
Delft Center for Systems and Control

Reinforcement Learning
Across Timescales

Siddharth Ravi

M
as

te
ro

fS
cie

nc
e

Th
es

is

Reinforcement Learning
Across Timescales

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Siddharth Ravi

August 11, 2017

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Table of Contents

List of Terms. iv

Acknowledgements vii

1 Introduction 1

2 An Optimal Control Perspective 5
2-1 Looking from a control theoretical perspective 6

2-1-1 Formulating the optimal control problem 6
2-2 Choosing sampling frequencies . 6

2-2-1 Tracking effectiveness . 6
2-2-2 Regulation effectiveness . 7
2-2-3 Measurement noise errors and pre-filter design 7

2-3 Upper limits on the sampling frequency . 7
2-4 Summary . 8

3 Reinforcement Learning- History and Concepts 9
3-1 Theory behind reinforcement learning . 10
3-2 The elements of reinforcement learning . 10
3-3 Classifying RL - Model-based versus model-free 16

3-3-1 Model-based reinforcement learning . 16
3-3-2 Model-free learning . 16

3-4 Classifying RL - Value-based/Policy-based/Actor-Critic 18
3-4-1 Value-based RL . 18
3-4-2 Policy-based RL . 21
3-4-3 Actor-critic . 21

3-5 Classifying RL - On and off-policy learning . 22
3-6 Summary . 22

Master of Science Thesis Siddharth Ravi

ii Table of Contents

4 Defining the Problem 23
4-1 Problem definition . 23

4-1-1 From a theoretical standpoint . 23
4-2 The point mass MDP . 26

4-2-1 Empirical analysis and benchmarking . 27
4-3 Robustness to noise . 31
4-4 Summary . 31

5 Exploring The State Of The Art 33
5-1 On the properties of operators . 33
5-2 OP/GI operators . 35
5-3 Advantage Learning . 35

5-3-1 Robustness to noise of OP/GI operators 36
5-4 Dueling Network Architectures . 37
5-5 Results . 41
5-6 Summary . 41

6 Extending Solutions 45
6-1 Dueling Advantage Learners . 45

6-1-1 Parametric analysis . 47
6-1-2 Results . 47
6-1-3 Convergence guarantees . 48
6-1-4 Shortcomings . 48

6-2 Summary . 49

7 Benchmarking and Testing 51
7-1 Benchmarking solutions . 51

7-1-1 Standard tasks . 53
7-1-2 Observation noise and action delays . 53
7-1-3 System identification . 54

8 Conclusions and Future Work 59
8-1 Future Work . 60

A Implementation details 61

B Algorithms 63

Bibliography 65

Siddharth Ravi Master of Science Thesis

iv Table of Contents

Glossary
List of Terms

s State

S Set of all possible states

a Action

A Set of all possible actions

Rt(st, at) Reward at timestep t, when at state st ∈ S and taking action at ∈ A

γ Discount Factor

ε Exploration factor

Pa(s, s′) Probability of transitioning from state s to s′ when taking the action a

Gt Returns or the accumulated discounted rewards

Q(s, a) Action-value function

Q∗(s, a) Optimal Action-value function

V (s) Value function

Q(s, a) Optimal Value function

A(s, a) Advantage Function

A∗(s, a) Optimal Advantage function

π Policy

η Advantage learning scalar multiplier

τ Bellman Operator

τAL Advantage Learning operator

dt Sampling time

Li Loss function at iteration i

θ Action-value network weights

θ− Target-network weights

α Advantage stream weights (dueling network)

β Value stream weights (dueling network)

Siddharth Ravi Master of Science Thesis

Abstract

This project addresses a fundamental problem faced by many reinforcement learning agents.
Commonly used reinforcement learning agents can be seen to have deteriorating performances
at increasing frequencies, as they are unable to correctly learn the ordering of expected returns
for actions that are applied. We call this the disappearing reinforcements problem. Moreover,
truly multi-task reinforcement learning is only possible when agents are able to operate across
frequencies, as different platforms operate at different frequencies. Most algorithms from
control theory working on similar tasks, on the other hand, show improved performances
when their operating frequencies are increased. This suggests that addressing disappearing
reinforcements should enable reinforcement learning agents to have improved performance
and generalization ability across timescales and tasks.

In this project, we show that disappearing reinforcements is an effect seen independent of the
function approximator used in reinforcement learning, and is instead of a more fundamental
nature. We explore both theoretically and empirically the relationship between agents and
their performances at increasing frequencies. We show that two specific types of agents
from literature address the problem, and we benchmark the agents’ performances with novel
benchmarking measures inspired from control theory. Finally, we create a novel agent we call
the dueling advantage learner, by combining both approaches from the state-of-the-art. We
then benchmark the different agents across frequencies and tasks, and our agent is seen to
outperform each of the individual approaches on the majority of the tasks.

Master of Science Thesis Siddharth Ravi

vi Table of Contents

Siddharth Ravi Master of Science Thesis

Acknowledgements

I would like to thank my supervisors Dr-Ing. Jens Kober and Ir. Tim de Bruin for their
support. This thesis could never have been completed without their advice and encourage-
ment. They have managed to cultivate in me an interest not only in the field of reinforcement
learning, but also for doing research in general.

I’d also like to thank my friends and colleagues. They’ve been a constant source of help and
support. They were excellent sounding boards for my ideas and have saved me from much
trouble.

Finally, family. I owe a great deal to their endless patience and to the kindness that was
extended to me during the length of this thesis, as well as throughout my life.

Delft, University of Technology Siddharth Ravi
August 11, 2017

Master of Science Thesis Siddharth Ravi

viii Acknowledgements

Siddharth Ravi Master of Science Thesis

“Each piece, or part, of the whole of nature is always merely an approximation to
the complete truth, or the complete truth so far as we know it. In fact, everything
we know is only some kind of approximation, because we know that we do not
know all the laws as yet. Therefore, things must be learned only to be unlearned
again or, more likely, to be corrected. The test of all knowledge is experiment.
Experiment is the sole judge of scientific truth”
— Richard Feynman, The Feynman Lectures on Physics

Chapter 1

Introduction

Machine learning is a branch of computer science that emerged as a result of our desire to
understand if the computer can be programmed to learn the way humans do. It evolved
from the study of computational learning theory in artificial intelligence in the early-to-mid
20th century. The field deals with the development and construction of algorithms that can
learn and make predictions from data, without following explicit instructions to perform these
tasks.

Reinforcement learning, the topic central to this project, is an area of machine learning that
is inspired from behaviorist psychology. It bases itself on the control of human behavior in
response to certain stimuli, or as a consequence of the history of the individual’s stimulus-
response characteristics. Reinforcement learning could be summarized as a computational
approach to learning from interaction. The field concerns itself with how software agents
iteratively learn to associate situations in their environment to the actions they can take,
in order to maximize a certain notion of a cumulative numerical reward. Two factors, trial
and error based learning, and the taking into account of delayed rewards are the defining
characteristics of reinforcement learning. The agent needs to decide between exploration of
the environment to gather more information, and exploitation of the best decision given its
current information obtained from prior exploration [1][2].

Since its start in the 1980s as a plan to replicate biology’s learning mechanisms, the field of
reinforcement learning has come a long way. Although biological plausibility is still of interest,
reinforcement learning research has branched off to fields as varied as the predicting of financial
market movements to robotics [3][4]. It even finds its uses in areas such as information theory
and game theory [5][6]. Interest in reinforcement learning has also blossomed over the previous
years. One of the major breakthroughs in the field was when DeepMind created AlphaGo, a
reinforcement learning algorithm that defeated the then reigning world champion Lee Sedol
4-1 at the game of Go [7]. This was a landmark victory, as Go, a game thought to require
intuition, creativity and strategic thinking, was then considered a difficult problem for the
field of AI, much more so than chess. Improving reinforcement learning has since been widely
recognized as an important human endeavour, along the path to achieving general human-level
intelligence.

Master of Science Thesis Siddharth Ravi

2 Introduction

That said, reinforcement learning is still far from being a solved problem, and is known to
have its fair share of challenges. Our motivation behind embarking on the project lies in a
handicap that affects most current reinforcement learning agents. Upon operating at higher
frequencies, these agents perform increasingly worse, and eventually completely stops learning
as the time elapsed between interactions with its environment approaches zero. This project
will be referring to this as the problem of ‘disappearing reinforcements’.
An intuitive understanding of disappearing reinforcements can be obtained when analyzing
the reward gathered by the agent. A typical reinforcement learning agent obtains a rewards
at each intermediate state it reaches by performing actions, before the completion of a certain
task. A higher frequency of operation means that there are more intermediate states, and
thereby more reward signals to be accounted for. This makes it difficult in the long run for
the agent to differentiate between a high reward action from a low(-er) reward one. As the
frequency reaches continuous time, individual action contributions go to zero. The problem
can also be understood by analyzing the relationship between reward signals and states. As
the frequency increases, the rewards, which are usually a function of the state, also move closer
in value. This makes it difficult to correctly ascertain the relative importance of an action at
a certain state. Most reinforcement learning algorithms are therefore currently deployed only
at lower frequencies, which greatly limit their capabilities.
This project begins by investigating two important questions relating to the choice of sampling
frequencies for a reinforcement learning algorithm. How does the sampling frequency affect the
performance of an algorithm? Is a higher frequency always better? To answer these questions,
we first look at another field closely related to reinforcement learning, optimal control. We
do this to understand how other related fields of study decide upon an optimal frequency for
sampling, and to understand theoretically defined bounds within which algorithms usually
work. This is discussed in Chapter 2.
We find that alleviating the disappearing reinforcements problem is of utmost importance.
The development of an improved algorithm that is effective even at higher frequencies would
greatly improve the operating capabilities of the algorithm. The primary focus of this project
therefore is on solving the disappearing reinforcements problem, and we do this for a specific
class of reinforcement learning algorithms called off-policy model-free value-based methods.
We explain the reasoning behind this choice, along with the fundamentals of reinforcement
learning algorithms in Chapter 3.
We then move on to study the problem in detail in Chapter 4, to see exactly how performance
of a reinforcement learning algorithm is affected by changes in frequency. For this we define
an algorithm’s performance by defining novel benchmarking criteria, taking inspiration from
control theory. We create a simple task to analyze the agent, in order to see how the agent’s
fundamental characteristics change with respect to increasing frequency, and other factors.
Chapter 5 deals with the study of state-of-the-art agents that aim to address the disappearing
reinforcements problem. We theoretically analyze agents of different kinds that appear in
literature, and benchmark these with respect to the benchmarking metrics we defined in
the earlier chapter. We then move on to improve on the state-of-the-art by proposing novel
solutions in Chapter 6. The agent we named the dueling advantage learner is benchmarked
on simple tasks with those same benchmarks defined earlier.
Chapter 7 deals with the comparison of our agent’s performance to the state-of-the-art,
through extensive testing on commonly seen tasks in literature. The idea behind the tests is

Siddharth Ravi Master of Science Thesis

3

to simulate different real-world scenarios which the agent might face. This exercise also cre-
ates a robust benchmark of value based reinforcement learning algorithms across timescales,
which is seldom seen in literature. Finally, Chapter 8 describes our conclusions and directions
that can be taken in the future to improve the field of study.

It is essential for the reader to understand that the choice of sampling frequencies for operating
reinforcement learning algorithms is a topic rarely discussed in literature, even though they are
of great importance. Studies have been done towards the development of better agents that do
well at different tasks, but it is rarely that these agents are explicitly studied across different
timescales. We do so in this thesis. It is also to be understood that the algorithm’s behaviour
is highly dependent on many other factors including errors from the system dynamics and
initialization of its constituent parameters. But reinforcement learning, as a concept, is
required to generalize across tasks, achieving satisfactory levels of performances across a
variety of systems operating at different frequencies. Only such a multi-task agent would be
effective when operating in the complex dynamics of the real world.

Master of Science Thesis Siddharth Ravi

4 Introduction

Siddharth Ravi Master of Science Thesis

Chapter 2

An Optimal Control Perspective

The field of optimal control is one that is closely related to reinforcement learning. From
an optimal controller design perspective, control systems have an optimal frequency range
of operation, which imposes range limits on the sampling rates for the control algorithm.
These limits are mostly lower limits, as the algorithms usually improve their performances
as frequencies increase. They are also mostly based on criteria such such as the bandwidth of
control, that the user hopes to achieve. Too high a sampling frequency imposes a high load
on the control system. When dealing with control systems with lower computational power,
too high a sampling frequency also introduces quantization errors [8]. Design criteria also
impose hard lower limits on the frequency at which sampling should be done.

Thus when designing reinforcement learning algorithms, it is important to keep in mind these
frequency constraints that exist for the control system. Designers of reinforcement learning
algorithms also often tend to ignore the existence of these limits. Thus it is important to look
at the problem of reinforcement learning from the perspective of it being a control system.

The aim of this chapter is to familiarize the reader with how algorithms from the paradigm
of optimal control, a field closely related to reinforcement learning, behave at different fre-
quencies, and to understand how sampling frequencies are chosen by the designer according
to her design criteria. Looking from this perspective is advantageous as it serves to provide
the reader with insights into how optimal control algorithms behave in stark contrast to how
common reinforcement learning algorithms behave, under similar operating conditions with
respect to sampling frequencies.

The rest of this chapter is structured as follows. Section 2-1 gives the outline of the optimal
control problem. Section 2-2 delves into the choice of the sampling frequency of optimal
control algorithms. This is to make the reader understand the process of how the sampling
frequency is chosen according to the design requirements of the problem in question. This is
also to show how the choice of these sampling frequencies are in ranges designed according to
certain rules of thumb from expert recommendations, rather than according to mathematical
formulations leading to a single optimal value. Section 2-3 provides commentary on the
existence of theoretical upper limits to the sampling frequency chosen.

Master of Science Thesis Siddharth Ravi

6 An Optimal Control Perspective

2-1 Looking from a control theoretical perspective

Control algorithms typically exhibit better performance when operating at higher frequen-
cies. Their operating frequencies are generally selected by rules-of-thumb based on expert
recommendations, rather than by any clearly defined mathematical formulae. We shall next
look at how the optimal control problem is formulated, and what these criteria for choosing
sampling frequencies are.

2-1-1 Formulating the optimal control problem

The optimal control problem deals with the defining of a control law for a system so that a
certain criterion for optimality is achieved [8]. For states x and actions u, the optimal control
paradigm allows to determine good candidate values of the optimal feedback gain K in the
control law u = −Kx.

