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Abstract

Microwave kinetic inductance detectors (MKIDs) are superconduct-
ing detectors that are excellent candidates for astronomy in the far-
infrared (FIR), roughly 100 GHz to 10 THz. Radiation in this part of
the electromagnetic spectrum is particularly hard to detect compared
to optical or near-infrared radiation. Furthermore, some sources in
the FIR are so faint that the detectors are required to detect sin-
gle photons to determine the incident photon rate. Recent MKIDs
are highly sensitve and are capable of detecting single photons in the
FIR, although detection of lower energy photons remains a challenge.
Photons produce pulses in the output signal of the detector. As the
pulse height is dependent on the photon energy, low energy photons
are hard to distinguish from the noise.

This thesis presents a system model that is used in estimating
the photon rate. The system model describes signal relations and
noise characteristics, so that it provides a foundation for developing
statistical estimation and detection algorithms. Based on this model,
various estimators are proposed, e.g. a generalized matched filter.
This shows the utility of the system model in deriving solutions for
estimation problems.

This thesis represents a first step in advancing signal processing
techniques for single photon detection in MKIDs designed for FIR
astronomy.
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Introduction 1
1.1 Radio Astronomy using MKIDs

Objects in the night sky can be very dim. There are stars that we are able to see with
the naked eye, but other objects, such as gas clouds, nebula and cold dust, remain
hidden because they do not produce visible light. Radiation can come in at many
frequencies and from vastly different sources, but these objects emit mainly in the
far-infrared (FIR), roughly defined as radiation between 100 GHz and 10 THz. One of
those sources is the cosmic microwave background, at frequencies around 160 GHz. This
radiation is a remnant of the Big Bang. Another source of radiation at this frequency
comes from exoplanets. Measuring the radiation coming in from these planets might
tell us something about the molecules on the planet, and hence if life might exist there
[1].

Optical and near-infrared radiation (0.1-1 µm), as well as radio frequencies (below
1 GHz), are relatively easy to detect. In the far-infrared it is much harder. This is
because semiconducting detectors such as charge-coupled devices use silicon with a
band gap of 1.1 eV, which implies that they only work for radiation at wavelengths
shorter than about 1 µm. Radio receivers do not work within the FIR either, since the
frequencies are simply too high. On top of that, sometimes the sources are so faint that
single photons have to be detected.

This makes superconducting detectors necessary for the THz range. Cooling down
the detectors to temperatures well below the superconducting transition temperature
eliminates thermal noise so that the signal to noise ratio is sufficiently high enough to
be able to measure the power from the astronomical sources [2]. At the moment there
are three types of superconducting detectors that are able to achieve the necessary
sensitivity: quantum capacitance detectors, transition edge detectors, and microwave
kinetic inductance detectors (MKIDs) [2, 3].

MKIDs have been in development since the early 2000s [4–7]. One of the big ad-
vantages of MKIDs over the other types of detectors is that they can be passively
multiplexed [7, 8]. By changing design parameters such as the resonator length of each
MKID, up to thousands of MKIDs can be read out on a single read-out line [2]. This
enables high-pixel imaging or high-resolution spectroscopy.

The MKIDs from the Terahertz Sensing Group are capable of sensing single photon
hits at THz frequencies [2, 3]. By counting the number of photons in a time-stream,
the power incident on the detector can be measured.
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Figure 1.1: Comparison of simulated MKID signals with high photon energy vs. low photon
energy.

1.2 Photon Counting in MKIDs

MKIDs have been able to detect single photons for some time now, especially for visible
light and near-infrared this is rather easy due to the large photon energies [9]. They
have the necessary sensitivity to detect higher energy photons. High energy photons
produce a larger signal amplitude. But as the energy of the photons gets lower, the
signal read-out also gets lower. This makes it harder to detect photons in the measured
time-stream. The peaks in the signal from the photons are almost drowning in noise
and are barely visible. Being able to also detect lower energy photons will open up
parts of the THz spectrum that astronomers have not been able to measure.
An example of what an MKID signal in noise can look like is shown in Figure 1.1.
When a photon hits the detector a peak is seen in the time-stream of the signal.

So far the Terahertz Sensing group at Delft has made some considerable efforts
towards detecting single photons. Federica Facchin [3] tried to push single photon
counting capabilities of MKIDs to 1.5 THz by improving the physical device design,
which led to some pulse detections but at a very low detection reliability. This helped
lead to an MKID design whose sensitivity is sufficient for use in future space telescopes
[2]. The signal processing part of the photon counting consisted of bandpass filtering,
downsampling, and applying a matched filter. The resulting output was then thresh-
olded at 4 to 5 times the standard deviation. This early attempt at the signal processing
is sufficient for high energy photons, but more sophisticated techniques are necessary
to get the most out of the detectors. There are no optimality conditions given for the
detection, and no system overview or statistical description of the measured signal is
given.

Wilbert Ras is also working on processing photon pulses in MKID signals [1]. His
work is concerned with the height of the peaks induced by the photons and the distri-
bution of the height. These provide a measure of the energy of the photons hitting the
detector. A type of optimal filter is used in the frequency domain, but there is still no
system overview or statistical signal description from which optimality can be defined.
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1.3 Thesis Goal and Outline

As of now there is no description of MKIDs in the signal processing framework. Like-
wise, there are no statistical descriptions of measurements or definitions of optimal
detection or estimation. The goal of is thesis is, therefore, to define the problem of
optimally estimating the photon rate incident on an MKID in the framework of statis-
tical signal processing. If possible an optimal solution to the problem of estimating the
photon rate will be given.

Therefore, a signal processing model is needed that describes the relation between
the measured signal and the parameters to be estimated, which will aid in designing
optimal detectors. There are three things necessary to derive that model:

1. A description of the physical mechanism happening in an MKID.

2. Stochastic descriptions of the signals and noise inside the system.

3. Data to help build and verify the model.

These subgoals are reflected in the structure of this work.
First, Chapter 2 gives a description of the physical processes inside an MKID. It

starts with a quick introduction to superconductivity, after which it will explain how
an MKID is able to sense changes in the conductivity when a photon hits the detector.
It also contains a description of a new coordinate system that can be used to define the
intermediate and output signals of an MKID.
After that, Chapter 3 will give the description of the system model. It starts with a
continuous-time model with signals representing the physical quantities introduced in
the previous Chapter and alters it to a discrete-time model where the noise is added as
additive Gaussian noise. The distributions of the signals are described and the second
order statistics of the noise are given as power spectral densities (PSDs). The model is
verified by synthesizing MKID output data that has similar properties to actual MKID
output. This model can then be used to derive solutions for estimating the photon rate
from a measured time-stream.
After that, Chapter 4 presents an attempt at deriving an optimal solution for estimating
the photon rate from the model of the previous Chapter. The optimal solution is sought
via the probability density functions (PDFs) of the signals in the model. These PDFs
arise from the signal descriptions of the previous Chapter. Unfortunately, an optimal
solution is not found, because of an intractable expression of the PDFs. This leads to
a simplification of the model, which is used to derive a generalized matched filter as a
solution.
Finally, Chapter 5 presents the results of applying the generalized matched filter so-
lution to experimental data. Experimental data is acquired from two chips, LT218
and LT366. The test set-up is described shortly in Chapter 2. The data contains
measurements with photon rates varying from zero to hundreds per second.
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Physical Mechanisms of
MKIDs 2
An MKID is a superconducting radiation detector that can be optimized for many
wavelengths ranging from mm-waves (100 GHz) to visible light. MKIDs for far-infrared
wavelengths, roughly corresponding to wavelengths between 200-20 µm, typically op-
erate as power integrators, whereas MKIDs in the optical spectrum can measure in-
dividual photons. However, recently fabricated MKIDs are capable of sensing single
photons even at wavelengths of 200-20 µm [2, 3]. Power can then be measured by sum-
ming the energies of all the photons in a single time-stream. However, single photon
peak heights have a natural spread in peak height, and current detectors only detect
the highest peaks, while the lower ones remain hidden in the noise. This results in an
underestimation of the photon rate from the astronomical source

This Chapter serves to give the necessary background on the physical processes
happening in MKIDs in order to be able to build a system description in Chapter 3.
First, a quick description of superconduction will be given where Cooper pairs and
quasiparticles are introduced. Then, the process of a photon breaking a Cooper pair
into quasiparticles will be explained. Then, a brief description of the resonator circuit
will follow which is used to detect the pair breaking. Finally, a change to the coordinate
system used to represent MKID measurements will be developed.

2.1 Superconductivity

In a normal conductor, charge transport is mediated by the movement of electrons.
When the temperature T of a conductor drops to near zero, the resistivity will also go
down but not to zero. In some materials, the resistivity suddenly drops to zero below
a critical temperature Tc. This phenomenon is called superconduction and was first
discovered by Kamerlingh Onnes in 1911.

The quantum-mechanical description of superconductivity was pioneered in 1957
[10], called the BCS theory. A very important follow up work was published by Mattis
and Bardeen [11] on the behaviour of superconductors in high frequency electromagnetic
fields. In a superconductor, there exist two types of additional particles, Cooper pairs
and quasiparticles. Cooper pairs are formed by two electrons. At superconduction
temperatures the electrons are able to fall into a lower energy state where they are
bound to another electron [8]. Cooper pairs allow a conductor to have zero resistivity
[12]. The conductor will behave as a perfect conductor with infinite conductivity.1

Cooper pairs do not dissipate energy, but they do have an inductance associated with
them [8]. This is because Cooper pairs have mass, and with that mass they resist a
change in the current just like inductors do with their magnetic fields. The inductance

1Resistivity is the inverse of conductivity.

4



from the Cooper pairs is called kinetic inductance, which is where the name Kinetic
Inductance Detector comes from [8].

Quasiparticles are excitations of a charge quantity from the superconducting ground
state into a higher energy state. These excitations can be created by temperature or by
radiation. Quasiparticle behave similar to electrons, they dissipate energy when moving
through a metal and have a resistivity associated with them [8]. The quasiparticle
density χ is the total number of quasiparticles in the solid over the volume. It is
exponentially dependent on the temperature. At around T < Tc/10, there are therefore
virtually no quasiparticles in the material.

The inductive part of the Cooper pairs together with the resistive part of the quasi-
particles give rise to a complex conductivity

σ = σ1 − jσ2 (2.1)

where σ1 is the real and dissipative part from the quasiparticles, and σ2 is the imaginary
and inductive part from the Cooper pairs [8]. The behaviour of the conductance in
a high-frequency electromagnetic field with angular frequency ω comes from Mattis-
Bardeen theory [11]. The Mattis-Bardeen expression for the conductance is an integral
over the possible energy states [13]. This can be simplified to an expression where the
change in the conductance is approximately linear in the quasiparticle density [13]. This
is only valid when the energy distribution of the quasiparticles is assumed to be given
by a thermal quasiparticle distribution, i.e. a change in quasiparticle is equivalent to a
change in temperature concerning σ. This happens at ℏω ≪ E{}gap and kBT ≪ Egap,
where ℏ is the reduced Planck constant, and kB is the Boltzmann constant.

We find that the conductivity is an affine function of the quasiparticle density at a
certain field frequency and can be written as

σ(ω, χ) = A(ω) (χ− χ0) + σ0, (2.2)

where σ0 is the conductivity at equilibrium (χ = χ0) and

A(ω) =
dσ

dχ
(2.3)

is the slope of the affine equation (note that although σ is approximately affine in χ,
it is not necessarily in ω). χ0 and σ0 are, respectively, the quasiparticle density and
the conductivity at rest. Other quantities will also follow with the added subscript 0,
for example Qi,0 and ωr,0. These quantities will be introduced later. They are their
respective quantities in the resting state or equilibrium state when χ = χ0, which
is defined here as the state of the detector at low temperatures (T < Tc/8) and no
radiation being absorbed.

