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A B S T R A C T

Numerical simulation is one of the most important tools required for financial and operational management of
geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical
models for uncertainty analysis, causing simulation performance to become a critical issue. Geothermal reservoir
modeling requires the solution of governing equations describing the conservation of mass and energy. The
robust, accurate and computationally efficient implementation of this solution suggests an implicit time-ap-
proximation scheme, which introduces nonlinearity into the system of equations to be solved. The most com-
monly used approach to solving the system of nonlinear equations is based on Newton’s method and involves
linearization with respect to nonlinear unknowns. This stage is the most complicated for implementation and
usually becomes the source of various errors. A new linearization approach – operator-based linearization – was
recently proposed for non-isothermal flow and transport. The governing equations, discretized in space and time,
were transformed to the operator form where each term of the equation was specified as the product of two
operators. The first operator comprises physical properties of rock and fluids, such as density or viscosity, which
depend only on the current state of a grid block, fully defined by the values of nonlinear unknowns. The second
operator includes all terms that were not included in the first operators, and depends on both the state and
spatial position of a control volume. Next, the first type of operators was parametrized over the physical space of
a simulation problem. The representation of highly nonlinear physics was achieved by using multi-linear in-
terpolation, which replaces the continuous representation of parametrized operators. The linearization of the
second type of operators was applied in the conventional manner. In this work, we investigated the applicability
of this approach to the geothermal processes, specifically for low-enthalpy and high-enthalpy geothermal
doublet models with hydrocarbon co-production. The performance and robustness of the new method were
tested against the conventional approach on a geothermal reservoir of practical interest. This approach shows
significant improvement of geothermal simulation performance, while errors, introduced by coarsening in
physics, remain under control. The simplicity of implementation on emerging computational architectures and
nonlinearity reduction provide advanced opportunities for uncertainty quantification and risk analysis of geo-
thermal projects.

1. Introduction

The modern development of geothermal resources requires high-
performance numerical reservoir simulations. Numerical models are
used to predict and compare the performance of different reservoir-
development schemes, defined by, e.g., the lifetime of a geothermal
doublet in the case of low-enthalpy reservoirs or the recovery of a
geothermal reservoir. Complex and fine-scale models enhance predic-
tion accuracy but demand more computational resources. Large en-
sembles of reservoir models are run to perform sensitivity analysis and
reduce uncertainties in parameters estimation. The quality of these
processes depends on the number of models in ensembles, which is
limited by the computational time required for a single model.

Therefore, efficient reservoir simulation performance is essential for
geothermal industry: any noticeable improvement could positively af-
fect production workflow.

Numerical geothermal reservoir simulation requires discretization
of governing Partial Differential equations (PDE), which describe mass
and energy transport in a reservoir. The combination of Finite Volume
discretization in space and Fully Implicit Method (FIM) approximation
in time provides a robust, accurate and efficient modeling approach
(Aziz and Settari, 1979). However, an implicit nature of the time ap-
proximation increases the nonlinearity of the governing equations. For
those geothermal models that use both gas and liquid phases, complex
multiphase behavior and the assumption of thermodynamic equili-
brium further amplify nonlinearity.
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In reservoir simulation, Newton-Raphson‘s method has become a
standard solution for solving the nonlinear system of equations by
linearizing it. The linearization is one of the most important and chal-
lenging components of a reservoir simulation framework. This step
requires the determination of the derivatives of all residual equations
with respect to independent variables. The particular set of independent
variables (i.e., nonlinear unknowns) is defined by a nonlinear for-
mulation. The flexibility of linearization reflects the simplicity of
changing the nonlinear formulation in an existing simulation frame-
work. Based on the formulation, all properties and their derivatives
need to be determined and assembled into the matrix of partial deri-
vatives (Jacobian). The linearization stage defines the accuracy and
robustness of nonlinear solution, dictates the data layout of a linear
system and therefore has a great impact on the reservoir simulation
performance.

There are three most commonly used linearization approaches. The
first one, numerical derivatives, provides flexibility in the im-
plementation (see Pruess, 2006 for example), but usually lacks ro-
bustness (Vanden and Orkwis, 1996) and may lead to a stalled behavior
in some cases (O'Sullivan et al., 2014). The second one, straightforward
analytical derivations, requires fixing the nonlinear formulation and
physical models used in a computational framework and that often
limits its flexibility (e.g Geoquest, 2011). Finally, Automatic Differ-
entiation (AD) technique provides both flexibility and robustness to the
development of simulators. In reservoir simulation, an Automatic Dif-
ferentiation General Purpose Research Simulator (ADGPRS) was de-
veloped for simulation of generic thermal-compositional problems
(Voskov and Tchelepi, 2012; Zaydullin et al., 2014). ADGPRS is a
unified reservoir simulation framework providing an extensive set of
nonlinear formulations (Voskov, 2011; Zaydullin et al., 2013), in-
cluding different formulations for a geothermal model (Wong et al.,
2015; Wong et al., 2016) and a generic treatment of complex phase
behavior (Iranshahr et al., 2010; Iranshahr et al., 2013). Unfortunately,
the AD technique by design inherits computational overhead and
therefore decreases reservoir simulation performance. Thereby, there is
a clear demand for robust, flexible and computationally efficient line-
arization approach.

