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a b s t r a c t

Torrefaction is a promising biomass upgrading method, offering advantages in logistics and handling.
Gasification is an attractive thermochemical conversion technology due to its flexibility in the product
gas end-use. The aim of this paper is to investigate the impact of torrefaction on the gasification per-
formance of a softwood (spruce) and a hardwood (ash). Spruce and ash were torrefied at 260 and 280 �C,
and at 250 and 265 �C, respectively, and pelletized. All feedstocks were gasified at 850 �C and atmo-
spheric pressure under oxygen-steam circulating fluidized bed gasification conditions, with magnesite as
bed material and with an equivalence ratio (ER) of 0.3 and a steam-to-biomass mass ratio (SBR) of 1.0.
Only the torrefied feedstocks were gasified varying ER and SBR values. The results show that torrefaction
affected the gasification performance of both feedstocks leading to decreasing the cold gas and carbon
conversion efficiencies. For spruce, torrefaction did not affect the permanent gas composition but led to a
decrease of the total tar content for both spruce 260 and spruce 280. For ash, torrefaction resulted in
decreasing the CH4 volume fraction, and increasing the H2 volume fraction and the total tar content for
both torrefaction temperatures. Varying the ER and SBR affected only the Class 3 tars of ash 250.
Conclusively, torrefaction of spruce and ash did not offer substantial benefits on the gasification per-
formance under the investigated conditions. It is suggested that research of torrefied wood gasification
includes feedstock's chemical analysis and characterization of products obtained under fast devolatili-
zation conditions.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Biomass is envisaged to make a major contribution to the future
energy supply. However, untreated biomass is not ideally suited for
energy conversion applications. This is due to its generally high
moisturemass fraction, which corresponds to a low energy content.
Moreover, its main biochemical and mineral compositions vary
based on the type of biomass, time and location of cultivation. This
makes the conversion of biomass complicated and logistics more
expensive. Therefore, efforts are being made to develop upgrading
s).

r Ltd. This is an open access article
processes which convert biomass into a fuel with superior prop-
erties in terms of logistics and end-use. Among biomass kinds,
wood is considered an attractive option due to the composition of
the contained ash and the fact that it can be the raw material for
second generation biofuel production. Wood may be classified in
two types, softwood and hardwood; hardwood contains more
hemicellulose (the xylan group) and less lignin and cellulose [1],
and the hardwood's lignin is considered more unstable to thermal
treatment due to the higher mass fraction of syringylpropane units
[1,2].

Torrefaction is a thermochemical process, carried out at a rela-
tively low temperature, typically in the range of 230e300 �C, in an
oxygen-deficient atmosphere. At this temperature range hemicel-
lulose is expected to be the most converted polymer, followed by
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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cellulose and lignin. Hemicellulose starts degrading between 200
and 380 C, with xylan being the most thermally unstable contain-
ing monomer at the low temperature side, followed by gluco-
mannan [3]. Thermal degradation of lignin starts approximately at
200 �C but occurs generally at higher temperatures, between 400
and 750 �C [4], and thermal devolatilization of cellulose starts
approximately at 230 and finishes at 400 �C [5]. As a result, the
extent of the effect of torrefaction on the chemical composition
depends on the temperature, the residence time at this tempera-
ture and the type of wood. In addition, torrefaction in combination
with a densification step is a promising technology for upgrading
the biomass into a high quality solid energy carrier. During this
process, biomass becomes more coal alike; it has a higher energy
density, lower O/C and H/C molar ratios, and it becomes more hy-
drophobic, more resistant against biological degradation and more
brittle. Therefore, torrefaction pretreatment leads to benefits in
transportation, handling and storage. Studies have shown that
torrefied biomass is a promising feedstock for (entrained flow)
gasification and co-firing in coal-fired power plants from an effi-
ciency and environmental point of view, e.g. no additional equip-
ment is needed for grinding and torrefaction offers environmental
benefits in terms of climate change impact from a life cycle
perspective [6e9].

Different types of gasification reactors exist, such as fixed bed,
entrained flow, plasma and fluidized bed. Circulating fluidized bed
(CFB) gasification is attractive because the feedstock size is not as
critical, as in fixed bed and entrained flow gasification, and scaling
up is relatively straightforward [10]. Roracher et al. [11] described
that large scale coal and biomass CFB gasification plants exist with
capacities up to 100 MWth output, where the product gas is fired in
lime kilns, dedicated boilers for power generation or combined
heat and power generation. In terms of operational parameters,
experimental studies on CFB gasification of wood [12e15] have
shown that an increase in the bed temperature leads to an increase
in the H2 volume fraction and H2/CO ratio, and a decrease in the tar
content of the product gas. In addition, the introduction of oxygen
and steam [14,15] appears to improve product gas quality with
respect to increasing the H2 volume fraction and decreasing the tar
content. Oxygen offers the heat for endothermic processes due to
oxidation reactions and steam influences the product gas quality
through chemical reactions, such as the water gas shift (WGS), char
gasification and steam reforming. The typical range of the equiva-
lence ratio (ER) in gasification is between 0.2 and 0.4; lower values
result in low carbon conversion efficiency (CCE), whereas, higher
values result in combusting the product gas, thus decreasing its
calorific value due to the combustion of H2, CH4 and CO species.
Generally, a higher ER results in lowering the total tar content of the
Table 1
Overview of bubbling fluidized bed gasification studies with torrefied wood.