2.2 Quasiparticle Creation and Recombination

Cooper pairs can be broken up into quasiparticles. This pair breaking is the mode
through which MKIDs work; they are pair breaking detectors. Photons can break
Cooper pairs if their energy is high enough. For example for aluminium, photons with
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a frequency ν > 90 GHz can break Cooper pairs [8]. This enables MKIDs to detect
photons in the THz spectrum.2 The photon energy needs to be higher than two times
the gap energy Egap of the quasiparticles.

The incoming photon energy is converted into a breaking energy (2Egap) and into
phonons. Phonons are essentially vibrations in the lattice of the superconductor and
can transport energy out of the detector. The total amount of energy that goes into the
excess quasiparticles is less than the photon’s energy. The pair breaking efficiency is
the ratio of the energy that is converted into the breaking of quasiparticles. Its value is
typically in the range of 0.4 to 0.6 [8] and it depends on the exact details of the device
we measure. For thicker aluminium films and for aluminium films on membranes the
value is higher; for thin films on solid substrates this value is lower.

After the quasiparticles have been created, they will recombine again into Cooper
pairs. This is a statistical process where two quasiparticles can meet and form a Cooper
pair again. Even though the process is a statistical process, the mean of the number of
recombined quasiparticles decays approximately exponentially in time [13]. The time
scale of the decay is much larger than the time scale of the creation by a photon and
can be measured at 50 kHz. The time constant τ of the exponential decay is constant
in an MKID and is typically between 1 ns and 100+ µs.

When the quasiparticles density has decayed to the rest state again it can still
fluctuate around the mean due to the generation-recombination [13]. This gives rise
to quasiparticle noise. This noise is ignored in this work since it is only a minor noise
source compared to other noise sources.

2.3 Resonator Read-Out and Behaviour

The behaviour of the quasiparticle density and the conductivity in a superconductor
and their relation to incoming photons is now known. Therefore, if we can perform
measurements from which we can infer the value of the conductivity or the quasiparticle
density in the material, we will be able to sense photon hits. These measurements are
performed at RF frequencies. Each MKID is a microwave resonator with its own
resonance frequency. This is one of the strengths of MKIDs; they can be multiplexed
in the frequency domain. This is achieved by varying the design parameters of the
MKID, such as the resonator length.

An MKID chip can contain up to thousands of resonators that are connected to a
single read-out line. The chip is fabricated from a superconducting material such as
aluminium. The resonator circuit is excited by an RF field and the electrical properties
of the circuit are measured. Figure 2.1 shows an image of a fabricated resonator circuit.

Another reason why the conductivity is measured using a resonator circuit is because
the change in the conductivity is usually very small. A resonator circuit with a very
high quality factor will give a very high response to small changes in the conductivity

2This is the second frequency that has been introduced. The photon frequency ν is different from the
field frequency (also called the RF frequency or read-out frequency) ω = 2πf . A third frequency Fs will be
introduced in Chapter 3, the sampling frequency.
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Figure 2.1: Image of resonator circuit on a fabricated chip. Chip LT366. The brown/gold
surfaces are the superconducting material, while the grey surfaces are parts that are etched
away.

[8]. This Section will describe the response of the resonator circuit to a change in the
conductivity (and hence to a change in the quasiparticles and photon hits).

The resonator in Figure 2.1 is read out via the equivalent circuit of Figure 2.2.
The two-port network in the circuit is the resonator. The impedance Zline(ω, σ) is
the impedance that changes due to a change in quasiparticles. The capacitance C(ω)
couples the resonator to the feedline. The material of the resonator has a surface
impedance Zs(ω, σ) which is determined by the conductivity. At RF frequencies the
surface impedance is given by [13]

Zs(ω, σ) =

√
jµ0ω

σ
coth

(
d
√
jωµ0σ

)
= Rs(ω, σ) + jωLs(ω, σ), (2.4)

where µ0 is the magnetic permeability of free space, d is the thickness of the film, Rs the
resulting surface resistance, and Ls the resulting surface inductance. The derivation of
Zline from Zs is not important here, but what is important is that Zline is a function of
ω and σ.

Now that we have the impedance Zline(ω, σ), we can find the response of the res-
onator. The response of the resonator that will be measured is the scattering parameter
S21. It is the ratio of the outgoing voltage wave at port 2 over the ingoing voltage wave
at port 1 given a matched load, or [14]

S21(ω, σ) =
V −
2 (ω, σ)

V +
1 (ω)

∣∣∣
V +
2 (ω,σ)=0

. (2.5)

The S21 parameter is a complex number. It is sometimes also called the forward voltage
gain. The ingoing and outgoing voltage waves as well as the ports are annotated
in Figure 2.2. Scattering parameters are the standard parameter to measure in RF
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Figure 2.3: Frequency sweep over a simulated MKID near resonance frequency with varying
quasiparticle density. A higher χ shifts the resonance frequency ωr to the left, and the peaks
become less sharp as the total quality factor Q lowers.

engineering because they can be measured at high sampling frequencies and accuracies
by in-phase and quadrature mixers (IQ mixers) or by vector network analyzers (VNAs).
An expression for S21 can be found by analyzing the series impedance of the capacitance
C(ω) and the resonator line Zline(ω, σ). This expression is given in [13].

Rather than giving the expression for S21 in terms of the impedances in the circuit,
it is usually given in terms of two other quantities that are frequently used in resonator
physics. These are the quality factor Q and the resonance frequency ωr. Figure 2.3
shows a simulated example of a frequency sweep for multiple quasiparticle densities χ
(and thus σ). These quantities are easily recognizable features in a frequency sweep
of S21, in contrast to the impedance Zline. They are also very commonly used and
recognized in RF engineering. That is why we will now work towards an expression of
S21 in terms of Q and ωr.

The quality factor is a measure of how little energy is dissipated in the system.
Alternatively, it is a measure of the sharpness of a dip (or peak) when swept over the
frequency. There are three quality factors involved in MKIDs which contribute to the

8



total quality factor

• The coupling quality factor Qc from the coupling capacitor

• The internal quality factor Qi(σ) due to the quasiparticle dissipation losses

• The limiting quality factor Qlim which limits the maximum achievable quality
factor

The internal quality factor is dependent on σ. This is because when there are more
quasiparticles in the system, they will dissipate more energy. The three quality factors
are added in parallel to form the total quality factor Q(σ), so

1

Q(σ)
=

1

Qc

+
1

Qlim

+
1

Qi(σ)
. (2.6)

The internal quality factor at equilibrium is Qi,0 = Qi(σ = σ0).
The resonance frequency is the frequency at which the dip occurs. In Figure 2.3

the frequency and resonance frequency are given in Hz instead of in rad/s. This will
not matter too much since angular frequency and regular frequency can be used inter-
changeably with a factor of 2π in this work. The resonance frequency is dependent on
the conductivity and as such we write

ωr(σ).

This is because the resonance frequency is dependent on the kinetic inductance which
becomes lower as more Cooper pairs are broken into quasiparticles. The resonance
frequency at equilibrium is ωr,0 = ωr(σ = σ0)

The S21 parameter can now be written in terms of the quality factor and the reso-
nance frequency.

S21(ω, σ) =
Q/Qi + 2jQ∆ω

ωr

1 + 2jQ∆ω
ωr

, (2.7)

where ∆ω = ω − ωr is the absolute difference between the read-out frequency and the
resonance frequency of the resonator and

∆ω

ωr

=
ω − ωr

ωr

(2.8)

the relative difference. The derivation of (2.7) can be found in [13]. From (2.7) it is
not immediately clear, but Qi is dependent on σ and ∆ω

ωr
is dependent on both ω and

σ. The next Section will make this dependence more explicit.
The resonator is read out at a fixed frequency ωr,0. This is the resonance frequency

of the resonator at equilibrium. Therefore, it is reasonable to think of S21 as only a
function of σ, or equivalently as a function of χ. However, this depends on the context.
In Chapter 3, the relation of S21 to σ and χ are both important. In the following
Section, the relation of S21 to ω at a varying χ is important, as is the relation of S21 to
χ at the read-out frequency (ω = ωr,0). Therefore, three new notations are introduced.
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First of all, S21 will change from a dependence of ω and σ to a dependence on ω and
χ, so

S21(ω, χ) = S21(ω, σ(ω, χ)). (2.9)

Second of all, when the MKID is read out at the equilibrium resonance frequency, the
dependence on ω can be left out.

S21(χ) = S21(ω = ωr,0, χ) (2.10)

and is thus shorthand for the full function notation. Similarly,

σ(χ) = σ(ω = ωr,0, χ). (2.11)

Both S21(χ) and S21(ω, χ) will be used depending on context.

2.4 Coordinate System

A common problem when discussing MKIDs is what coordinate system to choose to
represent the measured S21 values, and hence which variable is defined as the time-series
signal of interest. Common options are

• the amplitude of forward transmission |S21|,

• the amplitude of the normalized KID circle R,

• the phase of the normalized KID circle θ,

• a nameless Smith chart-like coordinate system [15],

• a phase-dissipation coordinate system [16].

In this work, a new coordinate system is proposed, which is congruent with [15] and
[16]. The relation of the (Re{S21}, Im{S21}) coordinate system to the new coordinate
will be described, as will the coordinate system of the normalized KID circle. These
are important to relate this work to the field.

2.4.1 MKID Coordinate Systems

When performing a frequency sweep and discussing quality factors and frequency shifts,
we tend to look at |S21| as a function of ω as in Figure 2.3. It shows the quality factor
and resonance frequency quite well as features.

The S21 parameter can also be looked at spatially. So, plotting the real part vs.
the imaginary part. This is just S21 represented in the complex plane, which is also
sometimes called the IQ plane after the in-phase and quadrature components. When
performing a frequency sweep over S21, a circle will appear in the complex plane. This
is called a resonance circle. We can also do a sweep over the quasiparticle density.
This traces out a different curve in the IQ plane, which is (not incidentally) part of a
circle. This is called the quasiparticle response or quasiparticle curve. The resonance
circle and quasiparticle response are shown in Figure 2.4. In this work we will call

10
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Figure 2.4: The real vs. the imaginary parts of simulated S21 parameters when sweeped over
frequency and over quasiparticle density. The full lines are frequency sweeps while the dashed
line is the quasiparticle curve.

such plots between real and imaginary parts spatial plots. They will appear later when
introducing the suggested coordinate system and when showing scatter plots of the
noisy measurements. This is used to exemplify the relation between the two parts.
Notice how in Figure 2.4 |S21| is minimal at ω = ωr,0 when the MKID is measured out
χ = χ0, where the dashed purple line and the full blue line cross.

The spatial plot of a normalized KID circle looks similar to a spatial plot of the
real and imaginary parts of S21, only the coordinates are given in (amplitude, phase)
referenced on the resonance circle at equilibrium. Otherwise it is just a translated and
scaled version of the same plot. An example is shown in Figure 2.5. For asymmetric
MKID frequency responses the mapping from the S21values to a normalized KID circle is
not as straightforward [17–20]. Asymmetric frequency responses will not be discussed in
this work. The phase as a function of χ is also shown in Figure 2.5 as is the amplitude.
The curves reveal a rather complex relation to χ for a read-out in this coordinate
system. The amplitude is also not a one-to-one mapping of the quasiparticle density.
The coordinates can be used to map to a quasiparticle density but they distort features.
For example, an exponential decay in the quasiparticle density would not be exponential
anymore when only examining the phase response.

This is one of the reasons the new coordinate system was developed. When deriving
the system description in Chapter 3 from a photon to a response in S21, the relation
between the response and the quasiparticles is necessary. The new coordinate system
allows for a straightforward mapping between S21(χ) and the quasiparticle density.

2.4.2 Proposed Coordinate System

We develop the coordinate system from Equation (2.7), which reads

S21(ω, χ) = S21(ω, σ(ω, χ)) =
Q/Qi + 2jQ∆ω

ωr

1 + 2jQ∆ω
ωr

11
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Figure 2.5: Normalized KID circle in polar coordinates (R, θ). Blue shows a simulated re-
sponse to an increasing quasiparticle density at ω = ωr,0.

