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Abstract—We describe a computationally efficient heuristic
algorithm based on a renormalization-group procedure which
aims at solving the problem of finding a minimal surface given its
boundary (curve) in any hypercubic lattice of dimension D > 2.
We use this algorithm to correct errors occurring in a four-
dimensional variant of the toric code, having open as opposed to
periodic boundaries. For a phenomenological error model which
includes measurement errors we use a five-dimensional version of
our algorithm, achieving a threshold of 4.35±0.1%. For this error
model, this is the highest known threshold of any topological code.
Without measurement errors, a four-dimensional version of our
algorithm can be used and we find a threshold of 7.3 ± 0.1%.
For the gate-based depolarizing error model we find a threshold
of 0.31± 0.01% which is below the threshold found for the two-
dimensional toric code.

I. INTRODUCTION

Topology has been a key ingredient in finding new codes
with thresholds higher or comparable to those obtained via
concatenation [1], see [2] and references therein. The prime
example is the surface code, with a threshold as high as
1.1% [3]. Two or three-dimensional color codes are also
a promising family of topological codes due to the ability
to perform the Clifford gates transversally (2D color codes)
or even T gates transversally (3D color codes) [4]. For
two-dimensional color codes decoding methods have led to
thresholds of 0.082% [5] (4.8.8 color code) and 0.3% [6] (6.6.6
color code). These numbers are lower than for the surface
code which can be partially accounted for by the weight
of the stabilizers, being maximally 8 or 6, respectively. In
general, these thresholds are only indications of what to expect
experimentally, since real errors can be biased, stochastic
or coherent, non-Pauli, leaky or induce cross-talk and one
can expect further code optimizations which are platform-
dependent.

Stability of a quantum memory is often related to the
dimensionality of the support of logical operators. Excitations
in the toric code are point-like anyons which can diffuse
over large distances without energy cost, leading to ther-
mal instability [7]. The situation improves for the three-
dimensional Haah code, where logical operators are no longer
one-dimensional. However, for this code the memory time

increases with increasing system size only up to a certain crit-
ical size [8] after which entropic factors shorten the memory
time. Going up yet another dimension, the four-dimensional
toric code [9], having logical operators with two-dimensional
support, is stable under thermal fluctuations below a certain
non-zero critical temperature [10]. In error correcting terms,
the stabilizer checks have a local linear dependency which can
be used to repair the erroneous syndrome data [11], obviating
the need for making the syndrome record reliable by repetition
in time. Such a single-shot correction schedule can also be
used in decoding a three-dimensional gauge color code [12],
[13]. In this paper we will study whether the four-dimensional
toric code can have a higher threshold than the surface code,
despite having higher-weight stabilizers.

We will discuss a version of the four-dimensional toric
code having open boundary conditions, which we will call the
tesseract code. Its construction is analogous to the construction
of the surface code and can be formalized using relative
homology [14], [15]. The tesseract code encodes a single
qubit instead of the six logical qubits encoded in the four-
dimensional toric code. The main reason to study the tesseract
code, as opposed to the four-dimensional toric code, is that one
can globally correct faulty syndrome data before decoding,
giving rise to a single-shot ‘repair syndrome’ decoder.

Of course, a four-dimensional code is not appealing for im-
plementation in a purely 2D chip-based architecture. However,
modular-based architectures such as nitrogen vacancy centers
in diamond [16] or networks with few qubit nodes [17] could
potentially have less strenuous constraints on connectivity.
Clearly, embedding a 4D code into 3D space requires a long-
range connectivity between qubits which grows with the size
of the code. In practice one realizes a code of finite size and
even expander-like graphs can be embedded in 3D physical
space when time-multiplexing of connections can be used, e.g.
the internet.

The parameters of the tesseract code family are [[6L4 −
12L3 + 10L2−4L+ 1, 1, L2]] (see Section II-A) as compared
to [[L2 + (L− 1)2, 1, L]] for the regular 2D surface code [9],
implying that one can have a [[33, 1, 4]] tesseract code versus a
[[25, 1, 4]] surface code, or a [[241, 1, 9]] tesseract code versus
a [[145, 1, 9]] surface code. All checks in the bulk of the
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code
dimension measurement

of support of perfect faulty
logical operator

1D Ising 1 50.0% 11.0%
2D surface 1 11.0% [18] 3.3% [18]
3D cubic 1 3.3% ?
2D Ising 2 50% 17.2%
3D cubic 2 17.2% 7.3% 11.0%
4D tesseract 2 7.3% 11.0% [19] 4.35%

TABLE I: Overview of thresholds for surface codes of dif-
ferent dimensions, using a phenomenological error model
with perfect or faulty syndrome measurement, as explained
in Section III-A. Error correction for these codes proceeds
independently for X- and Z-errors and protection from logical
X and Z errors depends on the dimensionality of the support
of the logical operator. For the 1D and 2D Ising model,
which essentially represent classical codes, we only list the
data point for the logical operator with extensive support,
its logical partner has 0-dimensional support and hence no
threshold exists. The gray values are previously determined
upper bounds while all other values are new lower bounds
on the threshold obtained using the efficient RG decoder
introduced in this paper. In Section III-A and Appendix F we
explicitly show how in our error model the decoding problem
of a D-dimensional code with perfect syndrome measurement
is equivalent to so called space-time decoding of a D − 1-
dimensional code with faulty syndromes, leading to the same
thresholds as shown in the Table.

tesseract code act on 6 qubits while each qubit participates in 8
different checks (qubit degree 8). This can be seen as follows:
It is straightforward to see that the weight of the Z-stabilizers
(corresponding to cubes) is 6. The X-stabilizers in the bulk are
mapped onto cubes via the duality transformation and hence
they have the same weight. The qubit degree is easier to see
for the X-stabilizers. Each face (square) clearly has 4 X-
stabilizers (edges) incident to it. By the same duality argument
we thus obain the qubit degree 8. Table II in Appendix B
presents several small codes which interpolate between the
surface code and the tesseract code. In Table I we summarize
the known thresholds and the new results obtained with the
RG decoder. In Appendix D we briefly comment on what is
known on getting universal logic using a 4D toric code.

Earlier thresholds of the four-dimensional toric code have
been found to be as high as 1.59% for the phenomenological
error model with faulty syndrome measurements [20]. These
purely local decoders aim at locally minimizing the curvature
of syndrome loops in order to shrink these loops or apply a
4D version of Toom’s rule. It was observed in [20] that the
limiting factor of the decoder was the occurrence of stripes of
errors, having a width larger than the local decoding region.
Such stripes have straight syndrome curves as boundaries,
with no curvature. Hence the corresponding errors would not
be corrected by the decoder (which we called energy-barrier
limited).

We will introduce a new decoder for the tesseract code
based on a renormalization scheme. Renormalization group
(RG) decoders have been successfully used before to decode
the toric code [21], [22], the qudit toric code [23], color codes

[24] and the Haah code [8]. This class of decoders can be di-
vided into two groups: the soft-decision RG decoders function
by renormalizing the lattice whereas hard-decision decoders
function by renormalizing the scale at which syndromes are
clustered. Our decoder falls in the first group: we describe
a way of coarse-graining the four-dimensional lattice of the
tesseract code. Then, the aforementioned stripes are no longer
a limiting factor of the decoder due to the doubling of the
decoding region at each RG step. It is also possible to use a
hard-decision RG decoder for the tesseract code as the efficient
decoder in [8] works for any topological code. However, the
Bravyi-Haah RG procedure is not fine-tuned to the decoding
problem at hand, namely finding a minimal surface given its
boundary, and we expect it to be non-optimal. We report on
thresholds of our decoder using both the phenomenological
error model as well as a gate- or circuit-based error model in
order to objectively compare with other codes.

Our paper is organized as follows. In the Section II we
will introduce the tesseract code. We will explain how to
view this code from the perspective of relative homology and
discuss why it encodes one qubit. In Section III we explain that
when using a phenomenological error model, minimum-weight
space-time decoding translates to finding a surface of minimal
area having a given curve as its boundary: in Appendix F we
show how this holds generally for high-dimensional surface
codes, basically following the line of thinking introduced in
[9]. In Section III-B we describe the gate-based error model
in detail. In Section IV we will explain the RG decoder. In
Section V we report on the numerical results of a single-shot
decoder and the RG decoder. We end the paper with some
concluding remarks in Section VI.

II. THE CODE

The tesseract code can be understood on various levels of
abstraction. The most straightforward way to define the code is
to introduce sets of edges, faces and cubes and associate qubits
with faces and X- and Z-stabilizers with edges and cubes
respectively. We will refer to the low-weight (not necessarily
independent) generators of the stabilizer group as stabilizers
or check operators. In Sections II-B and II-C we will be a
bit more formal and review the concept of homological CSS
codes based on cellular complexes and show how the tesseract
code can be viewed as an example of such code using relative
homology. In Section II-C we will argue that the tesseract
code encodes 1 qubit, using a deformation retraction argument.
For the less formally-inclined Sections II-B and II-C can be
skipped.

A. Definition
We start by defining cells (or objects o) which can be edges

(e), faces (f ) or cubes (c). Let ai for i ∈ {1, 2, 3, 4} denote
four unit-length basis vectors of R4. We will consider cells
which are oriented along these four directions, i.e.

e{i}(v) := {v + sai | s ∈ [0, 1]} , (1)
f{i,j}(v) := {v + s1ai + s2aj | s1, s2 ∈ [0, 1]} , (2)
c{i,j,k}(v) := {v + s1ai + s2aj + s3ak | s1, s2, s3 ∈ [0, 1]} ,

(3)
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where the vector v =
∑
i viai has integer coordinates vi.

Consider the spaces B ⊂ U ⊂ R4 being U = [0, L1 −
1] × [0, L2 − 1] × [0, L3] × [0, L4] and B the union of four
hyperplanes defined by the restriction v3 ∈ {0, L3} and
v4 ∈ {0, L4}. We will generally set all lengths Li equal to
L. Alternatively, one can set some lengths to one to obtain
lower-dimensional versions of the tesseract code, see Table II
in Appendix B.

A cell o is said to be contained in a space, say U , when
o ⊂ U . The face set defined as FL consists of those faces
contained in U but not contained in B. Similarly, the edge
set EL and cube set CL consist of those edges and cubes
respectively which are contained in U , but not contained in B.
The cardinality of these sets are given by (see Appendix A):

|CL| = |EL| = 4L4 − 8L3 + 6L2 − 2L ,

|FL| = 6L4 − 12L3 + 10L2 − 4L+ 1 .

