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Abstract
Complex reinforcement learning (RL) models that re-
ceive high rewards in their environments are often hard
to understand. To this end, more interpretable models
can be used, such as decision trees. To be able to deploy
these models in safety-critical environments, they need
to be high-performing and verifiable. Optimal decision
trees can fulfill both these goal. While some methods
already exist to find optimal decision trees, none have
applied them to RL environments with continuous state
and action spaces [4; 13]. Broccoli is a state-of-the-art
approach to synthesizing decision tree policies for black-
box environments [3]. Given a discretisation of the con-
tinuous state space, it can find the optimal tree in discrete
action environments.
This research will focus on discretising action spaces
of continuous environments. In doing so, discrete ac-
tion spaces are created for which Broccoli can find op-
timal decision trees. Additionally, a goal is to show that
it is possible to discretise continuous action spaces and
compute corresponding optimal decision trees in feasi-
ble time. Furthermore, this paper proposes informed dis-
cretisation techniques that result in better-performing de-
cision tree policies.

1 Introduction
The practicality of Reinforcement Learning (RL) applications re-
lies on the ability to generate well-performing policies. However,
most of these well-performing policies are considered black-boxes
as these models cannot be easily understood. This lack of inter-
pretability and verifiability poses a problem in safety-critical sys-
tems, such as autonomous driving or robotic behaviour, where inter-
pretability is necessary [5; 8].

Decision trees are intrinsically interpretable and therefore verifi-
able [6]. Because of these properties, there is an increasing amount
of research into decision trees for RL and finding competitive mod-
els. The Broccoli algorithm finds optimal decision trees for RL en-
vironments with continuous state spaces [3; 4]. Broccoli achieves
promising results in discrete action environments. However, real-life
applications often are situated in continuous action environments.

This research paper focuses on discretising continuous action
spaces for the Broccoli algorithm. This will be done such that opti-
mal decision trees can be found for continuous environments. The
main research question the paper will address is:

How do different discretisation techniques of continuous action
spaces affect the performance of the Broccoli algorithm and its

decision trees within deterministic black-box environments?

In this study, the first experiment will be done to determine the
effect of the number of actions on the Broccoli algorithm. The sec-
ond experiment will evaluate the effect of skewed discretisations on
the performance of the optimal and runtime of the algorithm. After
which, methods for discretisation will be introduced that are evalu-
ated on the return of the optimal tree and runtime.

There will be a focus on comparing different discretisation tech-
niques and their settings. In the following chapter, the related work
will be highlighted. After that, the third chapter will explain some
technical details of the Broccoli algorithm. The fourth chapter will
describe the methodology used. The fifth chapter will contain the
experiments and their results. Following this, the sixth chapter will
address some ethical aspects of this research. Finally, the seventh
chapter concludes the main research question, lists the limitations of
this study, and provides possible paths for future work.

2 Related Work
Optimal Decision Trees Decision trees have gained significant
traction in research for explainable AI. In a decision tree, each deci-
sion is represented by an inner node, and the actions by a leaf node.
It is due to this logical structure that decision trees are interpretable.
The structure makes it easy to follow the reasoning behind a deci-
sion taken. One of the challenges of decision trees is dealing with
continuous state and action spaces, and finding the optimal tree is
known to be NP-hard [9].

The Broccoli algorithm provides a solution for finding optimal
continuous-state decision trees through exhaustive search [3]. The
algorithm uses a pruning technique based on traces that assumes no
prior knowledge of the environment. One of the shortcomings of
the algorithm is that it currently only works on discrete action envi-
ronments. There are also other papers that focus on finding optimal
decision trees.

In MurTree [2], they also apply a search algorithm for finding
depth-limited trees, though these trees are classification trees. In
OMDT [13], they show that an optimal decision tree with limited
depth can be found, given a Markov Decision Process. One lim-
itation of this method is that the environment’s Markov Decision
Process is needed, which is not possible in the case of a black-box
environment. Currently, there is minimal research regarding optimal
decision trees in continuous environments, considering black-box
environments.

Continuous action discretisation In various applications of
reinforcement learning, there is a need for continuous control.
Whether in robotics or game-playing, continuous control results in
an infeasible action space. This is due to the fact that continuous
spaces are infinite. To compute the optimal decision tree, you would
have to evaluate all actions, which is not feasible for continuous
spaces. To combat this, an abstraction or discretization can be used
to reduce the action space.

