GOOPERATIVE TRANSFORMATION FOR SUSTAINABLE DENSIFICATION

creating a catalyst for a circular ecology in the postwar neighborhood.

MARTIN DE BEUN

6 / 7 / 2023

Structure

Part	ı	A Circular Ecology	Context, research, history & theory
Part	II	The 2000-Watt Approach	Designing with cooperative rules
Part	Ш	The Neighborhood of the Future	Generic value and the bigger picture

PART I: A CIRCULAR ECOLOGY

Context, research, history & theory

The built environment is facing big simultaneous challenges

- Shortage of housing
- Materials becoming scarcer
- Climate change
- Decreasing biodiversity

What to do about it?

- 1 million homes by 2030
- 1,5 degrees
- 50% less emissions

The built environment is facing big simultaneous challenges

- Shortage of housing
- Materials becoming scarcer
- Climate change
- Decreasing biodiversity

What to do about it?

- 1 million homes by 2030
- 1,5 degrees
- 50% less emissions

... But we're probably not going to realise those

'Helft van alle woningbouwplannen is onzeker'

18 november 2022, 10:08

NOS Nieuws • Maandag 22 mei, 12:47

Minister De Jonge waarschuwt voor 'forse dip' in woningbouw

De Jonge: woningbouw kan stagneren door onzekerheid op markt

30 september 2022, 9:41

NOS Nieuws • Vrijdag 2 december 2022, 19:18

Ombudsman: verduurzaming van huis voor lage inkomens vaak niet haalbaar

Corporaties: nieuwbouw in gevaar door te weinig betaalbare grond

14 september 2022, 11:09

NOS Nieuws • Woensdag 2 november 2022, 10:21 • Aangepast woensdag 2 november 2022, 10:56

Rechter haalt streep door bouwvrijstelling, grote gevolgen voor projecten

NOS Nieuws • Vrijdag 16 juni, 15:29 • Aangepast vrijdag 16 juni, 15:32

'Bouw van nieuwe woningen loopt nog sneller terug dan verwacht'

NOS Nieuws • Woensdag 23 maart 2022, 17:31

Rapport: ronduit slecht gesteld met natuur, Nederlands beleid schiet tekort

Maandag 27 juni 2022, 17:16

Het is nu zeker: onze zeespiegel stijgt steeds sneller

NOS Nieuws • Woensdag 17 mei, 20:37 • Aangepast vrijdag 19 mei, 15:27

Kans steeds groter dat grens van 1,5 graad opwarming overschreden wordt

NOS Nieuws • Dinsdag 13 september 2022, 18:14

Planbureau: klimaatdoelen 2030 nog ver weg

Woningbouwers: kabinetsdoelen nieuwe woningvoorraad niet haalbaar

19 september 2022, 9:18

NOS Nieuws • Maandag 25 oktober 2021, 12:03 • Aangepast maandag 25 oktober 2021, 12:50

1,2 of zelfs 2 meter: KNMI stelt verwachte zeespiegelstijging naar boven bij

TNO: verduurzamen van woningen moet veel sneller

21 oktober 2022, 9:59

PBL: Aanpak leefomgeving niet goed en samenhangend genoeg

9 september 2022, 9:24

ABN AMRO: bouw krijgt het zwaar door personeelsgebrek

12 juli 2022, 10:36

NOS Nieuws • Dinsdag 4 april, 12:23 • Aangepast dinsdag 4 april, 13:27

Van der Wal noemt 2030 minder relevant: het gaat om de meetmomenten

Alle bouwdata voorspellen: nieuwbouw valt terug naar 45.000 woningen An increasing imperative for a fundamentally different approach

To realise a circular economy by 2050

A linear economy

Take Make Waste

A circular economy:

Eliminate waste and pollution

Circulate products and materials at their highest value

Regenerate nature

Circulate products and materials at their highest value:

The Zero Waste Hierarchy

Aim to always be as high on the ladder as possible

It's not just about recycling

Circularity relates to lifestyle, and therefore to how we design our built environment

Zero Waste Hierarchy

Refuse/Retink/Redesign

Refuse what we don't need and change the way we produce and consume by redesigning business models, goods, and packaging in order to reduce resource use and waste.

