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SUMMARY

Over the last two decades the field of network science has been evolving fast. Many useful applications in
a wide variety of disciplines have been found. The application of network science to the brain initiated the
interdisciplinary field of complex brain networks. On a macroscopic level, brain regions are taken as nodes
in a network. The analysis of pairwise connections between the brain regions as links has provided a new
perspective on many problems. The application of network science to neuroscience data helped, for example,
to identify the disruptions due to different neurological disorders when comparing healthy and abnormal
brain networks.

In this dissertation, we focus on the macroscopic level of brain regions and analyze their pairwise con-
nections from a network science perspective. We address different general research questions from network
science and exploit their application possibilities towards brain networks. Due to different measurement
techniques, one can construct many different representations of brain networks. We thereby distinguish
between the structural and functional brain network. Structural brain networks map the anatomical con-
nections between the regions, which we could interpret as the ’streets’ of the brain. On top of these streets,
we can measure the traffic with techniques like e.g. magnetoencephalography (MEG) or functional Magnetic
Resonance Imaging (fMRI) resulting in so-called functional brain networks. However, the relation between
the structural and the functional brain networks is still insufficiently understood.

The first main research question of this dissertation focuses on the functional network layer and tries to
identify the most important links and motifs of these networks. For this purpose, we propose the union of
shortest path trees (USPT) as a new sampling method extracting all the shortest paths of a network (Chap-
ter 2 and 3). After constructing the USPT, we compare the individual functional brain networks of multiple
sclerosis patients and healthy controls (Chapter 2). Furthermore, we generalize this sampling method and
present a new ranking of all the links based on the USPT (Chapter 3). Regarding the higher-order building
blocks of the functional brain networks, we analyze the so-called information flow motifs based on MEG data
from different frequency bands (Chapter 4).

After researching the local properties of the functional brain networks, we analyze the influence of the un-
derlying structural connections on the emerging information flow. Thus, the second main research question
concerns the relationship between the functional and the underlying structural connectivity. Specifically, we
analyze which topological properties of the structural networks drive the functional interactions. First, this
question is approached in a mathematical and straightforward manner by assuming that an analytic func-
tion between the two networks exists (Chapter 5). We investigate this mapping function and its reverse by
evaluating empirical individual and group-averaged multimodal data sets. A second approach towards the
structure-function relationship employs a simple model of activity spread. The epidemic spreading model is
applied on the human connectome to investigate the global patterns of directional information flow in brain
networks (Chapter 6). The main focus here lies on the pairwise measure of transfer entropy to investigate
the influence of one brain region on another. We present the results for the local and global outcomes of the
dynamic spreading process aiming to identify the driving structural properties behind the observed global
patterns.
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SAMENVATTING

Tijdens de afgelopen twee decennia is het domein van de netwerkwetenschap snel geëvolueerd. Veel nuttige
toepassingen zijn gevonden in een groot scala van disciplines. De toepassing van netwerkwetenschap op het
brein initieerde de interdisciplinaire tak van de complexe breinnetwerken. Op een macroscopisch niveau
worden hersengebieden gezien als knopen in een netwerk. De analyse van paarsgewijze connecties tussen
hersengebieden als verbindingen heeft een nieuw perspectief op tal van vraagstukken opgeleverd.

In deze dissertatie concentreren we ons op het macroscopische niveau van breingebieden en analyse-
ren de connecties tussen paren vanuit het perspectief van de netwerkwetenschap. We behandelen verschil-
lende algemene onderzoeksvragen uit de netwerkwetenschap en bestuderen de toepassingsmogelijkheden
van netwerkwetenschap op breinnetwerken. Met verschillende meettechnieken kan men vele verschillende
afbeeldingen van breinnetwerken bouwen. Wij maken hierbij onderscheid tussen het structurele en functio-
nele netwerk. Structurele breinnetwerken brengen de anatomische verbindingen tussen de gebieden in kaart,
die we kunnen interpreteren als ’straten’ van de hersenen. Boven op deze straten kunnen we het verkeer me-
ten met technieken, zoals magnetoencephalography (MEG) of functionele kernspintomografie (fMRI), die
resulteren in zogenaamde functionele breinnetwerken. De relatie tussen de structurele en functionele brein-
netwerken is echter nog onvoldoende begrepen.

De eerste hoofdonderzoeksvraag van deze dissertatie richt zich op de functionele netwerklaag en pro-
beert de meest belangrijke verbindingen en motieven van deze netwerken te identificeren. Daarvoor stellen
we de union of shortest path trees (USPT) methode voor, waarmee we alle kortste paden van een netwerk
extraheren (Hoofdstuk 2 en 3). Na het construeren van de USPT vergelijken we de individuele functionele
breinnetwerken van multiple sclerose patiënten met een gezonde controlegroep (Hoofdstuk 2). Tevens heb-
ben we deze manier van de bepaling van kortste paden gegeneraliseerd en presenteren een nieuwe rangschik-
king van alle verbindingen gebaseerd op de USPT (Hoofdstuk 3). Met het oog op de hogere orde bouwstenen
van het functionele breinnetwerk analyseren we de zogenaamde informatiestroom motieven met behulp van
MEG gegevens van verschillende frequentiebanden (Hoofdstuk 4).

Na het onderzoeken van deze lokale eigenschappen van de functionele breinnetwerken analyseren we
de invloed van de onderliggende structurele verbindingen op de zichtbaar wordende informatiestroom. De
tweede hoofdonderzoeksvraag richt zich op de relatie tussen de functionele en de onderliggende structurele
verbindingen. Meer nauwkeurig analyseren we welke topologische eigenschappen van de structurele net-
werken de functionele interacties beïnvloeden. Eerst is deze vraag benaderd op een wiskundige en directe
manier door aan te nemen dat er een analytische relatie tussen de twee netwerken bestaat (Hoofdstuk 5). We
onderzoeken deze relatie en zijn inversie door het evalueren van empirische multimodale datasets van indi-
viduen en groepsgemiddelden. Een tweede benadering van de structuur-functie relatie benut een eenvoudig
model van de verspreiding van activiteit. Het epidemische verspreidingsmodel is toegepast op het mense-
lijk connectoom om het globale patroon van gerichte informatiestromen in breinnetwerken te onderzoeken
(Hoofdstuk 6). De nadruk ligt hier op de meting van paarsgewijze overdrachtsentropie om de invloed te on-
derzoeken die gebieden in het brein op elkaar hebben. We presenteren de resultaten van de lokale en globale
uitkomsten van het dynamische verspreidingsproces met als doel de onderliggende sturende structurele ei-
genschappen van de geobserveerde globale patronen te identificeren.

xi





1
INTRODUCTION

The human brain is one of the most complex systems of human knowledge. Understanding brain dynamics
in healthy subjects and their disruptions in patients has become a central interdisciplinary research question
[14, 93]. With big projects, like e.g. the Human Brain Project1, different governments are trying to advance this
research field in a fast-forward manner. Measurement techniques in neuroscience have simultaneously been
largely improved over the past decades. Together, more and more data is becoming, often freely2, available
attracting researchers from many different fields with various backgrounds. However, we are far from under-
standing all those measurements of the complex processes continuously ongoing and dynamically changing
in the human brain. Consequently, an even worse reality is that we do not sufficiently understand many of
the currently known neurological disorders.

The field of network science has the advantage to be applicable in many different research areas. Gen-
erally speaking, network science is a bit like mathematics: it can be regarded as a common language that
initiates and facilitates communication between scientists of the most distant research fields. When building
a network out of a complex system, one has to focus on common properties of the single entities and on their
connections. A network is formally defined by nodes, which can represent any kind of individual objects, and
links symbolizing their connections among each other in a pairwise manner. The most intuitive example is
often a social network, where humans are the nodes and there exists a link between them if they are friends.
But besides social science, the concepts of network science have already been applied e.g. in computer sci-
ence, economics, electrical engineering and biology [71]. After building the network, the comparison with
other networks from completely different fields can begin and the grounds are set for a barrier-free exchange
with scientists from many different disciplines. In this manner, neuroscientists have followed the movement
and collaborate in many different research groups around the world in the fast-evolving field of ’complex
brain networks’ [14, 86, 93].

Analyzing the brain as a network has already led to many new insights in neuroscience with regard to
healthy and abnormal brain function [10]. In this dissertation, we focus on a macroscopic whole-brain ana-
lysis where nodes represent brain regions and links the connections between them. The connections between
brain regions can be measured by different non-invasive techniques. Diffusion Tensor Imaging (DTI) can pro-
vide us with information about the anatomical connections in the brain by measuring white-matter tracts.
The brain regions together with the anatomical links between them build the so-called structural brain net-
work. In contrast to these structural connections, other techniques like e.g. magnetoencephalography (MEG)
and functional Magnetic Resonance Imaging (fMRI) capture time series of activation for each brain region.
Based on these time series, one can calculate their pairwise interactions and build the functional brain net-
work. The simplest statistical dependency between two time series is probably their correlation, which is
referred to as the functional connectivity between regions. For the functional brain network, the arising net-
work is not binary but the differences in interaction patterns are often characterized by a link weight nor-
malized to the (0,1) interval. The constructed structural and functional brain networks can be placed into a
two-layer framework (see Figure 1.1).

1https://www.humanbrainproject.eu/
2see e.g. http://www.humanconnectome.org/
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Figure 1.1: The brain can be analyzed as a multilayer network consisting of the anatomical connections in form of the structural brain
networks (which could be associated with the underlying streets) and on top of it we can measure correlations and information flow to
construct the functional brain network (which could be interpreted as measuring the traffic flow).

Next to the simple statistical dependency of correlation, the transfer entropy, a measure of information
flow between time series, is lately often computed in neuroscience [50, 61]. The transfer entropy between
two brain regions quantifies the causal effect of one brain region on another one [2, 35, 82]. Time-delayed
measures like transfer entropy can equally be used as link weights for the functional brain network and are
summarized as effective connectivity measures. Effective connectivity aims to detect the influence from one
brain region on another region. This time-delayed view introduces directionality in the interaction patterns
and can help to construct the functional brain network as a directed network with every link being either
bidirectional or being assigned one dominant direction. The directed characterization of the functional brain
network offers new insights into the information flow in the human brain on a macroscopic regional level.

Though there has been increasing interest in the relation between the structural and the functional brain
networks over the last years, their relationship remains insufficiently understood [90]. Based on these dif-
ferent kinds of brain networks, the following two research questions are the main focus of this dissertation.
The first question focuses on the building blocks of the functional brain networks in order to understand the
emergence of global communication outcomes. Then, with a better understanding of the important links and
higher-order constructions of the functional brain network, the second research question aims at finding the
origins of these communication patterns in the underlying structural brain network.

RESEARCH QUESTION 1: WHAT ARE THE MOST IMPORTANT LINKS AND MOTIFS IN FUNC-
TIONAL BRAIN NETWORKS WITH RESPECT TO GLOBAL INFORMATION FLOW?
After computing the functional or effective connectivity between brain regions, the functional brain network
is a fully weighted network whose topology is often masked by measurement noise. Before applying the vari-
ety of measures from network science, a network representation of the functional brain network that includes
only the most important links for the global information flow while disregarding noise and higher levels of
redundancy needs to be found without setting an arbitrary threshold. The choices in this step of the analysis
have proven to be crucial to the outcomes of many network measures [118]. One additional challenge here is
that a network representation should allow for an unbiased comparison between different kinds of networks.
Especially for neuroscience, enabling the comparison between the functional brain networks of patients suf-
fering from neurological disorders and healthy controls is very important. One approach to conquer this
influential choice has been to extract the minimum spanning tree of the network [92], which has also been
referred to as the super-highways of a network [126]. The minimum spanning tree (MST) has been successful
in a lot of recent studies to comprise important features of functional brain networks and distinguish between
patients and healthy controls [98, 106, 121]. Enlarging this representation towards a denser network based
on the MST but including alternative pathways has been the motivation behind our analysis of the shortest
paths in functional brain networks. Proposing the network representation of the so-called union of shortest
path trees for functional brain networks and use this method to rank all links with regard to their importance
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for the global information flow is the focus of Chapters 2 and 3 of this thesis.
In Chapter 4, we then shift to the effective connectivity and the directed functional interactions in brain

networks. There, we analyze the most important higher-order building blocks of the functional brain net-
works in the form of motifs that give rise to the global patterns of information flow.

RESEARCH QUESTION 2: WHICH STRUCTURAL NETWORK PROPERTIES DRIVE THE FUNC-
TIONAL INTERACTIONS?
As mentioned before, there is not one brain network but instead many representations of the same complex
system. The relationships, however, between those different kinds of brain networks are still unclear. The
field of neuroscience can only really benefit from its data variety once the relations between the different
representations of the human brain can be understood. In this dissertation, we focus on the relation between
the structural and the functional brain networks. This relation between structure and function is a rather
general question, not necessarily limited to the field of complex brain networks. For many different spreading
processes on networks, it remains yet to be investigated how the structural network properties influence the
emerging dynamics [72, 73]. The main objective here is to identify the structural network properties that
drive the functional interactions in the human brain. In this thesis, we approach this question from different
angles. In Chapter 5, we take a rather straightforward approach to investigate the relation between structure
and function in brain networks by analyzing a mapping between the connectivity matrices of the different
empirical networks. After investigating the relation between empirical matrices, we analyze the properties
of the structural network that drive those information flow patterns by applying a simple model of activity
spread on the human connectome in Chapter 6.





2
THE UNION OF SHORTEST PATH TREES OF

FUNCTIONAL BRAIN NETWORKS

2.1. INTRODUCTION
Recently, the shortest paths between brain regions were found to be crucial to understand functional net-
works in terms of structural networks [41] and pathological network alterations in brain diseases. Structural
or functional brain networks in patients with neuropsychiatric diseases are often characterized by a reduced
global efficiency, which is proportional to the inverse of the shortest paths. However, the shortest paths of the
functional brain network have merely been analyzed with regard to their average length. Using all shortest
paths as an alternative topology for the functional brain network is a new approach.

Several sampling methods on functional brain networks set a threshold or fix the link density to thin the
complete weighted graph. However, these methods have disadvantages: the choice of the a priori chosen
threshold or link density is often arbitrary and, in addition, different link densities can lead to different re-
sults [118]. Constructing the minimum spanning tree (MST) of the functional brain network has provided
insight in the differences between patients suffering from brain disorders and healthy controls in a lot of re-
cent studies [28, 92, 99, 106, 121]. An advantage of the MST lies in its independence of the transformation of
the weights as long as their ranking is unaltered. There exists only one unique path from a node to another
node in the MST, which limits more advanced analysis.

Analyzing shortest paths is a common practice after reducing the complete graph of the functional brain
network with any of the existing sampling methods. [15] suggested that the brain is always trying to reduce
material and metabolic costs when transporting information. Thus, the concept of shortest paths fits into
the current understanding of the brain function. Extracting all shortest paths of the original complete graph
can be interpreted as focusing on the backbone or the main functional highways of the brain network. We
intend to represent the most important connections of the functional brain network based on global network
properties and not only on the ranking of the link weights among each other.

In the present study, we propose the union of shortest path trees (USPT) as a new sampling method for
the functional brain network. This sampling method has been successfully applied before on a variety of
complex networks [117]. To construct the USPT, we first identify the shortest path tree rooted at each node
in the network. The shortest path tree rooted at a node consists of all shortest paths from this node to all the
other nodes [114]. The union of all shortest paths from a single node to the rest of the network always results
in a tree [111]. Furthermore, we can unite these shortest path trees to obtain the USPT G∪spt of our network
G [117]. The USPT is determined by the topology of the underlying network and its link weight structure (the
set of weights on the links in G) [117]. Furthermore, if all link weights equal 1, the USPT is the same as the
underlying network because all information then flows over the direct pathways between the nodes.

The properties of the USPT have been analyzed in various studies [114, 117]. The USPT, not the underlying
network, determines the network’s performance [117]. Another important property of the USPT is that it
always includes the MST [117] (Figure 2.1). The regime, where the USPT coincides with the MST is called the

This chapter has been published in J. Meier, P. Tewarie and P. Van Mieghem, The Union of Shortest Path Trees of Functional Brain Net-
works, Brain Connectivity, 5(9), pp. 575-581 (2015).
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MST

USPT

Underlying
complete
network

Figure 2.1: Visualization of a complete network with its corresponding USPT (union of shortest path trees) and MST (minimum spanning
tree).

strong disorder regime, the counterpart is the weak disorder regime [114, 116]. In the strong disorder regime,
all traffic in the network follows only links in the MST, while in the weak disorder regime, a transport may
follow other paths. Analogous to the flow of electrical current, we may regard the strong disorder regime as
the superconductive phase, whereas the weak disorder corresponds to the resistive phase, where electrons
follow many paths between two different voltage points.

In many real-world networks, the information is assumed to flow over the shortest path to optimize trans-
portation costs. The derivation of G∪spt can be regarded as a filter for the weights that are not important for
the overall transportation flow in the brain. By reducing the network to the union of its shortest paths, only
those paths are maintained that have a high probability that information is transported along them. The
topology of G∪spt represents the highways of the brain. The goal of this chapter is to evaluate and apply this
USPT sampling method to the functional brain network and to find first differences between patients and
healthy controls.

In the following, we will interpret the link weights of the functional brain network as communication
probabilities and, based on this interpretation, we will construct and analyze the USPT. We will examine
the results of this new USPT sampling method by using empirical data from healthy controls and multiple
sclerosis (MS) patients and demonstrate that the USPT is sensitive to disease alterations and that our USPT
method can be used to discriminate between healthy and pathological conditions.

2.2. MATERIALS AND METHODS

2.2.1. DATA ACQUISITION

In this section, we explain the reconstruction of functional brain networks from our magnetoencephalogra-
phy (MEG) measurements. Our data set consisted of 68 healthy controls and 111 MS patients, which is a larger
but overlapping group as in [98, 99]. Details with regard to data acquisition and postprocessing can be found
in our previous article [99]. In short, MEG data were recorded using a 306-channel whole-head MEG sys-
tem (ElektaNeuromag, Oy, Helsinki, Finland). Fluctuations in magnetic field strength were recorded during
a no-task eyes-closed condition for 5 consecutive minutes. A beamformer approach was adopted to project
MEG data from sensor space to source space [49]. This beamformer approach can be regarded as a spatial
filter that computes the activity within brain regions based on the weighted sum of the activity recorded at
the MEG channels. We then used the automated anatomical labeling (AAL) atlas to obtain time series for
78 cortical regions of interest (ROIs) [40, 104]. For each subject, we chose five artifact- free epochs of source
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space time series [28, 99, 106]. Six frequency bands were analyzed: delta (0.5−4 Hz), theta (4−8 Hz), lower
alpha (8−10 Hz), upper alpha (10−13 Hz), beta (13−30 Hz), and lower gamma bands (30−48 Hz).

Subsequently, for each epoch and frequency band separately, we computed the phase lag index (PLI)
between all time series of the 78 ROIs to obtain the link weights for our functional brain networks [91, 93].
The PLI can take values between 0 and 1 and is a measure that captures phase synchronization by calculating
the asymmetry of the distribution of instantaneous phase differences between time series. Formally, the PLI
is defined as

PLI = |〈sign[sin(∆Φ(tk )])〉|, (2.1)

where ∆Φ(tk ), for k = 1, ...,m; m ∈N, is the time series of phase differences evaluated for time steps t1, ..., tm ,
〈·〉 denotes the average and | · | the absolute value. High values of the PLI refer to a strong interaction or
synchronization between two time series while avoiding bias due to volume conduction.

As a next step, for each epoch we constructed an N ×N weight matrix W with elements wi j , each rep-
resenting the PLI of the pair of regions, i and j . This symmetric weight matrix W can be interpreted as a
complete weighted graph on N nodes (N = 78). Last, we averaged over all five weight matrices belonging to
each epoch to obtain one weight matrix per person and to ensure independent samples for statistical testing.
All further mentioned weight matrices in this chapter refer to matrices with PLI values as entries.

2.2.2. LINK WEIGHTS IN FUNCTIONAL BRAIN NETWORKS AS COMMUNICATION PROBABILITIES
A network can be represented by a graph G consisting of N nodes and L links. Each link l = i → j from node i
to j in G can be specified by a link weight wl = wi j = w(i → j ). Assume a path from a node A to node B in our
network G . We denote this path by P A→B = n1n2...nk−1nk with hopcount (sometimes also called the length)
k ∈N, where n1 = A, nk = B and n2, . . . ,nk−1 represent the distinct nodes along the path [113]. The weight of
a path P A→B is usually defined as

w(P A→B ) = ∑
l∈P A→B

wl (2.2)

The shortest path P ∗
A→B between A and B equals that path that minimizes the weight w(P A→B ) over all

possible paths from A to B , hence, w(P ∗
A→B ) ≤ w(P A→B ). The efficient Dijkstra algorithm to compute the

shortest path requires that link weights are non-negative [110]. If the link weights are real, positive numbers,
in most cases – though not always –, the shortest path P ∗

A→B is unique. Other definitions of the weight of
a path are possible [110, Ch. 12], such as w(P A→B ) =∏

l∈P A→B wl or w(P A→B ) = minl∈P A→B wl . Here, we will
deduce a new definition of the weight of a path, particularly geared to functional brain networks.

The PLI, defined in Equation (2.1), is an approximation of the probability of phase synchronization be-
tween time series. Therefore, we can interpret the PLI as the communication probability between two nodes
in the functional brain network. The PLI also implies symmetry in the communication direction so that
wi j = w j i and we further confine ourselves to undirected links. With this interpretation, the link weight
wi j = w(i ↔ j ) between node i and j represents the probability that the end nodes i and j are communicat-
ing or that information is transmitted over this functional link. The PLI assigns a high link weight to strongly
communicating nodes. Likewise, low values of the PLI represent low probabilities that the end nodes are
communicating. The weight of a path between brain regions, A and B , can then be interpreted as

w(P A→B ) = Pr[information is transported along the path P A→B ]

= Pr[every link in P A→B transports the information]

= Pr[
⋂

l∈P A→B

link l transports information].

To proceed, we assume independence between different link weights so that

Pr[
⋂

l∈P A→B

link l transports information] = ∏
l∈P A→B

Pr[ link l transports information].

Introducing our interpretation of the link weights in the functional brain network as communication proba-
bilities,

wl = wi j = Pr[link i ↔ j transports the information],

we find the weight of the path between A and B

w(P A→B ) = ∏
1≤i≤k−1

wni ni+1 . (2.3)
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Table 2.1: p-Values for the two-sample t-test for differences in mean link density of the USPT (under the link weight transformation
vi j = − ln(wi j )) between MS patients and controls for all frequency bands. The annotation ∗ means that the p-value is under the 5%
significance level.

Frequency band p-Value

delta 0.0245∗

theta < 0.001∗

alpha1 0.3297
alpha2 0.0902
beta 0.0588
gamma 0.2907

The assumption of independence between the link weights is debatable. Identifying the dependency struc-
ture, thus the correlations between the different links in the functional brain network, is a complex task. In
this study, we approximate all link weights as being independent of each other and we thus ignore correla-
tions.

Between any pair of nodes, A and B , in our network, we identify the path with the highest probability of
successful communication between these two nodes, which is the path that maximizes w(P A→B ) in Equa-
tion (2.3). The path between nodes, A and B , which maximizes w(P A→B ), is defined as the shortest path
P ∗

A→B between two nodes. Since 0 ≤ wi j ≤ 1 by the definition [Eq. (2.1)] of the PLI, we rewrite Equation (2.3)
as

w(P A→B ) = exp

( ∑
1≤i≤k−1

ln wni ni+1

)
= exp

(
− ∑

1≤i≤k−1
| ln wni ni+1 |

)
. (2.4)

and observe that maximizing w(P A→B ) is equal to minimizing the sum of the transformed link weights
−∑

1≤i≤k−1 ln wni ni+1 . Consequently, Dijkstra’s shortest path algorithm can be used after transforming the
weights vi j =− ln(wi j ) for all 1 ≤ i , j ≤ N . This transformation approach is often used in computer networks
(see e.g. p. 313 in [110]).

As mentioned earlier, there are different link weight transformations apart from the interpretation of the
link weights as communication probabilities. A basic transform is a polynomial link weight transformation
vi j = (wi j )α, for example, in [114] and [11]. Interestingly, we can rephrase our probabilistic approach in terms
of the polynomial link weight transformation as

vi j =− ln wi j = d

dα

(
exp

(−α ln wi j
))∣∣∣

α=0
= d

dα

(
w−α

i j

)∣∣∣
α=0

.

where α can be regarded as an extreme value index of the link weight distribution [113, Chapter 16]. When
α<αc , the USPT operates in the strong disorder regime and all information flows over the MST, whereas, for
α > αc , information traverses more links in the USPT. The critical value αc can be associated with a phase
transition in the graph’s link weight structure, for which we refer to [114, 116, 117].

2.3. RESULTS

After constructing the USPT of the functional brain network under the link weight transformation vi j =
− ln(wi j ), we can analyze the resulting link densities of the different USPTs. The mean and the standard
deviation of the number of links in the USPT are plotted for the different frequency bands in Figure 2.2. We
can infer from Figure 2.2 that on average the number of links needed for the USPT does not differ much over
all frequency bands, except that the alpha1 and alpha2 band seem to have a lower mean link density of their
USPT than all the other frequency bands. Overall, the mean link density of the USPT varies between 98.27%
and 99.98%, which is too dense to obtain a meaningful visualization of the resulting network.

Furthermore, we tested the differences in mean link density between MS patients and controls with a
two-sample t-test. We found that MS patients have on average a significantly lower link density than healthy
controls in the theta anddelta frequency band under the 5% significance level (Table 2.1).
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Figure 2.2: Plot of the mean value of the link density in the USPT and an error bar of length twice the standard deviation for healthy
controls and MS patients over different frequency bands under the link weight transformation vi j =− ln(wi j ).

2.4. DISCUSSION
Unlike the MST method where the number of links L = N − 1, we found that the USPT of the functional
brain network has a specific link density so that the number of links L in the USPT is different for different
brain networks. The difference in the number of links influences graph metrics, but the number of links itself
informs us about the spread of transport in the brain. The links in the USPT are those links over which the
information is flowing. Thus, the link density in our method is not fixed arbitrarily, but emerges as a property
of the underlying transport or communication structure. Hence, the differences in link densities contain
meaningful information about the brain network topology and performance. A nearly complete graph, as the
USPT here with relatively low standard deviation, shows that this path weight interpretation belongs to the
weak disorder regime [114, 116]. Thus, the information in the functional brain network seems to flow over
more links than just the MST topology. Moreover, the high link density shows that the communication flow
in the functional brain network is probably spread across nearly all possible connections. A high link density
in the USPT means that in most cases the direct communication between two brain regions is preferred.
Thus, the length (or hopcount) of the shortest path is overall short, which confirms the assumption that the
functional brain network operates as a small world [14].

In the probabilistic approach to generate the USPT, no a priori parameter or link weight threshold needs
to be fixed arbitrarily. Besides the interpretation of the shortest path as a communication channel, the only
assumption in this approach is that all links (and link weights) are independent. Disadvantages of the USPT
sampling method lie in the dependence on the chosen link weight transformation. However, our link weight
transformation arises as a consequence of the interpretation of the link weights, measured by the PLI, as
communication probabilities and is therefore not arbitrarily chosen.