In poker-playing agents for no-limit hold ’em, agents have an (al-
most) infinite number of choices for the size of each bet. Some use
a geometric progression of the current pot size to reduce the action
space for the agents to a more tractable size [10]. While it works
in these agents, this has not yet been applied to decision trees. As
for reinforcement learning for motor skills, AQuaDem finds useful
discretisations from a dataset of human demonstrations [1]. This
technique proves useful but is unfit for the classic control environ-
ments.

Research Gap There is a lack of research on optimal decision
trees in continuous action environments. In addition to this, there
are almost no methods that find useful action space discretisations
for decision trees, while they exist for other applications. To address
these issues, this paper aims to find methods that are able to success-
fully discretise action spaces in continuous environments. By using
the Broccoli algorithm, these action discretisations can be used to
find optimal decision trees in continuous environments [3].

3 The Broccoli Algorithm
As this research builds upon the Broccoli algorithm, some back-
ground knowledge is necessary. This chapter will include the spe-
cific background knowledge of the In Search of Trees [4] paper
needed for this paper. The first section will start with some prelim-
inaries taken from the paper. Then the second section will describe
the naive search algorithm. After this, the pruning technique specific
to Broccoli will be laid out in the third section. That section will also
elaborate on why it matters for the discretisation.



3.1 Preliminaries
Let S = (s1, s2, ..., sd)

T ∈ S be a state which has d dimensions
and where S ⊆ Rd. Let action a ∈ A ⊆ R. Let an environment be
a function E : S × A → S. The environment takes an action and a
state as arguments, and will return the resulting state, S′ = E(S, a).
A policy is a function given a state that it returns an action, π : S →
A. CA denotes the set of all policies.

In the paper, the focus will be on decision tree policies. This
decision tree is a binary tree where the leaf nodes represent spe-
cific actions and inner nodes are predicates. The predicate nodes
are boolean functions in the form of S → B, where given the in-
put state, the node will return either true or false. The decision tree
policy works as follows. At a given state, the policy starts at the
root node, it then evaluates the predicate function and goes to its left
child if it is evaluated to true, else it will go to its right child. If this
node is also a predicate node, it repeats this process until an action
node is encountered and returns its action.

Using a policy π, and environment E, an initial state S0, and a
limited amount of total timesteps k ∈ N, a trace is formed by the
states the policy will traverse in the environment. Formally this can
be written as τ = S0, S1, S2, ..., Sk where Si is given as Si =
E(Si−1, π(Si−1)) for i = 1, ..., k. T is written to denote the set of
all traces.

A fitness function is assumed, as the goal is to find the optimal
decision tree policy given an environment and limited depth. ⪰:
T × T is the partial ordering of two traces. It is said that if a trace
finds a goal state in an environment, it always precedes a trace that
does not find one of these states. The return of a trace is the sum of
rewards at each state Si along the trace. τ1 is said to precede τ2 if
τ1 has a higher return than τ2. From this ordering follows a logical
ordering for policies, ⪰: Ca ×Ca where π1 ≻ π2 if either one of the
following conditions holds. The corresponding trace of policy π1 is
strictly better than that of π2. Or both traces have the same fitness,
but π1 is a smaller tree.

3.2 Exhaustive search
The final tree is ensured to be optimal by enumerating all depth-
limited decision trees and keeping track of the best one so far. How-
ever, the search space of these decision trees is infinitely large. Dis-
cretising the predicate nodes makes the search space finite for dis-
crete action environments. The action space can also be discretized
to make the search space for continuous action environments finite.
As mentioned before, the optimal tree will be found by keeping track
of the best-performing tree in exhaustive search. This method is still
exponential in time as the search space grows exponentially. Trace-
based pruning was used to eliminate certain decision trees from con-
sideration. This technique ensures that some sub-optimal trees will
not be explored.

3.3 Trace-based pruning
To reduce the runtime and the number of trees evaluated, Broccoli
uses a pruning algorithm based on the traces the tree policies gen-
erate in the environment. The reasoning is that a predicate should
only be considered if it would change the trace. In the search, the
minimal value for which a predicate is true is tracked. If the next
threshold value considered is less than the lowest observed value, it
will not change the trace if selected. If the threshold value were se-
lected, the following policy would produce a duplicate trace, which
is unnecessary.