A new operator-based linearization (OBL) approach was recently
introduced by Voskov (2017). It suggests a different way of lineariza-
tion, making use of the discrete representation of the physics. In the
governing PDE, discretized in time and space, the terms which depend
only on state variables are approximated by piece-wise multilinear
operators. For a given problem, the current physical state fully defines
operators. Therefore, each operator can be parametrized over the
multidimensional space of nonlinear unknowns for a given distribution
of supporting points, resulting a set of tables. In the course of a simu-
lation, the values of the operators, as well as partial derivatives with
respect to nonlinear unknowns, are obtained from the tables using
multilinear interpolation. Being as flexible as numerical derivatives,
OBL is more consistent and reliable, since the operators are piecewise
multilinear functions with derivatives related to the interpolation
coefficients. Thus the proposed approach always provides an accurate
Jacobian, avoiding stalled behavior and instabilities, which may occur
due to the application of numerical derivatives (e.g. challenges in
THOUGH2 simulation described by Vanden and Orkwis, 1996; Noy
et al., 2012). In addition, it reduces the level of nonlinearity of the
problem to be solved, providing a significant improvement in nonlinear
solver performance.

In the original approach of Voskov (2017), OBL was described and
applied to isothermal hydrocarbon systems. The version of the OBL
approach with adaptive parametrization of physical operators was im-
plemented in the ADGPRS framework and tested for petroleum appli-
cations in Khait and Voskov (2017a). A special version of a stand-alone
isothermal prototype with a limited number of components was im-
plemented in both CPU and GPU architectures in Khait and Voskov
(2017b). Here, we farther extend the new prototype framework to

thermal systems and investigate an applicability of the OBL method to
simulation of geothermal processes, including low-enthalpy and high-
enthalpy systems with hydrocarbon co-production. First, we briefly
describe the modeling approach. Next, we apply OBL to a realistic
geothermal reservoir and compare the performance and solution ac-
curacy against the conventional approach, implemented in ADGPRS.
The new simulation prototype demonstrates better performance of si-
mulations with discrete representation of physics where the resolution
of interpolation tables controls an approximation error. The proposed
simulation framework becomes the essential tool for uncertainty
quantification and risk analysis where the performance of forward si-
mulation is the major limiting factor.

2. Modeling approach

Here we describe the state-of-the-art modeling approach of a non-
isothermal multiphase multicomponent flow, which was used as a re-
ference solution, followed by the description of operator-based linear-
ization (OBL).

2.1. Conventional modeling approach for thermal compositional problem

This section contains the description of a thermal multiphase com-
positional problem with np phases and nc components. This problem can
be described by nc equations of mass conservation and one energy
equation:
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where:

– ϕ – porosity,
– xcj – the mole fraction of component c in phase j,
– sj – phase saturations,
– ρj – phase molar density,
– K – permeability tensor,
– krj – relative permeability,
– μj – phase viscosity,
– pj – pressure in phase j,
– γj – gravity vector,
– D – depth (backward oriented).
– Uj – phase internal energy,
– Ur – rock internal energy,
– hj – phase enthalpy,
– κ – thermal conduction.

Next, a finite-volume discretization on a general unstructured mesh
and backward Euler approximation in time are applied:
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where V is a control volume and =q q V͠j j is a source of phase j. For
simplicity, we neglect both gravity and capillarity in the equations
above. Here a Two-Point Flux Approximation (TPFA) is applied with an
upstream weighting. Based on these simplifications, Δψl becomes a
simple difference in pressures between blocks connected via interface l,
while ΔTl is a temperature difference between those blocks; = k μΓ Γ /j

l l
rj
l

j
l

is a phase transmissibility, where Γl is a constant geometrical part of
transmissibility (which involves permeability and the geometry of the
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Eqs. (3) and (4) are approximated in time using a Fully Implicit

Method (FIM). This suggests that convective flux terms x ρ Γ Δψcj
l

j
l

j
l l for

mass and h ρ ψΓ Δj
l

j
l

j
l l for energy equation as well as the conductive flux

TΓ Δc
l l have to be chosen based on values of nonlinear unknowns at the

current time step, introducing additional nonlinearities in flux. Also,
the closure assumption of instantaneous thermodynamic equilibrium
(equality of chemical potentials) further amplifies nonlinearities.

An overall molar formulation (Collins et al., 1992) was chosen
among different nonlinear formulations. In this formulation, thermo-
dynamic equilibrium is required at every nonlinear iteration. Hence,
the following system must be solved at any grid block contained a
multiphase (np) multicomponent (nc) mixture:
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This procedure, also known as a multiphase flash (Lucia et al.,
2000), obtains the phase compositions of a mixture at a given state.

Here ∑ ∑=
= =

z x ρ s ρ s/c cj j j j j
j 1

n

j 1

np p

is the overall composition (i.e., overall

mass fraction), f p T x( , , )cj cj is the fugacity of component c in phase j and

∑= ρ s ρ sν /j j
j

j jj is the mass fraction of the phase. The multiphase flash

solution provides the values of xcj and νj. In the molar formulation, the
unknowns are p, zc and T (or h). The physical state ω is completely
defined by these variables. As soon as we obtain the solution of mul-
tiphase flash, we can determine all derivatives with respect to nonlinear
unknowns using the inverse theorem (see Voskov and Tchelepi, 2012,
for details).

