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Abstract
Program synthesis is the process of constructing programs
that provably satisfy a given high-level user specification. Re-
cent work in this domain has focused on utilizing domain-
specific languages to guide the search procedure. This study
proposes a novel approach to enhance the efficiency of such
search procedures. By utilizing anti-unification, which is the
process of generating the least general pattern between two
symbolic expressions, this work aims to find common sub-
components to enhance the language used in program syn-
thesis to reduce search depth and improve performance.

Introduction
Program synthesis, often regarded as the “holy grail” of
computer science, is the automated process of creating a
program in a specific programming language based on user-
defined specifications. This process entails the act of search-
ing over the space of all the programs to generate one that is
consistent with the constraints derived from the user intent
[8].

As explained by Cristina David and Daniel Kroening [5],
program synthesis has a wide range of real-world applica-
tions. It could have a significant impact in various domains,
including:
• Code Refactoring: Under the pressure of deadlines,

software developers tend to find quick solutions for prob-
lems without putting an accent on writing good code. For
this reason, program synthesis could be used to refac-
tor existing code to enhance testability, maintainability,
and extensibility while retaining the semantics of the pro-
gram.

• Digital Controllers: Due to the difficulty of striking a
balance between a digital controller and the physical ma-
chine that it operates, control engineers can rely on pro-
gram synthesis to produce correct implementations of the
controllers.

• Data Manipulation: Utilizing data manipulation tools is
a complex task for non-expert users as they often come
with a multitude of features that overcomplicate the pro-
cess. For this reason, Program synthesis could be used in
these tools to automate complex data manipulation tasks.

Many approaches to program synthesis have emerged
over the years, ranging from deductive synthesis and
transformation-based synthesis, which require a complete
formal specification of the problem, to inductive synthesis,
which relies on inductive specifications such as input-output
examples. Recent approaches also allow the user to provide
a skeletal structure (grammar) of the space of possible pro-
grams alongside the specification [5].

Among these methods, traditional program synthesis
techniques often utilize domain-specific languages (DSLs)
to guide the search process. A persistent problem with the
guided search method is that it faces challenges when ap-
plied to larger codebases due to the extensive search space.

Drawing inspiration from the duplicate code detection al-
gorithm [2], which uses anti-unification to identify common
code patterns, this work introduces an algorithm that de-
tects common expression patterns in programs generated by

a DSL-based synthesizer and transforms them into new ad-
ditions to the language. The rationale behind this method is
that the newly compressed components will serve as valu-
able abstractions by enabling the synthesizer to find solu-
tions more efficiently. Since these components are com-
posed of multiple expressions, generating more extensive
and complex programs becomes easier. Moreover, the recur-
rence of these common components across numerous pro-
grams indicates a certain ’quality’ that can help guide the
synthesis process toward better solutions. While the idea
of generating a specialized library of code abstractions has
been explored in DreamCoder [6] and further refined in
LLMT [3], the approach proposed in this study distinguishes
itself by being agnostic to the search procedure used to iter-
ate through the program space. While this feature makes the
algorithm lack the depth that the other approaches have, it
offers the flexibility of being able to be applied over other
program synthesizers to improve them.

Background
As mentioned in the previous section, program synthesis is
the automated process of finding a program that satisfies the
user specifications. This paper’s approach will be concerned
with program-by-example and syntax-guided synthesis.

Syntax Guided Synthesis (SyGuS) [1] is a framework de-
signed to tackle the program synthesis problem by com-
bining a semantic correctness specification with a syntactic
template. In SyGuS, the user provides several specifications
representing the desired program’s behavior and a grammar
that defines the space of possible implementations. This al-
lows the synthesis process to be guided by specifications
and structural constraints, significantly narrowing the search
space.

There are multiple ways to represent the user specifica-
tion in the SyGuS framework. However, we will expand on
Program by Example (PBE) [7]. In PBE, the user speci-
fies the desired program behavior through input-output ex-
amples rather than through explicit logical formulas or de-
tailed specifications. This approach makes program synthe-
sis more accessible to users who may not have expertise in
formal methods or programming. It also enables the synthe-
sizer to quantify a program’s quality based on the number of
examples it solves.