Reduce and Reuse

Minimise the quantity, toxicity, and ecological footprint and any operation by which products or components that are not waste are used again for the same purpose for which they were conceived.

Prepare for reuse

Checking, cleaning, or repairing operations, by which products or components of products that have become waste are prepared so that they can be reused without any other pre-processing.

Recycling/Composting/ Anaerobic digestion

High quality material recovery from separately collected waste streams.

Material and chemical recovery

Technologies to recover materials from mixed waste into new valuable materials in an environmentally-sound way.

Residuals management

What cannot be recovered from mixed waste is biologically stabilised prior to landfilling.

Unacceptable

Options that don't allow for material recovery, have a high environmental impact and create lock-in effects that threaten the transition to zero waste: waste to energy incineration, coincineration, plastics-to-fuel, landfilling of non-stabilised waste, gasification, pyrolysis, illegal dumping, open burning, and littering.

A Circular Economy

A Circular Ecology

80% of our built environment in 2050 has already been built

How to ensure those buildings are also part of that circular future?

Specifically:

How to make the postwar neighborhood fit for a circular future?

In a circular ecology, what should a circular lifestyle be like?

2: A 2000-Watt-society

A sustainable and equitable daily usage goal

Includes 'gray' energy; production, transport, storage, etc

A continuous stream of 2000 watts

48 kWh per day

17.500 kWh per year

per person

Generated with <1.000 kg CO₂ per year

Activity	Current daily energy requirement (Watt)	Envisioned daily requirement in a 2000-watt society (Watt)	Difference
Living and working environment	1500	450	-1050
Consumer goods and foodstuffs	1140	500	-640
Infrastructure	900	340	-560
Electricity consumption	570	210	-360
Mobility (automobile)	480	140	-340
Mobility (aircraft)	230	180	-50
Mobility (public transport)	140	100	-40
Total	4960	1920	-3040

Daily average total energy usage per capita for a Swiss person in 2008 (Novalantis, 2008)

2: A 2000-Watt-society

A sustainable and equitable daily usage goal

Includes 'gray' energy; production, transport, storage, etc

A continuous stream of 2000 watts

48 kWh per day

17.500 kWh per year

per person

Generated with <1.000 kg CO₂ per year

2: A 2000-Watt-society

Efficiency:
use less energy for the same
purpose

Consistency:
use renewable resources and
technologies; reuse and recycle

Sufficiency: use less, for a better quality of life

How can the built environment, from city to household, contribute to reducing energy usage to become to a 2000-watt society?

Creating the right conditions starts with density

Mixed use-cities

Less reliance on cars, more human scale

Ideal density: up to 15.000 people per km²

Creating the right conditions starts with density

Mixed use-cities

Less reliance on cars, more human scale

Ideal density: up to 15.000 people per km²

Despite more people living in cities, density is decreasing

Less people living per household

More square metres per house

More people living alone

Despite more people living in cities, density is decreasing

Less people living per household

More square metres per house

More people living alone

Despite more people living in cities, density is decreasing

Less people living per household

More square metres per house

More people living alone

Especially the postwar neighborhood suffers from this change

Almost half of households are a single person

Built 1945 - 1975: more than a million homes

A departure from the past:

Low density, open spaces, ample green

Large apartments for families

Seperated by function

Newly built houses per year, 1965-1975

Built 1945 - 1975: more than a million homes

A departure from the past:

Low density, open spaces, ample green

Large apartments for families

Seperated by function

Failed idealism

Families moving out in the 80's

Decreasing density, decreasing amenities, decreasing vitality

Leaving behind the vulnerable

Our current-day image: old and ugly

Sparse, seperated, monotypical

A fundamental mismatch?

Demolition is not an option:

Thinking from circularity

Improving the postwar neighborhood through densification

Large gains can be found in the household

Not just in active energy use, just as much lies in embodied energy

Up to 50% of lifetime energy cost is embodied energy

How can you refuse / rethink / redesign the household?

Activity	Current daily energy requirement (Watt)	Envisioned daily requirement in a 2000-watt society (Watt)	Difference
Living and working environment	1500	450	-1050
Consumer goods and foodstuffs	1140	500	-640
Infrastructure	900	340	-560
Electricity consumption	570	210	-360
Mobility (automobile)	480	140	-340
Mobility (aircraft)	230	180	-50
Mobility (public transport)	140	100	-40
Total	4960	1920	-3040

Daily average total energy usage per capita for a Swiss person in 2008 (Novalantis, 2008)

Large gains can be found in the household

Not just in active energy use, just as much lies in embodied energy

Up to 50% of lifetime energy cost is embodied energy

How can you refuse / rethink / redesign the household?