The observation that the link density in the USPT for patients is nearly always lower on average than the
link density for healthy controls shows that MS patients seem to have less links for brain communication.
Therefore, the average path length becomes longer and thus the communication within the functional brain
network less effective.

On nearly the same data set, a more classic network analysis has been performed in [99]. One of the find-
ings in [99] was that for MS patients, there has been a higher mean PLI value in the delta and theta frequency
band and a lower mean PLI value in the alpha2 frequency band. The higher mean PLI value in the delta and
theta band seems to align with our results of a lower link density for the USPT for patients. The correlation
between the overall mean of the link weight distribution and the USPT is not yet clear and needs to be in-
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vestigated in future research (see Appendix Figures 2.3 and 2.4). Additionally, for the thet a band, the other
study [99] found patients to have a significantly higher (normalized) path length in their functional brain net-
work, which implies a more regular topology for patient networks. Since a larger normalized path length also
indicates a larger path length in the USPT and, equivalently, a lower link density in the USPT, this finding
agrees with our current study in the theta band.

To sum up, we found that our USPT method picks up most of the differences found in a previous study
between MS patients and controls. Overall, this previous study [99] found significant differences for the func-
tional brain network between MS patients and controls in three frequency bands, delta, theta, and alpha2,
with the help of conventional network analysis and testing the overall mean PLI values against each other.
The performed MST analysis on the same data set seemed to only find the differences in the alpha2 band [99]
and provides meaningful interpretation for those differences concerning the overall integration of commu-
nication that seems to be disrupted in MS patients. Our USPT method enlarges the analysis and incorporates
the differences in the remaining frequency bands, the delta and theta bands. For these frequency bands, the
USPT method can enhance our insight concerning the overall communication in the functional brain net-
works of MS patients. In another study, Goñi and co-authors [41] applied the same link weight transforma-
tion, vi j =− ln wi j to the structural brain network without giving further rationale for this specific transform.
Furthermore,Goñi et al. [41] also confirmed that the shortest path weights calculated under the link weight
transformation vi j = − ln wi j play a major role in brain network communication. This chapter provided a
detailed argument on why the vi j =− ln wi j transform is a reasonable choice for the link weights of the func-
tional brain network and showed that the topology of the resulting shortest paths can be used to differentiate
between patients and healthy controls.

2.5. CONCLUSION
We found statistically significant differences between MS patients and controls while analyzing the link den-
sity of their USPT under the link weight transformation vi j =− ln(wi j ) derived from the interpretation of the
link weights as independent communication probabilities. Those differences were found in the same fre-
quency bands as in a previous study on a similar data set [99]. As a conclusion of our findings, we propose
the USPT under the link weight transformation vi j =− ln(wi j ) as a new sampling method for extracting dif-
ferences between the functional brain networks of patients and healthy controls. The interpretation of the
link weights as communication probabilities leads to a USPT of the functional brain network that includes all
important links of the global brain communication.
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2.6. APPENDIX: LINK WEIGHT DISTRIBUTION OF FUNCTIONAL BRAIN NET-
WORKS

In this section, we analyze the link weight distribution of the functional brain network since the USPT does
depend directly on the underlying link weight distribution [114]. If we analyze the histogram of the link
weights per frequency band, Figure 2.3 and 2.4 illustrate that (after averaging over five epochs) the accu-
mulated link weight histogram for the delta frequency band and alpha1 frequency band seem to follow a
Gamma distribution.
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Figure 2.3: Histogram of all the link weights (after averaging over five epochs) from all PLI matrices of the delta frequency band of all 68
healthy controls.
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Figure 2.4: Histogram of all the link weights (after averaging over five epochs) from all PLI matrices of the alpha1 frequency band of all
68 healthy controls.





3
GENERALIZED α-TREE SAMPLING METHOD

SHOWS LINK IMPORTANCE BEYOND

BETWEENNESS

3.1. INTRODUCTION
Extracting all shortest paths for different networks often leads to different link density causing difficulties
for an unbiased comparison of those network topologies since most network metrics are influenced by link
density. In this study, we propose a new general sampling method for any complex weighted network based
on the shortest path structure, which not only reveals the link ordering with respect to shortest paths but also
enables comparisons between the shortest path structures of different networks.

The union of shortest path trees (USPT) as an alternative reduced topology has proved an interesting
representation for many different complex networks [117, 123] (Chapter 2). The union of shortest paths of
a weighted graph G is the subgraph of G that contains all the links that belong to a shortest path in G . The
union of all shortest paths in G equals the union of the shortest path trees G∪SPT (USPT) rooted at each node
in G . The properties of the USPT have been analyzed before in various studies [114, 117], where an impor-
tant attribute is that the USPT always includes the Minimum Spanning Tree (MST) [117]. The regime where
the USPT coincides with the MST is called the strong disorder regime, the counterpart is the weak disorder
regime [114, 116]. One may compare the strong disorder regime with the superconductive phase for electri-
cal currents in solids, while the weak disorder corresponds with the dissipative phase, where the resistance of
the solid causes the electrical flow between two voltage points to spread over all possible paths between those
two points. The USPT is determined by the topology of the underlying network and its link weight structure or
distribution [117]. For the length of the shortest path, a critical number of nodes N has been found depending
on the link weight distribution that symbolizes the transition from weak to strong disorder [11].

In this study, we present a new general sampling method based on shortest paths which can be applied to
any complex weighted network with any underlying link weight distribution. Via a parameterα, the link den-
sity of the networks can be tuned, always resulting in the USPT of the network (for examples see Figures 3.1
and 3.2). After describing the construction of those α-trees, the influence of the tuning parameter α on the
properties of the resulting network topologies is analyzed. Furthermore, the USPT sampling method reveals a
new link ordering based on the importance of a link for the shortest path structure. Finally, we apply this new
sampling method of the so-called α-trees to compare functional brain networks of multiple sclerosis (MS)
patients and healthy controls.

3.2. CONSTRUCTION OF α-TREES
Let w denote an arbitrary link weight in a graph G (N ,L) with value w ∈ [0,1]. We construct a new graph
Gα (N ,L) in which all link weights are transformed and the new value for the arbitrary link is V = h (w,α),
where α is a control parameter. Here, we choose

h
(
y,α

)= y
1
α (3.1)

13
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α 

Strong disorder regime 

 
Weak 

disorder 
regime 

USPT=MST 

0 

Figure 3.1: Example of the USPT for different values of α.

where y ∈ [0,1]. The motivation for this choice of transform is the following. If w has the distribution function

Fw (x) = Pr[w ≤ x]

then V has the distribution function

Pr[V ≤ x] = Pr
[

w
1
α ≤ x

]
= Pr

[
w ≤ xα

]= Fw
(
xα

)
Since only links with small link weights appear in the shortest path (and thus in the USPT), mainly small
values of x are important. Following the arguments in [113, p. 414], we assume that Fw (x) is a regular distri-
bution that possesses a Taylor series at each point x ∈ [0,1]. Hence, applying the Taylor series around x = 0,

Fw (x) = Fw (0)+F ′
w (0) x +O

(
x2)

= fw (0) x +O
(
x2) ,

where fw = F ′
w , shows that, for small x,

Pr[V ≤ x] = Fw
(
xα

)
= fw (0) xα+O

((
xα

)2
)

illustrating that V follows a polynomial distribution with extreme value index α for small x. This observation
allows us to import the theory and scaling laws of polynomial links weights [114, 117]. In contrast to these
previous papers, where several instances of graphs with the same polynomial link weight distributions were
studied, here, one single graph with an initial link weight distribution Fw (x) is transformed in different graphs
Gα with near to polynomial link weights. After the link weight transformation (3.1), we construct the USPT of
the graphs Gα, which we denote by Uα or α-trees (for an example see Figure 3.2b).

The analysis shows that the initial link weight distribution Fw (x), given that it is regular, looses influence
after the transformation (3.1). The constant fw (0) is, for small x, the only reference to the original link weight
distribution after the transformation (3.1). Thus, the parameter α, also called extreme value index, plays a
more dominant role than Fw (x). As demonstrated in the sequel, the main role of the initial link weight distri-
bution Fw (x) is to assign an ordering of the link weights in the graph. Therefore, we can confine ourselves to
two different underlying link weight distributions, uniformly distributed link weights in the interval (0,1) and
exponentially distributed link weights with mean 1.
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(a) Step function of the number of links of α-trees.
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(b) Visualization of the α-trees with different number of links.
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Figure 3.2: (a) Example of the step function of the number of links depending on the tuning parameter α for uniformly distributed link
weights in the interval (0,1) and N = 20. (b) Visualization of the corresponding α-trees with different number of links starting from the
MST with L = N −1.
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In Figure 3.2, we plotted α against the number of links of the USPT based on an example network with
N = 20 nodes and exponentially distributed link weights with rate 1. We observe that the number of links in
the USPT can be changed from L = N−1 (MST) to L = (N

2

)
(the complete graph KN ) by tuning the parameterα.

In [114] and [116] Van Mieghem et al. showed that there exists a critical αc > O
(
L−2

)
, where L is the number

of links in the original graph, and for all α≤αc , the USPT Uα is equal to the MST. The estimate of the critical
αc of the phase transition was improved in [114] toαc =O(N−β), where the power law exponent β reflects the
underlying graph. The best estimates so far are described in [117]. The α-regime [0,αc ] corresponds to the
strong disorder regime, where all transport flows over the backbone (MST) of the network, while theα-regime
where α > αc , is the weak disorder regime, where many paths are used for transport. In our case, αc is the
first “jump point” from the N −1 links in the MST to N links (see Figure 3.2). More general, all the α-values,
for which Uα is the same, constitute an α-interval and the beginning of the j -th α-interval is defined by the
jump point ξ j , where by definition ξ0 = 0 and ξ1 = αc . The number of links in Uξ j equals Lξ j = N −1+ j for

0 ≤ j ≤ (N−1
2

)
. Further, we denote the link density of a USPT by lα = Lα/

(N
2

)
.

For very small values of α, we faced some numerical problems since the exponent of the weight transfor-
mation function (3.1) becomes very big and thus the link weights are all very small. By applying a very high
precision, these numerical problems could be solved for most networks (for the exact number of necessary
digits see [114]). However, in some cases, a single very small original link weight can be transformed with a
small enough α-value and rounded to 0 before αc was reached. As we observe later in the results, these cases
probably cause the discrepancies for small values of α.

3.3. PROPERTIES OF α-TREES

3.3.1. LINK DENSITY OF α-TREES
In Figure 3.3a, we plotted the link density lα versus α based on uniformly and exponentially distributed link
weights. For these plots (Figure 3.4), we calculated the average jump point, denoted by ξ̃lα , based on 104

realizations of a network with N = 20 nodes, each with different link weights, though drawn from one of the
distributions. The average jump point is representative since the 80% confidence interval offers a quite nar-
row band around the average value (see Appendix Figures 3.11 and 3.12). Similar to previous studies [114],
we observe a phase transition for the link density of the USPT between two extreme link densities (see Fig-
ure 3.3a). For α → 0, we can confirm the strong disorder regime where the USPT of the transformed link
weights equals the MST. For α→∞, we find that all link weights approach 1 and, thus, the USPT equals the
complete graph.

It appears that (see Figure 3.3a), for both uniformly and exponentially distributed link weights, the average
number of links is close to

E [lα] ' 2

N
+

(
1− 2

N

)
1+exp(−b (α− c)) ,

(3.2)

which is a modified logistic function with limα→0 E [lα] = (N −1)/
(N

2

) = 2
N and limα→∞ E [lα] = 1 (fitted with

least-square procedure). The parameter b represents the steepness and c the midpoint of the curve. Even
though, the initial average jump points do not differ much for the two distributions, the increase in link
density for higher jump points was less steep for the exponential than for the uniform distribution (see Fig-
ure 3.3a). To investigate the influence of the number of nodes N on the average jump point, we show the same
plot for different number of nodes N = 10,20 and 50 and uniformly distributed link weights in Figure 3.3b,
where the curve was fitted with the logistic function from Eq. (3.2). For bigger N , the parameter b of the
logistic function in Eq. (3.2), which represents the steepness of the function, decreases while the parameter
c, the midpoint of the growth, increases. Except for the different starting points in link density, the overall
development for different number of nodes appears to be similar (Figure 3.3b). For all curves in Figure 3.3,
the logistic function provides a good fit except for very small values of α < 1, which can probably be traced
back to numerical imprecision (as mentioned in the previous section).

3.3.2. DISTRIBUTION OF αc AND OTHER JUMP POINTS

We have discovered a precise way to determine αc : (a) start with α = 1
L2 , which should, according to [116],

result in Uα = MST with N −1 links, (b) gradually increase α until1 the jump point ξ1 = αc , i.e. when U/xi1

has N links. Previously in [114, 117], the determination of the critical threshold αc was more complicated,

1Actually, the bi-section method was applied to find αc by iteratively halving the interval around the jump point ξ1.
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(a) Link density of α-trees for different link weight distributions.
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(b) Link density of α-trees for different number of nodes N .

1.0

0.8

0.6

0.4

0.2

 l α
  

1614121086420
α

 N=10, uni(0,1) distributed link weights
 N=20, uni(0,1) distributed link weights
 N=50, uni(0,1) distributed link weights
 fitted logistic function with b=1.73 and c=1.85, N=10
 fitted logistic function with b=1.50 and c=2.35, N=20
 fitted logistic function with b=1.37 and c=3.0, N=50

Figure 3.3: (a) The link density lα of the α-tree versus α for 104 realizations of networks with N = 20 nodes, both for exponentially
distributed link weights with mean 1 and uniformly distributed link weights in the interval (0,1). (b) The link density lα versus α for 104

realizations of networks with N = 10,20 and 50 nodes for uniformly distributed link weights between 0 and 1. All curves were fitted with
the function in Eq. (3.2) with a least-squared fitting procedure. For bigger N , the parameter b of the logistic function in Eq. (3.2), which
represents the steepness of the function, decreases while the parameter c, the midpoint of the growth, increases. Except for the values
of α< 1, the fitted function describes the development quite accurately. The discrepancies for small values of α probably originate from
numerical imprecision.
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because each time the USPT in a graph with polynomial link weights with a certainα had to be generated and
checked whether the USPT was equal to the MST. In order to have good statistics, for each α, this procedure
had to be repeated at least 104 times. The present transform method starts from m graphs, each with link
weights drawn from the distribution function Fw (x), and determines in each of those graphs separately the
value of the jump point ξ1 = αc , described above. A similar procedure was applied to determine the second
and higher jump points.

Figure 3.4 shows the distribution of ξ1 =αc and ξ2 for uniformly and exponentially distributed link weights.
We reached a good fit with a Weibull distribution

f (x) = abxb−1 exp(−axb) (3.3)

for the first and second jump point with, in each case, similar parameter values a and b for both link weight
distributions (see Figure 3.4). These results suggest that the distribution of the initial jump points, αc and
ξ2, does not depend on the specific underlying link weight distribution. The first point in both histograms
(Figure 3.4) is high due to a high number of very low jump points (lower than the applied numerical threshold
10−4). These outliers for very small values of α are again probably emerging from numerical imprecision
causing small link weights to be rounded to 0.

Applying our computationally less exhaustive method to find the jump points, we could also easily de-
termine all higher jump points for each graph (for histograms see Figure 3.5). From the third jump point
onwards, the normal distribution provided a better fit than the Weibull distribution (see Figure 3.5). For the
third jump point, the histograms of the two underlying link weight distributions, exponential and uniform,
possess a big overlap whereas for increasing jump points this overlap decreases and the mean for the expo-
nentially distributed link weights becomes higher than the average jump point for the uniformly distributed
link weights.

Our results for the critical value αc are also in line with previous studies. In [114] (and later confirmed in
[117]), simulations accompanied by heuristic arguments revealed that the probability FT (α) = Pr[Uα = MST ],

is approximately a Weibull distribution FT (α) ≈ 2
−

(
α
αc

)2

, where they definedαc as the median of this distribu-
tion (Pr

[
Uαc = MST

]= 0.5) and discovered from simulationsαc = 1.06·N−0.63. This distribution corresponds
to the upper tail of our histogram for αc since

FT (α) = Pr[Uα = MST ] = Pr[αc >α] = 1−Pr[αc ≤α] = exp(−a ·αb),

where the parameters a and b denote the fitted values in Figure 3.4a. Following this reasoning, we re-
constructed the Weibull distribution based on polynomially distributed link weights from previous work [114]
(see grey-dotted line in Figure 3.4a), which is close to our observations for the transformed exponentially and
uniformly distributed link weights.

We also analyzed the spacing ∆α j = ξ j −ξ j−1 for j > 1 (see Appendix Figures 3.9a and 3.9b) which seems
to possess a power-law distribution with exponents between 2 and 3 for both underlying link weight distribu-
tions. These spacings depend on the difference between the direct added link weight and the sum of weights
along the path in the α-tree before that link is added. When this difference reaches zero for increasing values
of α, the link is added to the α-tree, which then also uniquely defines the corresponding jump point for this
link.

3.3.3. A NEW LINK ORDERING BASED ON THE α-TREES
The following USPT Inclusion Theorem shows that the USPT with smaller value ofα is always included in the
USPT with larger value of α.

Theorem 1 (USPT Inclusion Theorem) If α1 ≥α2 > 0, then Uα2 ⊆Uα1 .

The USPT Inclusion Theorem 1 relies on the property that the ordering of the weights of all the links is
independent of α > 0. Indeed, we order the original set of link weights in G (N ,L) as w(1) ≥ w(2) ≥ . . . ≥ w(L),
where w(i ) denotes the i -th smallest link weight and 1 ≤ i ≤ L. After the link weight transformation (3.1), the
ordering of the link weights is unchanged,

w
1
a

(1) ≥ w
1
α

(2) ≥ . . . ≥ w
1
a

(L)

because x
1
α is increasing in x (for each value of α> 0).
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(a) Histogram of αc .
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(b) Histogram of the second jump point.
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Figure 3.4: (a) Histogram ofαc from 104 generated matrices from the uniform (0,1)-distribution and exp(1) distribution, respectively, for
N = 20 with a fitted Weibull distribution f (x) = abxb−1 exp(−axb ). The grey-dotted line represents the fitted Weibull distribution from
previous work (Van Mieghem and Magdalena, 2005). (b) Histogram of the second jump point for the same matrices with a fitted Weibull
distribution. The first point in both histograms is high due to a high number of jump points that are very low (lower than the numerical
threshold 10−4).
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Figure 3.5: Histograms of higher jump points from 104 generated matrices from the uniform (0,1)-distribution and exp(1) distribution
(shown in grey), respectively, for N = 20 with fitted normal distributions. For the third jump point, the histograms of the two under-
lying link weight distributions possess a big overlap whereas for increasing jump points this overlap decreases and the mean for the
exponentially distributed link weights becomes higher than the average jump point of the uniformly distributed link weights.

The link with i -th smallest link weight w(i ) has weight w
1
α2

(i ) in Gα2 . We call the index i the rank of the link
since the ordering of the weights of all the links is independent of α > 0. This link in Gα1 will have the same

rank i , but its weight is w
1
α1

(i ) . Furthermore, the proof assumes that all original weights are different, so that
strict inequality signs can be used (that simplify the proof). With overwhelming probability, all link weights
generated from a realistic probability distribution function Fw (x) are distinct.

Proof: The proof is by contradiction (reductio ad absurdum). Assume that there exist a link with rank
k in Gα2 that belongs to Uα2 , but this link in Gα1 does not belong to Uα1 . The link with rank k connects the
nodes A and B in both Gα1 and Gα2 . The fact that k ∉Uα1 means that there exists a path P AB between nodes
A and B , such that

w
1
α1

(k) >
∑

i∈P AB ;i<k
w

1
α1

(i ) (3.4)

where, importantly, the rank condition i < k for a link implies that each link in P AB must have a smaller

weight than the link with rank k. Using w
1
α1

(i ) = w
1
α2

(i ) w
α2−α1
α1α2

(i ) , we rewrite inequality (3.4) as

w
1
α1

(k) = w
1
α2

(k) w
α2−α1
α1α2

(k) > ∑
i∈P AB ;i<k

w
1
α2

(i ) w
α2−α1
α1α2

(i )

Since i < k and α1 ≥α2, it holds that w
α2−α1
α1α2

(i ) > w
α2−α1
α1α2

(k) and

∑
i∈P AB ;i<k

w
1
α2

(i ) w
α2−α1
α1α2

(i ) > w
α2−α1
α1α2

(k)

∑
i∈P AB ;i<k

w
1
α2

(i )

from which we find the inequality

w
α2−α1
α1α2

(k) w
1
α2

(k) > w
α2−α1
α1α2

(k)

∑
i∈P AB ;i<k

w
1
α2

(i )

Hence,

w
1
α2

(k) >
∑

i∈P AB ;i<k
w

1
α2

(i )
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which contradicts the hypothesis that the link with rank k ∈Uα2 . ä
In other words, all links in Uα2 belong to Uα1 if 0 <α2 ≤α1. Thus, the USPT Inclusion Theorem 1 provides

another proof besides the one in [117] of the property that the MST belongs to the USPT Uα for any α> 0.
For allα ∈ (0,αc )-interval, the USPT Uα equals the MST with L = N−1 links. The next interval, [αc ,αc+∆α)

with ξ1 =αc and∆α= ξ2−ξ1, creates a USPT equal to the MST plus one link, and so on. By the USPT Inclusion
Theorem 1, the set of subgraphs Uξ1 ⊂ Uξ2 ⊂ ·· · ⊂ Uξ(N−1

2 )
are all connected and two subsequent subgraphs

differ by one link, i.e.

Uξ j \Uξ j−1 = l( j) for 1 ≤ j ≤
(

N −1

2

)
.

In other words, each jump ξ j can be related to a particular link l( j), which is not contained in any USPT Uα

with α< ξ j . In this way, links in any weighted graph can be ordered.
We compared the new link ordering based on the α-trees with the ranking of the links that emerges from

the original link weights (for an example see Figure 3.6). For the links included in the MST, we assigned the
same ordering for the USPT ranking as for the original link weight ordering. In Figure 3.7a, we plotted a
histogram of the correlation values between the original link weight ordering and the USPT ranking for 100
networks with uniformly distributed link weights (average correlation of 0.775). This result shows that the
USPT ordering is positively correlated with but not trivially connected to the original link weight ordering.

For the construction of the MST, we include the smallest link weights starting with the one corresponding
to rank 1 and then adding the higher ranked link weights whenever they do not form a circle (following the
Kruskal algorithm). For increasing values of α, we add links to the MST. Every added link cannot be smaller
in rank than all the links along the alternative existing shortest path because this link would otherwise have
been included in the MST already. This rank relation among the added link weights explains the positive
correlation of the original ranking and the USPT ranking.

Since the link betweenness is also based on the shortest path structure of the underlying network, we
compared the USPT link ordering to the ranking depending on the link betweenness. However, the link be-
tweenness ranking is not necessarily leading to a unique order. In other words, there may exist different links
with the same link betweenness. Figure 3.7b shows a histogram of the correlation values between the USPT
ranking and the ranking of the links based on their link betweenness. We found a moderate positive cor-
relation (but again no trivial connection) between the link ordering based on the link betweenness and the
link ordering based on the α-tree sampling method (see Figure 3.7b). Here, we could only correlate all the
links that had a non-zero betweenness, which equals the number of links in the USPT U1 (since α= 1 returns
the original weights and the USPT then consists of all links with non-zero betweenness). Thus, on average
only approximately 20% of the links had a non-zero betweenness and could be ranked (see also Appendix
Figure 3.10). Our link ordering can rank all links in G , which can be regarded as an advantage over the link be-
tweenness ranking. Concerning the connection between the USPT and the link betweenness, we also proved
the following theorem.

Theorem 2 Among all subgraphs of the weighted KN with the same number of links, the USPT Uα has the
highest overall link betweenness.

Proof: Let us assume that the link weights have been transformed with (1−w)1/α for a certain fixed value
of α > 0. We then construct the USPT Uα. The node betweenness in the underlying network or substrate is
equal to the node betweenness in the USPT [122]. The link betweenness is defined as the number of shortest
paths between all node pairs that traverse that link [122]. If a link is a subpart of a shortest path, it is included
in the USPT. Hence, the construction of the USPT filters out all links with zero link betweenness. Therefore,
the USPT includes all links with a non-zero betweenness.

The overall betweenness of a graph equals the sum of all link betweenness values. The overall between-
ness of the USPT is then (for a certain fixed value ofα) equal to the overall betweenness of the substrate, since
all links with positive betweenness are included in the USPT. Any other subgraph with the same number of
links as the USPT would include a zero-betweenness link and exclude therefore a link with a higher between-
ness. Thus, the overall betweenness of any other subgraph with the same number of links as the USPT is
lower than the betweenness of the USPT, which proves the theorem. ä

In addition, the set of k ≥ N −1 highest links, ordered by the link betweenness, does not necessarily gen-
erate a connected subgraph.
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Figure 3.6: Scatterplot of different link orderings of an example network with N = 20, based on the original link weights against a link
ordering based on our USPT method. Note that there seems to be a positive correlation between the two link orderings. Links included
in the MST were given the ranking according to the original link ordering.

To sum up, the new link ordering based on the α-tree sampling method is positively correlated with the
original and the link betweenness ranking but exploits the shortest path structure of the underlying network
even more by proposing a method to rank all links with regard to their importance for the shortest paths (also
the links with zero betweenness). For any value of the tuning parameter α, this sampling method results
in a connected subgraph of the network always including all shortest paths with regard to different levels of
importance.

3.4. APPLICATION TO FUNCTIONAL BRAIN NETWORKS
We applied the α-tree sampling method to functional brain networks from patients and healthy controls.

DATA ACQUISITION

The used data set included the functional brain networks of 68 healthy controls and 111 MS patients based on
magnetoencephalography (MEG) measurements, which overlapped with the group data set analyzed in [98,
99]. For details of the data acquisition and processing, we refer to the previous study [99]. The data was
subdivided into six frequency bands: delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha1 (8 - 10 Hz), alpha2 (10 - 13
Hz), beta (13 - 30 Hz), and lower gamma bands (30 - 48 Hz). As a link weight, the Phase Lag Index (PLI) was
computed between all time series of the N = 78 brain regions for each of the frequency bands [91, 93].

CONSTRUCTION OF α-TREES FOR FUNCTIONAL BRAIN NETWORKS

In functional brain networks, the graph G equals the complete graph KN on N nodes and a high value of w
reflects a high correlation between the brain regions that are connected by the link. We transform each link
weight w in KN to be able to use the USPT method and obtain a new value for the link specified by

V = (1−w)
1
α (3.5)

where α> 0 is the tuning parameter and the transform Ṽ = 1−w is needed to map a high link weight onto a
low link weight, where Ṽ ∈ [0,1] since w ∈ [0,1].

