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Summary

Code review is a widely used technique to support software quality. It is a manual activity,
often subject to repetitive and tedious tasks that increase the mental load of reviewers
and compromise their e�ectiveness. The developer-centered nature of code review can
represent a bottleneck that does not scale in large systems with the consequence of com-
promising �rms’ pro�ts. This challenge has led to an entire line of research on code review
improvement.

In this thesis, we present our results and remarks on the e�ectiveness of using �ne-
grained defect prediction in code review while investigating what are the information
needs that lead a proper code review. We started reimplementing the state of the art of
defect prediction to understand its replicability; then, we evaluated this model in a more
realistic scenario that is typically considered. To improve defect prediction techniques,
we come up with a �ne-grained just-in-time defect prediction model that anticipates the
prediction at commit time and reduces the granularity at the �le level. After that, we
explored how to improve further prediction performance by using alternative sources of
information. We conducted a comprehensive investigation of code comments written by
both open and closed source developers. Finally, to understand how to improve code review
further, we explored from a reviewers’ perspective what is the information that reviewers
need to lead a proper code review.

Our �ndings show that the state of the art of defect prediction, when evaluated in a
realistic scenario, cannot be directly used to support code review. Furthermore, we assessed
that alternative sets of metrics, anticipated feedback, and �ne-grained suggestions represent
independent directions to improve prediction performance. Finally, we discovered that
research must create intelligent tools that other than predict defects must satisfy actual
reviewers’ needs, such as expert selection, splittable changes, realtime communication, and
self summarization of changes.
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Samenvatting

Code reviews zijn een veelgebruikte techniek om de kwaliteit van software te meten. Het
is een handmatige, tijdrovende en repetitieve taak die de mentale belasting van reviewers
vergroot en hun e�ectiviteit nadelig beïnvloedt. De arbeidsintensieve aard van code
reviews kan een knelpunt vormen dat niet schaalbaar is in grote systemen met als gevolg
dat de winst van bedrijven in gevaar komt. Deze uitdaging heeft geleid tot een zelfstandig
onderzoeksveld naar het verbeteren van code reviews.
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1
Introduction

Software �rms rely on software engineering to coordinate collaborating teams of specialists
who build large software systems. To help companies safeguard their long term investments
in software, researchers are investigating ways to address the inevitable obsolescence by
developing techniques aimed at increasing software quality.

Code review is a technique widely used in practice and designed to support software quality.
In a code review, authors and reviewers of large teams alternatively produce and inspect
source code by exchanging knowledge, suggesting tips, eliminating defects, and encouraging
excellence. Code review is a manual activity, often subject to repetitive and tedious tasks that
increase the mental load of reviewers, compromising their e�ectiveness. Researchers propose
alternative techniques to improve the code review process, particularly investigating how to
assist developers and reduce the cognitive e�ort required. One solution points to support code
review with smart assistants that aims at maximizing the e�ectiveness of reviewers without
increasing the cost of their review. In this regard, a promising practice is predictive analytics,
which aims at automatically predicting the areas of source code that are more likely to be
problematic, thus guiding the reviewer’s attention.

In this thesis, we focus on predictive analytics for code review. We evaluate the state of the art
of defect prediction models in the context of code review. To improve performance, we propose
two options aimed at improving the e�ectiveness as well as the prediction granularity. We
also assess the e�ectiveness of using alternative software metrics as measurable properties
of software in the machine learning models. Finally, we study how reviewers’ needs can be
addressed to further support the code review process.
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T he last decade has seen a remarkable involvement of software in our daily life [1].
Recently, software systems are growing fast by introducing new and complex function-

alities to react to the frenzied demands of the market [2]. A leading strategy to address this
issue pushes the increasing software complexity demand to ever-larger teams of software
developers [3]. However, large and spread development teams need synchronization, syn-
ergy, and coordination to perform smoothly [4] because lack of communication, fast-paced
evolution, and poorly tested changes may lead to a degradation in the maintainability of
systems [5], with potentially dangerous consequences [6]. In this context, code review
comes to aid software quality while increasing team collaborations [7].

Code review refers to a software engineering activity aimed at maintaining and sup-
porting source code quality [8, 9]. In 1976, Fagan de�ned a formal process for performing
code inspections [10] intending to catch software defects1 [11, 12]. Fagan’s inspection is
performed in group meetings, and with a clear goal to catch as many defects as possible.
Instead, contemporary code review, often referred to as Modern Code Review (MCR) [7, 13],
is a lightweight variant that is (1) informal, (2) tool-based, (3) asynchronous, and (4) focused
on inspecting new committed code changes rather than the whole software system [14].
While code review aims at explicitly revealing as many defects as possible, it has been
reported to also implicitly share knowledge, explore alternative solutions, and reinforce
team awareness [7].

In modern code review, practitioners (i.e., authors and reviewers) employ online tools
to perform their tasks [15]. These online tools have the purpose of facilitating the code
review practices through the use of an asynchronous communication interface [16]. Dif-
ferent vendors developed a variety of code review tools to lead the code review process
through well-�nished user interfaces [17, 18]; nonetheless, almost any vendor uses the
same technological approach that implements only the basic logistics of modern code
review [19] and does not o�er the advantages brought by smart tools [20].

Given the lack of advanced code review tools [17, 18] and the repetitive, challenging, and
time-consuming nature of code review tasks that a�ect the reviewers’ performance [13, 21],
many researchers are performing investigations aimed at supporting code review qual-
ity [16, 21, 22]. For instance, researchers aim at supporting reviewers with code review tools
that can assist developers in locating defects through predictive analytics [23]. A promis-
ing defect prediction model that reduces the mental-load of reviewers by automatically
catching software defects [24].

1.1 ImprovingCodeReviewWithDefectPrediction
Cognitive load is a multidimensional construct that represents the load requested to the
human cognitive system to perform a certain task [25]. Code review tools improve review-
ers’ performance by lowering the cognitive load [21]. The possibility to navigate changes,
visualize di�erences, or add comments help reviewers in focusing on code review tasks
instead of spending their cognitive resource in trivial tasks. However, elements related to

1A defect or informally a bug identi�es a condition in which a software does not meet software requirements or
end-user expectations. In other words, a defect is an error in coding that causes a software to malfunction or to
produce incorrect and unexpected results. More precisely, the ISO 10303-226 refers to a software fault as an
abnormal condition or defect at the component, equipment, or sub-system level, which may lead to a failure.
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the invested mental load and the working memory capacity a�ect the reviewers’ cognitive
load during a code review especially in situation of overload.

Over the years, researchers have proposed and investigated many solutions to reduce
the mental load during the review based on re-ordering of code changes (e.g., by related-
ness [21] or by test cases [26]), reducing the size of changes [27], promptly suggesting
domain experts [28], or predicting defective parts [24]. Among all those techniques, defect
prediction tackles the problem at its source by estimating the defectiveness of sources
inspected by developers [29].

The promises of defect prediction attracted the interest of large companies, which
started to experiment with augmented code review tools [24, 30]. For example, Fix-
Cache [31], a well known academic defect prediction model, has been evaluated by Google
developers in a typical working environment to support code review [24]. FixCache uses
a recent developed concept of defect locality resulting in excellent e�ectiveness with in
vitro experiments (i.e., experiments conducted in a controlled environment that reduces
interactions with external factors). However, when applied to an in vivo setting, Google’s
developers found that recommendations received were too imprecise to have practical
e�ectiveness in supporting code review. This evidence calls for further research on this
topic.

1.2 Defect Prediction
Predicting the snippets of source code that contain a defect is crucial in software engineering
to support software quality, plan maintenance, and allocate resources.

Defect prediction attracts a lot of interest in research, especially in the last decade [32].
The �rst approach dates back to 1970 with the de�nition of Akiyama’s linear equation
that relates the number of source lines with bugs [33]. While Akiyama’s law represents a
starting point to count the number of defects in the code, it fails in localizing defects in
actual software systems [34].

Over the years, researchers have introduced and evaluated a variety of defect prediction
models based on the evolution [35] (e.g., number of changes), the anatomy [35] (e.g., lines
of code, complexity), and the socio-technicals aspects (e.g., contribution organization) of
software projects and artifacts [35]. These models have been evaluated individually or
heterogeneously combining di�erent projects [36–38].

To have a broad vision, researchers investigated what factors make software prone to
be defective [39–49] proposing several unsupervised [50–52] and supervised [53–57] defect
prediction models. Besides exploring di�erent prediction granularity (e.g., package, class, or
method level), researchers explored di�erent prediction time moving from a coarse-grained
release-by-release approach to a �ne-grained just-in-time concept that localizes defect at
commit time[58–64].

In this dissertation, we want to investigate whether and how defect prediction models
are a feasible solution to support code review.

1.3 Research Goal and�estions
We report the goal of our thesis in form of a research statement, followed by four high-level
research questions that guide and validate it.
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This thesis is concerned with understanding how to adapt predictive analytics for code
review and how reviewers’ needs can be addressed to support the code review process
further.

1.3.1 Research�estions
Defect prediction models are the basis for building smart assistants that aim to help
developers in producing high-quality software. Therefore, the behavior of these models,
when paired with code review tools, can impact software quality and practitioners’ life.
Hence, a synergy between defect prediction models and code review tools has the potential
to speed up the development process, support software quality, and pay a better investment
turnover. With our �rst research question, we would like to understand whether the state
of the art of defect prediction models can be used realistically to support code review.

RQ1. Are current defect prediction models a feasible solution for supporting code review?

Considering the limitations discovered in the state of the art of defect prediction models,
with our second research question, we would like to understand how much e�ort a �ne-
grained just-in-time defect prediction model can save when used on a daily basis. These
�ndings aid our primary goal of understanding whether a �ne-tuned prediction model can
ful�ll the goal of maximizing the code review outcome.

RQ2. To what extent do �ne-grain defect prediction models improve prediction perfor-
mance?

Although product and process metrics have been considered the most widely used
features for defect prediction purposes, researchers have also considered the use of alter-
native metrics showing how a mix of sets of di�erent parameters outperforms a single
group. Whereas developing source code requires knowledge, experience, and creativity,
producing high-quality software demands an extra e�ort. Due to the complex nature of
software development, developers add code comments to their artifacts. These code com-
ments represent an additional source of information for spreading knowledge, reporting
rational or altering software behavior. Since code comments are generically bypassed by
compilers and pointed only by humans, we aim at evaluating the use of code comments as
an alternative source of information in defect prediction models.

With our third research question, we investigate whether the state of the art of defect
prediction models in a release-by-release evaluation strategy trained with alternative sets
of metrics (e.g., those derived by analyzing code comments, the presence of code smells,
and developer-related factors) can improve the prediction performance by catching more
software defects. This knowledge ful�lls our primary goal that aims to optimize the code
review outcome by employing high-quality defect prediction models.

RQ3. How can alternative features improve defect prediction performance?
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Not all information conveyed during a code review has the same signi�cance. We like
to understand the kinds of information exchanged by human inspectors during a code
review. This will allow us to understand the review process better; in particular, it will
ascertain what kinds of information developers need to conduct a proper code review,
how often this information is given or sought, what e�ect produces lacking or misleading
information, and how those information needs evolve during an inspection. This in-depth
investigation helps us develop a broad vision of what is the role of the information needs
during a code review and how to use such needs to improve code review further.

RQ4. What are reviewers’ information needs and how does defect prediction ful�ll them?

After answering the four research questions mentioned above, we will have set the
ground in establishing to what extent code review can bene�t from defect prediction models
and whether reviewers’ needs can be addressed to support code review further. This sheds
light on our goal and provides hints on how to design intelligent assistant tools that will
aid both authors and reviewers during a code review. These tools can be used to increase
the overall software quality while keeping development costs contained. However, this
study leaves room for further investigations that, for example, may focus on how authors
and reviewers perceive suggestions coming from automated tools. Future research may
clarify developers’ expectations pointing to the design of better tools that while producing
useful indications to prevent defects reduce the developers’ distraction choosing when and
how to show in summary of each suggestion. We hope that future researchers can spread
additional evidence on this direction.

1.4 Research Methodology
In this section, we describe the research methods used in this thesis.

The studies in this dissertation are conducted within the paradigm of Empirical Software
Engineering that traces back to the 1970s [65]. As stated by Boehm et al., in addition to the
need to engineer software was the need to understand software. Much like other science,
such as physics, chemistry, and biology, software engineering needed the discipline of
observation, theory formation, experimentation, and feedback [66]. In this dissertation, we
relied on a mixed-method approach [67], where we combine the empirical observations on
data that come from mined repositories with data collected from interviews with expert
developers.

1.4.1 Mining software repositories
Empirical Software Engineering often involves the analysis of data gathered by mining
software repositories [68]. The wide adoption of version control systems in both open-
and closed-source projects o�ers to the possibility of retrieving past data for in-depth
analysis [69]. Platforms such as GitHub and GitLab allow practitioners and researchers to
explore the development process of several projects.