Reference Power level
(W)

Gasification agent Temperature
(oC)

Biomass

[18] 20,000 Air 790, 935, 1000 Untreated
Torrefied p

[15] 2,000a Oxygen, steam 900 Untreated
Torrefied s
Untreated
Torrefied w

[20] 200,000 Steam 780 Untreated
Torrefied p
Untreated

[19] 30,000a Air, steam 900 Untreated
Torrefied w

a Capacity was not mentioned, therefore it is calculated based on used feeding rate.
b The particle size concerns the biomass.
product gas and cold gas efficiency (CGE), and increasing the CCE
[16]. In addition, typical steam to biomass mass ratios (SBR) range
between 0.5 and 1.5 and increasing the SBR value results in higher
H2 and CO2 volume fractions and in lower total tar content in the
product gas [10]. Finally, various bed materials can be applied and
magnesite has shown benefits, compared to quartz sand, in terms
of reducing the tar content [17].

So far, only a limited number of studies [15,18e20] have focused
on the effect of torrefaction on the permanent gas composition and
tar content in the product gas during wood gasification; an over-
view is presented in Table 1. In addition, all these studies were
restricted to bubbling fluidized bed gasification and the feedstocks
usedwere torrefied on small scale by the researchers, except for the
study by Kulkarni et al. [18]. These researchers acquired their
feedstock from an American company, i.e. New Biomass Energy,
LLC. In general, these authors concluded that torrefaction did not
result in improving the gasification performance. Even though, the
permanent gas composition remained unaffected and the total tar
content decreased, the carbon CCE and CGE decreased as well.
Berrueco et al. [15] performed lab-scale O2-steam gasification of
Norwegian spruce and forest residues at 850 �C. They presented
that increasing the torrefaction temperature from 225 to 275 �C led
to an increase in the H2 volume fraction by approximately 1.5 wt%,
and a decrease in the total tar content (up to 66 and 85 wt% for
spruce and forest residues, respectively). Moreover, these authors
presented that an increasing torrefaction temperature led to an
increase in char and gas yields, a reduction in the CCE and the CGE
did not show a clear trend. Sweeney [20] performed steam gasifi-
cation at 788 �C, and, although the torrefaction conditions were not
mentioned, he reported the same effects of increasing torrefaction
degree as Berrueco et al. [15] concerning the product gas constit-
uents' composition and CCE. On the other hand, he reported a
decrease in CGE upon torrefaction. Kulkarni et al. [18] performed
air-blown gasification of pinewood at 935 �C. These authors also do
not mention the torrefaction conditions. They reported that torre-
faction led to a decrease in the CGE and no significant changes in
product gas constituents' compositions. Woytiuk et al. [19] per-
formed steam-air gasification at 900 �C of willow and torrefied
willow at four different torrefaction temperatures. These authors
limited their permanent gas results to H2 and CO volume fractions
only and concluded that increasing the torrefaction temperature
increased the H2 volume fraction and decreased the total tar con-
tent up to 47% but only when the torrefaction temperature reached
and exceeded 260 �C. Woytiuk et al. did not explain the reasons for
this behavior but willow is a hardwood, which as mentioned con-
tains more hemicellulose and more reactive lignin at low temper-
ature. So this result can be attributed to the cellulose not reacting at
Particle sizeb

(mm)
Torrefaction temperature
(oC)

Bed material

pine 850 e Sand
ine 850 n.d.
spruce 6000 e Silica sand
pruce 6000 225, 275
wood residues 6000 e

ood residues 6000 225, 275
pine 950 e Sand
ine (brown) 950 n.d.
pine (dark) 950 n.d.
willow n.d. Silica sand
illow n.d. 240, 260, 270, 280



Fig. 1. TU Delft CFB gasifier experimental test rig.
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low torrefaction temperature, thus increasing its content in the
torrefied willow while maintain unstable sugar groups.

As pointed out above, there has been only limited, and in several
Fig. 2. CFB gasifier with the eight thermocouples (T1-T8) and eight differential pressure
meters (symbols 1e10, excluding symbol 7). PR corresponds to a single absolute
manometer and Tin to a thermocouple to measure the inlet temperature of the fluid-
ization medium [14].
aspects contradictory, research on fluidized bed gasification of
torrefied biomass. Furthermore, so far no research has been carried
out regarding the impact of torrefaction on oxygen-steam blown
CFB gasification, presenting in detail the permanent gas composi-
tion of torrefied hardwood gasification or reporting a wide range of
tar species formed. Therefore, the aim of this study is to investigate
the impact of torrefaction on the permanent gas composition, tar
composition, CCE and CGE during atmospheric oxygen-steam CFB
gasification of hardwood and softwood. Since torrefaction shows
advantages in logistics, can its combination with gasification per-
formed under typical operating conditions in industrial relevant
application applications lead to even larger benefits?

2. Materials and methods

2.1. Experimental test rig geometry and functionality

The experimental test rig at TU Delft consisted of a 100 kWth CFB
gasifier followed by a candle filter unit, and equipped with a gas
supply system, a solids supply system and analytical equipment. A
schematic of the experimental rig is presented in Fig. 1.