Having constructed the sets EL, FL and CL, we can
straightforwardly define the tesseract code of size L. Qubits
are associated with each face in FL. The X- and the Z-
stabilizers of the code are defined for each edge in EL and
each cube in CL respectively. Their action is determined by
the inclusion, e ⊂ f ⊂ c of edges, faces and cubes:

SXe :=
∏
f :e⊂f

Xf , (4)

SZc :=
∏
f :f⊂c

Zf . (5)

Both X- and Z-stabilizers are maximally of weight six (act
on 6 qubits non-trivially). Note how the tesseract code is a
higher-dimensional version of the surface code. The surface
code is obtained by setting L2 = L4 = 1 and L1 = L3 = L.
See Fig. 1(a) for an illustration of a distance-3 surface code.
In this case only those edges e{i}(v) are contained in EL
for which i is four. Hence, they effectively reduce to vertices
when ignoring this 4th dimension. Similarly, faces on which
the qubits live, reduce to edges and cubes reduce to faces.
Setting only L2 = 1 and all other lengths equal to L one
obtains a three-dimensional code, which we will refer to as
the cubic code (not to be confused with the Haah code [8]).

The tesseract code encodes a single qubit, as we will argue
in Section II-C. Here we simply give representatives of the
logical operators:

X =
L−1∏

v1,v2=0

Xf{3,4}(v1a1+v2a2) and (6)

Z =
L−1∏

v3,v4=0

Zf{3,4}(v3a3+v4a4) . (7)

These operators anti-commute since they overlap on a single
qubit, corresponding to the face f{3,4}(0). Comparing the
tesseract code with the surface code gives insight into how
the space B changes the boundary conditions. In the surface
code, B ensures that two of the four boundaries are ‘rough’,
see Fig. 1(b), so that Z can begin and end at this rough
boundary (meaning that it commutes with the X-stabilizers).
Similarly, on a smooth boundary X can begin or end. If B

Fig. 1: (color online) Panel (a): v2 = 0 cross-section of the
cellular complex corresponding to the surface code of distance
3. Brown points and lines indicate vertices and edges which
are contained in U but also in B. Black lines and gray squares
indicate edges and faces which are only contained in U . Each
such face contains a qubit. Cubes are not indicated. Panel (b):
same cellular complex with points indicating edges (oriented
in the a4 direction) and lines indicate faces. Points and lines
in brown are again contained in U but also in B. Panel (c):
graphical representation of projecting out the a1 direction
coordinate by means of a deformation retraction. Panel (d):
simplified cellular complex representing only 1 qubit.

were the empty set, all boundaries would be ‘smooth’ and no
qubit would be encoded since any X could be deformed and
contracted to an X-stabilizer.

For the tesseract code all boundaries associated with the
third and fourth direction are ‘rough’ (i.e. these three-
dimensional boundaries are formed by setting the third and
fourth coordinate to their boundary values) whereas boundaries
associated to the first and second direction are ‘smooth’. Thus
the logical Z in Eq. (7) which fully lies in the plane spanned by
the vectors a3 and a4 is a surface attached at rough boundaries,
while the logical X is a surface attached at smooth boundaries.

Summarizing, the tesseract code encodes a single qubit
using 6L4−12L3+10L2−4L+1 physical qubits for a distance
L2. In Appendix F we generalize the surface code family,
which includes the surface and tesseract code, to a general
(d1, d2)-surface code having a d1-dimensional X operator and
a d2-dimensional Z operator.

B. Homological description

The tesseract code is a homological CSS code [14], [15] in
the sense that stabilizers can be defined in terms of boundary
operators. Let Ci (for i ∈ {1, 2, 3}) be vector spaces over
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F2. In the next section we describe how one can obtain
these vector spaces from a cellular complex, using (relative)
homology, here we state and use their properties to define
the tesseract code. Elements of C1 are formal sums of edges
(C1 3

∑
eEee, Ee ∈ F2), and similarly, elements of C2

and C3 are formal sums of faces and cubes respectively. An
element of Ck is also referred to as a k-chain. The different
spaces Ck are related by boundary operators ∂k:

C3
∂3−→ C2

∂2−→ C1 . (8)

They can be most easily defined by specifying their action
on the basis vectors of C2 and C3, that is ∂(f) =

∑
e⊂f e,

the sum of the (up to) four edges of a face f , and ∂(c) =∑
f⊂c f , the sum of the (up to) six faces of a cube c.

The transpose of the boundary operator is the co-boundary
operator: δk := ∂Tk+1. Just as the boundary operator encodes
the incidence relation between all cells and their sub-cells,
the co-boundary operator encodes which higher-dimensional
cells any given cell belongs to. Pauli operators (modulo
signs) can be labeled by a pair of face sets a, b ∈ C2,
i.e. Pa,b :=

∏
f X

αf

f

∏
f Z

βf

f , where a =
∑
f αff and

b =
∑
f βff . One has Pa,0P0,b = (−1)〈a,b〉P0,bPa,0 with

〈a, b〉 :=
∑
f αfβf ∈ F2. Stabilizer generators are given by

applying δ1 and ∂3 on basis vectors in C1 and C3 respectively,
i.e. SXe = Pδ1(e),0 =

∏
f :f∈δ1(e)Xf and SZc = P0,∂3(c) =∏

f :f∈∂3(c) Zf , conform to Eqs. (4,5). Their commutation
follows from ∂2 ◦ ∂3 = 0 via 〈δ1(e), ∂3(c)〉 = 〈e, ∂2 ◦ ∂3(c)〉.
Logical Z operators P0,b should satisfy ∂2(b) = 0 in order
to commute with all X-stabilizers. But any such P0,b can be
written as just a product of stabilizer generators when b is also
in the image of ∂3. Thus dim(H2), where H2 = Ker(∂2)

Im(∂3) equals
the number of logical qubits1.

C. Cellular complex

A more precise description of the tesseract code is in
terms of cellular complexes. The building blocks of cellular
complexes are k-cells, which are spaces isomorphic to an k-
dimensional closed ball. Vertices are 0-cells, edges are 1-cells,
faces are 2-cells etc. We will refer to 4-cells as hyper-cubes
and they can be defined analogous to the lower-dimensional
cells in Eqs. (1)–(3): h(v) := v + [0, 1]4.

By definition, the boundaries of cells are part of the cellular
complex. For our specific complex, it is clear what the
boundaries of cells are. For example, the boundary of the edge
ei(v) is simply the union of the two vertices v and v + ai,
the boundary of a face f is the union of four edges, etc. Note
that not all boundaries of faces in FL are contained in the
edge set EL since EL does not contain edges fully contained
in B. However, by construction U and B both form cellular
complexes. A cellular complex U naturally comes with vector
spaces Ck(U) over F2, which are formal sums of k-cells in U ,

1Formally, the homology group Hi ≡ Hi(Z2) since we have set G = Z2,
i.e. the addition group of F2 and homology groups can be defined over general
groups G.

i.e. k-chains, and a boundary map ∂k between these spaces,
specifying the boundary of k-cells:

0
∂5−→ C4(U)

∂4−→ C3(U)
∂3−→ C2(U)

∂2−→

C1(U)
∂1−→ C0(U)

∂0−→ 0 .

These maps satisfy Im(∂k+1) ⊂ Ker(∂k) or equivalently
∂k ◦ ∂k+1 = 0, which is a fundamental property of the
boundary operator, expressing the fact that boundaries of
(hyper) surfaces are always closed (hyper) curves, that is,
have no boundaries themselves. The last map ∂0 : C0(U)→ 0
simply states that vertices have no boundaries and the first
map ∂5 : 0→ C4(U) states that hypercubes aren’t boundaries
of five-dimensional chains. The map ∂k can be restricted to act
on the quotient space Ck(U,B) := Ck(U)/Ck(B), in which
k-chains in Ck(U) which differ by k-chains in Ck(B) are
identified, i.e. one defines a quotient boundary map ∂Bk which
maps from Ck(U,B) to Ck−1(U,B). Loosely speaking, the
quotient procedure can be viewed as considering only formal
sums of k-cells contained in U and not B, that is, the maps
∂Bk (for k ∈ {2, 3}) are equal to the maps given in Eq. (8).
The quotient boundary map (and its associated quotient co-
boundary map) have similar properties as the boundary map
themselves, i.e. the boundary of the boundary is 0. The relevant
objects are now the relative homology groups Hk(U,B) =
Ker(∂B

k )

Im(∂B
k+1)

. Specifically, H2(U,B) and dim(H2(U,B)) deter-
mine the logical operators and the number of logical qubits
of the code when we use the construction described in the
previous Section. What surface is homologically non-trivial,
i.e. contained in H2(U,B), is now determined relative to the
boundary B.

So far we have argued how the tesseract code can be defined
using the language of cellular relative homology. We will use
this to argue that dim(H2) = 1, i.e. the tesseract code encodes
1 logical qubit. This may not be surprising, but it is useful to
see how this follows from arguments which are more generally
applicable to homological CSS codes. If we were to choose the
space U as the four-dimensional torus T 4, i.e. identify vertices
at opposite boundaries in all directions, the corresponding code
is the 4D toric code and the number of logical qubits equals
dim(H2(T 4)) = 6. These 6 logical operators of the 4D toric
code correspond to closed toric surfaces.

The homology groups Hk(U,B) are isomorphic to
Hk(U ′, B′) where B′ and U ′ are obtained via a so-called
deformation retraction from B and U . A deformation retrac-
tion is the process of shrinking a topological space X into a
subspace Y ⊂ X . It is a continuous map f : [0, 1]×X → X
such that f(0, X) = X , f(1, X) = Y and f(t, ·) acts as
identity on Y for all t [25]. In a first step we will simplify the
quotient space U/B using a specific deformation retraction.
In a second step we will relate this simplified space to a code
having only 1 qubit and no stabilizers.