In this thesis, we rely on various mining software repositories techniques—by building
ad-hoc tools—to collect data from both open and closed software repositories. The analysis
of such data helped us to design and train defect prediction models that use the historical
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data to predict the part of the software that can be defective in the future. In this case,
we target a broad set of open-source projects to collect data regarding years of software
development. Besides the possibility of training a machine learning model with historical
data, an additional advantage of analyzing public repositories is that we have access to
�ne-grained commit information, thus allowing us to understand the rationale behind
each choice of given projects. Chapters 2, 3, and 5 outline the exact tools developed to
mine software repositories and extract the data that is used to train machine learning
models. Furthermore, Chapter 4 uses a similar mining technique to extract code comments
from both open-source and industrial software systems. Finally, to understand what are
the information needed by reviewers to lead a proper code review, Chapter 6 describes
how we adapted the techniques regarding mining software repositories to extract valuable
information from repositories of code reviews.

1.4.2 Interviews and focus groups with developers
To complement data gathered with di�erent mining techniques we conducted both inter-
views and focus groups[70, 71]. The combination of these two techniques allows us to
clarify the rationale behind a choice that may not be documented through explicit written
messages [72]

• Interview. This format is often used in exploratory investigations to understand
phenomena and seek new insights [68]. The main goal of conducting interviews
with domain experts helped us in improving our knowledge of actual issues while
obtaining new insights that come from a di�erent perspective. However, engaging
open-source developers is not trivial because researchers often target them. Thus
we complemented our study by involving experts working in a leading company of
software quality. In the latter case, we adopted a di�erent interview technique that,
while stimulating in-depth discussions, optimizes invested time.

• Focus group. This format is particularly useful when a small number of people is
available for discussing about a certain problem [70, 71]. It consists in the organi-
zation of a meeting that involves the participants and a moderator. We used this
technique to enhance the interviews’ results conducted with experts of open-source
domain with experts working in a leading company of software quality assurance.

Nonetheless, these techniques may carry a drawback. When interviewed, people may
provide socially desirable responses that may di�er from reality. For mitigating these
threats and have a broad vision of di�erent contexts, we invited diverse sets of developers
from both open-source and industrial systems. In doing this, we interviewed as many
developers as available until we reached saturation [73] i.e., when we recorded multiple
times the same responses without covering any new aspects. Successively, we relied
on a lightweight technique derived from the grounded theory [74] that is a systematic
methodology used in the social sciences that involves the construction of theories through
systematic observations of data gathered from di�erent perspectives. Recently, this model
gained popularity also in computer science [75]. In particular, we adopted an open card
sorting process to collect di�erent themes in an iterative process that splits and merges
topics systematically [76]. Through this inductive approach, we split interviews’ transcripts
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into small parts and successively assigned a label that summarizes the content of the
transcripted part. Then, we merged common topics and inferred the emergent themes
from all the interviews. In Chapter 6, we complemented the data coming from the mining
of publicly available code reviews with topics emerged during the interviews of expert
developers.

1.5 Research outline
This thesis follows a portfolio structure that comprises stand-alone scienti�c manuscripts.
To �t the �ow and goal of this dissertation, we adjusted submitted articles and, in some
cases, merged them to build a single cohesive chapter. Table 1.1 summarizes the connection
between chapters and research questions. Chapters follow a logical contribution order
instead of a chronological one. Every article is publicly accessible as green open access
and published with permanent links.

Table 1.1: Relation between research questions and chapters.

Research question Chapters
Are current defect prediction models a feasible solution for supporting code review? 2
To what extent do �ne-grain defect prediction models improve prediction performance? 3
How can additional features improve defect prediction performance? 4, 5
How can reviewers’ information needs support code review tools further? 6

1.5.1 The state of the art of defect prediction models
In the �rst part of the thesis, we explore the state of the art of defect prediction to evaluate
whether those models are a feasible solution in real working environments.

• Chapter 2 outlines the strategy and the technique adopted to answer the �rst
research question. In this study, we �rst replicate previous research on method-
level defect prediction on di�erent systems and timespans, and successively, we
contemplate an evaluation strategy that approximates a real world context. Our
initial results show that the performance of the method-level defect prediction model
based on a mixture of product and process metrics is similar to what previously
reported also for di�erent systems/timespans, when evaluated with the same strategy.
However—when evaluated with a more realistic strategy—all the models show a
dramatic drop in performance, with results close to that of a random classi�er. We
re�ect on the evaluation strategy and propose a more realistic one that better �ts
the context of code review.

1.5.2 Fine-grained just-in-time defect prediction
In the second part of the thesis we analyze the scale at which the prediction granularity is
an actual limitation and how the change of the prediction granularity impacts on the e�ort
required for inspecting codes likely a�ected by defects.

• Chapter 3 investigates how much e�ort a �ne-grained just-in-time defect prediction
model can save with respect to a standard just-in-time model when used to catch
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defects. To address this, we �rst investigate to what extent commits are partially
defective—a commit can contain many changed �les where only a few of them can
be defective. Then, we propose a novel �ne-grained just-in-time defect prediction
model to predict the speci�c �les, contained in a commit, that are defective. Finally,
we evaluate our model in terms of (i) performance and (ii) the extent to which
it decreases the e�ort required to diagnose a defect. Our study highlights that:
(1) defective commits are frequently composed of a mixture of defective and non-
defective �les, (2) our �ne-grained model can accurately predict defective �les with
an overall AUC-ROC up to 86% and (3) our model would allow practitioners to save
inspection e�orts with respect to standard just-in-time techniques. Although initial
results are promising, defect prediction performance is still not perfect for supporting
code review.

1.5.3 Additional code metrics for defect prediction
In the third part of the thesis, we investigate whether defect prediction models can be
improved further by using additional sets of features to support code review.

• Chapter 4 merges the three studies we performed on large scale data mined from
both open and closed source Java projects. In the �rst study we investigate how six
diverse Java OSS projects use code comments, with the aim of understanding their
purpose. Through this analysis, we produce a taxonomy of source code comments;
subsequently, we investigate how often each category occur by manually classifying
more than 2,000 code comments from the aforementioned projects. In addition, we
conduct an initial evaluation on how to automatically classify code comments at
line level into our taxonomy using machine learning; initial results were promising
and suggested that an accurate classi�cation is within reach. In the second work
we analyze how code comments impact on code readability and maintainability. In
particular, we investigate how developers of �ve open-source mobile applications
use code comments to document their projects. Additionally, we evaluate the per-
formance of two machine learning models to automatically classify code comments.
Initial results show marginal di�erences between desktop and mobile applications.
Finally, in the third work we generalize these �ndings with an industrial study where
we investigate how often each category occur by manually classifying more than
40,000 lines of code comments from the aforementioned projects. In addition, we
investigate how to automatically classify code comments at line level into our tax-
onomy using machine learning; initial results are promising and suggest that an
accurate classi�cation is also within reach, even when training the machine learner
on projects di�erent than the target one.

• Chapter 5 aims at improving a �ne-grained defect prediction model to identify
software artifacts that are more likely to be defective in future releases. We build this
investigation by extending the preliminary work conducted in the paper presented
in our second chapter in which we �rst replicate previous research on the state of
the art of method-level defect-prediction, by using di�erent systems and timespans.
Afterwards, based on the limitations of existing research, we (1) re-evaluate method-
level defect prediction models more realistically and (2) analyze whether alternative
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features based on textual aspects, code smells, and developer-related factors can
be exploited to improve method-level defect prediction. Key results of our study
include that (1) the performance of the previously proposed models, tested using
the same strategy but on di�erent systems/timespans, is con�rmed; but, (2) when
evaluated with a more practical strategy, all the models show a dramatic drop in
performance, with results close to that of a random classi�er. Finally, we �nd that (3)
the contribution of alternative features within such models is limited and unable to
improve the prediction capabilities signi�cantly. As a consequence, our replication
and negative results indicate that method-level defect prediction is still an open
challenge.

1.5.4 Reviewers’ information needs in code review
In the last part of this thesis, we investigate the information that reviewers need to conduct
a proper code review and how tool support can make reviewers more e�ective and e�cient.

• Chapter 6 investigates the information that reviewers need to conduct a proper
code review. Previous work has provided evidence that a successful code review
process is one in which reviewers and authors actively participate and collaborate.
In these cases, the threads of discussions that are saved by code review tools are a
precious source of information that can be later exploited for research and practice.
In this work, we focus on this source of information as a way to gather reliable
data on the aforementioned reviewers’ information needs. We manually analyze 900
code review comments from three large open-source projects and organize them
in categories by means of a card sort. Our results highlight the presence of seven
high-level information needs, such as knowing the uses of methods and variables
declared/modi�ed in the code under review. Based on these results, we suggest
alternative ways in which novel code review tools can be implemented to support
collaborations and the reviewing task better besides supporting the localization of
defects in sources.

1.5.5 Reflection
We conclude the thesis by summarizing our �ndings, formulating answers to the research
questions, and proposing a detailed agenda of future work.

• Chapter 7 summarizes the �ndings and answers the research questions of this thesis.
Moreover, we discuss the implications of this thesis and elaborate on future work
that can be conducted in future research.

1.6 Origin of the chapters
All chapters of this thesis have been published in the proceeding of peer-reviewed confer-
ences or journals. As a result, each chapter is self-contained with its background, related
work, and implications. Unless otherwise speci�ed, the �rst author is the main contributor
to each work. In the following a detailed origin of the chapters:
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• Chapter 2 was published in the paper “Re-evaluating Method-Level Bug Prediction”
by Pascarella, Palomba, and Bacchelli at the International Conference on Software
Analysis (SANER) 2018 reproducibility studies and negative results (RENE) track.

• Chapter 3 was published in the paper “Fine-Grained Just-In-Time Defect Prediction”
by Pascarella, Palomba, and Bacchelli in the Journal of Systems and Software (JSS)
2018. To respect the intent expressed in Section 1.8 about the study replicability, we
re-implement the entire research pipeline and report the results accordingly.

• Chapter 4 aggregates three contributions. The �rst contribution was published in
the paper “Classifying code comments in Java open-source software systems” by
Pascarella and Bacchelli at the International Conference on Mining Software Reposi-
tories (MSR) 2017. The second contribution was published in the paper “Classifying
code comments in Java Mobile Applications” by Pascarella at the International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft) 2018 in the
Student Research Competition track, and the last contribution was published in the
paper “Classifying code comments in Java software systems” by Pascarella, Bruntink,
and Bacchelli in Empirical Software Engineering (EMSE) 2019.

• Chapter 5 extends the Chapter 2 with an novel analysis. The new contribution was
published in the paper “On the Performance of Method-Level Bug Prediction: A
Negative Result” by Pascarella, Palomba, and Bacchelli in the Journal of Systems and
Software (JSS) 2020.

• Chapter 6 was published in the paper “Information Needs in Contemporary Code
Review” by Pascarella, Spadini, Palomba, Bruntink, and Bacchelli at the Conference
on Computer-Supported Cooperative Work and Social Computing (CSCW) 2018. For
this work, the �rst two authors contributed equally.

To ensure full replicability of the results of this thesis, we re-executed the entire pipeline
of scripts for every publication. Since it was not possible to retrieve the source code for the
work in Chapter 3, we re-implemented the whole research with more modern tools and
recomputed the results. In Chapter 3, we report the new achievements.

1.7 Other Contributions
Beside the publications included in this dissertation, we co-authored a number of manuscripts
reported in brief in the following.

• The MaLTeSQuE’18 paper “Investigating Type Declaration Mismatches in Python”
[77] contains an empirical study aimed at understanding the role of code comments
such as source of information to detect type declaration mismatches.

• The MSR’18 paper “A Graph-based Dataset of Commit History of Real-World Android
apps” [78]

• The MSR’18 paper “How Is Video Game Development Di�erent from Software
Development in Open Source?” [79]
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• The WAMA’19 paper “Healthcare Android Apps: A Tale of the Customers’ Perspec-
tive” [80]

1.8 Study Replicability and Open Science

Table 1.2: Data storage locations.

Dataset Chapter Host
Method-Level Bug Prediction 2, 5 Zenodo [81]
Fine-grained just-in-time defect prediction 3 Zenodo [82]
Code comments for defect prediction 4 Zenodo [83]
Reviewers’ information needs in code review 6 Zenodo [84]

An essential aspect of scienti�c research is that works must be replicable, which means
that every manuscript must give detailed information on how the study can be repeated or
‘replicated’. Nonetheless, industrial studies and embargoed publications make replicability
not easy. In that regard, the open science movement [85] aims to turn scienti�c research
publicly available. To promote open-science, in the Netherlands, the Dutch Funding Agency
NWO requires that every scienti�c research conducted with the support of public funds
must be publicly accessible [86]. To this aim, pure.tudelft.nl hosts open accessible records
that respect the Green Open Access policies of Delft University of Technology2. This also
is in line with the European Commission that requires the open accessibility of every work
funded by Horizon 2020 projects.

Tools and source codes used to collect the data in the various chapters together with
the instructions to execute such tools have been made publicly available. When data do not
come from industrial environments, which rules do not allow us to share collected data,
we also provide all the original data collected. Table 1.2 depicts where various datasets can
be collected for science replicability.

2TU Delft Policy on Open Access Publishing - E�ective from 01-05-2016
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2
Re-evaluating

Method-Level Bug
Prediction

Bug prediction is aimed at supporting developers in the identi�cation of code artifacts more
likely to be defective. Researchers have proposed prediction models to identify bug prone meth-
ods and provided promising evidence that it is possible to operate at this level of granularity.
Particularly, models based on a mixture of product and process metrics, used as independent
variables, led to the best results.

