
 
 

Delft University of Technology

Entrainment in harmonically forced continuous and impulsive Goodwin's oscillators
A comparison study
Medvedev, Alexer; Proskurnikov, Anton V.; Zhusubaliyev, Zhanybai T.

DOI
10.23919/ECC.2018.8550447
Publication date
2018
Document Version
Final published version
Published in
Proceedings of 2018 European Control Conference (ECC2018)

Citation (APA)
Medvedev, A., Proskurnikov, A. V., & Zhusubaliyev, Z. T. (2018). Entrainment in harmonically forced
continuous and impulsive Goodwin's oscillators: A comparison study. In Proceedings of 2018 European
Control Conference (ECC2018) (pp. 2046-2051). Article 8550447 IEEE.
https://doi.org/10.23919/ECC.2018.8550447
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/ECC.2018.8550447
https://doi.org/10.23919/ECC.2018.8550447


Entrainment in harmonically forced continuous and impulsive

Goodwin’s oscillators: a comparison study

Alexander Medvedev1, Anton V. Proskurnikov2,3,4, and Zhanybai T. Zhusubaliyev5

Abstract— The Goodwin oscillator is a simple yet illustrative
model of a biochemical system with a stable limit cycle.
Considered as a prototypical biological oscillator, Goodwin’s
model is broadly used e.g. to describe circadian rhythms,
hormonal cycles, self-oscillatory metabolic pathways. These
periodic or non-periodic oscillations are self-sustained; at the
same time, they are entrainable by external periodic signals,
adjusting the characteristics of the autonomous oscillatory
behavior. Mathematical analysis of entrainment phenomena, i.e.
nonlinear phenomena imposed by periodic exogenous signals,
remains an open problem. This paper presents a comparative
analysis of forced dynamics arising in two versions of Goodwin’s
oscillator: the classical continuous oscillator and a more recent
impulsive one, e.g. capturing pulsatile secretion of hormones.
The main finding of this study is that while the continuous
oscillator is always forced to a periodic solution by a sufficiently
large exogenous signal amplitude, the impulsive one commonly
exhibits a quasiperiodic or chaotic behavior thus highlighting
the role of non-smooth dynamics in entrainment.

I. INTRODUCTION

Many physiological variables in living organisms, from

single-celled microbes [1] to mammals, exhibit a pronounced

24 hours cycle, called the circadian rhythm. Circadian

rhythms are self-sustained and maintained by endogenous

biological clocks, assembled of intracellular genetic oscil-

lators. However, the circadian clock’s frequency and phase

can be adjusted by environmental “cues” (e.g. day-and-night

change, temperature variations, physical activity and meals),

referred in chronobiology to as Zeitgebers (time signals,

synchronizers) [2]. This mechanism of entrainment plays

an important role in the functioning of living organisms,

adapting them to the changing environment.

In biology, entrainment of circadian rhythms has been

studied for a long time, cf [3]. The research has been

primarily focused on periodic solutions forced by exogenous

periodic signals (e.g. the light-dark cycle), in particular, the

influence of the external input on the endogenous oscillator’s

phase. The key characteristics of such an influence are phase

response and phase transition curves [4], [5]. The highly

nonlinear nature of entrainment gives rise to e.g. asymmetric

phase response to time difference in long-haul air travel:

eastward jet lag is worse than the westward kind [6].
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In this paper, entrainment is understood in a broader sense,

namely, as a qualitative change in an oscillator’s behavior due

to a periodic exogenous force. The resulting forced solution

is not always periodical; the periodic forcing of a circadian

clock in fact may even lead to chaotic oscillations [7]. In this

paper, entrainability properties of a simple model known as

the Goodwin oscillator [8] are examined.

This paper presents a comparative study of the entrainment

effects in continuous and impulsive Goodwin’s models. The

main contributions are as follows. The previously unknown

occurrence of quasiperiodic solutions in a harmonically

forced Goodwin’s oscillator for small amplitudes of the

exogenous signal is explained by bifurcation analysis. In

agreement with analytical results, the model solutions be-

come periodic for sufficiently large amplitude values. In the

impulsive Goodwin’s oscillator, large amplitudes of a peri-

odic exogenous signal do not necessarily lead to periodicity

of the solution but can result in either quasiperiodicity or

chaos. Yet moderate magnitudes of the exogenous signal

entrain quasiperiodic solutions and give rise to a periodic

movement through a saddle-node bifurcation.