Given a grammar representing the Domain-Specific Lan-
guage (DSL) and a set of input-output examples, the synthe-
sizer will then use an efficient algorithm to search through
the program space to find a program that correctly satis-
fies all the provided input-output examples. By utilizing the
structural constraints imposed by the grammar and the be-
havioral constraints from the examples, the synthesizer will
have a robust framework that will allow it to generate and
test programs efficiently.

Anti-unification is the process of generating a new sym-
bolic expression from a set of other symbolic expres-
sions that maintains certain commonalities with all of them
[4]. This process was first introduced by Plotkin [10] and
Raynolds [11].

The anti-unification approach’s success is due to its com-
pression. By generating the least general patterns between



multiple programs, we create new functions for the program
synthesizer to use. However, too many overly specific func-
tions in the DSL could slow the synthesizing process. Fur-
thermore, quantifying the ”quality” of a function in the con-
text of finding a correct solution for a user-defined problem
is complex, making the process of applying anti-unification
a challenging task.

One of the state-of-the-art approaches in the field of
program synthesis that implements a DSL-based search is
DreamCoder [6]. The algorithm is an iterative program syn-
thesizer that takes as input a corpus of problems, each spec-
ified by a set of examples (user specifications), and outputs
a library of program components and a neural search policy
that can efficiently solve other similar synthesis problems. It
comprises a latent variable generative model, and a neural
network called a recognition network. Each cycle of the al-
gorithm starts with the wake phase, and it utilizes the DSL
and the recognition network to solve as many of the prob-
lems provided as input. It then ends with the sleep phase,
which consists of two distinct steps. First is the abstraction
sleep step, which grows the DSL utilizing a refactoring al-
gorithm based on E-graph matching. Second is the dream
sleep step, which trains the neural network to improve the
system’s synthesis skills.

One study that leveraged anti-unification with great suc-
cess in the field of program synthesis is BABBLE: Learn-
ing Better Abstractions with E-Graphs [3], outperforming
DreamCoder. The work introduces an enhanced version
of the abstraction sleep step of DreamCoder named library
learning modulo theory (LLMT). This new library learning
algorithm additionally takes a domain-specific equational
theory as input and utilizes it to create e-graphs that encap-
sulate all equivalent terms. It later applies anti-unification
on the generated e-graphs to propose new candidates for the
learned library. It chooses between them based on the reduc-
tion that the functions provide to the corpus of problems.

Drawing inspiration from the work mentioned above and
other studies that applied anti-unification in other domains
[2], this paper aims to propose a novel approach that opti-
mizes the process of program synthesis while being agnostic
to the search procedure.

Problem Description
To effectively apply anti-unification to optimize the process
of synthesizing, three main challenges should be addressed.

First, which programs should be considered for anti-
unification? To answer this question, we first need to de-
fine what is a ”good” program. Since we cannot estimate
how close a program is to the correct solution, we can only
check which user specifications it satisfies. Having at least
one of the specifications satisfied is an acceptable condition
for it to be used for the anti-unification process. However,
another factor that should be checked is the number of pro-
grams collected. Two approaches are possible. Either col-
lect an arbitrary amount of programs or until the union of all
the specifications the programs solve is equal to the set of all
user specifications.

Second, On which criteria should a common pattern be
accepted into the DSL? As mentioned in the previous sec-

tion, introducing too many overly specific functions into the
DSL could prove detrimental and slow down the synthesis
process. Two metrics that have seen use in other works that
leveraged anti-unification are compression (Dreamcoder [6]
and Babble [3]) and the number of substitutions (Duplicate
code detection [2] ). Compression is the number of nodes
that would be reduced in the program’s Abstract Syntax Tree
(AST) if the common pattern is exchanged with its corre-
sponding function produced by anti-unification. The num-
ber of substitutions could be seen as the number of argu-
ments that the function generated by anti-unification. Fur-
ther details about what is substitution in the domain of anti-
unification can be found in [2] [4]. This metric ensures that
the resulting functions are human-interpretable and do not
become too general.