In this study, we �rst replicate previous research on method-level bug prediction on di�erent
systems/timespans. Afterwards, we re�ect on the evaluation strategy and propose a more
realistic one. Key results of our study show that the performance of the method-level bug
prediction model is similar to what previously reported also for di�erent systems/timespans,
when evaluated with the same strategy. However—when evaluated with a more realistic
strategy—all the models show a dramatic drop in performance exhibiting results close to that
of a random classi�er. Our replication and negative results indicate that method-level bug
prediction is still an open challenge.

This chapter is based on

q L. Pascarella, F. Palomba, A. Bacchelli. Re-evaluating Method-Level Bug Prediction, SANER’18 [87]
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2.1 Introduction
The last decade has seen a remarkable involvement of software artifacts in our daily life [1].
Reacting to the frenzied demands of the market, most software systems nowadays grow
fast introducing new and complex functionalities [2]. While having more capabilities in a
software system can bring important bene�ts, there is the risk that this fast-paced evolution
leads to a degradation in the maintainability of the system [5], with potentially dangerous
consequences [6].

Maintaining an evolving software structure becomes more complex over time [88]. Since
time and manpower are typically limited, software projects must strategically manage their
resources to deal with this increasing complexity. To assist this problem, researchers have
been conducting several studies on how to advise and optimize the limited project resources.
One broadly investigated idea, known as bug prediction [32], consists in determining
non-trivial areas of systems subjected to a higher quantity of bugs, to assign them more
resources.

Researchers have introduced and evaluated a variety of bug prediction models based on
the evolution [89] (e.g., number of changes), the anatomy [90] (e.g., lines of code, complex-
ity), and the socio-technicals aspects (e.g., contribution organization) of software projects
and artifacts [91]. These models have been evaluated individually or heterogeneously
combining di�erent projects [36–38].

Even though several proposed approaches achieved remarkable prediction perfor-
mance [92], the practical relevance of bug prediction research has been largely criticized as
not capable of addressing a real developer’s need [24, 93, 94]. One of the criticisms regards
the granularity at which bugs are found; in fact, most of the presented models predict
bugs at a coarse-grained level, such as modules or �les. This granularity is deemed not
informative enough for practitioners, because �les and modules can be arbitrarily large,
thus requiring a signi�cant amount of �les to be examined [35]. In addition, considering
that large classes tend to be more bug-prone [44, 46], the e�ort required to identify the
defective part is even more substantial [90, 95, 96].

Menzies et al. [97] and Tosun et al. [98] introduced the �rst investigations exploring a
�ner granularity: function-level. Successively, Giger et al. [35] and Hata et al. [99] delved
into �ner granularity investigating the method-level bug prediction. Giger et al. found that
product and process metrics contribute to the identi�cation of buggy methods and their
combination achieves promising performance [35]. Hata et al. found that method-level bug
prediction saves more e�ort than both �le-level and package-level prediction [99].

In this work, we replicate the investigations on bug prediction at method-level, focusing
on the study by Giger et al. [35]. We use the same features and classi�ers as the reference
work, but on a di�erent dataset to test the generalizability of their �ndings. Then we re�ect
on the evaluation strategy and propose a more realistic one. That is, instead of both taking
change history and predicted bugs from the same time frame and of using cross-validation,
we estimate the performance using data from subsequent releases (as done by the most
recent studies, but at a coarser granularity [100]).

Our results—computed on di�erent systems/timeframes than the reference work—
corroborate the generalizability of the performance of the proposed method-level models,
when estimated using the previous evaluation strategy. However, when evaluated with a
release-by-release strategy, all the estimated models present lower performance, close to
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that of a random classi�er. As a consequence, even though we could replicate the reference
work, we found that its realistic evaluation leads to negative results. This suggests that
method-level bug prediction is still not a solved problem and the research community
has the chance to devote more e�ort in devising more e�ective models that better assist
software engineers in practice.

2.2 Background and Related Work
Bug prediction has been extensively studied by our research community in the last
decade [32]. Researchers have investigated what makes source code more bug-prone
(e.g., [39–49]), and have proposed several unsupervised (e.g., [50–52]) as well as supervised
(e.g., [53–57]) bug prediction techniques. More recently, researchers have started investi-
gating the concept of just-in-time bug prediction, which has been proposed with the aim of
providing developers with recommendations at commit-level (e.g., [58–64]).

Our current paper focuses on investigating how well supervised approaches can identify
bug-prone methods. For this reason, we �rstly describe related work on predicting bug-
prone classes, then we detail the earlier work on predicting bug-prone methods and how
our work investigates its limitations and re-evaluates it.

2.2.1 Class-level Bug Prediction
The approaches in this category di�er from each other mainly for the underlying prediction
algorithm and for the considered features, i.e., product metrics (e.g., lines of code) and/or
process metrics (e.g., number of changes to a class).

Product metrics. Basili et al. [90] found that �ve of the CK metrics [101] can help
determining buggy classes and that Coupling Between Objects (CBO) is that mostly related
to bugs. These results were later re-con�rmed [95, 102, 103].

Ohisson et al. [104] focused on design metrics (e.g., ‘number of nodes’) to identify
bug-prone modules, revealing the applicability of such metrics for the identi�cation of
buggy modules. Nagappan and Ball [105] exploited two static analysis tools to predict
the pre-release bug density for Windows Server, showing good performance. Nagappan
et al. [106] experimented with code metrics for predicting buggy components across �ve
Microsoft projects, �nding that there is no single universally best metric. Zimmerman et al.
[57] investigated complexity metrics for bug prediction reporting a positive correlation
between code complexity and bugs. Finally, Nikora et al. [107] showed that measurements
of a system’s structural evolution (e.g., ‘number of executable statements’) can serve as
bug predictors.

Process metrics. Graves et al. [108] experimented both product and process metrics
for bug prediction, �nding that product metrics are poor predictors of bugs. Khoshgoftaar
et al. [109] assessed the role of debug churns (i.e., the number of lines of code changed
to �x bugs) in an empirical study, showing that modules having a large number of debug
churns are likely to be defective.

To further investigate the role played by product and process metrics, Moser et al.
[110, 111] performed two comparative studies, which highlighted the superiority of process
metrics in predicting buggy code components. Later on, D’Ambros et al. [112] performed
an extensive comparison of bug prediction approaches relying on both the sources of
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information, �nding that no technique works better in all contexts. A complementary
approach is the use of developer-related factors for bug prediction. For example, Hassan
investigated a technique based on the entropy of code changes by developers [89], reporting
that it has better performance than models based on code components changes. Ostrand
et al. [113, 114] proposed the use of the number of developers who modi�ed a code
component as a bug-proneness predictor: however, the performance of the resulting
model was poorly improved with respect to existing models. Finally, Di Nucci et al. [91]
de�ned a bug prediction model based on a mixture of code, process, and developer-based
metrics outperforming the performance of existing models.

Despite the aforementioned promising results, developers consider class/module level
bug prediction too coarse-grained for practical usage [93]. Hence, the need for a more
�ne-grained prediction, such as method-level. This target adjustment does not negate the
value of the preceding work but calls for a re-evaluation of the e�ectiveness of the proposed
methods and, possibly, a work of adaptation.

2.2.2 Method-level Bug Prediction
So far, only Giger et al. [35] and Hata et al. [99] independently and almost contemporane-
ously targeted the prediction of bugs at method-level. Overall they de�ned a set of metrics
(Hata et al. mostly process metrics, while Giger et al. also considered product metrics) and
evaluated their bug prediction capabilities. Giger et al. found that both product and process
metrics contribute to the identi�cation of buggy methods and their combination achieves
promising performance (i.e., F-Measure=86%) [35]. Hata et al. found that using method-
level bug prediction one saves more e�ort (measured in number of LOC to be analyzed)
than both �le-level and package-level prediction [99]. The data collection approach used
by both sets of researchers is very similar, here we detail that used by Giger et al. [35], as
an exempli�cation.

To produce the dataset used in their evaluation, Giger et al. conducted the following
steps [35]: they (1) took a large time frame in the history of 22 Java OSS systems, (2) con-
sidered the methods present at the end of the time frame, (3) computed product metrics
for each method at the end of the time frame, (4) computed process metrics (e.g., number
of changes) for each method throughout the time frame, and (5) counted the number of
bugs for each method throughout the time frame, relying on bug �xing commits. Finally,
they used 10-fold cross-validation [115] to evaluate three models (only process metrics,
only product metrics, and both combined), considering the presence/absence of bug(s) in a
method as the dependent binary variable.

In the work presented in this paper, we replicate the same methodology of Giger et
al. and Hata et al. on an overlapping sets of projects to see whether we are able to reach
similar results for other contexts. For simplicity and because the methodological details
are more extensive, we follow more closely the case of Giger et al. [35].

2.3 Research Goal and Subjects
This section de�nes the goal of our empirical study in terms of research questions and the
subject systems we consider.
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2.3.1 Research�estions
The �rst goal in our study is to replicate bug-prediction work at method level, by using the
research method employed by Giger et al. [35] on a partially overlapping set of software
systems in di�erent moments in time, with the purpose of understanding the extent to
which their results are actually generalizable. This leads to our �rst research question:

RQ1. How e�ective are existing method-level bug prediction approaches when tested on
new systems/timespans?

While replicating the methodology proposed by Giger et al. [35], we found some
limitations with the validation approach that they followed to assess the e�ectiveness of
the prediction methods. In fact, although reasonable for an initial validation, the type of
validation followed by Giger et al. has the following limitations: (1) it uses 10-fold cross-
validation, which is at the risk of producing biased estimates in certain circumstances [116],
(2) product metrics are considered only at the end of the time frame (while bugs are found
within the time frame), (3) the number of changes and the number of bugs were both
considered in the same time frame (this time-insensitive validation strategy may have led
to biased results).

In the second part of our study we try to overcome the aforementioned limitations
by re-evaluating the performance using data from subsequent releases (i.e., a release-by-
release validation). Release-by-release validation better models a real-case scenario where
a prediction model is updated as soon as new information is available. Our expectation
is that the performance is going to be weaker in this setting, but we hope still promising.
This leads to our second research question:

RQ2. How e�ective are existing method-level bug prediction models when validated with
a release-by-release validation strategy?

Table 2.1: Overview of the subject projects investigated in this study

Projects LOC Developers Releases Methods All Buggy Methods Last Buggy Methods
Ant 213k 15 4 42k 2.3k 567
Checkstyle 235k 76 6 31k 4.1k 670
Cloudstack 1.16M 90 2 85k 13.4k 6.8K
Eclipse JDT 1.55M 22 33 810k 3.3k 96
Eclipse Platform 229k 19 3 7k 2.7k 932
Emf Compare 3.71M 14 2 9k 0.7k 444
Gradle 803k 106 4 73k 4.6k 1.1k
Guava 489k 104 17 262k 1.2k 71
Guice 19k 32 4 9k 0.5k 145
Hadoop 2.46M 93 5 179k 5.8k 1.3k
Lucene-solr 586k 59 7 213k 8.7k 962
Vaadin 7.06M 133 2 43k 11.3k 7.7K
Wicket 328k 19 2 30k 4.9k 2.2K
Overall 19M 782 91 1.8M 63.4k 22.9k
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2.3.2 Subject Systems
The context of our work consists of the 13 software systems whose characteristics are
reported in Table 2.1. For each system, the table reports its size (in KLOCs), number of
contributors, releases, methods, and number of buggy methods over the entire change
history, and number of buggy methods contained in its last release. In particular, we focus
on systems implemented in Java (i.e., one of the most popular programming languages
[117]), since the metrics previously used/de�ned by both Giger et al. [35] and Hata et al. [99]
mainly target this programming language. In addition, we choose projects whose source
code is publicly available (i.e., open-source software projects) and are developed using Git
as version control system, in order to enable the extraction of product and process metrics.
Hence, starting from the list of open-source projects available on Github,1 we randomly
selected 13 systems that have a change history composed of at least 1,000 commits and
more than 5,000 methods. Our dataset is numerically smaller than the one by Giger et al.,
but comprises larger systems composed of a much larger number of both methods (1.8M vs
112,058) and bugs (63,400 vs 23,762); this allows us to test the e�ectiveness of method-level
bug prediction on software systems of a di�erent kind of size.

2.4 RQ1 - ReplicatingMethod-LevelBugPrediction
The work regarding RQ1 aims at replicating the study conducted by Giger et al. [35] on
a di�erent set of systems and time spans and relies on the method-level bug prediction
technique.

2.4.1 RQ1 - Research Method
To answer our �rst research question, we (i) build a method-level bug prediction model
using the same features as Giger et al. [35] and (ii) evaluate its performance applying it to
our projects. To this aim, we follow a set of methodological steps such as (i) creation of
an oracle reporting buggy methods in each of the projects considered, i.e., the dependent
variable to predict (ii) de�nition of the independent variables, i.e., the metrics on which the
model relies on, (iii) testing of the performance of di�erent machine learning algorithms,
and (iv) de�nition of the validation methodology to test the performance of the model.

