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A B S T R A C T

Piezo stepper actuators are very promising for nanopositioning systems due to their high resolution, high
stiffness, fast response, and the ability to position a mover over an infinite stroke by means of motion
reminiscent of walking. The aim of this paper is to enhance the waveforms for actuating piezo steppers, by
actively compensating for repetitive disturbances that are introduced by the walking behavior. A compensation
method is developed to compensate for disturbances in the stepping domain, since disturbances may vary in
the time domain if the velocity changes. The results from this procedure are exploited to determine an optimal
waveform for the working range of the actuator. A significant improvement in performance is achieved after
applying this waveform to a piezo stepper actuator.
. Introduction

Piezo actuators are a promising technique for high precision mo-
ion systems, especially since ‘‘walking’’ enables long-stroke actuation.
pplications such as nano-motion stages [1] and scanning probe mi-
roscopes [2] require actuators with high accuracy, high stiffness, fast
esponse, and a large stroke. Individual piezoelectric elements meet the
igh accuracy, high stiffness and fast response time requirements, yet
heir stroke is limited. Piezo stepper actuators can meet the additional
equirement of a large stroke through a motion that resembles walking.
here are various ways to implement this walking motion, for example
y walking drives [3] or bi-morph legs [4].

The walking behavior is implemented through waveforms, which
efine the input to the individual piezo elements as a function of the
ommutation angle, 𝛼, see, e.g., [5]. A full step of the piezo stepper
ctuator is defined on the interval 𝛼 ∈ [0, 2𝜋) and extends periodically.
he control input is given by the step frequency 𝑓𝛼 , in steps per second,
hich is integrated to obtain the commutation angle that dictates the
alking behavior.

During the walking motion of a piezo stepper actuator, engagement
nd release between the piezo elements and the mover can lead to
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✩ This paper was recommended for publication by Associate Editor Zheng Chen.
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E-mail address: l.i.m.aarnoudse@tue.nl (L. Aarnoudse).
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repeating disturbances. These disturbances lead to a nonlinear relation
between the commutation angle and the position output, which is
limiting for control. Experiments reveal that these disturbances are
highly reproducible with respect to the commutation angle [6]. Since
piezo stepper actuators typically operate with varying velocities, these
periodic disturbances in the commutation angle domain typically lead
to a non-periodic error in the temporal domain.

The design of the input waveforms is essential to achieve high
performance. In [7] a procedure is outlined to optimize the waveform
to obtain the highest possible speed with a piezo stepper actuator.
In [1], both model-based and data-based optimization algorithms are
introduced that minimize the velocity error when applying a constant
drive frequency. Both methods lead to an optimal waveform for a
specific velocity, without guarantees for other velocities. Besides this,
these methods do not exploit the reproducibility of the disturbances.
In [4], a model-based coordinate transformation is used to define
the waveforms for a piezo LEGS actuator based on the desired step
shape. The resulting waveforms do not compensate for the unmodeled
repeating disturbances due to engagement and release. In [8], two
parameters of the contact dynamics are estimated iteratively to increase
vailable online 26 June 2023
957-4158/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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the smoothness of the takeovers in a piezo stepper, reducing the ‘ham-
mering’ effect in vertical direction during horizontal motion. In [2],
disturbances caused by the takeover between leg pairs are reduced by
inputs that ensure a gradual takeover, during which both leg pairs move
with the same velocity. For the piezo stepper actuator considered in this
paper, the waveforms ensure such a gradual takeover during which the
elements in contact with the mover move with equal velocity, yet this
does not fully eliminate the disturbances.

Several approaches to iterative learning control outside the tempo-
ral domain have been developed, see, e.g., [9–11]. In [9], temporal
dynamics are ignored to obtain a static system in the time domain,
which is exploited in a 2D spatial ILC approach. This method is de-
veloped for additive manufacturing systems where the output of the
system is measured at a fixed number of equidistant discrete points
in the spatial domain. However, for piezo steppers the commutation
angle can take any value in a continuous interval. In [10], an ILC
approach is developed that indexes previous iterations of a bipedal
walking robot by a phase variable reminiscent of the commutation
angle of a piezo stepper actuator. This method assumes that stable
periodic walking with an unknown period time is obtained in the limit.
For piezo stepper actuators, this assumption is not valid as the input
drive frequency typically leads to various velocities, i.e., varying period
times. In [11], a repetitive control approach is developed to compensate
for disturbances in the position domain. This approach uses Gaussian
processes to interpolate between the non-equidistantly sampled data
points. Due to the heavy computational load required to compute the
posterior distribution of the Gaussian process, this cannot directly be
applied to the design of waveforms for piezo stepper actuators.

Although several waveform optimization techniques have been de-
veloped, a procedure that exploits the reproducible disturbances in
the commutation angle domain is lacking. Consequently, for each
of these methods an error will remain that can be compensated for
through learning. The aim of this paper is to develop a computationally
tractable, data driven optimization approach to enhance piezo stepper
waveforms. Through learning from error data of past step cycles a
waveform is determined that compensates for all disturbances related
to the walking behavior, and that is parameterized by only a few
parameters. Implementation of this waveform leads to a linear relation
between the commutation angle input and the position output. The
contribution of this paper consists of the following steps.