The rest of the paper is organized as follows. Section II

introduces the classical continuous Goodwin’s oscillator with

a brief summary of its basic mathematical properties, fol-

lowed up by a periodically forced version of the model in

Section III. Section IV treats the forced impulsive Goodwin’s

oscillator through bifurcation analysis of its Poincaré map.

The results are summed up in Conclusions.

II. CLASSICAL GOODWIN’S OSCILLATOR

The classical Goodwin’s oscillator is given by

ẋ1(t) = −b1x1(t) + h(x3(t))

ẋ2(t) = −b2x2(t) + g1x1(t)

ẋ3(t) = −b3x3(t) + g2x2(t).

(1)

The state variables xi(t), i = 1, 2, 3, typically stand for the

concentrations of some chemicals (e.g. the levels mRNA,

protein and intermediate enzyme in the cell [8] or the blood

levels of hormones [9]) and bi > 0 are their constant

clearing rates. The constants g1, g2 > 0 and a non-increasing

nonlinearity h(·) ≥ 0 characterize the production rates of the

chemicals; usually infξ≥0 h(ξ) = limξ→∞ h(ξ) = 0.

The nonlinearity h(·) closes the negative feedback loop

and typically chosen to be the Hill function of order n [10]

h(ξ) =
a

1 +K ξn
, (2)

with a > 0, K > 0 (the exponent n > 0 is usually integer).
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Intuitively, this system functions as follows. When the

level of Chemical 3 is low, the production rate of Chem-

ical 1 is near its maximum, thus accelerating production

of Chemical 2 (since g1 > 0) and, indirectly, Chemical 3

(since g2 > 0). On the other hand, a high concentration of

Chemical 3 corresponds to a low production rate of Chem-

ical 1, which also decelerates the production of Chemical 2

and Chemical 3. Goodwin reported that such a feedback

mechanisms may exhibit a stable limit cycle. The necessity

of a limit cycle in the oscillator has motivated Goodwin

(and earlier Danziger and Elmergreen) to consider a chain

of three reactions. Systems of two coupled reactions usually

can exhibit self-sustained oscillations only when they have

a nested family of closed orbits (like in the usual harmonic

oscillator, the equilibrium is the center) [11], [8]. Earlier, it

has been noticed [12] that (1),(2) with n ≤ 8 always has a

stable equilibrium, whereas for n > 8 the system can have

stable periodic orbits, arising through the Hopf bifurcation.

Main local and global properties of the Goodwin oscillator

are now formulated.

A. Stability, cycles and bifurcations in the Goodwin’s model

Introducing x(t) = [x1, x2, x3]
T , (1) is rewritten as

dx

dt
= f(x) = Ax+Bh(x3),

A =

[

−b1 0 0
g1 −b2 0
0 g2 −b3

]

, B =
[

1
0
0

]

.
(3)

Since A is Hurwitz and Metzler, whereas the vector B is

non-negative and h(x3) ≥ 0 for x3 ≥ 0, the linear dynamics

are stable and positive: any solution starting at x(0) ≥ 0
remains non-negative x(t) ≥ 0. Since h(x3) is bounded 0 ≤
h(x3) ≤ h(0), all such solutions are bounded and exist up

to ∞. The point x∗ is an equilibrium of (1) if and only if

−b1x
∗
1 + h(x∗

3) = g1x
∗
1 − b2x

∗
2 = g2x

∗
2 − b3x

∗
3 = 0

⇔











x∗
1 =

b2
g1

x∗
2 =

b2b3
g1g2

x∗
3, x∗

2 =
b3
g2

x∗
3,

x∗
3 = c h(x∗

3), c =
g1g2
b1b2b3

> 0.

(4)

Since the function h(·) is non-increasing, the latter equation

has the only (non-negative) root x∗
3 ≥ 0, corresponding to

the unique biologically feasible equilibrium x∗ ≥ 0.