The riser had a length of approximately 5.5 m and an inner
diameter of 83 mm. The downcomer had an inner diameter of
54 mm. The cyclone had an inner diameter of 102 mm and a total
height (excluding the flanges) of 630 mm. The reactor was made of
stainless-steel AISI310, DIN 1.4845 for the parts exposed to high
temperature and in contact with the reactants and the products.
The other parts were made of stainless-steel AISI316, DIN 1.4404
[17]. The reactor temperature was controlled via monitoring eight
K-type thermocouples. Seven of them were located in the riser,
whereas one was located in the downcomer. Eight differential
pressure meters were installed to measure the pressure drop along
the installation and to check the circulation of the solids. A sche-
matic of the reactor is presented in Fig. 2.

The gas cleaning unit consisted of a high-temperature filter unit
containing four woven ceramic candles (BWF, Germany) operating



Table 2
Torrefaction parameter specifications.

Biomass code Temperature
(oC)

Residence time
(min)

Torrefaction degree
(d.b. wt%)

Ash 250 250 30 8.6
Ash 265 265 30 13.4
Spruce 260 260 30 9.3
Spruce 280 280 30 10.5
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at 450 �C. The product gas was finally flared downstream this unit.
The capacity of the solids feeding system was approximately

100 kW fuel thermal input. This corresponded to approximately
20 kg.h�1 of biomass. Furthermore, two other kinds of solids could
be fed simultaneously, e.g. bed material. Details about the supply
systems of solids and gases can be found elsewhere [14,17].

For the data acquisition, an in-house implemented Supervision,
Control, And Data Acquisition (SCADA) packagewas combined with
a Programmable Logic Controller (PLC, make ABB, type SattCon200)
for test rig control. The test rig was operated with three PCs in the
control room. The process data were logged with a frequency of
0.1 Hz [14,17].

2.2. Analytical techniques

In the current experiments, sampling of the gas, tar and solids
was carried out downstream the gasifier. Solid residue samples
were retrieved from the downcomer after each successful experi-
ment, when the gasifier was cooled down and inertized. The
product gas was sampled in the Gas Analysis position, just down-
stream the riser. The sampled product gas passed through a heated
(at 300 �C) particle filter (glass wool) and via two water- and ice-
cooled condensers to achieve moisture removal. The final traces
of moisture were removed using calcium oxide in the tests 2 and 3,
and sicapent was used in the others. The product gas was analyzed
on-line using a Varian m-GC CP-4900 equipped with two column
modules, that measured continuously the volumetric concentra-
tion of the CO, H2, CH4, CO2 and N2 (1 m COX column) and that of
benzene, toluene and xylenes (BTX) (4 m CP-Sil5 CB column). The
gas composition data from the m-GCwere obtainedwith intervals of
3 min. In addition, an NDIR analyzer (Hartmann & Braun Uras 10P)
monitored the CO2 and the CO and a paramagnetic analyzer
measured the oxygen concentration (Hartmann & Braun Magnos
6G) with a time interval of 2 s. The water volume fraction of the
product gas was determined gravimetrically via sampling a
measured flowrate of the product gas for a determined timeframe.
The sampled gas was cooled down in a condenser immersed in a
mixture of salt, ice and water. The weight of the condenser was
determined before and after this sampling. Tar was sampled in the
Tar Protocol position downstream the BWF filter (Fig. 1). The tar
samples were collected according to the tar standard method [21]
and were analyzed using an HPLC equipped with a UV and fluo-
rescence analyzer (Knauer), and a reverse phase column (Kromasil
Eternity C18 5 mm 150 � 4.6 mm). 20 mL of filtered sample was
injected in the column and a gradient elution with methanol e
water was performed for 50 min. The UV detector was set at
254 nm. The quantification was performed by external calibration
using triplicate data point and standard tar compounds in appro-
priate concentration range. All coefficients of determination (R2)
exceeded 0.990. Only in one test (#8), solid phase adsorption (SPA)
samples were analyzed (in the same HPLC) and used, even though
the trapping efficiency of the SPA method for BTX species is
considered lower than the tar standard [22]. This was decided due
to the fact that the tar standard resulted in unrealistically low tar
values for that test; the tar standard results of the test 8 can be
found in the supplementary information. It must be noted that the
SPA sample was acquired just downstream the riser, as in the Gas
Analysis position. For that test, only the phenol value from the tar
standard measurement was used, while the data for the rest of the
tar species were obtained by SPA sampling.