S1 A disturbance analysis, which reveals that the disturbances that
effect a piezo stepper are highly reproducible in the commuta-
tion angle domain (Section 3).

S2 A waveform optimization algorithm that mitigates the repro-
ducible part of these disturbances by iteratively updating the
waveforms while allowing for a varying step frequencies (Sec-
tion 4).

S3 Implementation of the framework on a piezo stepper actuator
(Section 5).

Preliminary results of the research presented here are reported
in [6,12]. In [12] an iterative waveform optimization procedure is
introduced without considering sampling of the measurement signals,
and learning is only applied during so-called ‘clamping’ experiments
and not during the actual walking motion of the piezo stepper actuator.
In [6], the non-equidistant sampling of the error is addressed using
radial basis functions and the algorithm is implemented during normal
operation modes, i.e., ‘walking’. The current paper presents a unifying
framework that includes periodic basis functions, which are more
suitable given the nature of the disturbance. Moreover, all proofs are
included.

2. Problem formulation

In this section, the problem considered in this paper is introduced.
First, piezo stepper actuators are introduced. Secondly, the typical de-
sign of the waveforms is illustrated. Thirdly, some assumptions on the
disturbances are given and lastly the considered problem is formulated.
2

Fig. 1. Experimental setup with piezoelectric actuator.

Fig. 2. Schematic representation of piezo stepper actuator in each of the four phases
of a stepping motion. The different piezo elements are: longitudinal piezo of group 1
( ); longitudinal piezo of group 2 ( ); shear piezo of group 1 ( ); shear
piezo of group 2 ( ).

2.1. Piezo stepper actuators

Piezo stepper actuators consist of a combination of piezoelectric
elements in varying configurations that propel a mover, see, e.g., [3,4].
In the piezo stepper actuator considered in this paper, see Fig. 1,
the piezoelectric elements are configured as schematically depicted in
Fig. 2. The actuator consists of two groups of piezo elements, each
containing a longitudinal element that can extend perpendicular to the
mover, and three shear elements that can extend in the direction of the
movement. When the longitudinal element of a group is extended, the
corresponding shear elements are in contact with the mover and dictate
the position of the mover. The two piezo groups are alternated to obtain
a walking motion, leading to an unlimited stroke of the mover.

The walking behavior is dictated by a set of waveforms that define
the relationship between the inputs of the individual piezo elements.
The design of these waveforms is crucial to achieving high perfor-
mance. The waveforms map the commutation angle 𝛼 ∈ R to the input
voltages for the longitudinal piezo elements, 𝑐1 and 𝑐2, and the sets
of shear piezo elements, 𝑠1 and 𝑠2. They are defined on the interval
𝛼 ∈ [0, 2𝜋) and extend periodically. A full cycle from 𝛼 = 0 to 𝛼 = 2𝜋
corresponds to a step of the first piezo group followed by a step of the
second piezo group.

The waveforms are implemented as shown in Fig. 3, with output 𝑦
[m] the position of the mover and input 𝑓𝛼 [Hz] the step frequency,
which is defined as the number of step cycles of the piezo stepper
actuator per time unit. The commutation angle 𝛼 [rad] is defined as

𝛼(𝑡) = 2𝜋
𝑡
𝑓𝛼(𝜏)d𝜏. (1)
∫0
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Fig. 3. Open-loop implementation of waveforms to actuate the piezo stepper actuator.
From the input 𝑓𝛼 (step frequency) to the output 𝑦𝑗 (Mover position).

The commutation angle 𝛼 [rad] over time for a given step frequency 𝑓𝛼
[Hz] is illustrated in Fig. 5.

2.2. Waveform design

A typical waveform design is shown in Fig. 4. This set of waveforms
is designed to obtain a linear relation between the commutation angle
𝛼 [rad] and the position 𝑦 [m], i.e.,

𝑑 (𝑡) = 𝜅𝛼(𝑡) = 𝜅2𝜋 ∫

𝑡

0
𝑓𝛼(𝜏)d𝜏, (2)

here the constant 𝜅 [m/rad] is the desired step size, which depends
n the piezoelectric material and the size of the piezo element. The
aveforms for the longitudinal piezo elements are designed to obtain

our distinct phases.

(A) Shear piezo elements of group 1 in contact with the mover, shear
piezo elements of group 2 not in contact with the mover.