Let U ′ = {0}2 × [0, L]2 ⊂ U and let B′ = {v3a3 +
v4a4 | v3 ∈ {0, L} ∨ v4 ∈ {0, L}} ⊂ B and note that
B′ ⊂ U ′. The map f(t,

∑
i viai) = (1 − t)(v1a1 + v2a2) +

v3a3 + v4a4 is a deformation retraction of U/B into U ′/B′

and hence dim(H2(U,B)) = dim(H2(U ′, B′)). In order to
calculate the dimension of the homology groups of U ′/B′, we
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explicitly construct cellular complexes for these two spaces.
The cells

f ′ = {0}2 × [0, L]2,

e′1 = {0}2 × [0, L]× {0}, e′2 = {0}2 × [0, L]× {L},
e′3 = {0}2 × {0} × [0, L], e′4 = {0}2 × {L} × [0, L],

v′1 = (0, 0, 0, 0), v′2 = (0, 0, 0, L),

v′3 = (0, 0, L, 0), v′4 = (0, 0, L, L),

form a cellular complex of U ′ and the cells {e′i} and {v′i} form
a cellular complex of B′. Clearly, f ′ is the only 2-cell of U ′

which is not contained in B′. The spaces Ck(U ′)/Ck(B′) are
all equal to zero except for C2(U ′)/C2(B′) = F2, hence all
homology groups Hk(U ′, B′) are trivial except for H2(U ′, B′)
which is one-dimensional. In error correcting terms, the cor-
responding code consists of a single qubit and no stabilizers
and hence trivially encodes one qubit. Specifically, one has
dim(H1) = 0 or, in words: all closed curves in a tesseract
code are the boundary of some surface. This is not true for
the 4D toric code, i.e. dim(H1(T 4)) = 4. This is an important
difference between these codes and it allows us to study the
single-shot decoder in Section IV-A for the tesseract code. In
this decoder the erroneous syndrome, which is a set of open
curves with a zero-dimensional boundary is first repaired to
be a set of closed curves. Since any set of closed curves are
the boundary of some error surface in the tesseract code, the
decoder can find a set of qubit errors.

A similar deformation retraction argument, graphically
given in Fig. 1(b-d), can be used to show that the surface
code encodes 1 qubit.

For completeness, we check that the number of logical
qubits is consistent with the number of physical qubits and
stabilizers. Let VL be the set of vertices in U\B having integer
coefficients2. Its cardinality is given by |VL| = L4−2L3 +L2,
see Appendix A. For each vertex v ∈ VL there is a linear
dependency between the X-stabilizers:∏

e : e∈δ0(v)

SXe = I . (9)

This is a consequence of δ1 ◦ δ0 = 0. Assuming that all linear
dependencies between X-stabilizers are of the form given in
Eq. (9) and that labeling them with a vertex v ∈ VL does not
lead to overcounting, the number of logical qubits is given by
|FL| − 2(|EL| − |VL|) = 1.

A further comment on the tesseract code is this. In dimen-
sions higher than two one has to be careful to distinguish
objects with seemingly non-trivial topology from the action
of operators associated with these objects on the code space.
For example, for the 4D toric or tesseract code, one can
consider a “Klein bottle error”, that is, a non-orientable Z-
error surface without boundary corresponding to a Klein bottle.
A Klein bottle can be embedded without intersection in four-
dimensional space, and so the Klein bottle error commutes
with all checks and can be constructed from stabilizer cube
operators of the 4D tesseract code.

2Backslash denotes set subtraction and / denotes taking the quotient.

A Klein bottle error can also be represented in the cubic
code (with the convention of placing qubits on faces) but since
any such representation must be necessarily self-intersecting
in a three-dimensional space, the error does not commute with
all stabilizers of the code, nor can it be made from cube
operators. In 3D it thus constitutes a genuine excitation out of
the code space. This is curious since any other oriented closed
“trivial” surface in 4D remains a stabilizer group element when
shrinking the 4th dimension, while the Klein bottle surface
becomes an excitation.

III. ERROR MODELS

We assess the performance of the tesseract code by testing
whether it can correct errors which are applied according to
three different types of error models: phenomenological errors
with and without syndrome measurement errors and gate-
based errors. The main reason for using a phenomenological
error model is that minimum-weight decoding has a straight-
forward geometrical interpretation. This error model however
doesn’t take into account that weight-six stabilizers are tech-
nically demanding to measure. The gate-based error model
takes into account the full circuit for measuring the different
stabilizers, that is, all elements in the circuit, including CNOT
gates, ancilla creation and measurement and idling gates, are
assumed to undergo depolarizing errors.

A. Phenomenological Error Model

The phenomenological error model assigns errors to each
qubit independently. Pauli operators are applied according to
the following distribution P(I) = (1− p)2, P(X) = p(1− p),
P(Y ) = p2 and P(Z) = p(1−p). Moreover, the measurement
data is also assumed to be faulty, which is modeled by a bit-
flip channel with parameter q. Due to the independence of
Pauli X- and Z-errors, and since Pauli Z-errors only affect
the outcome of X-stabilizers (and vice versa), the decoding
problem can be separated into finding a Pauli Z-error plus X-
stabilizer measurement errors which together are consistent
with X-stabilizer measurements, and a similar set of qubit
and measurement errors consistent with Z-stabilizer measure-
ments. Moreover, these two problems are equivalent since they
are mapped onto each other via the duality transformation of
the lattice. It is hence sufficient to only discuss the decoding of
Pauli Z-errors in combination with X-stabilizer measurement
errors.

Due to the independence of single qubit errors, it is
appropriate to use a minimum-weight space-time decoding
algorithm, by which we mean: given the outcome of repeated
faulty measurements over time for all stabilizers, find the
minimal number of qubit and measurement errors that could
have led to this outcome. When q = 0 and no measurements
are repeated this reduces to minimum-weight decoding.

We will now discuss how, for the tesseract code, minimal-
weight (space-time) decoding translates to finding a minimal
surface having a given curve as its boundary in a 4+1 space-
time cellular complex, in complete analogy with 2+1 space-
time decoding for the surface code [9]. As a warm up, we
will first do so for q = 0, which is also explained in [20].
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Let ferror be the face set corresponding to the Pauli Z error
P0,ferror . The syndrome esynd ∈ C1 is a formal sum of edges
corresponding to X-stabilizers anti-commuting with the error,
i.e. esynd =

∑
e σee where (−1)σe is the ±1 eigenvalue

outcome of the stabilizer SXe . Note that the outcome of
measurement of SXe depends on the overlap of ferror and δ1(e),
i.e. σe = 〈ferror, δ1(e)〉. Hence, the syndrome is exactly the
boundary of the face set corresponding to the error due to:

esynd =
∑
e

〈ferror, δ1(e)〉 e =
∑
e

〈∂2(ferror), e〉 e = ∂2(ferror) .

It follows that any valid Pauli Z correction (i.e. giving rise
to the same measurement outcome esynd) is labeled by a face
set fcor satisfying, ∂2(fcor) = esynd. Hence minimum-weight
decoding translates to finding a minimal surface having a given
curve as its boundary. This can be compared to decoding the
surface code, where minimal-weight perfect matching finds
strings of minimal length having a given set of vertices as its
boundary.

Now consider faulty measurements with q = p. We define
edges ẽ{i}(v), faces f̃{i,j}(v) and cubes c̃{i,j,k}(v) as sub-
spaces of R5, analogous to Eqs. (1)-(3) with the difference
that the directions i, j, and k can also take the value 5. The
space R5 is spanned by five basis vectors {ai}5i=1 and we will
refer to the a5 direction as time. Again, we will only consider
edges, faces and cubes which are contained in a space-time
cellular complex UST and not contained in BST ⊂ UST where
UST = [0, L− 1]2× [0, L]2× [0, T − 1] and BST is the union
of four hyperplanes defined by the restriction v3 ∈ {0, L} and
v4 ∈ {0, L}.

Errors form a surface in (4+1)-dimensional space-time. Let
Ee(t) = 1 if the stabilizer SXe is measured wrongly during
measurement round t ∈ {0, 1, . . . , T − 1} (where T labels
the total number of measurement rounds) and zero otherwise.
We assume that the last round of measurements is perfect,
Ee(T − 1) = 0. Let Ef (t) = 1 if the qubit corresponding to
the face f undergoes an error between measurement rounds
t− 1 and t and zero otherwise. The error surface is given by
f̃error =

∑
f̃ Ef̃ f̃ where the coefficients Ef̃ are either related

to qubit errors, Ef̃{i,j}(v+ta5) = Ef{i,j}(v)(t) (for i ≤ 4 and
j ≤ 4), or measurement errors, Ef̃{i,5}(v+ta5) = Ee{i}(v)(t),
depending on the orientation of f̃ .

If τe(t) ∈ {0, 1} denotes the outcome of the faulty mea-
surement of the stabilizer SXe at round t, one has τe(t) =
σe(t) + Ee(t). The syndrome curve ẽsynd =

∑
ẽ σẽẽ is a

formal sum of edges in (4+1)-dimensional space-time with
coefficients σẽ given by:

σẽ{i}(v+ta5) :=

τe{i}(v)(t)− τe{i}(v)(t− 1) for i < 5 , (10)

σẽ{5}(v+ta5) :=
∑

e : e∈δ0(v)

τe(t) =
∑

e : e∈δ0(v)

Ee(t) . (11)

Intuitively, the first equation lets syndrome be non-zero when
the regular syndrome which detects qubit errors changes from
step t − 1 to t. This change can occur either due to a qubit
error or due to a measurement error. The second equality in
Eq. (11) follows from the linear dependency of stabilizers,

given in Eq. (9), and thus this non-zero syndrome heralds a
measurement error.

Note that by construction of the space-time cellular com-
plex, the boundaries corresponding to the time directions are
smooth. This is not the case if the last measurement round
is faulty. The errors Ee(T − 1) can give rise to non-trivial
syndrome on edges of the form ẽ{5}(v + (T − 1)a5) which
are not contained in UST. Including these edges gives rise
to a rough v5 = T boundary which can formalized by the
cellular complex Urough ST = [0, L−1]2× [0, L]2× [0, T ] and
Brough ST ⊂ Urough ST, being the union of five hyperplanes
defined by the restriction v3 ∈ {0, L}, v4 ∈ {0, L} and
v5 = T .

Fig. 2: (color online) Portion of the cross-section of the (4+1)-
dimensional hypercube, containing two spatial directions and
one (vertical) time direction. Panel (a): isolated qubit and mea-
surement errors are depicted by red squares. Their boundary,
corresponding the red lines, is the space-time syndrome curve
ẽsynd. Panel (b): overlapping qubit and measurement error
(upper figure) giving rise to an open syndrome curve esynd
(lower figure).