Extraction of Buggy Data. For each system we need to detect the buggy methods
contained at the end of the time frame, i.e., in the last release Rlast , to do so we use a
methodology in line with that followed by Giger et al. [35]. Given the tagged issues
available in the issue tracking systems (i.e., Bugzilla or Jira) of the subject systems, we
�rstly use ReLink [118] to identify links between issues and commits. ReLink considers
several constraints, i.e., (i) a match exists between the committer and the contributor who
created the issue in the issue tracking system, (ii) the time interval between the commit
and the last comment posted by the same contributor in the issue tracker is less than seven
days, and (iii) the cosine similarity between the commit note and the last comment referred
above, computed using the Vector Space Model (VSM) [119], is greater than 0.7. Afterwards,
we consider as buggy all the methods actually changed in the buggy commits detected
by ReLink and referring to the time period between the Rlast−1 and Rlast , i.e., the ones

1https://github.com
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introduced during the �nal time frame. We �ltered out test cases, which might be modi�ed
with the production code, but might not directly be implicated in a bug.

Independent variables. As for the metrics to characterize source code methods, we
compute the set of 9 product and 15 process features de�ned by Giger et al. [35].

Table 2.2: List of method-level product metrics used in this study

Metric name Description (applies to method-level)
FanIN # of methods that reference a given method
FanOUT # of methods referenced by a given method
LocalVar # of local variables in the body of a method
Parameters # of parameters in the declaration
CommentToCodeRatio Ratio of comments to source code (line based)
CountPath # of possible paths in the body of a method
Complexity McCabe Cyclomatic complexity of a method
execStmt # of executable source code statements
maxNesting Maximum nested depth of all control structures

Table 2.3: List of method-level process metrics used in this study

Metric name Description (applies to method level)
MethodHistories # of times a method was changed
Authors # of distinct authors that changed a method
StmtAdded Sum of all source code statements added
MaxStmtAdded Maximum StmtAdded
AvgStmtAdded Average of StmtAdded
StmtDeleted Sum of all source code statements deleted
MaxStmtDeleted Maximum of StmtDeleted
AvgStmtDeleted Average of StmtDeleted
Churn Sum of stmtAdded - stmtDeleted
MaxChurn Maximum churn for all method histories
AvgChurn Average churn per method history
Decl # of method declaration changes
Cond # of condition changes over all revisions
ElseAdded # of added else-parts over all revisions
ElseDeleted # of deleted else-parts over all revisions

• Product Metrics: Existing literature demonstrated how such set of features might
be e�ective to characterize the extent to which a source code method is di�cult to
maintain, possibly indicating the presence of defects [90, 101, 104, 112]. Giger et
al. [35] proposed the use of the metrics reported in Table 2.2. The features cover
di�erent method characteristics, e.g., number of parameters or McCabe’s cyclomatic
complexity [120]. We re-implement all of the metrics due to the lack of available
tools.
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• Process Metrics: According to previous literature [109, 111], process features e�ec-
tively complement the capabilities of product predictors for bug prediction. For this
reason, Giger et al. [35] relied on the change-based metrics described in Table 2.3 and
that widely characterize the life of source code methods, e.g., by considering how
many statements were added over time or the number of developers that touched
the method.
Also in this case, we re-implement the proposed process metrics de�ned at method-
level by Giger et al. [35].

Similarly to Giger et al. [35], in the context of RQ1, we build three di�erent method-level
bug prediction models relying on (i) only product metrics, (ii) only process metrics, and (ii)
both product and process metrics.

Training Data Preprocessing. Once we have the dataset containing (i) product and
process metrics (i.e., the independent variables) and (ii) buggy methods (i.e., the dependent
variable), we start the method-level bug prediction process. As �rst step, we take into
account two common problems that may a�ect machine learning algorithms, namely (i)
data unbalance [121] and (ii) multi-collinearity [122].

The former represents a frequent issue in bug prediction occurring when the number
of instances that refer to buggy resources (in our case, source code methods) is drastically
smaller than the number of non-buggy instances. We address this problem by applying
the Random Over-Sampling algorithm [123] implemented as a supervised �lter in the
Weka toolkit.2 The �lter re-weights the instances in the dataset to give them the same total
weight for each class maintaining unchanged the total sum of weights across all instances.

The second problem comes from the use of multiple metrics. These independent
variables may have a high correlation causing collinearity that negatively impacts the
performance of bug prediction models [124]. To cope with this problem, we preprocess our
dataset �ltering out the unwanted features. Speci�cally, we apply the Correlation-based
Feature Selection [125] algorithm implemented as a �lter in the Weka toolkit: It evaluates
the worth of a subset of attributes by considering the individual predictive ability of each
feature along with their degree of redundancy.

Machine Learner. Once preprocessed the training data, we need to select a classi�er
that leverages the independent variables to predict buggy methods [126]. To this aim, we
exploit the four classi�ers used by Giger et al., which are all available in Weka toolkit:
Random Forest, Support Vector Machine, Bayesian Network, and J48. Afterwards, we compare
the di�erent classi�cation algorithms using validation strategy and metrics we describe
later.

Evaluation Strategy. The �nal step to answer RQ1 consists of the validation of the
prediction models. As done in the reference work, we adopt the 10-fold cross-validation
strategy [115, 127]. This strategy randomly partitions the original set of data into 10 equal
sized subset. Of the 10 subsets, one is retained as test set, while the remaining 9 are used as
training set. The cross-validation is then repeated 10 times, allowing each of the 10 subsets
to be the test set exactly once.

Evaluation Metrics. Once we had run the experimented models over the considered
systems, we measure their performance using the same metrics proposed by Giger et al. [35]
2https://www.cs.waikato.ac.nz/ml/weka/
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to allow for comparison: precision and recall [119]. Precision is de�ned as precision =
|TP |

|TP+FP | where TP (True Positives) are methods that are correctly retrieved by a prediction
model and FP (False Positives) are methods that are wrongly classi�ed by a prediction
model. Recall is de�ned as recall = |TP |

|TP+FN | , where FN (False Negatives) are methods that
are not retrieved by a prediction model (i.e., buggy methods misclassi�ed as non-buggy
by a model). We also compute F-Measure [119], which combines precision and recall in a
single metric: F −Measure = 2 ⋅ Precision⋅RecallPrecision+Recall .

In addition to the aforementioned metrics, we also compute the Area Under the Receiver
Operation Characteristic curve (AUC-ROC) [128]. In fact, the classi�cation chosen by the
machine learning algorithms is based on a threshold (e.g., all the method whose predicted
value is above the threshold 0.5 are classi�ed as buggy), which can greatly a�ect the overall
results [116]; precision and recall alone are not able to capture this aspect. ROC plots the
true positive rates against the false positive rates for all possible thresholds between 0 and
1; the diagonal represents the expected performance of a random classi�er. AUC computes
the area below the ROC and allows us to have a comprehensive measure for comparing
di�erent ROCs: An area of 1 represents a perfect classi�er (all the defective methods are
recognized without any error), whereas for a random classi�er an area close 0.5 is expected
(since the ROC for a random classi�er tends to the diagonal).

2.4.2 RQ1 - Results

Table 2.4: Median classi�cation results of method-level bug prediction models when validated using 10-fold cross
validation.

� = Product Precision Recall F-measure AUC-ROC
Π = Process � Π �&Π S Π �&Π � Π �&Π � Π �&Π

Bayesian Network 0.71 0.77 0.77 0.46 0.68 0.70 0.56 0.72 0.72 0.60 0.72 0.72
J48 0.73 0.82 0.84 0.60 0.84 0.83 0.65 0.83 0.83 0.60 0.79 0.80
Random Forest 0.72 0.85 0.86 0.64 0.86 0.86 0.68 0.85 0.86 0.66 0.84 0.86
Support Vector Machines 0.66 0.74 0.74 0.09 0.80 0.79 0.16 0.77 0.76 0.50 0.51 0.51
Overall 0.71 0.80 0.80 0.44 0.80 0.80 0.51 0.80 0.80 0.59 0.72 0.73

Table 2.4 reports the median precision, recall, F-measure, and AUC-ROC achieved by
models based on (i) only product, (ii) only process, and (iii) both product and process
features when using di�erent classi�ers. A detailed report of the performance achieved by
the single classi�ers over all the considered systems is available in our online appendix
[129]. Overall, the obtained results are in line with those by Giger et al., yet we achieve
values that are 10 percentage points lower on average.

The model based on product metrics achieves the lowest results. For instance, the overall
precision is 0.71, meaning that a software engineer using this model has to needlessly
analyze almost 39% of the recommendations it outputs. This result is in line with the
�ndings provided by Giger et al., who already showed that the model only trained on
product metrics o�ers generally lower performance.

Secondly, our results con�rm that process metrics are stronger indicator of bug-
proneness of source code methods (overall F-Measure=0.80). Also in this case, this �nding
is in line with the previous results achieved by the research community that report the
superiority of process metrics with respect to product ones [100, 111]. Our results also
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con�rm another �nding by Giger et al.: The combination of product and process metrics
does not improve dramatically the prediction capabilities: Results are—at most—two points
percentage higher than the model with process metrics only. We �nd this surprising, since
both set of metrics have values in the prediction and we expected that the use of these
orthogonal predictors would improve the overall performance of the approach.

As for the di�erent classi�ers experimented, Support Vector Machines gives the worst
results; likely, this is due to the extreme sensitivity of the classi�er to the con�guration [130].
In fact, as shown in previous research [130, 131], the use of the default con�guration might
lead to signi�cantly worsen the overall performance of the machine learner. Future studies
could be setup and conducted to investigate the impact of the con�guration on SVM for
method-level bug prediction.

Other classi�ers provide more stable results. Random Forest and J48 obtain the best
prediction accuracy considering all the evaluation metrics. The di�erences are particularly
evident when considering the AUC-ROC values, which are 36% and 29% higher than VSM,
respectively. Our results con�rm what was reported by Giger et al. on the capabilities of
Random Forest, and more in general on the performance of this classi�er in the context of
bug prediction [54, 132].

To test the statistical signi�cance of the results discussed so far, we compared the AUC-
ROC values of the experimented models over the di�erent systems using the Scott-Knott
E�ect Size Di�erence (ESD) test [133], which is e�ect-size aware variant of the Scott-Knott
test [134] that is recommended in case of comparisons of multiple models over multiple
datasets [133]. As a result, process-based models built using Random Forest and J48 are
considered statistically better than product-based ones, while they work similarly to the
combined ones. Detailed statistical results are in our online appendix [129].

Result 1: Our results, computed with the same evaluation strategy but on a di�erent set
of systems/timespans, con�rm the �ndings by Giger et al.: Method-level bug prediction
models based on process metrics perform better than those based on product metrics.
Our results are 10 percentage points lower than those of Giger et al., yet far better
than random. The combination of predictors of di�erent nature does not dramatically
improve the prediction capabilities.

2.5 Reflecting on the Evaluation Strategy
By replicating the work by Giger et al., we had the chance to re�ect on the evaluation
strategy. Figure 2.1 shows an exempli�cation of the history of a system and how the training
and testing are done in the approach by Giger et al. (named ‘10-fold overall evaluation’ in
the �gure and depicted using red lines and text) and in the one we propose in this work
(named ‘release-by-release’ and depicted in blue).

The system in Figure 2.1 has four methods (i.e., Ma , Mb , Mc , Md ) that were changed
several times throughout the history of the system. The changes sometimes were related
to a bug (i.e., the method was involved in a bug �x; purple dot), sometimes not (i.e., green
dot); for example method Ma was changed four times, two of which involving a bug �x.
This system had at least three releases (i.e., Rx throughout Rx+1).
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Figure 2.1: Training and testing strategies for method-level bug prediction.

The approach applied by Giger et al. collects all the available information until the
‘data collection point’, then marks a method as ‘buggy’ whenever the method was involved
in a bug �x (hence it was buggy before the bug�x) in the entire history of the system.
Then, each method would be considered as an instance to classify, where the independent
variable is whether the method was marked as ‘buggy’ or not. In this case, the validation
would be done “vertically”: 10-fold cross validation ensures that the classi�er is trained on
a subset of methods (e.g., Ma , Mb , Mc in Figure 2.1) that is di�erent from that used for the
testing (e.g., Md ).

The limitation of this approach is that it uses dependent variables (such as most of
the process metrics, including ‘number of changes’) (1) whose value could not be known
at prediction time in a real-world scenario (i.e., one would try to predict bugs that still
have to occur, not that already happened) and that (2) seem to be highly correlated to
the independent variable (for each bug �x there has to be a change). Moreover, there are
moments in which the methods were not buggy, but if they have been buggy at least once
in the lifetime of the system, they are considered as buggy.

Although reasonable for an initial validation, the approach followed by Giger et al.
may lead to unrealistic results. For this reason, we propose a release-by-release strategy,
similar to one adopted by Kpodjedo et al. [135]. We train and test “horizontally” instead
of “vertically”: We assume to be in the moment of a release (e.g., Rx+1 in Figure 2.1) and
we train on all the information available from the previous release to this moment (e.g.,
from Rx ); in this case the independent variable is whether or not a method has been buggy
during the considered release. Then, we consider the next release (e.g., Rx+2) and try to
predict which methods will be buggy in the course of the development of this release; yet,
we do not consider any information available from the current release to the next, because
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this would not be available in real life. With this strategy we answer RQ2.
An addition to the release-by-release strategy would be to consider the SZZ algo-

rithm [136] and consider as buggy only the methods in which a bug was introduced before
the release (regardless of when the �x happened). We decided not to follow this path
for three reasons: (1) SZZ could give information that is not available at prediction time
(e.g., when the bug �x happens after the considered release, but the bug inducing commit
happens before the release), (2) SZZ has been proven to be not reliable [137], and (3) we
want to reduce at a minimum the di�erences from the work of Giger et al. we are replicating,
so that the obtained results are not due to unconsidered causes.