(B) Transition phase.
(C) Shear piezo elements of group 1 not in contact with the mover,

shear piezo elements of group 2 in contact with the mover.
(D) Transition phase.

he waveform design for the shear piezo elements exploits these phases
o propel the mover forward. In the phases in which the shear piezo
lements of a group are in contact with the mover, they move in the
irection of the mover. The phase in which the shear piezo elements
f one group are not in contact with the mover is exploited to reset
hese elements, i.e., move in the opposite direction of the mover.
his waveform design is based on a model of the piezoelectric shear
lements given by

𝑠(𝑡) = 𝑐𝑢𝑠(𝑡), (3)

ith 𝑦𝑠(𝑡) [m] the displacement of the shear piezo element, 𝑢𝑠(𝑡) [V]
he applied voltage, and 𝑐 [m/V] a material-dependent constant. This
odel leads to the waveforms depicted in Fig. 4. The desired behavior

or the position 𝑦 and velocity �̇� is depicted in Fig. 5.
One of the key properties of the model (3) is its static behavior,

.e., both in the temporal and commutation angle domain the system
s linear and shift invariant. Piezoelectric elements are well known
o suffer from hysteresis and creep effects. However, these effects are
mitted in (3), since they are well understood in literature and can
e compensated for, see, e.g., [13–15]. This is formalized in the next
ssumption.

ssumption 1. It is assumed that hysteresis, creep and possible
rift effects are appropriately addressed. This enables the use of the
iezoelectric model (3).

.3. Disturbances

Disturbances are inevitable in an experimental setting. For the piezo
tepper actuator, these disturbances could have different sources. For
3

c

Fig. 4. Top: waveforms applied to clamping piezo elements, 𝑐1(𝛼) ( ), 𝑐2(𝛼) ( ).
Bottom: waveforms applied to shear piezo elements, 𝑠1(𝛼) ( ), 𝑠2(𝛼) ( ). Interval 𝐴
indicates the interval where the longitudinal piezo element of group 2 is fully extended
and the shears of group 1 are not in contact with the mover. Interval 𝐶 indicates the
nterval where the longitudinal piezo element of group 1 is fully extended and the
hears of group 2 are not in contact with the mover. Intervals 𝐵 and 𝐷 indicate the
ransition intervals.

Fig. 5. Desired commutation angle 𝛼(𝑡), position 𝑦(𝑡), and velocity �̇�(𝑡) when applying
the input signal 𝑓𝛼 (𝑡) to a piezo stepper actuator.

xample, a longitudinal piezo element that is not perfectly perpendic-
lar to the mover can cause a disturbance force in the direction of the
ovement. In addition, contact dynamics can influence the position
hen the shear elements come in contact with the mover [8]. Varia-

ions in the properties of the piezo elements can cause differences in
he velocities of the piezo elements. Moreover, sensor noise influences
he measured position.

These disturbances are modeled by two lumped disturbances 𝑑𝛼(𝛼)
and 𝑑𝑡(𝑡). The disturbance 𝑑𝛼 captures all disturbances that can be
irectly related to the commutation angle. All other disturbances are
aptured by 𝑑 . Throughout this paper, the following is assumed.
𝑡



Mechatronics 94 (2023) 103016L. Aarnoudse et al.

p
d

r
a
T
t
r
I
d
i
e
b
d
t
S

R
t
a
T

m
d
d

4

t
m
e
s
c

Assumption 2. Disturbance 𝑑𝛼 is dominant compared to disturbance
𝑑𝑡, i.e., ‖𝑑𝛼‖ ≫ ‖𝑑𝑡‖.

The validity of this assumption is assessed in Section 3. Using
Assumption 2, the position of the mover can be written as

𝑦(𝑡) = 𝜅𝛼(𝑡) + 𝑑𝛼(𝛼(𝑡)). (4)

2.4. Problem formulation

The aim of this paper is to enhance piezo stepper actuator wave-
forms by including compensation for the disturbance 𝑑𝛼 . To this end,
a learning algorithm is developed that employs past commutation-
domain error signals. This learning algorithm can enhance the wave-
forms to compensate for the disturbances in a piezo stepper actuator
due to their reproducible nature in the commutation angle domain. The
approach encompasses

• modeling the piezo stepper in the commutation angle domain,
• dealing with non-equidistant sampling in the commutation angle

domain, and
• translating the result into an optimized waveform.

3. Disturbance analysis

In this section, the validity of Assumption 2 is experimentally as-
sessed. A set of open-loop walking experiments is performed on a piezo
stepper actuator, configured as in Fig. 2, to identify the disturbances 𝑑𝛼
and 𝑑𝑡.

Definition 1 (Open-loop Walking Experiment). A signal 𝑓𝛼(𝑡) is ap-
lied in the open-loop control configuration as depicted in Fig. 3. The
isplacement of the mover is measured.

This experiment is repeated for a wide variety of input signals 𝑓𝛼(𝑡),
esulting in the position outputs shown in Fig. 6. The error is defined
s 𝑒(𝑡) = 𝑦𝑑 (𝑡) − 𝑦(𝑡), with 𝑦𝑑 (𝑡) = 𝜅𝛼(𝑡) and 𝜅 = 3 ⋅ 10−7 according to (2).
o further analyze the disturbances in both the temporal domain and
he 𝛼-domain for varying frequencies, the slope of the error signals is
emoved, resulting in the trendline deviation 𝑒𝑡𝑑 , as shown in Fig. 7.
n the 𝛼-domain, a clear correlation between these error signals for
ifferent experiments is visible, see Fig. 7 (bottom). This figure also
llustrates that the error component 𝑒𝑡𝑑 is clearly periodic, which influ-
nces the choice of basis functions in Section 4. There is no correlation
etween the errors of the experiments when evaluated in the temporal
omain, see Fig. 7 (top). The same effect is visible in Fig. 6. Based on
his observation, Assumption 2 is assumed to hold. This constitutes Step
1 of this paper.

emark 2. Due to the equidistant sampling of the error signal in the
emporal domain, the error signals that are mapped to the 𝛼-domain
re non-equidistant in the 𝛼-domain when the step frequency varies.
his motivates the introduction of basis functions in Section 4.3.