In this equation, the relation to the quasiparticle density can not be readily seen.
Therefore, a change to (2.7) is proposed:

S21(ω, χ) =
ζlim + ζi(χ) + jξ(ω, χ)

ζ + jξ(ω, χ)
=

ζlim + r(ω, χ)

ζc + ζlim + r(ω, χ)
, (2.12)

where ζi(χ), ζc and ζlim are damping ratios, ξ(ω, χ) is the frequency-dependent part,
and

r(ω, χ) = ζi + jξ. (2.13)

The real and imaginary parts of r(ω, ξ) form the proposed coordinate system.
(2.12) and (2.7) are related through

ξ(ω, χ) =
∆ω

ωr

, (2.14)

ζ =
1

2Q
, ζi(χ) =

1

Qi(χ)
, ζc =

1

Qc

, ζlim =
1

Qlim

(2.15)

and
ζ = ζc + ζlim + ζi. (2.16)

In this coordinate system (ζi, ξ), the response to χ is affine. In this Section, we will
show affineness of the components in χ, by showing affineness in σ. This is sufficient,
because from Section 2.1 we know σ is approximately affine in χ.

The function

g(r; ζc, ζlim) =
ζlim + r

ζc + ζlim + r

g−1(S21; ζc, ζlim) =
(ζc + ζlim)S21 − ζlim

−S21 + 1

(2.17)

allows for easy mapping between the coordinate system (ζi, ξ), and (Re{S21}, Im{S21}).
ζc and ζlim are parameters of the function.

12



Damping Ratio Components

Damping ratios are the inverse of quality factors. They describe the same information
of a resonator. They can be understood as a measure of the power loss in a dampened
resonator. A resonator with a high damping ratio will have a shorter ring time.

The subscripts of the damping ratios in (2.12) are the same as the ones from the
quality factors in Section 2.3. We therefore have the following relations:

ζ =
1

2Q
, ζi(χ) =

1

Qi(χ)
, ζc =

1

Qc

, ζlim =
1

Qlim

and
ζ = ζc + ζlim + ζi.

This is convenient because from [13] we find that a change in σ leads to a linear change
in the inverse of the quality factor. More precisely,

Qi(χ) =
2

αkβ

σ2(χ)

σ1(χ)
(2.18)

which we can rewrite to

ζi(χ) =
αkβ

4

σ1(χ)

σ2(χ)
(2.19)

using (2.15). Here αk is the ratio of the kinetic inductance over the total inductance, β is
the phase constant, and σ1(χ) and σ2(χ) are the real and imaginary parts respectively of
the complex conductivity. This relation is approximately linear in σ1, and therefore also
in χ, because |σ2| ≫ |σ1| and |dσ1

dχ
| ≈ |dσ1

dχ
| [13]. However, note that ζi is usually not 0

at equilibrium, since χ is also not 0 at equilibrium; there are always some quasiparticles
dissipating energy.

Frequency-Dependent Component

The frequency-dependent component is defined as

ξ(ω, χ) =
∆ω

ωr

=
ω − ωr

ωr

. (2.20)

To show the affineness of this in χ, we use that the relative change in the resonance
frequency is affine in χ [13],

∆ωr

ωr,0

=
ωr − ωr,0

ωr,0

=
αkβ

4

σ2(χ)− σ2,0

σ2,0

. (2.21)

Plugging this quantity into (2.20) we get a not-so-simple equation

ξ(ω, χ) =
ω − (∆ωr

ωr,0
+ 1)ωr,0

(∆ωr

ωr,0
+ 1)ωr,0

. (2.22)

This does not look like it is affine in χ at first glance, but it is for the small-signal
approximation.

Note here that although ξ is affine χ, ξ = 0 for χ = χ0 and ω = ωr,0.
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Figure 2.6: Blue shows a simulated response of an MKID to an increasing QP density. The
red dots shows the resonance circle for reference. χ0 denotes the response at equilibrium
quasiparticle density, note how ζi(χ0) > 0 and ξ(χ0) = 0. (a) shows the response in the
S21-space, while (b) shows the same response in the transformed r-space.

2.4.3 Features of the Proposed Coordinate System

In the new coordinate system of r = ζi + jξ, the response to a change in χ looks
approximately like a straight line, as shown in Figure 2.6. This realization is very
important for the later signal processing.

In Figure 2.6 is also visible that r is not 0 at χ = χ0. r does not pass through
the origin. This is because ζi is linear in χ, but ξ is not. On the other hand, ξ is
zero for χ = χ0, but not for χ = ζi = 0. In Section 3.3, it will be important to
find linear relations instead of affine. From Figure 2.6, it is clear that at equilibrium
r0 = r(ωr,0, χ0) = ζi,0, and ξ = 0.

Further looking at the equilibrium point r0, it is possible to choose a different read-
out frequency than ω = ωr,0. Biasing the read-out tone to be a little higher or a little
lower results in the full lines in Figure 2.7. ξ is simply shifted up or down. Therefore,
we find for r0

r0 = ζi,0 + jξbias. (2.23)

In this work we will not do measurements at biased read-out tones and biasing will not
be mentioned further, since it is not practical to do so. Although later from Section 4.3
it should become clear that biasing at a slightly lower read-out tone will result in a
slightly lower noise variance.

The reason why r traces out a line while S21 traces out a circle is because Equation
(2.12) is a Möbius transformation. Möbius transformations map generalized lines to
generalized lines, and a circle is a generalized line in the extended complex plane.
Something similar happens in Smith charts and z-transforms. In Smith charts, complex
impedances, represented in a Cartesian coordinate system, map to complex reflection
coefficients inside the unit circle. In z-transforms, poles and zeros of the transfer
function of a continuous system, represented in the Laplace domain, map to poles and
zeros of a discrete system inside or outside the unit circle.
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Figure 2.7: Circles in the S21 plane trace out lines in the (ζi, ξ) plane. Full lines are frequency
sweeps at different quasiparticle densities while the dashed line are quasiparticle curves. A
quasiparticle curve is shown for ω at resonance frequency and for a biased read-out frequency.
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System Model of MKIDs 3
The process of a photon hitting the MKID and the resulting S21 can be modeled as
a system. The system without noise is shown in Figure 3.1, and Table 3.1 gives a
description of the signals inside.1

The input of the system is a time-dependent photon stream which is modeled as a
delta train where the height of each delta encodes the photon energy Eϕ. The delta
train is modeled as

d(t) =
∑
i

δ(t− ti), (3.1)

where t is time, δ(t) is the continuous-time unit impulse function, and ti is the arrival
time of each photon. Photon arrivals are modeled as a Poisson process. As such, the
number of photons in a time window with fixed length is Poisson distributed with
parameter λ, the photon rate. The goal of this thesis is to find an estimator λ̂ for the
photon rate.

The output of the system is the sampled complex S21 scattering parameter as defined
in Section 2.3, and is sampled in time. As mentioned there, a frequency sweep will result
in a circle being drawn in the complex plane of S21. This resonance circle serves as a
reference in the coordinate system of (Re{S21}, Im{S21}).

In this Chapter, a canonical description of the system will be given. This is the
canonical way an MKID is analyzed, formulated in a signals and systems way. The
proposed coordinate system from Section 2.4 leads to a novel way to define the signals
in the MKID. It is a new interpretation of the measurements of an MKID where many
variables in the system become affine or linear, while still being formulated in the

1The system model and the coordinate system were designed from the assumption that the output of
the system, S21, is a function of the read-out frequency and the quasiparticle density in the system. This
assumption leaves out the read-out power, but it is nice because a lot of things become linear or affine. Next
the read-out frequency is set to be a constant, since it does not change during a measurement and it can be
viewed more as a known input parameter rather than a signal. This makes it apparent that the signals in the
system should be defined in reference to the quasiparticle density.

Table 3.1: Signal Descriptions of Continuous-Time System

Signal Description

d(t) Delta train where each photon hit is modeled as a delta spike.
ϕ(t) = Eϕd(t) The incoming photon stream, with Eϕ the energy of the photons.
χ(t) The quasiparticle density.
σ(t) The complex conductivity.
Zs(t) The surface impedance of the resonator.
S21[n] The forward transmission of the resonator circuit.
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QP Creation-
Recombination

Celestial
Object VNA

Figure 3.1: Continuous-time system model of an MKID. The inset blue plots are simulated
examples showing the typical form of the time-series signals. The right circle plot shows a
spatial plot of S21(χ). The orange dots show a resonance circle for reference.

understanding of microwave resonators. Section 3.3 will use the new coordinate system
to reformulate the system description, Section 3.4 gives a system description with added
noise, and Section 3.5 gives the noise characteristics.

This model derived in this Chapter will form the basis of the estimation techniques
proposed Chapter 4.

3.1 Canonical System Description

The photons break up Cooper pairs into quasiparticles. The density of created quasi-
particles is assumed to be linear in the photon energy, χc(t) = η

EgapV
ϕ(t), where η is

the pair-breaking efficiency, Egap the gap energy of the conductor, and V the volume
(see Section 2.2). χc(t) looks like a delta train, just like the photon stream. Next the
quasiparticles will decay back to the equilibrium quasiparticle density. This is modeled
as an LTI system with an impulse response that looks like a decay function. So,

χ(t) = χc(t) ∗ h(t) + χ0, (3.2)

where ∗ denotes convolution and

h(t) =

{
e−t/τ , for t ≥ 0

0, fort < 0
(3.3)

After that comes the complex conductivity from Mattis-Bardeen theory. In our case,
this is an approximately affine function of the quasiparticle density (see (2.2)). This is
the last affine step in the system. After this step a VNA or an IQ mixer measures the
resulting S21 at field frequency ω with a sampling frequency of Fs.

The system is shown in Figure 3.1. The individual blocks in the system are not
necessarily LTI systems as is common in other signal processing problems. The system
model will therefore be converted into a discrete system model with LSI subsystems.
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3.2 Discretization

This Section will convert the continuous-time system model to a discrete model, such
that there are only discrete-time signals. The discretization occurs in the VNA. This
Section will therefore go back from the VNA to the photon stream to convert the model.

The discretization of a signal x(t) is given by

x[n] = x(nTs), (3.4)

where Ts = 1/Fs is the sampling time. Therefore,

S21[n] = S21(t = nTs). (3.5)

This notation may be ambiguous, as S21 was previously a function of frequency. One
might mistakenly apply an inverse Fourier transform to S21(ω, χ) to obtain S21(t), but
this does not yield the original voltage signals. Instead, S21 is sampled to measure the
system’s electrical properties changing in time.

Here, ω represents the instantaneous frequency, with ω ≫ Fs. A more precise nota-
tion is S21(ω, χ(t)). During a measurement of the quasiparticle density, the frequency
remains fixed at ω = ωr,0, and the VNA measures only S21(χ(t)).

So, in order to get S21(t), we write

σ(t) = σ(χ(t)) (3.6)

Zs(t) = Zs(σ(t)) (3.7)

and thus

S21(t) = S21(χ(t)). (3.8)

The discretizations of these signals are thus simply

σ[n] = σ(χ[n]) (3.9)

Zs[n] = Zs(σ[n]) (3.10)

S21[n] = S21(χ[n]) (3.11)

and
χ[n] = χ(nTs). (3.12)

An exact equation for χ(t) can be found by writing out the convolution (3.2)

χ(t) =

∫ ∞

−∞
χc(t

′)h(t− t′) dt′ + χ0 (3.13)

= χ0 +
ηEϕ

EgapV

∫ ∞

−∞
d(t′)h(t− t′) dt′ (3.14)

= χ0 +
ηEϕ

EgapV

∫ ∞

−∞

(∑
i

δ(t′ − ti)

)
h(t− t′) dt′ (3.15)

= χ0 +B
∑
i

h(t− ti), (3.16)
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where B = ηEϕ/EgapV is a constant. This reveals χ(t) to be an affine function of a
sum of pulses with the shape of h(t). This was already known but now we have a
mathematical expression for χ[n].