2.6 RQ2 - Re-evaluating Method-Level Bug Predic-
tion

Our RQ2 seeks to evaluate the performance of method-level bug prediction models in a
more realistic setting.

2.6.1 RQ2 - Methodology
To answer RQ2, we need to (i) extract all the releases of the considered projects, (ii) identify
the buggy methods occurring in each of them, and (iii) build the three bug prediction
models considered in the context of RQ1.

Extraction of The Major Releases. The �rst step to test the performance of method-
level bug prediction models consists in the identi�cation of the major releases of the
considered systems. To this purpose, we automatically extract them from the list of releases
declared on the Github repository of the subject systems. To discriminate major releases
from the others we rely on a heuristic based on naming conventions: if the version name
ends with the patterns 0 or 0.0 (e.g., versions 3.0 or 3.0.0), then a major release is identi�ed.
We manually veri�ed the performance of this heuristic on one of the subject systems: We
veri�ed that all the major releases of Lucene-Solr were correctly caught, thus quantifying
the actual performance of this approach.

Extraction of Buggy Data. Di�erently from what we have done in RQ1, in this
research question we need to extract the buggy data for all the considered releases. For
each release pair ri −1 and ri , we (i) run ReLink and (ii) consider as buggy all the methods
actually changed in the buggy commits detected by ReLink and referring to the time frame
between ri −1 and ri . We �ltered out test cases.

Bug Prediction Models: Setup. As done for RQ1, we test the performance of three
bug prediction models, i.e., the ones relying on (i) product metrics only, (ii) process met-
rics only, and (ii) both product and process metrics, built using the same set of machine
learning approaches, i.e., Random Forest, Support Vector Machine, Bayesian Network, and
J48. Also in this case, the training data is preprocessed to avoid (i) data unbalance and (ii)
multicollinearity by using the same set of techniques previously exploited, i.e., Random
Over-Sampling algorithm [123] and Correlation-based Feature Selection [125], respectively.

Bug Prediction Models: Validation. As a �nal step to answer the second research
question, we test the performance of the prediction models by applying an inter-release
validation procedure, i.e., we trained the prediction models using the release ri−1 and tested
it on ri . This technique implies that the �rst release of each system could not be used as
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testing set as well as the last release could not be used as training. To measure the accuracy
of such models, we computed the same set of metrics previously exploited, i.e., precision,
recall, F-Measure, and AUC-ROC.

2.6.2 RQ2 - Results

Table 2.5: Median classi�cation results of method-level bug prediction models when validated using a release-by-
release strategy.

S = Product Precision Recall F-measure AUC-ROC
H = Process S H S&H S H S&H S H S&H S H S&H

Bayesian Network 0.72 0.70 0.70 0.58 0.64 0.65 0.59 0.60 0.61 0.53 0.52 0.53
J48 0.71 0.71 0.71 0.59 0.59 0.59 0.62 0.62 0.63 0.51 0.51 0.51
Random Forest 0.72 0.70 0.72 0.63 0.60 0.63 0.64 0.61 0.63 0.52 0.51 0.52
Support Vector Machines 0.72 0.73 0.72 0.59 0.57 0.60 0.62 0.58 0.62 0.53 0.53 0.53
Overall 0.71 0.71 0.71 0.59 0.60 0.60 0.62 0.60 0.61 0.52 0.52 0.53

Table 2.5 reports the median precision, recall, F-measure, and AUC-ROC achieved by
models based on (i) only product, (ii) only process, and (iii) both product and process
metrics when using di�erent classi�ers and the release-by-release strategy. For sake of
space limitation, we report the results aggregated using the median operator, however,
detailed reports are available in our appendix [138].

The performance achieved by all the prediction models experimented is signi�cantly
lower than those found in the replication presented in RQ1. We observe a limited decrease
between the highest/lowest values and overall in each of the subject systems in our dataset.

In this evaluation scenario, the use of code metrics as predictors only slightly im-
proves the capabilities of method-level bug prediction models. This is in contrast with
past literature reporting the superiority of process metrics for bug prediction [100, 111].
We hypothesize that this result may be caused both by the di�erent granularity of the
experimented models and by the di�erent validation strategy with respect to the one used
in RQ1. In particular, while the historical information computed at class-level could better
characterize the complexity of the development process followed by developers while
implementing changes in an entire class [89], it is reasonable to think that the bugginess
of source code methods may be better expressed by the methods’ current code quality. An
additional possible cause that refutes the observation of previous studies [100, 111] comes
from the irregular distribution of the length of the time frames for the considered releases.
In our analyzed projects, these intervals stretch between a few months to a couple of years
and the distribution of the releases is strictly correlated to the needs and the approach
adopted by developers in a given historical moment. The higher prediction capabilities
of code metrics are con�rmed also when looking at other indicators, i.e., precision, recall,
AUC-ROC. Moreover, this result holds for all the classi�ers considered.

Finally, we observe that the performance of di�erent classi�ers is similar and there is no
clear winner. To some extent, this result con�rms previous �ndings in the �eld [139, 140]
showing that di�erent classi�ers achieve similar performance. This result potentially
highlights the possibility to further study the orthogonality of classi�ers for method-level
bug prediction with the aim of exploiting ensemble methodologies [54, 132].
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Result 2: All the experimented method-level bug prediction models resulted in dra-
matically lower performance (up to 20 points percentage less in terms of AUC-ROC)
when evaluated with the more realistic release-by-release evaluation strategy, instead
of 10-fold cross validation. The achieved AUC-ROC scores achieved by all the models,
regardless of the machine learning approach, are close to the results that a random
classi�er would provide.

2.7 Threats to Validity
In this section, we describe the factors that might have a�ected the validity of our empirical
study.

Threats to Construct Validity. A �rst factor in�uencing the relationship between
theory and observation is related to the dataset exploited. In our study, we rely on the
same methodology previously adopted by Giger et al. [35] to build our own repository of
buggy methods, i.e., we �rst retrieve bug-�xing commits using the textual-based technique
proposed by Fisher et al. [69] and then consider as buggy the methods changed in that
commits. To understand possible imprecisions and/or incompleteness of the data used in
this study, we manually validate a statistically signi�cant sample of 275 buggy methods
detected on the Lucene-Solr system. Such a set represents a 95% statistically signi�cant
strati�ed sample with a 5% con�dence interval of the 962 total buggy methods detected in
the last release of the project. The validation was conducted by the �rst two authors of
this paper. Based on (i) the description of the bug reported on the issue tracker system,
(ii) the source code of a method detected as buggy in a commit ci , and (iii) the list of
modi�cations to the method between ci and its predecessor ci−1 (extracted using the diff
unix command), each author checked independently whether the changes applied between
the two revisions might have actually introduced the bug reported on the issue tracker. After
the �rst round, the two inspectors started a discussion on the independent classi�cations
made to reach consensus. The level of agreement between the inspectors is computed
using the krippendor�’s � [141], �nding it to be 0.84, which is higher than the 0.80 used as
standard reference score [142]. As for the accuracy of the linking methodology, we found
that it correctly captured the bugginess of 85% of methods. Thus, at the end of this process
we can claim that the oracle built is accurate enough for our purposes.

A threat to the validity of our replication is that we had to re-implement the product
and process metrics used to build the experimented models, due to the lack of a publicly
available tool. When re-implementing such metrics we faithfully followed the descriptions
by Giger et al. [35].

Although we test the performance of the models using the same machine learning
classi�ers used by Giger et al. [35] to closely replicate their study, the use of di�erent
classi�ers may produce di�erent results. A more detailed analysis of the impact of other
classi�ers on our results is part of our future agenda. A complete overview of this analysis
is available in our online appendix [129]. Moreover, all the tested classi�ers use the default
parameters, since �nding the best con�gurations would have been too expensive [143].

Threats to Conclusion Validity. To ensure that the results would not have been
biased by confounding e�ects such as data unbalance [121] or multi-collinearity [124], we
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adopt formal procedures aimed at (i) over-sampling the training sets [121] and (ii) removing
non-relevant independent variables through feature selection [125].

Threats to External Validity. This category refers to the generalizability of our
�ndings. While in the context of this work we analyze software projects having di�erent
size and scope, we limit our focus to Java systems because some of the tools exploited
to compute the independent and dependent variables mainly target this programming
language. Thus, the generalizability with respect to systems written in di�erent languages
as well as to projects belonging to industrial environments is limited.

2.8 Conclusion
In this paper, we investigated (i) the practical bene�ts of di�erent classes of method-level
bug prediction models when applied in a real-case scenario and (ii) the contribution of
textual features to existing bug prediction models.

The main contributions made by this work are:

1. A validation aimed at understanding the applicability of a method-level bug predic-
tion model in a real-case scenario, by predicting the bug-proneness of methods in a
release-by-release shape. The results highlight that they achieve an overall AUC-
ROC of 53% and an overall F-measure up to 63%, i.e., lower than what previously
found in literature when evaluated in a less realistic scenario.

2. An empirical analysis of how the performance of existing method-level bug prediction
models can be improved by considering a set of 8 textual features. Our results reveal
that the overall prediction capabilities can be improved up to 10%, by including these
metrics.

3. A �ne-grained empirical analysis of the gain provided by each textual feature in
method-level bug prediction. The results show a reduction of the entropy up to 35%
for three textual features: Readability, Textual Coherence, and Notice.

4. An online appendix [138] that reports the dataset and all the additional analyses
performed in the work described in this paper.

Based on the results achieved so far, our future agenda includes (i) the replication of
our study on a larger set of systems along with a study aimed to measure the capabilities of
ensemble methods [54, 132] and (ii) an in-vivo analysis of the capabilities of method-level
bug prediction models, done by involving practitioners during their daily activities [94].
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3
Fine-Grained Just-In-Time

Defect Prediction

Defect prediction models focus on identifying defect-prone code elements, for example to allow
practitioners to allocate testing resources on speci�c subsystems and to provide assistance
during code reviews. While the research community has been highly active in proposing
metrics and methods to predict defects on long-term periods (i.e., at release time), a recent
trend is represented by the so-called short-term defect prediction (i.e., at commit-level). Indeed,
this strategy represents an e�ective alternative in terms of e�ort required to inspect �les likely
a�ected by defects. Nevertheless, the granularity considered by such models might be still too
coarse. Indeed, existing commit-level models highlight an entire commit as defective even in
cases where only speci�c �les actually contain defects.

In this work, we �rst investigate to what extent commits are partially defective; then, we
propose a novel �ne-grained just-in-time defect prediction model to predict the speci�c �les,
contained in a commit, that are defective. Finally, we evaluate our model in terms of (i)
performance and (ii) the extent to which it decreases the e�ort required to diagnose a defect.
Our study highlights that: (1) defective commits are frequently composed of a mixture of
defective and non-defective �les, (2) our �ne-grained model can accurately predict defective
�les with an overall AUC-ROC up to 86% and (3) our model would allow practitioners to save
inspection e�orts with respect to standard just-in-time techniques.

This chapter is based on

q L. Pascarella, F. Palomba, A. Bacchelli. Fine-Grained Just-In-Time Defect Prediction, JSS’18 [144]

The results have been re-evaluated (and the text updated accordingly) to satisfy the replicability of this study, as
described in Sections 1.6 and 1.8.
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3.1 Introduction
During software maintenance and evolution, developers constantly modify the source
code to introduce new features or �x defects [145]. These modi�cations, however, may
lead to the introduction of new defects [58], thus developers must carefully verify that the
performed modi�cations do not introduce new defects in the code. This task is usually
performed directly during development (e.g., by running test cases) [146] or when changes
are reviewed [7]. An e�cient way to allocate inspection and testing resources to the portion
of source code more likely to be defective is represented by defect prediction [32], which
involves the construction of statistical models to predict the defect-proneness of software
artifacts, by mostly exploiting information regarding the source code or the development
process.

The problem of defect prediction has attracted the attention of many researchers in
the past decade, who tried to address it by (i) conducting empirical studies on the factors
making artifacts more defect-prone (e.g., [44, 46, 47, 49, 90, 147–149]) and (ii) proposing
novel prediction models aimed at accurately predicting the defect-proneness of the source
code (e.g., [56, 89, 91, 100, 113, 150]).

Most of the existing techniques evaluate the defectiveness of software artifacts per-
form long-term predictions. Analyzing the information accumulated in previous software
releases, these models predict which artifacts are going be more prone to defect in future
releases. For instance, Basili et al. investigated the e�ectiveness of Object-Oriented met-
rics [101] in predicting post-release defects [90], while other approaches consider process
metrics (e.g., the entropy of changes [89]) or developer-related factors [91, 113] for the
same purpose.