It remains to check that the boundary of f̃error is indeed
ẽsynd. We argue that this is the case for single qubit errors or
single measurement errors, see Fig. 2(b). Then, by linearity,
∂2(f̃error) = ẽsynd will hold for all error surfaces. Assume
there is an error on the qubit associated with face f{i,j}(v) in
the time interval (t − 1, t), i.e. f̃error = f̃{i,j}(v + ta5). The
corresponding syndrome curve has coefficients σẽ = 0 for any
edge ẽ which is either oriented in the time direction (since
there are no measurement errors) or which is not contained
in the hyperplane v5 = t due to Eq. (10). The remaining
coefficients satisfy σẽ = τe(t) which is non-zero if and only
if e ⊂ f{i,j}(v). It can be straightforwardly checked that
this is exactly the boundary of f̃error. Alternatively, assume
there is a measurement error of the stabilizer associated
with edge e{i}(v) at time t, i.e. f̃error = f̃{i,5}(v + ta5).
Since now τe(t) = Ee(t) (no qubit errors) we have, due to
Eq. (10), that σẽ{i}(v+ta5) = σẽ{i}(v+(t+1)a5) = 1. And since
v ∈ e{i}(v) and v + ai ∈ e{i}(v) we have, due to Eq. (11),
that σẽ{5}(v+ta5) = σẽ{5}(v+ai+ta5) = 1. These coefficients
exactly correspond to those edges contained in f̃{i,5}(v+ta5).
It follows that the faulty-measurement minimum-weight de-
coding problem for the tesseract code is the problem of finding
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a minimal surface given its boundary in (4+1)-dimensional
space-time. In Appendix F we formulate this mapping quite
generally for surface codes in D dimensions.

B. Gate-based error model

In order to fairly compare the performance of the tesseract
code with the surface code, we also consider a gate-based
error model [26], [27], as opposed to a phenomenological
error model. Every round of measurements consists of (1)
ancilla preparation, (2) eight rounds of CNOT gates applied in
parallel and (3) ancilla measurements. After T − 1 rounds, a
single round of non-faulty measurements is performed, without
adding additional errors on the qubits.

Ancilla qubits are defined for each stabilizer, i.e. there is
an ancilla on each edge e and on each cube c. Preparation
is modeled by a perfect creation of the |+〉 state (for X-
stabilizers) or the |0〉 state (for Z-stabilizers), followed by
a phase flip or bit flip channel with probability p. Ancilla
measurement is modeled by a perfect measurement in the X
basis (for X-stabilizers) or the Z basis (for Z-stabilizers),
followed by a classical bit flip channel on the obtained
measurement data, with probability p. During both preparation
and measurement, data qubits undergo depolarizing errors with
probability p: ρ 7→ (1− p)ρ+ p

3 (XρX + Y ρY + ZρZ).
The CNOTs for the parity check circuits for the X and Z-

stabilizers, can, similar as for the toric code, see e.g. [28],
be fully run in parallel. This requires 8 rounds of CNOTs
which is the minimal number of CNOT rounds to collect
the entire syndrome since the qubit degree of the code, i.e.
the number of parity checks that a qubit participates in, is
8. CNOTs are performed between data and ancilla qubits.
Ancillas corresponding to edges are always the control qubit
(X-stabilizer) whereas ancillas corresponding to cubes are
always the target qubit (Z-stabilizer). Ancilla or data qubits,
on which no CNOT acts during a round (idling step) undergo
depolarizing error with probability p. The CNOT gates are
modeled by a perfect CNOT followed by the channel ρ 7→
(1− p)ρ+ p/15

∑4,4
i=1,j=1: ij 6=11 P

1
i P

2
j ρP

1
i P

2
j where ρ is the

density matrix of the two qubits on which the CNOT acts and
P1 = I.

To explain which CNOT is performed in which round we
associate with each such gate a direction, being the direction
of the location of the ancilla qubit (edge or cube) as seen
from the data qubit (face) on which the CNOT acts. There
are 8 such directions. During a single round all CNOT gates
oriented along a certain direction are performed. This ensures
that there are never multiple CNOTs acting on the same qubits
since each data qubit sees a different ancilla. The order of
these 8 directions indicates for each qubit on a face the order
in which the qubit interacts with the ancillas which are on the
4 edges surrounding the face and the 4 cubes which contain the
face. In more detail, let the 8 directions be given by (−1)nak
specified by n ∈ {0, 1}, k ∈ {1, 2, 3, 4}. During a single
round, labeled by direction (−1)nak, CNOT gates are applied
between data qubits corresponding to faces f{i,j}(v) (wlog,
let i 6= k) and ancilla qubits corresponding to either cubes
c{i,j,k}(v + nak) if j 6= k or edges e{i}(v + (1 − n)ak) if

Fig. 3: (color online) Illustration of a non-optimal two-step
single-shot decoding process. The five red lines indicate a
measured syndrome curve esynd. The solution fcor = 0,
ecor = esynd to Eq. (12) has total Hamming weight 5. First
pairing the end points ∂1(esynd) (black dots) results in ecor
being the three dotted green lines. The corresponding fcor are
the three green faces. This solution has |fcor| + |ecor| = 6,
which is larger than the optimal solution.

j = k, and if the corresponding c and e are elements of CL
and EL, respectively. The ordering of the different directions
in time is chosen as [−a1,−a2,−a3,−a4,a4,a3,a2,a1]. In
Appendix E we verify that with this schedule the execution
of X- and Z-stabilizer measurements is not interfering. Note
that due to this ordering the error model is not invariant under
interchanging the primal and dual lattices. Hence the error rate
for logical X and logical Z errors, and so the thresholds, could
be different (we will only consider Z errors in Section V-B).

IV. DECODING THE TESSERACT CODE

As described above, minimum-weight decoding is equiv-
alent to finding a minimal surface corresponding to a given
curve in a five-dimensional space-time. Although this strictly
only holds for a phenomenological error model, we will also
use this strategy to correct for errors induced by the gate-
based error model. One can generally ask about the complexity
of the problem of finding a minimal (facial) surface in a D-
dimensional hypercubic lattice, with D ≥ 3, given its one-
dimensional boundary. Results in [29] suggest that there is an
efficient algorithm in three dimensions but one does not expect
this to generalize to four or five dimensions. It can be noted
that the minimal surface with a given boundary does not need
to be orientable, i.e. one can have errors on faces which form
a Moebius strip. We address the complexity problem by intro-
ducing an efficient decoding scheme based on renormalization:
this scheme is not guaranteed to find the minimal surface but
our results demonstrate that it performs sufficiently well for
the application of quantum error correction.

Before giving the decoder based on renormalization, we
describe a single-shot decoder which repairs the faulty mea-
surement data before attempting to find a minimal surface in
4D.

A. Single-shot Repair-Syndrome Decoder

Without any measurement errors, the threshold of the four-
dimensional toric code is upper-bounded by 11.003% [19].
The question is whether the process of accurately correcting
erroneous syndrome data can have a threshold of the same
order of magnitude. This would make the whole decoding
process for faulty measurements for the tesseract code have
a threshold which is substantially larger than the less than
3% of the surface code. It has been shown in [11] that such
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Fig. 4: (color online) Illustration of how a decoder is unable
to remove a patch of qubit errors (red). The syndrome (red
curve) is also the boundary of the green rim which corresponds
to T rounds of measurement errors. Note how the green rim
terminates on a rough time boundary and hence only has
the syndrome as its boundary. If the red patch is sufficiently
large and T = O(1) then the minimal surface will always
be the green rim, in other words the error is interpreted as
measurement error, since the boundary of the patch grows
slower than its volume.

single-shot decoder which repairs the syndrome has an actual
threshold.

When the syndrome measurements are faulty, they will not
form the boundary of some surface in four dimensions. Let
eerror be the edge set corresponding to all measurement errors
eerror =

∑
eEee. The erroneous syndrome curve at some fixed

time t can be written as:

esynd =
∑
e

τ̃ee = ∂2(ferror) + eerror . (12)

This should not be confused with ẽsynd which is the boundary
of a surface in (4+1)-dimensional space-time, see Fig. 2
which depicts the relation between the two. Given the mea-
surement data, a single-shot repair-syndrome decoder aims
to find the most likely correction fcor and ecor such that
esynd = ∂2(fcor) + ecor. Consider the strategy of the following
decoder which consists of two steps. In a first step the
syndrome is ‘repaired’. Due to ∂1 ◦ ∂2 = 0 we have that
∂1(esynd) = ∂1(ecor). The correction ecor is a set of edges
having the same endpoints as esynd. Moreover, the decoder
will search for a correction which minimizes |ecor|. This
translates to a matching problem, matching the endpoints of
esynd, and can be done by Edmonds’ efficient minimal-weight
perfect matching algorithm. The corresponding repaired curve
esynd +ecor is closed. Since dim(H1) = 0 (no nontrivial closed
curves) for the tesseract cellular complex, all closed curves
are the boundary of some surface and hence esynd + ecor can
be used in a second step to find such a surface. This can for
example be done using the renormalization group decoder, see
Section IV-B.

Note that this strategy of first minimizing |ecor| and then
separately minimizing |fcor| can give a suboptimal result as
compared to minimizing both quantities simultaneously. Fig. 3
gives an example illustrating the issue. In addition, one can
observe that although the distance of the tesseract code scales
with L2, specific errors of Hamming weight O(L) can lead to
logical failure. Consider a curve of length O(L), dividing a
surface corresponding to a logical operator in half. If such
a curve corresponds to erroneous measurements eerror, its
minimal surface is almost half of a logical operator. Hence, if

Fig. 5: (color online) Illustration of the philosophy of the
renormalization group decoder. By straightening out the syn-
drome curve one is able to find a corresponding surface on a
larger scale.

additionally O(1) qubit errors occur on the other half the mem-
ory is corrupted. Based on this argument one in fact expects
that the threshold of the single-shot repair-syndrome decoder
for the tesseract code is upperbounded by the threshold of the
line-logical operator of the (d1 = 3, d2 = 1)-surface code,
see an elaboration of this heuristic argument in Appendix F.
These arguments thus indicate that the optimal single-shot
decoding threshold will be different than the optimal space-
time decoding threshold for a (d1, d2)-surface code. In Section
V-A we numerically study single-shot decoding for the 4D
tesseract code and finds that its performance is indeed below
the performance of the RG decoder in 5D.