This expression shows no relation to the photon rate λ however. We will therefore
use an approximation for χ[n], where

χ[n] = χ0 +Bk[n] ∗ h[n] = χ0 +B

∞∑
m=−∞

k[m]h[n−m], (3.17)

where k[n] is the number of photons arriving in the interval nTs to (n+ 1)Ts or

k[n] =

∫ (n+1)Ts

nTs

d(t) dt =
∑
i

1 for i ∈ {i|nTs ≤ ti < (n+ 1)Ts}, (3.18)

h[n] = h(nTs), (3.19)

and ∗ denotes here discrete-time convolution. Since d(t) is a Poisson process, k[n]
should be Poisson distributed

k[n] ∼ P(λ). (3.20)

The discretized incoming photon stream is also defined as k[n]. The photon energy
that was encoded in ϕ(t) is included in the constant B.

3.3 System Definition as Linear Shift Invariant Systems

In this Section we will change the system until we have a system to which we can add
noise and which is usable for our estimation techniques.

The first intermediate system model is found in Figure 3.2. The canonical system
model is first defined in the coordinate system of Section 2.4 r[n] = (ζi + jξ) [n]. χ[n]
follows from σ[n] as because of Mattis-Bardeen theory, and r[n] follows from χ[n]. In
Section 2.4.3 the measurements in the S21-space were found to be a Möbius transfor-
mation of r, namely g(r) which maps the response to a circle.

The second intermediate system model is found in Figure 3.3. The linear and affine
mappings in Figure 3.2 can be combined into a single LSI system with impulse response
h[n]. But in order to do that, all the affine mappings need to be made explicit as in
Figure 3.3. The affine mappings are simply a gain followed by an offset specified in the
parameter of the block.

The third intermediate system model is found in Figure 3.4. This is the final system
model to which noise will be added in the next Section. This is done by simplifying
Figure 3.3. First all the constants are taken, moved further along the system, and
scaled them by the linear gains. This results in a single added constant r0 which can
be used as an extra parameter in g(r).This is the same r0 as from Section 2.4.3. The
function is from this point on defined as

g(r; r0, ζc, ζlim) =
r0 + ζlim + r

r0 + ζc + ζlim + r

g−1(S21; r0, ζc, ζlim) =
(r0 + ζc + ζlim)S21 − r0 − ζlim

−S21 + 1

(3.21)
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Mattis-
Bardeen

QP Creation-
Recombination

Affine
Transformation

Celestial
Object

Figure 3.2: Discrete-time system defined with reference to signal r[n]. The inset blue stem
plots show simulated examples of the typical form of the time-series signals. The spatial
plots show the signals as a function of quasiparticle density in their respective coordinate
system in blue. The orange dots represent the resonance cirlce for reference. The function g
corresponds to the function g in Section 2.4, responses that lie on lines map to circles in the
complex measurement plane of S21.

Mattis-Bardeen Affine
Transformation

QP Creation-
Recombination

Figure 3.3: System overview where all affine transformations are noted so they can be more
easily turned into an LSI system.

All the constant gains such as Eϕ and B are also taken out of the input signal and put
into a single complex gain C.

Figure 3.4: System overview where all affine transformations have been combined into a single
impulse response h[n], a gain C, and an extra offset in g(r; r0, ζc, ζlim).
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Figure 3.5: Final system overview with noise added at the appropriate places. This is the
system that will be used in the estimation of the photon rate λ in Chapter 4.

3.4 System with Noise

Gao et al. [21] identify two types of noise in their paper. The first noise is amplifier
noise from the read-out system. It is complex-valued noise which is added in the S21-
domain. The second is phase noise. They find in their paper that the phase noise
lies perfectly on the resonance circle. The reason it is called phase noise is because it
mostly shows up in the phase component of the (R, θ) coordinate system. It is also
sometimes called frequency noise, because it lies along the resonance circle. It is as if
either the read-out frequency or the resonance frequency has noise added to it. The
source of the noise is from quantum mechanical two-level systems (TLS) existing in the
dielectric substrate [21], although the source does not matter for this analysis.

In this interpretation of the phase noise, it can be added to the system as additive
noise in σ2 or in ξ. The amplifier noise can be added as additive complex noise to S21.
The final resulting system with noise can be seen in Figure 3.5. This is the model that
will be used in Chapter 4. The data model of the measurement s[n] is

s[n] = q[n] + va[n], (3.22)

where

q[n] = g(b[n]; r0, ζc, ζlim) (3.23)

b[n] = a[n] + jvf [n], (3.24)

and

a[n] = Ck[n] ∗ h[n]. (3.25)

Here, vf [n] is real valued frequency noise that only lives in the imaginary part of the
r-space. It is therefore added as jvf [n]. va[n] is the complex valued amplifier noise.

3.5 Noise Characteristics

The noise characteristics can be analyed by performing a measurement at a low black-
body temperature. At low temperatures the blackbody sends out almost no radiation
and thus no photons. The measurement will only contain noise.
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Figure 3.6: Quantile-quantile plots of data from a measurement at black body temperature
of 9.993 K of KID18 of chip LT218. The quantiles of the input data are almost distributed
like a Gaussian distribution, except for a tail at higher values. The tails come from photons
leaking in and cosmic rays.

The distribution of the noise sources can be verified via a quantile-quantile plot. A
quantile-quantile plot shows the quantiles of one distribution against another distribu-
tion. This can be from a function description such as for a standard Guassian or from
the distribution of sampled data. If the quantile-quantile plot shows an approximately
straight line the data can be assumed to come from the same distribution. In this case
the quantiles of sampled data are compared to a standard Gaussian. Figure 3.6 shows
the quantile-quantile plot of a measurement of only noise in the S21-domain and in
the s-domain. The fact that it matches in the S21-domain implies that the amplifier
noise is Gaussian distributed; and the fact that it matches in the r-domain implies the
frequency noise is also Gaussian distributed. The quantile-quantile plots show that in
the sampled data there are more high values compared to a standard Gaussian. These
are from cosmic rays which the MKID also responds to.

The general shape of the noise spectra is also given in [21]. When synthesizing
MKID data in Section 3.6 it is important that the spectral shapes match that of actual
MKIDs.
The amplifier noise is white noise with a 1/F component at low frequencies. The power
spectral density of va[n] can be modeled as

Pa(F ) = σ2
a(1 +

Fl

|F |
), (3.26)

where σ2
a is the noise floor power and Fl is the frequency where the power of the

1/F component starts to dominate over the white noise component. Note that this
frequency is not the same f = ω/2π but instead is the frequency of the discrete-time
Fourier transform (DTFT).
The frequency noise has a 1/F 1/2 power spectrum with a roll off at the resonator band-
with ∆F . The resonator bandwidth can be calculated from the resonance frequency
and the quality factor as ∆F = ωr/2πQ. This is usually specified as the ring time
τr = 1/∆F . This spectrum can be modeled as

Pf (F ) = σ2
f |F |−1/2 1

1 + (Fτr)2
. (3.27)

Two simulated examples are shown in Figure 3.7.
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Figure 3.7: Single-sided power spectral densities of the two noise sources. Blue shows the
PSD of the amplifier noise. It features a noise floor and a 1/F component below F = Fl.
The noise power is divided between the real and imaginary terms of va. The frequency noise
vf features a 1/F 1/2 slope, and a roll of at F = 1/τr. Actual dB values are not necessarily
characteristic due to normalization.

The noise spectra of Figure 3.7 do not not match the spectra of [21] exactly because
there the noise is given in the (R, θ) coordinates, which are the most commonly used
coordinates in the field. It is assumed that the amplifier noise has the same shape PSD
as for the R-coordinate, and that the frequency noise is transformed by adding a noise
floor and the 1/F component from the amplitude noise. This noise shows up in the
θ-coordinate. This gives the spectra

PA = Pa = σ2
a(1 +

Fl

|F |
) and

Pθ = Pf (1 +
Fl

|F |
) + Pa,

of which the shape can be found in Figure 3.8. This shape lines up with the shape
found in [21]. In the next Section it is important that the PSDs of the synthesized data
match with this shape.

3.6 Verification via Data Synthetization

The model can be verified by showing that it can be used to synthesize data with the
same properties as actual experimental data. The model used to synthesize the data is
the one in Figure 3.2 with added noise. This Section will look at three properties to as-
sess the validity of the model. First a spatial plot of measurements, second a timestream
of pulses in phase coordinates, third a PSD estimation based on the generated data.

Figure 3.9 shows a spatial plot of synthesized S21 data. Data points without photon
peaks lie around the minimal S21 value. Data points from peaks shoot along the
quasiparticle curve. The quasiparticle curve curves a little more inward than is normal.
Usually it lies more along the resonance circle. The noise blob looks like an ellipsoid
that curves around the resonance circle. Noise power can be estimated by eye from
the size of the noise blob and is normal for an MKID. All these features except the
quasiparticle curve match regular data from MKIDs.
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Figure 3.9: Spatial plot of synthesized data. Blue scatter plot is the measurements, orange
dots are the resonance circle, yellow dashes are the quasiparticle curve.

Figure 3.10 shows a part of the timestream of synthesized data in (R, θ) coordinates.
The timestream shows temporally colored noise with decay pulses in them where a
photon hit the detector.

Figure 3.11 shows an estimated PSD via Welch’s method [22] of data with noise
only in the (R, θ) coordinates and of data with photon pulses.
In the PSD with only noise the 1/F 1/2 behaviour of the θ coordinate is visible in the
middle frequencies. At lower frequencies the 1/F behaviour is more prominent. At
higher frequencies it rolls of towards the noise floor. The A noise is dominated by the
amplifier noise and shows a noise floor with 1/F behaviour at lower frequencies. When
photons hit the detector the PSDs start showing a roll-off at 1/τ . These PSDs match
with those from [21] and Figure 3.8.

24



2.28 2.285 2.29 2.295 2.3 2.305

t

0.8

0.9

1

1.1

R

2.28 2.285 2.29 2.295 2.3 2.305

t

-0.2

0

0.2

0.4

3

Figure 3.10: Part of a timestream of synthesized data in (R, θ). Two pulses that are close
together are visible and the rest of the timestream shows colored noise. The discrete signal
points have been connected with a line for easier viewing.

102 103 104

Frequency (Hz)

-80

-75

-70

-65

-60

P
o

w
er

/f
re

q
u

en
cy

 (
d

B
/H

z)

(a) Noise-only

102 103 104

Frequency (Hz)

-80

-75

-70

-65

-60

-55

-50

P
o

w
er

/f
re

q
u

en
cy

 (
d

B
/H

z)

(b) Photons

Figure 3.11: Power spectral densities of synthesized S21 data. Blue show the PSD of the R
coordinate, orange shows the PSD of the θ coordinate. (a) shows the PSD of synthesized
data with only noise (photon rate is 0), (b) shows the PSD of with photon pulses. Roll-off
frequency for the θ noise is 1.2 kHz, quasiparticle decay time is 1 ms, photon rate is 100 /s.
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Optimal Estimation
Techniques 4
This Chapter will explore three different tactics of arriving at an optimal solution for
finding an estimator for the photon rate on the MKID. The underlying signal model is
the one from Figure 3.5 and the signals in the system are defined in Section 3.4 as.

The first approach entails direct derivation. So writing a statistical description of the
measured data in terms of the actual photon rate, and deriving an optimal estimator
from that. This approach does not work, because of an integral that does not have
an exact solution. It does however, lead to an important insight that if an unbiased
estimator of the photon stream is found, that estimator leads to an unbiased estimator
of the photon rate.

Following this insight, two other tactics are proposed: one based on a matched filter,
and another based on a Wiener filter. The matched filter tries to detect pulses in the
noisy measurement, and reconstructs the photon stream from those detections. The
Wiener filter approach tries to reconstruct the photon stream by assuming the photon
stream consists of Gaussian random variables. This does not make sense physically, but
it does lead to an unbiased estimator from which the photon rate can be determined.
(It is not computable however, since it requires the photon rate also as input. This can
perhaps be tackled by doing an alternating minimization scheme.)

The matched filter approach is the one that has been implemented in the end. And
this is the one that will be tested and verified in the following Chapters.