In Figure 3.8, the mean link density of the USPT under the link weight transformation (1−w)1/α is differ-
ent for different frequency bands. The gamma-band shows the highest link density over the whole range of
regarded α-values, and, on the other hand, the alpha1-frequency band produces the sparsest USPT over the
whole range.
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(a) Correlation between USPT and original link weight ranking.
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(b) Correlation between USPT and betweenness centrality ranking.
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Figure 3.7: Histograms of correlation values between different rankings of the links from 100 uniform (0,1)-distributed networks with
N = 20. (a) Correlation between USPT ranking and original ranking. (b) Correlation between USPT ranking and betweenness centrality
ranking. There seems to be a positive correlation in both cases.
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Table 3.1: p-values of the MWW-test for the distribution of link densities of MS patients against healthy controls. The p-values marked
with ∗ are significant under the 5% significance level.

frequency band alpha1 alpha2 delta theta beta gamma
p-values .1957 .0857 .0375∗ .0017∗ .7772 .7003
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Figure 3.8: Mean link density of the USPT of healthy controls and MS patients over different frequency bands under the link weight
transformation (1−w)1/α.

Concerning differences between patients and healthy controls in Figure 3.8, we find that the MS patients
have a lower link density of their USPT in the delta and theta frequency band over the whole range ofα-values
and a slightly lower one also in the alpha1 frequency band. In addition to that, patients show a higher link
density of their USPT in the alpha2 band. We tested those differences for their statistical significance and
showed the p-values of the Mann-Whitney-Wilcoxon (MWW) test in Table 3.1. If we choose the significance
level of 0.05, we find statistically significant differences between patients and healthy controls in the delta
and theta frequency band.

With the sampling method of the α-trees, we found different numbers of links in the USPT over different
frequency bands and also differences between MS patients and healthy controls over the whole range of α-
values. Usingα as a tuning parameter, we can adjust the link density of our network to a favored level. We can
thereby reach any link density between 100% and N −1 links, always guaranteeing to include the MST and
therefore to obtain a connected subgraph. With this approach, we succeeded in filtering out the low original
link weights (corresponding to low PLI values) which is often the objective for functional brain networks. The
USPT includes then per construction all high original link weights (high PLI values) up to a certain level as
direct shortest paths.

The found significant differences between MS patients and healthy controls are in line with previous stud-
ies. A different, more classic analysis on nearly the same data set [99] found that for MS patients, there has
been a higher mean PLI value in the delta and theta frequency band and a lower mean PLI value in the alpha2
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frequency band. The higher mean PLI value in the delta and theta band seems to align with our findings of
a lower link density for the USPT for patients under the transformation (1− w)1/α. On the same data set,
a probabilistic approach for the USPT was also studied 2. Here, significant differences were also found in
the same frequency bands but the link density of the USPTs was above 99%. Therefore, the USPT under the
probabilistic link weight transformation had a very dense representation and was not tunable with any pa-
rameter. Thus, the α-tree method can be seen as a complementary approach to the classic MST analysis and
the probabilistic USPT representation because the tuning parameter α allows us to reach any favorable link
density.

3.5. CONCLUSION
In this study, we proposed a new general sampling method ofα-trees which reveals the shortest path structure
of any underlying network under different levels of importance. We showed the influence of the underlying
link weight distribution on the development of the link density for increasing values of the tuning parame-
ter α. The critical α, which represents the phase transition between strong and weak disorder regime, and
other initial jump points seem to be independent of the underlying link weight distribution. However, for
higher link densities of the α-trees the underlying link weight distribution seems to obtain more influence.
We showed that the new sampling method ofα-trees gives rise to a new link ordering which facilitates to rank
the link importance with regard to the shortest path structure for all links in the network. This new USPT
link ordering is related to the link betweenness and can rank all links with respect to their importance for the
shortest path structure (also those with zero betweenness). Furthermore, the α-tree sampling method was
able to detect significant differences between MS patients and healthy controls. Those differences were found
in the same frequency bands as in previous studies on a similar data set [99] (and in Chapter 2). Therefore, we
propose theα-trees a new sampling method for extracting differences between the functional brain networks
of patients and healthy controls. Future work should explore more data sets of functional brain networks from
patients suffering from other brain disorders. Moreover, this new method can be applied in many different
areas of complex networks ranging from transportation networks to electrical networks where especially the
new link ordering can be useful to find bottlenecks concerning the robustness of these networks.



3

26 3. GENERALIZED α-TREE SAMPLING METHOD SHOWS LINK IMPORTANCE BEYOND BETWEENNESS

3.6. APPENDIX

3.6.1. SPACINGS
The spacing ∆α j = ξ j − ξ j−1 for j > 1 seems to be an interesting feature of Uα (see Figures 3.9a and 3.9b).
The distribution of those spacings ∆α j seems to be a power-law distribution with exponents between 2 and
3 (see Figures 3.9a and 3.9b). Furthermore, we face only small differences between the exponential and the
uniform distribution. Therefore, the initial link weight distribution seems to have only limited influence on
those spacings.

3.6.2. ADDITIONAL PROPERTIES OF THE USPT
TRANSFORMATIONS h(x,α) THAT POSSESS THE USPT INCLUSION PROPERTY

Here, we aim to identify a class of link weight transformation functions h(x,α) that possess the generalized
USPT inclusion property. Specifically, we construct the USPT Uα on the weighted network G(α) where the
weight of each link is a function h(x,α) of the weight in the original network. The objective is to discover
the transform functions h(x,α) such that the generalized inclusion property follows, i.e. for any pair α1 ≥
α2,Uα2 ⊆Uα1 always holds or Uα1 ⊆Uα2 always holds.

Theorem 3 (Transformation Functions) If a transform function h(x,α) meets the following conditions: (a)
h(x,α) is monotonously increasing or decreasing with x; (b) h(x,α) is monotously increasing or decreasing
with α; and (c) 

∂
(
∂ logh(x,α)

∂α

)
∂x < 0 if ∂h(x,α)

∂x > 0
∂
(
∂ logh(x,α)

∂α

)
∂x > 0 if ∂h(x,α)

∂x < 0

then the inclusion property Uα2 ⊆Uα1 holds for α1 >α2.

Proof: The condition (a) insures that the ordering of the link weights in G(α) is the same for any α. Thus,
if the link weight h(xi ,α1) is the i -th smallest weight in G(α1), the corresponding weight h(xi ,α2) in G(α2) is
as well the i -th smallest. For simplicity, the index i means that h(xi ,α) is the i -th smallest weight in G(α).

For any link weight x and a positive, small constant ∆> 0 , we have

h(x,α+∆) = h(x,α)+∆∂h(x,α)

∂α
+O

(
∆2)

Hence,
h(x,α+∆)

h(x,α)
= 1+ ∆

h(x,α)

∂h(x,α)

∂α
+O

(
∆2)

and
∂
(

h(x,α+∆)
h(x,α)

)
∂x

=∆
∂
(
∂ logh(x,α)

∂α

)
∂x

+O
(
∆2) (3.6)

Furthermore, for sufficiently small∆> 0, the sign of the left- and right-hand side partial derivatives are equal.
For any index i < j , we have that h(xi ,α) < h(x j ,α), since the index i of the link denotes the rank of

the weight h(xi ,α) in G(α). If ∂h(x,α)
∂x > 0, then xi < x j , i.e. xi is also the i -th smallest weight in the original

network. In this case, equation (3.6) arrives at
∂
(

h(x,α+∆)
h(x,α)

)
∂x < 0, according to condition (c) and it implies that

h(x j ,α1)

h(x j ,α2)
< h(xi ,α1)

h(xi ,α2)
(3.7)

If ∂h(x,α)
∂x < 0, then xi > x j in the original network. Equation (3.6) becomes

∂
(

h(x,α+∆)
h(x,α)

)
∂x > 0 according to condi-

tion (c) and it implies the inequality (3.7) as well.
Assume that there exists a link with rank k in G(α1) that does not belong to Uα1 . This means that there

exists a path P AB between nodes A and B , such that

h(xk ,α1) > ∑
i∈P AB ;i<k

h(xi ,α1) = ∑
i∈P AB ;i<k

h(xi ,α2)
h(xi ,α1)

h(xi ,α2)
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(a) Spacings of exponentially distributed link weights.
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(b) Spacings of uniformly distributed link weights.
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Figure 3.9: Histograms of the spacings (in log-log plots) each based on 104 generated matrices under the link weight transformation

w (1/α)
i j for all i , j for N = 20 with a fitted power law in (a) from the exp(1) distribution and in (b) from the uniform (0,1)-distribution.
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Figure 3.10: Frequency of zero-betweenness links for 100 networks with uniformly distributed link weights from the interval (0,1).

Using the basic inequality (3.7) for h,∑
i∈P AB ;i<k

h(xi ,α2)
h(xi ,α1)

h(xi ,α2)
> h(xk ,α1)

h(xk ,α2)

∑
i∈P AB ;i<k

h(xi ,α2)

leads to
h(xk ,α2) > ∑

i∈P AB ;i<k
h(xi ,α2)

which means that a link with rank k does not belong to Uα2 and, consequently, Uα2 ⊆Uα1 . ä
The transformation functions specified in Theorem 3 are possibly not the only functions that possess the

inclusion property.

DETERMINATION OF JUMP POINTS

Suppose that the link with rank k between node A and B is just included in Uα1 , but not in Uα2 forα2 <α1 < 1.
Then, from (3.4), the following equations hold w

1
α1

(k) ≤
∑

i∈P AB (α1);i<k w
1
α1

(i ) for any path P AB (α1) in Gα1

w
1
α2

(k) >
∑

i∈P ∗
AB (α2);i<k w

1
α2

(i ) P ∗
AB (α2) is the shortest path in Gα2

and the link with rank k between node A and B is P ∗
AB (α1). We apply Hölder’s inequality for p > 1 (see e.g.

[113, p. 107])

1

n

n∑
j=1

∣∣x j
∣∣≤ (

1

n

n∑
j=1

∣∣x j
∣∣p

) 1
p

to the shortest path P ∗
AB with hopcount h

(
P ∗

AB

)
(i.e. the number of links in the path P ∗

AB ) and obtain, for
any p = 1

α2
> 1,

1

h
(
P ∗

AB (α2)
) ∑

i∈P ∗
AB (α2);i<k

w
1
α2

(i ) ≥
 1

h
(
P ∗

AB (α2)
) ∑

i∈P ∗
AB (α2);i<k

w(i )

 1
α2

so that
w(k) >

{
h

(
P ∗

AB (α2)
)}α2−1 ∑

i∈P ∗
AB (α2);i<k

w(i )



3.6. APPENDIX

3

29

If h
(
P ∗

AB

) = 1, then the inequality is always true by the ordering assumption w(k) > w(k−1) for any link with
rank k. However, the shortest path between A and B consists of one link and that link must be, by construc-
tion, the link with rank k. Hence, we conclude that h

(
P ∗

AB (α2)
) ≥ 2. Solving the inequality for α2 yields

α2 < 1−
log

∑
i∈P ∗

AB (α2);i<k
w(i )
w(k)

logh
(
P ∗

AB (α2)
)

where
∑

i∈P AB ;i<k
w(i )
w(k)

≤ h (P AB ), with equality only if all order statistics, hence the link weights, are the same.

If
∑

i∈P ∗
AB (α2);i<k

w(i )
w(k)

< 1, then α2 > 1, in which case the Hölder’s inequality cannot be applied. Hence, the

inequality α2 < 1 implies that
∑

i∈P ∗
AB (α2);i<k w(i ) > w(k). In summary, we find that a link with rank k between

A and B that does not belong to Uα2 for α2 < 1 obeys

∑
i∈P ∗

AB (α2);i<k

w(i ) > w(k) >
 ∑

i∈P ∗
AB (α2);i<k

w
1
α2

(i )

α2

(3.8)

where h
(
P ∗

AB (α2)
)≥ 2. Whenα increases fromα2 towardsα1, the link with rank k becomes the shortest path

between A and B . Furthermore, when Uα1 =Uα2 ∪ {the link with rank k}, then P ∗
AB (α2) remains the shortest

path for α ∈ [α2,α1) and α1 is a jump point, or the smallest value of α for which inequality (3.8) does not hold
anymore.
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Figure 3.11: The contour plot over 104 realizations of network with N = 20 nodes and the underlying uniform link weight distribution
with values between (0,1) connects α to the number of links in Uα. The average jump point for the link density is visualized as a dotted
black line and the different shades of grey symbolize the different confidence intervals for this jump point. 100% confidence intervals
means the space between the minimum and maximum jump point, 80% confidence interval then colors the space between the 10th and
the 90th percentile, etc..
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Figure 3.12: The contour plot over 104 realizations of network with N = 20 nodes and the underlying exponential link weight distribution
with mean 1 connects α to the number of links in Uα. The average jump point for the link density is visualized as a dotted black line
and the different shades of grey symbolize the different confidence intervals for this jump point. 100% confidence intervals means the
space between the minimum and maximum jump point, 80% confidence interval then colors the space between the 10th and the 90th
percentile, etc..
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MOTIFS IN FUNCTIONAL BRAIN NETWORKS

4.1. INTRODUCTION
Recent studies in neuroscience applied the measure of Phase Transfer Entropy (PTE) to construct the effec-
tive connectivity network between brain regions and observed a global posterior-anterior pattern in higher
frequency bands [50]. However, the effective connectivity at a local level remains yet to be analyzed. In this
chapter, we analyze with PTE the directionality at a local level in the form of network motifs.

Effective connectivity describes the causal effect of one brain region on another region [2, 35]. To calculate
this pairwise value between brain regions, the measure of Transfer Entropy (TE) is often applied [82]. The TE
from a region X to a region Y quantifies the improvement in predicting the future of time series X if the
present value of Y is also included. Recent work has extended this measure to the analysis of phase time
series (Phase Transfer Entropy (PTE); [61]). The advantage of phase time series instead of the original time
series is the lower computational cost for analyzing their pairwise interactions [79]. When representing brain
regions as nodes and assigning PTE values as link weights, one can build the effective connectivity network.

Based the pairwise PTE values, Hillebrand et al. [50] observed that for higher frequency bands, alpha1,
alpha2 and beta, the global information flow was predominantly from posterior to anterior brain regions,
whereas the pattern was opposite for the theta band. The latter, an anterior-to-posterior pattern, was also dis-
covered in electroencephalography (EEG) data [20]. The emergence of this pattern is still not completely un-
derstood. The different patterns of information flow in resting-state networks are likely driven by the strong
posterior hubs and their high neuronal activity [21, 50, 70]. Furthermore, activity in the alpha and theta fre-
quency band has both been related to attention encoding probably its different spatiotemporal contents [33].
Another biological explanation for the reverse patterns could be the two interacting subsystems of the Default
Mode Network (network of brain regions active during resting-state): The temporal and the fronto-parietal
system, which are responsible for memory and self-relevant mental simulations, respectively [13], seem to ex-
ist in parallel on different frequencies representing together an integration mechanism for brain function [29].
This hypothesis is strengthened by results from invasive animal recordings of the visual cortex [4, 109], where
the opposite directions of information flow have been connected with the process of memory consolida-
tion [84].

On a local scale, network motifs are the building blocks of all networks [68]. On top of the micro-structure
of nodes and links, network motifs are small subgraphs that form a higher-order organization of the net-
work [7]. Most commonly, network motifs of 3 or 4 nodes are analyzed. Friedman et al. [34] were recently
able to identify Alzheimer patients with directed motif analysis in a so-called progression network. Previous
work reported that the motif with ID 78 was overexpressed with respect to random networks in the structural
brain networks of the cat and the macaque [88] (see Fig. 4.2 for motif IDs). The same motif has also been
perceived as a good identifier for structural hubs [52]. Recently, Battiston et al. analyzed the interdepen-
dency between structure and function in the human brain applying a multilayer motif approach [6]. With
computational models of neuronal activity, Battaglia and co-authors [5] linked effective connectivity motifs
based on TE to underlying structural motifs and suggested that changes in the effective connectivity lead to
different global directions of information flow. With similar motivation of linking frequencies of single motifs
to global outcomes, Benson et al. [7] exploited this higher-order organization of the network to define a new
motif-based clustering algorithm.
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The aim of this chapter is to investigate effective connectivity motifs in empirical data with the measure of
PTE. The subchapter 4.2 describes the analysis of information flow motifs based on the measure of directed
Phase Transfer Entropy (dPTE) and focuses on data from the alpha2 frequency band. An extended investi-
gation of both the alpha2 and the theta frequency band data is conducted in the following subchapter 4.3
starting directly from the measure of PTE.

4.2. MOTIF-BASED ANALYSIS OF EFFECTIVE CONNECTIVITY IN BRAIN NET-
WORKS

We first explain the construction of the effective connectivity network based on the sending and receiving
properties of a node. Then, we analyze the significant motifs in this network. Furthermore, we apply the
recently developed motif-based clustering algorithm by Benson et al. [7] on the effective connectivity brain
network.

4.2.1. METHODS
This section explains the measure of directed Phase Transfer Entropy (dPTE), the construction of the directed
networks, the motif search and our application of the motif-based clustering.

DIRECTED PHASE TRANSFER ENTROPY

The effective connectivity network is based on MEG measurements1 of 67 healthy controls from a preceding
study [50]. We focus our analysis on the alpha2 frequency band (10-13 Hz) because the previous study ob-
served a significant pattern of posterior-anterior information flow for this frequency band. For every region
of interest (ROI) X we compute a time series in the form of a phase time series [79]. We denote a possible
value of the signal of region X at time t by xt and abbreviate the probability that the signal of X equals xt at
an arbitrary time point t to Pr[X t = xt ] = Pr[xt ]. The information flow between two ROIs or nodes, X and Y ,
is then quantified by the Phase Transfer Entropy [61]

PT EX Y (h) =∑
Pr

[
xt+h , xt , yt

] × log

(
Pr

[
xt+h |xt , yt

]
Pr[xt+h |xt ]

)
, (4.1)

for a certain time delay h, where the sum runs over all possible values xt , xt+h and yt of the signals. The (joint)
probabilities are determined over histograms of their occurrences in an epoch [61]. Following Hillebrand et
al. [50] we fix h at

h = Ns ·NROI

N±
, (4.2)

where Ns = 4096 and NROI = 78 are the number of samples and the number of ROIs, respectively, and N±
counts the number of sign changes for the phase across time and ROIs.

Motivated by Hillebrand et al. [50], we define the dPTE for nodes X and Y as

dPT EX Y = PT EX Y

PT EX Y +PT EY X
, (4.3)

which is a measure of the preferred direction of information flow between nodes X and Y . Since the PTE
can only take positive values, this definition of dPTE is well-defined and its value ranges from 0 and 1. If the
predominant flow of information is from node X to node Y , then 0.5 < dPT EX Y < 1, else 0 < dPT EX Y < 0.5.

CONSTRUCTING THE DIRECTED NETWORK

The pairwise dPTEs over all ROIs can be interpreted as a weight matrix of a fully connected network. Since the
data is from 67 subjects each over k = 20 epochs, we have 1340 weighted networks to begin our construction.
We apply a procedure to thin out links and induce a directionality per link instead of a weight. After this

This chapter has been published in J. Meier, M. Märtens, A. Hillebrand, P. Tewarie and P. Van Mieghem, Motif-Based Analysis of Effective
Connectivity in Brain Networks, in Fifth International Workshop on Complex Networks and their Applications (Springer), November 30 -
December 2, Milan, Italy. pp. 685 - 696 (2016).
1The MEG data were recorded using a 306-channel whole-head MEG system (ElektaNeuromag, Oy, Helsinki, Finland) during a no-task,

eyes-closed condition for five consecutive minutes. A beamformer approach was adopted to project MEG data from sensor space to
source space [49] and the automated anatomical labelling (AAL) atlas was applied to obtain time series for 78 cortical regions of interest
(ROIs) [40, 104]. For each subject, we extracted the first 20 artefact-free epochs of 4096 samples (3.2768 s).



4.2. MOTIF-BASED ANALYSIS OF EFFECTIVE CONNECTIVITY IN BRAIN NETWORKS

4

33

Figure 4.1: Schematic overview of the two steps for constructing the directed network (sparsification): (1) discard links close to 0.5 (2)
induce directionality for remaining links.

transformation, which we call “sparsificiation”, we obtain a sparse directed (unweighted) network for each
subject, which is amenable for motif search and analysis.

The sparsification (see Fig. 4.1) contains two steps. First, we discard all links whose weights are in close
proximity to 0.5. More precisely, every link whose average weight (over all epochs) is within the closed interval
[0.5−ασ,0.5+ασ] will not be considered, whereσ is the standard sample deviation taken over all epochs over
all pairs of nodes and α is a positive real control parameter. Under the assumption of a normal distribution
with mean 0.5, the 3σ-rule states that this procedure will remove approximately 68% for α= 1.0 and 95% for
α= 2.0 of all links.

In a second step, we determine for each remaining link whether it should be bi- or uni-directional, and in
case of the latter, in which direction the links should be oriented. Clearly, all remaining link weights are now
bounded away from 0.5, though it is possible, that for different epochs a single link weight might be lower
or higher than 0.5, which makes it ambiguous which member of the node pair is the dominant sender and
which the dominant receiver. Let k+ (k−) be the number of epochs that the dPT EX Y is above (below) 0.5
where k = k++k− is the total number of epochs for a subject. If k+/k ≥ 0.75, we assume X to be a dominant
sender and thus we induce a uni-directional link from X to Y . Contrary, we assume X to be a dominant
receiver if k+/k ≤ 0.25 and point the link from Y to X . If neither applies (0.25 < k+/k < 0.75), we assume
that X and Y frequently change roles between dominant sender and dominant receiver. Thus, we induce a
bidirectional link between them.

MOTIF SEARCH

We are using the excellent mfinder software [54], provided by the Uri Alon Lab2, to search for motifs. We
also adopted the motif IDs of mfinder for this work, to be consistent. With sparsification, we generate one
directed network for each of the 67 subjects as input for mfinder. Additionally, we construct an averaged
effective connectivity network (short: averaged network) by considering all epochs of all subjects together.
This construction results in a “virtual” subject with k = 1340 instead of k = 20 epochs. We set α to 1.0 and 2.0
to compare on different levels of sparsity.

Since the complexity of motif search increases dramatically with the size of the motif, we restrict mfinder
to search only for subgraphs of 3 and 4 nodes (further called 3-motifs and 4-motifs). The mfinder program
executes two tasks: first, it counts the frequency of all motifs in the original input network. Second, it gen-
erates a number of random networks (null model) and determines the motif frequencies in each of them as
well. In total, mfinder generates 1000 random networks using the switching algorithm described by Milo et
al. [67] for each single input network. We use the default parameters for mfinder, which preserve the degree
sequence of the original network and the number of bidirectional links.

A motif is called overexpressed if it occurs significantly more often in the original network than in the
random networks. It is essential to keep in mind that a motif which is not overexpressed may still occur
quite frequently in the original network, though it arises in a similar frequency by a random link rewiring
process. Thus, it can be argued that overexpressed motifs must carry some functional importance for the
underlying system since they do not arise merely by chance. We report the motifs that mfinder determines to
be overexpressed with z-score > 2.

2https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software

https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software
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(a) Histogram of all significantly overexpressed 3-motifs.
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Figure 4.2: (a) Frequency of significantly overexpressed 3-motifs over all regarded subjects after the ±σ and ±2σ sparsification, respec-
tively. (b)-(f ) All significant 3-motifs over all subjects together with their motif ID. The yellow motif with ID 78 is also overexpressed in
the averaged network.

MOTIF-BASED CLUSTERING ALGORITHM

Benson et al. [7] developed a clustering algorithm that partitions a network based on one specific overex-
pressed motif M . The algorithm constructs clusters by ’cutting’ through the minimal possible number of
those motifs. Formally, the clustering minimizes the motif conductance defined as

φM (S) = cutM (S,Sc )

min[volM (S),volM (Sc )]
, (4.4)

where S is the set of nodes in the cluster and Sc its complement. Here, cutM (S,Sc ) is the number of M motifs
that is cut through and volM (S) the number of M motifs that is completely in S. The algorithm can be regarded
as an extension of the classic spectral clustering algorithm [111]. The obtained clusters reveal a higher-order
organization of the network based on the specific motif M . An implementation of the motif-based clustering
algorithm was released as part of the open SNAP framework [56], which we applied to the averaged network
using default parameters.

4.2.2. RESULTS

We present results for the motif search on 3 and 4 nodes for the individual subjects and for the averaged net-
work, respectively. In addition, we show the results of the motif-based clustering algorithm on the averaged
network.

SIGNIFICANT 3-MOTIFS

For both variants of the sparsification method (α = 1 and α = 2), we find the same significant 3-motifs over
all subjects meaning that those motifs are more frequent in our analyzed networks than in the null model
(see Fig. 4.2). Those five motifs are not triangular but include all 3-motifs with two links (except for the 2-hop
path motif) (Fig. 4.2b- 4.2f). The absolute frequency of those motifs is displayed as a histogram in Fig. 4.2a for
the ±σ and the ±2σ sparsification, respectively. The analysis on the averaged effective connectivity network
confirms the over-representation of the motif with ID 78, the bidirectional 2-hop path(Fig. 4.2d), which is
the only significant motif that has been found for different sparsification methods (z-scores: 88.25 for ±σ
sparsification and 82.7 for ±2σ sparsification).



4.2. MOTIF-BASED ANALYSIS OF EFFECTIVE CONNECTIVITY IN BRAIN NETWORKS

4

35

(a) Histogram of the 20 most commonly overexpressed 4-motifs.
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Figure 4.3: (a) Histogram of the 20 most commonly overexpressed 4-motifs over all subjects after the ±σ and ±2σ sparsification, re-
spectively. An asterisk marks the motifs that are also overexpressed in the averaged network. (b)-(m) The twelve 4-motifs that are
overexpressed after the ±σ sparsification in every subject with their motif ID. The yellow motifs are also overexpressed in the averaged
network. (n) Third overexpressed 4-motif in the averaged network, ID 4698.

SIGNIFICANT 4-MOTIFS

In Fig. 4.3a we present a histogram of all significantly overexpressed 4-motifs with the two different sparsifica-
tion levels. Twelve 4-motifs were found overexpressed in all 67 subject networks (Fig. 4.3a, for a visualization
see Figs. 4.3b-4.3m).

Analyzing the averaged network we find 3 significant motifs with the±σ sparsification method (see Figs. 4.3l
- 4.3n, z-scores: 203.74 for ID 13260, 111.89 for ID 4382 and 14.85 for ID 4698) and none with the ±2σmethod.
The two 4-motifs with number 13260 and 4382, the bidirectional ring and the bidirectional star, respectively,
have the highest z-scores in the averaged effective connectivity network and are a subset of the significant 4-
motifs found for every individual subject (Figs. 4.3l and 4.3m). The overexpression of those two motifs cannot
be explained by the higher number of bidirectional links in the effective connectivity network since the null
model contains the same number of bidirectional links.