2.3. Biomass feedstock, bed material and gasification char

2.3.1. Biomass feedstock characterization
Six samples of biomass feedstock were tested; two of them
consisted of untreated pure wood and the rest were their torrefied
products. Softwood (spruce, of the species Picea abies) and hard-
wood (ash, of the species Salix viminalis) were tested. Debarked and
chipped ash and spruce wood were obtained from Van den Broek
B.V. (The Netherlands) and short rotation coppice willow of the
Salix family obtained from SGB (UK). Torrefaction and subsequent
pelleting were conducted by the Energy research Centre of the
Netherlands (ECN) [23]. ECN torrefied the untreated wood feed-
stocks at its pilot plant, in a directly heated moving bed, with a
50 kg.h�1 capacity. The final torrefaction temperature and the
residence time at the torrefaction temperature, along with the
calculated torrefaction degree are presented in Table 2. The un-
treated wood samples were pelletized at a Dutch company, Com-
goed Biomassa. All the feedstocks had an outer diameter of 6 mm
and length of approximately 2 cm, to facilitate feeding in the
gasifier. The elemental composition of the feedstocks was analyzed
at the University of L'Aquila, Italy, with a PerkinElmer Series 2
CHNS/O 2400 analyzer. The proximate analysis was performed via
thermogravimetric analysis at Technical University of Delft. For this
purpose a Thermal Advantage SDT Q600 thermogravimetric
analyzer (TGA), was used; details regarding the TGA instrument
and the procedure have been described elsewhere [24], and the
feedstocks were ground and sieved manually �75 mm particle size
to ensure homogeneity. The feedstocks elemental analysis average
results, proximate analysis average results, with standard deviation
in parenthesis, and lower heating values (LHV) are presented in
Table 3. In addition, the torrefaction degree was calculated, i.e. the
anhydrous weight loss or the reduction of the volatile mass fraction
upon torrefaction divided by the initial volatile mass fraction on an
a dry basis (see Table 2). Based on the elemental analysis data of the
feedstock samples and data for various fuels obtained from the
Phyllis2 online database [25], a Van Krevelen diagram (Fig. 3) has
been drawn to show the changes in the feedstock due to torre-
faction. It is confirmed that torrefaction decreased the O/C and H/C
ratios for both wood types.

2.3.2. Bed material
Calcined magnesite was used as the bed material. It is a mineral

consisting mainly of MgO and smaller fractions of CaO, Fe2O3 and
silica. Magnesite was considered a favorable bed material due to its
low silica mass fraction, acceptable price (same order of magnitude
as sand), and previous experimental results. The use of magnesite
showed a remarkable increase in the H2 volume fraction, a doubled
H2:CO ratio and a decrease in the total tar content, with respect to
the use of silica sand [17]. More information regarding the
magnesite can be found in a previous research paper from our
group [14,17].

2.4. Gasification conditions

The gasification experiments were performed, at approximately
850 �C and atmospheric pressure. The experiments were carried
out varying ER and the SBR as presented in Table 4. It must be noted
that the results of two additional tests are presented in the
supplementary material to explain the reasons for using the SPA



Table 3
Wood and torrefied wood proximate and ultimate analyses with standard deviation values.

Biomass Ultimate analysis, wt% Proximate analysis, wt% LHVc,d

(MJ.kg�1)
Ca Ha Na Sa Oa,b Moisturea Volatile matterd Fixed carbond Ashd

Untreated ash 46.6 ± 3.43 5.9 ± 0.32 0.1 ± 0.06 0.8 ± 0.18 41.5 ± 3.86 4.6 ± 0.02 79.2 ± 0.31 20.2 ± 0.30 0.5 ± 0.19 16.4
Ash 250 50.6 ± 0.28 5.5 ± 0.02 0.1 ± 0.10 0.8 ± 0.05 36.8 ± 0.41 5.7 ± 0.08 72.4 ± 0.68 27.0 ± 0.30 0.5 ± 0.04 16.7
Ash 265 51.8 ± 0.74 5.3 ± 0.13 0.1 ± 0.06 0.7 ± 0.05 35.3 ± 0.62 5.8 ± 0.02 68.6 ± 0.57 30.5 ± 0.47 1.0 ± 0.00 17.2
Untreated spruce 47.1 ± 0.42 5.7 ± 0.16 0.1 ± 0.01 0.8 ± 0.02 40.3 ± 0.25 5.9 ± 0.06 82.1 ± 0.01 17.5 ± 0.01 0.3 ± 0.03 16.2
Spruce 260 51.4 ± 1.48 5.6 ± 0.16 0.1 ± 0.01 0.8 ± 0.01 37.0 ± 1.49 5.4 ± 0.16 74.5 ± 1.76 25.2 ± 1.34 0.3 ± 0.01 17.5
Spruce 280 52.0 ± 1.00 5.5 ± 0.06 0.1 ± 0.07 0.7 ± 0.06 36.0 ± 1.07 4.8 ± 0.11 73.5 ± 0.02 26.1 ± 0.02 0.4 ± 0.04 17.6

a On an a.r. basis.
b O mass fraction is calculated by difference.
c Calculated based on [26].
d On a dry basis.

Fig. 3. Van Krevelen diagram; tested biomass feedstocks compared with lignite and
bio-polymers (source for untested samples is Phyllis2 database [25]).

Table 4
Experimental matrix.