Both of these approaches require some simplifications to the model derived in Chap-
ter 3. These are explored in Section 4.3.

4.1 Notation

This Chapter introduces some notation for writing probability density functions and
probability mass functions. These may be confusing for readers outside of the statistical
signal processing field. Notations are mostly based on the books by Kay [23–25], and
Hayes [22].

For a discrete random variable K, the cumulative mass function (CMF) is written
as

Prob(K ≤ k),

where Prob(·) denotes probability. The probability mass function (PMF) is written as

Prob(K = k) = pK(k).

Similarly, for a continuous random variable X the cumulative density function (CDF)
is

Prob(X ≤ x).
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Taking the derivative of the CDF leads to the probability density function (PDF)

d

dx
Prob(X ≤ x) = pX(x).

Usually in this work, random variables come in uncapitalized letters. This leads to the
notations pk(k) and px(x), which do not make sense in the Prob(·) notation. It does
not lead to trouble however, because the random variable X and indexing variable x
never arise in the same expression.

For ease of notation, the subscript is sometimes also dropped so that

px(x) = p(x).

In contexts where this might lead to confusion, such as for a change of variables, the
subscript is kept.

Parametrized probabilities are given by px(x; θ), where θ is the parameter. Condi-
tional probabilities are given by px|y(x|y), where y is another random variable. Joint
probabilities are given by px,y(x, y). Mixes of these three are also possible. For
complex random variables z = a + jb, the PDF is defined as a joint probability, so
pz(z) = pa,b(a, b).

For a time-series measurement, we get the sequence of values x[n] for n = 1, . . . , N .
For ease of notation, vectors are introduced where

x =

 x[1]
...

x[N ]

 .

The joint PDF of all x[n] is then

px[1],...,x[N ](x[1], . . . , x[N ]) = px(x).

The marginal probability

p(x) =

∫
y

p(x, y) dy

is written with a single integral, whether it used for single random variable or a random
vector. So,

px(x) = px[1],...,x[N ](x[1], . . . , x[N ])

=

∫
· · ·
∫

px[1],...,x[N ],y[1],...,y[N ](x[1], . . . , x[N ], y[1], . . . , y[N ]) dy[1] . . . dy[N ]

=

∫
p(x,b) db.

Marginal probabilities of complex random variables are also written as a single integral.
So, for x = a+ jb and y = c+ jd

p(x) =

∫∫
p(a, b, c, d) dc dd

=

∫
p(x, y) dy.
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and similarly for complex random vectors x = a+ jb and b = c+ jd

p(x) =

∫∫
p(a,b, c,d) dc dd

=

∫
p(x,b) db.

Finally, the ∗ operator is denoted as a convolution, also for vectors.

4.2 Direct Derivation of Optimal Solution

For an optimal solution we should first find the statistical description of the measured
data s[n] parametrized by the photon rate λ, or p(s;λ). This is a classical estima-
tion approach where λ is viewed as a constant, and not a random variable. We will
borrow some techniques from Bayesian estimation however, by looking at conditional
probabilities such as

p(s;λ) =
∑
k

p(s|k;λ)p(k;λ), (4.1)

where k is the discrete random vector containing the number of photons that hit the
MKID at sample n.

In the first Subsection, p(s;λ) will be written out in conditional PDFs of the signals
in the system model. The second and third Subsections will try to find expressions for
those conditional PDFs. They will build from the simplest case where we have exact
knowledge of the photons, increasing the complexity in the system with each step.
This approach is cut short very quickly unfortunately, because the second step in this
approach already leads to an intractable expression. Nevertheless, the final Subsection
will explain an important result that comes from this exploration of the PDFs.

4.2.1 Solution Based on Complete Model

In order to find an expression for p(s;λ), we resort to conditional PDFs. We use the
signal model found in Section 3.4. To repeat:

s[n] = q[n] + va[n]

with va ∼ CN (0,Σa) and thus p(va;Σa) is known;

q[n] = g(b[n])

with g being a one-to-one function;

b[n] = a[n] + jvf [n]

with vf ∼ N (0,Σf ); and
a[n] = Ck[n] ∗ h[n]

with k[n] ∼ P(λ). N is the normal distribution, CN is the complex normal distribution,
and P is the Poisson distribution. The matrices Σf and Σa are the autocovariance
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matrices of the noise. They can be estimated from measurements without photons, just
like the PSD can be estimated. Estimation of noise characteristics from experiments
will be described in Section 5.1.

From here on out the probabilities will be written without parametrization on λ,
since almost every probability contains λ as a parameter except the ones introduced by
noise (p(vf ;Σf ) and p(va;Σa)).

p(s) =

∫
q

p(q)pva(s− q) dq

=

∫
q

p(q)pva(s− g(b)) dq

=

∫
b

p(b)pva(s− g(b)) db

=

∫
b

p(b)ps|b(s|b) db, (4.2)

where p(s|b) = pva(s− g(b))

To get p(b) we similarly do

p(b) =
∑
a

p(a)pjvf
(b− a)

=
∑
a

p(a)pvf
((b− a)/j)

=
∑
k

p(k)pvf
((b− Ck ∗ h)/j)

=
∑
k

p(k)pb|k(b|k) (4.3)

where p(b|k) = pvf
((b− Ck ∗ h)/j).

Here a sum over a is used instead of an integral, because k is a discrete random vector
and the convolution Ck ∗ h must then also be a discrete random vector. This result
requires that we can find pvf

((b − Ck ∗ h)/j) from pvf
((b − a)/j) [26] (i.e. k can be

found exactly from a), which is not necessarily true.
Figure 4.1 shows examples of what the PDFs and conditional PDFs could look

like for MKIDs. The PDF of s would look similar to Figure 4.1f, excepts for a 2-D
convolution of p(a) with a circular Gaussian PDF because of the noise introduced by
va. This results in a smearing along the real and imaginary axis.

Now, we have expressions for p(k), p(vf ), and p(va); and we need to find an ex-
pression p(b) and p(s) by evaluating (4.2) and (4.3). We will start by working up from
simple the simple case where b = k and increasing complexity until we have p(b) given
b = Ck ∗h+ jvf in the next Subsections. This process reaches a dead end however in
Section 4.2.3.
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Figure 4.1: Examples of PDFs and conditional PDFs of random variables in (4.2) and (4.3).
The PDFs shown here are of single random variables instead of random vectors for easier
viewing. The convolution a = Ck ∗h is then also collapsed to a = Ck. Notice the delta spike
behaviour of p(b|a) and p(b) in the Re{b}-direction.

4.2.2 Estimation of Poisson Parameter

Let’s first look at a single Poisson random variable k with PMF

pk(k;λ) =
e−λλk

k!
. (4.4)

The score function of this distribution is

score(k;λ) =
d

dλ
log(pk(k;λ)) =

k

λ
− 1 (4.5)

and the Cramér-Rao lower bound (CRLB) is given by Var{λ̂} ≥ 1/I(λ) = λ, where
I(·) is the Fisher information. Since the score function can be written as score(k;λ) =
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I(λ)(g(k)−λ) = 1
λ
(k−λ), the minimum variance unbiased (MVU) estimator is simply

λ̂ = k. An MVU estimator is optimal in that it reaches the CRLB while being an
unbiased estimator [23].

For a timestream k[n] of IID random variables, the Fisher information I(λ) = Ni(λ),
where N is the number of random variables and i(λ) is the Fisher information for each

random variable. The CRLB is thus given by Var{λ̂} ≥ λ/N and the MVU estimator

is given by λ̂ = 1
N

∑
k[n]. This is simply the time average of the number of photons

4.2.3 Estimation of Poisson Parameter in Noise

Seemingly still a simple case, adding noise to the previous problem already makes the
problem quite complex. The data model is now b[n] = k[n] + v[n], where v[n] is real
Gaussian noise with mean 0 and variance σ2

v . Since b[n] is the sum of two random
variables, the PDF of b[n] is the convolution of the PDFs of k[n] and v[n]. For a single
random variable b = k + v,

pb(b;λ, σ
2
v) =

∫ ∞

−∞
pk(b− b′)pv(b

′) db′.

There is one problem, which is that pk defines a discrete PMF. We overcome this issue
by treating it as a continuous PDF with Dirac delta functions at the integer values. pb
thus becomes

pb(b;λ, σ
2
v) =

∫ ∞

−∞
pv(b− b′)

∞∑
i=0

e−λλb′

b′!
δ(b′ − i) db′ (4.6)

=
∞∑
i=0

e−λλi

i!
pv(b− i), (4.7)

which is an infinite sum of Gaussian bells centered around the nonnegative integers
and scaled by the Poisson PMF. No closed-form expression via a series simplification
or by plugging it into Mathematica was found. This PDF was therefore not useful in
finding the CRLB or an MVU. The tactic of directly finding an optimal solution thus
also reaches a dead end.

4.2.4 Unbiased Estimator of Photon Hits

The form b[n] = k[n] + v[n] can be further analyzed. Let’s say we are able to find an
estimator of the number of photons at each sample. For example via a detection scheme
such as in Section 4.4 or via directly estimating k[n] via deconvolution. This can be

written as the actual number k[n] plus a residual or error e[n], k̂[n] = k[n] + e[n]. If

k̂[n] is an unbiased estimator, so E{k̂[n]} = k[n], then the sum of K̂ =
∑

k̂[n] is also
an unbiased estimator of the total number of photons in the measurement K =

∑
k[n].

The average number of estimated photons λ̂ = 1
N

∑
k̂[n] is then also an unbiased

estimator of the photon rate. Bringing down the variance of the error should bring λ̂
closer to the MVU estimator of the photon rate.

31



0 0.2 0.4 0.6 0.8 1

Re{S
21

}

-0.5

0

0.5

Im
{S

21
}

(a) S21-space

-1 0 1 2 3

1
i

#10-5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

9

#10-5

(b) r-space

Figure 4.2: Scatter plots of simulated noise on an MKID circle in S21-space and in r-space.
The red dots show the resonance circle and the blue line shows the QP-response for reference.
Orange shows simulated amplifier noise around a measurement at low χ vs. purple around
a measurement at high χ. Yellow shows simulated frequency noise around a measurement at
low χ vs. green around a measurement at high χ.

This forms the mathematical basis for the fact that detecting the photon pulses
in an MKID is a valid way to estimate the photon rate. Furthermore, any unbiased
estimator of k[n] can be used to estimate the photon rate, even without a photon pulse
detection scheme.

4.3 Estimation in r-space

Now that directly finding an estimator via inspection of the PDF of the measurement
does not work out, we will have to resort to simplifications of the model to make
it easier to work with. One approach is to transform the measurement to r-space
and see what the model then looks like. Transforming to r-space makes the read-out
linearly dependent on the χ[n] signal, which in turn makes it linearly dependent on
k[n]. However, transforming the measurement to r-space distorts the noise. Figure 4.2
shows an example of this distortion by showing simulated noise for a measurement at
low vs. at high quasiparticle density. In the S21-space, the variance of the amplifier
noise is independent of the χ[n], but the frequency noise is dependent on the χ[n]. In
r-space, it is the other way around and the amplifier noise blows up at higher signal
read-outs. In the example in Figure 4.2, the amplifier noise variance is 821 to 831 times
higher at high χ than at low χ.

We will continue this Section by checking if the added amplifier noise can modeled
as additive Gaussian noise in r-space. Figure 4.3 shows the model after transforming
the measurement s[n] to r-space. It introduces the new signal

c[n] = g−1(s[n]). (4.8)

Figure 4.4 shows the model assuming c[n] can be written as

c[n] = g−1(s[n]) ≈ a[n] + jvf [n] + v′a[n]. (4.9)
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Figure 4.3: System model after transforming measurement to r-space.
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Figure 4.4: Model assuming va[n] can be modeled as additive Gaussian noise in r-space.