Zero Waste Hierarchy

Refuse/Retink/Redesign

Refuse what we don't need and change the way we produce and consume by redesigning business models, goods, and packaging in order to reduce resource use and waste.

Reduce and Reuse

Minimise the quantity, toxicity, and ecological footprint and any operation by which products or components that are not waste are used again for the same purpose for which they were conceived.

Prepare for reuse

Checking, cleaning, or repairing operations, by which products or components of products that have become waste are prepared so that they can be reused without any other pre-processing.

Recycling/Composting/
Anaerobic digestion

High quality material recovery from separately collected waste streams.

Material and chemical recovery

Technologies to recover materials from mixed waste into new valuable materials in an environmentally-sound way.

Residuals management

What cannot be recovered from mixed waste is biologically stabilised prior to landfilling.

Unacceptable

Options that don't allow for material recovery, have a high environmental impact and create lock-in effects that threaten the transition to zero waste: waste to energy incineration, coincineration, plastics-to-fuel, landfilling of non-stabilised waste, gasification, pyrolysis, illegal dumping, open burning, and littering.

WHEN IS A HOUSE ENOUGH?

Reversing the trend of increasing home sizes

Tiny houses? Micro apartments?

The **cooperation** model: an autonomous organisation of people:

that voluntarily unites to achieve their common (housing) goals and ambitions

in the form of a non-profit organisation

of which they together are equal owners and decisionmakers

which means that:

value is prioritised over profit

the collective is prioritized over the consumer

A different set of rules

A different form of ownership: The housing cooperative

Reducing spatial needs through sufficiency and optimisation, without sacrificing quality of life

In practice: sharing spaces that you don't need are organised collectively

Need to use is prioritised over need to have

Impossible in traditional market-driven housing

Cooperative housing. LRTB: Gleis 21, Zollhaus, San Riemo and Zwicky Süd

A different form of ownership: The housing cooperative

Reducing spatial needs through sufficiency and optimisation, without sacrificing quality of life

In practice: sharing spaces that you don't need are organised collectively

Need to use is prioritised over need to have

Impossible in traditional market-driven housing

A different form of ownership: The housing cooperative

Reducing spatial needs through sufficiency and optimisation, without sacrificing quality of life

In practice: sharing spaces that you don't need are organised collectively

Need to use is prioritised over need to have

Impossible in traditional market-driven housing

Relation between floor space usage per capita and percentage of shared space in cooperative housing projects (own work)

PART II: THE 2000-WATT APPROACH

Designing with cooperative rules

Haarlem, Schalkwijk, Boerhaavewijk

A typical 1960's postwar neighborhood

Built for 40.000 people, now houses 32.000

Haarlem, Schalkwijk, Boerhaavewijk

A typical 1960's postwar neighborhood

Built for 40.000 people, now houses 32.000

Haarlem, Schalkwijk, Boerhaavewijk

A typical 1960's postwar neighborhood

Two residential zones divided by a strip of schools

Currently has 6470 residents in 2735 households

9000 people / km²

Many neighborhood initiatives and motivated people

Urban study: densifying
Boerhaavewijk as a
precondition for a circular
neighborhood

Top-ups: integral renovation of existing blocks

Urban study: densifying
Boerhaavewijk as a
precondition for a circular
neighborhood

Top-ups: integral renovation of existing blocks

Leftover spaces: blind facades and garage boxes

Urban study: densifying
Boerhaavewijk as a
precondition for a circular
neighborhood

Top-ups: integral renovation of existing blocks

Leftover spaces: blind facades and garage boxes

Internal modification, splitting of existing homes

Buurt	Inhabitants	Area	Households	Density	
		km²		ppl/km²	
Geleerdenbuurt	2455	0,25	990	9820	
Professorenbuurt	1315	0,13	550	10115	
Geneesherenbuurt	1700	0,32	1195	8437	
Current total	6470	0,70	2735	9242	
Phase 1 additions	+ 820	_	+ 372	-	Planned new construction
Phase 2 additions	+ 1500	-	+ 670	-	Top-ups, garage boxes, leftover spaces
Phase 3 additions	+ 660	_	+ 300	-	Internal modification, splitting
New total	9450	-	4077	13.500	
Remaining to reach sustainable target	+ 1050		+ 480	-	To be realised in new construction, etc.
Total ideal target	10500	0,70	4500	15.000	