Third, How often should a pattern appear to be com-
mon? Finding a common pattern in a sizable set of collected
programs could be complex. Since the programs are not col-
lected based on their structure, they could vary a lot, result-
ing in reduced chances of finding a common pattern in all
of them. To tackle this problem, common patterns could be
found in subsets of arbitrary sizes. This approach is inspired
by Babble [3] in which patterns found between any two pro-
grams are considered to be added in the component library.

Anti-unification Meta-iterator
In this section, we will present the algorithm that leverages
anti-unification to speed up the process of synthesizing pro-
grams.

Utilizing the terminology used in Herb.jl1, the framework
in which this method is implemented, an iterator is the main
structure that defines the search procedure of a synthesizer.
This study aims to create a “meta-iterator” in the sense that
anti-unification will not be the one that guides the search
procedure. Instead, it tries to improve another iterator by se-
quentially improving the DSL it utilizes to reduce the depth
of the search procedure.

At each step of the algorithm, at least one new contribu-
tion is inserted into the DSL. The process of finding these
contributions has three sections.

Collecting programs
The algorithm will use the iterator provided to generate
problems and evaluate them based on user specifications. If
at least one of the specifications is satisfied, the program and
a set of all of the specifications that it satisfies are kept in a
list for further processing.

If the union of all specifications solved by the collected
programs is equal to the list of specifications provided by
the user or a certain number of programs have been stored,
the procedure stops. If a program that solves all of the user
specifications is found, the procedure stops.

Applying Anti-unification
After having a list of programs, we can apply anti-
unification to subsets of the collected programs to find func-

1Herb.jl, ”Herb.jl Documentation,” Herb.jl: A Unified and Uni-
versal Framework for Program Synthesis, https://herb-ai.github.io.



Figure 1: Example steps in the process of enhancing the DSL of a synthesizer using anti-unification

tional common patterns. By establishing the size of the
subsets, every combination of programs will be represented
as an abstract syntax tree (AST) and then undergo anti-
unification.

The process of finding common patterns between multiple
programs comprises the following components.

• The anti-unification algorithm is inspired by MST [2]. It
takes as input two ASTs, and starting from the roots, it
checks pairs of nodes for equality. In the context of an
AST, two nodes are similar if they represent the same
function and have an equal number of descendants. If
these conditions are met, the function will become a part
of the common pattern. Furthermore, pairs of their child
nodes will be made based on their ordering and checked
for the same conditions. A variable node will be added
to the common pattern if the nodes checked for equality
differ.

• To collect all the common patterns between two ASTs,
the anti-unification algorithm will be applied between all
the pairs of subtrees that do not belong to the same tree.
The pattern must be checked to satisfy two user-defined
thresholds to be considered for further processing. First,
the number of non-variable nodes from which they are
composed should be greater than a particular value. Sec-
ond, the number of variable nodes they contain should be
smaller than a specific value.

• To enable the algorithm to find common patterns between
more than two ASTs, the proposed solution takes an iter-

ative approach. For each AST that does not belong to the
initial pair, we will apply anti-unification between itself
and all of the common patterns found. Following this
logic, the resulting patterns will contain commonalities
with all of the ASTs that have been iterated through.

Enhanching the DSL
After applying anti-unification, a list of candidate common
patterns will be composed. A set of all the user specifica-
tions its parent programs satisfy will be kept for every com-
mon pattern added to the DSL. A candidate pattern will be
discarded if the set of user specifications that its parent pro-
grams satisfy is already a part of the abovementioned list.
The reasoning behind this choice is first to limit the number
of DSL additions. More importantly, even if it limits the po-
tential of finding better patterns for that specific set of spec-
ifications, it also limits the addition of equivalent patterns
that contain redundant steps. This condition is essential as
once a pattern has been added to the DSL, the process of
finding equivalent programs to its parent programs will be
much faster, leading to an overflow of additions to the DSL
that will not enhance its efficiency but, instead, slow down
the process of synthesis.

If no candidate patterns are found, the current list of col-
lected programs will be discarded, and the algorithm will
restart from the first section. Once at least one pattern is
found, they will be restructured into new functions to be
added to the DSL. The root of the AST of the common pat-
tern will dictate the function type, while any variable node



in its structure will become the function’s argument.