Test Biomass Fuel flow rate
(kg.h�1)

ER
(-)

SBR
(-)

Temperature
(oC)

Pressure
(kPa)

Steady state
(min)

1 Untreated ash 12.0 0.31 1.00 841 108 133
2 Ash 250 12.0 0.30 1.00 849 125 202
3 Ash 250 12.0 0.36 0.85 849 136 116
4 Ash 265 12.0 0.36 0.88 854 131 61
5 Ash 265 13.0 0.31 1.00 848 109 187
6 Ash 265 13.0 0.35 0.85 846 110 190
7 Untreated spruce 12.0 0.30 1.00 839 109 140
8 Spruce 260 12.4 0.31 1.00 848 110 183
9 Spruce 260 12.9 0.36 0.85 842 108 180
10 Spruce 280 12.6 0.36 0.85 845 108 180
11 Spruce 280 12.6 0.31 1.00 843 1.08 181
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results instead of tar standard results for one gasification experi-
ment (test 8). The selection of conditions was based on typical
operating conditions in relevant industrial applications. Torrefied
material needed higher ER that untreated biomass due to its lower
O2 and higher fixed carbon mass fractions. In Table 4, the temper-
ature concerned the average temperature in the reactor measured
from the eight thermocouples (see Fig. 2). Similarly, the pressure
was monitored by an absolute pressure sensor installed in the
bottom part of the riser. Lastly, the two dimensionless ratios have
been determined, the ER was determined based on equation (1), ER
was controlled via gas mass-flow control and maintain a constant
feedstock flow rate. The SBRwas determined based on equation (2).

ER ¼ external O2 fed=fuel fed ðdaf Þ
stoichiometric O2 requirement=unit of fuel input ðdaf Þ

(1)

SBR ¼ steam mass flow=fuel feed flow (2)
All gas volumes concentrations and tar species content reported
in this work concern the steady state operation and are on a dry,
nitrogen-free (dnf) basis. The CO2, H2, CO, CH4, and BTX volume
fractions presented are the average values during the steady state
operation. Moreover, the standard deviations of these gas species
are presented. For water, no standard deviation value is presented
due to the nature of the measurement method used. As described
above, during the steady state only one measurement for the water
quantification was performed. The tar yield (wt%) concerns the
steady state operation as well and it is presented on a dry ash-free
(daf) basis of supplied feedstock. Finally, process key parameters,
such as CCE, CGE, etc. and mass balance calculations are presented
in Table 5. The latter was based on the inflow measurements (O2,
steam and feedstock) and streams (permanent gases, tars and solid
residue) that exit the reactor, thus, a mass balance error is calcu-
lated and presented in Table 5. The equations for determination of
the CGE and CCE can be found in the supplementary material.
3. Results and discussion

3.1. Feedstock characterization

The feedstocks were characterized for their slow devolatiliza-
tion behavior in a N2-atmosphere. The changes in themass loss rate
versus temperature curves, as presented in Figs. 4 and 5, are
generally a result of the changes in the chemical composition upon
torrefaction. Torrefaction resulted in converting part of the hemi-
cellulose for both untreated woods, as the “shoulder” part of the
mass loss rate peak graph disappeared. It has been reported before
that the mass loss of hemicellulose up to 250 �C and 275 �C is
attributed to the cleavage of glycosidic bonds and the decomposi-
tion of side chains, and the fragmentation of monosaccharide units,
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respectively [27]. As a consequence, both feedstocks are expected
to contain higher lignin and cellulose mass fractions than their
parent materials. The 20 and 15 �C increase in torrefaction tem-
perature resulted in minimal changes in the mass loss rate peak of
spruce and ash.

3.2. Permanent gas species and BTX composition

The internal reactor pressure and the differential pressures for
the tests 2e4 resulted in sub-optimal char circulation conditions
due to the excessive presence of carbonaceous solids in the entire
downcomer which prevented proper circulation. Therefore, it is
expected that less char was recirculating in the gasifier, which
resulted in affecting the gas-solid reactions. The permanent gas, the
total tar yield and process key parameters are, therefore, expected
to be affected. The data of internal reactor pressure and differential
pressure can be found in the supplementary material.

Torrefaction has a small impact on the permanent gas compo-
sition during gasification as presented in Figs. 6 and 7. It resulted in
only a marginal increase of the CO2 volume fraction of spruce 280,
decreasing the CH4 volume fraction of ash 265 and increasing the
H2 volume fraction of ash 250 and 265. The other gases remained
unaffected. The H2/CO ratio varied between 2.0 and 2.8, but in most
experiments is approximately 2.4. This increase in the H2 volume
fraction, the decrease in CH4 volume fraction and the slight increase
in the CO2 volume fraction has been reported before [15,18,19].
These changes are attributed to the changes in the chemical
composition upon torrefaction in combination with chemical re-
actions taking place in the gasifier simultaneously. As torrefaction
results in decreasing the contribution of devolatilization on the
formation of the product gas, gasification reactions become more
relevant, especially char gasification reactions as the fixed carbon
mass fraction increases upon torrefaction [28] and steam is
employed in our rig. For torrefied spruce feedstocks, the effect of
torrefaction on the permanent gases is in agreement with previous
gasification studies with softwood [15,18]. As hemicellulose
(mainly) and to a certain extent cellulose are expected to decrease
due to the torrefaction conditions [3,5], a larger volume fraction of
CO is expected as it is a common main product of lignin and cel-
lulose devolatilization. In addition, more CO is expected to be
produced as a product of to the tar reduction reactions (see Fig. 12).
However, due to the fed O2, CO is converted to CO2. In addition, our
hardwood results are in agreement with [19], H2 is the only affected
gas species and increases upon torrefaction. The reason why tor-
refaction affected only the H2 is not clear. However, it must be noted
that as ash wood contains mainly xylan which is significantly un-
stable at low temperature [3] and lignin that is more reactive at low
temperature [23], thus this volatile part of ashwoodwas converted,
resulting in unaffected cellulose due to the torrefaction tempera-
ture [15,18]. In fact the cellulose mass fraction either remained the
same or increased slightly. Based on this hypothesis, the tar content
is expected to increase and, as the remaining lignin is reactive at
higher temperature, the H2 volume fraction is expected to increase
as well [29].