One can ask whether for the tesseract code single-shot
decoding in space-time with a T = O(1) time-direction would
lead to a single-shot decoder with a noise threshold. Even
though the tesseract code is self-correcting, one can argue that
this is unlikely to work due to an argument about the scaling of
volumes vs. boundaries of volumes. One can imagine a sliding
time-window as in [9] in which syndromes are processed
within a window of size T = O(1). As illustrated in Fig. 4,
whenever |ferror| > T |∂2(ferror)|, the area of the vertical
surface connecting the syndrome to the future time boundary
is smaller than that of the horizontal surface enclosed by the
syndrome. Note that since the last measurement is faulty, the
future time boundary is rough, as described in Section III-A,
making it possible for a surface to terminate at this boundary.
This means a bubble of qubit errors growing as a function of
L would be interpreted as repeated measurement error under
minimum-weight decoding in this O(1) window. Sliding the
window forward by fixing the error found in the latter half
of the time-window then simply carries the problem of the
uncorrected qubit bubble forward to the next decoding round.

B. Renormalization group decoder
The renormalization group decoder aims to find a correction

of minimal Hamming weight satisfying ∂2(fcor ) = esynd
where esynd is a set of closed curves. The decoder works for
any generalized surface code defined in Appendix F having a
surface-like logical Z, i.e. d2 = 2. The application here will be
decoding errors on a hypercubic lattice obtained from U,B or
UST,BST in four resp. five dimensions. Due the RG structure
of the decoder, we will only describe it for hypercubic lattices
of size L(N) = 2N + 1 for some integer N , but the ideas
could also be applied to lattices of different sizes.

The idea of the decoder is to straighten out the syndrome
in a series of coarse-graining steps, see Fig. 5. In each step
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a partial correction fcg reduces the syndrome to a syndrome
which is only supported on a smaller coarse-grained sublattice.
The problem on the coarse-grained lattice can be identified
with the same original decoding problem but now on a lattice
with L(N − 1) and hence one can apply the same method
to reduce the syndrome again. The coarse-grained sub-lattices
can be best visualized for a low-dimensional lattice, see Fig. 6.
In a last step, when the lattice can no longer be further coarse-
grained, the decoding problem is solved as an integer program-
ming problem [30]. In Section IV-B1 we define the sub-lattice.
In Section IV-B2 we explain how we find the partial correction
fcg. The Matlab code for this algorithm can be found on
GitHub https://github.com/kduivenvoorden/tesseract code.

1) Coarse-graining: The coarse-grained sublattice Ecg
L is

a subset of the edge set EL and contains edges which are
incident on a vertex with even coordinates. These edges are
either of the form e{i}(2v) or of the form e{i}(2v + ai).
For lattice sizes L(N) = 2N + 1 we will denote the space
of formal sums of edges in EL as C1(N) and the space of
formal sums of edges in Ecg

L as Ccg
1 (N). The latter can also be

understood as the image of the coarse-graining map ΓEN where
ΓEN : C1(N − 1)→ Ccg

1 (N) maps edges of a smaller tesseract
code of size L(N − 1), into a larger code, of size L(N).
Similarly, faces in the smaller lattice are mapped to four faces
of the larger lattice by the map ΓFN : C2(N − 1) → C2(N).
Concretely, for a hypercubic lattice with two rough boundaries,
the action of ΓEN and ΓFN are given by Eqs. (13) and (14).
The basic statement (last line in both equations) is for the
bulk of the lattice while the conditional statements ensure that
some of the edges/faces at the rough boundary are mapped
to only those edges and faces which are actually part of the
lattice of size L(N). From here onwards we will drop the
subscript N of ΓEN and ΓFN . Note that ΓE is not surjective since
Ccg

1 (N) contains the edge e{i}(2v) and the edge e{i}(2v+ai),
while the image of ΓE is only spanned by sums of two such
edges (with the exception of some rough-boundary edges).
Nevertheless, any closed curve contained in Ccg

1 (N) is also

Fig. 6: (color online) Edges of the surface code of length L =
2 (left), L = 3 (middle) and L = 5 (right). The edges forming
the coarse-grained lattice of the larger two codes, L = 3 and
L = 5, are depicted in blue. These correspond to the image
of ΓE , i.e. the embedding of the smaller codes L = 2 and
L = 3. An example of a mapping of an edge ΓE(e) and a
face ΓF (f) is depicted in brown.

contained in the image of ΓE .
For the syndrome esynd on a lattice of size L(N) we aim

to find a partial correction fcg ∈ C2(N) such that esynd +
∂2(fcg) ∈ Ccg

1 (N). In words: we aim to reduce the syndrome
to having only support on the coarse-grained lattice. Since
esynd+∂2(fcg) is some set of closed curves, it can be written as
ΓE(ered

synd), i.e. it can be identified to a reduced syndrome ered
synd

on a smaller lattice, of size L(N − 1). When one solves the
problem on the smaller lattice, that is, finds a f red

cor ∈ C2(N−1)
such that ∂2(f red

cor ) = ered
synd, one can map it back to the original

lattice, fcor = ΓF (f red
cor ) . The total correction is hence ftot =

fcor +fcg and obeys ∂2(ftot) = esynd due to the commutation of
the coarse-graining maps ΓE ,ΓF with the boundary operator
in the sense that

ΓE ◦ ∂2 = ∂2 ◦ ΓF .

The problem of finding the solution f red
cor on the smaller lattice

can, by applying the same recursive step, be reduced to an
even smaller lattice etc. Two coarse-graining steps, used to
solve a L = 5 cubic code, are depicted in Fig. 8.

Optimally, the decoder should find fcg and f red
cor such that

Hamming weight of ftot = fcg + fcor is minimized. Using the
notation a · b :=

∑
f αfβf ∈ R where a =

∑
f αff and

b =
∑
f βff , we can formally rewrite the Hamming weight

as

|ftot| = |fcg|+ w · fcor,

with a weight vector w =
∑
f (−1)αf f with fcg =

∑
f αff ,

αf ∈ {0, 1}. Instead of minimizing |ftot|, the decoder mini-
mizes |fcg| in a coarse-graining step and then minimizes w·fcor
in subsequent steps. The quantity w · fcor can be rewritten
as w · ΓF (f red

cor ) = [(ΓF )T (w)] · f red
cor . Note that this mapping

of weights is simply due to the equivalence of flipping a
qubit corresponding to a face on the coarse-grained lattice,
to flipping the qubits corresponding to the related faces of
the original lattice. Thus in the next step, the minimization
problem is to find a f red

cor which obeys ∂2(f red
cor ) = ered

synd while
minimizing wred · f red

cor = [(ΓF )T (w)] · f red
cor .

2) Correcting: In order to find a correction fcg such that
esynd + ∂2(fcg) is in the image of ΓE , while minimizing w ·
fcg, we divide the lattice into boxes containing a number of
edges and faces. We consecutively treat the decoding problem
for each such box by solving an integer linear programming
problem. Complications arise due to the fact that the boxes
overlap. On the one hand, solutions for a certain box can alter
the integer program of the still to-be-solved boxes, and on the
other hand, these solutions should not corrupt the solution of
already-solved boxes.

For every vertex v with only odd coordinates, we define a
box B(v) = {E(v), F (v)}, consisting of a subset E(v) ⊂ EL
of edges and a subset F (v) ⊂ FL of faces, surrounding the
vertex v, see Fig. 7. The boxes are optimized by the algorithm
in a specific order, namely in order of increasing value of
Ω(v) =

∑
m vmL

m. The set E(v) contains only those edges
whose distance to v, measured by the l∞ norm, is at most 1.

https://github.com/kduivenvoorden/tesseract_code
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ΓEN (e{i}(v)) =

{
e{i}(2v) if i ∈ {3, 4} and vi = 2N−1

e{i}(2v) + e{i}(2v + ai) else , (13)

ΓFN (f{i,j}(v)) =


f{i,j}(2v) if i, j ∈ {3, 4} and vi = vj = 2N−1

f{i,j}(2v) + f{i,j}(2v + ai) else if j ∈ {3, 4} and vj = 2N−1

f{i,j}(2v) + f{i,j}(2v + aj) else if i ∈ {3, 4} and vi = 2N−1

f{i,j}(2v) + f{i,j}(2v + ai) + f{i,j}(2v + aj) + f{i,j}(2v + ai + aj) else

.

(14)

Fig. 7: (color online) Illustration of the box B(v), correspond-
ing to vertex v = a1 + 3a3 + 3a4. The black dotted lines are
its edges, E(v), and the gray squares its faces F (v). It is the
9-th box in terms of the ordering Ω(v). The green numbers
indicate the location and the order of boxes which are treated
before this box by the algorithm.

Moreover, E(v) does not contain edges which are also part
of the coarse-grained lattice:

E(v) ={e ∈ EL\Ecg
L s.t. ∀w ∈ e, |v −w|∞ ≤ 1} .

The set F (v) only contains those faces which contain an edge
in E(v) and which contain only edges which are either an
element of a set E(w) for which Ω(w) ≥ Ω(v) or which
are an element of the coarse-grained lattice Ecg

L . The latter
requirement prevents that moving errors out of a certain box
corrupts a box which has already been cleared of errors.
Formally one has

F (v) ={
f ∈ FL s.t.

∃e ∈ E(v) : e ⊂ f and
∀e ⊂ f, e ∈ Ecg

L ∪
⋃

Ω(w)≥Ω(v)E(w)

}
.

Boxes contain at most 152 edges and 160 faces in the 4D
hypercubic lattice and contain at most 650 edges and 2100
faces in the 5D hypercubic lattice. See Fig. 7 for an illustration
of an analogous box in the L = 5 cubic code. The optimization
for a box B(v) is to find a fcg(v) =

∑
f∈F (v) αff , αf ∈

{0, 1} which solves

min w · fcg(v) such that esynd|E(v)
= ∂2(fcg(v))|

E(v)
.

Here the boundary constraint, using ∂2, uses mod 2 arithmetic
and we use |E(v) to denote the restriction to the space spanned
by edges in E(v). This optimization over O(1) variables
can be recast into an integer program using slack variables,
see e.g. page 8 in [5]. We believe and observe numerically
that there always exists a ftrial, such that when restricted
to the space spanned by faces in F (v), its boundary is
equal to esynd|E(v)

, although we do not prove this formally
here. After optimization of the box B(v), the syndrome and
the weight vector are updated to deal with the next box:
esynd 7→ esynd + ∂2(fcg(v)), w 7→ (−1)fcg(v) · w. The total
correction of the RG step is eventually fcg =

∑
v fcg(v).