The conventional linearization approach for the resulting system of
nonlinear equations is based on the Newton-Raphson method, which
solves on each nonlinear iteration a linear system of equations in the
following form:

− + =+J ω ω ω r ω( )( ) ( ) 0,k k k k1 (9)

where J is the Jacobian defined at a nonlinear iteration k. The con-
ventional approach assumes an accurate numerical representation of
properties and their derivatives with respect to nonlinear unknowns.
This may demand either various interpolations (for properties such as
relative permeabilities) or solution of a highly nonlinear system in

combination with chain rule and inverse theorem. As a result, the
nonlinear solver has to resolve all small variations in property de-
scriptions, which are sometimes unimportant due to the numerical
nature and uncertainties in property evaluation.

2.2. Operator-based linearization approach

Following the OBL approach (Voskov, 2017), all variables in the
Eqs. (3) and (4), excluding ones from phase source term, were in-
troduced as functions of a physical state ω and/or a spatial coordinate ξ.
We applied several simplifications and assumptions. First, porosity was
considered as a pseudo-physical state variable. This step not only al-
lowed to reduce the number of state-dependent operators but also
provided a way to extend the compositional model to systems with
precipitation and dissolution of solid phase(s). Second, the rock internal
energy and thermal conduction were assumed to be spatially homo-
geneous. These premises were expressed as following:
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Under the physical state ω we assume the unification of all state
variables (i.e., nonlinear unknowns: pressure, temperature, saturations)
of a given control volume. Flux-related fluid properties are defined by
the physical state of upstream block ωup, determined at interface l.
Next, a state-dependent operator was defined as a function of the
physical state only, therefore it is independent of spatial position and
represents physical properties of fluids and rock; a space-dependent
operator was defined as a function of both physical state ω and spatial
coordinate ξ. Then, each term in the Eqs. (3) and (4), with exception for
phase source terms, was represented as a product of state-dependent
and space-dependent operators. Discretized mass conservation equation
reads:
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Here

– ω, ωn – state variables on the current and previous timestep re-
spectively,

– u – well control variables,
– pa, pb – pressures in blocks a and b connected through interface l.

Discretized energy conservation equation reads:
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Here Ta, Tb are temperatures in blocks a and b connected through in-
terface l. Capillarity and gravity effects are neglected in the existing
description of the OBL for simplicity. These effects influence the com-
plexity of flux approximation and should not affect the OBL approach
except for the more complex structure of state-dependent operators.

Once these transformations are applied to the governing equations,
they identified and distinguished the physical state-dependent opera-
tors (αc, βc, αe, βe, γe) in each term of both mass (3) and energy (4)
conservation equations. The only exception was made for the source/
sink term which can also be processed in a similar manner based on
state, space and additional well control variables. Coarsening in physics
was achieved by an approximate representation of operators αc, βc, αe,
βe and γe within the parameter-space of a simulation problem.

For example, in a binary system with 2 components and 2 phases,
which are widely used in geothermic applications, there are only three
independent variables in the case of overall molar formulation: pressure
p, temperature T and one independent overall composition z. The
pressure and temperature ranges are defined by initial and production/
injection conditions at wells, while the overall composition is naturally
limited by the interval [0,1]. As mentioned above, porosity was added as
a pseudo-physical state variable with the corresponding range [0,1].
Next, the interval of each of state variables was divided by the same
number m of uniformly distributed points, hereafter referred to as the
resolute ion of interpolation table. This resulted in a set of vectors pm,
tm, zm and ϕm which can be interpreted as the discrete representation of
the physical space in a simulation. At the pre-processing stage, opera-
tors αc, βc, αe, βe and γe were evaluated at every point of discrete
parameter space p t z ϕ{ , , , }m m m m

0 and stored in multi-dimensional ta-
bles αc

m, αe
m, βcm, βem, γem. During the course of simulation, the values

of state-dependent operators were interpolated along with derivatives
for each grid block using created tables. This provided a continuous
description based on the interpolation procedure, which accuracy was
controlled by the resolution of discretization in the parameter space.

This representation simplifies significantly the implementation of
any complex simulation framework. Instead of keeping track of each
property and its derivatives with respect to nonlinear unknowns, we
can construct an algebraic system of equations with abstract algebraic
operators representing the complex physics. The performance of this
formulation benefits from the fact that all the expensive evaluations can
be done at the pre-processing stage in the limited number of supporting
points and are not required in the course of simulation. In addition, the
performance of the nonlinear solver is improved since the Jacobian is
constructed based on a combination of piece-wise linear operators,
which makes system behavior more linear.

3. Numerical results

In this section, we introduce numerical results of simulations based
on the described approach. First, in subsection 3.1, we present a three-
dimensional heterogeneous model describing a realistic reservoir for
low-enthalpy geothermal operations. We show a comparison between
simulation using the conventional geothermal formulation in ADGPRS
(Wong et al., 2015) and using the COMSOL simulation platform
(COMSOL, 2015), which was utilized for a low-enthalpy geothermal
simulations in the past (Saeid et al., 2015). COMSOL is an interactive
simulation software, where one can model problems from different

application fields (e.g., electrical, mechanical, chemical or fluid flow).
The penalty of this generality is low computational performance of the
simulation.

Further, in subsection 3.2, we display the results of a simple sensi-
tivity analysis of the geothermal model, based on the variation of a
doublet position. In subsection 3.3 we present a convergence study of
the operator-based linearization for the one-component geothermal
model based on different resolutions of parameterized tables using the
same reservoir. Finally, similar convergence analysis is performed for a
geothermal system with natural gas co-production in low-enthalpy
(subsection 3.4) and high-enthalpy (subsection 3.5) regimes.