Given the small changes in the permanent gas composition
between test 4 and 6, both with ash 265, one can conclude from
Fig. 8 that the impact of the poor circulation on the permanent gas
composition was small. In addition, torrefaction influenced the
water volume fraction of the product gas (see Table 5). Experiments
with spruce 280 and ash 265 resulted in a higher water volume
fraction than spruce 260 and ash 250, respectively, showing that
the product gas contained water that was either formed during the
H2 oxidation or steam that did not react with other species.

Increasing the ER and decreasing the SBR results in decreasing
the H2 volume fraction and increasing the CO2 volume fraction (see
Fig. 6). This effect, of increasing ER, is known and has been
confirmed before in different gasifiers. However, CO and CH4 do not
show this trend. The unchanged CO volume fraction is possibly due
to the contribution of the Boudouard reaction due to the increased
fixed carbon content of the torrefied woods. Whereas, regarding
the CH4, Petersen andWerther [30] have reported that the O2 reacts
faster with other species, such as H2, CO and char rather than
oxidizing the CH4. The same effect is also observed with steam,
which reforms other hydrocarbons, rather than CH4.

Based on the m-GC analysis of the product gas, torrefaction
resulted in reducing the benzene and toluene volume fractions of
ash 265, spruce 260 and 280, in linewith what has been reported in
literature [18], but torrefaction did not affect the BTX volume
fractions of ash 250 (Figs. 8 and 9). Due to the reduction of the
volatile content in the torrefied woods, a decrease in BTX was ex-
pected as it was presented in our other study with commercial
torrefied wood as feedstock [31]. Only the gasification of ash 250
did not result in a lower BTX volume fraction. This is attributed to
(already mentioned) effect of torrefaction on the chemical
composition of ash woods. Given the small changes in the perma-
nent BTX composition between tests 4 and 6, with ash 265, one can
conclude from Fig. 10 that the impact of the poor circulation on the
BTX composition was small. Simultaneously increasing the ER and
decreasing the SBR did not affect the BTX volume fraction signifi-
cantly for both feedstocks.

3.3. Tar species content, yield and classes

Torrefaction resulted in decreasing the total tar content of both
torrefied spruce woods, and marginally increasing the total tar
content of both torrefied ash woods, as shown in Figs. 11 and 12.
Untreated and torrefied ash resulted in lower total tar contents
than untreated and torrefied spruce. This is attributed to the higher
cellulose and lignin mass fraction that softwoods contain [1,32]. In
addition, for each tar compound, gasification of untreated ash re-
sults in lower contents than untreated spruce (Fig. 11). For phenol,
this was expected due to the typically higher lignin mass fraction of
softwoods with respect to hardwoods [1] and due to the fact that
phenol is considered to be formed mainly from lignin [32,33].

Upon torrefaction of the spruce, the total tar content reduction
was 30% and 13% for spruce 260 and spruce 280, respectively (see
Fig. 10). Such a reduction upon torrefaction has also been observed
for softwood in other gasification studies [15,18] and for hardwood,
when torrefied at 260 �C or higher temperatures [19]. Based on the
gasification studies that have reported the chemical composition, it
can be said that in both studies [18,19] the tar content decreases
due to the significant decrease of the holocellulose content, so our
result is attributed to that effect of torrefaction. Increasing the
torrefaction temperature, from 260 to 280 �C, resulted in a further
decrease for almost all tars species, but phenols and toluene. This is
explained by the fact that the SPA sampling was performed for the
spruce 260 experiment and it is reported that the SPA sampling
shows a lower trapping efficiency for the BTX species [22]. There-
fore, increasing the torrefaction temperature is expected to
decrease all tar species.

Upon torrefaction of the ash wood, the total tar content
increased for ash 250 and ash 265 by 34% and 18%, respectively (see
Fig. 10). This increase in tar formation and it is partly attributed to
less gas-solid reactions, due to the reactor pressure and the sub-
optimal recirculation conditions of test 2, and partly to the effect
of torrefaction on the chemical composition, since there were no
recirculation issues in test 5. The former can be checked with the
effect of the circulation conditions on tar classes for tests 4 and 6
(see Fig. 12). Thus, gasification of ash 250 would still result in
increased tar content. Whereas, the chemical composition concerns
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the formation of primary tars. Sincemost of the tars derive from the
holocellulose mass fraction and the hemicellulose mass fraction
does decrease in our torrefaction conditions [3], the volatile con-
tent might not have decreased in the torrefied ash feedstocks to an
extent that the formation of tar species, which polymerize and
convert to heavier species than phenol, is reduced. The same reason
can be the source of the deviating result of Woytiuk et al. [19] for
their lowest torrefaction temperature as in these researchers'
feedstock and our feedstock the cellulose part is not expected to be
affected with torrefaction. Regarding the tar compounds for the
torrefied ash woods, increasing the torrefaction temperature did
not affect any tar compound significantly, but phenol and naph-
thalene. This change in the phenol content can be explained by the
higher H2 volume fraction of the ash 250 product gas which results
in enhancing the hydrodeoxygenation of oxygenated tar com-
pounds, i.e. phenol compounds [34]. The latter is among the rea-
sons why the ash 265 resulted in a lower naphthalene content than
the ash 250.