V. RESULTS

We start by describing our performance metric for the de-
coders. For perfect measurements, after applying a correction
using the RG decoder, one is guaranteed to be back in the
code space. Correction is then successful if the product of
errors and correction commutes with all logical operators. For
faulty measurements one can perform a fixed amount, say
T−1, error correction cycles after which one performs a single
perfect measurement. This last measurement ensures that one
can find a correction that maps back into the code space.
Again correction is successful when the product of all errors
and the correction on the qubits commutes with all logical
operators. We use this method to assess the performance of the
renormalization decoder with faulty measurements, setting the
number of measurements T equal to the system size L. Both
methods give rise to a logical failure probability pL (where the
subscript L refers to the code size). For the faulty measurement
case, pL should be interpreted as the failure probability within
a time interval T and could be normalized to obtain a failure
probability per correction cycle.

Alternatively, for a single-shot decoder, one can perform
a correction in each error correction cycle. After each such
cycle, errors potentially still remain, but if one is ‘below’
threshold these errors should be primarily correctable. Thus
if these remaining errors cannot be corrected by the same
decoder using perfect measurements, the data is said to be
corrupted. The memory time Tmem

L is defined as the average
number of error correction cycles before corruption. We use
this method to assess the single-shot decoder. It can be
related to a failure probability per cycle by assuming that
Tmem
L = 〈t〉 =

∑∞
t=0 tp(1 − p)t = 1−p

p . We report on
thresholds as the crossing points between the curves p̄L(p)
or Tmem

L (p) for different L.
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Fig. 8: (color online) The decoder in action: Panel a) indicates qubit errors on red faces and the corresponding syndrome esynd
in red. Panel d) indicates a set of faces fcg in green. The difference esynd + ∂2(fcg) is depicted in blue, and corresponds to
the remaining syndrome after applying this correction. The remaining syndrome can be mapped to an L = 3 code and the
corresponding panels b), e) and c) depict a second coarse-graining procedure. The remaining syndrome depicted in panel c)
is corrected in a last step. Panel f) indicates all the faces corresponding to qubits which have been corrected during the full
procedure.

A. Performance of Single-shot Repair-Syndrome Decoder

To assess the effectiveness of the single-shot decoder which
first corrects syndrome esynd to form closed loops in 4D space,
see Section IV-A, we use a brute-force integer linear program
to solve the second step, namely finding a fcor such that
∂2(fcor) = esynd + ecor. In Fig. 9a we report on the memory
time depending on the error probability p for different system
sizes. The largest code we consider has length L = 6 and
parameters [[5521,1,36]]. Although we cannot distinguish a
clear threshold, we predict from this data that it is upper
bounded by 2% and hence lower than the threshold of the
surface code for the same error model. For this reason we
have not attempted to combine this single-shot decoder with
a renormalization group decoder.

Interestingly, we see that the memory time is worse for
the L = 4 code as compared to the L = 3 code, not only
quantitatively but also in its scaling with respect to p. This
seems to be due to an odd-even effect. This effect also plays a
role in a two-dimensional version of the tesseract code, which

is obtained by setting L1 = L2 = 1 and corresponds to the 2D
Ising model. For errors which induce the surface-like logical
operator of the 2D Ising model, one can repair the faulty
syndrome using the minimum-weight matching algorithm and
then pick the smallest of the two compatible surfaces. The data
in Fig. 9b suggest a threshold in the 10 − 20% range which
is in fact comparable to the 17.2% threshold lower-bound of
the (non single shot) space-time RG decoding discussed in the
next section. Similar to the tesseract code we observe that the
scaling of memory time with p is again worse for L = 4 as
compared to L = 3 and only slightly better for L = 6 as
compared to L = 5. In Fig. 10 we explain that, for a L = 4
code, the memory can be corrupted within a single correction
cycle with only two errors, which is not possible for a L = 3
code.

B. Renormalization group decoder

To assess the performance of the renormalization group
decoder we study the crossing points of the curves pL(p) for
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Fig. 9: (color online) Memory time depending on the error
strength for different system sizes L with faulty measurements
using the single-shot decoder. Panel (a): tesseract code. Panel
(b): single-shot decoder applied to the two-dimensional version
of the tesseract code corresponding to the 2D Ising model.
Linear interpolating lines are pL = apb, with b given in the
legend. Black dotted line gives the function (1 − p)/p, the
memory time of an un-encoded qubit, for reference.

different system sizes L ∈ {2, 3, 5, 9}. For all error models
we observe that the crossing point between p2 and p3 occurs
at a substantially higher probability p as compared to the
crossing points between the three curves of p3, p5 and p9.
We attribute this to finite-size effects. Also note that decoding
the L = 2 tesseract code does not require coarse-graining.
The three curves of p3, p5 and p9 do cross each other in
a single point (within accuracy) and we report on this point
as the threshold. Note that this number should be taken with
caution due to the small number of system sizes and the lack
of analytical proof for the existence of a threshold with this
decoder.

For the phenomenological error model, with perfect mea-
surements, we observe a threshold of 7.3±0.1%. This number
is lower than the conjectured theoretical optimum using a

Fig. 10: (color online) Illustration of how two measurement
errors can lead to logical failure in the L = 4 tesseract
code. Depicted is a (v1, v2) = constant cross-section. Red
thick lines indicate the two measurement errors, the black dot
indicate its end points ∂1(eerror), which is also the endpoint
of the measurement correction, depicted by two green dotted
lines. (Note that there are actually four different ways to
optimally correct this syndrome). The eight green squares
indicate the qubit correction. Checking whether the memory is
corrupted is done by a perfect measurement, giving rise to the
boundary of the 8 flipped qubits, again being the two red and
the two green lines. Since the algorithm of finding a minimal
surface is not deterministic, finding a corresponding minimal
surface could amount to flipping qubits corresponding to the
lower 8 faces. The 16 qubits which are flipped in total form
a logical operator and hence logical failure occurs.

maximum likelihood decoder (11.003% [19]). The p2 and the
p3 curve are consistent with a apd

d
2 e behavior, where d = L2

is the distance of the code. The p5 curve seems to follow this
behavior only substantially below the threshold, that is, below
6%. We cannot confirm if the line p9 follows this behavior
within the range of p we considered.

For the phenomenological error model with faulty mea-
surements, we observe a threshold of 4.35 ± 0.1%. All data
is consistent with the scaling cLp

d d2 e, suggesting that the
threshold is unaltered when considering the error rate per QEC
cycle pround

L = 1
2 (1− (1− 2pL)1/L) ≈ pL/L.

When considering the gate-based error model, the threshold
is substantially lower, namely we find 0.31 ± 0.01% for Z
errors. Moreover, the curves have a scaling which is worse
than pd

d
2 e. This can be explained by propagation of errors

through the quantum circuit. During a stabilizer measurement
a single error could lead to up to three qubit errors (modulo
the stabilizer). A pd

d
6 e scaling is also not observed since it

might only be valid for substantially lower values of p.

The decoder discussed in this paper can also be used to
the decode the cubic code, having one surface-like logical
operator and one line-like logical operator [31]. We found
that for perfect syndrome measurement the surface-like logical
has a threshold of 17.2± 1%, see Fig. 11d. The threshold of
its line-like logical partner is expected to be the threshold of
the surface code under faulty syndrome measurements, as the
decoding problem of the two dimensional surface code with
faulty measurement maps directly onto decoding the cubic
code [18], [9].
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Fig. 11: (color online) Effective logical error p̄L depending on error strength p for different system sizes L and different
error models: panel a) phenomenological error with perfect syndrome measurement, panel b) phenomenological error with
faulty syndrome measurement, panel c) gate-based errors and panel d) cubic code with phenomenological errors with perfect
syndrome measurements. Linear interpolating lines are pL = apb, with b = dL

2

2 e for panel a) and b). Black dotted line gives
the function pL = p, the error of an un-encoded qubit, for reference. Black vertical dashed lines indicate the location of the
threshold, for reference.

VI. CONCLUSIONS

Although the tesseract code allows for a single-shot repair-
syndrome decoding procedure, we find that this method is
not competitive with earlier reported thresholds of the surface
code. Even though a single-shot repair-syndrome decoder will
have a threshold, the threshold is most likely not the same as
the optimal threshold obtained by space-time decoding in 5D
as we have argued in Section IV-A (see also Appendix F).

The renormalization group decoder that we introduce, treats
measurement and qubit errors on the same level. As far as
we are aware, its threshold of 4.35 ± 0.1% is higher than
any other threshold reported before for the same error model.
The optimal threshold of the surface code (using a maximum
likelihood decoder) is estimated to be 3.3% by [32] and
estimated to be lower bounded by 2.9% by [18]. We have no
reason to believe that the threshold for the four-dimensional

toric code using the same decoder, will be different than the
tesseract code.

Although the RG decoder leads to a threshold of the tesser-
act code which is higher than that of the surface code under
a phenomenological error model with faulty measurements,
it is still at least a factor of two lower than the theoretical
optimum of 11.003% [19] and almost a factor of two lower
than our own obtained threshold of 7.3%, both corresponding
to a phenomenological error model with perfect measurements.
One could study how the threshold of the tesseract code
behaves for different values of p 6= q, as was done in [33]
Chap. 4.5.4 for the toric code, to make a more thorough
analysis of the effect of faulty measurements.

Even though the RG decoder introduced in this paper
focuses on the problem of finding a minimal surface given
a boundary, its philosophy could equally well be applied to
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decoding any (d1, d2)-surface code and its performance could
be compared with the RG decoder for the surface code of [21],
[22] which uses message passing in addition to RG rescaling.

Ignoring the propagation of errors, the gate-based threshold
can be upper bounded by the threshold obtained using the
phenomenological error model in the following way. During a
single QEC round a single qubit is acted on by eight CNOTs
and two depolarizing error channels (during ancilla preparation
and readout). Hence, the effective probability of an X error
on a qubit is (8 · 8

15 + 2 · 2
3 )p = 5.6p and thus the gate-

based error threshold for our decoder should be no higher than
4.35
5.6 % ≈ 0.7%. This suggests that redesigning the decoder

to incorporate correlated errors, in analogy with [34], might
improve the threshold of 0.31± 0.01%.