3.1. Three-dimensional realistic heterogeneous geothermal reservoir

Here, we present the results of a geothermal simulation based on the
realistic geological model introduced by Willems et al. (2016). This
model is one of the realizations of sedimentological simulation for the
Nieuwerkerk sedimentary formation in the West Netherlands Basin.
These realizations have been generated for an investigation of perfor-
mance of a doublet (a pair of injection and production wells) in low-
enthalpy geothermal systems. Reservoir dimensions are
1 km×2 km×50m and the discretized model contains
50× 100×20 grid blocks. Both wells are placed in the middle of
model, along the long side (Y-axis) with spacing of 1 km; see Fig. 1. The
fluvial sandstone bodies are located along the longer side of reservoir,
with the porosity distributed within the range [0.16, 0.36] and per-
meability distributed within the range [6,3360] mD. The boundary
conditions along the short (X-axis) of the reservoir are set to a constant
initial pressure; the boundary conditions at the other sides are set to no-
flow. The reservoir in Fig. 1 is vertically scaled up by a factor of 5 for a
better visibility.

Both wells operate under a constant water rate control
q=2400m3/day. The production well consumes energy from the re-
servoir, producing hot water at a reservoir temperature Tprod=348 K.
The injection well returns a cold water to the reservoir at Tinj=308 K,
forcing a cold-front propagation to the production well. Both wells are
perforated through all layers of the model. Two energy-transfer me-
chanisms are involved in this process: fluid flow and heat conduction.
When the cold front arrives at the production well, temperature drops
below a certain limit (338 K in this study) and the so-called doublet
lifetime is reached.

To verify the conventional geothermal formulation in the ADGPRS
framework, we compare our simulation results with the results of a
COMSOL simulation described in Willems et al. (2016). For both si-
mulations, we used similar correlations for properties of fluid and rock
described in Saeid et al. (2015). In Fig. 2 we show the comparison
between the temperatures at the production well in both cases.

It can be seen that the ADGPRS and COMSOL results are very similar
until the time around 50 years when the temperature reduction is al-
ready quite significant. These differences can be explained by the dif-
ferences in the spatial discretization since ADGPRS is using a con-
servative Finite Volume discretization while COMSOL supports a
general Finite-Element discretization. Based on this fact, we believe
that the temperature reduction is more realistic in ADGPRS simulation;
however, further investigation is required. We use the conventional
geothermal formulation by ADGPRS as a reference solution and com-
pare it with the proposed OBL approach.

3.2. Sensitivity analysis of geothermal doublet position

The importance of sensitivity analysis can hardly be overestimated
for risk management in geothermal reservoir development. Sometimes
key performance indicators dramatically change with a small variation
of insignificant parameters. To demonstrate this, we ran a series of
geothermal simulations, using the model described above as a base case
and varying just one parameter – doublet position. Both wells were
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simultaneously shifted in lateral direction from the base grid cell to all
neighboring cells (including diagonal neighbors), so that their mutual
arrangement remained unchanged. Wells were controlled by rate
q=2400m3/day during the whole simulation period of 200 years for
each of the models. This slight deviation in wells position provoked a
large difference in geothermal doublet lifetime (up to 20 years or more,
see Fig. 3). The two numbers in square brackets denote the offset (in
grid cells) of the doublet position from the base case (denoted as [0;0])
along X and Y axes of the reservoir respectively.

That difference can be explained by different distributions of energy
in reservoir, caused by different connectivity between injection and
production wells.

Thorough sensitivity and uncertainty analyses help to mitigate re-
servoir development risks, but require large number of simulations. A
tradeoff between number of models to run and available time/compu-
tational resources always occurs, that is why the computational per-
formance of reservoir simulation is so important.

3.3. One-component geothermal model

3.3.1. Convergence of operator-based linearization
In this section, we compare the results of simulation for operator-

based linearization performed at the different resolutions of interpola-
tion tables and the reference solution based on the conventional line-
arization method.

We use a simplified variant of the original test case with uniformly
distributed thermal properties of rock while rock permeabilities and
porosities remain heterogeneous. Both wells work at the same rate
control q=2400m3/day. Each simulation was performed with a dif-
ferent number of points in the interpolation table which, for simplicity,
was equal for all of the unknowns (p, t and φ), while values were
uniformly distributed within the range between pmin=160 bar and
pmax=250 bar for pressure, Tmin=308 K and Tmax=349 K for tem-
perature, and between 0 and 1 for porosity. In order to estimate the
error between the reference solution and the solution obtained with
operator-based linearization, the following error estimation was in-
troduced:

Fig. 1. Permeability distribution and geothermal-doublet configuration of the geothermal reservoir realization used in this paper.

Fig. 2. Comparison between COMSOL and ADGPRS realistic heterogeneous reservoir si-
mulation results.

Fig. 3. Variation of the cold-front arrival time for doublet lateral position deviations of
one grid cell from the base case [0;0].
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Here, n is a number of blocks in the model and xi is a particular solution
value at grid block i. This error was determined at the end of simulation
(65 years) for both temperature and pressure variables. The results of
comparison are presented in Table 1. The number of points used for
interpolation operators is shown in the first column. The second column
contains the number of nonlinear iterations, which are directly pro-
portional to the simulation time. The third and fourth columns re-
present the error in the temperature and pressure solution, respectively.
The last column shows relative single average linearization cost (in
terms of CPU time) of the new OBL-based simulator prototype with
respect to the standard ADGPRS simulator.