This insight on the reproducibility of the disturbance in the com-
utation angle domain is exploited in the next section to determine a
ata-driven waveform optimization algorithm that compensates for the
isturbance.

. Waveform optimization

In this section, a waveform optimization procedure is developed
hat can compensate for disturbances that are reproducible in the com-
utation angle domain. The key idea of this procedure is to exploit the

rror 𝑒𝑗 at iteration 𝑗 to determine a correction 𝑢𝑗+1 for the waveforms,
ee Fig. 3, that mitigates this error in the next iteration. To determine a
4

ontinuous signal 𝑢𝑗+1, the non-equidistantly sampled measurements of
Fig. 6. Position for a piezo stepper during open-loop walking with step frequencies
1 Hz ( ), 𝜋 Hz ( ), 2

√

6 Hz ( ) and 8 Hz ( ). The dashed lines indicate the
reference 𝑦𝑑 (𝛼) at the various drive frequencies.

Fig. 7. Disturbances for a piezo stepper without slope during open-loop walking with
step frequencies 1 Hz ( ), 𝜋 Hz ( ), 2

√

6 Hz ( ) and 8 Hz ( ). The sampling
instances are indicated by dots (∙). In the temporal domain (top) the sampling is
equidistant (see zoom plot), but the disturbance is not repeating for different step
frequencies. In the 𝛼-domain (bottom) the disturbances are highly reproducible, but
the sampling instances vary depending on the step frequency.

the error 𝑒𝑗 are projected on a set of continuous basis functions. First,
the procedure is summarized. In the remainder of the section, all steps
are detailed and proved.
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Procedure 1 (Iterative Waveform Optimization).

1. Perform an experiment 𝑗 with shear waveforms 𝑠1,𝑗 and 𝑠2,𝑗 and
collect the sampled measurement data 𝑒𝑗 (�̄�), �̄� = {�̄�1, �̄�2,… , �̄�𝑁}.
2. Reconstruct the continuous signal 𝑒𝑗 (𝛼), 𝛼 ∈ [0, 2𝜋), using basis
functions, see Section 4.3.
3. Determine an input 𝑢𝑗+1(𝛼), 𝛼 ∈ [0, 2𝜋), for the shear piezo elements,
𝑠1 and 𝑠2, that aims to mitigate the error 𝑒𝑗 (𝛼), see Sections 4.2 and 4.3.
4. From the input 𝑢𝑗+1 construct updated waveforms 𝑠1,𝑗+1 and 𝑠2,𝑗+1,
see Section 4.4.
5. Increase 𝑗 + 1 and repeat from step 1 with the updated waveforms.

Next, Steps 2–4 of Procedure 1 are developed. First, a set of as-
umptions is imposed. Secondly, the waveform update law for the input
𝑗+1 is introduced, constituting Step 3, and conditions that guarantee
onvergence are provided. A projection-based algorithm is introduced
o reconstruct the continuous error signal based on the available inter-
ittently sampled version, constituting Step 2. Finally, a procedure is

utlined that constructs updated waveforms 𝑠1,𝑗+1 and 𝑠2,𝑗+1 from the
nput 𝑢𝑗+1, constituting Step 4.

.1. Assumptions

The following set of assumptions is imposed.

ssumption 3. The position 𝑦𝑗 (0) is identical for each experiment.

This ensures that each experiment starts from identical conditions.

Assumption 4. Each trial is of constant length in the commutation
angle domain, i.e., 𝛼𝑗 ∈ [0, 2𝜋).

This ensures that all experiments have the complete information of
the disturbance.

Assumption 5. The disturbances affecting the system are iteration-
invariant in the commutation angle domain.

These assumptions enable iterative learning of a signal that com-
pensates for the reproducible disturbance. The set of assumptions is
reminiscent of the standard assumptions imposed in iterative learn-
ing control, where compensating signals are computed for systems
with repeating disturbances in the temporal domain. Assumption 3 is
equivalent to the standard equivalent initial condition assumption in
traditional ILC. Assumption 4 is an adaptation of the constant time
length assumption in traditional ILC. Note that Assumption 4 could lead
to experiments with varying time lengths, since varying step frequen-
cies lead to varying time lengths to complete a full step. Assumption 5
is equivalent to the assumption of iteration-invariant disturbances in
the temporal domain in traditional ILC.