Given a discrete plant x(k + 1) = φx(k) + Γu(k), the optimal control task seeks to pick u(k)
such that a cost function defined by J = 1

2
∑N

k=0

[
xT (k)Q1x(k) + uT (k)Q2u(k)

]
is minimized.

Here Q1, Q2 are symmetric non-negative definite weighting matrices to be selected by the
designer. Various solutions to the optimal control problem exists such as by solving the
Riccati equation.

2-2 Choosing sampling frequencies

Sampling continuous-time systems provide us with a discrete-time system with system ma-
trices that depend on the sampling period. It may happen that a control system loses its
observability and reachability upon choosing too low a sampling period, leading to disastrous
results [9]. The sampling period’s choice also depends heavily on the purpose of the system.

From a control perspective, a low sampling rate implies more time for computers to calculate.
This also denotes a lower cost per function and thereby a less demand on analog to digital
conversion speed for digital computers. Decisive factors when choosing a lower limit on the
sampling rate are:

• Tracking effectiveness as measured by closed loop bandwidth, and the time response
characteristics such as the rise time and settling time

• Regulation Effectiveness with respect to error response to random plant disturbances.

• Measurement noise errors and pre-filter design methods.

2-2-1 Tracking effectiveness

As the sampling rate is lowered, approximations taken into account during computation give
rise to system instabilities. According to the Nyquist-Shannon sampling theorem [10], in
order to reconstruct an unknown band-limited continuous signal from that signal, one must
use a sampling rate at least twice as fast as the highest frequency contained in the unknown

Siddharth Ravi Master of Science Thesis

2-3 Upper limits on the sampling frequency 7

signal. Translating the theorem into a design specification for the effective tracking of the
command input with system bandwidth1 as frequency, sampling should take place at twice
the closed loop bandwidth of the system.

Expressing the condition in terms of the bandwidth of the closed loop control system, for the
system to track input signals,

ωs > 2ωBW (2-1)

where ωs is the sampling frequency and the ωBW is the bandwidth of the signal. This
could be termed as the fundamentally lowest frequency at which a signal should be sampled.
Theoretically, this limit is insufficient for efficient operation. For a rise time of approximately
1 sec (ωBW = 0.5Hz [8]), typically a sampling frequency of 10-20 Hz is ideal, since this implies
that the sampling frequency is around 20 to 40 times the bandwidth.

2-2-2 Regulation effectiveness

Disturbance rejection is a very important criterion in deciding the sampling frequency, if not
the most important. What is also crucial during design is the rejection of higher frequency
components in the disturbance signal. A high sampling frequency in comparison with the
frequencies in noise disturbance, implies that there is potentially no loss from digital systems
when compared with a continuous controller. On the other hand, a low sampling frequency
with respect to noise characteristics means that the response is similar to that without a
specific control action.

Franklin et al., [8] define a rule of thumb to further define the criteria more quantitatively:

ωs > 20ωBW (2-2)

2-2-3 Measurement noise errors and pre-filter design

Oftentimes, there is the use of an analog pre-filter between the sensor and the sampler.
Designing the control system is difficult if the pre-filter has to be incorporated into the design
procedure [11]. This can be eliminated by choosing the sampling frequency, ωs � ωBW (the
bandwidth), as there is no potential phase lag from the pre-filter. One possible metric to use is
to choose the sampling frequency ωs ≈ (30 to 100) times ωBW . On the other hand, including
the pre-filter phase lags at system bandwidth means that one needs to include analog pre-filter
characteristics during the control design phase [8].

2-3 Upper limits on the sampling frequency

When systems with low processing power (such as 8-bit microprocessors) are used for com-
puting, the sampling frequency also has an upper limit. Introduction of quantization errors

1-3dB crossing frequency, obtained from closed-loop Bode plots [8]

Master of Science Thesis Siddharth Ravi

8 An Optimal Control Perspective

[11] does not allow too high a sampling frequency to be used. This error is negligible when
it comes to higher bit microprocessors as controllers, hence theoretically providing very high
upper limits for the sampling frequency that can be used. Thus from a optimal control design
perspective, these effects could hence be ignored to a large extent in such higher bit systems.
This also points to the fact that a higher sampling frequency is usually beneficial for control.

2-4 Summary

In the paradigm of optimal control algorithms, sampling frequency is decided according to
the control system characteristics desired by the user. It should also be understood that these
choices are based on expert recommendations, and is usually a range of good frequencies which
have been seen to provide good results during the control task. Most of these recommendations
also do not have an upper bound, which leads to potential confusion. How high is too high? An
upper limit is only theoretically provided by the computational limits of the control system,
which the frequency when errors caused due to quantization appear. This is also usually left
to the user to determine.

Siddharth Ravi Master of Science Thesis

Chapter 3

Reinforcement Learning- History and
Concepts

Modern reinforcement learning (RL) is a combination of two specific pre-cursory approaches
that converged during the 1980s. One approach concerned understanding animal learning
by trial and error. This thread can be illustrated by the masterful experiments conducted
by Ivan Pavlov to demonstrate the theory of classical conditioning, or the learning occurring
when a biologically potent stimulus (e.g. food) is paired with a neutral stimulus (e.g. a bell)
[12]. Pavlov (1927) and Hull (1943) also serve as the basis of understanding the idea that
stimuli produce after-effects in the nervous system (used to model eligibility traces, a concept
often used in reinforcement learning) [13].

The other thread concerns the theory of optimal control, and how efforts were directed at
using the concepts of value functions and dynamic programming to arrive at the solution.
This effort was championed by Richard Bellman in the 1950s based on a theory devised by
Hamilton and Jacobi in the 19th century [14]. Both the theory of optimal control and the
theory of RL are also very closely related, in that both address the problem of finding an
optimal policy. Optimal control algorithms work with an inherent assumption of perfect
knowledge about a system description in form of a model, which breaks down in the presence
of computational approximations. Reinforcement learning is often more robust, because of
its measured-data driven approach and its environmental-interaction based rewards system
[4]. These seemingly distinct fields combined to form the basis of the theory of what we know
as modern reinforcement learning.

The rest of this chapter is structured as follows. Section 3-1 gives a broad overview of the
theory behind reinforcement learning algorithms. Section 3-2 explains the meaning of the
elements of reinforcement learning agents that are discussed in the thesis. Section 3-3, Sec-
tion 3-4 and Section 3-5 provide an overview of the different classes of reinforcement learning
algorithms that exist, and also dives into some algorithms commonly seen in literature.

Master of Science Thesis Siddharth Ravi

10 Reinforcement Learning- History and Concepts

3-1 Theory behind reinforcement learning

The framework behind RL explains that problems of goal related learning can be reduced to
three signals passing between an agent and the environment it interacts with. These are:

1. A signal to represent the choices made by the agent. (actions)

2. Another signal to represent the basis on which choices are made. (states)

3. A scalar signal to define the agent’s goals. (rewards)

States, actions and associated numerical rewards vary from problem to problem, while the
framework associated remains the same. The aim of the reinforcement learning agent is
to maximize the rewards it obtains over a certain predefined length of time when doing the
experiment. Most reinforcement learning tasks can also be neatly broken down into sequences
of agent-environment interactions between initial and terminal states, and each sub-sequence
of interactions between initial and terminal states is called an episode. The environment
promptly resets to the initial state upon reaching a terminal state.
We use the cartpole balancing problem (Figure 3-1) from Sutton et al., [1] to illustrate the
framework of reinforcement learning. In the problem, a pole is attached by an un-actuated
joint to a cart which moves along a frictionless track. States are comprised of four parameters,
namely the position of the cart from the centre, the velocity of the cart, the pole angle, and the
angular velocity of the pole. The system is controlled by application of a force (the actions)
of magnitude +1 or -1 units along the length of the cart. The pendulum starts upright, with
the goal being to prevent it from falling over. A reward of +1 is provided for every timestep
that the pole remains upright. An episode ends when the pole is more than 15 degrees from
vertical, or the cart moves more than 2.4 units from the center. Thus the longer the cartpole
remains upright within limits, the more rewards the agent gathers.

Figure 3-1: The cartpole balancing task [15]

The goal of the reinforcement learning agent can thus be defined as to maximize the rewards
it obtains over the long run, by making the pole stand upright within limits for as long as is
possible.

3-2 The elements of reinforcement learning

The learner and decision maker in an RL problem is called the agent. Everything outside the
agent, which it interacts with is termed as the environment. They interact in discrete time

Siddharth Ravi Master of Science Thesis

3-2 The elements of reinforcement learning 11

steps of t = 0, 1, 2, ... wherein at each time step the agent receives a representation of the
agent’s environment state st ∈ S, where S is a set of all possible states. On this basis the
agent selects an action, at ∈ A(st) where A(st) is the set of actions that can be taken when
in state st. As a consequence of the execution of this selected action, the agent transitions
into a new state st+1 for which it receives a reward Rt+1. The agent-environment interface is
as seen in Figure 3-2.

Figure 3-2: Agent-Environment interaction in RL [1]

There are a number of elements that make up reinforcement learning algorithms. Under-
standing these elements are necessary to understand the nature of the problem addressed by
the thesis, as well as to understand the solutions to the problem. So we take the effort to
explain important elements in the space of the next couple of pages.

• Policy: The policy, π, is a mapping from perceived states of the environment to the
actions taken in those states. A policy may be as simple as a lookup table, and may
also be stochastic. A policy is analogous to what is called a set of stimulus response
rules or association in psychology.

• Reward function: A reward function, Rt(st, at) defines the goal in the reinforcement
learning problem. It maps each perceived state, or state-action pair to a single number
that indicates the intrinsic desirability of reaching a certain state. Depending on the
task, the rewards can also be sparse, in that a large reward is presented upon reaching
the terminal state (specifying the goal), and be zero elsewhere.

• Markov Decision Process (MDP): In the general case of a problem, the reward obtained
from an action taken at a certain state depends on all previous state, action, reward
combination leading to that certain state. Thus, the system dynamics can only be
inferred by specifying the entire distribution, or the history of steps taken before reaching
the current state.

Pr
{
st+1 = s′, Rt+1 = R′ | s0, a0, R1 · · ·Rt, st, at

}
For a reinforcement learning algorithm, it is ideal to have a state signal that summarizes
past operations compactly while retaining all the relevant information. A state that
successfully retains all the relevant information is said to have the Markov property.
If the Markov property holds, then given state s and action a, the probability of of each
possible pair of next state and reward, s′, r is given by

Pr
{
st+1 = s′, Rt+1 = R′ | s0, a0, R1 · · ·Rt, st, at

}
= Pr

{
st+1 = s′, Rt+1 = r | st, at

}
,

Master of Science Thesis Siddharth Ravi

12 Reinforcement Learning- History and Concepts

The above equation being true for all st, at, s′, R. If the Markov property for the state
holds, then the environment and task as a whole is termed as an MDP. The one-step
dynamics of such a problem enables us to predict the next state and expected reward
from the next state just by knowing the current state and action.

An MDP can be defined as a 5-tuple <S,A,Pa, Ra, γ> with:

– S - a set of states
– A - a set of actions.
– Pa(s, s′) - the probability of the system in state s at time t will reach state s′ at

time t + 1 when an action a is taken.
– Ra(s, s′) - the immediate reward obtained after transitioning from state s to s′.
– γ - a discount factor that prioritizes the importance of immediate and future re-

wards. [1]

Transition graphs such as that seen in Figure 3-3 are used to summarize the dynamics
of a (finite) MDP.

Figure 3-3: State transition diagram in reinforcement learning. The agent moves from state to
state for which the environment provides them a numerical reward. The gray box signifies the
end of the episode.

MDPs can also be generalized into Partially Observable MDPs (or POMDPs) in which
the system dynamics are directly observed by the agent, but the underlying states
cannot be directly observed.

• Value function: Value of a state is the expected value of the cumulative discounted
reward an agent can hope to accumulate over the future, when following a certain policy
starting from that state. Values correspond to the long term desirability of states, by
taking into account the accumulation of rewards from the states that are likely to follow.
In effect value functions help the agent prioritize long term reward collection. The value
function at a state s when following a policy π is defined as -

Vπ(s) = Eπ[Gt|st = s] = Eπ[
∞∑

k=0
γkRt+k+1|st = s] (3-1)

where Gt represents the gain or the return, representing the discounted rewards accu-
mulated over time, and Eπ[·] refers to the expected value of a random variable, given
that the agent follows the policy π, with t being the time step. The discount rate for
rewards, represented as γ ∈ [0, 1], determines the present value of future rewards. A
discount rate close to zero signifies myopic behaviour, in which only rewards in the near

Siddharth Ravi Master of Science Thesis

3-2 The elements of reinforcement learning 13

future are considered. A discount rate closer to one on the other hand signifies a longer
lookahead, meaning that rewards further into the future are also taken into account.
A fundamental property of value functions in reinforcement learning is their inherently
recursive nature. For a policy, π, and any state, s, the value function from (3-1) is
defined with its possible successor states in mind as a recursive rule given by:

Vπ(s) = Eπ[Gt|st = s]

= Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣st = s

]

= Eπ

[(
Rt+1 + γ

∞∑
k=0

γkRt+k+2

)∣∣∣∣∣st = s

]
=
∑

a

π(a|s)
∑
s′,r

Pa(s, s′)
[
R + γVπ(s′)

]
(3-2)

• Action-value function: Q-values or action values are estimates of the returns expected
for each action taken from a non-terminal state, and following the policy thereafter.
The value of taking an action a in a state s, and thereafter following a policy π, is
represented as:

Qπ(s, a) = Eπ[Gt|st = s, at = a] = Eπ[
∞∑

k=0
γkRt+k+1|st = s, at = a] (3-3)

Here Qπ is defined as the action-value function following policy π. Q-values also possess
recursive properties similar to the value function.