From Table 1, the results based on any parameterization approach
with resolution of 8 and higher show relatively small error, while the
linearization is performed about 20 times faster in comparison with AD-
based linearization. At the same time, this cost does not change sig-
nificantly with an increasing resolution in OBL approach. The error in
this simulation is so small because all interpolated properties, based on
correlations from Saeid et al. (2015), have substantially linear behavior
with respect to the nonlinear unknowns. It seems sufficient in this
model to perform the operator-based linearization using the resolution
of 8 points. The comparison of the production temperatures and

temperature distribution also supports this conclusion, as shown in
Fig. 4 and Fig. 5 respectively. Fig. 4 demonstrates a good match be-
tween reference and parameterization approach based solution with 8
points, while simulation based on the coarsest table introduces non-
physical initial growth of temperature due to a very coarse approx-
imation of operators involved in the energy equation. In Fig. 5, the cold
front propagates over the top layer of the reservoir. The top row in
Fig. 5 represents the results from the conventional linearization after
15, 30 and 45 years of simulation. The middle row shows the results
obtained with OBL using a resolution of 8 points at the same times. The
lower row displays absolute difference between the reference and OBL
solutions. The injection-well position is marked with the blue circle; the
production-well position is shown with the red one.

3.3.2. An analysis of linearization operators
In Fig. 6, we present the most-nonlinear operators used in the pro-

posed linearization approach. All of them are built based on the 64-
point interpolation tables in parameter space. These operators corre-
spond to the linearization of mass-accumulation αwand flux βw terms in
the water-component mass equation and energy accumulation αe and
conduction γe in the energy equation. They are represented by iso-
surfaces in pressure, temperature and porosity parameter space. As
expected, all of the operators behave almost linearly in parameter space
that explains why the results of simulation with just 8 points are so
accurate.

3.4. Two-component low-enthalpy geothermal model

3.4.1. Convergence of operator-based linearization
Here, we demonstrate geothermal simulation with gas co-produc-

tion using the same three-dimensional reservoir. The injection well
injects cold water at Tw=308 K and controlled by a water rate
qw=1200m3/day. The initial reservoir composition of the gas com-
ponent (methane) z1=0.1, with initial pressure p=100 bar, and in-
itial temperature T=348 K. The production well is controlled by the
bottom-hole pressure pprod= 70 bar. Since the injection rate is now 2

Table 1
Results of 3D homogeneous simulation.

Resolution Newton iters. Ep,% ET,% Linearization cost per Newt.

Std. 174 – – 1
64 182 0.0005 0.002 0.051
32 212 0.001 0.007 0.054
16 231 0.002 0.028 0.051
8 240 0.008 0.116 0.048
4 245 0.039 0.561 0.051
2 195 0.24 3.775 0.045

Fig. 4. Comparison of temperatures at production well based on different linearization approaches.
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times lower, we increased simulation time to 100 years. We used phase
behavior and densities based on the Peng-Robinson Equation of State
(Peng and Robinson, 1976) with critical parameters described in
Table 2. For the enthalpy of the mixture, we used a correlation

described in Voskov et al. (2016) with parameters in Table 2. The
Lohrenz-Bray-Clark (LBC) correlations was used for the viscosities of
each phase (Lohrenz et al., 1964).

We performed a set of simulations with 6 different interpolation-

Fig. 5. Temperature front after 15 (a), 30 (b) and 45 (c) years for the conventional linearization (upper), OBL with 8 point resolution (middle), and absolute difference between them
(lower) in the top layer of the reservoir.

Fig. 6. Physics-based operators of water mass accumulation αw (a), energy accumulation αe (b), water mass flux βw (c) and energy conduction γe (d) terms.

Table 2
Parameters for properties.

Component Tc (K) Pc (bar) Vc ACF Mw CPG1 CPG2 CPG3 CPG4

C1 190.6 46.04 0.098 0.013 16.04 19.251 0.0521 1.197e-5 1.132e-8
H2O 646.8 220.60 0.056 0.344 18.015 32.243 0.0019 1.055e-5 -3.596e-9
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table resolutions and compared solutions with the reference solution
based on the conventional approach. For parameterization, we used
uniformly distributed points between pmin=60 bar and pmax=120 bar
for pressure, Tmin=300 K and Tmax=360 K for temperature, zmin=0 and
zmax=1 for composition, and finally between 0 and 1 for porosity. The
results can be seen in Table 3. Columns 1–4 are same as in Table 1, the
fifth column shows the error in composition, and the last column shows
a relative cost of Operator-Based Linearization per Newton iteration in
comparison with AD-based linearization.

The two-component two-phase geothermal model is more challen-
ging for the operator-based linearization approach in comparison to the
previous case. However, the error of the OBL method drops sig-
nificantly with the increasing resolution of interpolation tables. Here,
the cost of the Operator-based Linearization is more than 30 times
lower in comparison with the AD-based linearization. This happened
because in ADGPRS, an iterative solution of EoS is required in the two-
phase region, while in OBL, it only required for a limited number of
parametrization points. For a higher OBL resolution, the linearization
cost insignificantly increases.