MOTIF-BASED CLUSTERS

Following the approach of [7], we apply the motif-based clustering algorithm on the averaged effective con-
nectivity network. Since for both sparsification methods, the 3-motif with ID 78 was significantly overex-
pressed in the averaged effective connectivity network and in every subject network, we cluster according to
this motif. We find two clusters with the sparsified network for ±σ (Fig. 4.4). The frontal brain regions seem
to be consistently part of the red cluster and the distribution of the clusters across the two brain hemispheres
shows a strong symmetry (Fig. 4.4). The sparser network resulting from the ±2σ sparsification method was
disconnected. Consequently, we could only obtain a motif-based clustering of the largest connected compo-
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Figure 4.4: The two clusters (in red and yellow) on the template brain obtained via the motif-based clustering algorithm after the ±σ
sparsification based on the motif 78.

nent (see Appendix Fig. 4.5).

4.2.3. DISCUSSION AND CONCLUSION
Evaluating the overexpressed motifs for individual human subjects, it is interesting that the 3-motif with ID 78
and its extended 4-node versions have also been overexpressed in other cortical networks of the cat and the
macaque brain [88]. In these motifs some nodes seem highly integrated with their neighbors while others are
more segregated. Sporns et al. [88] associated these motifs and the absence of triangular shapes with the gen-
eral principles of integration and segregation in the functional organization of brain networks. This principle
originates from studies of neuronal dynamics where signals from many different spatially segregated groups
of neurons are integrated with each other forming one coherent signal [86, 103, 129]. In addition, motif 78 can
help to identify hubs in structural brain networks by counting the number of times a node participates in that
motif [52]. A possible explanation for this identification is that a hub often connects two otherwise discon-
nected brain regions reciprocally with each other functioning as a ’bridge’ for the information flow [52]. Thus,
the pre-dominance of motif 78 in the analyzed effective connectivity network suggests that hubs are ’bridges’
for the information flow. The impact on the global network could be further investigated by the new metric
of ’bridgeness’ [53] in future research. Also the other significant 3-motifs are present in brain networks from
the literature. For example, motif 6 has been identified in a previous modeling study with Granger causality
as the driving structure behind many neuronal dynamics [26].

The fact that the motif-based clustering reveals a strong symmetry between the brain hemispheres is re-
markable and supports the idea of a higher-order organization of the effective connectivity brain network. In
comparison, the results of a standard spectral clustering algorithm (edge-based conductance) show a much
weaker symmetry and a more disconnected spatial distribution of the two clusters (see Appendix Fig. 4.6).
However, a rather dense network (±σ) seems to be necessary for the emergence of a higher-order structure
since the clustering for the sparser averaged network (±2σ) appears to be frail (see Appendix Fig. 4.5). Thus,
finding an optimal link density for motif-based clustering requires further investigation.

Looking into the obtained clusters, we find that the red cluster in Fig. 4.4 consists of all frontal brain
regions and some posterior regions which are known to be the strongest structural hubs [50]. The fact that
the motif-based clustering algorithm does not separate posterior hubs and frontal regions suggests that there
might be an increased information flow between them. This result strengthens the hypothesis from [50]
that the posterior hubs play a crucial role in the global information flow of the effective connectivity. More
specifically, posterior hubs in the brain seem to play the role of a ’bridge’ for not only the local but also the
global information flow. However, this ’bridge’ seems to be active in varying pre-dominant directions for
different frequency bands [50]. To conclude, our study shows a promising way of integrating local structures
to explain the emergence of global patterns in brain networks. This approach might be a first stepping stone
towards understanding the information flow in the healthy brain which could, in the future, support the
diagnosis of brain disorders.
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4.2.4. APPENDIX

Figure 4.5: The two main clusters (in red and yellow) of the largest connected component on the template brain obtained via the motif-
based clustering algorithm after the ±2σ sparsification based on the motif 78. The blue colored regions were not in the largest connected
component.

Figure 4.6: The two main clusters (in red and yellow) on the template brain obtained via the spectral clustering algorithm with the ±σ
sparsification. In comparison with the motif-based clustering in Fig. 4.4, the red cluster looks more disconnected and does not include
all anterior regions anymore.
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4.3. BRAIN NETWORK CLUSTERING WITH INFORMATION FLOW MOTIFS (EX-
TENDED)

Since the building blocks that give rise to the opposite global information patterns are unknown, we inves-
tigate in this subchapter the information flow patterns with regard to a smaller scale for different frequency
bands. The previous subchapter 4.2 gave evidence that clusterings obtained by Benson et al.’s [7] algorithm
are indeed meaningful for effective connectivity networks constructed from a similar measurement, the di-
rected phase transfer entropy (dPTE). We extend this work with results for PTE over a larger number of net-
works from a specific interval of interest and for two different frequency bands, the alpha2 and the theta
band.

4.3.1. FROM MEASUREMENTS TO DIRECTED NETWORKS

MEASURING INFORMATION FLOW IN THE BRAIN

The global directionality of information flow in the brain is shown to be frequency-dependent in a preceding
study [50]. To account for this observation, we will study one representative of a higher frequency band
(alpha2 at 10-13 Hz) and one from a lower frequency band (theta 4-8 Hz), respectively. Based on the same
data as in Chapter 4.2, we calculated the pairwise PTE values (for details we refer to Section 4.2.1). In order
to remove individual bias of the measurements, all pairwise PTE values are averaged over all subjects and all
epochs. A histogram of those averaged PTEs is shown in Figure 4.7 for the alpha2 and theta frequency band.

NETWORK CONSTRUCTION

The pairwise PTE values between all 78 ROIs imply a fully connected network GPT E where each ROI is a
node and the PTE is the weight of each link. In order to filter out noise and focus on the most important
connections possessing the highest PTE values, all links with a PTE below or equal a certain threshold τ are
discarded (set to zero) and all links above τ remain without a weight (set to one). This procedure eliminates
weak connections which might otherwise obscure the inherent topology induced by significantly stronger
connections. If (for a fixed h) PT EX Y > τ and PT EY X > τ for two ROIs X and Y , a bi-directional link between
X and Y is set. For PT EX Y ≤ τ< PT EY X , only a uni-directional link from Y to X is set. Thus, by selecting an
appropriate threshold τ, the fully connected weighted network GPT E is transformed into a sparser, directed
and unweighted network G(τ), also known as binary directed network.

Finding an appropriate threshold τ is a challenge in itself [118], which we will not undertake, since one
singular value for τ will not be needed for the upcoming analysis. Instead, we consider a class of networks
G(τ) created by sampling some τ from an interval [τmi n ,τmax ]. Setting τ = 0 results in a fully connected
network whereas setting τ to the maximum of all PTE values results in an empty network of 78 isolated nodes.
Clearly, these extreme thresholds provide networks that lack of structure and present no insight. To avoid
constructing such degenerate networks, we pick a narrower interval as follows.
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Figure 4.7: PTE between each possible pair of ROIs averaged over all subjects and measurement epochs. In total, 6006 average PTEs are
displayed as a histogram with 100 bins for each of the two frequency bands. The alpha2 frequency band (shown in blue) has on average
lower PTEs than the theta frequency band (shown in orange). The vertical lines mark the 30th-percentile of each distribution.
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Table 4.1: Network properties of G(τ) for τ at the endpoints of the interval [τmi n ,τmax ]. For alpha2 we have [τmi n ,τmax ] =
[1.8050,1.8636] and for theta [τmi n ,τmax ] = [2.0095,2.0535].

alpha2 theta

G(τmi n) G(τmax ) G(τmi n) G(τmax )

#uni-directional links 1006 848 648 799

#bi-directional links 1601 81 1776 56

average degree 53.949 12.949 53.846 11.679

assortativity -0.105 -0.129 -0.351 -0.062

link density 0.700 0.168 0.700 0.152

36 6 12 14 74 78

98 102 110 238 38 108 46

Figure 4.8: All possible 13 connected 3-motifs. The motif ID in binary represents the 3×3 adjacency matrix of the motif.

We set τmax to be the smallest threshold at which the obtained network is still weakly connected, i.e. has
no isolated nodes. To avoid having too many weak connections, τmi n is set to the 30%-percentile of the PTE
distributions (see Figure 4.7). This value eliminates a fair amount of weak connections while the majority of
the strongest connections persist.

The networks within [τmi n ,τmax ] are all connected, but sparse enough to resemble complex structures.
At τmax itself, the link density is 0.168 for alpha2 and 0.152 for theta, whereas the 30%-percentile of τmi n

corresponds to networks with a link density of 0.7. This allows to cover a large variety of different networks
in [τmi n ,τmax ], each representing a different perspective on the underlying data. For example, we observe
that the assortativity for theta frequency band data ranges from −0.351 to −0.062 and that the ratio between
uni-directional and bi-directional links is changing as well. Table 4.1 contains the exact values of τmi n and
τmax together with some properties of networks exactly at the interval endpoints.

4.3.2. INFORMATION FLOW MOTIFS

MOTIF SEARCH

Our motif search is performed with the mfinder software [54]. For this study, our main focus is on the 13
different 3-motifs as shown in Figure 4.8. Each motif is identified by a number whose binary representation
translates to the adjacency matrix of the corresponding motif. This notation is consistent with the one used
in mfinders documentation.

When given any network G (to which we refer as “original network”), the mfinder program performs two
tasks: first, it counts the frequency JG ,M of all motifs M of G and second, it generates a number of random net-
works with similar properties as the original network and determines the motif frequencies in each of them
as well. For every original network, mfinder generates 1000 random networks using the switching algorithm
described in [63] with 100 switches. We use the default parameters for mfinder, which preserve the degree
sequence of the original network and the number of bi-directional links.

The random networks are used as a null model to determine which motifs are overexpressed in the original
network. More precisely, we are using the criteria given in the supplemental material of Milo et al. [68]. These
criteria are:

i) The probability P of having an equal or greater motif frequency in a random network than in the original
network is less than 0.01.

ii) The motif appears at least 4 times with disjoint nodes in the original network.

iii) The ratio of the motif frequencies between the original and the random networks is at least 1.1.

Given the mean µ(Jr and ,M ) and the standard deviation σ(Jr and ,M ) of the motif frequency in the random
networks, the magnitude of overexpression of motif M in G is given by its z-score
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zG ,M = JG ,M −µ(Jr and ,M )

σ(Jr and ,M )
. (4.5)

A motif which is not overexpressed may still occur quite frequently in the original network, though it arises
at a similar frequency by a random link rewiring process. Thus, it can be argued that overexpressed motifs
carry some functional importance for the underlying system since they do not arise merely by chance.

OVEREXPRESSED MOTIFS IN FUNCTIONAL BRAIN NETWORKS

We sample the interval [τmi n , τmax ] with a step-size of ∆= 0.005, for both alpha2 and theta frequency band
data. For each sampled threshold τ, we construct G(τ) and use it as the original network for mfinder and
determine all overexpressed motifs with their z-score. Figure 4.9 shows the overexpressed motifs for alpha2
and Figure 4.10 for theta frequency band data.

We observe that motif overexpression depends on the chosen threshold τ. For example, in the alpha2 fre-
quency band data motif 74 and motif 14 were only detected in very sparse networks close to the connectivity
threshold τmax (Figure 4.9). It is also possible that there are gaps at certain ranges of τ in which a motif does
no longer fulfill all overexpression criteria, e.g. motif 102 for alpha2 or motif 6 for theta.

From all overexpressed motifs, motif 78 stands out for the following reasons. First, motif 78 is overex-
pressed in both, alpha2 and theta, for a large part of the interval [τmi n ,τmax ] without any gaps. Second,
the z-scores of this motif are always higher than the z-scores of any other overexpressed motif for the cor-
responding sampled thresholds. Hence, we select motif 78 as our motif M for the upcoming motif-based
clustering.
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4.3.3. MOTIF-BASED CLUSTERING
Benson et al. [7] developed a clustering algorithm that partitions a network G based on a motif M . The main
idea of their algorithm is to construct clusters by “cutting” through the minimum possible number of motif
instances, while maintaining a high density of motif instances within each of the clusters. In this section, we
summarize only the basic concepts (including the algorithm) necessary to understand how the clustering of
the networks was achieved. Details about the performance, complexity and additional applications can be
found in the supplemental material of [7] together with a comprehensive analysis of the algorithm.

MOTIF ADJACENCY MATRICES

Let G be a directed network with a set of nodes N = {1,2, . . . , N }. For each pair of nodes i , j let wi j be the
number of node-disjoint motif instances in which i and j participate together. Then, the matrix (WM )i j = wi j

is called motif adjacency matrix. The motif diagonal degree matrix DM is given by

(DM )i i =
N∑

j=1
(WM )i j

and the motif Laplacian by
LM = DM −WM .

The clustering algorithm uses the eigenvector belonging to the second smallest eigenvalue of the normalized
motif Laplacian, which is defined as

LM = I −D
− 1

2
M WM D

− 1
2

M

where I denotes the identity matrix. For a graph G(τ) based on a threshold τ the corresponding motif adja-
cency matrix is denoted by WM (τ) .

MOTIF CONDUCTANCE

Given the motif adjacency matrix WM of a network G , and a partition of the nodes N = |N | into two disjoint
subsets N1 and N2 =N \N1, we define the motif conductance φG (N1,N2) of that partition as

φG (N1,N2) = cutG (N1,N2)

min{volG (N1),volG (N2)}

with

cutG (N1,N2) = ∑
i∈N1, j∈N2

(WM )i j

and for a = 1,2

volG (Na) = ∑
i∈Na

N∑
j

(WM )i j =
∑

i∈Na

(DM )i i .

Thus, φG (N1,N2) gives us the ratio between the number of motif-instances cut by the partition {N1,N2}
and the lowest number of preserved motif-instances in one of the two partitions.

MOTIF-BASED CLUSTERING ALGORITHM

A low conductance is often a desirable quality for a network clustering [30]. However, finding the minimum
conductance of a network is a well-known N P -complete problem [36] which directly translates to the com-
plexity of finding the minimum motif conductanceφ∗

G . Benson et al. [7] present a polynomial-time algorithm
that finds a nearly optimal partition {N1,N2} with motif conductance

φG (N1,N2) ≤ 4
√
φ∗

G

for 3-motifs. In practice, the runtime is largely dominated by the computation of the motif adjacency matrix,
which is still efficient for the motifs of size three that we consider for this work.

The algorithm from Benson et al. [7] is a generalization of the classical spectral clustering algorithm [111,
120], which makes use of the Laplacian matrix of a network. The eigenvector corresponding to the second
smallest eigenvalue of this matrix is known as Fiedler’s vector [31] and by ordering its elements, a node parti-
tion of a low (link-based) conductance can be devised.
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The main steps of the algorithm from Benson et al. [7] consist of computing the motif adjacency matrix
WM from which the normalized motif Laplacian LM is constructed and the second smallest eigenvalue is
computed. Afterwards, the corresponding eigenvector is used to create a partition {N1,N2} according to
the smallest motif conductance. Nodes that do not participate in any instance of motif M can yield a motif
conductance that is not defined and thus are not considered to be part of neither N1 nor N2.

The complete algorithm is listed as Algorithm 1 in pseudocode. An implementation was done by us in
Python (using NumPy and NetworkX) and our results were double-checked with the implementation avail-
able on the SNAP-platform [56].

Algorithm 1 Motif-based clustering algorithm by Benson et al. [7]

1: Input: Directed, unweighted network G and motif M
2: Output: Motif-based clusters N1 and N2 (subsets of nodes)
3: (WM )i j ← number of instances of M that contain nodes i and j
4: DM ← diagonal degree matrix of WM

5: LM ← I −D
− 1

2
M WM D

− 1
2

M normalized motif Laplacian
6: z ← eigenvector corresponding to second smallest eigenvalue of LM

7: σi ← index of vector D
− 1

2
M z with i th smallest value

8: `← arg min
i=1,...,N

φG ({σ1, . . . ,σi }, {σi+1, . . . ,σN })

9: {N1,N2} ← {σ1, . . . ,σ`},{σ`+1, . . . ,σN }
10: return {N1,N2}

MOTIF-BASED CLUSTERING OF FUNCTIONAL BRAIN NETWORKS

In order to apply the motif-based clustering to the brain, we have to fix a motif. For reasons already men-
tioned in Section 4.3.2, we select M to be motif 78. While Algorithm 1 works on a single network G , we want
to construct a partition that takes networks created by different thresholds from [τmi n ,τmax ] into account.
While there exists an infinite amount of different thresholds τ in the interval [τmi n ,τmax ], the corresponding
network only changes at a finite subset T ⊆ [τmi n ,τmax ] of them. The elements in T are exactly the PTE values
of all the links that are present in G(τmi n) without the set of links present in G(τmax ). Summing the motif
adjacency matrices over all elements in T results in an aggregated motif adjacency matrix

WMag g = ∑
τ∈T

WM (τ) (4.6)

for each frequency band. Applying the motif-based clustering to this matrix constructs a partition that has
on average a low conductance over the interval [τmi n ,τmax ] (TO BE SHOWN?). The results of the partition
into 2 clusters are shown in Figure 4.11 for the alpha2 frequency band data and in Figure 4.12 for the theta
frequency band data.

4.3.4. DISCUSSION
We simplified the construction of directed networks in comparison with our previous study 4.2. In the earlier
work, we computed the directed PTE (dPTE) value defined as

dPT EX Y = PT EX Y

PT EX Y +PT EY X
(4.7)

for each direction and extracted the links with significantly high or low dPTE values. Thereby, we focused
on the highly asymmetric pairwise relations representing a strong sending and a more receiving node. Thus,
between node pairs with low average PTE values in both directions none of the network construction methods
assigned a link. In the present study, the strongly assymmetric relations are still represented in the network
but we additionally included those symmetric relation where both directions possess high PTE values. In
contrast to our previous study 4.2, we did not need to fix any threshold but rather considered a whole range
of them for the network construction.

Concerning network motifs, we observed an overexpression of motif 78 in line with our previous study 4.2.
Two other motifs, 14 and 74, which can be regarded as degenerated forms of motif 78 missing one uni-
directional link, have also been identified as overexpressed in both of our studies. Thanks to the overview



4.3. BRAIN NETWORK CLUSTERING WITH INFORMATION FLOW MOTIFS (EXTENDED)

4

43

Figure 4.11: Partition of brain networks for alpha2 frequency band data based on motif 78 into two clusters of nodes. 15 out of 78 nodes
did not participate in any motif instance and are shown as a separate third cluster.

Figure 4.12: Partition of brain networks for theta frequency band data based on motif 78 into two clusters of nodes. 2 out of 78 nodes did
not participate in any motif instance and are shown as a separate third cluster.
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over a range of thresholds in this extended study, we can explain the origins of the overexpression of these re-
lated motifs: Since motifs 14 and 74 are only overexpressed for higher thresholds τ and, thus, only for sparser
networks, this result seems to be a direct consequence of the applied threshold removing the weakest link in
motif 78. Thus, motifs 14 and 74 are most likely consequences of the applied threshold not representing new
triangular relations but supporting the overall dominance of motif 78.

The overexpression of motif 78 is also in line with other previous research stating the same result for the
structural brain networks of the macaque and the cat [88]. The connectivity profile of motif 78 identifies a
central node connecting two otherwise disconnected brain regions. Thus, the central node in motif 78 acts
as a bridge for the information flow between its neighbors and the overexpression of motif 78 could repre-
sent the basic principle of segregation and integration on the macroscopic level of brain regions [88]. The
principle of segregation and integration originates from neuronal dynamics where signals from spatially seg-
regated neurons are integrated with each other into one coherent signal [86, 103, 129]. Further, Honey and
coauthors [52] showed a high correlation for nodes between being a hub and frequent participation in the
motif 78. The overexpression of motif 78 together with its close relation to hubs confirms previous findings
identifying hubs as drivers for the integration of information flow [38, 87, 107]. In addition, the overexpres-
sion of motif 78 in both frequency bands, alpha2 and theta, strengthens the claim even further that motif
78 is a general building block of effective connectivity networks and therefore an important feature for the
information flow in brain networks.

When analyzing the global intertwined organization of motif 78, we identified spatially coherent clusters
in both frequency bands. Overall, the motif-based clustering algorithm split the brain in three major parts,
the frontal lobe, the occipital lobe and the rest corresponding to a joint cluster of temporal and parietal lobe.
Without including any spatial information in the construction of the directed networks or any restriction on
locations for the performed clustering, we were able to recognize this well-known global spatial organization
of the human brain in our obtained clusters. As a commonality between the alpha2 and theta frequency
band, the frontal regions seem to be nearly consistently together in one cluster. However, in alignment with
the recent study of Hillebrand et al. [50] we also observe differences in the global patterns between high and
low frequency bands: Whereas in the theta frequency band, the posterior regions (more precisely the occipital
lobe) belong together with the frontal lobe in one cluster and thus participate in motif 78 together with the
frontal lobe, the occipital lobe in the alpha2 frequency band does not participate in motif 78. For the theta
frequency band, the frontal and the occipital lobe apparently share many interactions in the form of motif 78
because the clustering algorithm does not split them. This strong higher-order interaction between posterior
and frontal brain regions could facilitate the discovered global information flow between frontal and posterior
regions [20, 50].

4.3.5. CONCLUSION
The motif search for different frequency bands resulted in the dominant overexpression of motif 78 over a
wide range of thresholds. This motif, which was also observed in previous studies, seems to represent a
general building block for the information flow in functional brain networks resembling the organizational
principle of segregation and integration. The motif-based clustering revealed the higher-order organization
of effective connectivity on a global scale. The differences between higher and lower frequency bands could
be traced back to the interaction pattern between the occipital lobe and the frontal brain regions. In the theta
frequency band, the frontal regions participated in many instances of motif 78 together with the occipital
regions pointing towards a strong information flow between those spatially segregated areas. Future work
should not only investigate different data sets of healthy controls but also analyze the possible disruptions of
information flow and its higher-order organization for patients suffering from neurological disorders.
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A MAPPING BETWEEN THE STRUCTURAL

AND FUNCTIONAL BRAIN NETWORKS

5.1. INTRODUCTION
The collection of the functional connections in the human brain is often referred to as the functional net-
work and is facilitated by the underlying structural network, i.e. the set of physical connections between
neuronal populations. At the same time, functional connections influence modulations of these physical
connections by long-term potentiation, plasticity or neuromodulation. In recent years, there has been an
increasing interest to understand the emergence of functional brain networks given the constraints of the
underlying structural network [1, 24, 51, 83]. However, the mutual relationship between the structural and
functional networks remains highly debated [23, 77, 78].

Empirical studies have revealed an overlap between structural and (resting-state) functional connections,
i.e. the presence of both a structural and functional connection between two brain regions [47, 85, 108].
However, this overlap is imperfect as functional interactions between brain regions exist in absence of direct
structural connections, and also indirect structural connections with the length of two links cannot fully ac-
count for these functional connections either [51]. Moreover, the overlap between structural and functional
connections also depends on the time scale considered, where functional connections estimated from larger
time windows strongly overlap with the underlying structural connections, for smaller time windows there
can be a structural-functional network discrepancy due to distributed delays between neuronal populations
that cause transient phase (de-)synchronization [52, 66, 102].

On larger time scales, several properties of the underlying structural network have been shown to play an
essential role in shaping the functional networks, such as the Euclidian distance between two brain regions
[3]. However, taking into account Euclidean distance alone is insufficient to explain the emergence of long-
range functional connections [119]. Two recent studies showed that such long-range functional connections
may be explained by the product of the degree of two nodes in the structural network, indicating the crucial
role of structural hubs for explaining long-range functional connections [90, 96]. Moreover, Goñi and col-
leagues [41] demonstrated that shortest paths in the structural network and perturbations from these paths
are strong predictors for functional connections as these paths are favorable because of metabolic efficiency
and fast communication.

Given these dependencies between structural and functional networks, the challenge is to integrate these
different interdependencies into a single framework, for which we may need a more abstract representation.
For example, a significant overlap in the connectivity profile of structural and functional networks suggests
that part of the functional network connectivity matrix is a linear mapping from its structural counterpart.
In addition, functional connections can also be accounted for by several other higher order features of the
structural network as outlined above, which refer to non-linear relationships (see [96] for an example of such
non-linearity). Based on the presence of these linear and non-linear features of the relationship between
structural and functional networks, we go one step further by assuming that there is a mathematical function

This chapter has been published in J. Meier, P. Tewarie, A. Hillebrand, L. Douw, B.W. van Dijk, S.M. Stufflebeam and P. Van Mieghem, A
mapping between structural and functional brain networks, Brain Connectivity, 6(4), pp. 298-311 (2016).
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Figure 5.1: (a) Visualization of the structural and functional brain network (for fMRI and MEG) for the group-averaged data set, the
colors of the different regions represent here their node strength (i.e. the sum of their surrounding link weights). (b) Visualization of the
mapping between their adjacency matrices.

that maps the adjacency matrix of the structural network onto that of the (resting-state) functional network
and vice versa (see Figure 5.1(b) and Eq. (5.1) below). If we further assume that our mathematical function is
analytic [101, 124], then the map between structural and functional network can be expressed by a weighted
sum of the matrix powers as explained in Section 5.2.2. Our method consists of a data-driven approach,
from which the successive coefficients of this matrix mapping are determined. The major advantage of our
method is that an a-priori specific form of a function is not needed. Another implication of such a function
is the possible existence of an inverse function, i.e. a mapping from functional networks back to structural
networks.

Most previous studies have found relationships between structural and functional networks using a sin-
gle functional neuroimaging modality [19, 51], often using functional MRI (fMRI). As the fMRI response is an
indirect measure for neuronal activity and contains non-neuronal signals, a structure-function dependency
based on this modality could deviate from the same dependency derived from neuroimaging modalities that
directly measure neuronal activity and connectivity. In contrast to fMRI, magnetoencephalography (MEG)
measures neuronal activity and connectivity directly with excellent temporal resolution. However, given the
increasing interest in multimodal imaging approaches there is a need to understand the modality depen-
dency of the structure-function relationship in a single framework. A data-driven approach in the form of
a matrix function may be helpful when investigating the modality dependency of the structural-functional
network relationship: different modality-dependent coefficients may point to different specific functions for
each modality. The relevance of elucidating the modality dependency of a mathematical function can be
extended to the clinical field where we could answer questions such as: which modality would be the most
sensitive for picking up functional network changes given disease-specific structural network damage?

The aim of the present study is to analyze the structural-functional network relationship through a math-
ematical function in a multimodal framework. We use two datasets containing multimodal imaging data
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ranging from diffusion tensor imaging (DTI) data to MEG and fMRI data. We extend our analysis by also con-
sidering the relationship between structural and functional networks at the subject level in a third data set
and finally discuss how that relationship can be interpreted neurobiologically.

5.2. MATERIALS AND METHODS

5.2.1. PARTICIPANTS AND DATA ACQUISITION
In total, we use three data sets, which all have been used in different previous studies. The first two data sets
are group-averaged data sets, obtained from two different centers, but analyzed together in one mapping.

(i) A group-averaged structural imaging data set, i.e. a DTI network from 80 healthy subjects in 78 cortical
automated anatomical labeling (AAL) brain areas [40].

(ii) Two group-averaged data sets with functional imaging data, i.e. resting-state MEG and fMRI signals in
the same 78 AAL cortical areas, one with 17 and another with 21 healthy subjects [96, 98].