90% of the required densification can come from te existing

Final bit in new construction, mixed-use development

Result: neighborhood with more incentive for stores, workspaces, less travel distance

First step towards a 2000-watt society

DESIGN OBJECTIVE:

To design a cooperative housing in Boerhaavewijk

using the principles of a 2000-watt community

to demonstrate what a circular lifestyle looks like

and can be the catalyst in creatomg a circular ecology in the postwar neighborhood

Transforming an old building into cooperative housing

Hof van Jacob: elderly people's home

Built in the 1960's

Will be vacant in 2027, with no future plans

Transforming an old building into cooperative housing

Hof van Jacob: elderly people's home

Built in the 1960's

Will be vacant in 2027, with no future plans

For whom?

Target group as diverse as possible

Decoupling sustainability from identity

How to realise that community, while staying as close as possible to the top of the hierarchy?

Zero Waste Hierarchy

Unacceptable

Options that don't allow for material recovery, have a high

environmental impact and create lock-in effects that threaten the transition to zero waste: waste to energy incineration, co-incineration, plastics-to-fuel, landfilling of non-stabilised waste, gasification, pyrolysis, illegal dumping, open burning, and littering.

How to realise that community, while staying as close as possible to the top of the	RE-THINK	Refuse Reduce	 designing for a 2000-watt lifestyle 	
hierarchy?	USE	Reuse Repair Refurbish	2. retaining as much of the existing as possible	
		Remanufacture	3. gathering and reusing existing local building elements	
	END-OF-LIFE	Repurpose Recycle		
			4. growing and	
	UNSUSTAINABLE	Recover	harvesting new building elements	
			5. importing new materials	

Two parts: low-rise and high-rise

Focus for the housing cooperative on the high-rise

53/119

Rational and repetitive

east

west

Independant 2 room flat

Dependant 1 room flat

Dependant 2 room flat

12 stories

Typical floor plan

Prefab balconies concrete x144 (type A) 0,75 m³ concrete each = 25 tons of CO₂ equivalent

x144 (type B) 0,50 m³ = 16,5 tons of CO₂ equivalent

Facade elements glass, timber, solar shading x288

Aluminum guardrails x144 (type A) x144 (type B) 200+ MJ embodied energy per kg

18 cm
reinforced
concrete
structural walls

Vertical
ductwork
already present

Small differences in wall openings

First principle: facade extension

More spatial flexibility

More usable space

Better thermal performance

First principle: facade extension

More spatial flexibility

More usable space

Better thermal performance

First principle: facade extension

More spatial flexibility

More usable space

Better thermal performance

Harvest the old

Harvest the old

Retain the structure

Harvest the old

Retain the structure

Add what is neccesary

Harvest the old

Retain the structure

Add what is neccesary

Re-use what you can

Harvest the old

Retain the structure

Add what is neccesary

Re-use what you can

Ensure the rest is renewable

- Concrete: 230kg CO₂ / m³ equivalent

Reed/Straw insulation:
-128 kg CO₂ / m³ equivalent
Stone wool
70 CO₂ / m³ equivalent

- Re-used from building
- Locally harvested material
- New, renewable material

Harvest the old

Retain the structure

Re-use old elements

Harvest the old

Retain the structure

Re-use old elements

Add only what is neccesary

Harvest the old

Retain the structure

Re-use old elements

Add only what is neccesary

Aluminum: 230 MJ per kg

1:5 eastern facade detail

Re-used from building

New, renewable material

Second principle: new vertical cores

Make more efficient spatial use possible

Two new cores for greater flexibility in plan

More corridor space can be re-used for housing

Better fire-safety

Second principle: new vertical cores

Make more efficient spatial use possible

Two new cores for greater flexibility in plan

More corridor space can be re-used for housing

Better fire-safety

Four main access cores

Main corridor

Kitchens / bathrooms on either side

Adaptable rooms near each middle core

Usable spaces along the facade

... and many more

From the past...