A practical example is shown in Figure 1, which was taken from
the original paper [4]. As shown in the figure, the first two predicates
do not create different traces. This means that they are identical for
all predicates for s1 that are less than 2.3. After the evaluation of
the first policy, it is found that the s1 does not fall below 2.3, so it is

Figure 1: Trace-based pruning applied visually, taken from the In
Search of Trees paper [4].

possible to not consider the second tree as it is identical to the first
tree.

Action discretisation implications Despite the pruning not
exploiting actions directly, the choice of actions does affect the tech-
nique’s effectiveness. The pruning technique prunes between two
values if the distance is large enough. Take, for example, the traces
depicted in Figure 2. In the trace with the larger actions shown in
Figure 2a, the policy only needs to take 29 steps to reach the goal
state. In Figure 2b, the policy has to take 31 steps to reach the termi-
nal state. Despite both policies using a similar path, the larger-action
policy takes fewer steps. Using fewer steps means the space between
state values is larger for the policy with larger action values. These
larger values possibly result in additional pruning for searches with
action sets that contain larger action values.

(a) Pendulum trace with dis-
cretised actions -2, 0, 2. 29 ac-
tions taken

(b) Pendulum trace with dis-
cretised actions -1, 0, 1. 31 ac-
tions taken

Figure 2: Graphs showing different traces reaching the same goal,
using the same path, in a different number of steps. These indicate
that the distance between steps is larger in sub-figure (a).

4 Continuous Action Discretisation
This chapter will outline the motivation behind the discretisation
techniques and the main research questions this paper aims to an-
swer. The first two sections will cover the first research sub-
question: How does discretisation of continuous action spaces in-
fluence the performance of the Broccoli algorithm?. After that, the
third section will address the second research sub-question: How
can other optimal trees help find a good search space for the final
optimal tree? The quantitative measure of a search space is the total
return of the optimal decision tree it contains. The third section will
describe how state-of-the-art RL models can help optimal decision
tree search. How can teacher models contribute to the synthesis of
optimal decision trees?

4.1 Simple discretisation
The search space for decision trees is O(|P |n|A|n+1) where |P | is
the number of discretised predicates, |A| the number of discretised



actions, and n is the number of predicate nodes. Note that the num-
ber of possible predicate nodes scales exponentially with the depth
of the tree. To successfully discretise continuous action spaces, it is
essential that the trace-based pruning keeps performing well under
an increasing number of actions. An experiment will be conducted
where the Broccoli algorithm will be run with varying uniformly
discretised actions, both with and without trace-based pruning. Uni-
formly distributed actions will be used as this approximates the con-
tinuous space accurately as the number of actions grow.

4.2 Other static discretisations
In the second experiment, the idea is to use different distributions of
geometric progressions and to use these values to generate a more
skewed distribution. This discretisation has been used successfully
in poker agents to reduce the continuous betting space [10]. These
geometric discretisations will be compared to the uniformly dis-
tributed baseline used in experiment 1.

There is a discretisation with skewness towards the upper end of
the value range, as you can see in Figure 3. A geometric recession
will be used to create an identical skewness towards zero. This dis-
cretisation is similar to the geometric progression, where the differ-
ences decrease instead of increasing. These skews make it possible
to see if larger action values influence the trace-based pruning.

−1 −0.75 −0.50 −0.25 0 0.25 0.5 0.75 1

(a)

−1 −0.25 0 0.25 1

−0.125−0.5 0.50.125

(b)

−1 −0.75 0 0.75 1

−0.875 −0.5 0.5 0.875

(c)

Figure 3: Different static discretisations used. From top to bottom,
Uniform (a), Geometric Progression (b), and the Geometric Reces-
sion (c).

These distributions of actions do have some drawbacks as they
are static and do not differ a lot from each other. While the distribu-
tions are asymmetrical on each side of the zero line, the total action
distribution is still symmetrical.

4.3 Informed discretisation
As the previously mentioned discretisations are static, they do not
take advantage of the environment. It is not possible to try to exploit
the environment directly without violating the black-box constraint.
Therefore, other policies are generated without assuming any infor-
mation about the environment. The resulting models are then simu-
lated in the environment, and actions are tracked. By sampling from
these actions, representative actions are found which can be used as
a discretisation. This is more effective than directly using a more
granular discretisation as the search space scales exponentially with
the number of actions. Even though the sampling of actions scales
better, the practicality of this policy sampling still depends on the
time it takes to generate the policy and sample from the environ-
ment.