Production temperatures for the reference solution and solutions
based on linearization operators are shown in Fig. 7. Here, the non-
physical behavior for 2-point resolution is similar to the previous case.
This behavior is quickly stabilized for the cases with a higher resolu-
tion. The comparison of the thermal fronts is shown in Fig. 8. Here, you

can see the reference solution (upper row) and the solution based on the
OBL with 64 points (middle row) mostly match, and the largest errors of
5 ° are primarily observed around the thermal front. Importantly, the
maximum error does not grow along the simulation. Compared to the
previous case, the flow is now more influenced by production well
because of the changed pressure boundary conditions. Therefore, in-
jected cold water primarily flows towards production well causing
faster breakthrough despite lower injection rate.

3.4.2. The analysis of linearization operators
In Fig. 9 we plot 3D isosurfaces to describe the most nonlinear op-

erators in the case of two-phase geothermal model. These operators
correspond to the linearization of mass accumulation α1and flux β1
terms for gas component in the mass equation and energy accumulation
αe and flux βe in the energy equation. All of the operators are built
based on the 64-point interpolation table. They are shown as functions
of pressure, temperature and composition at the constant φ=0.2.
Unlike the pure geothermal case, all operators are highly nonlinear as
functions of all state variables.

3.5. Two-component high-enthalpy geothermal model

3.5.1. Convergence of operator-based linearization
Here, we demonstrate geothermal simulation with gas co-produc-

tion for a high-enthalpy reservoir. The initial temperature, pressure and
composition of the gas component (methane) was adjusted to
T=500 K, p=100, and z1=0.1, which makes the original mixture
close to a critical fluid at reservoir conditions. The injection tempera-
ture stays the same Tw=308 K, and the injection well operates under a
constant water rate control q=120m3/day. Only the top layer of the
reservoir was modeled because of the significant reduction in simula-
tion speed. This drop is related to more-expensive phase behavior
evaluations (in the near-critical region) for the reference solution and a
lower limit of simulation timestep to suppress instabilities associated
with high-enthalpy systems (Wong et al., 2016).

Similarly to the previous runs, we performed simulations with 6

Table 3
Results of 3D, two-phase low-enthalpy simulation.

Resolution Newton iters. Ep,% ET,% Ez,% Linearization cost per
Newt.

Std. 1247 – – – 1
64 974 0.155 0.809 1.734 0.029
32 968 0.557 1.529 3.692 0.028
16 977 1.305 2.567 6.414 0.028
8 890 1.977 4.288 11.215 0.028
4 890 1.628 5.308 11.397 0.027
2 867 2.191 5.618 13.207 0.027

Fig. 7. Comparison of temperatures at production well based on different linearization approaches in low-enthalpy model with co-production.

M. Khait, D. Voskov Geothermics 74 (2018) 7–18

14



resolutions of the interpolation table and compared them with the re-
ference model. For parameterization, we used uniformly distributed
points between pmin=60 bar and pmax=290 bar for pressure,
Tmin=300 K and Tmax=510 K for temperature, zmin=0 and zmax=1 for
composition, and between 0 and 1 for porosity. The results can be seen
in Table 4 with columns similar to Table 3.

In comparison to the low-enthalpy case, the high-enthalpy simula-
tion requires much more newton iterations to converge. That is related
to the fact that the high-enthalpy system corresponds to more nonlinear
pressure-temperature dependencies. However, the operator-based

linearization introduces smaller errors, still requiring 64 points to keep
the errors below 1%. We believe that overall accuracy increased be-
cause the model has become 2-dimensional, therefore some factors af-
fecting the solution, such as vertical conduction, are no longer present.
Still, the error of the operator-based linearization decreases as the re-
solution of interpolation tables. The cost of linearization per Newton
iteration behaves similarly to the low-enthalpy case.

Production temperatures for the reference solution and solutions
based on the linearization operator are shown in Fig. 10. The lowest
resolution in the physical tables introduces a large error in the

Fig. 8. Temperature front after 20 (a), 40 (b) and 60 (c) years for the conventional linearization (upper), OBL with 64-point resolution (middle), and absolute difference between them
(lower) in the top layer of the reservoir in low-enthalpy model with co-production.

Fig. 9. Physics-based operators of mass accumulation for gas component αg (a), mass flux for gas component βg (b), energy accumulation αe (c) and energy flux βe (d) terms in low-
enthalpy model with co-production.
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temperature breakthrough time, as it was expected from Table 4. With
higher resolutions, the behavior becomes closer to the reference solu-
tion, even though some non-physical oscillations can be observed at
intermediate resolutions, e.g. 4-point resolution in Fig. 10. The spatial
distribution of temperature demonstrates certain discrepancy between
two approaches – up to 2°, as it can be seen in Fig. 11. As in previous
cases, the maximum error does not increase along the simulation and
concentrated around the thermal front.

3.5.2. The analysis of linearization operators
In Fig. 12, we plot again 3D isosurfaces to describe operators in the

case of a high-enthalpy geothermal model with co-production. Here we
show the same operators as in Fig. 9. For the high-enthalpy case all
operators demonstrate more nonlinear behavior. That is partially due to
the closeness to superheated conditions of the gas-water mixture and
partially due to the larger interval of changes in temperature covered in
simulations. We hope that in the future work, the detailed analysis of
parametrized operators will help to improve the nonlinear solver in
geothermal simulations.