To verify if we can model va[n] as additive Gaussian noise as v′a[n] in r-space, we will
first check if the noise stays Gaussian at low and at high signal read-out. We will do so
again by checking quantile-quantile plots. Figure 4.5 shows the noise stays Guassian
even at high signal read-out. The quantile-quantile plots show relatively straight lines,
which imply Gaussian distribtutions. There is some distortion, but not enough to
discard a Gaussian model.

We have now found that v′a[n] can be modeled as additive Gaussian noise, but
the noise variance is still dependent on χ, or equivalently on |a[n]|. To find out the
dependence of the noise power on |a[n]|, we will check what happens a point one
standard deviation σa away from the quasiparticle response curve. Or in other words,
what is the relation between the noise strength of the orange and the purple block in
Figure 4.2b when compared to |a[n]|. We will use the following metric

Noise Scaling =
|g−1(S21(χ) + 1σa)− g−1(S21(χ))|

(S21(χ) + σa)− S21(χ)
=

|g−1(|S21(χ) + 1σa)− r(χ)|
σa

(4.10)
to inspect the relation. Figure 4.6 shows how far a point that has moved 1σa away
from a point on the χ-response curve moves when transformed to r-space. A 2nd order
polynomial fits the found points almost perfectly. This implies we can write our data
model as

a[n] = Ck[n] ∗ h[n]
c[n] = a[n] + jvf [n] + v′a[n], (4.11)

where v′a[n] = (D|a[n]|2 + E|a[n]|+G)v′′a [n], and v′′a [n] is colored Gaussian noise.
Now assuming we only have small signal strengths, i.e. |a[n]| is fairly small, we can

take D|a[n]|2 + E|a[n]|+G ≈ G. We are now left with

a[n] = Ck[n] ∗ h[n]
c[n] = a[n] + v[n], (4.12)
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Figure 4.5: Quantile-quantile plots of simulated amplifier noise in r-space at low and at
high signal read-out. (a-b) show quantile-quantile plots of the noise at low signal read-out
compared to a perfect Gaussian. (c-d) show quantile-quantile plots of the noise at high signal
read-out compared to perfect Gaussian.

0 100 200 300 400 500 600 700 800

@

0

10

20

30

40

50

60

N
o

is
e 

sc
al

in
g

noise scaling vs. @

fitted 2nd order poly.

Figure 4.6: Scaling of simulated amplifier noise as a function of signal read-out strength.

where v[n] = jvf [n]+v′a[n] is additive temporally colored Gaussian noise, with a stronger
variance in the imaginary direction than in the real direction. The temporal correlation
in v[n] results from jvf [n] and v′a[n] both also being temporally colored noise.
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4.4 Detection Using Matched Filter

In this Section we will explore reconstructing k[n] by detecting pulses in the r-space.
As shown in Section 4.3, we can model measured data according to

c[n] = k[n] ∗ Ch[n] + v[n]. (4.13)

Detecting whether a signal is present in colored Gaussian noise leads to an optimal
detector called the generalized matched filter [25, Algorithm 10.3]. In our case the
signal to detect is the exponential decay h[n], since k[n] ∗ h[n] can be seen as h[n]
arriving at multiple time instances ni.

The generalized matched filter as described in [25, Algorithm 10.3] will produce a
test statistic for a only single time n. It is a measure for the likelihood that a photon had
arrived at that time n. To apply this filter to multiple n, the generalized matched filter
will be combined with an optimal estimation of time delay algorithm [25, Algorithm
9.4], which is a matched filter implemented as a convolution. The output of the filter
is then a timestream of the likelihood of a photon pulse being present in the signal. In
order to find k̂[n], a CLEAN-like algorithm should be applied to iteratively find the
pulse locations from the filter output [27].

This Section will build up an implementation of a matched filter and end with a
short description of what a CLEAN-like algorithm would look like. This matched filter
implementation works on real data, whereas S21 data from an MKID is complex. Sec-
tion 5.3 will explain how to manipulate the data so it can be used in this 1-dimensional
matched filter. In this buildup generic signal names such as x[n] and y[n] will be used.

4.4.1 Building the Generalized Matched Filter

Matched Filter in White Noise

The first data model consists of

x[n] = p[n] + w[n], (4.14)

where
p[n] = k[n] ∗ h[n] (4.15)

and w[n] is white noise with variance σ2
w. We take for h[n] a finite impulse response

(FIR) approximation. This is possible because h[n] is an exponential decay and will
go to zero. For example, for a τ of 0.7 ms and a sampling frequency Fs of 50 kHz, the
length M of h[n] will be 280 after 8τ . Figure 4.7 shows signals x[n] consists of.

The matched filter is just a convolution of x[n] with h[−n].

y[n] = x[n] ∗ h[−n] (4.16)

For a single n this can regarded as an inner product. Introducing the vectors

xn =

 x[n]
...

x[n+M − 1]

 , (4.17)
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Figure 4.7: Examples of the components of a noisy signal. The discrete signal points have
been connected with a line for easier viewing.

and

h =

 h[0]
...

h[M − 1]

 , (4.18)

each y[n] is the inner product of xn and h. The inner product is a test statistic for how
well the data shape matches the signal shape. In order to compute the test statistic for
each n you shift the input x[n] and do the inner product. That is where the convolution
comes from.

The output y[n] is thus a test statistic at each n. It is given in standard deviations
(although (4.16) is not scaled right) and can be converted to probability via the Q
function. Normally the point with the highest test statistic score will be taken. Here
we have an unknown number of photons. That’s why an algorithm like CLEAN is
necessary. This Section will continue with building the test statistic y[n] without trying
to find the photons themselves.

The test statistic is the optimal solution to maximizing the MLE.
Figure 4.8 shows the output of a matched filter for a signal with photon pulses and

a signal with white noise only. The filtered signal is the one from Figure 4.7c. When
white noise is filtered with a matched filter it leaves colored noise with variance 1 (and
thus a standard deviation of 1).

Matched Filter in Colored AR Noise

AnMKID has temporally colored noise. Temporally colored noise will make the solution
suboptimal. Especially in this case where both the noise and the signal have high power
in low frequencies.

As a first example, an auto-regressive process of order 1 (AR(1)) is taken for the
noise with its pole at 0.9. It has more power in the low frequencies just like MKID
noise. An AR(1) is chosen because the second-order statistics are well known and easy
to implement.

Figure 4.10 shows the filter output for white noise vs. AR(1) colored noise. The
peaks are less pronounced and there are peaks in the output where no photon came in.
The matched filter loses performance in AR(1) noise.
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Figure 4.8: Examples of matched filter output. (a) shows the matched filter has peaks
at exactly the time instances where a photon came in, the orange crosses mark the pulse
locations. (b) show the matched filter output for noise only. The discrete signal points have
been connected with a line for easier viewing.

Generalized Matched Filter in Colored AR Noise

In order to improve the test statistic, [25, Algorithm 10.3] can be used. It can be
interpreted as a matched filter which takes in prewhitened data, and a prewhitened
signal form.

The new equation for the filter output is

y[n] = xTnΣ
−1
w h. (4.19)

This is not ready yet to use for larger data sequences. It can only compute a single
y[n]. In [24] it is mentioned that Σ−1

w can be decomposed into

Σ−1
w = RT R . (4.20)

The output then becomes
y[n] = (Rxn)

TRh, (4.21)

which can be performed as a convolution of a whitened x[n] with a whitened h[−n].
The whitening of x[n] can be tricky in practice. Although R is here an M -by-M

matrix, which is fine for h[−n], to whiten the entire N long sequence x[n] would require
an N -by-N whitening matrix. The examples of the output in the Figure are therefore
also only of a small N , but still with M ≫ N .

Figure 4.11 shows the filter output for a regular matched filter and a generalized
matched filter in colored AR(1) noise. The peaks in the signal are more pronounced
again and their height is more equal. The noisy parts have a larger high-frequency
component, it looks more jagged. There is a scaling error in the generalized matched
filter, so the absolute height of the peaks does not matter here, only the shape.

Moving to a Frequency Domain Representation

A frequency domain representation is nicer than the matrix form because it requires
much less calculations and memory. It also allows other signal processing techniques
to be used such as the overlap-add or overlap-save methods.
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The filter output is [24]

y[n] = DTFT−1

(
X(F )H(F )

Pw(F )

)
, (4.22)

where X(F ) is the discrete-time Fourier transform (DTFT) of x[n], H(F ) is the con-
jugate of the DTFT of h[n], and Pw(F ) is the PSD of the AR(1) noise.

There lies a problem in the length of the DTFT. The longest length is that of x[n]
and is N . So in order to get y[n] for all N samples the N -point DTFT would have
to be applied to h[n], and Pw(F ) would need to be calculated for N frequencies. This
leaves a very inefficient calculation. This is where the overlap-add and the overlap-save
method come in [28, 29]. This allows us to do the frequency domain calculations in
blocks of size Nblock with M < Nblock < N . Doing multiple Nblock-sized computations
can be much faster than a single N -sized one. The example of the filter output is of a
single block.

This example still uses the AR(1) because the PSD is readily given without hav-
ing to know the autocorrelation function. This is helpful because later the PSD of
the MKID noise can be easily estimated and verified, while the characteristics of the
autocorrelation of the MKID noise are not well known.

Figure 4.12 shows the filter output when calculated via the autocovariance matrix
vs. via the PSD. The two figures are almost not discernible from each other besides a
scaling error. The two outputs are not exactly equal but they are equivalent.

Matched Filter in Colored MKID Noise

This is finally the implementation that is used on experimental data in Section 5. Here
not an AR(1) spectrum will be used, but a spectrum that matches the noise of an
MKID.

The filter output is the same as from the previous Section, but with a PSD from
MKID noise and is

y[n] = DTFT−1

(
X(F )H(F )

Pv(F )

)
, (4.23)

where Pv(F ) is the PSD of the MKID noise.
The MKID noise can be found theoretically, although in practice it will be very hard

to match it to the actual noise in an MKID. We have the frequency noise and amplifier
added together, and the data points are rotated on top that (see Section 5.3). The
actual noise power is also not known in advance from the MKID, because it depends
on the design parameters, fabrication quality, and bath temperature. An estimation
of the spectrum is therefore used in the actual computation. This can be done via
Welch’s spectrum estimation [22]. The windowing function used here is a Blackmann
filter since the spectrum is rather smooth.

Figure 4.13 shows an example of a matched filter that uses an estimated PSD via
Welch’s method. Even though the signal is quite noisy, the generalized matched filter
manages to produce quite prominent peaks. The regular matched filter shows some
peaks on the right that are much lower than the ones on the left and those would have
probably been missed.
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There is still a scaling error in the output. The scaling error can be removed by
normalizing it with the square root of the variance of the output of the generalized
matched when only noise is put in.

4.4.2 CLEAN Algorithm

The generalized matched filter output consists of peaks at the photon pulse location.
Extracting the peaks from the signal can be done via CLEAN [27]. CLEAN has not
been implemented in this work, but it is mentioned because it would make for an easy
next step to implement.

In short, a CLEAN algorithm works by iteratively removing pulses from the
timestream that best match the pulse shape. So let’s say y[n] reaches the max at
time nmax. Then if the expected pulse height is known, a copy of h[n] ∗ h[−n] would
be removed from the filtered y[n] at time nmax; and a copy of h[n] would be removed
from x[n]. This process is repeated until x[n] looks like only noise. The exact metric
when to stop is not exactly given and needs to be devised. It can be based on the PSD
of x[n] or on the quantiles of x[n].