(iii) An individual data set from 11 healthy subjects structural and functional imaging data, i.e. with DTI,
resting-state MEG and fMRI time-courses in 219 brain areas [27].

For the group-averaged structural connectivity matrix, we use a literature-based structural network (data
set (i)) [40]. In every subject, cortical regions in the AAL atlas were considered to be connected if the end
points of two white matter tracts were located in these regions [40]. Then, a group-averaged structural con-
nectivity matrix was obtained by testing each possible connection for its significance using a non-parametric
sign test.

For the group-averaged functional imaging data set (data set (ii)), we use data obtained from our own
imaging center. We employ the first data set with 17 healthy controls for our main analysis and the second
data set from 21 healthy controls only for validation [96, 98]. The study was approved by the institutional
ethics review board of the VUmc and all subjects gave written informed consent prior to participation. Both
fMRI and MEG data sets underwent to some extent different pipelines [96, 98] and are obtained from two dif-
ferent MEG scanners (CTF and Elekta). Detailed information about data acquisition and post-processing can
be found in the previous papers. In short, for both MEG and fMRI cortical networks were constructed using
the same cortical AAL regions as for the structural network consisting of 78 cortical regions [40]. The Pearson
correlation coefficient was computed between time signals to construct functional networks for fMRI for each
subject (the absolute value was taken to avoid negative matrix elements). For MEG, a beamformer approach
was used to reconstruct neuronal activity in AAL regions. Subsequently, the phase lag index (PLI), a measure
for phase-synchronization, was computed between time series to reconstruct a functional connectivity ma-
trix for each subject in the alpha2 frequency band (10−13 Hz) [91]. The present study can be considered as
a continuation from previous work where we found a strong relationship between structural and functional
networks in the alpha2 band and therefore we limited our analysis to this frequency band, although the fit
could be generalized [96]. Similar to the structural connectivity matrix, we averaged functional connectivity
matrices across subjects for fMRI and MEG separately to obtain one group-averaged functional connectivity
matrix for each modality. The averaging over multiple subjects was pursued in the attempt of reducing noise.

For the individual data set (data set (iii)), eleven healthy participants were included, exclusion criteria be-
ing psychiatric or neurological disease and use of medication influencing the central nervous system. This
study was approved by MGHs institutional review board, and was performed in accordance with the Dec-
laration of Helsinki. All participants gave written informed consent before participation. Pre-processing
methodology of the DTI and fMRI data has been described in detail before [27]. In short, a surface-based
atlas approach was used for connectivity analysis of the fMRI and DTI data, using a parcellation scheme with
219 cortical surface parcels [18, 37]. In addition, for every entry of the fMRI-based adjacency matrix the abso-
lute value was taken to avoid negative matrix elements. MEG eyes-open resting-state data were collected in
a magnetically shielded room with a 306-channel whole-head system (Elekta-Neuromag, Helsinki, Finland)
and a sampling rate at 1037 Hz. Vertical and horizontal electro-oculograms were acquired simultaneously for
off-line eye-movement artifact rejection. Head positions relative to the MEG sensors were recorded from four
head-position indicator coils attached to the scalp. Landmark points of the head were digitized using a 3-D
digitizer (Polhemus FASTRAK). MEG data underwent a number of pre-processing steps: (1) bad channel and
bad epoch rejection, (2) eye-movement artifact removal via Signal Space Projection (SSP), (3) downsampling
with a decimate factor of 8 (to reduce computational expense). To compute the physical forward solution
(lead fields), a single-layer boundary element method was applied to model the brain volume conduction,
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following an established procedure [46]. The lead field of freely-oriented dipoles was then evaluated at each
location. In solving the inverse problem, current density at each source location was approximated by a min-
imum 2-norm estimate in the same six frequency bands as was used for the second dataset [45], with noise
covariance computed from empty-room recordings on the same day (also band-pass filtered). For each sub-
ject, the cortical surface defined by the boundary between the gray and the white matter was reconstructed
using FreeSurfer [32], after which time series from the abovementioned 219 cortical surface parcels were re-
constructed. The PLI was used as a connectivity measure on these time series [91]. An average connectivity
matrix per participant was calculated over all epochs.

5.2.2. MATHEMATICAL BACKGROUND
We will refer to matrix A as the binary adjacency matrix of the structural network for the group-averaged data
(data set (i)) and to matrix W as one of the possible representations of the functional networks, WMEG for
MEG functional networks and W f MRI for fMRI functional networks. Both A and W are N × N symmetric
matrices, where N equals the number of cortical regions (N = 78 for data set (i) and (ii); N = 219 for data set
(iii)). For both group-averaged and individual data, the matrix W has real elements wi j between 0 and 1. In
the case of the individual data, the structural network is described by a weighted adjacency matrix V with real
elements between 0 and 1. As mentioned before, we assume that there exists a function f such that

W = f (A) (5.1)

or W = f (V ) in the case of a weighted structural connectivity matrix V (see also Figure 5.1). Under quite mild
conditions [62], the inverse f −1 of the function f exists such that

A = f −1 (W ) . (5.2)

If f (z) is a function of the complex number z and analytic in a disk with radius R around z0, then f (z) pos-
sesses a Taylor series in the complex plane C that converges for all points z that lie in a disk with radius R
around the point z0,

f (z) =
∞∑

k=0
fk (z0) (z − z0)k with fk (z0) = 1

k !

d k f (z)

d zk

∣∣∣∣∣
z=z0

, (5.3)

where |z − z0| < R and R is called the radius of convergence [101, 124]. It can be shown [48, 111] that, if f (z) is
analytic around z0 and, hence, possesses a Taylor series (5.3), then for all matrices A, the matrix function f (A)
also satisfies this Taylor series, provided each eigenvalue λ of A obeys |λ− z0| < R. Caley-Hamilton’s famous
theorem [111] states that any square matrix A satisfies its own characteristic polynomial, which implies that
we can write AN = pN−1(A), where pn(z) is a polynomial of degree n in z. Iteratively using the Caley-Hamilton
theorem to the powers of k ≥ N in Eq. (5.1),

f (A) =
N−1∑
k=0

fk (z0)(A− z0I )k +
∞∑

k=N
fk (z0)(A− z0I )k

shows that
∑∞

k=N fk (z0)(A − z0I )k can be written as a polynomial of order at most N − 1 in A. In summary,
any analytic function f , defined by (5.3), of a matrix A is a polynomial in A of degree at most N −1 (N is the
number of nodes, here cortical regions, in the network),

f (A) =
N−1∑
k=0

ck
[

f
]

Ak , (5.4)

where ck [ f ] are coefficients depending on the function f (provided each eigenvalue λ of A lies within the
disk, i.e. obeys |λ− z0| < R). Because all the analyzed matrices have only zeros on the diagonal, their trace is
0. Since the trace equals the sum of the eigenvalues of a matrix [111], the average of the eigenvalues of the
empirical matrices here is zero, which suggests us to choose z0 = 0.

5.2.3. MATHEMATICAL METHODOLOGY
The first term c0[ f ]·I in Eq. (5.4), which is the product of the constant coefficient c0[ f ] and the identity matrix
I , provides an offset to adjust the diagonal elements of our fitted matrix. In order to obtain a better goodness
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of fit, we introduce an offset also for all non-diagonal elements of our matrix. We define this offset as the error
matrix E = c · J , where J = u ·uT is the all-one-matrix, c ∈ R and u is the all-one vector, u = (1, . . . ,1)T . The
constant error matrix E can be justified as a first approximation of the part that we do not know yet about the
mapping between the structural and functional brain network. Thus, our fitting function is defined as

f(K ) (A) =
K∑

k=0
ck [ f ]Ak +E (5.5)

where K ≤ N − 1 is the maximal fitted exponent (N is the dimension of matrix A). We use the non-linear
regression algorithm in MATLAB (using the routine nlinfit.m version R2015a) to estimate the coefficients
in Eq. (5.5) by iterative least-squares estimation (for details see SI Section 5.6.7). Denoting W̃ := f(K )(A),
we evaluate the goodness of fit of our mappings using the Frobenius norm [113, p. 549]. In particular, we
compute the sum of squared errors (SSE), slightly modified as

SSE :=
N∑

i=1

i∑
j=1

(wi j − w̃i j )2 (5.6)

where N = 78 regions in the case of the group-averaged data and N = 219 in the case of the individual data.
Here, we only sum the elements of the lower triangular and the diagonal, because all our matrices are sym-
metric. Since the sum of squared errors is proportional to the number of fitted elements and to compare
the different data sets with each other, we introduce a normalized version of SSE where we divide SSE by the
degrees of freedom, which is in our case the number of fitted elements minus one

SSEnor m :=
∑N

i=1

∑i
j=1(wi j − w̃i j )2

d ftop
, (5.7)

where d ftop = N ·(N −1)/2+N −1, N number of regions. Similarly, we can define the goodness of fit measure
from Eq. (5.7) for the function f −1 : W → A by interchanging W and A in the description above. When we
map all entries of one matrix onto the entries of another matrix, we implement our matrix mapping in the
so-called topological domain (at the level of the whole adjacency matrix). The same mapping can also be
analyzed in the spectral domain, i.e. at the level of the eigenvalues of the matrices (see SI Section 5.6.1).

5.3. RESULTS

MAPPING STRUCTURAL NETWORKS TO FUNCTIONAL NETWORKS
Mapping structural networks to functional networks Firstly, we estimated the coefficients in Eq. (5.5) for the
mapping from structural networks to functional networks at the group level (see SI Table 5.3 for K = 6). For
both modalities, we can observe that the SSEnor m becomes lower, i.e. the fit becomes better, for increasing
number of terms (Figure 5.2b). Similarly, with an increasing number of fitted coefficients in Eq. (5.5), the
patterns of the fitted functional connectivity matrices resemble better the empirical fMRI and MEG connec-
tivity matrices (Figure 5.2a, for a complete list of the ROIs see SI 5.6.2). However, for the group-averaged data,
there seems to be a limit for the number of terms, since including terms of 6th order and higher did not sig-
nificantly improve the estimation anymore for both MEG and fMRI under the 5% significance level. For these
group-averaged networks, the best fit was reached for the mapping f : A →WMEG . We obtained significantly
different values of the estimated coefficients for the two different modalities under the 5% significance level
(see SI Figure 5.15, 95% confidence intervals did not overlap), indicating a modality-dependent mapping. For
the mapping f : A →W f MRI , estimated coefficient values showed a clear decrease when going from lower to
higher order terms, indicating that lower order terms in the expansion (5.5) contribute more to the estima-
tion of the fMRI network (SI Figure 5.15). For the mapping f : A →WMEG , this steep decline in coefficients for
higher order terms was not observed (see SI Figure 5.15). The SSEnor m for the data set of individual healthy
controls was slightly higher (i.e. worse) than for the group-averaged matrices (Figure 5.2c). Similar to the
group level results, the mapping from structural to MEG networks provided better fits than from structural to
fMRI networks also at the individual level.

We repeated the same analysis where either the structural or functional connectivity matrices were sub-
stituted by a reshuffled version of the empirical matrix (for details see SI Section 5.6.7). The results of this
analysis are also displayed in Figure 5.2b, showing a higher SSEnor m for all reshuffled cases compared to the
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original matrices, that is, the empirical results differed significantly (p < .001) from the reshuffled results. In
addition, we observe that the decline in SSEnor m was in most cases for the reshuffled matrices rather narrow
in comparison with the empirical matrices (Figure 5.2b). Thus, the observed relationship between struc-
ture and function can hardly be reproduced by any reshuffled versions of the matrices. For individual net-
works, the average performance of the reshuffled matrices was also worse than the empirical original results
(Figure 5.2c). We tested the empirical results versus their reshuffles for significant difference with a Mann-
Whitney-Wilcoxon (MWW) test and displayed the p-values in Table 1. From this test results, we can conclude
that the mapping f : V → W f MRI was able to outperform its random reshuffle for all subjects (see Table 1).
But the goodness of fit for the mapping f : V → WMEG was for 5 out of 11 subjects not better than the ran-
dom reshuffles, indicating that the relation between the two matrices is less unique than for the anatomical
matrix and the fMRI matrices. In order to cross-validate our mapping, we ran the same analysis on a second
group-averaged data set (with similar processing pipeline) and found overlapping confidence intervals for
the estimated coefficient values (Figures 5.3a and 5.3b).

MAPPING FUNCTIONAL NETWORKS TO STRUCTURAL NETWORKS
By reversing the role of A and W and following the same approach as before, we obtained goodness of fit
values for the inverse mapping. More specifically, for the group-averaged data, we acquired better fits when
starting from W f MRI than from WMEG (see Figures 7 and 8). Similar to the mapping from structural to func-
tional networks, the estimated coefficients were significantly different under the 5% significance level for the
two modalities for the group-averaged data pointing towards a modality-dependent mapping (see SI Figure
5.16, 95% confidence intervals did not overlap). An overview of the estimated coefficients for this data set is
given in SI Table 5.3. Furthermore, similar to the mapping f, no significant improvement of the goodness of fit
level was found by including terms of a higher order than 5 for f −1 : WMEG → A. Even including W f MRI in the
mapping f −1 : W f MRI → A hardly improved the fit (no significant improvement under the 5% significance
level). Applying the same approach for the individual data, we were able to reach a lower overall error, thus a
better fit, for f −1 than for f and the differences in modalities with respect to the residuals were very small for
f −1 (see Figure 5.4c).

To have a benchmark for the overall residuals, we again repeated the same analysis with reshuffled ma-
trices. Similar to f , the function f −1 outperformed the random reshuffles for group-averaged networks (see
Figure 5.4b, p-value of 0% for MWW-test). On the subject level, the function f −1 obtained significantly bet-
ter results for the empirical matrices than their random reshuffles for most of the individuals under the 5%
significance level (two outliers for the p-values of the MWW-test for f −1 : W f MRI → A, see Table 5.1 and Fig-
ure 5.4c). Again, the same analysis using the second group-averaged data set for MEG revealed only for the
estimated coefficients c1[ f ] and c2[ f ] from Eq. (5.5) significant differences between the first and the second
data set (for K = 5, Figures 5.5a and 5.5b). For fMRI, a significant difference could only be determined for
c1[ f ] but not for the other estimated coefficients from Eq. (5.5), which again cross-validates our mapping
between different data sets.

Moreover, the whole analysis was repeated multiple times to check for the stability of the estimated coef-
ficients, which resulted in exactly the same coefficients every time, underlining the robustness of our results.
We also analyzed in more detail which connections were well predicted by our approach and which were
estimated less accurately (see SI Figures 5.21 - 5.28). A corresponding analysis in the spectral domain (see
SI Section 5.6.2 for the results) illustrated that the estimated coefficient values were similar to those in the
topology domain for the function f but not for f −1 (see SI Figures 5.11 - 5.14). The dissimilarities between
the spectral and topology domain are most probably due to eigenvector perturbations between the different
analyzed empirical matrices. These eigenvector perturbations can probably be traced back to noisy measure-
ments (see SI 5.6.6).

5.4. DISCUSSION
In this study, we have analyzed the mutual dependency of structural and (resting-state) functional networks
in a multimodal framework by assuming that there exists a mathematical function that allows for a mapping
between the two networks. This function was then analyzed without assuming a priori any specifics and by
estimating the coefficients for the mappings in both directions (i.e. structural to functional and functional
to structural networks). Our analysis convincingly implicated that our assumption of a mapping between
the two networks was justified because we reached overall good fits outperforming random reshuffles and
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(a) Visualization of fitted vs. empirical matrices.

(b) SSEnor m for group-averaged data. (c) SSEnor m for individual data.

Figure 5.2: (a) Visualization of the fitted matrices for different maximal fitted exponents K (abbreviation: maxexp) for the function
f : A → W f MRI and f : A → WMEG vs. the empirical matrices for the group-averaged data set. (b) SSEnor m for the group-averaged
data set for different maximally fitted exponents K displayed together with the results of the reshuffled matrices. For each mapping we
ran the same analysis with 100 reshuffled versions of the matrix A and with 100 reshuffled versions of matrix W . (c) SSEnor m for the
individual data set for different maximally fitted exponents K (after averaging over all 11 individual SSEnor m results) displayed together
with the averaged result of the reshuffled matrices. For each mapping we ran the same analysis with 100 reshuffled versions of the matrix
V and with 100 reshuffled versions of matrix W .
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(a) f : A →WMEG .

(b) f : A →W f MRI .

Figure 5.3: (a) Estimated coefficients for the mapping f : A → WMEG for K = 5 together with their 95% confidence interval for the first
group-averaged data set and a second group-averaged data set. (b) Estimated coefficients for the mapping f : A → W f MRI for K = 5
together with their 95% confidence interval for the first group-averaged data set and a second group-averaged data set.
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(a) Visualization of fitted vs. empirical matrices.

(b) SSEnor m for group-averaged data. (c) SSEnor m for individual data.

Figure 5.4: (a) Visualization of the fitted matrices for different maximal fitted exponents K (abbreviation: maxexp) for the function
f −1 : W f MRI → A and f −1 : WMEG → A vs. the empirical matrices for the group-averaged data set. (b) SSEnor m for the group-averaged
data set for different maximally fitted exponents K displayed together with the results of the reshuffled matrices. For each mapping we
ran the same analysis with 100 reshuffled versions of the matrix A and with 100 reshuffled versions of matrix W . (c) SSEnor m for the
individual data set for different maximally fitted exponents K (after averaging over all 11 individual SSEnor m results) displayed together
with the averaged result of the reshuffled matrices. For each mapping we ran the same analysis with 100 reshuffled versions of the matrix
V and with 100 reshuffled versions of matrix W .
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(a) f −1 : WMEG → A.

(b) f −1 : W f MRI → A.

Figure 5.5: (a) Estimated coefficients for the mapping f −1 : WMEG → A for K = 5 together with their 95% confidence interval for the first
group-averaged data set and a second group-averaged data set. (b) Estimated coefficients for the mapping f −1 : W f MRI → A for K = 5
together with their 95% confidence interval for the first group-averaged data set and a second group-averaged data set.
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Table 5.1: p-values for the comparison between SSEnor m for the empirical and reshuffled matrices. The matrix V denotes the structural
network matrices for the individual data and the different columns are for the different 11 analyzed persons (p1 till p11). Note that
in most cases a significantly better goodness-of-fit was obtained for the empirical matrices than for the reshuffled matrices (p < .05,
indicated with *).

   42 

Table 1: p-values for the comparison between SSEnorm for the empirical and 

reshuffled matrices. 

Mapping p1 p2 p3 p4 p5 p6 

f -1 : WfMRI  → V .887 <.001* <.001* <.001* .002* .003* 

f : V → WfMRI .001* <.001* <.001* <.001* .011* <.001* 

f -1 : WMEG  → V .001* <.001* <.001* <.001* <.001* <.001* 

f : V → WMEG .339 <.001* .018* <.001* <.001* .827 

 p7 p8 p9 p10 p11  

f -1 : WfMRI  → V <.001* .390 <.001* <.001* <.001*  

f : V → WfMRI <.001* <.001* <.001* <.001* <.001*  

f -1 : WMEG  → V <.001* <.001* .001* <.001* .002*  

f : V → WMEG <.001* .975 .815 <.001* .130  

 

Table 1: p-values for the comparison between SSEnorm for the empirical and 

reshuffled matrices. The matrix V denotes the structural network matrices for the 

individual data and the different columns are for the different 11 analyzed persons 

(p1 till p11). Note that in most cases a significantly better goodness-of-fit was 

obtained for the empirical matrices than for the reshuffled matrices (p<.05, indicated 

with *). 

 

resulting in similar matrix patterns. However, our results also indicated that the mapping was modality-
dependent as the coefficients for mappings with MEG- or fMRI-based networks significantly differed.

The existence of such a mathematical function points towards the fact that the functional connectivity of
the brain can be described by a combination of the underlying structural connections. Because of the stability
of the estimated coefficients and their cross-validation across different data sets, such a mathematical func-
tion could potentially be used to predict structure from function or vice versa in future studies. Also, once
we can use this mathematical framework to predict ’healthy’ functional connectivity, we can compare the
matrix to the actual measured functional network of the patient and identify possible malicious connections
indicating disease.

5.4.1. NEUROBIOLOGICAL INTERPRETATION

If we consider the case of a binary structural adjacency matrix, then the matrix element (Ak )i j equals the
number of walks of length k between node i and node j . Each term ck [ f ]Ak can be considered as the contri-
bution of walks with hopcount k to the functional network (see SI Figure 5.17). Here, hopcount is defined as
the number of intermediate links between two nodes in a walk (length of the walk). Our approach confirms
the ideas postulated by Robinson and co-workers that a functional connection can be regarded as a sum of all
possible walks between two regions [77, 78]. Additionally, our approach returns the coefficients ck [ f ], which
can be interpreted as the influence of all walks with hopcount k (see SI Table 5.3 and Figure 5.17). In contrast
to a path, a walk can traverse the same node more than once. Potential loops in walks are also in line with
the belief that re-entry loops can act as a resonating system to enhance a signal that needs to be spread over
a long distance [41].

In contrast to most previous studies, we followed a multimodal approach analyzing the mapping for MEG
and fMRI data. As opposed to studies that assumed a specific function beforehand, we followed a data-driven
approach by fitting coefficients of the general expression (5.5). More precisely, fMRI networks seemed to be
shaped by walks of lower hopcount in the structural network since the coefficients were higher for these con-
figurations (see SI Figure 5.15). In contrast, for MEG networks all walks from the underlying structural net-
work up to hopcount 5 appeared to contribute more or less equally to the resulting fitted functional network
matrix (see SI Figure 5.15). Overall, we found that estimations from structural networks were more accurate
when predicting MEG networks on both individual and group level than when predicting fMRI networks.
However, when the functional network was used to predict the structural one, we saw only small differences
at the individual level between the modalities but at the group level the fitting using fMRI matrices performed
better. These observations together with the significantly different coefficients for MEG and fMRI confirm the
modality dependency of the mapping. If ρ denotes the diameter of the network, defined as the hopcount of
the longest shortest path in a graph [111], our analysis for both fMRI and MEG suggests that the diameter of
the unweighted structural network (ρ = 6) is directly related to the number of terms K = 5 in Eq. (5.5) that are
sufficient for the best fit of the mapping from structural to functional networks. Hence, a functional connec-
tion between two regions seems only to be shaped by walks in the structural network that are shorter than
the diameter of this structural network. The important role of the diameter in this fitting procedure can also
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be mathematically justified (see also SI Section 5.6.1).

Besides the possibility of predicting the functional network using the structural network, our analysis
also has practical implications on how communication processes shape brain activity. Bullmore and Sporns
proposed the hypothesis that the brain is optimized for efficiency and robustness [15]. Our findings seem
to be in line with this idea since the brain seems to use not only (structural) shortest paths (most efficient
from a network perspective) for communication but is also transmitting information through less efficient
paths or walks. Thus, there seems to be some kind of degeneracy in the brain [76]. From a network science
perspective, spreading information not only through the shortest path makes the (healthy) brain function
more robust against link breakage. However, there seems to be an upper bound for the length of the paths
that the brain uses for communication, which corresponds to the diameter of the structural brain network.
Walks that are longer than the diameter are highly inefficient for communication. The diameter therefore
seems to symbolize the trade-off between efficiency and robustness [15]. It is this degeneracy and robustness
that could keep two regions functionally connected when the direct structural connection is damaged in
disease. In multiple sclerosis, the structural network gets damaged due to lesions and diffused white matter
damage. With this theory we could predict which detours are likely to be taken for functional connections in
order to uphold (sub)-optimal network efficiency. Thus, based on the damaged structural network we could
be able to make predictions on how this damaged structural network might map onto a functional network.
These practical implications seem to agree with several studies that have shown that the averaged path length
is higher in diseases than in the healthy brain [89].

Our mathematical approach incorporates previous models on the relationship between structural and
functional networks into one single model. For example, a previous study found that the shortest paths and
detours along these paths in the structural network were the strongest predictors for functional connections
[41]. This result agrees with our finding of the structural-functional network mapping being dependent on
the combination of walks with small hopcounts (corresponding to the shortest paths in the network) and
detours from these shortest paths. Also the suggestion that network diffusion has the ability to predict func-
tional connections [1] is in line with our work. Network diffusion indicates that information is not merely
transmitted through the shortest paths, but also through less efficient paths. Furthermore, our mathematical
function also includes the predictive value of common neighbors for functional connections [119]. The term
c2[ f ]A2 in Eq. (5.5) corresponds to the weighted number of walks between any pair of nodes with hopcount
2, i.e. walks from any node i to a node j via a common neighbor. In a previous study, Tewarie and coworkers
[96] demonstrated that the degree product between nodes in the structural network together with the Eu-
clidean distance has the ability to predict the functional connections between these nodes. We observed here
that our approach with the sum of structural matrices Ak in Eq. (5.5) is correlated not only with the degree
product (SI Figure 5.18) but also with the complete previous model (including Euclidean distance, SI Figure
5.19).

Predicting the structural network from the functional network has received relatively little attention [1, 23,
77, 78]. We assumed that the structural network is a weighted sum of powers of the functional network matrix
W . However, unlike the structure-to-function mapping f , the interpretation of this mathematical function is
less straightforward: If we define the weight of a walk as the product of all weights along this walk, then the
matrix entry (W k )i j represents the summed weights of all possible walks with hopcount k between node i
and node j . Similar to the function f , we find for f −1 that higher powers of W do not contribute substantially
to the goodness of fit of our mapping. In contrast to the powers of a binary matrix, W k does not only contain
the number of walks with hopcount k but also incorporates information about their weight structure. Still,
we can conclude that longer walks in the functional network seem to influence the structural brain network
less. Practically, this result not only helps us to reconstruct the structural connections when we have only the
functional connectivity matrices, but it also indicates that a direct structural connection between two brain
regions seems to be influenced not only by their direct functional connectivity but also by the (functional)
communication within a small hopcount neighborhood of those two regions.

Using an additional data set of individual healthy controls (data set (iii)), we found that our mapping can
also be generalized to the individual level. For the individual mappings, we also found that nearly all map-
pings were able to outperform their reshuffled benchmark except for some outliers (see Table 1). Further-
more, we compared the results of the group-averaged data and the individual data (each of these containing
data from multiple modalities). In the case of the mapping from structural to functional networks, the per-
formance when using individual fits was similar to that obtained when using the group-averaged matrices
(see Figures 5.2b and 5.2c). However, for the inverse mapping, the individual mappings provided a much
better fit than the group-averaged mappings. These results could potentially be explained by the following
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factors: (1) there exists an even stronger relationship between function and structure at the individual level,
(2) the use of weighted structural connectivity matrices (instead of the binary group-averaged structural con-
nectivity matrix), which are more representative of the underlying fiber bundle structure or (3) the fact that
the structural and functional information were gathered from the same group for data set (ii) (in contrast, the
group-averaged structural and functional connectivity matrices were based on two different sets of healthy
controls).