4.3.1 Cheap optimal trees
The first informed discretisation will use cheaper, optimal trees
found by the Broccoli algorithm. This method will generate random
actions and filter them through the Broccoli algorithm by searching
through cheaper runs. Cheaper runs either use fewer depth, fewer

predicates, or fewer actions. The goal of these reductions is to shrink
the solution space. The formal algorithm for this sampling is given
in Algorithm 1. Note that the algorithm presented is the algorithm
for cheaper trees by reduced action set sizes. One could employ a
similar algorithm to use cheaper searches with either fewer predi-
cates or shallower trees.

Algorithm 1 Cheap Optimal Tree Sampling

Input: number of actions n, predicates P , maximum depth
d, number of tree samples k, number of top trees m

Output: Optimal decision tree t∗ that produces the highest
return

T = ∅
for i in 1, ..., k do

A1 ← {X1, ..., X⌈n/2⌉}, Xi ∼ U(0,max action)
A2 ← {Y1, ..., Y⌊n/2⌋}, Yi ∼ U(min action, 0)
A ← A1 ∪A2

ti ← Broccoli(P,A, d)
T ← T ∪ {ti}

end for
Tlist ← Sort(T, Descending)
A′ ← ∅
for i in 1, ...,m do

ai ← GetActions(ti)
A′ ← A′ ∪ {ai}

end for
t∗ = Broccoli(P,A′, d)
return t∗

This experiment will focus on reducing the number of actions.
The advantage of this method is that the expensive, final run has
informed action selection. Of the cheaper trees, only the better-
performing trees’ actions will be used. The cheaper runs’ actions
will be drawn from the uniform distribution over the action range.
By only selecting the best trees, the chance of sampling from anoma-
lously bad trees is reduced.

Another benefit of this approach is that there is a lower bound
on the return of the final optimal tree. All actions from the cheaper
trees get included, and the final tree search algorithm will search for
at least the depth of the cheaper trees. Therefore, each smaller tree is
included in the search space, and the maximum return of these trees
is the lower bound for the final, optimal tree (Theorem 1).
Theorem 1. Given predicates {P1, ..., Pn} ⊆ P , action set A =
{A1, ..., An} where Pi and Ai, are the predicates and actions re-
spectively of the sampled decision trees t ∈ T , with maximum depth
k, and n is the number of trees in T . Let rt be the return t pro-
duces in a given environment. Let tmax denote the tree with the
greatest return such that tmax = argmaxt∈T rt. The Broccoli al-
gorithm, given action set A, predicate set P , maximum depth m
where m ≥ k, returns an optimal tree t∗ where rt∗ ≥ rtmax

Proof. Let Sm
P,A be the search space of all decision trees with pred-

icates p ⊆ P , actions a ⊆ A, and depth up until m By def-
inition of the Broccoli algorithm, given predicates P , actions A,
maximum depth m, it finds the optimal tree t∗ such that t∗ =
argmaxt∈Sm

P,A
rt. Given that ∀i : Sk

Pi,Ai
⊆ Sm

P,A where k ≤ m. It

follows that ∀i : {∀t ∈ Sk
Pi,Ai

: rt∗ ≥ rt}. Therefore, with tmax =
argmax∀t∈T rt, it can be concluded that rt∗ ≥ rtmax QED

As seen in Theorem 1, the actions used in multiple decision trees
can be given in one superset as input to the Broccoli algorithm. By



using the same predicates and depth, a lower bound is guaranteed
on the return of the optimal tree found. This is given by the greatest
return of the decision trees that sampled the actions.

4.3.2 Twin-Delayed Deep Deterministic Policy Gradient
(TD3)

The second heuristic discretisation is using the actions of a teacher
model. Here, the sampling is done through the Twin-Delayed Deep
Deterministic Policy Gradient (TD3) model, as this is a widely ac-
cepted working model [7; 15; 14]. The agent will be trained in the
same environment, and then the environment and the agent will be
used to generate actions.

The sampling is done by running the agent on the environment
and finding which actions it has taken. Then the sampling is re-
peated, but for another random initial state, such that the resulting
actions will differ. Finally, a subset of actions is randomly chosen
from each simulation. The action set is then either accepted or re-
jected if its mean and standard deviation are representative of the
total distribution. The goal is to find an action set that represents
the overall action distribution of a well-performing policy. As such,
these values are taken as approximations of the distribution to eval-
uate if the given subset is representative enough.