Kamei et al. reported that these long-term defect prediction models—despite their
good accuracy—may have a limited usefulness in practice because they do not provide
developers with immediate feedback [59], thus not avoid the introduction of defects during
the commit of artifacts on the repository. To overcome this limitation, a recent trend is the
investigation of just-in-time prediction models, i.e., techniques exploiting the characteristics
of a commit to perform short-term predictions of vthe likelihood of a commit introducing a
defect. With this solution, a developer can limit the e�ort required to diagnose problems
since s/he focuses on the committed artifacts only [59]. Among the studies investigating
just-in-time prediction models, Kamei et al. [59, 151] de�ned 14 metrics characterizing
a commit under �ve perspectives, demonstrating how such metrics can be successfully
exploited for predicting defective commits either in the case the model is trained using
previous data of the project [59] and in the case the training information come from
di�erent projects [151]. Other approaches proposed the use of deep-learning [62], textual
analysis [152], and unsupervised methodologies [153].

It is reasonable to think that, in a real-world scenario, a commit may be partially
defective, i.e., it may be composed of both defective and non-defective �les. In this case,
despite the advantages provided by just-in-time defect prediction, a developer might still
need to spend a considerable e�ort to locate the �les of a commit that are actually defective.
For instance, during a Modern Code Review (MCR) the reviewers iterate several times over
the proposed set of changes and the amount of time spent �nding a subset of defective �les
might substantially increase [7]. In this work, we aim at making a further step ahead in
the context of just-in-time defect prediction by investigating the original problem at a �ner
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granularity. Particularly, our goal is to investigate the prominence of partially defective
commits and, should they be a signi�cant amount, devise a defect prediction model to
identify the defective �les within a commit.

To this aim, we �rstly performed an exploratory study to characterize defective commits
and evaluate whether �ne-grained solutions are actually needed. In the second place, we
built a �ne-grained just-in-time defect prediction model adapting 24 basic features previously
de�ned in the papers by Kamei et al. [59] and Rahman and Devanbu [100]. We assessed
the performance of the model in terms of (i) accuracy of the predictions and (ii) e�ort
developers can save using our model with respect to state-of-the-art just-in-time prediction
models. The study was conducted considering 10 major open source systems and 164,000
commits created by 2,000 developers. Key �ndings of our investigations revealed that (i) up
to 55% of defective commits are composed of a mixture of both defective and non-defective
resources, (ii) the devised �ne-grained model obtained an AUC-ROC 86% on average when
locating defective �les in a commit, and (iii) our model is more cost-e�ective than the state
of the art just-in-time model. For reproducibility and replicability, we release all tools and
scripts needed to reproduce the results presented in this work [82].

Structure of the Chapter. Section 3.2 reports background, related work, and a concept of
the envisioned solution. Section 3.3 reports the methodology used to address our research
goal as well as possible threats that might in�uence our �ndings, while Section 3.4 presents
the results of the study. Finally, Section 3.5 concludes the Chapter.

3.2 Background and Related Work
In this section we introduce the terminology used through the paper, discuss the related
work, and motivate our study.

3.2.1 Terminology
Throughout the paper, we frequently refer to the following �ve concepts:

Defect. To de�ne a condition in which a software system does not meet its requirements,
we use the term defect, among all the possible terms (e.g., bug and fault [32]).

Defect-Inducing/-Fixing Change. We identify two events in the life of a defect: (i) the
defect-inducing change, i.e., the code change that inserts the defect into a project and (ii)
the defect-�xing change, i.e., the code change that �xes the defect.

Commit. In most modern collaborative software projects, authors develop code relying
on version system control tools such as Git.1 Such tools track changes as commits, which
are documented changes that involve one or more �les.

Non-/Partially/Fully Defective Commit. We de�ne three classes of commits: non-
defective commits (when all the committed �les are changed without introducing any
defect), fully defective commits (when all the committed �les are changed introducing
defects), and partially defective commits (when a subset of the committed �les are changed
introducing a defect). The top part of Figure 3.1 depicts a part of the history of an example

1https://git-scm.com/
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Long-term defect prediction
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Short-term defect prediction
commit-based

predicted defective file (correct)
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Figure 3.1: An example set of (defective) commits after release to �les in a software system.

software system, with the activities made on the versioning system after a system’s release.
A set of commits C = {cx , ..., cx+4} are performed by developers to evolve the system; all
the commits change the same three �les (A.c, B.c, and C.c). In Figure 3.1, we see
examples of non-defective commits (cx and cx+3), partially defective commits (cx+1, cx+4),
and a fully defective commit (cx+2).

3.2.2 Related Work
In this section, we discuss the related work that inspired and guided this study, considering
long- and short-term defect prediction.

Long-term Defect Prediction
Long-term defect prediction pertains to models able to classify defect-prone �les in future
releases of a software project. Several studies addressed this problem in the recent years
(a relatively recent survey has been compiled by Hall et al. [32]). Basically, the proposed
models di�er for the source of information used to predict the defectiveness of a class:
the main distinction is between static, product information and historical, process data.

Product Information. Structural data are computed with metrics such as the McCabe’s
cyclomatic complexity [120] or the Chidamber and Kemerer (CK) [101] metrics. These
product metrics have been investigated in several studies [54, 95, 102, 108, 154–157] and
researchers have shown how such metrics can provide useful contribution in the prediction
of defective classes. For instance, Nagappan et al. [157] found that a model based on code
metrics may achieve up to 83% of accuracy in the identi�cation of defect-prone classes.

Process Information. Historical data are computed with metrics such as relative code
churn, entropy of changes, or developer-related factors [32, 89, 91, 108, 111, 158]. Also in
this case, researchers provided empirical evidence on the value of such metrics for defect
prediction. For instance, Moser et al. [111] performed a comparative study analyzing
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static- and historical-based predictors, concluding that metrics computed over the history
of projects are better predictors and can signi�cantly improve the performance of defect
prediction models.

Combining Information. Later on, D’Ambros et al. [112] found that combined tech-
niques work better than models based on single unique set of metrics. On the basis of
this result, di Nucci et al. [91] de�ned a combined model based on a mixture of static
and historical metrics able to outperform the prediction capabilities of single models.
Finally, Menzies et al. [150] introduced the concept of local defect prediction, an approach
in which classes that will be used for training the classi�er are �rstly clustered into
homogeneous groups to reduce the di�erences among such classes and obtain higher
prediction accuracy.

We build on top of this line of work, by considering the features that are better able to
predict defects at �le-level—a key attribute that we include in our model.

Short-term Defect Prediction
Short-term defect prediction refers to models able to classify defect-prone at commit time.
Previous work motivated the introduction of this new strategy with the need of having
tools able to locate defects in the shortest possible time [159]. While Madeyski et al. [160]
proposed the idea of continuous defect prediction, Mockus et al. [159] addressed the
problem by proposing a model based on the change-proneness of �les to predict defects
at commit-level.

Characteristics of Defect-Introducing Changes. Other studies (e.g., Sliwerski et al. [136]
and Eyolfson et al. [161]) tried to localize defect-introducing changes in open source
projects by means of correlation between the defectiveness of a commit and the experi-
ence of developers. Sliwerski et al. [136] also discovered that defect-introducing changes
are generally a part of large transactions. The “unnaturalness” of defective code was
subsequently con�rmed by Ray and Hellendoorn et al. [48], who discovered that source
code presenting defects is characterized by higher entropy than non-defective code. They
also found that source code entropy might be a valid and simpler way to complement the
e�ectiveness of static analysis tools (e.g., CheckStyle2) in recommending to developers
the areas of source code where to focus inspection activities.

Ad Hoc Models. Jiang et al. [162] proposed the concept of “personalized” defect predic-
tion by proposing a technique able to create a di�erent model for each developer. Their
results report that such a technique outperforms existing just-in-time defect prediction
models. Along with this line, Xia et al. [163] improved the aforementioned technique by
Jiang et al. using a multi-objective genetic algorithm that �rstly builds a defect prediction
model for each developer, and then combine these models assigning di�erent weights
with the aim of maximizing F-Measure and cost-e�ectiveness. With respect to these
papers, our approach has not the goal to build a prediction model for each developer,
but instead that of providing feedback on defect-prone classes within the scope of a
commit: further analysis will evaluate the possible bene�ts provided by the creation of
personalized models in the context of �ne-grained just-in-time defect prediction.

2http://checkstyle.sourceforge.net
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Just-In-Time. The studies by Kamei et al. [59, 151] are great source of inspiration for our
work. They proposed a just-in-time quality assurance technique that predict defects at
commit-level trying to reduce the e�ort of a reviewer [59]. Later on, they also evaluated
how just-in-time models perform in the context of cross-project defect prediction [151].
Their main �ndings report good accuracy for the models in terms of both precision
and recall, but also in terms of saved inspection e�ort. Our work is complementary to
these papers. In particular, we start from their basis of detecting defective commits and
complement this model with the attributes necessary to �lter only those �les that are
defect-prone and should be more thoroughly reviewed. Rahman et al. [164], Yang et
al. [62], and Barnett et al. [152] proposed the usage of alternative techniques for just-
in-time quality assurance, such as cached history, deep learning, and textual analysis,
reporting promising results. We did not investigate these further in the current paper, but
studies can be designed and carried out to determine if and how these techniques can be
used within the model we present in this paper to further increase its accuracy.

3.2.3 Motivating Example
We discuss an example in which a developer uses long- vs. short-term defect prediction
models while inspecting a commit, in order to show some of the limitations of these
approaches.

The top part of Figure 3.1 depicts an example history of a software system, with
the activities made on the versioning system after a system’s release. A set of commits
C = {cx , ..., cx+4} are performed by developers to evolve the system. For sake of clarity,
suppose that the �les A.c, B.c, and C.c are always changed in the considered commits
after the system’s release. The small circles in the top bar represent changes made to �les
in each commit and the colors represent whether these changes introduce a defect (purple)
or not (dark green) in these �les. In addition, a black box surrounds all the �les in the same
commit. In the following we describe the behavior of the two aforementioned prediction
models:

Long-term Defect Prediction. Based on the information gathered before the system’s
release, a long-term defect prediction model would mark certain �les as defect-prone for
the entire period leading to the issue of the next release. In our example, the model marks
the �les B.c and C.c as defect-prone and A.c as non-defective. The model classi�es
both B.c and C.c as defective starting from the system’s release onward, in Figure
3.1 we depict this behavior with a horizontal small arrows, thus showing that B.c and
C.c are considered as defective in every commit. Indeed, the model does not provide any
information about the exact commit that will likely lead to the introduction of a defect.
This model would issue warnings about these �les on each commit involving them. In
our example, this represents an unjusti�ed extra-e�ort for the developer inspecting the
commit. As found in previous research, this unjusti�ed extra-e�ort derived from using a
tool can reduce the developers’ con�dence in the prediction [165], thus leading to miss
important defects in future commits involving actual defect-prone artifacts. Finally, we
see that the model does not classify as defective the code in �le A.c, also when a defect
is introduced in commit cx+2 (the missed defective �le is depicted with a yellow circle).

Short-term Defect Prediction. As an alternative, a reviewer may adopt a short-term
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defect prediction model such as the just-in-time one proposed by [59]. In this scenario,
a developer is pointed to analyze more in depth only the �les referring to a commit
marked as potentially defective by the model. However, the number of resources to
inspect might be still high depending on the number of �les committed and the wasted
e�ort on how many are defect-free. For instance, in the commit cx+1 shown in Figure 3.1,
only the �le B.c introduces a defect, while the others are defect-free, yet a warning from
the tool would be issued; the developer may need to analyze some non-defective �les
before �nding the actual defect. Thus, while short-term solutions can signi�cantly reduce
the reviewers’ e�ort, they might still produce extra-e�ort in cases a commit is partially
defective. Furthermore, in our example, �le B.c is again defective in commit cx+4, but it
is not marked as such, since the model does not recognize the commit as defective (in the
�gure, the missed defective �le is depicted with a yellow circle).

The goal of our work is to make the �rst steps in supporting software developers
during the inspection of a commit (e.g., in a code review), by striving to overcoming the
aforementioned limitations of existing defect prediction models in this context. The next
section details our research questions and the research method.

3.3 Methodology
This section de�nes the overall goal of our study, motivates our research questions, and
outlines our method.

3.3.1 Research�estions
The goal of the study is to investigate how frequently commits are only partially defective
and to devise a defect prediction model able to identify the �les with the changes that are
more likely to introduce a defect. We set up our work around three research questions. The
�rst one is a preliminary analysis aimed at assessing the extent to which a defect prediction
model is actually able to estimate the defect-proneness of �les within a commit. To this
aim, we investigate the ratio of commits that contain both defective and not defective �les.
Should the frequency of partially commits be low, standard just-in-time models, such as
the one devised by Kamei et al. [59] would be su�cient, while in case there should be
a notable percentage of commits presenting both defective and non-defective �les, then
defect prediction models working at a �ner granularity than standard just-in-time ones
would be desirable.

RQ1. What is the ratio of partially defective commits?

Once assessed the actual need for �ner grained solutions, we devise a defect prediction
model to predict defective �les at commit scope.

RQ2. To what extent can we predict defect-inducing changes at �le-level in a commit?

In addition to assessing the model as a whole, we also evaluate which features provide
the highest contribution to the achieved performance.
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Table 3.1: Characteristics of the subject software systems.