4.2. Learning update

In order to introduce a learning update, it is assumed that Step 2 and
Step 4 are performed correctly. First, an additional input to the shear
piezo elements is introduced, 𝑢𝑗 in Fig. 3. This additional input signal is
used to compensate for the observed disturbances. Exploiting the model
of the shear piezo elements, (3), the model of the piezo stepper (4) is
extended to

𝑦𝑗 (𝑡) = 𝜅𝛼(𝑡) + 𝑑𝛼(𝛼(𝑡)) + 𝑐𝑢𝑗 (𝛼(𝑡)). (5)

The linear relation between the input 𝑢𝑗 and the output in the temporal
domain enables a simple conversion of this model to the commutation
angle domain, given by
5

𝑦𝑗 (𝛼) = 𝜅𝛼 + 𝑑𝛼(𝛼) + 𝑐𝑢𝑗 (𝛼). (6)
The error in the commutation angle domain is now defined as

𝑒𝑗 (𝛼) = 𝑦𝑑 (𝛼) − 𝑦𝑗 (𝛼) = −𝑐𝑢𝑗 (𝛼) − 𝑑𝛼(𝛼), (7)

with 𝑑𝛼(𝛼) = 𝑦𝑑 (𝛼)−𝜅𝛼−𝑑(𝛼) a lumped disturbance in the commutation
ngle domain. The goal of the waveform optimization algorithm is
o minimize this error, i.e., to determine 𝑢𝑗 (𝛼) such that it perfectly
ompensates for the disturbance 𝑑𝛼(𝛼).

The following update law is introduced to update the input 𝑢𝑗 .

𝑗+1(𝛼) = 𝑢𝑗 (𝛼) + 𝛾𝑒𝑗 (𝛼), (8)

ith gain 𝛾 ∈ R. The design problem now reduces to selecting 𝛾 ∈ R
uch that the sequence of errors {𝑒𝑗}𝑗∈Z≥0

converges to a unique and
mall 𝑒∞.

emark 3. The update law (8) is reminiscent of a 𝑃 -type ILC update
aw [16]. Since the behavior of a piezo stepper actuator (2) can be
odeled by a gain, P-type ILC is equivalent to inverse-model ILC.

Substituting (7) into (8) yields the following closed-loop trial do-
ain dynamics of the sequence of input signals {𝑓𝑗}𝑗∈Z≥0

.

𝑗+1(𝛼) = (1 − 𝛾𝑐)𝑢𝑗 (𝛼) − 𝛾𝑑𝛼(𝛼). (9)

hese iteration domain dynamics lead to the following convergence
esult.

heorem 4. Consider system (7) satisfying Assumptions 3–5 and update
aw (8). Then the sequence of input signals {𝑢𝑗}𝑗∈Z≥0

converges monoton-
cally to a unique 𝑢∞(𝛼) = 1

𝑐 𝑑𝛼(𝛼) if and only if 0 < 𝛾 < 2
𝑐 . Moreover,

𝑒∞(𝛼) = 0.

Theorem 4 leads to a straightforward design of the update law (8)
when an approximation of 𝑐 is available.

4.3. Signal parameterization

The learning update (8) hinges upon the availability of continuous
signals. Besides the required continuous-time error signal, the control
input 𝑢𝑗 is also defined as a continuous signal. In a digital control
implementation, obtaining these continuous signals is not possible.
Therefore, continuous functions are introduced that approximate the
required signals.

Typically the measurement signals are sampled equidistantly in the
temporal domain, i.e., a continuous-time signal 𝑦(𝑡), 𝑡 ∈ R≥0 is sampled
o obtain a discrete measurement signal 𝑦𝑑𝑡(𝑘), 𝑘 ∈ Z≥0 as

𝑦𝑑𝑡(𝑘) = 𝑦(𝑘ℎ) (10)

ith ℎ ∈ R>0 the sampling time. For varying step frequencies, this
quidistant sampling in the temporal domain leads to iteration-varying,
on-equidistantly sampled measurement data in the commutation angle
omain, see Fig. 7. To overcome this issue, an approximation of the
ontinuous signal in the commutation angle domain is constructed
y projecting the available non-equidistant data points on a set of
ontinuous basis functions. The error signal is parameterized as follows.

𝑗 (𝛼) =
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑒𝑗 , (11)

ith 𝑚 ∈ N linearly independent basis functions and parameters 𝜃𝑒𝑗𝑖,
𝑖 ∈ {1, 2,… , 𝑚}.

This parameterization also enables the implementation of 𝑢𝑗 as a
continuous signal parameterized by the continuous basis functions 𝜙𝑖,
𝑖 ∈ {1,… , 𝑚}. To this end, Procedure 1 is started with an input signal
𝑢0 that is parameterized by the basis functions 𝜙𝑖, 𝑖 ∈ {1,… , 𝑚},
i.e., 𝑢0(𝛼) =

[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑢0 for some 𝜃𝑢0. The update law
(8) then yields the following

𝑢1 =
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑢0
+ 𝛾

[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑒0,
[ ] 𝑢 𝑒

(12)

= 𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼) (𝜃0 + 𝛾𝜃0).



Mechatronics 94 (2023) 103016L. Aarnoudse et al.