5 Experimental Setup and Results
This chapter will give the details and setup of the experiments.

5.1 Experiment #1: Simple Discretisation
This section will detail how the first experiment was conducted and
which considerations were made.

First, there needs to be an idea of how many discretised actions
can be used to find the influence of discretized actions on the Broc-
coli algorithm. The more actions that can be used, the more ac-
curately the continuous space will be approximated. The standard
Broccoli algorithm was developed for discrete action environments
that have a constant number of actions. This means that the influence
of the number of actions on the algorithm is still unknown.

To find how Broccoli behaves under an increasing number of ac-
tions, the idea is to run the search algorithm with and without trace-
based pruning. For both variants, multiple uniform action sets of
increasing size will be used. The metrics that will be looked at are
the runtime, number of environment calls, and number of explicitly
considered trees. Both variants are guaranteed to find the same tree.

Figure 4: Trace-based pruning vs. Naive exhaustive search for depth
two decision trees for the Mountain Car Continuous environment.
Both algorithms found the same tree.

As can be seen in Figure 4, the pruning is relatively effective,
even for larger numbers of actions. Note that the runtime and num-
ber of considered trees still grow exponentially as the number of

actions grows. This means that computation will become infeasible
for larger numbers of actions.

5.2 Experiment #2: Geometric discretisations
As the goal is to compare the geometric discretisations to the uni-
form discretisation, function parameters will be the same as in ex-
periment #1. The difference is in the actions chosen. While it is the
main difference, what can be noticed in Figure 3 is that the discreti-
sations overlap. As you can see, the actions [−1,−0.5, 0, 0.5, 1] are
shared between all three. The only actions which are unique to one
discretisation are ±0.875 and ±0.125

Table 1 shows that the runtime and trees considered differ signif-
icantly for some of the discretisations. There are multiple possible
explanations. For the Cart Pole environment, the algorithm could
quickly find a tree that reaches the maximum number of iterations.
This was also found in the In Search of Trees paper as an explanation
for significantly reduced running time in the Cart Pole environment
[4].

Table 1: Performance of the Broccoli algorithm regarding uniform
and geometric action discretisations

Mountain Car Continuous
Discre- Score # of Trees Runtime Episode
tisation Considered (s) Length
Uniform 97.5 3.60× 106 122.0 559
Geo. Pro 98.6 3.40 × 106 122.6 657
Geo. Rec. 95.9 3.54× 106 119.1 404

Pendulum
Uniform -58.8 1.11× 109 4920 30
Geo. Pro -58.8 1.21× 109 5506 30
Geo. Rec. -58.9 1.02 × 109 4624 30

Cart Pole Continuous
Uniform 104 3.07 × 106 3.93 104

Geo. Pro 104 10.08× 106 15.26 104

Geo. Rec. 104 3.79× 106 5.44 104

Another reason could be that the trace-based pruning cannot be
applied as much as with specific actions, as mentioned in 3.3. There
is no clear discretisation for which Broccoli consistently considers
fewer trees. This indicates that the underlying dynamic between
action values and trace-based pruning is non-trivial.

Based on the results, no single discretisation performs better than
the others in every environment, for any of the metrics. This means
that the discretisations are mainly dependent on the specific envi-
ronment they are used for. What can be noticed is that the uniform
discretisation never performs the worst. This is intuitive as it caters
decently to environments that reward smaller or larger action values
instead of only one of those. Furthermore, the uniform discretisation
approximates the continuous action space the most accurately of the
three options.

5.3 Experiment #3: Cheap optimal trees
In experiment 3, random action sampling is used to compute optimal
decision trees. This method allows us to generate random actions
and filter them through the Broccoli algorithm by searching through
cheaper solution spaces. Cheaper runs either use a lower maximum
depth, fewer predicates, or fewer actions. This is done to shrink the
solution space.

This experiment will focus on selecting fewer actions. This is
done as the structure of the trees is preserved if the same maximum



depth is used. If the depth were limited, structural change in the tree
could induce different tree dynamics for which certain actions per-
form well. A difference in depth between sample searches and the
final search may lead to actions that are only optimal at the previous
depth and prove to be sub-optimal at the final depth. To prevent this,
the sample runs will use the same maximum depth as the final run.