The results of classified tar species are presented in Figs. 11 and
12; this classification system is based on the solubility, chemical
composition and condensation behavior of various tar compounds
[35]. For both wood types, the majority of tars formed during
gasification belong in Classes 3 and 4. Tars of these two classes are
formed from primary tars due to decomposition of holocellulose
and lignin. Increasing the torrefaction temperature resulted in a
higher phenol content (Class 2 tars) for both woods, indicating that
the lignin mass fraction increased [32]. Regarding spruce, our re-
sults show that the torrefaction resulted in lower tar yields than
untreated spruce. Class 2 and Class 3 tars strongly decreased for
spruce 260, while increasing the torrefaction temperature from 260
to 280 �C led to an increase in tar yield again. However, in the
spruce 260 experiment, the SPA sampling was used; therefore if the
Class 2 tars and the toluene are not considered, increasing the
torrefaction temperature did not really affect all the tar classes, but
Class 4 which increased marginally. On the contrary, torrefaction of
ash resulted in increasing the tar yield and the Classes 3e5, even if
taking into account the sub-optimal recirculation. The effect of sub-
optimal recirculation conditions is more relevant for tars than
permanent gases and BTX. A comparison between tests 4 and 6
shows that there is a slight increase for Class 2 (phenol) tars and a
larger increase for Class 3 tars in the test 5 with the sub-optimal
solids circulation. This shows that tars that exists in these two
classes did not convert, due to the reduced gas-solid reactions. In
addition, an unchanged cellulose mass fraction upon torrefaction
may also contribute to that observation.
Table 5
Process key parameters.

Untreated ash Ash 250 Ash 250 Ash 265 Ash 265 Ash

Test 1 2 3 4 5 6
ER 0.31 0.30 0.36 0.36 0.31 0.3
SBR 0.10 1.00 0.85 0.88 1.00 0.8

CCE 102.1 78.0 72.3 75.4 90.6 93.
CGE 62.0 52.1 46.0 44.9 58.3 54.
H2/CO 2.4 2.8 2.2 2.2 2.5 2.1
CO/CO2 0.32 0.30 0.34 0.32 0.33 0.3
Watera 42.8 51.9 40.2 49.0 53.0 44.
Gas yieldb 1.7 1.4 1.3 1.3 1.7 1.7
LHVc 7.0 6.8 7.2 6.5 6.6 6.2
LHVd 11.7 9.8 9.2 8.7 11.3 10.
Mass balance errore �2.8 �6.1 �22.6 �14.7 8.7 1.7

a Vol% on as received basis.
b In m3.kgdaf�1.
c In MJ.m�3 (STP).
d In MJ.kgdaf�1.
e In %.
The simultaneous increase in the ER and decrease in the SBR
resulted in no significant impact on the tar compounds for spruce
260 and spruce 280, and in slight impact for ash 250 and ash 265
(see Figs. 13 and 14). This effect was also observed in our previous
study with commercial torrefied wood feedstock [31]. The com-
bined increase in the ER and decrease in the SBR resulted in a
decrease of the Class 3 tars (due to toluene) and naphthalene for
ash 250 and a decrease in the naphthalene for the ash 265. In
general, increasing the ER and decreasing the SBR at 850 �C resulted
in decreasing Class 2 tars (phenol) and the lighter PAH for ash 265
and ash 250, respectively. In both cases, converted products of such
tar compounds formed heavier PAHs, and CO, CO2 (see Fig. 7), and
H2 are released.

3.4. Process key parameters

Based on mass balance calculations, various process key pa-
rameters have been calculated, such as the CCE, CGE and others
(Table 5). As expected due to the higher volatile mass fraction, the
CCE and CGE values are the highest in the experiments with un-
treated woods. Furthermore, an increase in the ER showed a
increasing effect on the CCE and a decreasing effect on the CGE.
Only for ash 250 and spruce 260, increasing the ER did not result
in increasing the CCE and decreasing the CGE, respectively. While
the former is attributed to the sub-optimal recirculation condi-
tions, the latter is explained with the increase in the gas yield.
Lastly, for both feedstocks, torrefaction resulted in a reduction of
the gas heating value per biomass input. This reduction is more
pronounced for torrefied ash due to the higher fixed carbon mass
fraction.