... to the future

Compact, yet qualitative housing for 200 people

Made possible by cooperative ownership

For a 2000-watt way of life

Realised from an old existing structure

Electricity

Minimal 2000W threshold requirement: ca. 35.000 kWh per year Greenhouse roof PVT- yield: ca. 45.000 kWh per year East/west facade possible PV- yield: up to 35.000 kWh per year per facade Southern facade possible PV- yield: up to 60.000 kWh per year Up to 140.000 kWh of solar energy can be supplied to the neighborhood Can be stored in basement batteries East West

Heating / Cooling

Floor heating / cooling heat exchange system Existing garden plot used to dig deep-underground buffer Large surplus and buffer can be used to heat and cool other nearby buildings

Ventilation

Type C (as existing)

All rooms have facade-integrated vents and openable windows

Extraction via existing mechanical systems

Water

Rainfall capture

Rainwater capture via greenhouse roof

Roof buffer used for watering plants

Overflow is filtered for large particles and then subsequently buffered per cluster for use in toilets (non potable)

Gravity feed to large basement buffer, can be pumped back up when reserves are dry

Overflow surplus deposited in sewers

All systems use existing vertical pipe systems: no new channels are neccesary

Potable filtering not worth technological investment

See form whom the cooperative can be

Independent housing unit with integrated studio / work space

Main building access corridor

Independent 2-storey housing with terrace

11: A 2000-watt community

What is it like to live here?

How does the cooperative make the difference?

A 2000-Watt-community

less redundancy less waste less energy

more versatile more adaptable more social

11: A 2000-watt community

On the outside:

Unspectacular, as if had always been part of the neighborhood,

Pragmatic, low tech, built from re-used and locally harvested materials

11: A 2000-watt community

On the inside:

An old structure, with new life

A diverse, inclusive, sustainable and adaptable community

Empowered by cooperative ownership

A symbol and catalyst for the neighborhood

Het gaat om de mensen, niet om de dragers

PART III: THE NEIGHBORHOOD OF THE FUTURE

Generic value and the bigger picture

How does this community help boerhaavewijk forward to circularity?

Cooperatives can be about more than housing

Energy cooperatives

Material collection and re-use

Letting residents have their own stake in the neighborhood

Facilitating the transition

Circular initiatives

Promote mutual trust

Stimulate a local economy

Empower inhabitants

Take the lead in re-thinking

Re-value the postwar neighborhood

Not just energy efficient: happier, healther, more social

Facilitating the transition

Circular initiatives

Promote mutual trust

Stimulate a local economy

Empower inhabitants

Take the lead in re-thinking

Re-value the postwar neighborhood

Not just energy efficient: happier, healther, more social

HOUSING GOOPERATIVE

Sustainable, 2000-watt-community

Model and catalyst for sustainable living in the neighborhood

Affordable, equitable and fair housing

Decoupling sustainable living from level of income, background or education

The only common denominator: whoever lives here wants to show what sustainable living looks like

Commoning

Socializing

Supporting

Educating

Cooperation between Cooperations

Sustainable Development Goals

Equal opportunities

Ownership in sustainable transition

NEIGHBORHOOD GOOPERATIVE

Creating a circular ecology by managing different material/energy flows.

Opportunity of participation by people with distance to labor market, immigrants, vulnurable people, etc.

Provide locally grown food and groceries at-cost

Reuse and refurbishing of used products

What if you do the same for all postwar neighborhoods in the Netherlands?

1.800 neighbourhoods 1.800.000 homes

The same densification strategy can realise up to 700.000 new homes

Geografische ligging van alle buurten in Nederland met minimaal 500 huishoudens en minimaal 50% naoorlogse woningen. Bron: Data van C BS, BAG en WOZ

Cooperative ownership as a way to re-value disregarded post-65 heritage by removing financial incentive

For those a third option, next to buying and renting, which can better match our specific and complex specific housing needs

IN CONCLUSION,

For a sustainable, circular future, we should fundamentally consider how we want to live and therefore build.

The new architect:
someone who takes a broader
approach to value, together with
users

Empowered by the cooperative to take agency and leave no one behind in the transition to a common circular future

END