• Advantage function The concept of the advantage function is defined to bring forward
the differences between the rewards expected from taking different actions from the same
state [16][17]. The advantage function is therefore a measure by which the expected
value of taking a certain action is different from the expected value of taking the action
that is currently considered optimal. Mathematically:

A(s, a) = (Q(s, a)− V (s))

=
(

Q(s, a)−max
a′

Q(s, a′)
) (3-4)

By definition, at a specific state, the advantage value of taking the optimal action from
a state is zero. if a = argmaxa A∗(s, a), with A∗(s, a) being the optimal advantage
function at s, a:

A∗(s, a) =
(
Q∗(s, a)−max

a
Q∗(s, a)

)
=
(
max

a
Q∗(s, a)−max

a
Q∗(s, a)

)
= 0

Here Q∗(s, a) refers to the optimal action-value function at s, a. The advantage function
was first used by Baird, (1993) in the advantage updating algorithm [16]. Advantage

Master of Science Thesis Siddharth Ravi

14 Reinforcement Learning- History and Concepts

functions can be thought of as an ordering of actions based on their inherent profitability,
with the advantage value of an optimal action taken from a particular state equal to
zero.
Due to this property of being a timescale-agnostic ordering of actions, Advantage func-
tions have seen a surge in popularity over the recent years. Table 3-1 shows some of the
algorithms that have made use of advantage functions to achieve superior results.

Algorithm Authors
Advantage Updating L.C Baird (1995) [16]
Natural Actor-Critic Peters and Schaal (2008)[18]
A3C Mnih et al., (2016) [19]
Dueling Network Architectures Wang et al., (2016) [20]
ACER Wang et al., (2016) [21]
Reactor Gruslys et al. (2017), [22]

Table 3-1: Algorithms that utilize advantage functions

• Bellman operator : When it comes to value-iteration algorithms such as Q-learning (dis-
cussed in 3-4-1), the Bellman operator τ serves as a simple scheme to indicate iteration,
without going through the hassle of defining subscripts for the iteration number, mean-
ing that Qi = τQi−1 with the subscript i indicating the iteration number.
The Bellman operator is a contraction mapping in the supremum norm, and converges
to a single value according to the Banach fixed point theorem [23].
The Bellman operator τQ→ Q is defined pointwise as:

τQ(s, a) = R(s, a) + γEPa max
a′∈A

Q(s′, a′) (3-5)

with the term EPa [·] referring to the expectation over the transition probability function
Pa(s, s′) from s to s′ when taking action a.
It is proven [24] that this operator converges to a unique fixed point for which τQ∗ = Q∗

:
Q∗(s, a) = R(s, a) + γEPa max

a′∈A
Q∗(s′, a′) (3-6)

which in turn induces the optimal policy given by π∗:

π∗(s) = argmax
a∈A

Q∗(s, a) ∀s ∈ S (3-7)

Convergence to optimal values for the Bellman operator is dependent on certain condi-
tions being satisfied by the agent employing the operator for learning. The conditions
are -

– Infinite exploration i.e., each state-action pair is visited infinitely often by the
agent.

– Discount factor γ < 1.

Siddharth Ravi Master of Science Thesis

3-2 The elements of reinforcement learning 15

– Robbins-Monro conditions -
∑∞

t=0 αt(s, a) = ∞,
∑∞

t=0 α2
t (s, a) < ∞, αt being the

learning rate at time step t.

As the expectations in (3-5) cannot be directly observed, estimates of Q-values are
iterated towards optimal values by a learning rule given by Qi(s, a)← (1−α)Qi−1(s, a)+
ατQi−1(s, a), with the left arrow signifying an update.

• Action-gap: The action-gap g∗
Q(s) is defined as the difference in Q-values between the

optimal action a1 and the nearest sub-optimal action a2 for that state. The action-gap
for the system is mathematically expressed as:

g∗
Q(s) = |Q∗(s, a1)−Q∗(s, a2)|

The action-gap can also be explained as a special case of the advantage function between
best and second best actions at a certain state, after convergence to optimality.

g∗
Q(s) = |A∗(s, a2)|

with the value a2 being the second-best action at a certain state s.

Remark: In this thesis we show that smaller action gaps are related to the disappearing
reinforcements problem we address here. This relationship between the action-gap for
Bellman operator based algorithms and performances at different frequencies are further
explored in Chapter 4. Increasing the action-gap also leads to better performances at
higher frequencies, and this relationship is explored in Chapter 5 and Chapter 6.

Function Approximation

The simplest way of representing a value function is by use of a lookup table, with the values
of each state-action pair stored.

When the state-action spaces are large, storing and retrieving values become a problem,
as it takes up large amounts of computational resources. To solve this problm, function
approximators can also be used instead of a lookup table for representing value functions,
thereby limiting the memory being used and speeding up the learning process.

v̂(s, w) ≈ Vπ(s)
q̂(s, a, w) ≈ Qπ(s, a)

where w is a certain parameter vector for the function approximators given by v̂ and q̂. This
formulation helps in the process of generalizing states, and the extra parameter w is updated
by a learning algorithm such as the Monte-Carlo method or the Temporal Difference learning
method, both discussed in Section 3-3. The function approximator introduced can of course
be of varying complexity, a few examples being linear approximators and neural networks.
Mathematically a linear value function approximator is written as:

Master of Science Thesis Siddharth Ravi

16 Reinforcement Learning- History and Concepts

v̂(s, w) = x(s)T w =
n∑

j=1
xj(s)wj (3-8)

with x(s) = (x1(s)...xn(s))T being the states represented as a feature vector.

The goal of training is to find a parameter vector w that minimizes the mean square error
between approximator’s value v̂(s, w) and the actual value Vπ(s)

Mathematically the cost function to be minimized can be expressed as:

J(s, w) = Eπ[(Vπ(s)− v̂(s, w))2] (3-9)

Gradient descent is a method that is commonly used to find a local minimum. The parameter
vector update term in the case of a gradient descent algorithm is expressed as follows

∆w = −1
2α∇wJ(w) = αEπ [(Vπ(s)− v̂(s, w))∇wv̂(s, w)] (3-10)

where∇wJ(w) is the gradient of J(w). Mathematically, the update is expressed as -

∆w = α(Vπ(s)− v̂(s, w))∇wv̂(s, w) (3-11)

3-3 Classifying RL - Model-based versus model-free

There are various broad categorizations for reinforcement learning algorithms. One of these
classifications is as model-based or model-free, based on whether the algorithm relies on an
environment model during operation.

3-3-1 Model-based reinforcement learning

Model-based reinforcement learning systems collect information about transitions from expe-
rience, which is then used to generate a model. The transition model is then used to plan
future steps. The effectiveness of the model lies in the ability of the agent to perform virtual
searches through the state-action space, to decide upon a seemingly optimal course of action
from the current state of the agent. A disadvantage of the model-based approach is that such
methods typically have a large computational complexity. Learning accurate models is also a
challenging task in some cases. Using a model is also disastrous in the case when inaccurate
models are learnt by the system, leading to impaired performances.

3-3-2 Model-free learning

Model-free approaches do not explicitly need to learn a model in order to generate experi-
ences, and also have their primary goal of learning by improving a behavioral policy that
maximizes a numerical reward signal. These approaches are lesser computationally inten-
sive when compared with model-based methods, since they do not have an intermediate step

Siddharth Ravi Master of Science Thesis

3-3 Classifying RL - Model-based versus model-free 17

that requires them to calculate virtual experiences. Model-free approaches also prevents the
hassle of learning models that capture the environment’s dynamics well enough to prove use-
ful. Model-free approaches like Monte-Carlo Learning and Temporal-Difference learning learn
directly from episodes of experience.

Monte-Carlo learning

Monte-Carlo (MC) based methods learn directly from complete episodes of experience. They
have a caveat that they can only be applied to episodic tasks (in which there exist a clearly
defined terminal state, reaching which would initiate a reset of the task), as in order for the
algorithm to work, episodes need to terminate. MC methods typically have high variances,
zero-bias and theoretically assured convergence properties. They are also not very sensitive to
initialization, and are simple to understand and use. An incremental MC algorithm updates
value function (expected return) V (st) towards the actual return Gt.

Temporal-difference (TD) learning

Temporal-difference learning is a concept central to the formulation of reinforcement learn-
ing algorithms. They can be classified as a combination of the concepts from Monte Carlo
methods and dynamic programming. Temporal-difference learning schemes learn from in-
complete episodes by bootstrapping existing estimates, updating a guess towards a guess [25].
TD methods can learn before knowing the final outcome, and can learn online after every
step. They can also learn without the final outcome, from incomplete sequences as opposed
to Monte-Carlo learning. TD methods can thus also work for non-terminating environments.
They typically also have low-variance and some bias, are usually statistically more efficient
than MC methods, and are also more sensitive to initial values. The simplest form of TD
learning algorithm is the TD(0) algorithm, which works by updating the current estimate of
the value function Vt(st) towards the sum of the observed return Rt+1 and the discounted
estimated value function at the next step Vt(st+1) by using the following rule.

Vt+1(st)← Vt(st) + α (Rt+1 + γVt(st+1)− Vt(st)) (3-12)

The value G
(1)
t = Rt+1 +γVt(st+1) is called the one-step target, while the value δ(t) = (Rt+1 +

γV (st+1)−V (st)) is termed as the one-step TD error, as the update is happening towards the
target obtained from taking a single step. Methods in which the temporal difference extends
over n steps are called n-step TD methods, and the updates are in the direction of a target
which is the discounted return after taking n steps. The n-step returns are then considered as
approximations for the total return over the experiment. Mathematically the n-step returns
are given by

G
(n)
t = Rt+1 + γRt+2 + ·+ γn−1Rt+n + γnVt+n−1(st+n), n ≥ 1, 0 ≤ t < T − n

Algorithms such as Q-learning [26] (discussed in Section 3-4) and SARSA [27] are some
examples of TD learning algorithms frequently seen in literature.

Master of Science Thesis Siddharth Ravi

18 Reinforcement Learning- History and Concepts

Figure 3-4: TD versus MC learning - spectrum ranges from one-step backups in TD learning
and up to the until-termination backups of the MC learning [1]

Remark: Model based methods are known to be tricky to train. They tend to be sample
efficient, but the policies learned only turn out to be as good as the learned model. Also for
real world tasks, it is often easier to learn a good policy than a good model [28]. Because we
are tackling problems related to controlling abstractions of real world systems, we decide
to focus on model-free learning schemes. Moreover, we also preferred to focus on temporal
difference methods over Monte-Carlo learning schemes, as TD learning methods can be
applied to continuing (non-episodic) tasks.

3-4 Classifying RL - Value-based/Policy-based/Actor-Critic

Reinforcement learning algorithms can be placed in categories based on them being a value
function based approach (or a critic-only approach) wherein they optimize an explicit rep-
resentation of the value function, a policy based approach (an actor-only approach) which
stores and optimizes a representation of the policy, or whether they are an actor-critic based
approach, using representations of both the value and policy.

3-4-1 Value-based RL

Action-value methods or value-based approaches rely on optimizing for a specific value func-
tion that is dependent on the states of the environment. The value function for a particular
state s, when following policy π is V π(s), and is defined as in (3-1). The state-action value
function Qπ(s, a), which explicitly includes the information about the effects of taking a par-
ticular action from a state is defined as in (3-3). Optimizing for a better value function with
an iterative scheme implicitly produces a better policy for the agent to follow.
Value functions can be represented as a lookup table, with every state having an entry V (s),
or every state-action pair having an entry Q(s, a). A problem with this approach is that when
dealing with large MDPs with many states, there are often too many states and/or actions
to commit to memory. It also makes the process too slow to learn each state value. In these
cases

Siddharth Ravi Master of Science Thesis

3-4 Classifying RL - Value-based/Policy-based/Actor-Critic 19

Actor-Only Critic-Only

Actor-Critic

Figure 3-5: Categorizing reinforcement learning - The critic represents the value function and
the actor, the policy

Some of the most popular action-value learning algorithms are value iteration, Q-learning
and also its variant, the deep Q-network (DQN) which is a Q-learning agent with a neural
network as its Q function approximator.

Q-Learning

Q-Learning as introduced by Watkins, (1989) [26] is a simple model-free value iteration algo-
rithm based on the Bellman updates on Q-values. For a state s, and action a, and a constant
learning rate per episode α, for a discount factor γ, and a policy π, the update rule for the
Q-learning algorithm is defined as:

Qπ(s, a)← (1− α)Qπ(s, a) + α

(
R(s, a) + γ max

a′
Qπ(s′, a′)

)
(3-13)

s′ being the state that the environment transitions to.
This is as a consequence of using the Bellman operator τ on the Q-values.

τQ(s, a) = R(s, a) + γEPa max
a′∈A

Q(s′, a′)

As we cannot apply the Bellman operator exactly for Q-values for most problems because of
the need of the correct estimate for the transition probabilities, we approximate it using the
Q-learning updates seen in (3-13).
Q-learning can be used not only with a look-up table based representation of Q(s,a) but also
with other function approximator based representations like radial basis functions and neural
networks. Some of the popular algorithms utilizing the Bellman update rule can be seen in
Table 3-2.
Q-Learning with a tabular representation of Q-values is also proven to converge to the optimal
policy when every state-action pair s and a is tried infinite number of times, when the rewards
Rt and learning rate for the nth episode αn are bounded [24].

Master of Science Thesis Siddharth Ravi

20 Reinforcement Learning- History and Concepts

Algorithm Authors
Q-Learning C Watkins (1995) [16]
Deep Q-networks Mnih et al., [19]
Gorila Nair et al., [29]

Table 3-2: Popular agents that utilize Bellman update rule

Mathematically, Given

Rt ≤ R
0 ≤α ≤ 1

∞∑
i=1

αni(s, a) =∞,
∞∑

i=1
[αni(s, a)]2 <∞∀s, a

then as n→∞,
Qn(s, a)→ Q∗(s, a)∀s, a; (3-14)

With Qn being the Q-value for the nth episode, and Q∗ being the optimal value.

The algorithm for one-step Q-learning in procedural form is as seen in Algorithm 1 in the
appendix.

Deep Q-Networks

Deep Q-networks (DQN) are Q-learning agents which uses deep neural networks as a function
approximator for the Q-function. Neural networks are prone to divergences when a nonlinear
function approximator is used. The divergences are usually attributed to

1. Correlations present in the sequences of observations.

2. Correlations between the action-values Q(s, a) and the target values r+γ maxa′ Q(s′, a′)
[30].

Experience replay is a technique employed to remove the temporal correlations in the obser-
vation sequence and to smooth over the data distribution [31]. For this, experiences from
transition steps are stored in a replay buffer. These experiences are uniformly sampled from
the buffer and used in the update steps. The iterative update that updates the Q-values
towards the target values are also only periodically updated to reduce correlations with the
target. This is seen to increase the stability of the agent.