The removed pulses and timestamps are used to reconstruct the original signals k[n]
and k[n] ∗ h[n].
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Figure 4.9: Power spectral density and phase of the filter used to create AR(1) noise.
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Figure 4.10: Examples of matched filter output with white added Gaussian noise vs. colored
added Gaussian noise. Orange crosses mark the pulse locations. Noise power is the same in
both cases. The discrete signal points have been connected with a line for easier viewing.
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Figure 4.11: Examples of output regular matched filter vs. a generalized matched filter on
pulses in AR(1) noise. Orange crosses mark the pulse locations. The discrete signal points
have been connected with a line for easier viewing.
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Figure 4.12: Examples of output of generalized matched filter in AR(1) noise calculated via
the autocovariance matrix vs. via the PSD. Orange crosses mark the pulse locations. The
discrete signal points have been connected with a line for easier viewing.
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Figure 4.13: Examples of input and output of generalized matched filter used on a synthesized
MKID signal. For comparison the filter output of a regular matched filter is also added. The
discrete signal points have been connected with a line for easier viewing.
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Experimental Verification 5
This Chapter presents the results of applying the matched filter, introduced in Chap-
ter 4, to experimental data. Before giving the results, it will describe the experimental
set-up that has been used to gather the measurement data. Two datasets have been
recorded, one of LT218 with data from six MKIDs, and one of LT366 with data from
one MKID.

Following the description of the experimental setup, cosmic rays will be briefly
discussed. These are events that are not modeled in previous Chapters, but they can
be removed from the data rather easily.

Afterwards, the necessary pre-processing steps applied to the data before running
the matched filter are discussed. These steps include flattening the complex data to real
data, spatial noise whitening, and estimation of noise characteristics, and an estimation
of the gain C. The pre-processing is necessary to reduce the noise as much as possible.

Finally, the outcomes of applying the generalized matched filter will be presented
for a photon rate varying from zero to hundreds per second. There is no definitive
performance metric to compare the old method to the one presented in this work.
Therefore, a qualitative analysis of the time-stream data is performed.

5.1 Measurement Set-Up

The MKID can be tested in a cryostat. There are multiple MKIDs on a single chip that
can be read out at the same time using suitable electronics. However, in our experiment
we use a single tone read-out system measuring one detector at a time. The advantage
of this method is that we can sample faster than the characteristic timescales (the
resonator ringtime and the quasiparticle lifetime). The chip can be cooled down to
around 120 mK in the cryostat [2]. A blackbody radiator is also placed in the cryostat
and its temperature can be controlled between 3 K and 30 K [13]. The blackbody
radiates on the MKID and this radiation is what is measured. A set of quasi-optical
filters is placed between the blackbody and the chip that only lets through radiation
in a narrow band around a specific frequency ν. When the blackbody temperature
increases it will radiate more power which increases the photon rate.

This work examines the dataset of two chips:

1. LT218 from which six MKIDs have been measured,

2. and LT366 from which one MKID has been measured.

LT218 was measured with a 12 THz filter, and LT366 was measured with a 7 THz
filter. The filters let through a range of frequencies around the center frequency, but
the range is small enough that the photon frequency can be considered constant.
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Figure 5.1: Received power from the blackbody as a function of the blackbody temperature.
The blackbody radiation is filtered by a set of quasi-optical filters at a frequency of ν = 12
THz.

This set-up allows measurements to be taken of only noise, done with the blackbody
at 3K where there is negligible power emitted, and of a varying photon rate, which is
achieved by increasing the blackbody temperature. The power falling on the chip can
be calculated from Planck’s law and the exact filter transmission [2]. This enables
analysis of the noise characteristics and verification of estimation of the photon rate.
Figure 5.1 shows the received radiation power from the blackbody after being filtered
as a function of blackbody temperature.

5.2 A Word on Cosmic Rays

Cosmic rays are high energy particles that collide with the atmosphere and cause a
cascade of lighter particles to rain down on earth. The cascade of particles includes
particles that can excite quasiparticle from the ground state in the MKIDs. When the
particles shower onto the MKID it can create a very high response in all MKIDs on the
chip at the same time.

These cosmic rays are therefore very easily filtered out from the time-stream because
they produce a response that can be several times higher than that of a photon. They
also occur simultaneously in all MKIDs on the chip.

5.3 Pre-Processing

The data that gets filtered with the generalized matched filter should go through some
pre-processing beforehand. The filter as defined in Section 4.4 uses real data as input,
whereas the data from the MKID is complex. The data is therefore rotated such that
the signal lies along the real axis.

Another problem, which was not accounted for in the model, is that in actual MKID
data the real and imaginary part of the noise are correlated in space. This correlation
can be removed by whitening the real and imaginary part of the noise.

Furthermore, up until this point it was assumed that all the parameters in the system
were known, except for the photon rate, but in reality some remain to be estimated
beforehand. These parameters should stay the same however in between experiments.
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These parameters are the gain C and the PSD of the noise. The time constant of
the quasiparticle decay for each MKID has already been estimated and will not be
discussed.

5.3.1 Rotating the Signal to the Real Axis

The signal of interest, a[n] = Ck[n] ∗ h[n] lies in the complex plane due to the complex
gain C. The generalized matched filter implementation from Section 4.4 can be ex-
tended to be used on complex data directly. However, we will use a different approach
here, since we know that the signature h[n] is a real signal.

Both the k[n] and h[n] that c[n] is composed of are real signals. Dividing the
measurement c[n] = a[n] + v[n] by C will rotate the a[n] term back onto the real axis.
Now taking the real part of c[n] will remove all of the noise in the imaginary part of
the signal. We can then use the generalized matched filter on this flattened data.

Alternatively, the c[n] can also only be rotated, and not scaled, because in reality
we do not know the magnitude of C exactly. The rotation angle is the phase ϕ of C.
Then,

ar[n] = a[n]e−jϕ (5.1)

is a purely real number. We then also get

cr[n] = c[n]e−jϕ = (a[n] + v[n])e−jϕ = ar[n] + vr[n] (5.2)

This introduces a problem where the noise v[n] is not spatially uncorrelated any-
more. This makes the noise variance in the Re{cr[n]} direction larger than if it were
uncorrelated. We can spatially whiten it by shearing the data such that the ellipse
defined by the eigendecomposition of the spatial noise covariance matrix has its major
axis along the imaginary axis and the minor axis is along the real axis. We can then
the real part and flatten our data from 2-D to 1-D. This results in losing the noise in
the imaginary part of the signal.

5.3.2 Whitening Spatially Correlated Noise

Another problem arises in real data where the major axis of the noise ellipse of v[n] does
not lie exactly in the imaginary direction. The reason for this is not exactly known. This
problem can be easily overcome however by computing the spatial covariance matrix
of a noise-only measurement and doing a Cholesky decomposition on the inverse of the
covariance matrix [30]. We can lay out our data in

Cr =

[
Re{cr[1]} . . .Re{cr[N ]}
Im{cr[1]} . . . Im{cr[N ]}

]
, (5.3)

and similarly for Ar and Vr. The whitening matrix W of the 2-by-2 covariance matrix
Σspatial of the real and imaginary part of vr[n] is then

LLT = Σ−1
spatial (5.4)

W = LT, (5.5)
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Figure 5.2: Simulated noise and signal response when rotated and sheared. Blue dots show a
scatter of the noise, orange dots show a scatter of the signal response. Notice how in (a) the
primary axis of the noise does not lie along the imaginary axis.

such that W is a shearing matrix and

WCr = W(Ar +Vr) = WAr +WVr . (5.6)

WVr then defines spatially white noise and WAr is a scalar times Ar, since ar[n] has
no component anymore along the imaginary axis.

This process of the rotating and shearing the signal is graphically presented in
Figure 5.2.

5.3.3 Estimating Noise Characteristics

The experiments for each MKID are performed at blackbody temperatures of roughly
10 K to 30K. At 10 K there are virtually no photons at the filtered photon frequency.
That means that a measurement at low temperature can be used to estimate noise
characteristics. The characteristics that are of interest here is the PSD of the noise,
since that is necessary in the filter. The PSD is estimated of the 1-D real signal of
Section 5.3.1 and Section 5.3.2.

Estimation is performed via Welch’s method. The windowing function that is used is
a Blackman window. A Blackman window smooths the PSD estimate in the frequency
domain. This is preferable since from Section 3.5 the PSD is known to be rather
smooth. Care has to be taken to not take the window length too short, this leads to
power density at low frequencies to be estimated to high.

Alternatively, the PSD can be estimated parametrically using (3.26) and (3.27),
although this has not been implemented.

5.3.4 Estimating the Quasiparticle Curve

The quasiparticle curve (and thus the phase of the gain C) can be estimated by looking
at the signals from all the measurments together. The measurements will show photon
pulses along the quasiparticle curve. However, the pulses in some of these measurements
are so low that estimation by looking at photon pulses only can give wrong results.

An alternative is to look at the response from the cosmic rays. These produce
responses along the quasiparticle curve, but can be filtered out from the noise much
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more easily. The angle ϕ is then found by taking the mean of the angles of measurements
that belong to the cosmic rays events.

The magnitude of the gain C can not be estimated in this way. Fortunately, this
is not necessary for the matched filter. It will only produce a scaling error, but that
can be removed later on. The magnitude might be a necessary parameter for other
estimation schemes and should then be estimated as a nuisance parameter.

5.4 Generalized Matched Filter Results

The generalized matched filter has been applied to the datasets of LT218 and LT366.
It has been applied for all temperatures and all available MKIDs. One of the most
direct ways of comparing this filter approach to previous approaches would be to apply
a counting algorithm (such as CLEAN), and comparing the resulting photon rates. The
photon rates can then also be compared to the theoretical photon rate that should be
radiated by the blackbody.

However, the photon rate is not considered a reliable performance metric as of now.
There was no counting algorithm applied that makes full use of filtered output due
to time constraints. Instead, the filtered output is post-processed via the previous
counting method.
In the previous method, the filter output is first low-pass filtered and downsampled. It
is downsampled with a factor of 1.2τ [3], the time constant of the exponential decay.
It calculates the standard deviation (SD) of the measurement at the lowest blackbody
temperature, after removing the cosmic rays. This way the SD is of only the noise. In
order to count the photons, this signal is then thresholded at 4 to 5 standard deviations
(SD) above 0, depending on the dataset. The Figures in shown in this Chapter are all
with thresholds of 4.5 SD. This counting method was applied both to the previous filter-
ing method (a bandpass filter followed by a matched filter), and to the newly presented
generalized matched filter. Instead of comparing the photon rate, this Section will com-
pare the time-streams of the previous filtering approach and the newly presented filter,
after being low-pass filtered and downsampled, but before being thresholded. These
time-streams will be referred to as the downsampled signals of the previous filtering
method, and the downsampled signals of the new filtering method.

5.4.1 LT366, KID5

Figure 5.3 shows parts of a time-stream where multiple peaks are visible. The time-
streams are comparable, except for extra high frequency noise for the previous filtering
method. Figure 5.4 shows the same data but zoomed in on one peak. In the output
from the previous filtering method there are not one, but three peaks. These will all get
counted in determining the photon rate. With the new filtering method this is reduced
to just a single peak. It is not possible to say for sure that it was one photon and
not three since that data does not exist for experimental data. However, the multiple
threshold crossings appear to come from the high frequency noise and not actually from
three seperate photons.
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Figure 5.3: Comparison of parts of a time-stream showing multiple peaks in the downsampled
output. Dashed lines show thresholds, red +4.5 SD, light blue -4.5 SD, black 13.5 SD for
cosmic rays. Dataset: LT366, KID5, 18.0 K.
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Figure 5.4: Comparison of zoom in on time-stream of a single peak. Dashed lines show
thresholds, red +4.5 SD, light blue -4.5 SD, black 13.5 SD for cosmic rays. Dataset: LT366,
KID5, 18.0 K.

The output from both filtering methods show a low frequency component coming
through. This is present at both high blackbody temperatures and at low blackbody
temperatures. It is also present in the non-downsampled filter output. It appears to
be at a frequency of 244 Hz.

Figure 5.5 shows a histogram of shows a histogram of a time-stream of downsampled
data after thresholding at 4.5 SD. The underlying distribution is not visible, although
it looks like it could be the right tail of a Guassian distribution.