Experimental Setup and Results
The experimental segment of this study aims to assess the
proposed anti-unification meta-iterator method for improv-
ing DSL-based program synthesizers. The primary objec-
tive is to highlight its strengths and weaknesess by evaluat-
ing how effective it is compared to the stand-alone iterator it
utilizes.

The primary metric on which the programs will be com-
pared will be the number of enumerated programs it takes
until a solution is found or a limit on the number of enu-
merations has been achieved. The comparison will be made
on the problems proposed in the SyGuS SLIA and BV track
benchmark[9]. At the same time, the iterators used for the
assessment will be BFSIterator and DFSIterator provided by
the Herb.jl framework.

BFSIterator is a top-down iterator that, given a grammar
(DSL) and a starting symbol, searches the program space in
a breadth-first search style, returning programs in increas-
ing order of size. Similarly, the DFSIterator is a top-down
iterator that also takes a grammar and a starting symbol as
input. However, it searches the program space in a depth-
first search manner, prioritizing exploring the largest pro-
gram. In the SyGuS SLIA track, there are 100 problems
related to string operation, while in the BV track, there are
753 problems associated with Bit-manipulation. However,
due to their complexity, we will use only the first 250 prob-
lems for our comparison. Each issue is defined by a set of
input/output examples and has a specific grammar attached
to it.

The setup used for the Anti-unification meta-iterator algo-
rithm will be running with a minimum 4 non-variable nodes
in the AST of the common patterns, the maximum number
of collected programs will be 3, and anti-unification will be
applied on subsets of 2 programs at a time with a maximum
of 5000000 enumerations. The sub-iterators will be running
with default parameters, with the same limitation of a maxi-
mum of 5000000 enumerations.

BFSIterator Comparison on SyGuS SLIA track
Out of the 100 problems, the Anti-unification Meta-iterator
solved 49 problems, while the BFSIterator solved 43 prob-
lems. Excluding the problems for which the anti-unification
did not find any common pattern, there are 37 problems.
Furthermore, we can prune the set of problems to eliminate
the problems that both the iterators did not solve. In the
end, the final subset of problems we will look at is made
up of 21 problems. The subset comprises seven problems
solved only by the Anti-unification Meta-iterator, one prob-
lem solved only by the BFSIterator, and 13 problems solved
by both.

A problem highlighting a bottleneck of the al-
gorithm proposed in this paper is called ‘prob-
lem count line breaks in cell’ and is the first problem
in Figure 2. It is the only one solved by the BFSIterator
and not by the anti-unification meta-iterator. This result
is caused by one of the examples from which the problem

Figure 2: Enumeration Counts for BFSIterator vs.
Anti-unification Meta-iterator on SyGuS SLIA Track

is made. The answer to it is simple, leading the iterator
to collect a lot of redundant programs that unintentionally
solve the example. The single addition to the DSL found
is: ‘if false then str to int cvc(ntString) else 1’ which
will constantly evaluate to 1, independent of the values
that ntString takes. Here, ntString is a placeholder that
the program synthesizer will try to replace with other
elements in the grammar that evaluate to a string. Instead
of being beneficial, this pattern will have an adverse effect,
increasing the number of enumerations it takes to find a
correct solution.

Figure 3: Comparison of Enumeration Distributions for
BFSIterator and Anti-unification Meta-iterator on SyGuS SLIA

Track

DFSIterator Comparison on SyGuS SLIA track
Out of the 100 problems, the Anti-unification Meta-iterator
solved 23 problems, while the DFSIterator solved 21. There
were 35 problems in which a common pattern was added
to the DSL, and excluding the ones that both iterators did
not solve, we arrived at a subset of 19 problems that should



be investigated. The subset comprises four problems solved
only by the Anti-unification Meta-iterator, two problems
solved only by the DFSIterator, and 13 problems solved by
both.