Mnih et al.,[30] implemented the DQN architecture to achieve human level performances on
2D Atari games. Deep convolutional neural networks(CNNs) were preferred for approximating
the Q-function in the paper. This is because of the fact that a vision based approach was
used, in which the pixel positions from frames captured from the Atari games were used as
the inputs to the system, and CNNs are known as an effective solution for these types of
approaches.

The algorithm used for DQN can be seen in Algorithm 2 in the appendix.

Siddharth Ravi Master of Science Thesis

3-4 Classifying RL - Value-based/Policy-based/Actor-Critic 21

...
...

...

st1

st2

st3

stn

Q(st, a1)

Q(st, an)

Input
layer

Hidden
layer

Output
layer

Figure 3-6: DQN with the inputs as state variables and the outputs as Q-values

3-4-2 Policy-based RL

Policy based RL approaches in contrast to value based approaches work by explicitly repre-
senting a policy with its own weights, independent of a value function. Parametrization of
the policy is the main focus of the method, with the parametrized policy given by:

πθ(s, a) = P[a|s, θ] (3-15)

with πθ being the policy to be represented and the P being its parametrization. The goal of
the policy based method is to find the best parameters θ for the given policy. The problem
can be phrased as an optimization problem, with the average reward per time-step R̄ to be
optimized

The advantages of policy based RL techniques are that they are effective in high dimensional
or continuous action-spaces, and also possess the ability to learn stochastic policies. But on
the other hand, policy based RL techniques exhibit tendencies to converge to local optima,
rather than global ones. Evaluating a policy is also typically inefficient and has higher variance
[1].

3-4-3 Actor-critic

Actor critic algorithms maintain two specific sets of parameters, thereby separating the action-
value function and the policy. The role of the actor is to update and maintain an action
selection policy, while the role of the critic is to estimate value functions associated with the
actor’s policy.

The critic evaluates how effective the policy πθ is for current parameters θ. In effect, it
calculates the expected reward, while at a state, and following a certain control policy.

Master of Science Thesis Siddharth Ravi

22 Reinforcement Learning- History and Concepts

Actor-critic algorithms require minimal computation for action selection. Because the policy
is separately stored, this eliminates the need to search in order to pick actions during each
step.

Remark: For this thesis, we shall be focusing on (action-)value based methods that focus
on discrete actions. This is partly due to the reason that they are generally regarded as
better understood than their policy-based and actor-critic counterparts [1]. Also action-
value methods applied to control problems are rarely seen in literature, so benchmarking
these would be a contribution to the existing body of knowledge.

3-5 Classifying RL - On and off-policy learning

RL algorithms are also categorized on the basis of whether they are on-policy or off-policy
learning methods.

• On-policy learning - An on-policy method requires the algorithm to learn the policy π
from the experience sampled from π. This means that exploration needs to be built
into the policy, and that determines the speed of policy improvements [4].

• Off-policy learning - An off-policy learning method tries to learn the policy from expe-
rience sampled from µ(a|s), a behavior policy that the agent can follow, different from
the desired final target policy. This is important since the agent can utilize different
policies at the same time, say one for exploration and another for learning. The agent
is thereby able to learn about the optimal policy during its exploratory phases, with
off-policy learning.
Off-policy algorithms utilizing function approximators for their internal representations
of (action)-value functions or policy currently have no theoretical convergence guar-
antees [1]. They are more general in nature than their on-policy counterparts. They
include on-policy methods as the special case in which the target and behavior policies
are the same.

Remark: Because of their more general nature and because they aid exploration, we
primarily focus on off-policy methods for this thesis.

3-6 Summary

Reinforcement learning is a biologically plausible computational learning scheme for solving
Markov decision problems, wherein the learning agent interacts with the environment, and
adjusts its long term behavior according to the rewards it obtains. There are also multiple
classes of reinforcement learning algorithms, each having their own advantages and shortcom-
ings. Selecting an algorithm thus depends on what goals the designer chooses to achieve. We
focus on solving the disappearing reinforcements problem for model-free, off-policy, value-
based methods in this thesis.

Siddharth Ravi Master of Science Thesis

Chapter 4

Defining the Problem

As opposed to algorithms from the optimal control paradigm discussed in Chapter 2 that
improve their performances with increasing sampling frequency, commonly used Bellman
operator based reinforcement learning algorithms deteriorates in performances. This is as a
result of what we called the disappearing reinforcements problem in Chapter 1.

It is essential for the reader to clearly understand the problem from both a theoretical and
an empirical perspective. We show that the action-gap from Section 3-2 is a concept that
is central to understanding the nature of the problem. We also illustrate the effects of the
disappearing reinforcements problem by simulating the returns gathered by algorithms on a
simple MDP based on the motion of a point-mass on a 1D line.

The rest of this chapter is structured as follows. Section 4-1 deals with theoretically defining
the nature of the problem. It also deals with empirically showcasing the effects of disappearing
reinforcements, and the possible implications of the problem in real-world scenarios. Section 4-
2 clarifies the effect of disappearing reinforcements on an algorithm with the help of an
easy-to-understand MDP based on the motion of a 1D point mass. In this section, we also
introduce novel benchmarking criteria for algorithms, inspired from concepts in control theory.
Section 4-3 explores the importance of an agent’s robustness to noise, which explores how
robust the agent is when dealing with noise during updates.

4-1 Problem definition

This section deals with defining the problem from both a theoretical as well as from an
empirical standpoint.

4-1-1 From a theoretical standpoint

To explain the problem for action-value methods updated by the Bellman operator, there are
two important properties of the algorithms to be understood -

Master of Science Thesis Siddharth Ravi

24 Defining the Problem

1. Decreasing action-gaps at increasing frequencies.

2. Estimation errors in the Q-values for common algorithms utilizing Bellman updates.

In this thesis, we assert that a combination of both these factors is what leads to decreasing
performances at increasing frequencies, the effect we term disappearing reinforcements.

Decreasing action-gaps

To explain the problem, we take into account a simple off-policy action-value based algorithm
utilizing the Bellman update rule, the Q-learning algorithm [26] explained in Section 3-4-1.
The algorithm seeks to maximize the Q-value Q(s, a), which is a measure of the expected
discounted return over all the steps when executing action a from the current step s, and
following the policy π, thereafter.

Mathematically, Q-values are defined as:

Qπ(s, a) = Eπ

[∞∑
k=0

γkRt+k+1|st = s, at = a

]
(4-1)

where Eπ denotes the expected value given that the agent follows policy π, and Rt+k+1 is the
reward obtained at any time step t + k + 1.

When the sampling frequency for the algorithm is increased, more number of actions are
executed within a similar duration. Alternatively, states at which actions are executed at
also move closer in values. For all non-terminal states, as the length of a time step dt → 0,
the distance between consecutive states become negligible, and the Q-values of two different
actions from the same state become similar. This is because rewards obtained are dependent
on the states and action, and because s1, s2 → s, this implies that for most commonly defined
reward functions, Rt+1 → R′

t+1, with R′
t+1 and R′

t+1 being the reward upon transitioning
when taking an optimal and a sub-optimal action respectively from current state s.

Therefore -

lim
dt→0

Qπ(s, a1) = lim
dt→0

Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣st = s, at = a1

]
= lim

dt→0
Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + · · ·∞

∣∣∣st = s, at = a1
]

≈ lim
dt→0

Eπ

[
R′

t+1 + γR′
t+2 + γ2R′

t+3 + · · ·∞
∣∣∣st = s, at = a2

]
= lim

dt→0
Eπ

[∞∑
k=0

γkR′
t+k+1

∣∣∣∣∣st = s, at = a2

]
= lim

dt→0
Qπ(s, a2)

In other words,

Siddharth Ravi Master of Science Thesis

4-1 Problem definition 25

∀a1, a2 lim
dt→0

(Qπ(s, a1)−Qπ(s, a2)) = 0 (4-2)

where a1, a2 are an optimal and a sub-optimal action respectively, to take from the state s.
As explained in Section 3-2 the action-gap for the state is defined as-

g∗
Q(s) = |Q∗(s, a1)−Q∗(s, a2)|

Farahmand (2011) [32] also proved that the concept of the action-gap is closely linked to the
performances achieved by the system.

Estimation errors from Bellman updates

The overestimation of Q-values by the Bellman operator based Q-learning algorithm has been
explored multiple times in literature. Before 2016, it was believed that the overestimation of
Q-values was linked to the errors caused due to insufficiently flexible function approximations
(Thrun and Schwartz, 1993 [33]) and also from noise in observations and update steps [34].
Hasselt et al., (2016) [35] showed that overestimation of Q-values is possible irrespective of
the presence of noise and approximation error, as was previously believed.
We assert that smaller action-gaps coupled with inaccurate estimates of action-values for the
Bellman operator-based agents are responsible for disappearing reinforcements. A favourable
magnitude of action-gap would intuitively lead to more robustness to errors and noise. When
the values of Qπ(s, a1) and Qπ(s, a2) are similar, it implies that there is less penalty for taking
a sub-optimal action after a string of nearly-optimal action sequences (choosing sub-optimal
actions during training can be due to factors such as approximation errors, noisy observations,
improper initialization or from the use of an exploratory policy). Improperly estimating the
values of sub-optimal actions as higher than that of optimal actions will in turn lead to the
creation of sub-optimal policies. We assert that at higher frequencies, the policy becomes
increasingly prone to approximation errors and noise, as the Q-values gather closer together,
thereby causing disappearing reinforcements. Here, a small amount of noise might lead to a
reordering of action-values due to their closeness.
Another way to look at the problem is by looking at the actions themselves. As the operating
frequency increases, the number of actions that are required to be taken by the agent before
termination increases. This decreases the importance of a singular action in a sequence of
actions, as the returns from from the use of different actions turn out to be increasingly similar
in value. At continuous time, i.e when dt = 0, the algorithm stops learning completely. When
reinforcement learning algorithms such as Q-learning are therefore used on control tasks, this
effect implies that the algorithm performs increasingly poorly when their operating frequencies
are raised. The problem is not as a result of any function approximation used, but is instead
inherent in the definition of Q-values itself [16]. This increased sensitivity to noise also implies
that the Bellman operator-based algorithm can only be used on platforms and tasks which
operate at lower frequencies, as those algorithms operating at higher frequencies are required
to be more robust towards approximation errors and noise.
Different environments also work optimally at different frequencies. The formulation of an
algorithm which scales its performance appropriately with the frequency it operates at is
imperative for effective control. Only then will multi-task control, the possibility of the agent
working satisfactorily across environments, be truly possible.

Master of Science Thesis Siddharth Ravi

26 Defining the Problem

4-2 The point mass MDP

To illustrate the effects of action-gaps at higher frequencies, we create a simple MDP that
simulates the manipulation of a point mass on a frictionless horizontal line segment. The
point mass is manipulated by forces of equal magnitude towards the left and the right. The
goal of the MDP is to move the point mass from the start state which at one end of the
line segment towards the terminal state at the other end. Rewards to the agent R(s, a), are
defined as a function of the distance travelled from the initial state, or R(s, a) = K × d, with
k being an arbitrary scaling constant (we used k = 0.001), and terminal state is 5 units away
from the initial state. We used a Bellman operator based Q-Learning algorithm as the agent
for solving the task.

C

A B

Figure 4-1: A simple MDP with the objective of moving an arbitrary point mass C from starting
state A towards terminal state B. The arrows represent actions of equal magnitudes that can be
taken in either direction

Results

The results from the experiment can be seen in Table 4-2. The experiment is conducted for
the same number of episodes (40), across frequencies. As expected, the action-gaps at higher
frequencies decrease in magnitude, when the Q-values for different actions at the same state
move towards each other. Thus the presence of noise in the update steps, from improper
initialization or from errors due to function approximation increasingly upsets the ordering
of action-values when frequencies are increased, thereby leading to the apparent drop in
performances. The Q-learning algorithm was implemented with tilecoded Q-values, with 100
tilings used. The parameters used for the implementation can be seen in Table 4-1.

Parameter Value
α 0.00025
γ 0.99
Policy ε-greedy
εinitial 1
εFinal 0.1
Decay rate 0.99 (exponential decay at every step)

Table 4-1: Q-Learning - Parameters of choice

Siddharth Ravi Master of Science Thesis

4-2 The point mass MDP 27

Algorithm fx Action Gap Performance

Q-Learning
1 0.0002 50.7 ± 1.4
10 0.00015 19.4 ± 8.1

Table 4-2: Comparing action-gaps on the point mass MDP with a base frequency of 50Hz. The
term fx refers to the frequency multiplier.

4-2-1 Empirical analysis and benchmarking

In this section, we further empirically analyze and show the effects of disappearing reinforce-
ments. Experiments are conducted using two different variants of the Q-learning algorithm.
We employ the algorithms at different frequencies to benchmark their performances. Different
metrics based on the total normalized un-discounted episodic returns are devised.

The normalized un-discounted return R̄i for episode i is defined by:

R̄i = 1
fxRmax

N∑
t=1

Rt(st, at) (4-3)

with Rmax defined as the upper limit of returns achievable for the length of an episode (in
case one such conditions exists- if not, we assume this value to be unity), fx is the frequency
multiplier with respect to the base frequency associated with the experiment, Rt(st, at), the
rewards obtained at each non-terminal state and action for the length of the episode, and N
being the length of the experiment in episodes. The resulting returns are normalized within
the range of [0, 1], so as to easily compare the learning rates of algorithms for a similar number
of steps, across frequencies.

With the normalized un-discounted returns over episodes defined, the following metrics are
put forward for analyzing the performance of algorithms across frequencies:

• Maximum returns over 100-contiguous episodes: This is used as a measure to understand
highest performance that the algorithm can achieve. A sliding window with a length
of 100 is employed to analyze the highest contiguous returns over the length of the
experiment.

• Mean returns over all episodes: Coupled with the previous metric, these give an insight
into whether the algorithm being benchmarked learns to our satisfaction.

• Step response metrics -

– Rise Time, τrise: We define the rise time in the number of episodes required for
the algorithm’s performance to rise from 10% to the 90% of the steady-state value
R̄f during the duration of the experiment, the performance here being the total
un-discounted returns gathered over the length of the episode. We chose this
definition of a rise time so that it also is relatable to the definition of rise times
found in control theory.

τrise = τ90 − τ10

Master of Science Thesis Siddharth Ravi

28 Defining the Problem

– Settling Time, τs: The settling time in episodes is defined as the number of episodes
after which the learning curve enters and remains within a certain bound ε of the
final value.