There will be 8 sample runs with uniformly distributed actions.
Three actions will be sampled from [-1, 0] and three actions from
[0, 1]. For the Pendulum environment, the respective ranges will
be [-2, 0] and [0, 2]. Symmetry was kept such that the total action
distribution would not be too dissimilar to the static discretisations.

These runs will use a depth of two, which means the trees
will have a maximum of four actions. By taking the three best-
performing trees, an action set is formed from their actions. This
action set is then used for the final run. This run uses the same pred-
icates and depth as the sample runs. The top sample trees found
were not complete trees. This means that the trees used fewer than
the 12 possible total actions.

Table 2: Performance of the Broccoli algorithm for action sampling
from cheaper decision trees

Mountain Car Continuous
Sample Mean Sample Max Optimal

(Min)
Score 96.96 98.66 98.79

Runtime(s) 27.17 (23.29) 230.86
Pendulum

Score -61.52 −59.57 −59.57
Runtime(s) 946.35 (880.42) 5488.92

Cart Pole Continuous
Score 104 104 104

Runtime(s) 2.563 (0.026) 0.73

As can be seen in Table 2, the scores of the optimal trees are not
that different from the maximum scores found in the smaller trees. In
the Pendulum environment and the Cart-Pole environment, they find
trees with the same score. This means that optimal action selection
does not necessarily result in a score increase. If one compares these
results to those of the static distributions, it is found that the results
do not differ a lot. The static discretisations even perform better for
the pendulum environment.

Another explanation could be that the trees used are too optimal.
This is meant in the same sense as a learning model that is too ex-
ploitative in the learning process. A point of interest for future re-
search could be using sub-optimal trees to explore the action space
more. One could include optimal trees of a more limited depth to
create structural differences between the trees.

Table 3: Amount of actions considered in the 8 sample searches vs.
the final search

Environment Unique Actions in Space
actions final search Reduction

Mountain Car 42 11 73.8%
Continuous
Cart Pole 45 9 80.0%

Continuous
Pendulum 44 9 79.5%

An interesting result is found in Table 3. It can be seen that while
a lot of unique actions were considered, the final action space is still

feasible to compute. This shows that cheaper trees can be used to fil-
ter out sub-optimal action combinations. A drawback is that optimal
actions might be filtered out as they were contained in different ac-
tion sets. By not being in the same action set, their combination was
not considered, although it may be optimal. Despite this drawback,
this procedure circumvents the exponential search space increase.

5.4 Experiment #4: Twin Delayed DDPG
In this experiment, TD3 will be the model that will be sampled from.
To get well-performing models to sample from, a model was trained
for each of the environments. Mountain Car Continuous was an
exception for this. While a model was trained, it did not converge to
a policy that could find the goal state. For this reason, a pre-trained
model was used to simulate from. One of the limitations of this was
that the model was trained on an environment with slightly different
physics than the environment that the Broccoli algorithm runs on.

As for the other two environments, the models that were trained
performed well. Hyperparameters for training the Pendulum envi-
ronment were taken from RL baselines3 Zoo [12]. Similar hyper-
parameters were used for the Cart Pole environment, such that it
converged to a policy that would reach maximum iterations.

After training, the policy generated a trace from an initial state
in the environment. The actions were tracked up until a maximum
number of iterations or until the goal state was reached. This was
done for 10 random initial states for each of the environments. All
the actions of the 10 traces were put together to form an overall
distribution. Then, for each environment, 5 random sets of 8 ac-
tions were taken from the respective action distribution. If a set did
not have a representative mean and standard deviation, the sampling
would be repeated for that set. This was done such that the actual
actions used were representative of the total distribution. Actions
that were within 0.01 were deemed duplicates, and only one of these
actions was kept. These action sets were then used to find optimal
decision trees.

(a) Mountain Car Continuous,
force = 0.0015 (b) Cart Pole Continuous

(c) Pendulum. There are only four
scores, as one search could not
find a tree that reaches the goal
state.

Figure 5: Policy results of TD3-informed action sets with Broccoli.

It can be seen in Figure 5 that overall, this method did not perform



that well compared to the other experiments. Of the environments,
the results are most promising for the pendulum environment. The
top-performing tree had a return close to the greatest return of a
tree in the paper. Especially when one considers the runtime of the
algorithm. The training of the TD3 model (1015 seconds) and all the
samples’ searches (∼339 seconds) combined were faster than any
of the search times for the static discretisations as seen in Table 1.
Despite the reasonable performance, one search did not find any tree
that reached the goal state. This was most likely due to the highly
asymmetrical action space, as it only contained negatively valued
actions.