4. Conclusions

In this paper, we demonstrate the applicability of the operator-
based linearization approach to the simulation of thermal multi-com-
ponent, multiphase flow in porous media. Both mass- and energy-

conservation equations were transformed to an operator form where
each term was represented as the product of state-dependent and space-
dependent operators. During the pre-processing stage, all state-depen-
dent operators were discretized in the parameter space of the simula-
tion problem and introduced as a set of interpolation tables. In the
course of a simulation, these operators were updated based on multi-
linear interpolation, while the rest of the equation terms were com-
puted using the conventional approach. The operator-based lineariza-
tion was applied to a geothermal system with gas co-production where
pressure, temperature, composition and initial porosity were used as
state parameters. The addition of porosity to the state variables helps to
reduce the number of state-dependent operators. A similar approach
can be used to handle the changes in mass of solid phase(s) due to the
chemical precipitation and dissolution.

We used a realistic reservoir model of a low-enthalpy geothermal
doublet to test the approach. Simulation results showed that proposed
approach can reproduce the reference solution results quite accurately
with a reasonable resolution of interpolation tables. For a single-com-
ponent low-enthalpy geothermal model, a relatively coarse resolution
of interpolation tables was able to handle all governing nonlinearities
and matched the reference solution based on full physics almost pre-
cisely. For a two-component geothermal model with natural gas co-
production, the required resolution of interpolation tables was higher.
This happened due to the highly-nonlinear nature of linearization op-
erators in case of two-phase systems. However, the simulation with a
coarser resolution still can be used as fast proxy models in the inversion
and uncertainty quantification process. It is important to notice that the
proposed linearization approach significantly improves the perfor-
mance of linearization in comparison with the AD-based linearization.
The relative cost of Operator-Based Linearization does not grow sig-
nificantly with the increased resolution while the number of nonlinear
iteration is decreasing with coarser representation.

The extended approach described in this paper substantially sim-
plifies the assembly of the residual and Jacobian in nonlinear solution.
At the same time, the operator-based version of the original problem
could be seen as a proxy model, where the accuracy of the nonlinear

Table 4
Results of 2D two-phase high-enthalpy simulation.

Resolution Newton iters. Ep,% ET,% Ez,% Linearization cost per Newt.

Std. 7617 – – – 1
64 2715 0.023 0.092 0.711 0.027
32 2629 0.071 0.356 2.257 0.027
16 2489 0.096 0.496 3.443 0.026
8 2118 0.07 0.615 3.748 0.026
4 2113 0.088 1.104 3.99 0.027
2 1901 0.108 4.279 3.672 0.026

Fig. 10. Comparison of temperatures at production well based on different linearization approaches in the high-enthalpy model with co-production.

M. Khait, D. Voskov Geothermics 74 (2018) 7–18

16



representation of the physics can be balanced with the performance of
the nonlinear solver. Here we used the most-straightforward approach
and defined the parameter space of the problem explicitly in a uniform
fashion. For reservoir simulation, an adaptive parametrization in
parameter space seems more attractive both in terms of efficiency and
memory management. The combination of the adaptive parametriza-
tion and coarsening in physical space based on a simple error estimator
provides an excellent opportunity for nonlinear analysis, which is a
crucial requirement for high-enthalpy systems. Finally, the simplicity of
the Jacobian assembly in the new approach helps to transfer the

geothermal simulation code to emerging architectures and significantly
improve the performance. As the result, the proposed simulation ap-
proach will open new opportunities for inverse modeling, optimization
and risk analysis for practical geothermal applications.

References

Aziz, Khalid, Settari, Antonin, 1979. Petroleum Reservoir Simulation. Chapman & Hall.
COMSOL Multiphysics Reference Manual, 5.1.
Collins, D., Nghiem, L., Li, Y.K., Grabenstetter, J., 1992. Efficient approach to adaptive-

implicit compositional simulation with an equation of state. SPEJ 7 (2), 259–264.

Fig. 11. Temperature (condensation) front after 20 (a), 40 (b), and 60 (c) years for the conventional linearization (upper), OBL with 64-point resolution (middle), and absolute difference
between them (lower) in high-enthalpy model with co-production.

Fig. 12. Physics-based operators of mass accumulation for gas component αg (a), mass flux for gas component βg (b), energy accumulation αe (c) and energy flux βe (d) terms in high-
enthalpy model with co-production.

M. Khait, D. Voskov Geothermics 74 (2018) 7–18

17

http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0005
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0010
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0015
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0015


Geoquest, 2011. Eclipse technical description. Schlumberger 2.
Iranshahr, A., Voskov, D., Tchelepi, H.A., 2010. Generalized negative-flash method for

multiphase multicomponent systems. Fluid Phase Equilib. 299 (2), 272–284. http://
dx.doi.org/10.1016/j.fluid.2010.09.022.

Iranshahr, A., Voskov, D.V., Tchelepi, H.A., 2013. Tie-simplex based compositional space
parameterization: continuity and generalization to multiphase systems. AIChE J. 59,
1684–1701.

Khait, M., Voskov, D.V., 2017a. Operator-based linearization for general purpose re-
servoir simulation. J. Petrol. Sci. Eng. 157, 990–998.

Khait, M., Voskov, D., 2017b. GPU-offloaded general purpose simulator for multiphase
flow in porous media. Soc. Petrol. Eng. http://dx.doi.org/10.2118/182663-MS. SPE
Reservoir Simulation Conference.

Lohrenz, J., Bray, B.G., Clark, C.R., 1964. Calculating viscosities of reservoir fluids from
their compositions, SPE paper 915. J. Petrol. Technol. 1171–1176.