τs = i↔ argmax
i

∣∣∣R̄f − R̄i

∣∣∣ ≤ εR̄f ∀i ∈ [0, N]

We chose the final steady-state value of epsilon to be 0.05. The steady-state
value R̄f , mentioned above represents the final value after the algorithm converges,
which we calculate as the average normalized undiscounted returns over the last c
episodes.

R̄f = 1
c

N∑
j=N−c+1

R̄j

The value of c can be arbitrarily chosen, the value for our experiments being 100.

For the sake of simplicity and ease of tuning, the algorithms were simulated on a test MDP
setup, namely the cartpole [1]. The OpenAI gym [15] provided the platform, and it is com-
monly seen in reinforcement learning literature as a universal benchmark.

The cartpole problem

The cartpole, briefly discussed in Section 3-1 is a fundamental and oft-used test-bed when it
comes to employing reinforcement learning algorithms. For this problem, a pole is attached
by an un-actuated joint to a cart, which moves along a frictionless track. The system is
controlled by applying a force of +1 or -1 to the cart. The pole starts upright, and the goal
is to prevent it from falling over. The episode ends when the pole is more than 15 degrees
from vertical, or when the cart moves more than 2.4 units of distance from the centre. In this
version of the task, discrete actions of magnitude [-1,1] are allowed along a single dimension
[36]

Figure 4-2: Visualizing the cartpole state parameters [36]

The reward function presented a unit reward for every step taken in the episode before
termination. A large negative reward for episode termination was also programmed into

Siddharth Ravi Master of Science Thesis

4-2 The point mass MDP 29

the algorithm, as this was seen to improve performances to an extent. The objective of the
problem is therefore to maximize the time for which the cartpole is balanced in an upright
position.

Results

We simulate two different algorithms on the cartpole, namely the standard Q-learning with a
tile-coding based function approximator with 100 tiles for the action-values [37], and a fully-
connected neural network based deep Q-learning algorithm [30] across different frequencies.
This is done to show that the disappearing reinforcements problem exists across different
algorithms that make use of Bellman updates, independent of the function approximator in
use. An ε-greedy exploratory policy was chosen which exponentially decayed the value of the
exploration rate ε at every episode until a value of 0.1 was reached. Upon reaching a state the
epsilon-greedy approach chooses a random action with probability ε, and chooses the highest
valued action according to the current policy otherwise. The parameters chosen to implement
the Q-learning algorithm can be seen in Table 4-1. The parameters chosen for the DQN can
be seen in Table 4-3. The neural network used in the implementation was the same as used
by Mnih et al., [30] with the exception of using fully connected neural networks instead of
CNNs.

Parameter Value
γ 0.99
Mini-batch size 32
Replay Memory 1000000
Error Mean Absolute Error
Target update frequency 4
Policy ε-greedy
εinitial 1
εFinal 0.1
Decay rate 0.99 (exponential decay at every step)
Optimizer Adam (α=0.0002, β1=0.9, β2=0.999, ε̂=1e− 8, decay=0)

Table 4-3: DQN - Parameters of choice

The results from the experiment can be seen in Table 4-4. It can be seen that the metrics
of mean returns and max returns employed decrease consistently in magnitude when the
sampling frequency is increased by a factor of ten from a base of 50 Hz. Thus it can be
said that as theorized, the experiments reveal that the learning is reduced while sampling
frequencies are increased.
The step response indicators indicate that the rise times at higher frequencies are faster, but
the returns it obtains at these frequencies are lower because of disappearing reinforcements.
The Q-learning algorithm also fails to converge at 10x frequency, and hence the settling time is
indicated with a blank. The DQN, as expected, has an improved performance when compared
with Q-learning on the same task, but the max and mean returns achieved still takes a hit
when operating at 10x frequencies. Also, as expected, the algorithm converges slower judging
by the settling time, which indicates a slower learning rate.
The learning curves for Q-learning and DQN can be seen in Figure 4-3 and Figure 4-4.

Master of Science Thesis Siddharth Ravi

30 Defining the Problem

Figure 4-3: Q-Learning - Returns per episode across frequencies on Cartpole

Figure 4-4: DQN - Returns per episode across frequencies on Cartpole

Siddharth Ravi Master of Science Thesis

4-3 Robustness to noise 31

Algorithm fx Mean Return Max Return Rise Time Settling Time

Q-Learning
1 0.78 1 7900 24820
10 0.028 0.049 93 -

DQN
1 0.82 1 435 1317
10 0.035 0.17 59 2479

Table 4-4: Comparison chart. Base frequency= 50 Hz. Frequency multiplier fx shows by how
much the base frequency is multiplied, and the results are averaged over 5 randomized trial runs.

4-3 Robustness to noise

As explained, the nature of the disappearing reinforcements problem lies in the increased
sensitivity of the algorithm to errors and noise at higher frequencies. In this section, we
associate and quantify the relationship between noise and how it affects the performance of
the algorithm.

As our aim is to understand and interpret results, we conduct experiments with a Bellman
operator based algorithm on the point particle MDP explained in Section 4-2. We simulate
noise in the system by adding a normally distributed zero mean pseudorandom signal to the
observations (state values). For simplicity’s sake, we conduct experiments with a Q-learning
algorithm, with a tabular representation of action-values, and operating with an epsilon-
greedy policy. The standard deviation of the noise added was selected to be the arbitrary
small values of 0.001, and 0.01. As expected, the Bellman operator based Q-learning algorithm
performs increasingly worse with the addition of noise, with the drop in performance becoming
increasingly apparent at higher frequencies. The performance (in mean returns averaged over
5 random runs) of Q-learning with the added noise can be seen in Table 4-5.

Noise fx Action Gap Performance

0.01
1 0.00017 31.1 ± 2.3
10 0.0001 8.9 ± 3.9

0.001
1 0.00018 48.3 ± 2.1
10 0.00013 12.6 ± 6.2

Table 4-5: Comparing the effects of noise on the Bellman Updates.

4-4 Summary

Disappearing reinforcements lead to negative effects when the algorithms are deployed in real-
life scenarios. On the one hand, this effect renders reinforcement learning algorithms useless in
environments that require operating at higher frequencies. There is also the loss in resolution
when reinforcement learning algorithms are employed at low frequencies on platforms as a
result. Events that happen on a timescale lower than that of the current sampling time get
ignored due to the coarse representations, leading to a sub-optimal policy. The effects of this
can be seen from the sharp dip in mean/max returns for the tilecoded Q-learner as seen in
Table 4-4.

Master of Science Thesis Siddharth Ravi

32 Defining the Problem

In this chapter, we defined the nature of the problem as due to estimation errors and decreasing
action gaps in Section 4-1, and analyzed it in both theoretical and empirical standpoints. We
established the connection between the Bellman operator and disappearing reinforcements.
The decrease in action-gaps for the Bellman operator based Q-learning algorithm at higher
frequencies was empirically shown with the help of a point mass based MDP in Section 4-2.
We then illustrated the effects of disappearing reinforcements with experiments conducted
on the cartpole MDP, with different novel metrics to indicate performance measures across
frequencies. We also showed how common Bellman operator based algorithms are affected by
noise.

Siddharth Ravi Master of Science Thesis

Chapter 5

Exploring The State Of The Art

Truly multi-task reinforcement learning is achieved only when the algorithms are able to
work across frequencies. This is because different platforms have different optimal frequency
ranges of operation. Disappearing reinforcements prevent Bellman operator based algorithms
from being used at higher frequencies, thus preventing them from being used for control.
This chapter looks into the state-of-the-art and identifies solutions to disappearing reinforce-
ments, while comparing and contrasting these methods on the basis of their advantages and
shortcomings. We identify two different methods, each attacking a cause of the problem
we identified in the previous chapter, namely the estimation errors in action values and the
decreased action-gaps at higher frequencies.

The rest of this chapter is structured as follows. We first provide a theorem from literature
to identify optimality-preserving, gap-increasing (OP/GI) operators, which we show to be
useful. We then move forward to identify operators that satisfy the conditions in the theorem
defined in Section 5-2. One operator satisfying the conditions discussed is the advantage
learning operator. Another approach to the problem is to leverage a different neural network
architectures to create more robust estimates of the Q-values themselves, thereby alleviating
the problem. The approach discussed in section Section 5-4 makes use of adapting the neural
function approximators to form different streams, each exhibiting different properties that
are beneficial f operation.

5-1 On the properties of operators

The Bellman operator, as discussed in Chapter 3 is a contraction mapping in the supremum
norm. Bellemare et al., 2016 [38], proved that for an algorithm to be robust towards errors
and noise, the operator based on which an algorithm works should have two properties,
the optimality-preserving property, and the gap-increasing property. The Bellman operator
creates small action gaps, thereby making it prone to approximation and estimation errors
[38]. This can be seen from the experiments on the point particle MDP discussed in the
previous chapter.

Master of Science Thesis Siddharth Ravi

34 Exploring The State Of The Art

We argue that this increased sensitivity to errors also leads to worsening performances at
higher frequencies, when the optimal action-values move closer together.

Bellemare et al., (2016) [38] define the conditions for an operator to be optimality-preserving
and gap-increasing (OP/GI), and a theorem based on these conditions to check if an operator
possesses these properties. The conditions for optimality preservation is defined as follows.

Condition 5-1.1. Optimality-preserving
For the MDP M, operator τ ′ is optimality preserving, if ∀Q0 ∈ Q and s ∈ S, letting Qk+1 =
τ ′Qk:

Ṽ (s) = lim
k→∞

max
a∈A

Qk(s, a)

exists, is unique, Ṽ (s) = V ∗(s) and ∀a ∈ A,

Q∗(s, a) < V ∗(s)⇒ lim
k→∞

sup Qk(s, a) < V ∗(s)

Simply put, under an optimality preserving operator, an optimal action remains optimal, and
sub-optimal actions remain sub-optimal.

The condition for an operator to possess a gap-increasing property is defined as follows.

Condition 5-1.2. Gap-increasing
An operator τ ′ for MDP M is gap-increasing if ∀Q0 ∈ Q, s ∈ S and a ∈ A, letting Qk+1 :=
τ ′Qk and Vk(s) = maxb Qk(s, b), then,

lim
k→∞

inf [Vk(s)−Qk(s, a)] ≥ V ∗(s)−Q∗(s, a)

For gap-increasing operators, even the least action-gap for a policy remains greater than or
equal to the action gap for the Bellman operator. This means that the operator possesses
gap-increasing properties when compared with the Bellman operator.

Siddharth Ravi Master of Science Thesis

5-2 OP/GI operators 35

5-2 OP/GI operators

Bellemare et al., (2016) defined a theorem based on the conditions 5-1.1 and 5-1.2 for the
operator in question to be checked against. The theorem is as follows:

Theorem 5-2.1. Let τQ(s, a) = R(s, a) + γEP a maxa∈A Q(s′, a).
Let τ ′ be an operator with the property that there exists an η ∈ [0, 1) such that ∀Q ∈ Q, s ∈ S
and a ∈ A, if

1. τ ′Q(s, a) ≤ τQ(s, a)
2. τ ′Q(s, a) ≥ τQ(s, a)− η [V (s)−Q(s, a)]

Then τ ′ is both optimality-preserving and gap-increasing

5-3 Advantage Learning

As explained in Section 4-1-1, for Bellman update based algorithms, Q-values at a partic-
ular state tend to re-order themselves in the presence of noise from the approximators and
estimated values. This is increasingly so at higher frequencies when the action-gaps reduce,
thereby making it easier for the noise to upset the ordering of actions.

Our interest lies in the selection of operators that adheres to both Condition 5-1.1, for preserv-
ing optimality, and Condition 5-1.2 which ensures a gap-increasing property. We assert that
defining such an operator gives rise to a robust algorithm that is able to operate satisfactorily
across frequencies. Bellemare et al.,(2016) [38] go on to define several such operators. One
such operator defined by the authors was the advantage learning operator, modified from the
original advantage learning algorithm defined by Baird, (1995) [17], so as to possess the same
fixed point and at the same time be more stable in practice. We shall be referring to this
operator with the symbol τAL. Bellemare et al., (2016) redefined the operator linked to the
original advantage learning algorithm can be redefined with the same fixed point as equivalent
to the Bellman operator fitted with a correction term which is a scaled value of the advantage
function:

τALQ(s, a) = τQ(s, a) + η

Q(s, a)− V (s)︸ ︷︷ ︸
advantage function

 (5-1)

with τ being the Bellman operator, and η = (1−K), K proportional to the sampling time dt.
Bellemare et al., [38] explain that the form as seen in (5-1) is more stable in practice than the
original version by Baird, as it prevents the multiplication by the K−1 term. It also allows
for easy verification to see that it adheres to the conditions seen in Theorem 5-2.1.

Master of Science Thesis Siddharth Ravi

36 Exploring The State Of The Art

The update rule for the advantage learning algorithm, which can be accurately labelled as a
corrected Q-learner, is as follows:

(5-2)Q(s, a)← Q(s, a) + α

{
R(s, a) + γ max

a′∈A
Q(s′, a′)−Q(s, a) + η

[
Q(s, a)−max

b∈A
Q(s, b)

]}

The term α refers to a learning rate, while the γ refers to a discount factor. Advantage
learning, similar to Q-learning is also an off-policy, model-free, critic-only algorithm.

To illustrate the gap increasing properties of the advantage learning operator, we carry out
experiments on the point particle MDP formulated in Section 4-2. To recap, a point mass is
moved along a one-dimensional line segment, with the goal of the MDP being to move the
point mass from one end of the segment to the other. Discrete forces can be applied on the
point particle to move it in either directions, while the particle receives a reward at each state
according to its distance from the terminal state at one end of the line segment.

We calculate the action-gap for states over episodes for an advantage learner using a tilecoded
state-action value representation on the point particle MDP. The results can be seen in Ta-
ble 5-1, along with the performances achieved with respect to the mean returns averaged over
5 consecutive runs.

On the point mass MDP, the action-gaps were seen to decrease accordingly at higher fre-
quencies for the Q-learning agent when the states become closer, as can be seen in Table 4-2.
The advantage learning agent on the other hand, because of its gap-increasing property has
an overall higher action-gap, this becoming more apparent at higher frequencies. The results
from the experiment can be seen in Table 5-1. Also, judging from the non-decreasing perfor-
mance, the advantage learning operator can be identified to be timescale-agnostic, implying
its ability to work satisfactorily across frequencies.