Henceforth, h is assumed to be continuously differentiable

in the vicinity of x∗
3; note that h′(x∗

3) ≤ 0 since h is non-

increasing. Stability properties of the unique equilibrium are

determined by the eigenvalues of the Jacobian matrix

Df(x∗) =

[

−b1 0 h′(x∗

3
)

g1 −b2 0
0 g2 −b3

]

, (5)

that is, the zeros of its characteristic polynomial

det (λI − Df(x∗)) = λ3 + a1λ
2 + a2λ+ a3 = 0,

a1 = b1 + b2 + b3 > 0,

a2 = b1 b2 + b1 b3 + b2 b3 > 0,

a3 = b1 b2 b3 − g1g2h
′(x∗

3) ≥ b1 b2 b3 > 0.

(6)

Using the Routh-Hurwitz criterion, the equilibrium of (1)

is stable if Θ = a1a2 − a3 < 0 and unstable when Θ >
0. This leads to the following lemma improving over the

original formulation in [9].

Lemma 1: [13] If M(ξ) = (−ξh′(ξ)/h(ξ)) < 8 for any

ξ ≥ 0, then the equilibrium is stable for all bi, gi > 0. If

supξ≥0 M(ξ) > 8, the discriminant Θ = a1a2 − a3 can be

both positive and negative, depending on bi, gi > 0, and the

system undergoes an Andronov-Hopf bifurcation as Θ = 0.

Corollary 1: For Goodwin’s oscillator in (1) with Hill

nonlinearity (2), the equilibrium is locally stable whenever

n ≤ 8. When n > 8, the system may have unstable

equlibrium and undergoes the Hopf bifurcation as Θ = 0.

The global stability of the equilibrium when M(ξ) < 8
remains a non-trivial problem. Some sufficient conditions are

given by the “global” version of the secant criterion [14] and

monotonicity-based criteria [15], [16], [17], which imply, in

particular, that the equilibrium of (1),(2) with n = 1 is always

globally attractive. Simulations show that the same holds for

any n ≤ 8, but the proof is still elusive.

A fundamental property of Goodwin’s oscillator is the

existence of a non-trivial periodic orbit in the case when

the (unique) equilibrium is unstable.

Theorem 1: [18] Let h ∈ C1 and the equilibrium x∗ be

unstable, i.e. some eigenvalue of Df (x∗) has a positive real

part. Then system (1),(2) has a (non-constant) periodic orbit.

Furthermore, almost all trajectories converge to such orbits.

For h ∈ C2, the first statement of Theorem 1 has been

proved in [19]. The uniqueness of a periodic orbit in the

Goodwin model remains an open problem. In presence of

delays, such an orbit is in general non-unique [20].

B. Bifurcation analysis

Fig. 1a depicts the Andronov-Hopf bifurcation for n = 9
producing the oscillatory dynamics. For b1 < bL1 , the system

possesses a stable equilibrium x∗. For this parameter interval,

Jacobian (5) has a pair of complex-conjugated eigenvalues

λ1,2 = µ ± iω with negative real parts µ < 0, and one

negative real eigenvalue λ3 < 0. At the point b1 = bL1 , the

equilibrium state undergoes an Andronov-Hopf bifurcation.

When the parameter b1 passes through the value b1 = bL1
(Fig. 1b), a pair of complex-conjugated eigenvalues λ1,2 =
µ± iω crosses the imaginary axis into the positive real half-

plane. As a result, the equilibrium state becomes unstable,

and a stable limit cycle appears. With further increase in

the value of b1, the unstable equilibrium point undergoes a

reverse Andronov-Hopf bifurcation at the point b1 = bR1 ,

in which a stable limit cycle turns into a stable equilibrium

state (Figs. 1a,b). In the bifurcation diagram Fig. 1a, the

oscillatory state exhibits maximum and minimum values in

the temporal variation of the state variable x3. The maximum

and minimum values of the state variable x3 correspond to

the points where phase trajectories intersect the surface S =
{x : g2x2 − b3x3 = 0} in the phase space of system (1),(2)

from the two directions (two-sided Poincaré map).
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(a)

(b)

Fig. 1: Birth of a limit cycle from a stable equilibrium point

in an Andronov-Hopf bifurcation. n = 9, b2 = 0.5, b3 = 0.3,

g1 = 2.0, g2 = 0.5, a = 100, K = 0.1 and 0.2 < b1 < 0.8.

(a) Bifurcation diagram. bL1 and bR1 are the Andronov-Hopf

bifurcation points. (b) Variation of the real part Reλ1,2 = µ
of eigenvalues λ1,2 = µ± iω. Note that λ3 < 0.