{

i

A
s

𝑑

𝑒

𝑒

i
r
s
i
o
p

o

4

e
T
w
H

T
s
o
e
f
b
a

𝜙

T
i
d

b
i
w
n
𝑢

𝑢

T
e
o
s
w

From this it follows that all subsequent input signals generated by the
update law (8) can be parameterized by the basis functions 𝜙𝑖, 𝑖 ∈
1,… , 𝑚}, i.e., 𝑢𝑗 (𝛼) =

[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑢𝑗 for all 𝑗 ∈ Z≥0.
To find the correct parameters 𝜃𝑒𝑗 given 𝜃𝑒0, the following assumption

s imposed.

ssumption 6. Given 𝑑𝛼 and 𝜙𝑖, 𝑖 ∈ {1,… , 𝑚}, there exist a 𝜃𝑑 ∈ R𝑚

uch that

�̂�(𝛼) =
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑑 . (13)

Using this assumption, the error 𝑒𝑗 (𝛼) given in (7) is written as

𝑗 = −𝑐
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑢𝑗
−
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑑 ,

=
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

(−𝑐𝜃𝑢𝑗−𝜃
𝑑 ).

(14)

This leads to the following result.

Theorem 5. Consider the continuous error signal 𝑒𝑗 (𝛼), as given in (14),
and its sampled version 𝑒𝑗 =

[

𝑒𝑗 (𝛼1) 𝑒𝑗 (𝛼2) ... 𝑒𝑗 (𝛼𝑁 )
]

with 𝛼𝑖 ∈
[0, 2𝜋), 𝑖 ∈ {1,… , 𝑁} the commutation angle at the 𝑁 ∈ N measurement
instances obtained during a walking experiment with possibly varying step
frequency. In addition, let matrix

𝛷𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜙1(𝛼1) 𝜙2(𝛼1) … 𝜙𝑚(𝛼1)
𝜙1(𝛼2) 𝜙2(𝛼2) … 𝜙𝑚(𝛼2)

⋮ ⋮ ⋮ ⋮
𝜙1(𝛼𝑁 ) 𝜙2(𝛼𝑁 ) … 𝜙𝑚(𝛼𝑁 )

⎤

⎥

⎥

⎥

⎥

⎦

. (15)

Then, the continuous error signal 𝑒𝑗 can be exactly reconstructed if there are
at least 𝑚 unique sampling instances 𝛼𝑖, i.e., 𝑁 ≥ 𝑚. Moreover, this exact
reconstruction is given by

𝑒𝑗 (𝛼) =
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

𝜃𝑒𝑗 (16)

with 𝜃𝑒𝑗 =
[

𝜃𝑒1𝑗 𝜃𝑒2𝑗 ... 𝜃𝑒𝑚𝑗
]⊤

∈ R𝑚 given by

𝜃𝑒𝑗 =
(

𝛷𝑇
𝑗 𝛷𝑗

)−1
𝛷𝑇

𝑗 𝑒𝑗 . (17)

Proof. Consider the error signal 𝑒𝑗 (𝛼), parameterized as

𝑒𝑗 (𝛼) =
[

𝜙1(𝛼) 𝜙2(𝛼) ... 𝜙𝑚(𝛼)
]

�̂�𝑒𝑗 , (18)

such that 𝑒𝑗 is given by

̄𝑗 = 𝛷𝑗 �̂�
𝑒
𝑗 . (19)

Substituting this in (17) yields

𝜃𝑒𝑗 =
(

𝛷𝑇
𝑗 𝛷𝑗

)−1
𝛷𝑇

𝑗 𝛷𝑗 �̂�
𝑒
𝑗 . (20)

From this it follows that if and only if the matrix 𝛷𝑇
𝑗 𝛷𝑗 is full rank,

.e., rank(𝛷𝑇
𝑗 𝛷𝑗 ) = 𝑚, then 𝜃𝑒𝑗 = �̂�𝑒𝑗 . This shows that if and only if

ank(𝛷𝑇
𝑗 𝛷𝑗 ) = rank(𝛷𝑇

𝑗 ) = 𝑚, an exact reconstruction of the error
ignal can be made. Since the matrix 𝛷 is constructed from 𝑚 linearly
ndependent basis functions, the constraint rank(𝛷) = 𝑚 is met if and
nly if there are 𝑁 ≥ 𝑚 measurement instances. This completes the
roof. □

Theorem 5 allows defining the updated waveforms directly in terms
f the parameters 𝜃𝑢𝑗 , as shown in the next section.

.4. Waveform update

The signal 𝑢𝑗 (𝛼) that follows from the learning update is used to
nhance the waveforms for the shear piezo elements, 𝑠1(𝛼) and 𝑠2(𝛼).
he main constraint for the waveforms 𝑠1(𝛼) and 𝑠2(𝛼) is periodicity
ith a period of 2𝜋, which is required to achieve periodic walking.
6

owever, the basis functions 𝜙𝑖 may be non-periodic. An example of
Fig. 8. Periodic extension of the basis function (21).

Fig. 9. Functions 𝛿1(𝛼) ( ) and 𝛿2(𝛼) ( ) corresponding to the non-periodic basis
function (21). The discontinuous periodic extension of (21) is given by ( ).

basis function that is non-periodic with a period of 2𝜋 is an affine
function, i.e.,

𝜙(𝛼) = 𝛼, 𝛼 ∈ [0, 2𝜋). (21)

his basis function can be used to compensate for the difference in
lope between the mover position and the reference shown in Fig. 6,
r to compensate effects of drift when those are still visible in the
rror. Other types of non-periodic basis functions are the radial basis
unctions used in [6]. However, the periodic extension of non-periodic
asis functions leads to a discontinuous signal, see Fig. 8, and therefore
specific implementation is required.