5.4.2. TECHNICAL IMPLICATIONS

Our approach may provide important information about the DTI-obtained structural network that is gen-
erally missed due to methodological issues with crossing versus kissing fibers which usually affect inter-
hemispheric connections. Given the functional networks, a mapping to the structural network could also
allow to distinguish between genuine and false positive connections, which are inherently present in DTI
data [100]. For example, in the structural networks estimated from MEG and fMRI networks we observed
more homologous inter-hemispheric connections than in the actual empirical structural network (see the
off-diagonal in SI Figure 5.8). In addition, for MEG functional connectivity metrics, there are well known
methodological issues with volume conduction, signal leakage and field spread. By using our approach and
trying out different functional connectivity metrics, one could aim to find the common properties of these
mappings, i.e. those that are invariant of the functional metric that was used.

5.4.3. METHODOLOGICAL CONSIDERATIONS

Firstly, we investigated the relationship between the structural network and static patterns of (resting-state)
functional connectivity, as functional connectivity was estimated over epochs of several seconds. Therefore,
our approach does not consider the dynamical aspects of functional connectivity. It is well known that func-
tional networks obtained from smaller time windows correspond less to the structural network [52, 66, 102]
and therefore our approach could be less applicable to these smaller time scales.

Secondly, the mapping employed in this study can certainly be influenced by the choice of the parcella-
tion of brain regions. However, as long as the ratio between genuine (functional or structural) connections
and noise in the matrices remains similar between parcellation atlases, we do not expect it to have a signif-
icant impact on the goodness of fit of our mapping. Despite the well-known limitations of the AAL atlas, it
still provides a commonly used framework in neuroimaging studies. By using it, the results from our study
are directly relevant for this existing body of work. We also provided a suggestion of how to overcome the
dimension differences of the matrices of different parcellations mathematically in SI Section 5.6.9.

Thirdly, our mapping can be influenced by noise in the matrices, such as the presence of false positives
in the structural connectivity matrix. However, by randomly adding some connections on top of the existing
connections to the structural network and redoing the analysis, we observed that the fluctuation in goodness
of fit was relatively small (see SI Figure 5.20).

Fourthly, we have chosen the alpha2 band because of high SNR for this frequency band. The mapping
between structure and function may be different in terms of coefficients for the other frequency bands be-
cause we face there to some extent a different structure in the matrices. To explore the mapping for different
frequency bands is a goal for future studies. Since the PLI probably underestimates the connectivity strengths
[91], future research should apply our methods on other connectivity measures as well which will probably
lead to different mappings in terms of different coefficients. Previous studies have used the amplitude en-
velope correlation to study MEG/fMRI similarity [12]. This metric may be used in future studies to analyze
structural versus functional network mappings but this is beyond the scope of the present study.

5.5. CONCLUSION
In the present study, we have demonstrated that, irrespective of the functional imaging modality, the rela-
tionship between structural and functional networks can be described by a mapping. Such a mathematical
function can predict resting-state functional networks from the structural network and vice-versa. This math-
ematical function can be described by a weighted sum of matrix powers which represent in the binary case
the number of walks up to a certain hopcount in the network. Thus, according to our analysis, a functional
connection seems to be shaped by shorter walks up to the diameter in the underlying structural network.
This result provides a general framework that incorporates previously published models on the relationship
between structural and (stationary) functional networks. Also when analyzing the mapping from functional
to structural networks, longer walks in the functional brain network appear not to have a big influence on the
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structural connections. We found different coefficients for MEG and fMRI for our mapping, which point
towards a modality dependency for the structure-function relationship. Furthermore, this mathematical
function could help to reduce noise and artifacts for the empirical estimation of structural and functional
networks. We were also able to extend this mapping relationship to the subject level. For future work, differ-
ences in individual mappings between patients and healthy controls may provide insights in the disrupted
relationship between the structural and functional brain networks in various diseases.
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5.6. SUPPLEMENTARY INFORMATION

5.6.1. THEORY
We provide here some mathematical background of our method.

MATRIX FUNCTIONS

If f (z) is a function of the complex number z and analytic in a disk with radius R around z0, then it can be
shown (see Section 2.2) that for all matrices A, the matrix function f (A) can be expressed as a polynomial of
degree at most N −1,

f (A) =
N−1∑
k=0

ck
[

f
]

Ak

where the coefficients ck
[

f
]

can be specified as

ck
[

f
]= 1

k !

N∑
m=1

f (λm)∏n
j=1; j 6=m

(
λm −λ j

) d k

d xk

N∏
j=1; j 6=m

(
x −λ j

)∣∣∣∣∣
x=0

Only if f is a polynomial of degree m at most N −1, we find, for all 0 ≤ k ≤ N −1, that

fk (0) = ck
[

f
]

,

where fk (0) is the k-th coefficient of the Taylor series of f for the development point z0 = 0.

ROLE OF THE DIAMETER

An explanation for the importance of the diameter could be as follows: The matrix powers I , A, A2, A3,... are
all linearly independent of each other up to Aρ [111]. For higher powers, we cannot be sure of their depen-
dency. Our analysis shows that using higher powers of the structural connectivity matrix than its diameter
(ρ = 6) does not improve the goodness of fit of our estimation. Furthermore, in the binary matrix A, the sum∑m

k=1 Ak can have zero entries for all m < ρ. Reducing the number of zero entries can also be a reason why
the goodness of fit increases gradually until adding Aρ and then converges.

ANALYSIS IN THE SPECTRAL DOMAIN

If a mapping postulated in the previous section is valid, then such a mapping should also hold in the spectral
domain [111]. Provided A is symmetric such that A = XΛX T , where the matrix X contains the eigenvectors
of A in the columns and Λ = diag(λk ), 1 ≤ k ≤ N , with λ1 ≥ λ2 ≥ . . . ≥ λN the real eigenvalues of A, then
there exists an alternative to compute f (A). Since eigenvectors are orthogonal, the matrix X is an orthogonal
matrix satisfying X T X = I and X X T = I , where the latter follows from the fact that X −1 = X T and the fact that
a matrix and its inverse commute. We assume here that all eigenvalues are different, as is the case in most
real-world networks [111]. Then,

f (A) = X f (Λ) X T =
N∑

k=0
f (λk ) xk xT

k (5.8)

where xk is the eigenvector of A belonging to the eigenvalue λk . Using the spectral form (5.8) in our assump-
tion Eq. (5.1) reveals that

W = X f (Λ) X T , (5.9)

Since W is symmetric, the spectral decomposition equals

W = YΥY T (5.10)

where Y is the orthogonal matrix containing the eigenvectors y1, y2, . . . , yN belonging to the eigenvalues µ1 ≥
µ2 ≥ . . . ≥µN andΥ= diag

(
µk

)
,1 ≤ k ≤ N is the diagonal matrix of the eigenvalues of W . Using the properties

of orthogonal matrices, we find from (5.9) the diagonal matrix f (Λ) = diag
(

f (λk )
)

as

f (Λ) = X T W X .

With (5.10), we obtain
f (Λ) = (

X T Y
)
Υ

(
Y T X

)
. (5.11)
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Since both f (Λ) andΥ are diagonal matrices and
(
X T Y

)= (
Y T X

)−1
, there must hold that

f (λk ) =µk (5.12)

for each 1 ≤ k ≤ N . Furthermore, from Eq. (5.11) follows that(
Y T X

)
f (Λ) =Υ(

Y T X
)

. (5.13)

From Eq. (5.12) and the fact that we multiply the matrix Y T X with the same diagonal matrix from both sides,
we can conclude that (under the condition that all eigenvalues are different) Y T X = I and therefore X = Y .

In summary, Eq.(5.1) implies that both the structural matrix A and the functional matrix W must have
the same eigenvectors and that the function f maps the eigenvalues (ordered) of A onto those of W (also
ordered, see (5.12)). Moreover, (5.12) shows that f (x) is non-decreasing in x.

If the empirical matrices have different eigenvectors, then that difference may be due to noise of the
measurement. If the difference cannot be explained by noise perturbation, our assumption in Eq. (5.1) that
there exists an analytic function f needs to be revisited and a more general form of our fitting function can
be considered with matrix coefficients instead of scalar ones

F (A) =
∞∑

k=0
Fk (A− z0I )k (5.14)

where Fk are N ×N matrices, which reduces when N = 1 again to our previous assumption (5.3).

5.6.2. DATA ANALYSIS

VISUALIZATION OF BEST FITS

In Figures 5.6, 5.7 and 5.8, we visualized the best fitted matrices of the group-averaged data set on a bigger
scale to better localize the biggest discrepancies between our best fits and the empirical findings. The num-
bers on the axes of the matrices, 1 to 78 refer to specific brain regions. You can find in Table 5.2 a complete
list of the regions of interest (ROIs) that we display mostly with numbers.

We can see that the patterns of the fitted matrices seem to be similar to the empirical ones and that the
value range is overlapping. Therefore, we can conclude that also only from visual inspections of the fitted
matrices our mapping seems to be convincingly accurate.

SPECTRAL DATA ANALYSIS

After plotting the eigenvalue couples
(
λk ,µk

)
in a scatter plot, we can obtain the function f in the spectral

domain (see Eq.(5.12)). Polynomial functions were fitted to all possible combinations of scatter plots (i.e. for
the combinations structure-function (MEG/fMRI) and vice versa) by minimizing the sum of squared errors.
An example of such a fit is depicted in Figure 5.9.

For the goodness of fit in the spectral domain, we computed the adjusted R2 value for the different map-
pings (see Figure 5.10). Overall, we reached already for K ≥ 4 with all combinations of matrices an adjusted R2

value of higher than 0.9 indicating a good fit of our mapping. We followed the same approach here as we did
for the topology domain, and reversed A and W to repeat the spectral analysis for the function f −1 : W → A.
Results of this analysis can also be found in Figure 5.10. For this spectral approach, the adjusted R2 value did
not improve much after adding the same number of terms as was used for the mathematical function in the
topology domain (compare Figures 5.10 with Figure 5.2b). Thus, a functional expression with K = 5 was again
sufficient for the analyzed mappings. This conclusion held for both modalities (fMRI and MEG) and for both
functions f : A →W and f −1 : W → A.

Since we conducted a similar analysis in the topology and in the spectral domain respectively for the
functions f and f −1, we compared the estimated coefficient values for the spectral and topology domain.
For a correct comparison, we must omit the error matrix E in Eq. (5.5) in the topology domain. A plot of the
estimated coefficient values and confidence intervals (obtained by the least squared parameter estimation in
MATLAB) is illustrated in SI Figures 5.11 and 5.12 for the mapping of structural to functional matrices and in
SI Figures 5.13 and 5.14 for the other direction. For the mapping f , we only faced small differences between
the coefficients (see SI Figures 5.11 and 5.12) and in most cases their confidence intervals were overlapping.
But for the other direction, function f −1, we observed quite different estimated coefficients. In the case of
f −1 : WMEG → A we obtained large confidence intervals when many (> 5) coefficients were fitted (see SI Fig-
ure 5.13), implying insecure estimations of their exact value. This result is in agreement with the finding that 5
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Table 5.2: Complete list of the regions of interest (ROIs) that we mostly display with numbers of the AAL atlas.

1 Rectus-L 40 Rectus-R
2 Olfactory-L 41 Olfactory-R
3 Frontal-Sup-Orb-L 42 Frontal-Sup-Orb-R
4 Frontal-Med-Orb-L 43 Frontal-Med-Orb-R
5 Frontal-Mid-Orb-L 44 Frontal-Mid-Orb-R
6 Frontal-Inf-Orb-L 45 Frontal-Inf-Orb-R
7 Frontal-Sup-L 46 Frontal-Sup-R
8 Frontal-Mid-L 47 Frontal-Mid-R
9 Frontal-Inf-Oper-L 48 Frontal-Inf-Oper-R
10 Frontal-Inf-Tri-L 49 Frontal-Inf-Tri-R
11 Frontal-Sup-Medial-L 50 Frontal-Sup-Medial-R
12 Supp-Motor-Area-L 51 Supp-Motor-Area-R
13 Paracentral-Lobule-L 52 Paracentral-Lobule-R
14 Precentral-L 53 Precentral-R
15 Rolandic-Oper-L 54 Rolandic-Oper-R
16 Postcentral-L 55 Postcentral-R
17 Parietal-Sup-L 56 Parietal-Sup-R
18 Parietal-Inf-L 57 Parietal-Inf-R
19 SupraMarginal-L 58 SupraMarginal-R
20 Angular-L 59 Angular-R
21 Precuneus-L 60 Precuneus-R
22 Occipital-Sup-L 61 Occipital-Sup-R
23 Occipital-Mid-L 62 Occipital-Mid-R
24 Occipital-Inf-L 63 Occipital-Inf-R
25 Calcarine-L 64 Calcarine-R
26 Cuneus-L 65 Cuneus-R
27 Lingual-L 66 Lingual-R
28 Fusiform-L 67 Fusiform-R
29 Heschl-L 68 Heschl-R
30 Temporal-Sup-L 69 Temporal-Sup-R
31 Temporal-Mid-L 70 Temporal-Mid-R
32 Temporal-Inf-L 71 Temporal-Inf-R
33 Temporal-Pole-Sup-L 72 Temporal-Pole-Sup-R
34 Temporal-Pole-Mid-L 73 Temporal-Pole-Mid-R
35 ParaHippocampal-L 74 ParaHippocampal-R
36 Cingulum-Ant-L 75 Cingulum-Ant-R
37 Cingulum-Mid-L 76 Cingulum-Mid-R
38 Cingulum-Post-L 77 Cingulum-Post-R
39 Insula-L 78 Insula-R
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(a) WMEG
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(b) W̃MEG
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Figure 5.6: Visualization of the best fits for the function f , which was W̃MEG (for K = 6 with an error matrix E), under the empirical
adjacency matrix WMEG for the group-averaged data set.
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(a) W f MRI
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(b) W̃ f MRI
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Figure 5.7: Visualization of the best fits for the function f , which was W̃ f MRI (for K = 6 with an error matrix E), under the empirical
adjacency matrix W f MRI for the group-averaged data set.
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(a) A
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(b) Ã
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Figure 5.8: Visualization of the best fits for the function f −1, which was Ã (again for K = 6 with an error matrix E) under the empirical
adjacency matrix A for the group-averaged data set.
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Figure 5.11: Plot of the estimated coefficient values for different maximal exponents K with their 95% confidence interval as an errorbar
for the mapping f : A → WMEG for the group-averaged data set. The spectral and topology approach are marked in blue and red,
respectively. Note that, the confidence intervals of the coefficient values overlap and the distance between the estimated coefficient
values is becoming smaller when more coefficients are used.

coefficients were sufficient to describe the mapping between W and A (Figure 5.2b), and that these extra co-
efficients did not contribute relevant information to the mapping. The discrepancies between the estimated
coefficient values in the topology and spectral domain could be originating from the different eigenvectors of
the 3 analyzed empirical matrices. These eigenvector perturbations can potentially be caused by noise in the
different measurement techniques.

5.6.3. COMPARISON OF FITTED COEFFICIENT VALUES FOR DIFFERENT MODALITIES
In Table 5.3, we displayed the different estimated values for the coefficients of our mapping for a maximal
fitted exponent of K = 6 and z0 = 0 for the group-averaged data set. In addition, in Figures 5.15 and 5.16 we
show the different coefficient values (without the offset estimates) for the two modalities for both mappings
together with their 95% confidence intervals, from structure to function and from function to structure. In
both displayed figures, the 95% confidence intervals for the estimated coefficients of the different modalities
do not overlap indicating significantly different coefficients using the 5% significance level. This table and
these confidence intervals show clearly the differences between the different analyzed mappings pointing
towards a modality-dependent mapping.

5.6.4. INTERPRETATION WITH WALKS
In Figure 5.17, we visualized our mapping in terms of the number of walks of the structural brain network
(without the error matrix E).

5.6.5. COMPARISON WITH A PREVIOUS STUDY
In Figures 5.18 and 5.19, we compare our results with a previous study [96]. Tewarie and coworkers [96]
demonstrated that the degree product between nodes in the structural network together with the Euclidean
distance has the ability to predict the functional connections between these nodes. If we merely focus on
the degree product, we observe that our approach with the sum of structural matrices Ak (see Eq. (5.5)) is
correlated with the degree product (SI Figure 5.18). The correlation between those two measures is indeed
positive with a Spearman correlation of R = 0.57 (p-value < 0.001). There are two clouds in the scatterplot: the
upper cloud corresponds to direct connections whereas the lower cloud corresponds to all possible indirect
connections, consisting of all walks larger than one. If we investigate the relationship between the previous
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Figure 5.12: Plot of the estimated coefficient values for different maximal exponents K with their 95% confidence interval as an errorbar
for the mapping f : A → W f MRI for the group-averaged data set. The spectral and topology approach are marked in blue and red,
respectively. Note that, in nearly all cases, the confidence intervals of the coefficient values overlap pointing towards similar estimated
coefficients for the spectral and topology domain.
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Figure 5.13: Plot of the estimated coefficient values for different maximal exponents K with their 95% confidence interval as an errorbar
for the mapping f −1 : WMEG → A for the group-averaged data set. The spectral and topology approach are marked in blue and red,
respectively.
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Figure 5.14: Plot of the estimated coefficient values for different maximal exponents K with their 95% confidence interval as an errorbar
for the mapping f −1 : W f MRI → A for the group-averaged data set. The spectral and topology approach are marked in blue and red,
respectively.

Table 5.3: Estimated coefficient values for a maximal exponent of K = 6 and z0 = 0 for the group-averaged data set.

parameter in front of f: A -> WMEG f: A -> WfMRI parameter in front of f
-1

:  WMEG -> A f
-1

:  WfMRI -> A

I -0.186244926 -0.622088682 I 0.931541504 1.472348531

E 0.170142739 0.417817587 E -0.226229939 -0.098880043

A -0.002689163 0.073378816 W 15.61376486 1.633796259

A
2

0.000397359 0.027965465 W
2

25.77141943 -0.760008801

A
3

0.00136165 0.010963972 W
3

-64.46444579 0.241736267

A
4

-7.34E-05 -0.000932557 W
4

-92.90312812 -0.03937664

A
5

-5.42E-05 -0.000401534 W
5

-6.670779246 0.002673357

A
6

5.47E-06 3.96E-05 W
6

0.993949647 -4.75E-05

model (including degree product and Euclidean distance as predictors for functional connectivity) and the
mapping approach from this chapter, the Spearman correlation R becomes higher (R = 0.64, p-value < 0.001,
see Figure 5.19). This result raises the question whether the Euclidean distance as a separate term in a model
for explaining functional connections is required [3]. In our approach, we only incorporated topological
distance, which means the distance with respect to intermediary nodes and links in the structural network,
and not Euclidean distance; however, these findings might suggest that topological distance and Euclidean
distance between nodes are related.

5.6.6. ERROR ANALYSIS
The equation Eq. (5.1) assumes that W and A are known exactly. In reality, all types of error mask the true
structure so that we actually measure

W̃ =W +εW RW

where RW is a realization of a random matrix with unit norm and εW is the maximum amplitude of the error.
Similarly,

Ã = A+εARA
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Figure 5.15: Plot of the estimated coefficient values for maximal fitted exponent K = 5 with their 95% confidence interval as an errorbar
for the mapping from structural to functional networks for the group-averaged data set. Note that the displayed intervals do not overlap,
thus we face here significantly different estimated values.

and the assumption becomes

W̃ = f
(

Ã
)

or

W +εW RW = f (A+εARA)

Using the Taylor expansion (5.3),

f (A+εARA) =
∞∑

k=0
fk (A)εk

A (RA)k

up to first order (assuming that εA is sufficiently small!), then

W +εW RW = f (A)+ f1 (A)εARA +O
(
ε2

A

)
Invoking the assumption (5.1) shows a relation between the different types of errors

εW RW = f1 (A)εARA +O
(
ε2

A

)
Given that the assumption (5.1) is correct and that A is known exactly, we could derive a method to im-

prove the measurements W̃ based on Section SI-5.6.1, which suggests that all eigenvectors of W are fixed and
known (i.e. X is the same as for A), so that W̃ needs to be modified to incorporate this property. This analysis
is a suggestion for future work.

To investigate the influence of false positives in the structural matrix, we randomly added connections
(1 % new connections) in the structural matrix of the group-averaged data set and redid the analysis (power
series in topology domain with 6 terms). The results can be found in the boxplots of the goodness of fit
(SSEnor m) in SI Figure 5.20. If we define the change in SSEnor m due to noise as the noise influence N I
whereas N I (SSEnor m) := st and ar d devi ati on(SSEnor m)/mean(SSEnor m), then we can calculated

N I (SSEnor m)(W f MRI → A) = 0.0174

N I (SSEnor m)(WMEG → A) = 0.0169

N I (SSEnor m)(A →W f MRI ) = 0.0124

N I (SSEnor m)(A →WMEG ) = 0.0158.
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Figure 5.16: Plot of the estimated coefficient values for maximal exponents K = 4 with their 95% confidence interval as an errorbar for
the mapping from functional to structural networks for the group-averaged data set. Note that the displayed intervals do not overlap,
thus we face here significantly different estimated values.

It can be observed from the above that the change in goodness of fit is small in the presence of little noise (in
the order of 1%), thus the mapping does not seem to be sensitive to small noise fluctuations.

If we analyze the region-to-region variability, we find that the inter-hemispheric connections were often
quite different between the empirical matrix and its fitted version (see the secondary diagonal in Figures 5.21
- 5.24 where we displayed the absolute error). This result confirms our interpretation about the more ho-
mologous inter-hemispheric connections in the fitted networks than in the empirically observed networks.
Furthermore, we were also interested in which regions benefitted more from an increasing number of coef-
ficients (darker regions in SI Figures 5.25-5.28). Those regions that benefitted from an increasing number of
fitted coefficients were possibly most influenced by longer walks in the underlying structural network. For
the estimated structural and functional networks by our mapping we observe as a result quite a diverse ho-
mogenous spreading of the benefitting regions over the entire group of regions except for the diagonal and
secondary diagonal. Thus, we can again conclude that the inter-hemispheric connections are probably ben-
efitting most from our mapping approach.

5.6.7. RESHUFFLED MATRICES

We used one reshuffling technique on all matrices: we selected two matrix entries at random and then ex-
changed their entries in the matrix (their link weights in the network). We repeated this step 5000 times to
obtain a reshuffled version of every matrix, which is again symmetric. Thereby we preserved the distribution
of the weights. After generating 100 reshuffled matrices, we compared the goodness of fit distribution of the
mappings using reshuffled matrices to our empirical results (see SI Figures 5.29 and 5.30). More precisely, for
each mapping from any matrix M to N , we first replaced the underlying matrix M with a reshuffled version of
this adjacency matrix and ran the same mapping analysis on it. Then we replaced the image matrix N with a
randomly reshuffled version of itself (keeping the underlying matrix M as the original empirical matrix) and
ran the fitting algorithm on that combination (thus always one empirical matrix with one reshuffled version
of the other matrix together).

For the group-averaged data set, the fit errors of 100 reshuffled matrices were larger compared to those
obtained using the experimental data for all analyzed mappings (see SI Figures 5.29 and 5.30). Therefore, we
can conclude that the mapping from structure to function (and vice versa) fails when reshuffled connections
are used. Therefore, the empirical matrices seem to possess a special structure making the relationship be-
tween the structural and functional brain network closer than when reshuffled version of those matrices are
used.
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Figure 5.17: Visualization of a simplified version of our model (from Eq. (5.4) where ck = ck [ f ]): Walks of different length between node i
and j , first the direct connection, then with one intermediate node, with two and so on, adding up to the functional connectivity matrix.

Figure 5.18: Scatter plot of the structural degree product against the sum of the powers of the structural matrix A (from power k = 1 up
to k = 6).

For the data set of individual healthy controls, we also used 100 reshuffled matrices of their structural
and functional networks, respectively, and displayed the percentage of those matrices that achieved better
goodness of fit than our empirical data (see SI Figures 5.31 and 5.32).

When using 5 coefficients or more, we obtained good results for the mapping f : V →W f MRI for nearly all
subjects. Only subject number 5 seems to be an exception which could be due to some measurement errors
or specific individual attributes of that subject. We also identified two individuals as outliers whose goodness
of fit level did not outperform the random reshuffles for the mapping f −1 : W f MRI → V . The function f −1

starting from MEG networks obtained good results for K > 2. The only mapping that was not able to outper-
form the reshuffled matrices as a benchmark for most of the subjects was f : V → WMEG in the individual
healthy control data. To sum up, for the individual structure-function relationships, in most of the cases the
mapping performs worse when we apply it to random reshuffles indicating a high goodness of fit level for the
mapping between the original empirical matrices.

5.6.8. DETAILS OF THE FITTING PROCEDURE

In order to use the non-linear regression algorithm in MATLAB (using the routine nlinfit.m version R2015a)
to determine the coefficients in Eq. (5.5) by iterative least squares estimation, we need to adapt our data
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Figure 5.19: Scatter plot of the estimated fMRI correlation matrix from the distance and degree model described in a previous study
(Tewarie et al., 2014) against the estimated values using the mapping approach on the structural matrix A.
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Figure 5.20: Boxplot of the variations in SSEnor m in the topology domain for K = 6 with group-averaged data for z0 = 0. To investigate the
influence of false positives in the structural connectivity matrix, we randomly added connections (1% new connections) in the structural
matrix and redid the analysis.
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Figure 5.21: Absolute distance matrix between the best fit for Ã = f (W f MRI ) (K = 6, z0 = 0) and the empirical matrix A for the group-
averaged data set.
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Figure 5.22: Absolute distance matrix between the best fit for Ã = f (WMEG ) (K = 6, z0 = 0) and the empirical matrix A for the group-
averaged data set.