III. FORCED CONTINUOUS GOODWIN’S MODEL

Consider a Goodwin’s oscillator subject to a positive

single-tone harmonic exogenous signal β(t) = M(1 +
sin(ωt+ θ)) of the period Tβ = 2π/ω

ẋ1(t) = −b1x1(t) + h(x3(t)),

ẋ2(t) = −b2x2(t) + g1x1(t),

ẋ3(t) = −b3x3(t) + g2x2(t) + β(t),

(7)

that can be rewritten in the matrix form as follows

dx

dt
= f(t,x) = Ax+Bh(x3) +B0β(t),

where A,B are defined in (3) and B0 = [0, 0, 1]T .

A. General entrainment properties

The general result of [21], dealing with forced oscillations

in Lur’e-type systems with bounded slope-restricted nonlin-

earities, implies the following properties of (7).

Theorem 2: Let h and h′ be bounded and h′(ξ) → 0 as

ξ → ∞. For any M > 0, system (7) has a Tβ-periodic

solution (evidently, non-constant) xM (t) = xM (t+Tβ). For

large M > 0, such a solution is unique and locally stable.

Theorem 2 follows from Theorem 1 and Theorem 2

in [21]. The proof of the latter allows to estimate the

amplitude M0 such that the uniqueness is guaranteed for

any M > M0, but the estimate appears to be conservative.

For large M , the solution xM (t) is close (uniformly in t) to

the function Mx+(t) [21] , where x+(t) is the unique Tβ-

periodic solution of the exponentially stable linear system

dx+

dt
= Ax+ +B0β(t), x+(t) = x+(t+ Tβ).

Theorem 2 remains valid for non-harmonic periodic signal

β(t) (under conditions of non-degeneracy [21]) and many

nonlinear systems, different from Goodwin’s oscillator (1)

(e.g. “repressilators” and “promotilators” [22]). The forced

system has a periodic solution even when the equilibrium

of autonomous system (1) (i.e. for M = 0) is stable (e.g.

h is the Hill function (2) with n ≤ 8); the solution xM (t)
is then also stable when M ≈ 0. If the equilibrium of (1)

is unstable, then the periodic solution of (7) is usually also

unstable when M is small (unless Tβ coincides with the

period of self-oscillation, xM (t) is close to the equilibrium

x∗ when M ≈ 0). In the next subsection, the dynamics of

forced Goodwin oscillator (7) are studied numerically.

B. Bifurcation analysis

Consider system (7) with Hill nonlinearity (2), where n =
9, a = 100, K = 0.1 and other parameters as as follows

b1 = 0.4, b2 = 0.5, b3 = 0.3, g1 = 2.0, g2 = 0.5, 0 < M <
0.055, ω = 2π/Tβ , Tβ = 2π/ω = 1440, θ = 0.0.

A period-Tβ solution xM (t) of (7) corresponds to the

fixed point of the stroboscopic map x(t) 7→ x(t+ Tβ). The

fixed point of this map is located using the Newton-Raphson

algorithm that allows not only to evaluate stable cycles but

also unstable ones. To test stability of the periodic solutions,

one computes the eigenvalues ρ1, ρ2, ρ3 (henceforth |ρ1| ≥
|ρ2| ≥ |ρ3|) of the monodromy matrix Φ(Tβ) that satisfies

dΦ(t)

dt
= Df (t,xM )Φ(t), Φ(0) = I.

Fig. 2a shows a one-dimensional bifurcation diagram calcu-

lated for 0 < M < 0.055 and constructed from a Poincaré

section in the phase space of (7). For large amplitudes M
of the forcing signal β(t), (7) exhibits a stable period-

Tβ solution. As M is reduced, this solution undergoes an

Andronov-Hopf bifurcation (or a Neimark-Sacker bifurcation

for the fixed point in the corresponding Poincaré map),

and loses stability when the absolute value of the complex-

conjugate multipliers |ρ1| = |ρ2| becomes greater than one.