Algorithm fx Action Gap Performance

Advantage Learning
1 0.0038 112.79 ± 5.0
10 0.022 119.91 ± 21.1

Table 5-1: Comparing average action-gaps and performances (mean returns over five random
runs) across timescales on the point mass MDP

5-3-1 Robustness to noise of OP/GI operators

We also check how robust the OP/GI operators are when faced with noise. Theoretically,
as the action gaps are larger for the advantage learning operator, the algorithm becomes
resistant to noise. We test this hypothesis by the addition of two sets of zero mean Gaussian
noise to the observed values of states, each with different values of standard deviation. The
test is run with five trials of 40 episodes each on the point mass MDP, and the results from
doing the experiment are seen as in Table 5-2.

The results indicate that advantage learning is more robust towards noise than the Bellman
operator based Q-learning. The action gaps are larger when in comparison with Q-learning,
and the algorithm also is more robust towards noise. This indicates the correctness of our

Siddharth Ravi Master of Science Thesis

5-4 Dueling Network Architectures 37

fx Noise Action-gap Performance
1 0.01 0.0029 102.4 ± 5.5
10 0.018 101.1 ± 7.1
1 0.001 0.0036 107.3 ± 1.2
10 0.021 108.0 ± 3.9

Table 5-2: Comparing noisy readings with performances across frequencies for advantage learn-
ing.

hypothesis, that the action gaps and estimation errors are related to disappearing reinforce-
ments. It also shows that the problem is one that can be alleviated by the use of similar
approaches to the one discussed here.

Convergence

Bellemare et.al, (2016) [38] theoretically proved the convergence of the advantage learning
operator. Further studies of convergences of advantage learning based agents coupled with
action-value function approximators have not been conducted. It can however be seen empir-
ically that the advantage learning operator converges in different setups.

Shortcomings

Advantage learning is also known to be very difficult to scale to MDPs involving large action
spaces, being an action-value method. This is due to the curse of dimensionality.

Remark: The advantage learner can be thought of a modified Q-learning agent. At its
core, similar to Q-learning, advantage learning is also a model-free, off-policy, value-based
(critic-only) algorithm like Q-learning, but it converges to values different from Q-learning
which in turn improves performances at higher frequencies because of increased action-gaps.

5-4 Dueling Network Architectures

As disappearing reinforcements were shown by us to be caused by the estimation errors of
the Q-values at higher frequencies, another way to improve performances at finer timescales
is to improve the estimates of Q-values themselves.
Dueling network architectures are a state-of-the-art approach that are known to achieve im-
pressive performances on Atari games [20]. This approach by Wang et al., improves on the
performances achieved by other architectures such as the DQN [30] by leveraging changes
to the neural architecture that approximates the Q-functions. The premise behind the con-
struction of the dueling architecture is simple. A Q-function can be written as the sum of
the value function and the advantage function, with both terms having significantly different
properties.

Q(s, a) = V (s) + A(s, a)

Master of Science Thesis Siddharth Ravi

38 Exploring The State Of The Art

The value function represents the expected long-term discounted returns starting from a
certain state.

While the DQN uses a standard neural network (usually convolutional or fully connected)
taking in state values to produce Q-values, the dueling architecture (seen in Figure 5-1) splits
the penultimate layer to have one part of the split layer act as an approximator for the value-
function V (s) and the other part act as an approximator for the advantage function A(s, a).
The sum of the outputs of both these layers in-turn give the action-value function Q(s, a).
The network is trained using Bellman updates, similar to the DQN.

Neural Net - penultimate layer

V (s)

A(s, a)

∑

|A|

∑
Q(s, a)

-

Figure 5-1: The dueling network architecture

The architecture enforces the Advantage function approximation layer to be zero for the
chosen action, so that the other layer is forced to converge to the value function. This
is done at the penultimate layer of the dueling architecture, by subtracting the maximum
advantage over all actions from the advantage function layer. This step also serves to increase
identifiability, so that we are be able to recover the value function and advantage function
uniquely, from the action-value function output by the network. The equation for the dueling
network can be expressed as follows:

Q(s, a; θ, α, β) = V (s, θ, β) +
[
A(s, a, θ, α)−max

a′∈A
A(s, a′; θ, α)

]
︸ ︷︷ ︸

advantage function

(5-3)

θ being the parameters of the layers of the neural network, α and β being the parameters
of the value and advantage layers, respectively. Wang et al.,[20] argue that subtracting the
average of the advantage function at the penultimate layer instead of a maximum provides
better performances, and serves to increase the stability of the optimization as the advantages
need only change as fast as the mean. Thus the overall equation for the network output turns
out to be:

Q(s, a; θ, α, β) = V (s, θ, β) +
[
A(s, a, θ, α)− 1

|A|
∑
a′

A(s, a′; θ, α)
]

(5-4)

Siddharth Ravi Master of Science Thesis

5-4 Dueling Network Architectures 39

Figure 5-2: Saliency map - Advantage learning v/s value function. [20]

The enduro game requires the gamer to control a motorcycle to avoid obstacles. The orange patch
on the image refers to the area where the agent gives the most attention to.

The dueling network architecture provides a better estimate of the action-value function, and
this makes it more robust towards noise in the environment. The robustness of the estimates
of Q-values are due to the creation of the two channels mentioned, a value function channel
that creates a measure of how good the long-term returns are when starting from the state
and following a certain policy, and the advantage function, which is an indicator of how useful
specific actions are, when at a certain state. As the maximum advantage values are forced to
move to zero at each states, the value function stream also moves towards its correct values,
and a subsequent sum of these would create robust estimates of the Q-values themselves. This
makes the dueling network robust against disappearing reinforcements at higher frequencies.

Looking at the saliency map of the value function channel (see Figure 5-2), the agent playing
the game Enduro can be seen to have its attention tuned more towards the pixels at the
horizon, and less towards the pixels immediately in front of the car. On the other hand, the
advantage function represents a relative ordering of actions according to their profitability.
The advantage function channel can be seen to be only concerned with obstacles in close
proximity to the car, and therefore its attention is tuned that way. Its saliency map to
measure channel attention can be seen to be as in the right hand side of Figure 5-2 [20],
where the orange patch indicates the pixels in the image with the most attention given to by
a certain channel.

The dueling network is updated in the same way as the deep Q-network (DQN) described by
Mnih et al., [30] using a Bellman operator based update rule. To summarize, the network
parameters are separately stored as target values and the updates are used to reduce the
difference between the target and the Q-values output by the network. The loss function Li

for the algorithm at iteration i is given by:

Master of Science Thesis Siddharth Ravi

40 Exploring The State Of The Art

Li(θi) = EP a

[∣∣∣∣R(s, a) + γ max
a′

Q(s′, a′; θ−
i)−Q(s, a; θi)

∣∣∣∣] (5-5)

with θ−
i representing the target value function and θi denoting the parameters being used in

the estimation of value functions. The loss represents the temporal difference error term in
the Q-learning update rule. A gradient descent step is then done on the loss function with
respect to the parameter θ. Kingma and Ba (2015) devised Adam [39], which is a gradient
based optimization algorithm as an alternative to other popular gradient descent algorithms
such as Stochastic Gradient Descent [40] and RMSProp [41]. For our implementations, we
used Adam instead of RMSProp used originally in the paper by Mnih et al. for practical
reasons. We also decided to update the target network with the concept of soft updates as
described by Lillicrap et al., [42] for the providing increased stability for the algorithm.

To keep our implementation simple, we used a standard experience replay based update rule
similar to the DQN on the dueling network architecture. Experience replay updates, as ex-
plained in Chapter 3, make it possible to break temporal correlation between updates, thereby
improving performances. This also makes it possible for rare experiences to be considered
for more than a single update, thereby improving the policies used. As we were dealing with
direct state inputs from the environment (and not images), we used 3 fully connected deep
neural layers for the architecture with 32, 64 and 32 neuron units respectively, The penulti-
mate layer with the value and advantage streams have 512 units each, with the value stream
having one output and the advantage stream having the same number of outputs as there are
valid actions. All hidden units have rectified linear units for activations.

The details of the implementation are as shown in Table 5-3, and the results from simulating
the agent on the cartpole can be seen in Table 5-4.

Parameter Value
γ 0.99
Mini-batch size 32
Replay Memory 1000000
Error Mean Absolute Error
Target update 0.01 (Soft Updates)
Policy ε-greedy
εinitial 1
εFinal 0.1
Decay rate 0.99 (exponential decay at every step)
Optimizer Adam (α=0.0002, β1=0.9, β2=0.999, ε̂=1e− 8, decay=0)

Table 5-3: Dueling Network - Parameters of choice

Convergence

There exist no theoretical convergence guarantees for the agent due to its neural architecture.
The learning rule, however is based on the Bellman operator, which is proven to converge in
tabular settings.

Siddharth Ravi Master of Science Thesis

5-5 Results 41

Shortcomings

Dueling networks have a neural architecture as a function approximation scheme which in-
creases the computational complexity of the algorithm. Moreover, as previously explained,
there are no theoretical convergence guarantees for the algorithm. Being a value-based
method, dueling networks are also difficult to scale to large action spaces due to the curse of
dimensionality. The technique is better suitable for working with discretized action-spaces.

5-5 Results

In this section we compare the performances of the two algorithms on the cartpole problem
over the same number of episodes, which can be seen in Table 5-4. The mean and max
returns are normalized to be between 0 and 1, with 1 being the maximum reward that is
achievable in an episode of the algorithm. For the purposes of fair comparison, we created a
deep version of the advantage learning agent, which uses the deep Q-network framework for
representing action-values, but is instead updated against the modified target from the ad-
vantage learning operator. The new target value is of the form R(s, a)+γ maxa′ Q(s′, a′; θ−

i)+
η
(
Q(s, a; θ−

i)−maxa Q(s, a; θ−
i)
)
. The parameters for the agent we used were the same as

that seen in Table 4-3.

Agent fx Rise Time Settling Time Mean Return Max Return

Advantage Learning
1 189 610 0.786 1
10 248 724 0.814 1

Dueling Network
1 386 591 0.848 1
10 455 531 0.841 1

Table 5-4: Benchmarking state-of-the-art agents across timescales on the cartpole problem

The results are reported over 5 random trials. From the results, it can be seen that both the
deep advantage learner and the dueling network perform well across frequencies, indicating
their timescale agnostic nature. Rise times for the dueling network is seen to be slightly
longer than the deep advantage learner, but this is compensated by the settling times, which
are faster for the advantage learner. These results indicate that both agents are timescale-
agnostic, and perform satisfactorily.

The performance curves of both agents on the cartpole can be seen in Figure 5-3 and Figure 5-
4.

5-6 Summary

In this chapter, we argued the importance of the OP/GI properties of operators for tackling
disappearing reinforcements at higher frequencies. We explained theorems to select such
an operator. We also empirically showed that algorithms making use of operators which
possess these properties do indeed perform satisfactorily at higher frequencies, and that this
performance is correspondent to their larger action-gaps. We also show that the action-gaps

Master of Science Thesis Siddharth Ravi

42 Exploring The State Of The Art

Figure 5-3: Advantage Learning - Returns per episode for different frequencies on Cartpole

Figure 5-4: Dueling Network - Returns per episode for different frequencies on Cartpole

Siddharth Ravi Master of Science Thesis

5-6 Summary 43

and therefore the performance is unaffected by noisy updates across frequencies, thereby
showing that the advantage learning operator as an example of an OP/GI operator based
agent is timescale-agnostic.

We also illustrated a second approach to solve the disappearing reinforcements problem, utiliz-
ing the dueling network architecture to improve the estimation of the action-values themselves.
We established the importance of a clearly defined advantage and value function stream. Con-
vergence guarantees and shortcomings of both approaches were also discussed. We then went
forward and benchmarked the performance of both timescale agnostic approaches on the
cartpole problem, for which the results seen were promising.

Master of Science Thesis Siddharth Ravi

44 Exploring The State Of The Art

Siddharth Ravi Master of Science Thesis

Chapter 6

Extending Solutions

We explored two approaches to alleviate disappearing reinforcements in the previous chapter,
namely by creating operators that increase action-gaps, and by improving the robustness of
the Bellman operator itself so it produces better estimates of the Q-values. In this chapter
we put forward our extensions to the state-of-the-art. We formulate a novel reinforcement
learning agent, the dueling advantage learner, that mixes both the approaches from the state-
of-the-art explained in the previous chapter.

The rest of the chapter is structured as follows. Section 6-1 introduces the concept of the
dueling advantage learner. Section 6-1-1 delves into a sensitivity analysis of a correction-term
parameter η with respect to the performance of the algorithm on the cartpole balancing task.
Section 6-1-2 benchmarks the algorithm on the cartpole task by using criteria discussed in
Section 4-2-1. Finally Section 6-1-3 and Section 6-1-4 deal with the convergence guarantees
and the disadvantages of employing the agent, respectively.

6-1 Dueling Advantage Learners

The first approach to solving disappearing reinforcements which we explored in Chapter 5
dealt with the use of optimality-preserving and gap-increasing operators. The concept of dis-
counting sub-optimal actions come out to be highly beneficial to our cause as the advantage
learning operator has illustrated. In the previous chapter, we created a deep advantage learn-
ing agent, which used the framework of the DQN for benchmarking purposes. The framework
of the DQN utilized the concept of splitting target networks and action-value networks. The
DQN utilized experience replay based mini-batch updates which were explained in Section 3-
4-1, in which gradient descent is performed on a squared temporal difference (TD) error
∆Q(s, a)2. The TD error ∆Q(s, a) is defined as:

∆Q(s, a) = R(s, a) + γV (s′)−Q(s, a) (6-1)

Master of Science Thesis Siddharth Ravi

46 Extending Solutions

for the Bellman operator given by τQ = R(s, a) + γEP a maxa′ Q(s′, a′). As mentioned in
Section 5-3, the advantage learning operator, which is a modified version of the Bellman
operator is defined as:

τALQ(s, a) = τQ(s, a)− η [V (s)−Q(s, a)] = τQ(s, a) + ηA(s, a) (6-2)

For advantage learning, the temporal difference error can be modified to resemble the Q-
learning TD-error with a correction term:

∆ALQ(s, a) = ∆Q(s, a) + η [Q(s, a)− V (s)]
= ∆Q(s, a) + ηA(s, a)

(6-3)

With a neural network as the function approximator, the value of Q(s, a) is approximated to
be Q(s, a, θ), with θ being the parameters of the Q-network function approximator. Using
the framework of the DQN, the loss function (considering a mean absolute loss function) to
be minimized for advantage learning thus becomes:

Li(θi) = EP a

[∣∣∣∣R(s, a) + γ max
a′

Q(s′, a′; θ−
i) + η

(
Q(s, a; θ−

i)−max
a

Q(s, a; θ−
i)
)
−Q(s, a; θi)

∣∣∣∣]
(6-4)

with θi being the parameters for the action-value network and θ−
i are the target network’s

parameters at iteration i.