10 20 30 40 50 60 70

10

20

30

40

50

60

70 0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Frontal L

Parietal L
Occipital L

Temporal L
Cingulate ROIs L

Frontal R 

Parietal R
Occipital R

Temporal R
Cingulate ROIs R

Figure 5.23: Absolute distance matrix between the best fit for W̃ f MRI = f (A) (K = 6, z0 = 0) and the empirical matrix W f MRI for the
group-averaged data set.
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Figure 5.24: Absolute distance matrix between the best fit for W̃MEG = f (A) (K = 6, z0 = 0) and the empirical matrix WMEG for the
group-averaged data set.
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Figure 5.25: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients (K = 6, z0 = 0) for the mapping
f −1 : W f MRI → A for the group-averaged data set. Note that darker areas correspond here to regions that benefitted more from a higher
number of coefficients.
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Figure 5.26: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients (K = 6, z0 = 0) for the mapping
f −1 : WMEG → A for the group-averaged data set. Note that darker areas correspond here to regions that benefitted more from a higher
number of coefficients.
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Figure 5.27: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients (K = 6, z0 = 0) for the mapping
f : A → W f MRI for the group-averaged data set. Note that darker areas correspond here to regions that benefitted more from a higher
number of coefficients.
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Figure 5.28: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients (K = 6, z0 = 0) for the mapping
f : A → WMEG for the group-averaged data set. Note that darker areas correspond here to regions that benefitted more from a higher
number of coefficients.

first. Because all involved matrices are symmetric, we only need to fit the lower triangular matrices and the
diagonal to get our fitting results. Thus, we first write all matrices in a vectorized form only containing their
lower triangular and diagonal entries. For any matrix M of dimension N ×N this vector will be denoted by
l td(M). To be able to use the standard equation Y = X ·β (with X design matrix, β parameter vector and
Y image matrix) for a linear model, we need to define the variables for our case. In the case of f (A) = W ,
the response Y is just the image matrix W written as a vector containing the lower triangular and diagonal
entries, Y = l td(W ). The design matrix X is in the case of K as the maximal exponent

X = (
l td(J ) l td(I ) l td(A) l td(A2) ... l td(AK )

)
Therefore, the parameter vector β has the length (K +2), where the first entry will be the coefficient c in front
of the all-one matrix J and the second one is the coefficient for the identity matrix I and the others are in front
of the matrix powers of A. Because the matrix powers of A are exploding in magnitude quickly, we normalize
all the matrices beforehand dividing every entry by the absolute maximum entry of each matrix, which has
the consequence that all matrices now have values between 0 and 1. Then, the nlinfit.m algorithm can be
applied to our data using the underlying function myfun.m displayed here

function F = myfun(beta,xdata)

F = xdata*beta;
end

where xdata refers to our design matrix X and beta is the parameter vector β. Because our model resem-
bles a GLM, we could also use the pseudo-inverse of our design matrix xdata (pinv(xdata)) and multiply it
with the vectorized matrix Y in order to obtain the same estimated coefficients. In order to obtain the coeffi-
cient values for the original powers of the A matrix, we have to denormalize the estimated values by dividing
the estimated coefficients each by the absolute normalization value from before.
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(a) f : A →W f MRI

(b) f : A →WMEG

Figure 5.29: Plot of the normalized sum of squared errors (SSEnor m ) of the function f in the topology domain for different maximal
fitted exponents K and always in combination with a randomly reshuffled matrix R (RMEG , R f MRI and Ar e denoting the reshuffled
versions of WMEG , W f MRI and A, respectively) averaged over a range of z0 values from −3 till 3 (always including an error matrix E) for
the group-averaged data set.
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(a) f −1 : W f MRI → A

(b) f −1 : WMEG → A

Figure 5.30: Plot of the normalized sum of squared errors (SSEnor m ) of the function f −1 in the topology domain for different maximal
fitted exponents K and always in combination with a randomly reshuffled matrix R (RMEG , R f MRI and Ar e denoting the reshuffled
versions of WMEG , W f MRI and A, respectively) averaged over a range of z0 values from −3 till 3 (always including an error matrix E) for
the group-averaged data set.
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(b) f : V → RMEG
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(c) f −1 : RMEG →V
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(d) f −1 : WMEG →Vr e
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Figure 5.31: Plot of the percentages of reshuffled matrices that resulted in a lower normalized sum of squared errors (SSEnor m ) in the
topology domain for different maximal fitted exponents K with individual healthy controls results for all mapping including MEG (V
denoting the weighted structural matrix and Vr e denoting its randomly reshuffled version) for z0 = 0 (with an error matrix E).
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(a) f : Vr e →W f MRI

maximal exponent fitted
0 1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f r
es

hu
ffl

ed
 m

at
rix

 fi
ts

 w
ith

 lo
w

er
 S

S
E

no
rm

0

10

20

30

40

50

60

70

80

90

subject 1
subject 2
subject 3
subject 4
subject 5
subject 6
subject 7
subject 8
subject 9
subject 10
subject 11
5% level

(b) f : V → R f MRI
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(c) f −1 : R f MRI →V
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(d) f −1 : W f MRI →Vr e
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Figure 5.32: Plot of the percentages of reshuffled matrices that resulted in a lower normalized sum of squared errors (SSEnor m ) in the
topology domain for different maximal fitted exponents K with individual healthy controls results for all mappings including fMRI (V
denoting the weighted structural matrix and Vr e denoting its randomly reshuffled version) for z0 = 0 (with an error matrix E).
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5.6.9. DIMENSION DIFFERENCES
In practice, the m ×m measured matrix W ∗ may be of a different dimension than the N × N matrix W . If
m ≥ N , then we can transform the measured matrix W ∗ to W as follows. Since W ∗ is symmetric, the spectral
decomposition is

W ∗ = Y ∗Υ∗Y ∗T

where the diagonal matrix Υ∗ = diag
(
µ∗

1 , . . . ,µ∗
N ,µ∗

N+1, . . . ,µ∗
m

)
with the real eigenvalues ordered as

∣∣µ∗
1

∣∣ ≥∣∣µ∗
2

∣∣≥ . . . ≥ ∣∣µ∗
m

∣∣. The ordering here is different than the usual ordering in Section 5.6.1, because eigenvalues
of W may be negative (in principle; although those of a correlation matrix are non-negative). Next, we let
µk =µ∗

k for 1 ≤ k ≤ N and µk = 0 for k > N and

Y ∗ =
[

(Y11)N×N (Y12)N×(m−N )

(Y21)(m−N )×N (Y22)(m−N )×(m−N )

]
so that

W̃ ∗ =
[

Y11 Y12

Y21 Y22

][
Υ O
O O

][
Y11 Y12

Y21 Y22

]T

=
[

Y11ΥY T
11 Y11ΥY T

21
Y21ΥY T

11 Y21ΥY T
21

]
from which we choose W = Y11ΥY T

11. This method is well-known in the theory of singular value decompo-
sitions (see e.g. [39]) and provides the best N × N (in the mean-square sense) approximation of an m ×m
matrix.





6
THE EPIDEMIC SPREADING MODEL AND

THE DIRECTION OF INFORMATION FLOW IN

BRAIN NETWORKS

6.1. INTRODUCTION
Analyzing the human brain as a network led to the discovery of many interesting properties [15, 89, 93].
However, different measurement techniques capture different aspects of brain networks. Techniques such
as diffusion tensor imaging (DTI) allow for the reconstruction of the structural brain network, which con-
sists of a map of anatomical connections between brain regions. Functional imaging techniques, such as
magneto-/electro-encephalography (MEG/EEG) and functional magnetic resonance imaging (fMRI), mea-
sure, either directly or indirectly, the activity of brain regions, from which functional brain networks can be
reconstructed. Based on the brain regions’ time series of activation we can extract two types of connectivity
information: Functional connectivity refers to the existence of a statistical relationship between the activa-
tion time series, whereas effective connectivity captures the causal effect of one region’s activity to the other
regions’ activities [2, 35]. While most studies have analyzed functional connectivity, recent approaches have
focused on effective connectivity to gain knowledge about directionality [50, 70, 94]. Patients suffering from
brain disorders often have altered structural brain networks [17]. In order to understand how these structural
changes influence changes in the functional networks, we need to reveal the properties of the underlying
connectome that facilitate the information flow and its direction in the functional networks.

The measure of transfer entropy (TE) has been used for MEG and EEG data for the estimation of effec-
tive connectivity [82]. Transfer entropy from node i to node j measures how much better a prediction of
a next value of j becomes when we not only include the previous value of j but also the previous value of
i . In the sense of Wiener’s principle [125], transfer entropy can be interpreted as the causal influence of
one brain region on another. Recently, the measure of transfer entropy has been expanded to a measure for
phase-based connectivity, the so-called Phase Transfer Entropy [61, 74]. By applying the Phase Transfer En-
tropy, Hillebrand et al. [50] recently found a surprisingly consistent global spreading pattern from posterior
to anterior brain regions in empirical MEG data in the higher frequency bands (alpha1, alpha2, and beta
band) and a mirrored information flow from anterior to posterior regions in the theta band, where the latter
has also been observed in EEG data [20]. The origin of these global patterns is still unclear. Hillebrand and
co-authors [50] hypothesized that this global direction of information flow could be driven by strong hub
connections in the posterior regions possessing the highest levels of neuronal activity in the network during
the resting-state [21, 70].

Recent studies have shown that simple models of activity spread can contribute to our understanding
of brain dynamics [1, 24]. For example, Mišić et al. [69] applied a simple deterministic cascade model and
discovered that hubs and the shortest paths of the structural brain network have a high influence on the effi-
ciency of spreading dynamics. Even though those simple models ignore microscopic details of the spreading

This chapter has been published in J. Meier, X. Zhou, A. Hillebrand, P. Tewarie, C.J. Stam and P. Van Mieghem, The Epidemic Spreading
Model and the Direction of Information Flow in Brain Networks, NeuroImage, 152, pp. 639-646 (2017).
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Figure 6.1: Schematic overview of performed modelling. We ran a Susceptible-Infected-Susceptible (SIS) process on the underlying
structural brain network. Based on the activation time series of the nodes (see left panel, red represents the activated state and green
the excitable state), we calculated all pairwise transfer entropies to construct a network of the same nodes but with the link weights
representing the functional interactions between node activities.

process, the scarcity of parameters simplifies the exposure of underlying general principles. Further, there
is evidence that the brain operates near a critical phase transition [44, 80, 97, 127]. It is known from statisti-
cal physics that the details of the applied model become irrelevant near such a transition. This vicinity of a
phase transition could explain why simple models [24, 44] have been successful in capturing more compli-
cated model findings [51, 52].

A simple epidemic process often approximates empirical spreading processes on networks for various
applications, e.g. information propagation and gossip spreading in social networks [75]. The Susceptible-
Infected-Susceptible (SIS) epidemic is one of the simplest models of an epidemic. In an SIS epidemic process,
a node can be in two states, either infected or susceptible (and can be infected by its infected neighbors). The
advantages of the epidemic spreading model are that the effective spreading rate τ is the only a-priori chosen
parameter and that we can also study the model analytically. A previous study [90] applied a discrete-time
epidemic process on the structural brain network and identified the structural degree product as a driving
force for the effective connectivity between two nodes. In the case of the functional brain network, brain
regions can be activated (infected) and spread this activation to their anatomically neighboring excitable
(susceptible) regions. Applying the well-developed theory of epidemics may lead to a better understanding
of the activity spreading in the brain and in particular reveal the structural properties that drive the global
spreading dynamics.

The SIS process can analytically be described as a continuous-time Markov chain with 2N states where
N is the number of nodes in the network. The embedded Markov chain approximates the continuous-time
SIS process as a discrete-time process and contains the transition probabilities but no longer the precise
timing of the events [113]. For this study, we simulated an epidemic spreading process on the structural brain
network in a continuous-time framework since we were interested in the smaller time-scale dynamics (see
Figure 6.1) [113]. We used the transfer entropy (instead of the Phase Transfer Entropy) for the estimation of
pairwise directed interactions since the SIS model generates binary time series.

The aim of this chapter was to elucidate the topological properties of the structural brain network that give
rise to the empirically observed effective connectivity patterns in functional brain networks. To this end, time
series were generated by applying a continuous-time SIS model on a human connectome, following which
effective connectivity was estimated using pairwise transfer entropies for different time delays. Because pre-
vious studies [69, 90, 96] and analytic reasoning (see Appendix 6.6.5) identified the degree as a driving force
behind spreading dynamics, we directed a special focus on the relationship between the structural degree
and the outcome of the SIS spreading process.
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6.2. METHODS

STRUCTURAL NETWORK

For the structural network, we used a literature-based DTI network from a previous study based on 80 healthy
subjects (for details see [40]), where a node corresponds to a cortical region in the automated anatomical
labeling (AAL) atlas [104]. In short, every two cortical regions from the 78 AAL atlas regions were considered
to be connected if the end points of two white matter tracts were located in these regions [40]. Via a non-
parametric sign test only the significant links were included in the group-averaged structural connectivity
matrix. This processing resulted in a binary connectivity matrix for the structural brain network, which we
will further refer to as the structural adjacency matrix A.

SIS PROCESS

In an SIS epidemic process on an undirected and unweighted graph G with N nodes and L links, the state of
a node i at time t is specified by a Bernoulli random variable Xi (t ) ∈ {0,1}: Xi (t ) = 0 for an excitable node
and Xi (t ) = 1 for an activated node. Here, we have replaced the states ’susceptible’ and ’infected’ from classic
epidemic theory with ’excitable’ and ’activated’ to indicate the status of a brain region. Only an active node
can activate its direct neighbors that are still excitable. We assume that the infection (activation) process and
the curing process (change to excitable status) are Poissonian with rates β (infection rate) and δ (curing rate),
respectively [113]. The infection and curing process are independent of each other. The continuous-time SIS
model is defined by the differential equation for the expected status of any node j , E [X j ],

dE [X j ]

d t
= E [−δX j + (1−X j )β

N∑
k=1

ak j Xk ] , (6.1)

where
∑N

k=1 ak j Xk counts the number of activated neighbors of node j . The effective infection rate is denoted
by τ=β/δ.

DETAILS OF THE SIMULATION

As mentioned in the introduction, there is evidence that the brain operates with its dynamics near a critical
phase transition [44, 80, 127]. As in [90], we chose β and δ such that the SIS dynamics are slightly above the
critical epidemic threshold τc which we verified with continuous-time simulations (Figure 6.2). We used the
continuous-time simulator SIS simulator (SISS) [105] to simulate an SIS-epidemic on the structural network
with β = 0.1 and δ = 0.5 [90] resulting in an effective spreading rate τ = β/δ = 0.2. For each simulation run,
we initially activated 15 nodes at random, which is approximately 20% of the whole network, to enable a
comparison with previous results [90]. Initially infecting 15 nodes also ensures that the probability for the
activity-spread to die out is nearly zero [59](see Appendix Figure 6.5).

We ran a simulation of 4096 time units [90]. We applied 0.1 time units as a sample interval resulting in
40960 time points for one simulation, forming for each node an activation time series of zeros (node is not
activated at time instance t ) and ones (node is activated at time instance t ) (for an example of an activation
time series see Figure 6.1). To focus on the metastable (quasi-stationary) state [113], we disregarded the initial
phase of the spreading process by calculating all our results based on the second half of the simulation time
(from 2048 to 4096 time units). There exists no analytic reasoning for the metastable state of an epidemic
spreading process yet [16, 60] but based on our simulation results we can conclude that extracting the second
half of the simulation time assures the exclusion of the initial phase (see Appendix Figure 6.6). All presented
results were averaged over 100 simulation runs.

TRANSFER ENTROPY

In order to capture the delayed influence, we calculated for every node pair i and j the transfer entropy (TE)
from node i to node j over the whole simulation time series as

T Ei→ j (h) = ∑
k,l ,m={0,1}

Pr[X j (t +h) = k, X j (t ) = l , Xi (t ) = m] · log

(
Pr[X j (t +h) = k|X j (t ) = l , Xi (t ) = m]

Pr[X j (t +h) = k|X j (t ) = l ]

)
(6.2)

for a certain time delay h. Transfer entropy can be interpreted as a delayed correlation measure that is cor-
rected for auto-correlation, which we can employ for analytic derivations (see Appendix 6.6.4 and 6.6.5). Sim-
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Figure 6.2: Average fraction of activated nodes. Average fraction of activated nodes in metastable state for different effective infection
rates τ. The smaller graphic is a zoomed-in plot for smaller values of τ.

ilar to [50], we defined the directed transfer entropy (dTE) from node i to node j as

dT Ei→ j (h) = T Ei→ j (h)

T Ei→ j (h)+T E j→i (h)
, (6.3)

which quantifies the preferred direction of flow. Since the transfer entropy can only take positive values, the
directed transfer entropy measure is well-defined and ranges from 0 to 1. If the preferred flow of information
is from node i to node j , then 0.5 < dT E < 1, else 0 < dT E < 0.5. For every node, we calculated the average
value of the directed transfer entropy from this node to all other nodes in the network. If this averaged di-
rected transfer entropy for node i was larger (smaller) than 0.5, then node i is a preferred sender (receiver) of
information. In order to quantify the global pattern of information flow, we calculated a posterior-anterior
(PA) index

PA = dT E poster i or −dT E anter i or ,

where dT E denotes the average over the directed transfer entropy values of all posterior and anterior regions,
respectively [50]. Thus, a positive posterior-anterior value indicates a posterior-anterior pattern and a neg-
ative posterior-anterior index points towards a pattern of information flow in the opposite direction. The
posterior-anterior index was also normalized by the difference between the maximum and the minimum
of all observed posterior-anterior values. All observed posterior-anterior values were then tested against the
null hypothesis of being significantly high or low by permuting the needed averaged directed transfer entropy
values and re-calculating the posterior-anterior value (5000 repetitions).

We repeated the analysis for randomly reshuffled versions of the structural adjacency matrix. We used
a reshuffling technique where we selected two matrix entries at random and then interchanged their matrix
entries preserving the number of links in the network. We repeated this reshuffling step 1000 times to obtain
one reshuffled version of the matrix. In the same way, we generated 100 reshuffled versions of the structural
adjacency matrix. This method does not preserve the individual degrees and also not necessarily the degree
distribution; it rewires our network connections ignoring any preferences for posterior or anterior regions.
Thus, the links of the resulting reshuffled networks are randomly distributed and the spatial distribution of
the degrees is uniformly spread over the whole network.
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Figure 6.3: Transfer entropy over different time delays. Averaged transfer entropy (TE) of all node pairs for different time delays. The
transfer entropy values for different node pairs are colored differently according to the hopcount between them. We observe that direct
neighbors have the highest transfer entropy and that the further apart two nodes are in terms of hopcount, the smaller the transfer
entropy between them. The triangles mark the maximum transfer entropy value for each hopcount over all time delays. The larger the
hopcount, the larger is the time delay needed to reach this maximum transfer entropy value.

6.3. RESULTS
We plotted the averaged transfer entropy over all node pairs for different time delays h in Figure 6.3 depending
on the hopcount between them (i.e. the number of hops or links in the shortest path connecting the two
nodes). The notion of a hopcount refers to the distance between two nodes (cortical regions) measured as
the minimal number of links (hops) that one has to traverse in order to reach one node from the other node
in the underlying structural network. We observed that a direct structural connection leads to the highest
transfer entropy value between two nodes, and that the further two nodes are apart in terms of hopcount,
the smaller the transfer entropy between them. For each hopcount, there exists a certain time delay h that
maximizes the average transfer entropy (Figure 6.3). We observed that the further another node is away (in
terms of hopcount), the longer time delay is necessary to maximize the influence (transfer entropy) on that
node.

Concerning the global patterns of information flow, we found three regimes depending on the chosen
time delay (see Figure 6.4a). For small time delays, we observed a significantly negative posterior-anterior
value, i.e. an information flow from anterior to posterior regions (regime (I), P value < 0.05, Appendix Fig-
ure 6.7). After a transition phase (regime (II), no significant posterior-anterior value), the opposite pattern
was observed (regime (III)), i.e. a posterior-to-anterior information flow, where the posterior-anterior values
for larger time delays were significantly positive (P value < 0.05). In addition, depending on the time delay
the structural degree correlated positively or negatively with the average directed transfer entropy (see Fig-
ures 6.4b and 6.4c). In regime (I), we observed a significantly negative correlation between the degree and
the average directed transfer entropy, which means that higher degree nodes seem to be stronger receivers of
information from the network than lower degree nodes (see Figure 6.4d). The significance of the correlation
was tested similarly to the posterior-anterior value by permuting the directed transfer entropy values and
recomputing the correlation in order to establish a null distribution (5000 repetitions, null hypothesis of ob-
serving a significantly higher or lower correlation, Appendix Figure 6.7). From a certain time delay onwards
(regime (III)), the correlation between degree and directed transfer entropy became significantly positive (Fig-
ure 6.4c), identifying hubs as strong senders of information. When visualizing the directed transfer entropy
values on the template brain for the minimum and maximum posterior-anterior value, we recognize a global
front-to-back and back-to-front pattern, respectively (see Figures 6.4d and 6.4e). In Figure 6.4d, the anterior
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regions seem to possess more outgoing flow of information (darker colors) and the posterior regions have
a more incoming flow (lighter colors) for h = 0.2, whereas the opposite pattern can be perceived for h = 6
(Figure 6.4e).

The results for the reshuffled version of the structural adjacency matrix with a uniform degree distribution
over posterior and anterior regions show a less variant behavior for different time delays (see Appendix B). For
the randomly reshuffled matrices, we observe a significantly positive correlation (yet decreasing for longer
time delays) between the node degree and the directed transfer entropy. However, in comparison with the
structural adjacency matrix, the reshuffled matrices do not reach such high (low) correlation values for longer
(shorter) time delays (see Appendix Figures 6.9 and 6.10). Concerning the resulting global pattern, we observe
a slightly positive posterior-anterior value for most of the randomly reshuffled matrices (see Figure 6.8). In
line with the correlation values, the randomly reshuffled matrices do not show much variance over different
time delays with respect to their posterior-anterior values (Figures 6.8 and 6.10).

We also repeated our analysis on the directed structural macaque brain [52] (see Appendix C). In this
directed network, nodes possessing a high total number of connections seem to have a more sending property
in general. However, for short time delays, hubs with more incoming than outgoing links, appear to be more
receiving (for a detailed description see Appendix C).

6.4. DISCUSSION
Using a simple model of activity spread, we were able to reproduce the empirically observed global patterns
of effective connectivity. In addition, the structural degree of a node was identified as a strong indicator for
the sending/receiving property of a brain region. Moreover, the further two brain regions were away in terms
of hopcount in the structural network, the smaller the transfer entropy between them.

Our study shows that the structural (topological) distance between two brain regions has an influence
on their transfer entropy. From our simulation results, we can conclude that the further apart two nodes
are in terms of hopcount in the underlying structural brain network, the smaller their transfer entropy. This
result is in line with our previous study that identified the structural hopcount as a driving force behind func-
tional connectivity (see Chapter 5). Stam et al. [90] found the highest effective connectivity as the result of
a direct structural connection and Honey and colleagues [51] stated that indirect connections with the hop-
count 2 have a strong influence on the strength of functional connections between brain regions. Moreover,
Goñi an co-authors [41] stated that shortest paths of the structural network and detours along them are good
predictors for functional connectivity, which also implicates a lower connectivity for node pairs with larger
hopcount between them. These results confirm the common assumption that longer paths in the structural
brain network only have a small influence on the functional connectivity between two brain regions [81, 128]
(and also in Chapter 5). Our results are in agreement with these earlier studies by identifying the hopcount
between two brain regions as an indicator for their functional interaction and show that these general prin-
ciples also hold for effective connectivity.

We were able to replicate the empirically observed global directionality patterns based on a simple epi-
demic spreading process. Without imposing any directionality on the pairwise structural interactions, we ob-
served an overall dominant pattern of directionality based on an underlying undirected structural network.
It therefore seems that the pure presence of an unequal degree distribution with a spatial gradient along the
anterior posterior axis is enough to create overall pre-dominant directions of information flow. The observed
direction of information flow in our model depended on the chosen time delay for the estimation of the
transfer entropy. The empirically discovered anterior-to-posterior pattern in lower frequency bands (theta)
resembles the patterns observed in our model when using short time delays, whereas the opposite pattern
that is empirically observed in higher frequency bands (alpha1, alpha2 and beta) coincides with the patterns
in our model when applying longer time windows [50]. These opposite directions of information flow proba-
bly indicate the presence of a loop between the two interacting subsystems of the Default Mode Network, the
temporal and the fronto-parietal system representing a mechanism of integration of brain function [29]. The
temporal system is involved in memory and the fronto-parietal system is responsible for self-relevant men-
tal simulations [13]. These two processes, memory and self-relevant mental simulations, seem to be active
simultaneously and on different time scales, which could provide a biological interpretation of the mirrored
directions of information flow. Furthermore, these opposite directions have also been reported in invasive
animal recordings, for e.g. the visual system [4, 109], and could represent the mechanism of memory consol-
idation [84].

Our modeling results suggest that the opposite directions of the global pattern of information flow reveal
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(a) Posterior-anterior (PA) value and correlation between degree
and average directed transfer entropy over different time delays.
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for h = 0.2 (regime (I)).

(e) Directed transfer entropy on the template brain for
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Figure 6.4: Opposite patterns of information flow. (a) Posterior-anterior value and correlation between degree and averaged directed
transfer entropy (dTE) over different time delays. In regime (I) we observe a significantly negative posterior-anterior value and correla-
tion. In (II) we have a transition phase and in (III) we face a significantly positive correlation and posterior-anterior value. (b) Averaged
dTE versus degree for the time delay with minimal posterior-anterior value, h = 0.2. (c) Averaged dTE versus degree for the time delay
with maximal posterior-anterior value, h = 6. (d)+(e) dTE for each brain region on the parcellated template brain for h = 0.2 (d) and h = 6
(e). We show the brain here in clockwise order from the left, top, right, right midline and left midline.
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the different time scales of the spreading process and seem to be linked to the sending/receiving properties
of the structural hubs. For short time delays, our results show that direct neighbors influence nodes much
more than indirect neighbors (Figure 6.3). Stam et al. [90] showed previously that hubs are overall more often
activated (by their direct neighbors) than lower degree nodes. Because of the higher number of potentially
activated direct neighbors, the activation of hubs does not only occur more frequently but also with a higher
activation rate (see Equation (6.1)) and thus on a shorter time scale than the activation of lower degree nodes.
This frequent activation of hubs on a shorter time scale is probably the reason that hubs are strong receivers
and, in return, lower degree nodes appear to be strong senders of information flow on short time scales. Since
structural brain networks have the strongest hubs in posterior regions [13], these posterior hubs acting as pre-
ferred receivers cause the anterior-posterior information flow for short time delays in our model. For longer
time delays, the dominant influence of the direct neighbors decreases and the influence of the indirect neigh-
bors increases (Figure 6.3). Because hubs are activated more often and can activate not only more direct but
also, on longer time scales, more indirect neighbors, they are strong senders of information for longer time
scales. On the contrary, lower degree nodes have less influence on the network and act as strong receivers of
information flow for longer time delays in our model. Together, these scenarios provide a possible explana-
tion for the posterior-anterior pattern of information flow in our SIS model in the case of longer time delays.
Summing up, the posterior hubs seem to play a dominant role for the global patterns, which are hypothesized
to represent a mechanism of integration [50]. The hypothesis is further strengthened by the disappearance of
the opposite information flow directions in the randomly reshuffled networks. Thus, the uneven spatial dis-
tribution of the degrees seems to be a necessary (but maybe not sufficient) condition for observing mirrored
directions of global information flows. This finding is in line with multiple studies that uncover hubs to drive
the integration of information in the human brain [87] and to play a special role in both the healthy [40, 42]
and diseased brain [17]. [107] have shown that a large amount of the total communication travels through the
structural hubs. Therefore, these hubs are very likely both strong senders and receivers, which could lead to
a mirrored pattern of information flow. Furthermore, a recent study by Gollo and colleagues [38] concluded
for the primate brain that structural hubs are "slaves" of their many connections since they not only have
a powerful influence on the global network dynamics but also receive a lot of input from the rest of the net-
work. Our results for the directed structural macaque brain confirm this different behavior for hubs regarding
different time scales (see Appendix C). These empirical results provide some intuitive explanation for the op-
posite directions of information flow, towards the posterior hubs and, simultaneously (though on a different
time scale), away from them.