The variation of ρ1,2 is shown in Fig. 2b. The pair of

complex-conjugate multipliers leaves the unit circle at a

point M = Mϕ. The stability loss of the cycle leads to the

soft appearance of two-frequency quasiperiodic oscillations

corresponding to a two-dimensional invariant torus Tq in

the phase space of (7), and the intersection of Tq with the

Poincaré section corresponds to the closed invariant curve

Ca of the Poincaré map. Fig. 2c presents the phase portrait

of (7) after the Andronov-Hopf bifurcation for M = 0.035.

As emphasized in Sec. II, autonomous system (1),(2) has

no periodic orbits for n 6 8. Simulation shows that the
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forced continuous Goodwin’s oscillator in (7) exhibits only

a period-Tβ solution for n 6 8 (see Fig. 2d).

IV. FORCED IMPULSIVE GOODWIN’S OSCILLATOR

In the impulsive Goodwin’s oscillator [23], the feedback

nonlinearity h(·) in (7) is substituted with a pulse-modulation

mechanism thus introducing hybrid dynamics. The state of

the forced continuous part is given by

dx

dt
= Ax+B0β(t), (8)

where x1(t) undergoes jumps at the time instants tk, k > 0

x1(t
+
k ) = x1(t

−
k ) + λk, tk+1 = tk + Tk,

whose timing and magnitudes are specified by the amplitude

and frequency modulation functions

λk = F (x3(tk)), Tk = Φ(x3(tk)).

The superscripts “ − ” and “ + ” denote the left- and

right-side limits, respectively. A distinctive property of the

impulsive Goodwin’s oscillator is lack of equilibria [23] that

resolves the issues with asymptotically stable equilibria in

the continuous version of the model outlined Corollary 1.

Note that any solution x(t) to (8) can be written as x(t) =
xp(t) +B0ϑ(t), where xp(t) is governed by

dxp

dt
= Axp(t), xp(t

+
k ) = xp(t

−
k ) + λnB,

and ϑ(t) satisfies ϑ̇(t) = −b3ϑ(t) + β(t). For simplicity of

the index notation, rename the components of the continuous

state vector xT
p (t) = [x(t) y(t) z(t)].

In continuously forced model (8), the impulse times tk
and the weights λk are modified by ϑ(t). Since x3(t) =
z(t) + ϑ(t), then

tk+1 = tk +Φ(z(t−k ) + ϑ(tk)), λk = F (z(t−k ) + ϑ(tk)).

Here ϑ(t)) = M
b2
3
+ω2 [b3 sin(ωt+ θ)− ω cos(ωt+ θ)] + M

b3
.

Introduce ϕ = ωt and x(t−k ) = xk, y(t
−
k ) = yk, z(t

−
k ) =

zk, ϕ(tk) = ϕk. In this way ϕk+1 = ϕk + Φ(zk + ϑ(ϕk))
and λk = F (zk + ϑ(ϕk)). Then the Poincaré map of the

forced model in (8) can be rewritten as [24]

xk+1 = e−b1Tk(xk + λk), (9)

yk+1 = E21(Tk)(xk + λk) + e−b2Tkyk,

zk+1 = E31(Tk)(xk + λk) + E32(Tk)yk + e−b3Tkzk,

ϕk+1 = ϕk + ω Tk (mod 2π), k = 0, 1, 2, ...,

with

Tk = Φ(σk), λk = F (σk),

σk = zk +
M

b23 + ω2
[b3 sin(ϕk + θ)− ω cos(ϕk + θ)] +

M

b3
,

0 6 ϕk 6 2π, 0 6 θ 6 2π.

Here

E21(T ) =
g1

b2 − b1
(e−b1T − e−b2T ),

E32(T ) =
g2

b3 − b2
(e−b2T − e−b3T ),

E31(T ) = α1e
−b1T + α2e

−b2T + α3e
−b3T ,

α1 =
g1g2

(b2 − b1)(b3 − b1)
, α2 =

g1g2
(b1 − b2)(b3 − b2)

,

α3 =
g1g2

(b1 − b3)(b2 − b3)
.

The modulation functions of the intrinsic pulsatile feed-

back are selected as

Φ(σ) = k1 + k2
(σ/r)n

1 + (σ/r)n
, F (σ) = k3 +

k4
1 + (σ/r)n

.

The introduction of the exogenous signal β modifies the

argument of the modulation function and can be effectively

interpreted as time-dependence of F (·) and Φ(·). Yet, com-

pared to the autonomous case, bistability appears in the

forced system dynamics, [24]. Another crucial observation is

that σk ≥ xk due to the positivity of the exogenous signal.