Alternatively, one could use Shor error correction using cat
state ancillas [35] to minimize correlated errors. This would
imply that measurement data would be less reliable and such
scheme would still require eight rounds of CNOTs on each
data qubit. Thus whether such an approach is beneficial is
unclear at this moment, but a p 6= q threshold curve might
shed light on the matter. Another question is whether one can
locally modify the code so that the qubit degree is lower while
preserving or increasing the parity-check weight, for example
by locally concatenating with the [[4, 2, 2]]-code. The fact that
0.31± 0.01% is not competitive with the surface code might
be purely be due to lack of decoder strength. Interestingly,
using a decoder based on a neural network [36] one obtains
very similar thresholds for phenomenological error models,
with and without measurement errors. To find out whether
any decoder of the four-dimensional toric code, or tesseract
code, is competitive with the surface code one could study
the corresponding five-dimensional Z2-lattice gauge theory
with quenched disorder (see e.g. [37] for Monte Carlo studies
without disorder).
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APPENDIX

A. Counting vertices, edges and faces

In this Appendix we will count the number of vertices, edges
and faces of a tesseract code of size L. This can most easily
be done by realizing that every cell is a product of intervals
o =

∏
i[ai, bi], with bi−ai ≤ 1. The coordinates are restricted

to:

ai ≥ 0, bi ≤ L− 1 ∀i ∈ {1, 2} ,

ai ≤ L− 1, bi ≥ 1 ∀i ∈ {3, 4} .

For vertices we have that bi = ai and hence |VL| = L2(L−1)2.
For edges there is only one i for which bi = ai+ 1. There are
(L−1)L(L−1)2 edges oriented in the a1 and a2 direction, and
there are L3(L−1) edges oriented in the a3 and a4 direction,
which in total gives |EL| = 2L(L − 1)3 + 2L3(L − 1). The
cube set is of equal size by duality, see Appendix C. Faces
can be oriented in six different directions. The number of faces
oriented in a certain direction again depends on that direction.
It can be calculated in an analogous manner and results in:

orientation of faces number of faces
f{1,2}(v) (L− 1)4

f{1,3}(v), f{1,4}(v), f{2,3}(v), f{2,4}(v) L2(L− 1)2

f{3,4}(v) L4

giving rise to a total of (L− 1)4 + 4L2(L− 1)2 + 4L2 faces.

B. Small codes

In this Appendix we present the number of qubits and
distance of small tesseract codes and compare them to surface
codes and cubic codes of comparable distances. Following the
argument in Appendix A, the number of qubits for a tesseract
code of size L1 by L2 by L3 by L4 is given by

L1L2L3L4 + (L1 − 1)(L2 − 1)(L3 − 1)(L4 − 1)+

[L1(L2 − 1) + (L1 − 1)L2][L3(L4 − 1) + (L3 − 1)L4] .

From Eqs. (6) and (7) it can be understood that the minimal
support of a logical X (Z) operator is L3L4 (resp. L1L2).
A tesseract code is clearly larger than a surface code for the
same distance. A cubic code obtained by setting one of the
dimensions to 1, can be seen as a trade-off between the two.
By choosing all lengths unequal to one can construct a variety
of rectangular codes of different sizes, see Table II.

C. Duality

A feature that is understood about the 2D toric (or surface)
code and the 4D toric code is that the cellular complexes on
which these codes are based are self-dual. We can argue that
the same feature holds for the tesseract code, i.e. one can show
that the code is self-dual up to a rotation of the complex. This

L1 L2 L3 L4 n d

tesseract 1 1 1 1 1 1
codes 2 2 2 2 33 4

n ∝ 6d2 3 3 3 3 241 9
4 4 4 4 913 16

surface 4 1 4 1 25 4
codes 9 1 9 1 145 9

n ∝ 2d2 16 1 16 1 481 16
rectangular 2 3 2 3 89 6

4D 3 4 3 4 469 12
2 8 4 4 847 16

rectangular 4 1 2 2 28 4
3D 6 1 2 3 71 6

n ∝ 3d2 9 1 3 3 177 9
12 1 3 4 331 12
16 1 4 4 616 16

TABLE II: Number of physical qubits n and distance d of
various small codes which encode a single qubit. All codes
are obtained by varying the four linear dimensions L1, L2,
L3 and L4 in the construction in Sections II-B and II-C under
the constraint that L1L2 = L3L4 = d. Note that the necessary
choice L2 = 1 for the cubic code makes the distance scale as
L1 which is a reflection of the fact that the logical X operator
is line-like for the cubic code.

is a relevant conclusion for two reasons. When analyzing the
performance of the code in terms of correcting independent
X and Z errors, we only need to consider one of the two (X
or Z errors). The duality can be used to perform a Hadamard
gate transversely as in the surface code, and if required, the
complex could be rotated back by code deformation around
the boundaries (as was first done for the surface code in [9]).

The following duality transformation maps edges into cubes
and faces into faces:

e{i}(v)→ e∗{i}(v) = cAll\i(v + ai) ,

f{i,j}(v)→ f∗{i,j}(v) = fAll\{i,j}(v + ai + aj) ,

c{i,j,k}(v)→ c∗{i,j,k}(v) = eAll\{i,j,k}(v + ai + aj + ak) ,

where All\S uses All = {1, 2, 3, 4}. Conventionally, such
duality mappings are also accompanied with an additional shift
of half a lattice-spacing in all directions. The dual tesseract
can also constructed by defining U∗ = [0, L]2 × [1, L]2 and
B∗ = {

∑
i viai ∈ U |v1 ∈ {0, L} or v2 ∈ {0, L}} and

considering only those cells which are contained in U∗ but
not fully contained in B∗.

Duality states that

o ⊂ U
o 6⊂ B

}
⇔
{
o∗ ⊂ U∗
o∗ 6⊂ B∗ .

This can be seen by using the interval representation o =∏
i[ai, bi] of cells, also used in Appendix A. The dual cell

o∗ =
∏
i[a
∗
i , b
∗
i ] satisfies a∗i = bi and b∗i = ai + 1. The above

inclusions of o in the spaces U and B can be recast in terms
of ai and bi:

ai ≥ 0, bi ≤ L− 1 ∀i ∈ {1, 2}
ai ≤ L− 1, bi ≥ 1 ∀i ∈ {3, 4}

}
⇔{

a∗i ≤ L− 1, b∗i ≥ 1 ∀i ∈ {1, 2}
a∗i ≥ 1, b∗i ≤ L ∀i ∈ {3, 4} ,
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which can be straightforwardly checked. Also, the duality
preserves inclusion in the sense that if o1 ⊂ o2 then the
transformed cells obey o∗2 ⊂ o∗1, showing that the code is
self-dual (up to a rotation and a translation).

D. Logic

Although a four-dimensional topological code is more chal-
lenging to physically implement, it potentially could allow for
low-overhead or constant-depth constructions for non-Clifford
gates, at least this is not precluded by the Bravyi-Koenig
no-go theorem for low-dimensional codes [38], [39]. CNOT
gates can be performed by lattice code surgery in which
logical ZZ and XX measurements are performed between
two logical tesseract blocks at their boundaries and a logical
ancilla tesseract block, in analogy with their implementation
for a surface or cubic code, see e.g. [4]. However, there is no
mapping from a color code [40] that would directly allow for
logic for the tesseract code which goes beyond the Clifford
group. The lowest-dimensional color code which has only
surface-like logical operators and a transversal gate beyond
the Clifford group is a six-dimensional color code [11]. The
question of universal logic for 4D or 5D surface codes with
only surface-like logicals is thus essentially open.

In this Appendix we will prove that the tesseract code
only allows for constant-depth constructions of logical gates
which are elements of a restricted Clifford group. This proof
makes an essential assumption on how blocks of tesseract
code are glued together, in other words, what is the O(1)
local neighborhood of a qubit in the code. It therefore does
not include all possible ways of using the tesseract code, e.g.
it is not clear whether some of the ideas in [40] could give
rise to non-Clifford constant-depth gates or non-Clifford gates
via quantum-local gate code deformation for this code. The
restricted Clifford group consists of those Clifford operators
mapping any Pauli X to products of Pauli X operators and
similarly for Z (Hadamard gates are excluded). An example
is the CNOT gate.

Consider n copies of the tesseract code with qubits labeled
by faces f in each copy and an index i ≤ n labeling the
copy. A local two-qubit gate acts on qubits corresponding
to (f, i) and (f ′, j) such that the distance between the two
faces f and f ′ in one tesseract code is O(1). This choice
of locality is not a unique choice (i.e. one could have taken
copies of tesseract code which are, say, rotated relative to each
other so that the distance between faces in different copies is
transformed relative to the distance between faces in a single
copy) and the choice affects the proof.

A constant-depth circuit is a circuit of such local two-qubit
gates of depth independent of code size. Let the Xi and Zi
for i ≤ n denote the logicals of each copy of the tesseract
code. Consider any constant-depth gate keeping the code space
invariant and let U denote its restricted action to the code
space. We will argue that (1) Vi := UZiU

† commutes with
any Zj and that (2) XjViXjV

†
i = cijI for some cij for any

pair (i, j). Consider the representative of Zj given in Eq. (7)

and consider an alternative “moved-over” representative

Z
alt
j =

L−1∏
v3,v4=0

Zf{3,4}((L−1)(a1+a2)+v3a3+v4a4) .

We have [Z
alt
j , Vi] = 0 since Vi has support on qubits

corresponding to faces contained in the space [0, d]2 × [0, L]2

where d is some O(1) constant depending on the circuit
depth and locality of the gates used. But the moved-over
representatives Z

alt
j have support only on qubits corresponding

to faces contained in {L−1}2×[0, L]2 and hence all commute
with Vi. Similarly, consider representatives for Xj given in
Eq. (6), having support on qubits corresponding to faces
contained in the space [0, L − 1]2 × [0, 1]2. The overlap of
the support of Vi and Xj is restricted to O(d2) = O(1)
qubits and hence, following arguments in [38] we have that
XjViXj = cijVi. Moreover, due to Hermiticity of Vi, we have
that cij ∈ {−1, 1}.

From the commutation between Vi and Zj and since
products of Zj form a complete set of commuting logical
observables, it follows that Vi can be written as sums of
products of Zj or, in other words, Vi is necessarily ‘diagonal
in the Z-basis’:

Vi =
n∏
j=1

(β0
j I + β1

jZj) .

Since XjViXj = ±Vi we have that either β0
j = 0 or β1

j = 0

for any j. Hence Vi can be written as a product of Zj . By
duality of the code, we can set up an identical argument for
Wi = UXiU

†, showing that Wi is a product of some Xjs.
This then implies that U is an element of the restricted Clifford
group.