Recent studies applying causality measures like transfer entropy [43] and Granger causality [65] identi-
fied a system of anticipatory synchronization as the driving force behind counterintuitive information flow
directions. Anticipatory synchronization means that the receiver can learn to anticipate the sender’s actions,
which requires an adapting system. Hahs and Pethel [43] have shown that in such a system the estimated role
of the sender and receiver can switch depending on the applied sampling rate. The simple SIS model does not
allow anticipation and the described phenomenon caused by anticipatory synchronization can thus not ap-
ply to the modeling results. However, the dynamics of anticipation have already been reported for empirical
brain dynamics [55] and for task-related data of the macaque brain [65]. Thus, for empirical observations of
counterintuitive directions of information flow, the sampling rate [43] could indeed provide an explanation.

We applied a simple SIS epidemic spreading model that ignored microscopic details of the real underlying
neuronal processes in order to analyze global patterns. Even though our model ignored heterogeneity except
for the underlying structural network restrictions, we were able to generate the empirically found global,
directed spreading patterns [50]. The SIS model can be regarded as a simplified version of the neural trans-
mission dynamics, which deliberately ignores microscopic details of the underlying neural dynamics and
neuronal architecture in order to allow macroscopic whole-brain analysis. This type of model is "concep-
tual": the aim is not to explain neurons, spikes, synapses etc., but the topology of large-scale brain networks
and their global network dynamics. Our approach aligns with other recent studies analyzing global spread-
ing dynamic principles with the help of simple dynamic models [69, 95]. Mišić et al. [69] found, applying a
deterministic cascade model, that the hubs and a backbone of core pathways facilitate the spreading pro-
cess and shortest paths accelerate this phenomenon. Similarly, diffusion models have identified the shortest
path structure of the structural brain network as a driving force behind the network dynamics [41] and cat-
egorized functional modules of the brain [8, 25]. These simple modeling approaches should be considered
as complementary to the traditional neural mass and field models from computational neuroscience [22].
Most importantly, these simpler models allow us to study the basic principles of dynamics on brain networks
with a minimum set of a-priori assumptions and parameters. For more complex models, the emergence of
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any global pattern could be ascribed to any of the (many) underlying model properties. In our case, because
of the simplicity of the model and the underlying undirected network, the emergence of global patterns of
effective connectivity can be traced back to the spatially unequal distribution of hubs.

6.5. CONCLUSION
In this study, we analyzed local and global network dynamics of the brain network by applying an SIS epi-
demic spreading model on the human connectome. We found that direct structural connections induced
higher transfer entropy between two brain regions and that transfer entropy decreased with increasing dis-
tance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to
confirm the empirically observed information flow patterns based on an underlying undirected structural
network where posterior hubs seem to play a dominant role in the network dynamics. For small time scales,
when these hubs acted as strong receivers of information, the global pattern of information flow was in the
posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis
suggests that these global patterns of directional information flow are the result of an unequal spatial dis-
tribution of the structural degree between posterior and anterior regions and the direction of information
flow seem to be linked to different time scales of the spreading process. Based on the developed framework,
future studies should investigate how structural changes in patients suffering from brain disorders can influ-
ence these global patterns of information flow.
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6.6. APPENDIX

6.6.1. ADDITIONAL FIGURES
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Figure 6.5: Die-out probability of activity spreading. Approximate formula for the die-out probability 1/xn (Liu and Van Mieghem,
2016a) depending on the number of initially infected nodes n and x = τ ·λ1 the product between the effective infection rate τ= 0.2 and
the largest eigenvalue of the structural adjacency matrix A, λ1 = 10.47, in our case.

6.6.2. RANDOMLY RESHUFFLED MATRICES
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Figure 6.8: Global pattern in randomly reshuffled networks. Posterior-anterior (PA) value over different time delays. The blue line
represents the already known result for the structural adjacency matrix A and the other lines indicate the PA values for the randomly
reshuffled matrices.

6.6.3. DIRECTED STRUCTURAL NETWORK OF THE MACAQUE BRAIN
We repeated the analysis on the directed structural networks of the macaque with N = 47 nodes, which has
earlier been analyzed by Honey et al. [52]. The SIS model can easily be extended towards a directed un-
derlying network [57]. Applying the same effective infection rate τ = 0.2 as for the human brain, we ran 10
simulation runs on the macaque neocortex. In a directed network, we can calculate different forms of the
nodal degree, the in- and the out-degree but also the sum of them both. We plotted the correlation between
the different forms of the degree and the directed transfer entropy for different time delays in Appendix Fig-



6.6. APPENDIX

6

93

0 500 1000 1500 2000 2500 3000 3500 4000

0.2

0.25

0.3

0.35

0.4

Time

A
v
e
ra

g
e
 f
ra

c
ti
o
n
 o

f 
a
c
ti
v
a
te

d
 n

o
d
e
s

0 50 100 150 200 250 300

0.2

0.25

0.3

0.35

0.4

Time

A
v
e
ra

g
e
 f

ra
c
ti
o
n

 o
f 

a
c
ti
v
a
te

d
 n

o
d
e

s

Figure 6.6: Fraction of activated nodes over whole simulation time. Mean fraction of activated nodes for every time step averaged over
the 100 simulation runs and the whole simulation time for the applied effective infection rate τ = 0.2. The smaller plot shows the first
300 time units. In both figures, the horizontal black line represents the mean fraction of activated nodes in the metastable state.
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Figure 6.7: Global pattern in surrogate data. For different time delays, fraction of surrogate data possessing a smaller value than the
observed posterior-anterior (PA) value and the observed correlation between degree and averaged directed transfer entropy (dTE) value,
respectively. When the fraction is above 0.95, the observed value is significantly larger based on the 5% significance level. For time delays
where the fraction is below the 0.05 line, we observe a significantly smaller value than the surrogate data (P value < 0.05).
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Figure 6.9: Correlation between degree and dTE in randomly reshuffled networks. Correlation between degree and averaged directed
transfer entropy (dTE) over different time delays. The blue line represents the already known result for the structural adjacency matrix A
and the other lines indicate the correlation values for the randomly reshuffled matrices.
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Figure 6.10: Comparison between reshuffled networks and structural network. For different time delays, fraction of reshuffled net-
works possessing a smaller value than the observed posterior-anterior (PA) value (in blue) and the observed correlation between degree
and averaged directed transfer entropy (dTE) value (in red), respectively. For small time delays, the behavior of the structural adjacency
matrix A is significantly different than the behavior of the reshuffled versions. For larger time delays, we observe a significantly larger
correlation in the structural network (between degree and dTE) and also a quite large PA value with respect to the reshuffled matrices.
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Figure 6.11: Significant correlation for reshuffled matrices. For different time delays, fraction of surrogate data possessing a smaller
value than the observed PA value and the observed correlation between degree and averaged directed transfer entropy (dTE) value,
respectively. When the fraction is above 0.95, the observed value is significantly larger based on the 5% significance level. Up to a certain
time delay, all the randomly reshuffled networks exert a significantly positive correlation between degree and directed transfer entropy
towards the rest of the network.

ure 6.12. Overall, we observe a positive correlation for the different degrees with the average directed transfer
entropy value. However, regarding different time scales, we can see some fluctuations with regard to in- and
out-degree. For small time scales, a high out-degree reaches the maximum positive correlation. With regard
to longer time scales, the in- and out-degree differences seem to disappear. This result is in line with intuition
since for a higher number of (direct) outgoing links one would expect a more sending property of a node (for
short time delays). However, the general notion of hubs cannot be extended in a straightforward manner. For
the macaque network, nodes with a high sum of in- and out-degrees can have much more incoming than
outgoing links or the other way around, which should result in different sending/receiving properties. The
different behavior of those nodes is shown by the correlation between the difference of in- and out-degree
and the dTE value (purple dots in Figure 6.12). Nodes with a much higher number of incoming than outgoing
connections, which can still be hubs related to the overall degree (see Figure 6.15), seem to be more receiving
with regard to short time delays but more sending when analyzing longer time delays. We also plotted the
out-degree and the difference between in- and out-degree against the dTE values for specific time delays (see
Figures 6.13 and 6.14) reaching the maximum and minimum correlation values, respectively.
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Figure 6.12: Correlation for macaque brain. Correlation between different forms of the degree and averaged directed transfer entropy
(dTE) over different time delays. For the in-degree, the out-degree and the sum of in- and out-degree the positive correlation values
are significant with regard to randomly reshuffled versions of the dTE values. For the difference between in- and out-degree, the three
marked points are the only significant correlation values.
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Figure 6.13: Maximum correlation for macaque brain. The out-degree for each node in the macaque structural brain network against
the directed transfer entropy (dTE) for the time delay h = 2 reaching the maximum correlation value.
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Figure 6.14: Minimum correlation for macaque brain. The difference between in- and out-degree for each node in the macaque struc-
tural brain network against the directed transfer entropy (dTE) for the time delay h = 0.5 reaching the minimum correlation value.
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links.
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6.6.4. CORRELATION VERSUS TRANSFER ENTROPY
The transfer entropy is equal to the conditional mutual information (MI)

T Ei→ j (h) = M I (X j (t +h); Xi (t )|X j (t ))

= ∑
k,l ,m={0,1}

Pr[X j (t +h) = k, X j (t ) = l , Xi (t ) = m] · log

(
Pr[X j (t +h) = k|X j (t ) = l , Xi (t ) = m]

Pr[X j (t +h) = k|X j (t ) = l ]

)

= ∑
k,l ,m={0,1}

Pr[X j (t +h) = k, X j (t ) = l , Xi (t ) = m] · log

(
Pr[X j (t +h) = k, X j (t ) = l , Xi (t ) = m]Pr[X j (t )]

Pr[X j (t +h) = k, X j (t ) = l ]Pr[Xi (t ), X j (t +h)]

)
,

where we applied the law of Bayes for the last equality.
The mutual information and the measure of correlation want to measure the same underlying property

of two random variables, their ’distance to independence’. The covariance is defined as

cov(i , j ,h) = E [Xi (t )X j (t +h)]−E [Xi (t )]E [X j (t +h)]

and measures the distance in terms of expected values of the random variables itself whereas the mutual
information can be written as

M I (X j (t +h); Xi (t )) = E [log(Pr [Xi (t ), X j (t +h)])]−E [log(Pr [Xi (t )]Pr [X j (t +h)])]

and measures the distance in terms of the expected value of the logarithm of their probabilities.
For the transfer entropy, we can apply the chain rule of the mutual information and obtain

T Ei→ j (h) = M I (X j (t +h); Xi (t )|X j (t ))

= M I (X j (t +h); Xi (t ), X j (t ))−M I (X j (t +h), X j (t ))

= ∑
k,l ,m={0,1}

Pr[X j (t +h) = k, X j (t ) = l , Xi (t ) = m] · log

(
Pr[X j (t +h) = k, X j (t ) = l , Xi (t ) = m]

Pr[X j (t +h)]Pr[Xi (t ) = k, X j (t ) = l ]

)

− ∑
k,l={0,1}

Pr[X j (t +h) = k, X j (t ) = l ] · log

(
Pr[X j (t +h) = k, X j (t ) = l ]

Pr[X j (t +h)]Pr[X j (t ) = l ]

)
(6.4)

For the second term we followed the derivations in [58] and used that our activation series are binary
resulting in an approximative formula

M I (X j (t +h), X j (t )) ≈ 1

2

(
auto j

Pr [X j (t ) = 1](1−Pr [X j (t ) = 1])

)2

,

where auto j denotes the auto-correlation of j . To reach this result, we did assume that Pr [X j (t ) = 1] ≈
Pr [X j (t +h) = 1] which could be confirmed by our simulations for small values of the time lag h. Thus, the
second term of (6.4) can be interpreted as some correction for the auto-correlation that is included in the
transfer entropy.

If we apply the Kirkwood superposition approximation to the first term of (6.4) which involves all three
entities, we can approximate the joint probability of the three terms

M I (X j (t +h); Xi (t ), X j (t )) = ∑
k,l ,m={0,1}

Pr[X j (t +h) = k, X j (t ) = l , Xi (t ) = m]·

log

(
Pr[X j (t +h) = k, X j (t ) = l ]Pr[X j (t +h) = k, Xi (t ) = l ]

Pr[X j (t +h)]2Pr[Xi (t ) = k]Pr[X j (t ) = k]

)
where e.g. in the case of k = l = m we obtain the element of the sum in the logarithm as

log

((
auto j +Pr[X j (t ) = k]2

)
Pr[X j (t ) = k]2 ·

(
cor rdel (i , j ,h)+Pr[X j (t ) = k]Pr[Xi (t ) = k]

)
Pr[X j (t ) = k]Pr[Xi (t ) = k]

)

where cor rdel (i , j ,h) is the delayed correlation function between node i and node j which will be further
studied in the next section. For the other elements of the sum we can derive similar results in the logarithm
reducing the expression to a combination of the auto-correlation of j and the delayed correlation between i
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and j . For the three-way joint probability in front of the logarithm, we can again use the Kirkwood superpo-
sition approximation and obtain e.g. for the element k = l = m

Pr[X j (t +h) = 1, X j (t ) = 1, Xi (t ) = 1]

≈ Pr[X j (t +h) = 1, X j (t ) = 1]Pr[X j (t +h) = 1, Xi (t ) = 1]Pr[X j (t ) = 1, Xi (t ) = 1]

Pr[X j (t ) = 1]Pr[Xi (t ) = 1]Pr[X j (t ) = 1]

= (auto j +Pr[X j (t ) = 1]2)(cor rdel (i , j ,h)+Pr[X j (t ) = 1]Pr[Xi (t ) = 1])(cor r (i , j )+Pr[X j (t ) = 1]Pr[Xi (t ) = 1])

Pr[X j (t ) = 1]Pr[Xi (t ) = 1]Pr[X j (t ) = 1]

where cor r (i , j ) is the correlation (or covariance) of the two nodes’ binary time series. For the other elements
of the sum, the derivation can be conducted similarly. To sum up, we have demonstrated that the transfer
entropy from node i to node j can be expressed as a combination of the (delayed) correlation between i and
j corrected for the auto-correlation of j . In the following section, we will further examine analytically the
(delayed) correlation and auto-correlation as ’building blocks’ of the transfer entropy.

6.6.5. THE COVARIANCE ρ̃
(
Xi (t ) , X j (t +h)

)
FOR A SMALL TIME LAG h

The functional connectivity between two nodes i and j is defined as the correlation of their activation series

ρ(Xi (t ), X j (t )) = E [Xi (t )X j (t )]−E [Xi (t )]E [X j (t )]p
V ar [Xi (t )]

√
V ar [X j (t )]

(6.5)

over the whole simulation time [90].
The numerator is also referred to as the covariance between node i and j . We compute the expectation

E
[

Xi (t ) X j (t +h)
]

for a very small time h > 0. Although the derivative of a Bernoulli random variable does not
exist, we follow the framework in [112] and we agree to formally define the derivative by the random variable
equation

d X j (t )

d t
=−δX j (t )+ (

1−X j (t )
)
β

N∑
k=1

ak j Xk (t ) (6.6)

For small h, the first order expansion of the Taylor series yields

X j (t +h) = X j (t )+h
d X j (t )

d t
+o (h) (6.7)

DEDUCTIONS

With the definition (6.5) of the covariance, we find for i 6= j that the j -delayed covariance satisfies

ρ̃
(
Xi (t ) , X j (t +h)

)= (1−δh) ρ̃
(
Xi (t ) , X j (t )

)+βh
N∑

k=1
ak j ρ̃ (Xi (t ) , Xk (t ))

−βh
N∑

k=1
ak j

{
E

[
Xi (t ) X j (t ) Xk (t )

]−E [Xi (t )]E
[

X j (t ) Xk (t )
]}+o (h) (6.8)

In general, the j -delayed covariance ρ̃
(
Xi (t ) , X j (t +h)

)
is different from the i -delayed covariance

ρ̃
(
X j (t ) , Xi (t +h)

)
. Indeed, (6.8) demonstrates that

ρ̃
(
Xi (t ) , X j (t +h)

)− ρ̃ (
X j (t ) , Xi (t +h)

)=βh
N∑

k=1

(
ak j ρ̃(Xi (t ), Xk (t ))−aki ρ̃(X j (t ), Xk (t ))

)
−βh

N∑
k=1

(ak j −aki )E [Xi (t )X j (t )Xk (t )]−βh
N∑

k=1

(
ak j E [Xi (t )]E [X j (t )Xk (t )]−aki E [X j (t )]E [Xi (t )Xk (t )]

)
Starting from the original definition of ρ̃

(
Xi (t ) , X j (t +h)

)
, we can deduce the parts as

E
[

Xi (t ) X j (t +h)
]= E

[
Xi (t ) X j (t )

]+hE

[
−δX j (t ) Xi (t )+ (

1−X j (t )
)

Xi (t )β
N∑

k=1
ak j Xk (t )

]
+o (h)

E
[

X j (t ) Xi (t +h)
]= E

[
X j (t ) Xi (t )

]+hE

[
−δXi (t ) X j (t )+ (1−Xi (t )) X j (t )β

N∑
k=1

aki Xk (t )

]
+o (h)
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Subtraction yields

T = E
[

Xi (t ) X j (t +h)
]−E

[
X j (t ) Xi (t +h)

]
=βhE

[
Xi (t )

(
1−X j (t )

) N∑
k=1

ak j Xk (t )−X j (t ) (1−Xi (t ))
N∑

k=1
aki Xk (t )

]

=βhE

[
Xi (t )

N∑
k=1

ak j Xk (t )−X j (t )
N∑

k=1
aki Xk (t )+Xi (t ) X j (t )

N∑
k=1

(
aki −ak j

)
Xk (t )

]
where

∑N
k=1 ak j Xk (t ) are the infected neighbors of node j . The first equation tells that T is the balance of two

cases: either an infection at node i and all infected neighbors of node j try to infect node j or an infection at
node j and all infected neighbors of node i try to infect node i .

The other parts of the difference of covariances can be written as

E [X j (t )]E [Xi (t +h)]−E [Xi (t )]E [X j (t +h)] =βhE [X j (t )]
N∑

k=1
aki E [Xk (t )]−βhE [Xi (t )]

N∑
k=1

ak j E [Xk (t )]

−βh
N∑

k=1
aki E [Xi (t )Xk (t )]E [X j (t )]+βh

N∑
k=1

ak j E [X j (t )Xk (t )]E [Xi (t )]

Together we get for the probability flux

ρ̃
(
Xi (t ) , X j (t +h)

)− ρ̃ (
X j (t ) , Xi (t +h)

)=βh
N∑

k=1
ak j

(
E [Xi (t )]E [X j (t )Xk (t )]−E [Xi (t )X j (t )Xk (t )]

)
−βh

N∑
k=1

aki
(
E [X j (t )]E [Xi (t )Xk (t )]−E [Xi (t )X j (t )Xk (t )]

)
This information flow has also been researched by Hillebrand et al. [50], where instead of the delayed cor-

relation, the authors used the Phase Transfer Entropy as a measure of causality. This difference in coavariance
is positive if and only if the fraction from [50] is larger than 0.5.

JUST ABOVE THE EPIDEMIC THRESHOLD

Just above the epidemic threshold [115], the probability of infection is E [Xi (t )] = ε (x1)i , where ε> 0 is small
and where x1 is the principal eigenvector of the adjacency matrix A belonging to the largest eigenvalue λ1.

Assuming that the effective infection rate τ = β
δ = τc + ε, then we may discard the last sum with triple

expectations (of order O
(
ε2

)
) in (6.8) so that

ρ̃
(
Xi (t ) , X j (t +h)

)≈ (1−δh) ρ̃
(
Xi (t ) , X j (t )

)+βh
N∑

k=1
ak j ρ̃ (Xi (t ) , Xk (t ))+o (h)

Since ρ̃
(
Xi (t ) , X j (t )

)≥ 0 and assuming that ρ̃ (Xi (t ) , Xk (t )) is of about the same magnitude as
ρ̃

(
Xi (t ) , X j (t )

)
for any node k that is a neighbor of j (this is possible because node k as a neighbor of j can

only be one hop further away from or nearer to i than j . If i and j are directly connected and k is a common
neighbor, then this approximation is even more accurate), then

ρ̃
(
Xi (t ) , X j (t +h)

)≈ (
1+ (

τd j −1
)
δh

)
ρ̃

(
Xi (t ) , X j (t )

)+o (h)

and

ρ
(
Xi (t ) , X j (t +h)

)
ρ

(
Xi (t ) , X j (t )

) ≈ (
1+ (

τd j −1
)
δh

) √
Var

[
X j (t )

]
√

Var
[

X j (t +h)
] +o (h)

Assuming Var
[

X j (t +h)
] ≈ Var

[
X j (t )

]
(which is reasonable for small h) the fraction on the right hand side

can be approximated by 1 and we obtain

ρ
(
Xi (t ) , X j (t +h)

)
ρ

(
Xi (t ) , X j (t )

) ≈ 1+δh
(
τd j −1

)+o (h)

Finally, since τ> τc ≥ 1
λ1

, we have that τd j −1 > d j

λ1
−1. Since the spectral radius is bounded [111] by

max
(
dav ,

√
dmax

)
≤ λ1 ≤ dmax, where the average degree dav = 2L

N , the factor τ∗d j −1 is positive for a node j

with more than average degree, but possibly negative for a node j with low degree.
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CONCLUSION

In this dissertation, we developed new and enlarged existing methods from network science in order to apply
them to complex brain networks. The aim hereby was to shed some light on the emergence of information
flow in the human brain. We summarize the results of this dissertation categorized under the two main re-
search questions.

RESEARCH QUESTION 1: WHAT ARE THE MOST IMPORTANT LINKS AND MOTIFS IN FUNC-
TIONAL BRAIN NETWORKS WITH RESPECT TO GLOBAL INFORMATION FLOW?
In Chapter 2, we proposed the USPT as a new sampling method for functional brain networks. We showed
that, by extracting all the shortest paths, we are able to detect significant differences between MS patients
and healthy controls. Moreover, the discovered differences were in line with previous findings on the func-
tional brain networks of patients suffering from MS. Consequently, the shortest paths of the functional brain
networks seem to represent important features for the global information flow in the human brain.

In Chapter 3, we proposed a general sampling method for networks based on the USPT. We analyzed this
new general α-tree sampling method for different underlying link weight distributions and explored its the-
oretical properties. With respect to functional brain networks, the general USPT method enables the com-
parison between individual functional brain networks at different levels of link density. Assuming that the
shortest paths are important for the global information flow, the presented α-tree sampling method can fur-
ther be exploited to rank all the links in a network with respect to their importance for the shortest path
structure.

In Chapter 4, we explored the meso-scale of the information flow in brain networks in the form of mo-
tifs. Based on different construction methods of the effective connectivity network, we observed a dominant
high frequency of the bi-directional two-hop path motif when compared with randomly rewired networks.
Thus, the bi-directional two-hop path appears to represent a general building block for the information flow
in functional brain networks. This bi-directional 3-motif probably resembles the general organizational prin-
ciple of segregation and integration. Previous studies also discovered the bi-directional two-hop path in e.g.
the macaque structural brain network and brought its occurrence in connection with the presence of hubs.
The hubs involved in (many instances of) this motif are interpreted to act as ’bridges’ for the information
flow. To analyze the intertwined global organization of the bi-directional two-hop path, we applied a recently
developed motif-based clustering algorithm. On a global level, a posterior-anterior pattern of information
flow has been observed in earlier empirical studies. After performing the motif-based clustering, the poste-
rior hubs seem to play a crucial role to facilitate the communication between posterior and anterior brain
regions. Specifically, these posterior hubs are hypothesized to carry out the role of ’bridges’ for the informa-
tion flow not only on the local but also on the global level. Concerning different frequency bands, opposite
patterns were stated in previous work with respect to lower and higher frequency band data. We showed that
these different empirically observed global patterns seem to arise based on different frequency-dependent
interaction patterns between the occipital regions and the frontal lobe.
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RESEARCH QUESTION 2: WHICH STRUCTURAL NETWORK PROPERTIES DRIVE THE FUNC-
TIONAL INTERACTIONS?
In Chapter 5, we approached the relationship between the adjacency matrices of structural and functional
brain networks mathematically. As a result, we presented a function that can map the structural onto the
functional adjacency matrix and vice versa reaching a relatively high goodness-of-fit level. This mapping was
not only shown to provide good approximations for group-averaged data sets but also for individual mea-
surements from different techniques, including fMRI, MEG and DTI. Furthermore, this structure-function
mapping incorporates and confirms previous findings in this research field. As an interpretation of this map-
ping, walks in the structural brain network up to the length of the diameter have the highest influence on
a functional connection for fMRI and MEG data. This result points towards the importance of not only the
shortest paths for information flow in brain networks but also the inclusion of alternative paths for reasons of
robustness and redundancy of the communication (though only up to a certain hopcount). Furthermore, the
mapping was found to be modality-dependent in terms of its fitted coefficients, which consequently suggests
a general modality-dependency for the structure-function relation in the human brain.

In Chapter 6, we analyzed the outcome of modeling an epidemic spreading model on the human con-
nectome. Based on the undirected underlying human connectome, we were able to replicate the empirically
observed global patterns of information flow. Similar to the motif analysis, the posterior hubs have been iden-
tified as important influencers of the global information flow. The interconnectivity pattern of the posterior
hubs biases the spatial distribution of the structural degree. This unequal spatial distribution of the structural
degree seems to be a necessary condition for the emergence of a global directionality of the information flow.
Moreover, the hubs seem to act simultaneously as both, strong senders and receivers, though apparently on
different time scales. Consequently, the mirrored global directions of information flow, towards these poste-
rior hubs and away from them, could be ascribed to different time scales of the spreading process.

To sum up, as a commonality throughout this dissertation we observed that the densely structurally con-
nected hubs among the posterior brain regions strongly influence the emergence of the global information
flow. As a second point, on a local level, the shortest path and also all walks between two brain regions up to
the length of the diameter drive their functional interaction.

FUTURE WORK
All of the above approaches have mostly been conducted for healthy controls and could also be applied to
patient data to uncover the origins of disruptions for different neurological disorders. When patient data
sets become available, modifying the above analyses towards specific brain disorders could be a major part
of future work. For example, a heterogeneous SIS model seems likely to explain the outbreak of seizures for
epilepsy patients. Furthermore, the general movement towards individualized medicine should motivate tai-
loring the developed models and frameworks for individual patients. Combining the data of different modal-
ities for one individual should become the focus of future approaches to accelerate the possible benefits for
individual patients.

The above models could also be applied to various other networks. For example, the proposed sampling
methods in Chapters 2 and 3 are not limited to functional brain networks and could be applied to identify
important links with regard to other flows in networks. In the same way, the design of the mapping approach
in Chapter 5 is flexible. Applications also in e.g. man-made networks could investigate how disruptions in
the structural layer can influence the functional outcome of a system.

The field of brain networks should also continuously benefit from the newest developments in network
science. Following current trends in network science, the application possibilities of temporal networks [64]
and multilayer frameworks [9] should be exploited in more depth. Analyzing the brain as a multilayer net-
work is still a relatively new approach [97]. Even though the advantages of including more data within one
framework are obvious, the avoidance of redundant information needs to be investigated for the multilayer
framework in the same way as for the single layers. Additionally, the comparison of multilayer networks is
still a general open research question that needs to be answered before this multilayer framework can prove
its usefulness for patient data.
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