As for the Cart Pole environment, this discretisation does not
work adequately. Most searches did not find a tree that would max
out the iterations, while other discretisations did this consequently.
After further inspection, it was concluded that the TD3 was too effi-
cient in this environment. After a few initial actions, the pole was al-
most perfectly balanced on the cart, needing only actions in the order
of 10−6. The resulting action distribution would consist mostly of
zeros. When sampled from this distribution, it would return mostly
zeros. The effect of this was reduced by using only 1000 iterations
of sampling, but as one can see, to no success.

The Mountain Car Continuous environment was modified as the
TD3 model was trained on an environment with different physics.
The difference was the force that each action was multiplied by. The
Broccoli algorithm uses an environment with a force equal to 0.001,
while the other environment uses 0.0015. Despite this difference, it
would be expected that the environment with the higher force would
have a higher return. This is since it could use lower valued actions
than the other environment to reach the same trace. Specifically, the
fraction of these forces is 0.0010

0.0015
= 1

1.5
= 2

3
. This means that one

could use actions 2
3

of the value of the actions in the environment
with force equal to 0.0010. The reward function in both environ-
ments punishes higher valued actions as seen in Equation 1.

reward =

{
100 if state is terminal
−0.1× action2 else

(1)

With this information, it can be concluded that the TD3 environ-
ment should perform better with the same actions. However, one
can see that the converse is true. Even though the trees in the TD3
environment should perform better, the performance is still lacking.
It can be concluded that also for the Mountain Car Environment, this
is not a well-performing discretisation compared to the others.

6 Responsible Research
This chapter will describe the considerations for this paper regard-
ing the reproducibility of the study and the ethical aspects. Section
one will outline the reproducibility, while section two will focus on
highlighting certain ethical implications of the study.

6.1 Reproducibility
To ease the effort in reproducing this study, a codebase is made avail-
able in which the experiments were conducted 1. Furthermore, the
Python classes/notebooks that were used for analysis are contained
in this codebase. As such, the exact executions that ran are de-
scribed in a README.md file, and further usage of the codebase
is explained briefly, such that follow-up research can be done more
easily.

As this paper focuses on a deterministic algorithm, reproducibil-
ity can be exact, and no random seeds are needed. What has to be

1https://github.com/mmjvanderkuil/discretising-continuous-
action-spaces

considered is that for the third and fourth experiments, the actions
that were used as input for the algorithm were generated by a ran-
dom process.

In experiment three, the sample method described is trivial and
can be easily replicated. As multiple samples were taken, the chance
that all the samples are anomalies is much smaller than that one
sample was taken. Contradictory, since only the top trees’ actions
were taken, the results have an increased chance of being anomalous.

In experiment 4, the actions were taken from a model trained on
the environment, which is a non-deterministic function. To aid in re-
producing the experiment, the model file used as policy will be made
publicly available such that its performance can be easily compared
to benchmarks. The comparison was not done as part of the study,
as this was not included in the scope of the research.

Further considerations that were taken include comparing the
mean and standard deviation of sampled actions to the mean and
standard deviation of the whole action population. This was done
such that the samples taken are a representative set of the model.
This also aids in reproducibility as there are certain constraints to
the actions used.

6.2 Ethical Considerations
While this study has so far focused on the technical parts of opti-
mal decision trees, reinforcement learning, and black-box environ-
ments, it is also important to discuss the ethical implications of this
research.

Small decision trees As small decision trees are more inter-
pretable than larger trees, using smaller trees is beneficial for ex-
plainability and verifiability [11]. While these smaller models often
lack performance, larger models can be much harder to interpret.
As such, one should balance a trade-off between result and inter-
pretability.

Optimality Guarantee While factually correct, the claim of
optimality can be misleading. This is due to the fact that the de-
cision tree that is computed is optimal given the input parameters.
Note that this does not mean that of all possible decision trees, it
is the most optimal one. Certain constraints are used to decrease
the search space. Most notable is the depth limitation. While this
does aid in the explainability of the resulting model, it does not help
in the case of optimality, as there is an infinite number of decision
trees left unchecked. The same holds for the action and state spaces
of the environments. As they are continuous and thus infinite, only
some values are checked, and approximations of those spaces are
used.