Since the modulation functions F (·) and Φ(·) are bounded

from below and above, the modulation depth is reduced by

β ≥ 0 thus resulting in a smaller range of λk, Tk.

In contrast with the continuous Goodwin’s oscillator, the

impulsive version of the model is shown to agree well with

biological data [25], [26].

A. Bifurcation analysis

The parameter values are selected as: 0.0 6 M 6 12.0,

0.23 < b1 < 0.69, b2 = 0.014, b3 = 0.15, g1 = 0.6, g2 =
1.5, k1 = 50, k2 = 220.0, k3 = 1.5, k4 = 5.0, r = 2.7, n =
3. In the following analysis, the amplitudes of the forcing

signal M and b1 are used as the bifurcation parameters.

For a relatively small amplitude M , map (9) displays

a quasiperiodic orbit. As M increases, the system enters

the 1:7 entrainment region (or phase-locked region) via a

saddle-node bifurcation at the point ML. This transition

is shown in Fig. 3a for b1 = 0.5. On the part of the

bifurcation diagram in Fig. 3a that falls to the left of the point

ML, map (9) has a stable closed invariant curve, associated

with quasiperiodic dynamics, as illustrated in Fig. 3b. The

saddle-node bifurcation at the edge of the entrainment region

produces a new attracting closed invariant curve (Fig. 3c).

This closed curve includes two 14-cycles, a saddle and stable

node, and is formed by the saddle-node connection composed

of the unstable manifolds WU
± of the saddle cycle. In this

way, inside the entrainment region, map (9) has the stable

and saddle 14-cycles. The green lines in Fig. 3a (marked

with 1) represent the saddle 14-cycle and the magenta lines

(marked with 2) represent the stable 14-cycle.

With further increase of the forcing signal amplitude M ,

the invariant curve loses its smoothness at the point of the

stable node 14-cycle due to folding of the unstable manifold

WU
+ of the saddle 14-cycle and transforms to a folded

set (Fig. 3d). This leads to the destruction of the closed

curve [27]. Finally, the saddle and stable node 14-cycles
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(a) (b)

(c) (d)

Fig. 2: Periodic and quasi-periodic solutions in continuously forced Goodwin’s oscillator: (a) Bifurcation diagram illustrating

the appearance of the two-dimensional torus through a Andronov-Hopf bifurcation. b1 = 0.4, b2 = 0.5, b3 = 0.3, g1 = 2.0,

g2 = 0.5, a = 100, K = 0.1, n = 9, 0.0 < M < 0.055. Mϕ is the bifurcation point. (b) Multiplier diagrams for the stable

1-cycle, 0.045 < M < 0.055. As the parameter M decreases, a pair of complex-conjugated multipliers ρ1,2 = α ± iβ
of the 1-cycle leave the unit circle at the point M = Mϕ. (c) Two-dimensional projection of the phase portrait after the

Andronov-Hopf bifurcation for M = 0.035. Here Tq is the two-dimensional torus associated with the quasiperiodic solution

of (7) and Ca denotes a closed invariant curve Ca of the corresponding Poincaré map. (d) Two-dimensional projection onto

the plan (x2, x3) of the period-Tβ solution for n = 6 and M = 0.6.

merge and disappear through a saddle-node bifurcation at

MR as the system leaves the entrainment region. This

bifurcation creates a chaotic attractor (Fig. 3e).

CONCLUSIONS

The dynamics of two harmonically forced models of

Goodwin’s oscillator are studied by means of bifurcation

analysis with emphasis on entrainment phenomena. In the

classical continuous model, quasiperiodic solutions are dis-

covered for small amplitudes of the exogenous signal that,

in an Andronov-Hopf bifurcation, become periodic with an

amplitude increase. Hybrid dynamics lead to much more

complex scenarios in the case of the impulsive Goodwin’s

oscillator, where periodic solutions are observed for mod-

erate values of the exogenous signal, while small and high

amplitudes of it can result in quasiperiodicity or deterministic

chaos. Another characteristic phenomenon appearing in the

forced impulsive Goodwin’s oscillator is the transitions from

phase-locked dynamics to quasiperiodicity and chaos that are

controlled by the phase of the exogenous signal.
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