Lucia, A., Padmanabhan, L., Venkataraman, S., 2000. Multiphase equilibrium flash cal-
culations. Comput. Chem. Eng. 24 (12), 2557–2569.

Noy, D., Holloway, S., Chadwick, R., Williams, J., Hannis, S., Lahann, R., 2012. Modelling
large-scale carbon dioxide injection into the bunter sandstone in the UK southern
north sea. Int. J. Greenh. Gas Control 9, 220–233.

O'Sullivan, J., Croucher, A., Yeh, A., O'Sullivan, M., 2014. Further improvements in the
convergence of tough2 simulations (2014) 11th world congress on computational
mechanics, WCCM 2014. In: 5th European Conference on Computational Mechanics,
ECCM 2014 and 6th European Conference on Computational Fluid Dynamics. ECFD.
pp. 5929–5940.

Peng, D.-Y., Robinson, D.B., 1976. A new two-Constant equation of state. Ind. Eng. Chem.
Fundam. 15, 59–64.

Pruess, K., 2006. Enhanced geothermal systems (EGS) using CO2 as working fluid-A novel
approach for generating renewable energy with simultaneous sequestration of
carbon. Geothermics 35 (4), 351–367.

Saeid, S., Al-Khoury, R., Nick, H.M., Hicks, M.A., 2015. A prototype design model for deep

low-enthalpy hydrothermal systems. Renew. Energy 77, 408–422.
Vanden, K.J., Orkwis, P.D., 1996. Comparison of numerical and analytical Jacobians.

AIAA J. 34 (6), 1125–1129.
Voskov, D.V., Tchelepi, H.A., 2012. Comparison of nonlinear formulations for two-phase

multi-component EoS based simulation. J. Petrol. Sci. Eng. 82, 101–111.
Voskov, D.V., 2011. An extended natural variable formulation for compositional simu-

lation based on tie-line parameterization. Transp. Porous Media 86.
Voskov, D.V., 2017. Operator-based linearization approach for modeling of multiphase

multi-component flow in porous media. J. Comput. Phys. 337, 275–288.
Voskov, D., Zaydullin, R., Lucia, A., 2016. Heavy oil recovery efficiency using SAGD,

SAGD with propane co-injection and STRIP-SAGD. Comput. Chem. Eng. 88, 115–125.
http://dx.doi.org/10.1016/j.compchemeng.2016.02.010.

Willems, C.J.L., Goense, T., Nick, H.M., Bruhn, D.F., 2016. The relation between well
spacing and net present value in fluvial hot sedimentary aquifers; a west Netherlands
basin case study. In: Proceedings, 41 st Workshop on Geothermal Reservoir
Engineering. Stanford University, Stanford, CA. . https://pangea.stanford.edu/ERE/
db/GeoConf/papers/SGW/2016/Willems.pdf.

Wong, Z.Y., Horne, R., Voskov, D., 2015. A geothermal reservoir simulator in AD-GPRS.
Proceedings World Geothermal Congress. https://pangea.stanford.edu/ERE/db/
WGC/papers/WGC/2015/22043.pdf.

Wong, Z.Y., Horne, R., Voskov, D., 2016. Comparison of nonlinear formulations for
geothermal reservoir simulations. 41 st Workshop on Geothermal Reservoir
Engineering. . https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2016/
Wong.pdf.

Zaydullin, R., Voskov, D.V., Tchelepi, H.A., 2013. Nonlinear formulation based on an
equation-of-state free method for compositional flow simulation. SPE J. 18 (2),
264–273.

Zaydullin, R., Voskov, D., James, S., Lucia, A., 2014. Fully compositional and thermal
reservoir simulation. Comput. Chem. Eng. 63, 51–65.

M. Khait, D. Voskov Geothermics 74 (2018) 7–18

18

http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0020
http://dx.doi.org/10.1016/j.fluid.2010.09.022
http://dx.doi.org/10.1016/j.fluid.2010.09.022
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0030
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0030
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0030
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0035
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0035
http://dx.doi.org/10.2118/182663-MS
http://dx.doi.org/10.2118/182663-MS
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0045
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0045
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0050
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0050
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0055
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0055
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0055
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0065
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0065
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0070
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0070
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0070
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0075
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0075
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0080
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0080
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0085
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0085
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0090
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0090
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0095
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0095
http://dx.doi.org/10.1016/j.compchemeng.2016.02.010
https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2016/Willems.pdf
https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2016/Willems.pdf
https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/22043.pdf
https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/22043.pdf
https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2016/Wong.pdf
https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2016/Wong.pdf
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0120
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0120
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0120
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0125
http://refhub.elsevier.com/S0375-6505(18)30031-2/sbref0125

	Operator-based linearization for efficient modeling of geothermal processes
	Introduction
	Modeling approach
	Conventional modeling approach for thermal compositional problem
	Operator-based linearization approach

	Numerical results
	Three-dimensional realistic heterogeneous geothermal reservoir
	Sensitivity analysis of geothermal doublet position
	One-component geothermal model
	Convergence of operator-based linearization
	An analysis of linearization operators

	Two-component low-enthalpy geothermal model
	Convergence of operator-based linearization
	The analysis of linearization operators

	Two-component high-enthalpy geothermal model
	Convergence of operator-based linearization
	The analysis of linearization operators


	Conclusions
	References