Use of Artificial Intelligence In this research, Artificial Intel-
ligence (AI) was used. To be able to claim that this research was
done with due diligence, the directly used answers from chatbots
can be found in the appendix with a link to the conversation. This
way anyone can view the chat and the tasks that were delegated to
those chatbots. Exact rewordings of text was also used to help with
grammar and sentence flow. All of these instructions were asked
in the form of ”Can you give me 5 ways to write this differently?
{QUOTE}”. None of the answers were taken directly, but rather
were used in either forming an entirely new sentence or adapting the
human-written one. As rewordings were used multiple times, exam-
ples will be shown. Stating all conversations is deemed unnecessary
and infeasible.

7 Conclusion
This paper demonstrated the ability of discretising action spaces to
find optimal decision trees for continuous action environments with
the Broccoli algorithm [4].



The first method of discretisation was the uniform approxima-
tion. The decision trees were found in a feasible time. However,
an increase in action set size still resulted in exponential growth of
runtime and search space.

The uniform discretisation was additionally compared to geomet-
ric discretisations. There was no clear winner among these discreti-
sations. However, the uniform discretisation never performed the
worst and thus could serve as a solid baseline. It was furthermore
found that action values had a complex relationship with the trace-
based pruning of the Broccoli algorithm [3].

One method used was sampling optimal decision trees of smaller
search spaces, which were found to inform which actions the final
search should consider. The usefulness of this method was demon-
strated by a proof of a lower bound on the return of the final deci-
sion tree. Additionally, the reduction in action spaces was proven
to be significant, while remaining competitive in performance. Fur-
thermore, while the performance of this method was shown to be
superior to that of the static discretisations, it was not considerably
greater.

In another method, state-of-the-art teacher models were used to
find appropriate actions in the action space. However, this was not
proven to be as successful as the other discretisations. For only one
of the environments, this discretisation was performed on par with
the other discretisations. Despite these results, the discretisation still
has a use. The trees found in the Pendulum environment were as per-
formant as the other discretisations’ trees, while reducing sampling
and search time.

Limitations
As almost all actions were taken to be symmetrical around the zero
point. This was done to reduce incredibly asymmetric action sets,
as the action space is inherently symmetric. This could prove to be
a sub-optimal approach. While the TD3 model was trained in this
experiment, it did use finetuned hyperparameters, which breaks the
black-box constraint. This was done to be able to sample from com-
petitive models and not influence the results too much. The Moun-
tain Car Continuous environment differed slightly from the gymna-
sium implementation as the force of the normal Mountain Car en-
vironment was used. Though this should not discredit the results,
as this reduced force would prove to be negatively influencing the
return (See 5.4). The TD3 model was trained on the actual gym-
nasium version, and its corresponding Broccoli runs also used the
correct version.

Future Work
To objectively measure the performance of the Broccoli algorithm,
the predicates were untouched for each of the experiments. Possi-
ble future work could look into how one can balance the number of
predicates and actions to find possibly deeper trees or a more accu-
rate approximation of the continuous action space.

Another area of interest is regarding different tree dynamics for
sampling cheaper trees. This research focused on a simple case
where the predicates and maximum depth were kept the same. A
constraint was given that these trees were also the same depth as
the final tree. This prevents structural differences in the tree sam-
ple, which could deceptively return sub-optimal actions for the final
depth, while optimal at the reduced depth.

New research could explore the usefulness of using other trees
synthesisation techniques to generate decision trees. These trees can
then be used in an experiment similar to experiment 3. This method
could use multiple trees that are already well-performing but not yet
proven to be optimal. The resulting tree would either be one of the
given trees or a trees which was unknown. Either way, a tree is
proven to be optimal.

A Appendix
A.1 ChatGPT Conversations
Conversation #1

Task given: To help in adapting the TD3 algorithm for the
continuous environments and speed up the experiment set-up
time.

Link to conversation: https://chatgpt.com/share/683c68b4-
5c98-8009-8d83-9530bdc247cb

Used result: Started from the file ChatGPT gave and fixed
code bugs until it worked. Changed certain physics parameters
for the CartPoleContinuous environment

A.2 Github Repository
The codebase used, experiments ran, and results found in
this paper are located at: https://github.com/mmjvanderkuil/
discretising-continuous-action-spaces.

References
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