Project ID KLOC Developers Commits Defective Commits
Accumulo P0 102 65 8,639 1,154
Angular-js P1 87 923 8,102 2,852
Bugzilla P2 239 80 9,250 3,873
Gerrit P3 79 230 24,340 6,269
Gimp P4 102 306 37,329 8,734
Hadoop P5 291 165 15,689 2,301
JDeodorant P6 70 10 1,101 348
Jetty P7 88 70 13,784 2,698
JRuby P8 129 308 41,256 9,174
OpenJPA P9 822 29 4,263 2,921
Overall 2k 2k 164k 39k

RQ3. What are the features of the devised model that the most to its performance?

Finally, we are also interested in understanding how much e�ort could be saved when
using the proposed model, comparing it to the just-in-time defect prediction model proposed
by Kamei et al. [59] as our baseline.

RQ4. How much e�ort can be saved using a �ne-grained just-in-time defect prediction
model with respect to a standard just-in-time model?

In the following sections, we describe the steps we perform to answer our three research
questions.

3.3.2 Subject Systems
To conduct our analysis, we focused on open-source software systems and de�ned mul-
tiple selection criteria: We selected software systems (i) written in the most common
programming languages (C, C++, Java, JavaScript, Ruby, and Perl, i.e., the most popular
programming languages [117]), (ii) having di�erent size and scope, and (iii) having a change
history composed of at least 1,000 commits. We preferred open-source systems where
a versioning system is used to track all changes. The access to the source code history
enables the computation of metrics with static analysis tools. Moreover, to increase the
generalizability of our research, we selected software projects having di�erent domains
and programming languages. Note that our selection is not intended to be statistically
signi�cant, but rather we just aim at selecting a various set of systems to assess the per-
formance of our prediction model in di�erent contexts (e.g., when considering projects
having di�erent change history sizes). In practice, we started from the entire list of open
source projects available on GitHub; then we �ltered out systems not implemented in
the considered programming languages and with less than 1,000 commits in their history.
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Successively, among 2,362,287 project candidates, we considered only the most popular
projects for a given domain or scope; �nally, we randomly selected the ten open-source
software systems reported in Table 3.1. For each system, the table reports size (in terms of
KLOCs), number of developers, number of commits, and the information on the number of
defective commits.

3.3.3 RQ1 - Investigating Defective Commits
To answer our �rst research question, we analyze the ratio of the defective �les (i.e., source
code, con�guration, and auxiliary �les) contained in defective commits. To this aim, for
each commit ci of the change history of a system S, we identify the set def ectiveF iles(ci)
composed of the defective resources contained in ci . To the best of our knowledge, there is
not a publicly available dataset reporting this information: Previous work de�ned datasets
of defective commits [59], without providing details on which of the resources in a certain
commit were actually defective. For this reason, we build our own dataset as detailed in
the following.

Data Extraction. To automatically identify the set of defective �les in each of the
commits of the considered systems, we rely on the SZZ algorithm [136, 166]. SZZ exploits
the annotation/blame feature of a versioning system to estimate the lines of code of a �le
that induced a certain defect, thus retrieving �les that are defect-inducing in each commit.
More formally, the algorithm implements the following steps:

1. For each �le fi (where i = 1...n) involved in a defect �xing commit df c, the algorithm
prevVersion(commit, f ile) extracts the last version of the �le before the defect �xing
commit: prevVersion(df c, fi);

2. Starting from the commit prevVersion(df c, fi), for each line of code in fi changed
to �x the defect in df c, the algorithm uses git blame to detect the �le revision
where the last change to that line occurred. We identify comments and empty lines
using island parsing [167] and we exclude fi if no other code is touched. This step
outputs the commits in which a defect in �le fi is introduced.

The SZZ algorithm takes as input the list of defects that are already �xed by developers,
excluding the open ones,3 but the analysis and the e�ect of considering open issues will be
considered in future work (e.g., exploiting tools such as ReLink [118]).

Data Analysis. Once extracted the defective �les involved in defective commits, we
answer RQ1 in two ways. First, we measure how many defective commits are partially
defective, i.e., they contain a mixture of both defective and non-defective resources. This
analysis allow us to understand the magnitude of the problem investigated: If the vast
majority of defective commits is composed of only defective artifacts, then standard just-
in-time defect prediction models would su�ce; conversely, if a signi�cant part of defective
commits is partially defective, then the introduction of �ne-grained solutions might be
worthwhile. Second, we further analyzed the set of partially defective commits, by measur-
ing the ratio between defective and non-defective �les they contain. More formally, we
computed the def ectiveF ilesdc ratio as follow:
3Open issues might be not veri�ed by developers (i.e., they might be not real defects).
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def ectiveF ilesdc =
#def ectiveF iles(dc)

#f iles(dc) (3.1)

where #def ectiveF iles(dc) represents the number of defective �les in the defective
commit dc, and #f iles(dc) the total number of �les in dc. This analysis helped us to
understand the intrinsic characteristics of partially defective commits. Also in this case, if
the resulting ratio is high (most �les are defective in partially defective commits), then the
adoption of �ne-grained solutions would be not worthwhile.

3.3.4 RQ2 - The Fine-Grained JIT Model

Table 3.2: List of the independent/predicting variables adapted from Rahman et al. [100]∗ and Kamei et al. [59]∗∗

Acronym Name Description Ref.

COMM Commit Count Number of changes to the �le up to the considered commit *
ADEV Active Dev Count Number developers who modi�ed to the �le up to the considered commit *
DDEV Distinct Dev Count Cumulative number of distinct developers that contributed to the �le up to the considered commit *
ADD Normalized Lines Added Normalized number of lines added to the �le in the considered commit *
DEL Normalized Lines Deleted Normalized number of lines removed to the �le in the considered commit *
OWN Owner’s Contributed Lines Boolean value indicating whether the commit is done by the owner of the �le *
MINOR Owner’s Contributions Number of contributors who contributed less than 5% of the �le up to the considered commits *
SCTR Changed Code Scattering Number of packages modi�ed by the committer in the commit *
NADEV Neighbor’s Active Dev Count Number of developers who changed the �les involved in commits where the �le has been modi�ed *

NDDEV Neighbor’s Distinct Dev Count Cumulative number of distinct developers who changed the �les involved in commits
where the �le has been modi�ed *

NCOMM Neighbor’s Commit Count Number of commits made to �les involved in commits where the �le has been modi�ed *
NSCTR Neighbor’s Package Count Number of di�erent packages touched by the developer in commits where the �le has been modi�ed *
OEXP Percentage of Lines Percentage of lines authored in the project *
EXP All Committer’s Experience Mean of the experiences of all the developers *
ND Number of modi�ed directories Number of modi�ed directories **
Entropy Distribution of modi�ed code across each �le Entropy of changes of the �le up to the considered commit **
LA Lines of code added Number of lines added to the �le in the considered commit (absolute number of the ADD metric) **
LD Lines of code deleted Number of lines removed to the �le in the considered commit (absolute number of the DEL metric) **
LT Lines of code in a �le before the change Lines of code in the �le before the change **
AGE Average interval between the last and the current change The average time interval between the last and the current change **
NUC Number of unique changes to the modi�ed �les Number of times the �le has been modi�ed alone up to considered commit **
CEXP Experience of the committer Number of commits made on the �le by the committer up to the considered commit **
REXP Recent developer experience (last x months) Number of commits made on the �le by the committer in the last month **
SEXP Developer experience on a subsystem Number of commits made by the developer in the package containing the �le **

To answer our second research question, we build a �ne-grained just-in-time defect
prediction model and evaluate its performance. In the following, we describe (i) the
independent variables, i.e., the metrics on which the model relies, (ii) the dependent
variable, i.e., the characteristic that the model have to predict, (iii) the machine learner
performing the predictions, and (iv) the validation methodologies to estimate the accuracy.

i. Independent Variables. This step consists in extracting and quantifying the charac-
teristics of each �le involved in a commit. To this purpose, we considered the 24 basic
features shown in Table 3.2. These features represent a modi�ed version of those previ-
ously proposed by [59] and [100]. We adapted the previous metrics to work at �le-level
in a commit. The column ‘Description’ in Table 3.2 details the implementation of the
metrics in our context. The choice of the independent variable is driven by two goals:
(i) to understand the value of standard just-in-time measures in a �ne-grained context;
(ii) to investigate whether metrics originally proposed in the context of long-term defect
prediction to predict defective �les may also provide useful contributions when employed
in the prediction of defective �les contained in a change set.

Furthermore, the chosen metrics help us to characterize commits under di�erent perspec-
tives, thus allowing us to evaluate which metric types are more relevant in our context.
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Speci�cally, we selected metrics to measure (i) the developers’ experience (e.g., the expe-
rience of the committer [59]), (ii) structural and process factors of the �les in the commit
(e.g., the lines of code added or the number of previous changes of a committed �le [100]),
and (iii) factors related to the neighbors’ of a committed �le, which have been shown to
be relevant for predicting the defectiveness of �les [100]. Although other metrics have
been proposed in the contexts of both code review (e.g., by [168] and [169]) and defect
prediction (e.g., [91, 112]), the selected metrics better allow us to verify the role of a larger
set of metrics that have been previously adopted for traditional short- and long-term
defect prediction. Further studies can be conducted to investigate the addition of other
metrics in our context.
From a methodological standpoint, the process metrics adapted from [100] (i.e., COMM,
ADEV, DDEV, ADD, DEL, OWN, MINOR, SCTR, NADEV, NDDEV, NCOMM, NSCTR,
OXEP, and EXP) were always evaluated considering the commits up to the commit of
interest. Similar adjustments were applied for the metrics proposed by [59]. For instance,
the NUC metric represents the number of unique changes to the �les modi�ed in a commit.
In our case, we adjust NUC to represent the number of times a single �le involved in a
commit is modi�ed alone up to the considered commit. Descriptions of how we adapted
the [59] and [100] metrics are reported in Table 3.2.

ii. Dependent Variable. The characteristic to measure is the defectiveness of �les con-
tained in a commit. To this aim, we exploited the dataset built in the context of RQ1 (i.e.,
we used the output of the SZZ algorithm as a dependent variable to predict).

iii. Machine Learner. In this stage, we needed to select a machine learning classi�er able
to use the independent variables to infer the defectiveness of �les in a change set [126]. To
this aim, we tested di�erent classi�ers (using the validation methodologies described later
in this section), i.e., Binary Logistic Regression [170], J-48 [132], ADTree [171], Multilayer
Perceptron [172], Naive Bayes [173], and Random Forest [174]. As a result, we found that
the Random Forest technique [174] is the one having the highest performance, in line with
previous �ndings [175, 176].
Such classi�ers builds several decision trees, each of them containing nodes representing
a condition on a certain feature that splits the dataset into two. A condition is chosen
based on the so-called Mean Decrease in Impurity (MDI) [177], a metric able to measure the
extent to which the value of a feature can correctly discriminate the dependent variable.
It is important to point out that the selected classi�er automatically performs a feature
selection, thus avoiding the well-known problem of multi-collinearity [122] that occurs
when two or more independent variables correlate with each other, possibly a�ecting the
performance of the classi�er.

iv. Validation Methodologies. The �nal step to answer RQ2 is related to the validation
of the model. Commonly used techniques such as ten-fold cross [127, 178], or leave-one-out
cross-validation [179] are not suitable for the validation of just-in-time defect prediction
models because the data points (i.e., the commits) follow a certain time order: Time-
insensitive validation strategies might cause a model to be trained using future data that
should not be known at the time of the prediction [127]. For this reason, we adopt a time-
sensitive analysis where the defectiveness of a commit ci is evaluated by a model trained
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using the data coming from the previous three months of history of the system considered.
In other words, while the training set is composed of three-month data, the test set is
represented by each commit singularly. Doing so, we exclude the �rst three months of
change history, because of the lack of data needed to perform a proper validation [127].
Our choice of considering three-month periods is based on: (i) choices made in previous
work [89, 91, 127] and (ii) the results of an empirical assessment we performed on such a
parameter. The empirical assessment showed that the best performance for the devised
model is achieved by using three-month periods. In particular, we experimented with
time windows of one, two, three, and six months. The complete results are available in
our replication package [82].
Afterward, we measure the performance of the model using precision and recall [119]:

precision = |TP |
|TP + FP | (3.2)

recall = |TP |
|TP + FN | (3.3)

where TP , FP , and FN are:

• True Positives (TP ): elements that are correctly retrieved by the �ne-grained
just-in-time prediction model (i.e., defective �les correctly classi�ed as such);

• False Positives (FP ): elements that are wrongly classi�ed by the �ne-grained just-
in-time prediction model (i.e., non-defective �les misclassi�ed as defective by the
model);

• False Negatives (FN ): elements that are not retrieved by the �ne-grained just-
in-time prediction model (i.e., defective �les misclassi�ed as non-defective by the
model).

