00 31.00 31.00 45.00

700.00 32.00 32.00 45.00

800.00 33.00 33.00 45.00

900.00 34.00 34.00 45.00

1000.00 35.00 35.00 45.00

1100.00 36.00 36.00 45.00

1200.00 37.00 37.00 45.00

1300.00 38.00 38.00 45.00

1400.00 39.00 39.00 45.00

1500.00 40.00 40.00 45.00

1600.00 41.00 41.00 45.00

1700.00 42.00 42.00 45.00

1800.00 43.00 43.00 45.00

1900.00 44.00 44.00 45.00

2000.00 45.00 45.00 45.00

2100.00 46.00 46.00 45.00

2200.00 47.00 47.00 45.00

2300.00 48.00 48.00 45.00

2400.00 49.00 49.00 45.00

2450.00 50.00 50.00 45.00

2500.00 51.00 51.00 45.00

2600.00 52.00 52.00 45.00

2700.00 53.00 53.00 45.00

2800.00 50.00 54.00 45.00

2850.00 51.00 55.00 45.00

2900.00 52.00 56.00 45.00

3000.00 53.00 57.00 45.00  
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Figures 

Spreadsheets 

 

Figure 8-1: Spreadsheet 2, MSA 

 

Figure 8-2: Spreadsheet 2, MSA 
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Figure 8-3: Spreadsheet 2, Minimum Curvature Method 

 

Figure 8-4: UI of modified Spreadsheet 

 

Figure 8-5: Modelling settings of modified Spreadsheet. 

 

Figure 8-6: Additional configuration settings of modified Spreadsheet. 
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MSA Monte Carlo simulation plots 

The figures below are generated by the modified Excel spreadsheet using the “Plot full distri-

butions” function. Each figure represents a Survey, given in increasing order - Survey 1 to 7. 

Scenario 1 
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Scenario 2 
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Scenario 3 
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Scenario 4 
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MSA condition number plots (scenario 4) 
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Project log 

• 27-2-2018:    initial project assignment 

• 15-3-2018:    official start of project 

• 15-3-2018 to 15-4-2018:  literature study, initial drafts of report 

• 15-4-2018 to 15-5-2018:  assembly and implementation of Excel simulation 

• 15-5-2018 to 12-6-2018:  refinement of simulation 

• 12-6-2018 to 15-7-2018:  writing report, researching further exploration topics, 

near-final changes 

• 15-7-2018:    end of research 

• 14-8-2018:    hardcopy report prior to presentation 

• 27-8-2018:    presentation 

• 28-8-2018 to 31-8-2018:  final changes to report 

In addition to e-mail, communication between author and project mentors was mostly done 

in physical presence approximately every 1 to 2 weeks after start of project, up to 10-7-2018. 
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