An example of a basis function that is periodic with 2𝜋 is

(𝛼) = sin(𝛼). (22)

hrough this basis function, in combination with its higher harmonics,
.e., sin(𝑖𝜋), 𝑖 ∈ N, and their counterparts cos(𝑖𝜋), 𝑖 ∈ N, all periodic
isturbances with a period of 2𝜋 can be captured.

Because of the periodicity constraint of the waveforms, the set of
asis functions 𝜙𝑖 with corresponding 𝜃𝑢𝑗+1, 𝑖 ∈ {1,… , 𝑚} is first divided
nto functions that are periodic with respect to the commutation angle
ith period 2𝜋, given by 𝜙𝑝

𝑖 (𝛼), 𝑖 ∈ {1,… , 𝑚𝑝}, and functions that are
on-periodic, given by 𝜙𝑛𝑝

𝑗 (𝛼) 𝑗 ∈ {1,… , 𝑚 − 𝑚𝑝}. Using this division,
𝑗+1(𝛼) is given by

𝑗+1(𝛼) =
[

𝜙𝑝
1(𝛼) ... 𝜙𝑝

𝑚𝑝
(𝛼)

]

𝜃𝑝𝑗+1

+
[

𝜙𝑛𝑝
1 ... 𝜙𝑛𝑝

𝑚−𝑚𝑝

]

𝜃𝑛𝑝𝑗+1
(23)

he interval where a shear group is not in contact with the mover is
xploited to transform the non-periodic functions 𝜙𝑛𝑝

𝑗 (𝛼) into continu-
us periodic signals 𝛿𝑠1,𝑖 and 𝛿𝑠2,𝑖, for respectively shear group 1 and
hear group 2. In the regions where both shear groups are in contact
ith the mover, the signals 𝛿1,𝑖 and 𝛿2,𝑖 should satisfy

𝜕𝛿1,𝑖(𝛼)
𝜕𝛼

=
𝜕𝜙𝑛𝑝

𝑖 (𝛼)
𝜕𝛼

, (24)

𝜕𝛿2,𝑖(𝛼)
𝜕𝛼

=
𝜕𝜙𝑛𝑝

𝑖 (𝛼)
𝜕𝛼

. (25)

The regions where a shear group is not in contact with the mover are
used to retract the shear such that a continuous waveform is obtained,
i.e, such that the following is satisfied.

𝛿1,𝑖(0) = 𝛿1,𝑖(2𝜋), 𝛿2,𝑖(0) = 𝛿2,𝑖(2𝜋), 𝑖, {1, 2}. (26)

For the non-periodic basis function (21) this leads to functions 𝛿1(𝛼)
and 𝛿 (𝛼) as shown in Fig. 9.
2
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Applying this procedure to all non-periodic basis functions allows
for a direct parameterization of the waveforms in terms of 𝜃𝑝𝑗+1 and
𝑛𝑝
𝑗+1, given by

1,𝑗+1(𝛼) (27)

= 𝑠1(𝛼) +
𝑚𝑝
∑

𝑖=1
𝜃𝑝𝑖,𝑗+1𝜙

𝑝
𝑖 (𝛼) +

𝑚−𝑚𝑝
∑

𝑗=1
𝜃𝑛𝑝𝑖,𝑗+1𝛿1,𝑖(𝛼)

𝑠2,𝑗+1(𝛼)

= 𝑠2(𝛼) +
𝑚𝑝
∑

𝑖=1
𝜃𝑝𝑖,𝑗+1𝜙

𝑝
𝑖 (𝛼) +

𝑚−𝑚𝑝
∑

𝑗=1
𝜃𝑛𝑝𝑖,𝑗+1𝛿2,𝑖(𝛼).

Remark 6. The reset of the shear elements allows for a continuous
periodic extension of the non-periodic basis function and ensures that
both periodic and non-periodic basis functions can be applied. The
type of basis functions that is best suited depends on the disturbance
that is compensated. The choice for periodic basis functions in this
paper is motivated by Fig. 7, which shows that the error component
𝑒𝑡𝑑 resembles a sine with a period of 2𝜋. In addition, the non-periodic
basis function (21) is used to compensate the slope difference between
mover position and reference.

This completes Step 4 of Procedure 1, which is applied to an
experimental setup in the next section.

5. Experimental results

In this section, the developed waveform optimization framework,
i.e., Procedure 1, is applied to an experimental piezo stepper actuator.

5.1. Experimental setup

The experimental setup, as depicted in Fig. 1, is a piezo stepper
actuator with the piezo configuration shown in Fig. 2. The piezoelectric
material in this actuator is lead zirconate titanate (PZT). The input to
the actuator is a voltage in the range [−250, 250] V. The piezoelectric
actuator is connected to a mover, which is connected to a parallel
guide within a frame. The mover position is measured by a sincos
encoder with a period length of 0.5 ⋅10−6 m, and a 16-bit digital-analog
converter.