The formulation of the advantage learning operator requires the parameter η ∈ [0, 1) used
to be a function of the sampling time dt. The exact formulation of the term according to
Bellemare et al. [38], is η = (1− Cdt) with C being an arbitrary scaling constant for dt, the
sampling time. The term alludes to the strength of our belief in the ordering of action values,
with a value close to one indicating a strong belief in the ordering due to the small amount
of corrections required during the update, and a value close to zero indicating a weak belief
due to the larger magnitude of corrections. The advantage learning operator, as explained in
Chapter 5 creates an optimality-preserving and gap-increasing operator, and this improves
performances at higher frequencies.

The second approach we explored concerned the use of a dueling network architecture that
helps in better estimating the Q-values themselves. As explained in Section 5-4, the dueling
architecture provides a convenient way to separate out the value function from the advan-
tage function, thereby creating separate channels in the neural architecture that behave with
distinct behavioral characteristics [20]. The value function channel of the dueling network ex-
hibits a tendency to look towards the long term horizon, as the value function is representative
of the long term rewards gathered by the agent. The dueling network architecture forces the
value function and advantage functions to be formed, thereby creating better estimates of the
Q-values themselves when both channels are combined. This makes it robust towards noise
in the updates, which becomes especially apparent at higher frequencies when there are large
numbers of updates before the terminal state is reached.

We combine this approach of an advantage learning agent with the architecture of the dueling
network (explained in Chapter 5) to create a novel dueling advantage learner. We harness the
property of creating more robust Q-value estimates from the dueling network architecture and

Siddharth Ravi Master of Science Thesis

6-1 Dueling Advantage Learners 47

Figure 6-1: Scatterplot - Performance (in mean returns) versus η

the OP/GI property of the advantage learning operator, to formulate the dueling advantage
learning agent. For this, we utilize the dueling architecture for representing Q-values and
utilize the advantage learning operator for the update steps. What this ensures is that
there are increased values of the action-gaps for the Q-values represented, and the values
themselves have improved estimates. For implementing the dueling advantage learner, we
chose to implement the advantage channel subtracted by the average values over all actions
for practical purposes. We also tried using a double Q-learning [35] version of the advantage
learning update rule, but we discarded this as we did not see too much improvements from
doing this over the standard update rule during our experiments. We also used the same
structure of the dueling network as discussed in Section 5-4.

6-1-1 Parametric analysis

We perform a parametric analysis to understand how the performance is affected by the
value η of the dueling advantage operator. To create this, we run the agent on the cartpole-
balancing task and store the average returns over an entire trial run for a frequency multiplier
of 1x (50Hz). To specifically get the effect of changing values of η, we decided to keep the rest
of the variables as constant. The results from the experiment can be seen in the scatter-plot
as seen in Figure 6-1.
From the results seen in the figure, we chose a value of η to be 0.4 for the rest of the
experiments, as it provided the best mean returns overall. The experiment was run for a
length of 150 episodes, with the values represented in the scatter-plot being the average mean
returns over five trial runs of the experiment.

6-1-2 Results

We test the dueling advantage learner on the cartpole agent and estimate the efficacy of
our agent, with the benchmarks described in Section 4-2-1. The results from simulating the

Master of Science Thesis Siddharth Ravi

48 Extending Solutions

dueling advantage learner over 5 random runs for 1000 episodes on the cartpole can be seen
in Table 6-1, and the performance curves across frequencies can be seen in Figure 6-2.

Agent fx Rise
Time

Settling
Time

Mean
Return

Max
Return

Dueling Advantage Learner
1 186.58 368 0.8664 1
10 228 592 0.899 1

Table 6-1: Results from simulating the Dueling Advantage Learner on the cartpole environment

For the benchmarking experiments, we chose the values for the parameters seen in Table 6-
2. The results indicate that the dueling advantage learner has improved performances when
compared to the individual agents we combined to create it (the results of which can be
seen in Table 5-4). The results also indicate that the dueling advantage learner is timescale
agnostic, as expected.

Parameter Value
γ 0.99
η 0.4
Mini-batch size 32
Replay Memory 1000000
Error Mean Absolute Error
Target update 0.01 (Soft Updates)
Policy ε-greedy
εinitial 1
εFinal 0.1
Decay rate 0.99, exponential over every step.
Optimizer Adam (α=0.0002, β1=0.9, β2=0.999, ε̂=1e− 8, decay=0.0)

Table 6-2: Dueling Advantage Learner - Parameters of choice

6-1-3 Convergence guarantees

Using neural function approximation on reinforcement learning algorithms removes any theo-
retical guarantees of convergence. The dueling advantage learner is no exception. That said,
Bellemare et al., [38] proved that the operator on which the agent is based on, the advantage
learning operator, has theoretically assured guarantees of convergence. Empirically, it can
also be seen that the dueling advantage learner converges in a finite amount of time, under
favourable initialization of the agent’s parameters.

6-1-4 Shortcomings

The complex neural architecture of the dueling advantage learner introduces a level of com-
putational complexity to the task at hand. But this can be overlooked, as the increase in
complexity is accompanied by an increased learning rate accompanied by lower estimation
errors at higher frequencies. The agent also has no theoretically-assured properties of conver-
gence, even though it can be empirically shown to converge.

Siddharth Ravi Master of Science Thesis

6-2 Summary 49

Figure 6-2: Dueling Advantage Learning - Returns per episode for different frequencies on
Cartpole

6-2 Summary

We propose the dueling advantage learner as a novel agent that achieves improved perfor-
mances at higher frequencies. Formulation of such an agent requires a combination of the
ideas of the dueling network architecture and the advantage learning operator. The agent is
seen to be timescale agnostic when it comes to its performance, indicating that it alleviates
the effects of disappearing reinforcements. This makes it one of the most attractive agents
out of the ones studied for multi-task reinforcement learning.

Master of Science Thesis Siddharth Ravi

50 Extending Solutions

Siddharth Ravi Master of Science Thesis

Chapter 7

Benchmarking and Testing

Benchmarking algorithms is a difficult task. It can be inferred from literature that creating
consistently reproducible statistically significant results under similar conditions is difficult,
with various sources at times seen citing different results [43]. In this chapter we compare the
performance of different agents that are potential solutions to the disappearing reinforcements
problem. We compare the performance achieved by the algorithms across frequencies on
different environments, by taking the mean returns gathered over a similar number of episodes
as a benchmark. This is scientifically important, as studies of value-based methods on control
tasks, and studies of agents across frequencies are seldom seen in literature.

7-1 Benchmarking solutions

In order to understand the efficacy of the different solutions, we benchmark the 2 state-of-
the-art agents along with the dueling advantage learner across different control-based test
scenarios and frequencies. The deep version of the advantage learning agent discussed in
Chapter 5 is used for the advantage learning agent.

We use the mean returns gathered over episodes, which is a criterion frequently seen in
literature. Although we created benchmarks that can be used to produce more meaningful
results than just the mean returns, our task is made difficult by the large number of results
that we’d have to convey, as our benchmarks span frequency ranges, in addition to different
types of tasks. Hence we decided to focus on mean returns for this exercise. The results we
gather can be seen in Table 7-1. The testing was done with the agents using the parameters
mentioned in Chapter 5 and Chapter 6.

The testing was done for three classic control tasks seen in literature, namely the cartpole
balancing task which was explained in previous chapters, along with the acrobot swing up
task [44] and the mountain car problem [45]. Variants of the tasks are also considered, namely
with added observation noise, with delayed actions, and also as a Partially Observable MDP
task, with the dynamics of the system changing at each step of the task.

Master of Science Thesis Siddharth Ravi

52 Benchmarking and Testing

The results can be seen in Table 7-1, and the results in bold indicate a statistically significant
improvement. This we ascertained by checking the p-values of the sets of results obtained
at a certain frequency on a certain task, with a statistically significant result indicated by a
p-value of around 0.1 or lower. In case of a tie, all best results were marked in bold.

The details of the tasks are as follows. All agents were simulated for 150 episodes, with the
results reported being the mean returns and standard deviations averaged over five random
trials.

Cartpole balancing

The cartpole balancing task explained in Section 4-2-1 is chosen as one of our benchmark
tasks. The base frequency at which the cartpole operates at is chosen as 50Hz.

Acrobot swing-up

The acrobot swing-up task requires the agent to swing the lower link of a two-link two-joint
under-actuated robotic arm over a specified line, when the links initially hang downwards.
The setup can be seen in Figure 7-1.

Figure 7-1: Acrobot swing-up task. The horizontal line signifies the level that the lower link
needs to swing up over.

The rewards from the environments are a value of -1 for every step if the lower link has not
reached the terminal state. The objective of the task is to execute the swinging-up action
quickly. The base frequency for the operation of the cartpole is chosen as 5Hz. There are
three discrete actions for the agent to choose from, a positive torque, negative torque and no
torque.

Siddharth Ravi Master of Science Thesis

7-1 Benchmarking solutions 53

Mountain-car climb-up

The mountain car climb-up task, seen in Figure 7-2, is a popular task used to benchmark
control algorithms. The objective of the task is to drive a car on a one-dimensional track up
a mountain. The engine of a car is also not powerful enough to make it traverse the mountain
in one pass, so it needs to drive back-and-forth in order to build momentum to scale the
height. The mountain-car problem has a negative reward structure similar to the acrobot,
which is obtained at each step before reaching the terminal state denoted by the flag atop the
mountain. Hence the objective of the task is to scale the height of the mountain as quickly as
is possible. The base frequency at which the mountain-car operates at is chosen to be 10Hz.
The agent also can take one of 3 discrete actions at every step which correspondingly allow
it to accelerate, decelerate or do nothing.

Figure 7-2: MountainCar climb-up task. The flag at the top of the mountain signifies the level
that the car needs to cross.

7-1-1 Standard tasks

From the results on the standard version of tasks described above (seen in Table 7-1 and
Figure 7-3), it can be understood that the dueling advantage learning agent performs on
average better than the other two agents. The performance of the advantage learner can also
be seen to be considerably worse than the other two agents on the acrobot environment. It
can also be inferred from the results that the dueling network is the second-best performing
agent on the standard tasks. All agents are also seen to be relatively timescale agnostic, with
some seen to improve performances with increasing frequencies.

7-1-2 Observation noise and action delays

We use an additive Gaussian random noise with zero mean and an arbitrary standard devi-
ation of 0.01 to the observed states of agents, so as to simulate how the agents behave when
faced with noisy sensors in the real world. Along with this, the execution of the actions are
delayed by a value of 0.01s so as to simulate physical delays during real-world operation. The
results from this section indicate that the performance of the agents are relatively robust
to noise and action-delays, even though there is a slight decrease in the overall performance

Master of Science Thesis Siddharth Ravi

54 Benchmarking and Testing

when in comparison with the standard versions of the tasks. The agents are also seen to be
relatively timescale agnostic. Here as well, the advantage learning agent is seen to perform
relatively worse when compared to the other two agents on the acrobot environment. Overall,
the dueling advantage learner is seen to outperform other agents on the majority of the tasks.

7-1-3 System identification

The system identification task deals with uncertainty in the task we simulated on. We inject
an additive Gaussian random noise of zero mean and 0.001 standard deviation to the dynamics
of the environment, so the behavior of the model becomes slightly different at every step of the
experiment. This aspect of modelling is useful as it provides insight into how the agent would
work when operating in a real-world environment, which could be dynamic. The results still
portray timescale agnostic performances for all agents, with the dueling advantage learner
performing especially well at the 5x frequencies when in comparison with other agents. The
dueling advantage learner is also on average better performing than the other agents.

Siddharth Ravi Master of Science Thesis

7-1 Benchmarking solutions 55

Environment fx Duel Net AL DAL

Cartpole
1 70.07 ± 1.9 65.4 ± 4.4 66.2 ± 1.4
2 140.2 ± 9.3 105.2 ± 12.1 138.4 ± 3.2
5 149.1 ± 12.9 143.5 ± 32.3 164.9 ± 15.3

Acrobot
1 -133.9 ± 6.775 -266.18 ±2.7 -125.1 ± 1.2
2 -123.9 ± 0.3 -256.2 ± 5.2 -126.3 ± 8.2
5 -145.3 ± 7.27 -237.5 ± 23.3 -132.3 ± 49.9

Mountain Car
1 -192.5 ± 0.6 -192.4 ± 2.2 -192.1 ± 3.1
2 -170.7 ± 6.82 -170.4 ± 2.5 -147.4 ± 3.4
5 -98.8 ± 2.2 -96.2 ± 1.3 -101.8 ± 4.6

Cartpole (NO/DA)
1 69.9 ± 10.8 59.6 ± 7.7 75.4 ± 8.2
2 94.5 ± 23.1 105.8 ± 8.37 124.2 ± 7.7
5 116.3 ± 13.7 144.8 ± 15.2 142.9 ± 34.4

Acrobot (NO/DA)
1 -141.4 ± 3.4 -258.3 ± 17.2 -117.9 ± 4.7
2 -142.5 ± 25.3 -236.3 ± 6.7 -129.5 ± 3.6
5 -168.7 ± 32.7 -228.1 ± 10.2 -136.7 ± 7.2

Mountain Car (NO/DA)
1 -195.7 ± 1.78 -196.3 ± 2.5 -188.3 ± 1.5
2 -184.5 ± 14.5 -182.2 ± 9.9 -181.6 ± 11.2
5 -170.5 ± 4.9 -164.6 ± 5.2 -159.4 ± 23.5

Cartpole (SI)
1 65.3 ± 21.8 61.7 ± 5.5 71.7 ± 15.9
2 91.8 ± 6.9 109.5 ± 14.9 123.61 ± 10.3
5 103.6 ± 18.2 121.5 ± 7.6 138.3 ± 13.6

Acrobot (SI)
1 -127.0 ± 1.41 -273.2 ± 4.4 -117.6 ± 9.2
2 -135.5 ± 11.3 -265.4 ± 8.2 -134.6 ± 27.6
5 -209.6 ± 51.02 -243.4 ± 36.5 -166.2 ± 26.4

Mountain Car (SI)
1 -194.6 ± 3.09 -191.3 ± 5.8 -191.7 ± 2.5
2 -180.8 ± 12.0 -221.6 ± 3.4 -184.0 ± 21.75
5 -165.2 ± 9.4 -203.4 ± 12.6 -134.6 ± 17.52

Table 7-1: Benchmarking algorithms over different frequencies wrt mean returns/standard devi-
ations - NO/DA refers to the inclusion of noisy observations and delayed actions, and SI refers
to the system identification tasks. Duel Net refers to the dueling network architecture updated
by Bellman updates, AL refers to the advantage learning operator using the deep Q-network
framework, and DAL refers to the dueling advantage learner.