Torrefaction decreased the CCE, CGE for both torrefied spruce
woods and decreased the gas yield of spruce 280. Our spruce re-
sults regarding the effect of torrefaction on CCE and CGE are
in agreement with Sweneey [20]. This researcher reported a
decrease in both process parameters when torrefied samples were
gasified. On the other hand, Berrueco et al. [15] reported that
torrefaction resulted in decreasing the CCE but not a clear trend
regarding the CGE was observed with their feedstocks. They re-
ported that regarding torrefied forestry residues increasing the
torrefaction temperature resulted in increasing the CGE. However,
the volatile matter of their feedstock is not much decreased at
225 �C, rather than at 275 �C. Their increase in the CGE is
explained with an increase of the total gas yield (with the most
severely torrefied fuel), rather than with the quality of the
combustible gas volume fraction.
265 Untreated spruce Spruce 260 Spruce 260 Spruce 280 Spruce 280

7 8 9 10 11
5 0.30 0.31 0.36 0.36 0.31
5 0.10 1.00 0.85 0.85 1.00

7 95.6 89.1 99.3 87.1 81.6
3 60.0 53.4 56.2 46.7 48.2

2.4 2.3 2.0 2.2 2.4
2 0.31 0.30 0.31 0.27 0.28
1 44.4 39.7 38.2 44.0 45.6

1.6 1.6 1.7 1.5 1.5
6.8 6.5 6.5 6.2 6.5

5 11.0 10.4 11.2 9.2 9.5
�1.9 �10.9 �3.5 �2.1 �5.6



Fig. 4. Rate of mass loss vs temperature (dTG) curves for slow devolatilization of
untreated and torrefied spruce feedstocks (heating rate ¼ 20 �C.min�1,
N2 ¼ 100 mL.min�1).

Fig. 5. Rate of mass loss vs temperature (dTG) curves for slow devolatilization of
untreated and torrefied ash feedstocks (heating rate ¼ 20 �C.min�1,
N2 ¼ 100 mL.min�1).

Fig. 6. Gas composition measured during spruce feedstocks experiments (at 850 �C).

Fig. 7. Gas composition measured during ash feedstocks experiments (at 850 �C).

Fig. 8. BTX composition measured by mGC during spruce feedstocks experiments (at
850 �C).

Fig. 9. BTX composition measured by mGC during ash feedstocks experiments (at
850 �C).
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Torrefaction of ash did not show benefits in increasing the CCE,
CGE, gas yield and LHV (MJ.kgdaf�1) of the product gas. However,
when comparing ash 250 and ash 265, these process parameters
appear to improve with increasing torrefaction temperature. This
was unexpected and not reported before in literature. However, it
can be explained if one compares tests 4 and 6, which under the
same gasification conditions resulting in large difference in the CCE
and CGE. Therefore, both CCE and CGE would be expected to
decrease upon torrefaction of ash but not to the extent that we
observed. Lastly, the gas yield was mainly also affected due to the
elevated pressure and resulted in the significant difference of the
CGE between the ash 265 and ash 250.
4. Conclusions

Subjecting woody biomass to a combination of torrefaction and
subsequent densification offers clear benefits in logistics and
handling operations. Therefore, in this study, for the first time
oxygen-steam blown circulating fluidized bed gasification experi-
ments have been performed with untreated and torrefied softwood
and hardwood to determine additional benefits in this end-use
option. The examined operational conditions were relevant to



Fig. 10. Tar content in the product gas for spruce and ash feedstocks (at 850 �C, ER ¼ 0.30 and SBR ¼ 1) measured with tar standard method.

Fig. 11. Content and yield of total tar and tar classes measured during spruce feed-
stocks experiments (at 850 �C and 1 bar).
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typical operating conditions in industrial relevant applications.
It is concluded that torrefaction affected the product gas

composition for both types of wood only to a small extent. For the
torrefied spruce woods, torrefaction did not affect the permanent
gases and resulted in decreasing the BTX volume fraction and total
Fig. 12. Content and yield of total tar and tar classes measured
tar content for both spruce 260 and 280. A simultaneous increase of
the ER and decrease of the SBR did not affect the tar classes. For the
torrefied ash woods, torrefaction resulted in increasing only the H2
volume fraction for both ash 250 and 265, and decreasing the CH4
volume fraction for ash 265, affecting the BTX volume fraction for
ash 265 and, surprisingly, torrefaction resulted in increasing the
total tar content for both ash 250 and 265. The simultaneous in-
crease of the ER and decrease of the SBR resulted in decreasing the
Class 3 tars for ash 250 and slightly decreasing the Class 2 tars for
ash 265. Lastly, for both wood species the majority of the tars
belonged in Classes 3 and 4.

Torrefaction of spruce and ashwoods resulted in a limited impact
on product gas constituents' composition, but the CCE and the CGE
decreased significantly. Therefore, purely from an end-use perspec-
tive it is not recommended to replace these untreated spruce and
untreated ash woods with these torrefied versions during oxygen-
steam blown CFB gasification at 850 �C. Future research of gasifica-
tion of torrefied wood species should include feedstock chemical
analysis and characterization of products obtained under devolati-
lization conditions. The formerwill quantify the effect of torrefaction
conditions on the hemicellulose, cellulose and lignin, whereas the
latter, investigates the formation of primary tars.
during ash feedstocks experiments (at 850 �C and 1 bar).



Fig. 14. Tar content in the product gas measured during the torrefied ash experiments (at 850 �C).

Fig. 13. Tar content in the product gas measured during the torrefied spruce experiments (at 850 �C).
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