5.2. Basis function selection

Since the error signal is sampled non-equidistantly in the 𝛼-domain
for varying drive frequencies, the continuous error signal is recon-
structed by mapping the measured error samples to a set of basis
functions, as described in Section 4.3. The basis functions are selected
based on the structure of the error shown in Fig. 6. First, a non-periodic
basis function is used to compensate the slope of the error, given by

𝜙𝑛𝑝
1 (𝛼) = 𝛼. (28)

Next, it is observed that the main component of the trendline deviation
𝑒𝑡𝑑 in Fig. 7 is periodic, with a fundamental harmonic with a period of
2𝜋. A set of basis functions is chosen that can capture the first 100
harmonics of this disturbance, i.e.,

𝜙𝑝
𝑖 (𝛼) = sin(𝑖𝛼), 𝜙𝑝

𝑀+𝑖(𝛼) = cos(𝑖𝛼), (29)
7

𝑖 ∈ {1,… .,𝑀}, with 𝑀 = 100. i
Fig. 10. Convergence of the RMS value of the error (top) and the trendline deviation
𝑒𝑡𝑑 (bottom) during open-loop walking experiments. Monotonic convergence of the RMS
of 𝑒𝑡𝑑 is observed while varying the step frequency, but due to rate-dependency the RMS
of the error increases when the step frequency changes. Subsequent step frequencies:
1 Hz ( ), 10 Hz ( ), 21 Hz ( ), 17 Hz ( ).

5.3. Experimental results

Procedure 1 is applied to the experimental setup depicted in Fig. 1
using the set of basis functions (29). The desired linear relation between
the commutation angle 𝛼 and the mover position is described by the
reference 𝑦𝑑 (𝛼) = 3 ⋅10−7𝛼. The applied step frequencies range between
–21 Hz.

In Fig. 10 (top), the root mean square, RMS(𝑒𝑗 ) =
1
𝑁𝑗

∑𝑁𝑗
𝑘=1 𝑒𝑗 (�̄�𝑘)

2,
f the error signals over iterations is given. This figure shows that
he RMS value converges to a bounded region, even though the step
requency varies over iterations. The non-equidistantly sampled signals
re mapped to the set of basis functions, and the waveform that is
earned can be applied at different step frequencies. However, when
he step frequency changes, there is an increase in error due to rate-
ependent behavior. This is illustrated in Figs. 10 (bottom) and 11,
hich show that this increase in error is due to a change in slope.
ig. 11, also shows that a significant performance improvement is
btained with respect to the error observed at iteration 𝑗 = 0. The
nhanced waveforms for iteration 𝑗 = 20 are depicted in Fig. 12, cf.
ig. 4.

In Fig. 13, convergence of the RMS value of the error is shown
or experiments with step frequencies ranging between 1–8 Hz, for
xperiments with and without hysteresis compensation. The hysteresis
ompensation according to [15] results in a smaller initial error, but
or later iterations it is shown that this part of the hysteresis can be
ompensated through learning the waveforms as well. Since this hys-
eresis compensation does not take into account the rate-dependency,
he change in error slope when the step frequency changes remains.

emark 7. When the 𝛼-domain ILC algorithm is running long-term
uring standard operation of a system, i.e., when the number of it-
rations is high, it automatically corrects for disturbances such as
emperature fluctuations and varying friction components, since these
ariations typically occur on a much larger timescale than the ILC
pdates. Satisfying the monotonic convergence condition in Theorem 4
nsures good learning transients, such that the error will not grow over

terations [17].
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m

Fig. 11. Error signals for iterations 0 (1 Hz, ), 5 (10 Hz, ), 9 (10 Hz, ) 10
(21 Hz, ), 15 (17 Hz, ). The increase in error between iterations 9 and 10 is

ostly due to a rate-dependent change in slope.

Fig. 12. Enhanced waveforms 𝑠1,20(𝛼) ( ) and 𝑠2,20(𝛼) 2 ( ) obtained at iteration
𝑗 = 20. Regions where only one shear group is in contact with the mover are indicated
in gray.

6. Conclusion

The presented framework can perfectly compensate commutation-
angle domain disturbances for systems with static dynamics. This ap-
proach is successfully applied to piezo stepper actuators that exhibit
repeating disturbances introduced by the walking behavior in the com-
mutation angle domain. Other applications that may benefit from
this approach include permanent magnet motors with cogging. The
presented framework is capable of fully mitigating repeatable distur-
bances in the 𝛼-domain for a piezo stepper actuator while coping
with iteration-varying and non-equidistant measurement and actuation
points. Basis functions are used to parameterize the input and error sig-
nals and obtain continuous descriptions. These continuous descriptions
are used in an update law. Compensation of the 𝛼-domain repeating
disturbances for a piezo stepper actuator during walking experiments
results in a linear relation between commutation angle and mover
position. This improves the positioning accuracy and reduces the com-
plexity of closed-loop control in an industrial setting. Future research
will consider further compensation of hysteresis and rate-dependent
effects.
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