E. CNOT ordering

In this section we will go into details of the CNOT ordering
used to measure the stabilizers of the tesseract code as
described in Section III-B. Consider any two stabilizers SXe
and SZc having overlapping action on two qubits labeled by
the faces f1 and f2. Consider the four CNOT operators acting
between these qubits, we label them by the tuples (e, f1),
(c, f2), (e, f2) and (c, f2). In order for the stabilizers to be
measured correctly, either the CNOT of (e, f1) is performed
before the CNOT of (c, f1) and then (e, f2) should be done
before (c, f2), or (c, f1) is performed before (e, f1) and then
(c, f2) should be performed before (e, f2) as well. We show
that the CNOT schedule as described in the main text has
indeed this property for any pair of faces and overlapping X-
and Z-stabilizers. This implies that one can fully interleave
the circuits for X- and Z-stabilizer measurement, leading to
8 CNOT rounds.

Let the cube corresponding to the Z-stabilizer be labeled
as c{i,j,k}(w) and let the edge corresponding the X-stabilizer
be labeled as e{l}(v). In order for these stabilizers to have
overlapping support one needs at least l ∈ {i, j, k}. We assume
without loss of generality that l = i and j < k in which
case overlapping stabilizers obey v = w + sjaj + skak for
sj , sk ∈ {0, 1}. The two faces corresponding to the qubits on
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Fig. 12: (color online) Example of the CNOT labeling for the
case of (i, j, k) = (3, 1, 2) and (sj , sk) = (1, 0). Gray squares
represent faces/qubits fi and the thick blue line represents the
edge/X-stabilizer e. The direction labeling the CNOT (e, f1)
is a1 and the CNOT (e, f2) is −a2.

which both stabilizers have support are then labeled by f1 =
f{i,j}(w + skak) and f2 = f{i,k}(w + sjaj). See Fig. 12 for
an example in which (i, j, k) = (3, 1, 2) and (sj , sk) = (1, 0).

As explained in the main text, the 8 CNOT rounds are la-
beled by a direction d = (−1)nas, n ∈ {0, 1}, s ∈ {1, 2, 3, 4}
from qubit to ancilla. The ordering of CNOTs in terms of
this direction is [−a1,−a2,−a3,−a4,a4,a3,a2,a1]. During
a single round, a CNOT gate is applied between qubit f{i,j}(v)
and a cube ancilla at c{i,j,s}(v + nas) or an edge ancilla at
e{i,j}\s(v+(1−n)as), depending on whether s ∈ {i, j}. From
this we can infer the direction label of the rounds in which the
four CNOTs under consideration are applied, see Table. III: we
see that the ordering of the four CNOTs under consideration
depends on the two labels sj and sk. The ordering is such that
either the SXe CNOTs are performed before the SZc CNOTs
or vice versa.

(sj , sk)
CNOT direction d (0,0) (0,1) (1,0) (1,1)
(e, f1) −(−1)sjaj 1 1 4 4
(e, f2) −(−1)skak 2 3 2 3
(c, f1) (−1)skak 3 2 3 2
(c, f2) (−1)sjaj 4 4 1 1

TABLE III: Temperal ordering (e.g. 1, 2, . . .) of CNOTs as-
sociated with (e, f) and (c, f) depending on their relative
locations given by sj and sk. One observes that the ordering
obeys the desired property.

F. Higher-dimensional Surface Codes and Equivalence Be-
tween Minimum-Weight Decoding Problems

In this section we generalize the family of surface codes
to a D-dimensional hypercubic lattice for any dimension D =
d1+d2. Here d1 is the number of directions in which one has a
‘smooth’ boundary and d2 is the number of directions in which
one has a ‘rough’ boundary. These (d1, d2)-surface codes are
again defined over cellular complexes of spaces namely the
spaces

U =

d1∏
i=1

[0, Li − 1]×
D∏

i=d1+1

[0, Li] ,

B = {v ∈ U s.t ∃i > d1, vi ∈ {0, Li}} .

Consider cells oI(v) labeled by vertices v =
∑D
i=1 viai, with

unit vectors ai and integer coefficients vi, defined as,

oI(v) =

{
v +

∑
k∈I

skak | sk ∈ [0, 1]

}
.

The set I contains the orientation and its cardinality |I| equals
the dimensionality of the cell oI(v). Qubits are defined on
d2-cells which are contained in U but not contained in B. X-
and Z-stabilizers are defined for d2−1-cells and d2 + 1-cells,
respectively, which are contained in U , but not in B:

SXo :=
∏

o′:o⊂o′
Xo′ , SZo :=

∏
o′:o′⊂o

Zo′ .

The number of encoded qubits is given by dim(Hd2(U,B)) =
1. All other homology groups are trivial. The support of the
logical X operator is d1-dimensional and the support of the
logical Z operator is d2-dimensional. Explicitly:

X =

L1−1∏
v1=0

· · ·
Ld1
−1∏

vd1=0

X
f{d1+1,...,D}(

∑d1
i=1 viai)

and

Z =

Ld1
−1∏

vd1=0

· · ·
LD−1∏
vD=0

Zf{d1+1,...,D}(
∑D

i=d1+1 viai)
.

Under a duality transformation of the cell complex (as in
Section C), the code is transformed to a (D − d1, D − d2)-
surface code, hence for d1 = d2 = D/2 the construction is
self-dual. If one treats the X-stabilizers as the gauge symmetry
of a Hamiltonian constructed itself from only Z-stabilizers,
then these Hamiltonians will be Ising gauge models (without
magnetic fields) as defined by Wegner [41].

Consider now the decoding problem for Z errors for a
(d1, d2)-surface code in the phenomenological error model
described in Section III-A with syndrome as well as qubit
errors, both with probability p. Repeated faulty syndrome
measurements (T times, labeled by t ∈ {0, 1, ..T − 1}, with
the last round being perfect) of all X-stabilizers of a (d1, d2)-
surface code can be interpreted as forming the boundary of a
d2-dimensional error surface. The minimum-weight decoding
problem is then to find a surface of minimal area given this
boundary.

More precisely, let UST = U × [0, T − 1] and BST = B ×
[0, T −1], so that the time-boundary is ‘smooth’ (not allowing
for any hypersurface to attach). The d2-cell õI(v+taD+1) can
either represent a measurement error if D+1 ∈ I (oriented in
the time direction) or a qubit error if D + 1 6∈ I (oriented
in the spatial direction). In the former case it corresponds
to a measurement error of the X-stabilizer corresponding to
the d2 − 1-cell oI\D+1(v) at round t. In the latter case it
represents an error of the qubit corresponding to the d2-cell
oI(v) occurring between measurements at times t and t− 1.

The syndrome itself consists of d2− 1-cells õI(v+ taD+1)
which are either oriented in the time direction (D+ 1 ∈ I) or
not. In the latter case it signifies a change in outcome of the
faulty measurement of the stabilizer oI(v), between rounds t
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and t − 1. In the former case it signifies a violation of the
linear dependency relation∏

o′:o⊂o′
SXo′ = I ,

labeled by the d2−2-cell o = oI\D+1(v) during measurement
round t (when d2 < 2 we do not have such dependency).
The problem of minimum-weight space-time decoding for the
code given by U with boundary B can thus be stated as
the minimum-weight decoding problem for a surface code
associated with the complex UST with boundary BST. The
qubits of the higher-dimensional code are defined for each
d2-cell õI(v + taD+1) ∈ UST but not contained in BST,
while the X-stabilizers are associated with the d2 − 1-cells
õI(v + taD+1) ∈ UST but not contained in BST. The logical
Z operator of the higher-dimensional code has the same
minimum weight as the logical Z of the lower-dimensional
code: deformation in the time-direction cannot minimize the
weight since the logical Z is stretched between the rough
boundaries. We conclude that the minimum-weight space-
time decoding problem of a (d1, d2)-surface code (faulty
syndrome measurements) can be cast as the problem of
minimum-weight decoding in the (d1 + 1, d2)-surface code
(perfect syndrome measurements). This mapping is not only
expected to hold for minimum-weight decoding but could be
straightforwardly extended to maximum-likelihood decoding
as analyzed in [9], [18]. It is for this reason that identical
threshold (upper-bounds) in Table I are stated for codes related
by this D → D + 1 mapping. Similarly, for X errors, the
mapping identifies faulty syndrome decoding of a (d1, d2)-
surface code with perfect decoding of a (d1, d2 + 1)-surface
code (by first going to the dual complex in which rough and
smooth boundaries are interchanged, then extending this in
the time-direction with a smooth boundary to a space-time
complex, and taking the dual again).

For sufficiently high dimensions d2 ≥ 2 one can consider
single-shot decoding as described in Section IV-A. The syn-
drome consisting of d2−1-cells is a closed hypersurface since
it is itself the boundary of qubit and measurement errors on the
d2-cells. In single-shot decoding one considers a single time-
slice t and thus we project out, for a given t, any of the d2−1
cells õI(v + taD+1) which are oriented in the time direction,
as well as any d2 − 1 cell at coordinates v + t′aD+1 with
t′ 6= t. This leaves a d2 − 1-dimensional hypersurface esynd in
D dimensions with a d2− 2-dimensional boundary. Repairing
the syndrome can be done by finding a minimal d2 − 1-
dimensional hypersurface ecor given this boundary, where
∂d2−1(esynd) = ∂d2−1(ecor). This step in decoding is effective
when the repaired syndrome ecor + esynd is the boundary of
a set of correctable qubit errors, so that upon applying these
corrections, the next round of single-shot decoding receives
incoming errors according to some ‘effectively local’ error
model. One expects that precisely when the repaired syndrome
starts to become homologically non-trivial (with boundaries of
the lattice appropriately chosen), that is, when logical failure
starts to happen in minimum-weight decoding of Z errors of a
(D−d2+1, d2−1)-dimensional surface code (i.e. for its d2−1-
dimensional logical operator), that the repaired syndrome may

not lead to correctable qubit errors. In this sense single-shot
decoding is energy-barrier limited as discussed in [20]. Hence
we conjecture that for, say, the tesseract code (d1 = 2, d2 = 2)
with faulty measurements, the threshold for single-shot de-
coding is bounded by the minimum of the thresholds for
perfect measurements of the line-like logical in 4D ((3, 1)-
surface code) and the surface-like logical in 4D ((2, 2)-surface
code). Space-time decoding for the tesseract code corresponds
to perfect measurement decoding of the surface-like logical
in 5D ((3, 2)-surface code), hence one expects that optimal
thresholds of single-shot versus space-time decoding do not
coincide.