Figure 4: Enumeration Counts for DFSIterator vs.
Anti-unification Meta-iterator on SyGuS SLIA Track

From this experiment, we can derive that iterators that
explore the program space in a non-uniform style, such as
the DFSIterator, which prioritizes exhaustive exploration,
perform worse when used as sub-iterators for the Anti-
unification Meta-iterator. Compared to iterators that em-
ploy a more uniform exploration, such as the BFSIterator,
the downside of inserting a new rule into the DSL that is not
useful in finding a correct solution is much higher. This in-
creases the likelihood that the Anti-unification Meta-iterator
will perform worse than its sub-iterator.

Figure 5: Comparison of Enumeration Distributions for
DFSIterator and Anti-unification Meta-iterator on SyGuS SLIA

Track

BFSIterator Comparison on SyGuS BV track
Out of the 250 problems, the anti-unification meta-iterator
solved 26 problems, while the BFSIterator solved 25 prob-

lems. Not considering the problems for which the Anti-
unification Meta-iterator found no common pattern, there
will be 230 problems. By eliminating the problems that
both iterators failed to solve, we have 18 problems. The
subset comprises seven problems solved only by the Anti-
unification Meta-iterator, six problems solved only by the
BFSIterator, and five problems solved by both.

Figure 6: Enumeration Counts for BFSIterator vs.
Anti-unification Meta-iterator on SyGuS BV Track

This experiment aims to assess the Anti-unification Meta-
iterator’s capabilities on more complex problems, character-
ized by a larger number of examples compared to the SyGuS
SLIA track. From the evaluation results, we can conclude
that the performance of the Anti-unification Meta-iterator
is situational. The number of problems where the Anti-
unification Meta-iterator required fewer enumerations is al-
most equal to the number where the BFSIterator performed
better. However, this test suite also highlights the poten-
tial of the anti-unification approach in the program synthesis
domain. Notably, when the Anti-unification Meta-iterator

Figure 7: Comparison of Enumeration Distributions for
BFSIterator and Anti-unification Meta-iterator on SyGuS BV

Track



yields better results, the number of enumerations decreases
by more than a factor of two, demonstrating its significant
efficiency gains in specific scenarios.

Responsible Research
Ensuring the reproducibility of scientific research is funda-
mental for validating results and fostering further advance-
ments. To facilitate this endeavor, this study offers a clear
overview of all aspects of the setup, including software con-
figuration, data sources, and algorithm parameters. This
information has been meticulously documented in this pa-
per’s experimental setup and results section. Furthermore,
the study offers a transparent view of the algorithm by pro-
viding a detailed description that motivates each decision.

The algorithm’s source code will also be integrated into
Herb.jl framework to facilitate the reproducibility of the ex-
periments presented in the study. Herb.jl is an open-source
project developed to create a unified and universal frame-
work that lessens the burden of rewriting tools from scratch
when researching software in the domain of program syn-
thesis.

Conclusion and Future Work
This study explores the efficiency of creating a component
library out of anti-unification to improve DSL-based pro-
gram synthesizers. This paper seeks to show the potential of
an anti-unification meta-iterator as an optimization by con-
ducting a comparative analysis with other program iterators.

The approach presented in this study could still be vastly
improved. A recurring problem that impairs the efficiency
of the algorithm is the existence of redundant programs that
satisfy user specifications by chance. This type of program
are considered for the process of anti-unification, however
the common patterns they provide do no benefit the process
of synthesis, rather they they increase needlessly increase
the DSL size leading to longer runtimes. An example for
this behaviour is highlighted in the experimental setup and
results section.

Another significant addition that could benefit the algo-
rithm would be the detection of equivalent programs. Find-
ing programs where one achieves the same user specification
while doing more steps than required is frequent for com-
plex solutions. For example, one ’0’ could be replaced in
a problem with ’(0 + 0)’. Applying anti-unification to such
programs will lead to overly specific patterns that could not
benefit the program synthesizer. A study that manages to
solve this problem is Babble[3]. However, a domain-specific
equational theory is required to approach this issue.

Lastly, collecting programs and applying anti-unification
are processes that require a lot of computational power, es-
pecially for problems that are composed out of a combina-
tion of easy and hard to solve user-specifications. Discover-
ing a way to improve this aspects through dynamic program-
ming would improve the runtime of the algorithm.
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