Master of Science Thesis Siddharth Ravi

56 Benchmarking and Testing

Figure 7-3: Performance (in mean returns) on the standard cartpole, mountain-car and acrobot
environments

Siddharth Ravi Master of Science Thesis

7-1 Benchmarking solutions 57

Figure 7-4: Performance (in mean returns) on the cartpole, mountain-car and acrobot environ-
ments, with noisy observations and delayed actions.

Master of Science Thesis Siddharth Ravi

58 Benchmarking and Testing

Figure 7-5: Performance (in mean returns) on the cartpole, mountain-car and acrobot environ-
ments as system identification tasks.

Siddharth Ravi Master of Science Thesis

Chapter 8

Conclusions and Future Work

In this thesis we put forward the idea that operating reinforcement algorithms at higher fre-
quencies is useful, by looking at general rules from the field of optimal control. We then
established the relation between small action-gaps, estimation errors of Q-values and the de-
creasing performance of common reinforcement learning algorithms at increasing frequencies.
This we called the disappearing reinforcements problem. We explored two approaches from
the state-of-the-art aimed at alleviating the problem. The first approach concerned the use
of agents updated by the advantage learning operator, which is an optimality-preserving and
action gap-increasing operator. The second approach concerned the use of a dueling network
architecture for deep reinforcement learning agents, which creates more robust estimates of
action-values. We also defined novel benchmarks inspired from control theory to benchmark
the performance of the agents.

Finally, we put forward our agent that combines both approaches and improves on the state-
of-the-art. This we called the dueling advantage learning agent. We then proceeded to
benchmark the agent on three different tasks, namely on the cartpole balancing task, the
acrobot swing-up task and the mountain-car climb-up task. The agents were also tested
on variants of these tasks to simulate real-world scenarios. We added observation noise
and action-delays to the agent, as well as created variants of the tasks with the underlying
dynamics of the task subject to change at every step. The dueling advantage learner was seen
to outperform the other agents on a large number of the tasks.

The concept of reinforcement learning as control algorithms operating across frequencies has
been rarely explored in literature. Explanations as to why agents behave in a certain way on
a specific platform have almost always been geared towards other parts of the task, such as
the complexity of the task itself. While this may be true in many cases, it is important to
understand that many of the popular tasks that are used as benchmarks operate at different
frequencies. This thesis hopefully has brought to light the importance of the looking at the
reinforcement learner in a new light, as a control system that operates at different frequencies.

It is also untrue to be stating that the disappearing reinforcements problem is one that is
solved. Although the approaches detailed in this thesis address the issue to a large extent,

Master of Science Thesis Siddharth Ravi

60 Conclusions and Future Work

there is still much work to be done to improve the agent’s performance at higher frequencies.
But the results from this thesis is testament to the fact that the combination of older and
simpler agents and ideas can give rise to superior agents that perform well.

8-1 Future Work

In this section we detail other approaches which can be utilized to create more robust agents
for alleviating the disappearing reinforcements problem. Moreover, we also detail some open
research questions to be explored in the future.

• Persistent Dueling Advantage Learner: Bellemare et al., (2016) [38] devised the
Persistent Advantage Learning agent as an improvement to the advantage learning,
while preserving the original operator’s optimality-preserving and gap-increasing prop-
erties. The algorithm makes use of a max operator to select the TD error term. The
Persistent Advantage Learning operator is expressed as:

τP ALQ(s, a) = max {τALQ(s, a), R(s, a) + γEP aQ(s, a)} (8-1)

The persistent advantage learning agent was introduced as a measure to encourage re-
peated actions [38]. This operator can also be used on the dueling network architecture,
similar to the dueling advantage learner we devised.

• Prioritized experience replay: For the purpose of facilitating a fair and easy-to-
understand comparison of agents, we decided to forgo complexity in favour of simplicity
to the agents being compared in this thesis. There have been other techniques devised
in literature to improve results and generalization ability of deep reinforcement learning
agents. The concept of the prioritized experience replay [46] is one such method, and
this can also be used in place of the experience replay being utilized for the updates.

• Other operators for reinforcement learning: Although research has pointed to
the efficacy of alternative operators to the Bellman operator (such as the advantage
learning operator), there still is no proof for the existence of a maximally efficient
operator. Studies about the statistical efficiency of different operators in use are also
rare [38].

• Theoretical criteria for convergence: Although it can be seen that the agents
converge empirically, a theoretical guarantee for the convergence of neural reinforcement
learning agents is rarely seen in literature, and ought to be studied in the future.

Siddharth Ravi Master of Science Thesis

Appendix A

Implementation details

All algorithms run on the point-mass MDP including the physics simulator itself were custom
built and run on azure cloud notebooks1. For the deep reinforcement learning agents, a
computer with 16 GB of RAM, and a GPU with 640 parallel processing cores and 4GB of
GDDR5 SDRAM was used. All simulations with the exception of the point-mass MDP were
run with the OpenAI gym [15] framework. The deep reinforcement learning agents were
created in Keras [47], running on a tensorflow backend [48].

1https://notebooks.azure.com/

Master of Science Thesis Siddharth Ravi

62 Implementation details

Siddharth Ravi Master of Science Thesis

Appendix B

Algorithms

Algorithm 1 One-Step Q-Learning [1]
1: Initialize Q(s, a),∀s ∈ S, a ∈ A arbitrarily, and Q(terminal − state, ·) = 0
2: repeat(for each episode):
3: Initialize s
4: repeat(for each step of the episode):
5: Choose a from s using policy derived from Q
6: Take action a, observe R(s, a), s′

7: Q(s, a)← Q(s, a) + α [R(s, a) + γ maxa′ Q(s′, a′)−Q(s, a)]
8: s← s′

9: until s is terminal

Master of Science Thesis Siddharth Ravi

64 Algorithms

Algorithm 2 Deep Q-learning [30]
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ− = 0
4: for episode= 1, M do
5: Initialize state sequence
6: for t = 1, T do
7: With probability ε select a random action at

8: Otherwise select at = argmaxa Q(s, a; θ)
9: Execute action at in emulator and observe reward Rt and state xt+1

10: st+1 = st, at, xt+1
11: Store transition (st, at, Rt, st+1) in D
12: Set yj as

yj =
{

Rj if episode terminates at stepj + 1
Rj + γ max′

a Q̂(sj+1, a′; θ′) otherwise
(B-1)

13: Perform a gradient descent step on (yj − Q(sj , aj ; θ))2 with respect to network
parameters θ

14: Every C steps reset Q̂ = Q
15: end for
16: end for

Siddharth Ravi Master of Science Thesis

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1. MIT
press Cambridge, 1998.

[2] M. Wiering and M. Van Otterlo, “Reinforcement learning,” Adaptation, Learning, and
Optimization, vol. 12, 2012.

[3] J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance functions and reinforcement
learning for trading systems and portfolios,” Journal of Forecasting, vol. 17, no. 56,
pp. 441–470, 1998.

[4] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey,” in Reinforcement
Learning: State of the Art, pp. 579–610, Springer, 2012.

[5] B. Awerbuch, D. Holmer, and H. Rubens, “Provably secure competitive routing against
proactive byzantine adversaries via reinforcement learning,” John Hopkins University,
Tech. Rep, 2003.

[6] I. Erev and A. E. Roth, “Predicting how people play games: Reinforcement learning in
experimental games with unique, mixed strategy equilibria,” American economic review,
pp. 848–881, 1998.

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–489, jan 2016.

[8] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 3rd ed., 1997.

[9] G. Kreisselmeier, “On sampling without loss of observability/controllability,” IEEE
Transactions on Automatic Control, vol. 44, no. 5, pp. 1021–1025, 1999.

Master of Science Thesis Siddharth Ravi

66 Bibliography

[10] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37,
no. 1, pp. 10–21, 1949.

[11] K. J. Astrom and B. Wittenmark, Computer-controlled Systems (3rd Ed.). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1997.

[12] I. P. Pavlov and G. V. Anrep, Conditioned Reflexes; an Investigation of the Physiological
Activity of the Cerebral Cortex. London: Oxford Univ. Press, 1927.

[13] C. Hull, Principles of Behavior. New York, USA: Appleton-Century-Crofts, 1943.

[14] R. Bellman, “The theory of dynamic programming,” Bull. Amer. Math. Soc., vol. 60,
pp. 503–515, 11 1954.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[16] L. C. Baird, “Reinforcement learning in continuous time: Advantage updating,” 1994.

[17] L. Baird et al., “Residual algorithms: Reinforcement learning with function approx-
imation,” in Proceedings of the twelfth international conference on machine learning,
pp. 30–37, 1995.

[18] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71, no. 7,
pp. 1180–1190, 2008.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” arXiv
preprint arXiv:1602.01783, 2016.

[20] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling
network architectures for deep reinforcement learning,” arXiv preprint arXiv:1511.06581,
2015.

[21] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas,
“Sample efficient actor-critic with experience replay,” arXiv preprint arXiv:1611.01224,
2016.

[22] A. Gruslys, M. G. Azar, M. G. Bellemare, and R. Munos, “The reactor: A sample-efficient
actor-critic architecture,” arXiv preprint arXiv:1704.04651, 2017.

[23] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an overview,”
in Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, vol. 1,
pp. 560–564, IEEE, 1995.

[24] M. L. Littman, “Algorithms for sequential decision making,” 1996.

[25] “David Silver’s lectures at UCL.” http://www0.cs.ucl.ac.uk/staff/D.Silver/web/
Teaching_files/control.pdf. Accessed: 2016-11-02.

[26] C. J. C. H. Watkins, Learning from delayed rewards. PhD thesis, University of Cambridge
England, 1989.

Siddharth Ravi Master of Science Thesis

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/control.pdf
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/control.pdf

67

[27] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems. Uni-
versity of Cambridge, Department of Engineering, 1994.

[28] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning with model-
based acceleration,” in International Conference on Machine Learning, pp. 2829–2838,
2016.

[29] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneer-
shelvam, M. Suleyman, C. Beattie, S. Petersen, et al., “Massively parallel methods for
deep reinforcement learning,” arXiv preprint arXiv:1507.04296, 2015.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[31] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral reinforcement learning
and experience replay for adaptive optimal control of partially-unknown constrained-
input continuous-time systems,” Automatica, vol. 50, no. 1, pp. 193–202, 2014.

[32] A.-m. Farahmand, “Action-gap phenomenon in reinforcement learning,” in Advances in
Neural Information Processing Systems, pp. 172–180, 2011.

[33] S. Thrun and A. Schwartz, “Issues in using function approximation for reinforcement
learning,” in Proceedings of the 1993 Connectionist Models Summer School Hillsdale,
NJ. Lawrence Erlbaum, 1993.

[34] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing Sys-
tems, pp. 2613–2621, 2010.

[35] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-
learning.,” in AAAI, pp. 2094–2100, 2016.

[36] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE transactions on systems, man, and
cybernetics, no. 5, pp. 834–846, 1983.

[37] A. A. Sherstov and P. Stone, “Function approximation via tile coding: Automating
parameter choice,” in International Symposium on Abstraction, Reformulation, and Ap-
proximation, pp. 194–205, Springer, 2005.

[38] M. G. Bellemare, G. Ostrovski, A. Guez, P. S. Thomas, and R. Munos, “Increasing the
action gap: New operators for reinforcement learning.,” in AAAI, pp. 1476–1483, 2016.

[39] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[40] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceed-
ings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[41] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

Master of Science Thesis Siddharth Ravi

68 Bibliography

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[43] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibility of benchmarked
deep reinforcement learning tasks for continuous control,” 2017.

[44] A. Geramifard, C. Dann, R. H. Klein, W. Dabney, and J. P. How, “Rlpy: a value-
function-based reinforcement learning framework for education and research.,” Journal
of Machine Learning Research, vol. 16, pp. 1573–1578, 2015.

[45] J. A. Boyan and A. W. Moore, “Generalization in reinforcement learning: Safely ap-
proximating the value function,” in Advances in neural information processing systems,
pp. 369–376, 1995.

[46] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv
preprint arXiv:1511.05952, 2015.

[47] F. Chollet et al., “Keras,” 2015.

[48] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

Siddharth Ravi Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	

	Acknowledgements

	Main Matter
	Introduction
	An Optimal Control Perspective
	Looking from a control theoretical perspective
	Formulating the optimal control problem

	Choosing sampling frequencies
	Tracking effectiveness
	Regulation effectiveness
	Measurement noise errors and pre-filter design

	Upper limits on the sampling frequency
	Summary

	Reinforcement Learning- History and Concepts
	Theory behind reinforcement learning
	The elements of reinforcement learning
	Classifying RL - Model-based versus model-free
	Model-based reinforcement learning
	Model-free learning

	Classifying RL - Value-based/Policy-based/Actor-Critic
	Value-based RL
	Policy-based RL
	Actor-critic

	Classifying RL - On and off-policy learning
	Summary

	Defining the Problem
	Problem definition
	From a theoretical standpoint

	The point mass MDP
	Empirical analysis and benchmarking

	Robustness to noise
	Summary

	Exploring The State Of The Art
	On the properties of operators
	OP/GI operators
	Advantage Learning
	Robustness to noise of OP/GI operators

	Dueling Network Architectures
	Results
	Summary

	Extending Solutions
	Dueling Advantage Learners
	Parametric analysis
	Results
	Convergence guarantees
	Shortcomings

	Summary

	Benchmarking and Testing
	Benchmarking solutions
	Standard tasks
	Observation noise and action delays
	System identification

	Conclusions and Future Work
	Future Work

	Appendices
	Implementation details
	Algorithms

	Back Matter
	Bibliography