5.4.2 LT218, KID9

Figure 5.6 shows a time-stream comparison of a photon pulse that is missed with the
previous filtering method, but is picked out with the new filtering method. Figure 5.7
shows a longer time-stream with multiple peaks. The peaks from the new filering
method are higher and there are more peaks. Figure 5.8 shows a histogram of the same
data after thresholding at 4.5 SD. The histograms show two bell curves. One is from
the noise and one is from the photon pulses. The two bell curves are more separated
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Figure 5.5: Comparison of histograms of the thresholded and downsampled data. Only
samples above 4.5 SD are counted. Dataset: LT366, KID5, 18.5 K.
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Figure 5.6: Comparison of time-stream where a peak is missed with the previous method.
Dashed lines show thresholds, red +4.5 SD, light blue -4.5 SD, black 13.5 SD for cosmic rays.
Dataset: LT218, KID9, 23.5 K.

for the new filtering method compared to the previous filtering method.
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Figure 5.7: Comparison of part of a time-stream showing a difference in peak height and
number of peaks. Dashed lines show thresholds, red +4.5 SD, light blue -4.5 SD, black 13.5
SD for cosmic rays. Dataset: LT218, KID9, 25.0 K.
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Figure 5.8: Comparison of histograms of the thresholded and downsampled data. Only
samples above 4.5 SD are counted. Dataset: LT218, KID9, 25.5 K.
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Discussion 6
6.1 System Model

The goal stated in the introduction was to define the problem of optimally estimating
the photon rate incident on an MKID in the framework of statistical signal processing.
This led to a system model being made in Chapter 3 based on the description of the
physical processes in MKIDs in Chapter 2. The model was verified by succesfully
synthesizing data that matches the output of actual MKIDs.

The use of the system model is directly showcased by using it to derive an estimator
for the photon rate via applying a generalized matched filter. The output of the matched
filter is used to detect the photon hits and from that estimate the photon rate. This
method is similar to what has been tried before in [1, 3].
The derivation of the generalized matched filter shows that in order to use a type of
matched filter solution, certain assumptions have to be made about the model. Simply
applying a matched filter on the measured phase coordinate on a normalized KID circle
yields results, but nothing can be said as to why that would be a good idea. A form
of generalized matched filter is probabably the best way forward, but it is only after
simplifying the model and assuming the variance of the amplifier noise stays constant
that it comes about as a type optimal solution.

Assuming the slightly more complex model, the one that results from Chapter 3, will
probably yield better results. No closed-form expression for the PDF of the measured
data parametrized on the photon rate was found. However, an expression could possibly
be found via numerical methods. If this expression is found, it might lead to better
estimators, as well as bounds on the performance of these estimators.
One other method that was not tried in finding an expression for the PDF was assuming
a Bernoulli distribution instead of a Poisson distribution for k[n] (the number of photons
arriving at sample n). This is a valid assumption since the photon rate is low enough
that it is highly unlikely for more than one photon to arrive during one sample. Besides,
two photons arriving at the same time would probably lead to the sample being labeled
as a cosmic ray, and therefore being discarded.

The system models of Chapter 3 can also be used in other estimation projects. For
example, take the goal to be the estimation of the energy of an incoming photon, such
as in the work of Ras [1]. In this case the photon model becomes ϕ(t) =

∑
i Eϕ,iδ(t− ti)

and the goal should be to estimate each Eϕ,i. Or if the number of quasiparticles is the
parameter of interest, the goal should be to estimate χ(t). Or it could be useful in
the case of de Rooij [31]. In this work the single photon response is modeled in time
including non-linearities. When formulating such new usecases for the system model,
it is important to specify what is the parameter of interest vs. what are nuisance
parameters.
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6.2 Generalized Matched Filter Output

One method of estimating the photon rate was implemented. This was via the general-
ized matched filter.The estimated photon rate can not be compared properly because of
a missing algorithm to do the actual photon counting. Therefore the previous methods
and the presented methods are compared via a qualitative analysis. The time-streams
seem to contain less errors with the new filering method compared to the previous
method. Examples include:

• A missed photon that was now detected;

• a single photon that was first detected as being three photons was now detected
as a single photon.

Furthermore, the histograms of the peak height show more separation between the
underlying distributions. The shape of the distribution was not very different for KID5
of LT366, but for KID9 of LT218 two seperate bell curves can be recognized. This
implies that there are two different Gaussian distribution at play, one where there is
only noise and one where there is noise plus a photon pulse. This matches detection
theory from [24] such that a threshold can be set based on a binary hypothesis problem.
In this view the two underlying bell curves should have as much separation as possible
to maximize the performance of the detector. The histograms of KID9 show more
separation using the new filtering method vs. the previous filtering method and thus
marks a preference for the new filtering method over the previous methods.

6.3 Deconvolution and Counting Algorithm

A counting algorithm is still needed to determine the photon rate from the filter out-
put. A promising candidate for this is the CLEAN algorithm, and developing such an
algorithm would be a good next step for further research. A clean algorithm is simi-
lar to what is already being done, but many examples exist already in use today. In
a CLEAN algorithm the photon pulses are iteratively removed from the filter output
until it only looks like noise. The found photon pulses are recorded during the process
and can then be counted afterwards to determine the photon rate.

CLEAN can be seen as a type a type of deconvolution algorithm. It is a useful
solution because it can be combined with the generalized matched filter that has already
been implemented. Other types of deconvolution should also be considered. In that
case the problem should be reformulated as finding k[n] from the measurement samples.
One example could be a minimization of the sparsity of k[n]. Often this is achieved
via an ℓ1-norm minimization. Another possibility is assuming the k[n] are independent
Gaussian random variables with mean 0 or 1. Deconvolution might then lead to a
Wiener filter or an alternating least squares solution.

6.4 Coordinate System

The coordinate system of Section 2.4 came forth as a byproduct of building the system
model. Going through the equations and deriving the signals in the system it became
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clear that the quasiparticle density was affinely related to a certain undefined quantity.
This quantity was then used in the relation of the S21 output of the detector. Defining
this quantity as the variable r = ζi+jξ then led to the coordinate system of (ζi, ξ), and
simultaneously a function to map between (Re{S21}, Im{S21}) and (ζi, ξ). The new
coordinate system helped in finding the relation of the quasiparticle density and the
measurement signal. It is therefore of great use in estimating the quasiparticle density
as a signal by identifying how noise can be removed from the system.

In the Terahertz Sensing Group there are ideas going around of what is a useful
coordinate system to represent the measured values in. Multiple people have indepen-
dently come to a coordinate system similar to this one. This work adds to that by
offering a new usecase, exemplifying its utility.

One limitation of the coordinate system is that it needs a good estimate of the
ζc and ζlim quantities, or alternatively of Qc and Qlim. This ties in with analysis of
asymmetric KID dips. Fitting asymmetric dips leads to estimates of these quantities.
So a better fit then also leads to less error when mapping to the new coordinate system.
In a sense, the coordinate system can be seen as following from a simplification of an
asymmetric dip model.
Improving understanding of asymmetric KID dips will thus also lead to a better un-
derstanding of how a time-series measurement can be used to detect photon hits.

6.5 Related Works

[32–34] report photon pulse processing for microcalorimeters in the x-ray and gamma-
ray range for high photon rates. The photon pulses have a similar shape to the one
discussed here, an exponential decay, and the methods employed in these articles is also
similar. The articles do not mention a system model such as the one mentioned here,
although they do mention signal models. The filter they first arrive at is an ”orthogonal
filter” to find multiple overlapping pulses [32]; then a similar filter with noise whitening
[33]; and after that they report the result of filtering pulses when taking into account
a pulse height model where the pulse height is not linearly dependent on the photon
energy [34].

They call the filter they arrive at an ”orthogonal” or ”tangent” filter, because the
convolution shape is orthogonal to a preceding pulse in the case of overlapping pulses.
Although the filter is not exactly equivalent to a matched filter, its function is quite
similar. It produces a symmetric peak that seperates the noise from the pulses. The
resulting peak height is used to estimate the energy of the incoming photons.

The works of these articles resemble the work done here in more ways. In [32]
a similar approximation from a continuous-time delta train to a signal k[n] is used.
Furthermore, in [33] a similar problem is encountered where for noise whitening a
large autocovariance matrix needs to be converted. The problem is solved there by
modeling the noise as an auto-regressive moving-average (ARMA) and making use of
the structure of the autocovariance matrix of such a process.

The techniques used in this thesis and the ones in these articles can be compared
as future work. An analysis of the similarities and differences of the filters should help
refine the signal processing further.
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Conclusion 7
The goal of this thesis was to define the problem of optimally estimating the photon
rate incident on an MKID within the framework of statistical signal processing. This
was achieved through the development of a system model that represents the behavior
of the system in response to photon hits. In the initial, canonical system model, the
physical quantities in the detector are represented as continuous-time signals. The
model was then simplified via discretization and linearization. This model represents
the detector without noise. Since the noise is an essential obstacle in estimating the
photon rate, the stochastic nature of the noise is analyzed and added to the appropriate
signals.

The system model developed in this thesis represents the main contribution to
the field. While the foundational knowledge for the model already existed, this work
consolidates that knowledge and restructures it so that it is more accesible for people
who have a good understanding of signal processing, but have no background in the
field of MKIDs. The model should simplify further signal processing and lead to a
better understanding of the application of optimal filers. Additionally, the model’s
utility extends beyond this specific problem; it provides a structured framework for
other estimation projects which helps quantify what needs to be estimated and how
noise affects those estimations.

However, the model is not a definitive solution. Further refinement is necessary to
make it more comprehensible to both signal processing experts and those working in
MKID design. A key step in this process is comparing this model with similar works to
provide additional validation and insights. These insights could lead to an improvement
in practical applications from MKID theory.

Another notable contribution of this thesis is the introduction of a novel coordinate
system. The coordinate system was necessary to be able to define the signal model.
Multiple version of the coordinate system already exist, but this application adds a
new perspective to the body of works that use such similar coordinate systems. The
definition of the coordinate system in terms that should be familiar in resonator physics
highlights the validity of the coordinate system.
Additionally, a function is provided that maps between S21 measurements and the
newly introduced coordinates. The function also includes a set of parameters that need
to be found to accurately map between the two coordinate systems.

The system model is then used to try and find an estimator for the photon rate. This
represents a continuation of the thesis goal, as deriving a system model is only a one
step towards designing effective estimation algorithms. The ultimate objective, beyond
the scope of this thesis, is dependent on the application of the required estimation
algorithm. One example would be in an on-satellite application, where the signal
processing is required to be performed before sending information down towards earth.
Only transmitting the found photon rate instead of entire streams of data would greatly
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reduce the amount of transmission bandwidth.
However, before reaching such advanced applications, more off-line algorithms and
signal processing applications need to be developed and refined. If these prove to be
effective they can be adapted for more advanced purposes. This makes this research
an early step in laying down the foundation for future signal processing.

The utility of the system model is exemplified by deriving a generalized matched
filter. This resulted from a necessary simplification, as the full system model was too
complex to yield an optimal solution directly. This does not mean that the optimal
solution can not be found. Future research can possibly be focussed on finding an actual
optimal solution, although for now the generalized matched filter implementation is the
best option available.
Unfortunately, the matched filter implementation could not be compared quantitively
to older methods. Instead, the two are compared qualitatively, because the methods
are quite similar. The qualitative analysis shows that the method likely contains less
errors. Nonetheless, further assessment is necessary to strengthen this conclusion.

This research leaves several open questions for future work. There are still many
avenues to be explored, but deciding which ones to take ultimately depends on the
expected performance gains and the time it will take to achieve them. From this
perspective, refining the generalized matched filter implementation and developing a
CLEAN algorithm for photon counting would provide the most immediate benefits.
However, there is also a deeper understanding to be gained from further development
of the theoretical model and discussions of the optimality of estimators. For this deeper
understanding, other approaches should be explored such as deconvolution algorithms.
Additionally, an expression for an optimal estimator should be explored, one that is
based on the full system model rather than the simplified representation in r-space.
These results should then be compared with other works on photon pulse processing
to gain a broader perspective and verify the approaches.

In conclusion, this thesis lays the groundwork for future research in photon rate
estimation for MKIDs. While the system model and initial filtering methods provide
valuable results, further refinement, validation, and exploration of other solutions will
be essential for further insights and potentially for optimal estimators.
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