In addition, to have a unique value that synthesizes precision and recall we also measure
the F-measure, i.e., the harmonic mean of precision and recall:

F −Measure = 2 ⋅ Precision ⋅RecallPrecision+Recall (3.4)

While the metrics described so far have been widely used in the past to evaluate defect
prediction models [32], most of the classi�ers output a probability ranging between 0
and 1 representing the likelihood of a code component to be part of a certain class (i.e.,
in our case, to be defective or non-defective). The threshold used to discriminate the two
classes (in most cases—as well as in this work—such threshold is set to 0.5) in�uences the
computation of both precision and recall, and as a consequence of F-Measure. ROC plots
the true positive rates against the false positive rates for all possible thresholds between
0 and 1; the diagonal represents the expected performance of a random classi�er. AUC
computes the area below the ROC and allows us to have a comprehensive measure for
comparing di�erent ROCs: An area of 1 represents a perfect classi�er (all the defective
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methods are recognized without any error), whereas for a random classi�er an area close
0.5 is expected (since the ROC for a random classi�er tends to the diagonal). To have a
detailed view of the performance of the model in the di�erent cases found in RQ1, in
Section 3.4.2 we report the evaluation metrics achieved when ran the model over the set
of (i) all the defective commits in the dataset, (ii) partially defective commits only, and
(iii) fully defective commits only.

3.3.5 RQ3 - Investigating the Importance of the Features
While in RQ2 we provide an overview of the accuracy of the devised model in predicting
defective �les within a commit, RQ3 has the goal of investigating which features contribute
the most to the prediction capabilities. To address this point, we use an information gain
algorithm [180] to quantify the gain provided by each independent variable to the prediction
of defective �les within commits. Formally, let M be the devised �ne-grained just-in-time
prediction model, let F = {f1,… , fn} be the set of features used by M , the information gain
algorithm [180] applies the following formula to compute the di�erence in entropy:

I nf oGain(M |fi) = H (M) −H (M |fi) (3.5)

where the function H (M) indicates the entropy of the model that includes the feature
fi , while the function H (M |fi) measures the entropy of the model that does not include fi .
Entropy is computed as follow:

H (M) = −
n
∑
i=1

prob(fi) log2 prob(fi) (3.6)

The algorithm quanti�es the degree of uncertainty in M that is reduced by considering
the feature fi . In our work, we employ the Gain Ratio Feature Evaluation algorithm [180],
which ranks f1,… , fn in descending order based on the contribution provided by each
feature to the decisions made by M . More speci�cally, the output of the algorithm is
represented by a ranked list in which the features having the highest expected reduction
in entropy are placed at the top.

3.3.6 RQ4 - Measuring the Saved Effort
For RQ4 we investigate the potential bene�ts in terms of saved e�ort that the �ne-grained
just-in-time defect prediction model provides to a developer analyzing the committed �les
to discover possible defects (e.g., in a code review). Speci�cally, we perform an e�ort-
aware validation as recommended by Kamei et al. [96]. In this formulation, a technique is
assessed on the fraction of defects it can detect while varying the e�ort required to locate
them. As done in previous work [59], we �rst rank the �les to inspect according to their
probability of being defective, as it is assigned by the automated classi�er (in our case,
Random Forest); then we measure the percentage of defects that a developer would identify
as the e�ort spent in analyzing the suggested defective �les increases. To approximate
such an e�ort, we use the number of lines of code to inspect; this metric has been shown to
be a surrogate measure of the e�ort needed for testing or reviewing a module, as code and
cognitive complexity are strongly related to size [157]. Thus, size can be considered as a
lightweight and e�cient solution to estimate the developer’s e�ort in inspecting a code
change [55, 154, 181, 182].
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We compare our model to the traditional just-in-time defect prediction model proposed
by Kamei et al. [59]. The selection of this baseline is driven by experimental tests, where we
found that this approach works better than the twelve unsupervised techniques proposed
by Yang et al. [153]. In particular, the model by Kamei et al. [59] achieves an AUC-ROC 6%
higher than the best unsupervised technique, which was the one that predicts a commit as
defective in case of a number of committed �les higher than eight. We report the results of
this additional analysis in our online appendix [82].

To perform a fair comparison, the baseline relies on the same predictors used by Kamei
et al. in their experiments and is trained using the best performing classi�er (i.e., Random
Forest, the same used by our approach). We also empirically evaluate the performance of
the several classi�ers, namely Binary Logistic Regression [170], J-48 [132], ADTree [171],
Multilayer Perceptron [172], Naive Bayes [173], and Random Forest [174], when applied on
the model by Kamei et al. [59]. Also in this case, Random Forest classi�er outperforms the
others.

As the baseline can only assign defect probabilities to commits (because of the commit-
level granularity), we assume that the same probability holds for all �les within that
commit. In other words, if a commit is considered defective by Kamei et al.’s technique,
then all the �les within that commit are considered as potentially defective and have the
same probability to require further inspection by a developer. To determine in which
sequence the developer would inspect the �les in the same commit, we use the alphabetical
order, because it is the normal order o�ered by both IDEs and code review tools [21].
Once we assign the probabilities/order to all the �les, we rank them in descending order
and compare it with the ranking provided by our technique. It is worth noting that we
expect our technique to outperform this baseline, as by de�nition it aims at lowering the
granularity of the information presented to developers. Nevertheless, we still consider this
comparison useful because we can verify whether and how much our approach actually
meet the expected goal.

Finally, we perform a comparison with the optimal approach that ranks all the actual
defective �les �rst, starting from the smallest to the largest. In this way, we can investigate
how far our technique is with respect to optimal scenario as well as how much it improves
upon existing just-in-time approaches.

Data Analysis. To quantify the di�erences between our model and the baselines,
we use the Popt and Pk evaluation metrics [181]. Popt is de�ned as the Δopt between the
e�ort-based cumulative lift charts of the optimal model and the devised prediction model.
Similarly, Δk is de�ned as the Δk between our technique and the one by Kamei et al. [59].
Larger values of Popt and Pk indicate smaller di�erences between the compared techniques.
Such values are normalized in the range [0,1] to ease their interpretation [59].

3.3.7 Threats to validity
The results of our study may be a�ected by a number of threats.

Threats to construct validity. As for factors threatening the relation between theory
and observation, in our context, these are mainly concerned with the measurements we
performed. Above all, we rely on the results of the SZZ algorithm [136] to answer our
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research questions. Although the intrinsic imprecisions of SZZ [137] still represent a
threat for the validity of our results, it is the most e�ective algorithm available in literature.
To compute the CEXP, REXP, SEXP metrics, we mined commits to count the number of
modi�cations applied by a developer in di�erent time windows. However, it might be
possible that the actual author of a commit is not the same person as the committer. That
may be especially true in large projects where sometimes developers (e.g., newcomers)
can modify the source code but do not have rights to perform a push onto the repository.
This potential problem might have in�uenced the way the metrics are computed and used
within the devised prediction model. To verify the extent to which this represents an
actual issue for our analyses, we quanti�ed in how many cases there was a mismatch
between author and committer in the analyzed commits. Speci�cally, for each commit
of the considered projects, we ran the command git show –format=full4 to
obtain the full set of information available for the commit. That includes data on both
author and committer email addresses. Thus, we could compute the number of times
in which the two email addresses di�er, i.e., in how many cases the author of a change
was not the actual committer. Out of the 160,515 total commits considered in our study,
we found 4,173 mismatches, meaning that we are not accurate in only 2.6% of the cases.
Based on this result, we can argue that such mismatches represent corner cases rather
than systematic problems that threats our analysis. To further verify the impact of this
potential threat, we completely re-ran our study excluding those 4,173 commits. However,
we did not observe any di�erence for the results achieved when including the commits.
That indicates that mismatches between authors and committers do not in�uence our
�ndings.

Threats to conclusion validity. Although the metrics used to evaluate the performance
of the �ne-grained just-in-time defect prediction model, (i.e., precision, recall, F-measure,
and AUC-ROC), are widely used in the �eld [112], future studies can be conducted to
validate our model from a di�erent angle, e.g., by evaluating its industrial impact.
A possible threat concerning the results achieved in RQ1 is related to the co-presence of
production and test �les within a commit, which may lead to a over-estimation of the
number of partially defective commits. We conducted an additional analysis to assess the
e�ect of excluding test �les on our �ndings. We could not �nd di�erences with respect
to the results reported in the original submission (a complete report of this additional
analysis is available in our online appendix [82]). These results are in line with recent
work: Even test code may be defective [183] and test �les have the same proneness of
production �les to be a�ected by functional issues [184]. It seems reasonable to keep test
�les in our analysis/approach to maintain developers’ awareness also on bugs in tests.
Another threat regards how we assess the cost-e�ectiveness of the models experimented.
As done in previous research [55, 154, 181, 182, 185, 186], we measure the inspection cost
in terms of lines of code to be inspected by a reviewer. LOC has been evaluated as a
valid proxy measure [154] since it is correlated with code and cognitive complexity [157].
However, this is an approximation. Function points (FPs) [187] represent an alternative
that we do not consider in this study, since it requires setting parameters that only original

4https://git-scm.com/docs/git-show
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developers/managers or expert e�ort estimation consultants might properly set and a
third-party analysis done by the authors of this work would introduce noise/bias. Future
work can be designed and conducted to investigate how much size approximates defect
inspection e�ort.
In the context of RQ2, we adopt a time-sensitive validation strategy where a single commit
ci represents the test set and the data of the previous three months form the training
set. We select this strategy because this is the most similar to a real-case scenario where
developers use the devised approach as soon as a new commit is performed, for example in
a code review. While other researchers adopted slight variations of this strategy (e.g., Tan
et al. [127] used a gap between training and test sets to add in the training set defective
commits that were discovered and �xed), we preferred it for its stronger ecological validity.
We statistically compare the di�erences between our model and the standard just-in-
time model proposed by Kamei et al. [59]. We do not perform statistical tests with the
Bonferroni correction [188]: This is a conscious decision taken on the basis of the �ndings
by Perneger [189], who explained why such a correction is unnecessary and deleterious
for sound statistical inference. Finally, we assess the model for the presence of multi-
collinearity [122], relying on Random Forest, which can automatically remove non-relevant
features.
As a �nal note, we compare our model with the one proposed by Kamei et al. [59] in the
context of RQ4 (the cost-e�ectiveness analysis) but not in RQ2 (the accuracy analysis).
On the one hand, the model by Kamei et al. [59] targets a di�erent problem (i.e., detecting
defective commits rather than defective �les within commits), thus it cannot be fairly
compared with the proposed model in terms of accuracy. This statement is supported by
experimental data, which showed that the model by Kamei et al. [59] achieved an overall
F-Measure of 31% and AUC-ROC of 53% when employed in our context (by considering
all the �les within an identi�ed defective commit as defective). On the other hand, the
comparison performed regarding cost-e�ectiveness allows us to understand and quantify
the gain provided by our approach against state of the art.

Threats to external validity. The main issue concerns the generalizability of the results.
To alleviate this issue, we take into account a variety of projects having di�erent charac-
teristics, scope, and size. Nevertheless, future studies must be devised to replicate and
extend our investigation on a larger set of systems, possibly taking into consideration
industrial projects as well.
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Table 3.3: Results for RQ1 on partially defective commits

Ratio

Systems
Partially

defective commits Defective �les Avg. �les
per commit

Accumulo 39% 63% 4.1
Angular-js 10% 40% 2.2
Bugzilla 35% 36% 5.4
Gerrit 29% 47% 3.3
Gimp 16% 38% 4.3
Hadoop 55% 44% 3.1
JDeodorant 33% 43% 3.4
Jetty 34% 33% 3.8
JRuby 25% 71% 3.5
OpenJPA 21% 24% 4.0
Overall 30% 44% 3.7

3.4 Results and Analysis
In this section, we present the results of the study by research question.

3.4.1 RQ1. What is the ratio of partially defective commits?
The analysis of the results associated to the �rst research question aims to understand the
prominence of partially defective commits, hence the importance of devising a �ne-grained
solution for just-in-time defect prediction. Table 3.3 reports the results for each considered
system: The second column reports the percentage of partially defective commits contained
in the considered systems, the third column shows the percentage of defective �les for
each projects (computed using Formula 3.1), and the fourth column reports the average
number of �les per commit in the considered systems. The last row (“Overall”) represents
the average ratio computed taking into account all the projects as a single dataset.

Among all the defective commits investigated we found that 30% of them are partially
defective, i.e., they contain a mixture of both defective and non-defective �les, while 70%
of defective commits only contain one resource. Thus, while standard just-in-time models
can be adopted in most cases, there still exists a consistent part of defective commits for
which they cannot provide developers with detailed information.

Investigating the partially defective commits more in depth, we found that on overall
only 44% of committed �les are defective; this is quite surprising, since it implies that
less than the half of the elements in a partially defective commit is actually defective.
Considering the perspective of a developer who has to inspect the �les in a change set, she
might spend more than half of the time inspecting non-defective resources before �nding
an actual defect.

For instance, let us consider the commit a0641ea475 belonging to the Angular.js
project.5 In this case, the developer committed 9 di�erent �les with the aim of making

5https://github.com/angular/angular.js/pull/15881
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con�gurable the errors to show in case of wrong usage of the tool. However, there was only
one defective �le in the whole change set, i.e., the minErr.js one. As a consequence,
the usage of coarse-grained just-in-time prediction model such as the one proposed by Kamei
et al. might not provide the adequate support in these cases. The observations made until
now still hold when considering the “best” scenario reported in the table, i.e., the one
of the JRuby project, where we found that 71% of the resources in a defective commit
is a�ected by a problem, enforcing a developer to inspect many non-defective resources
before diagnosing the defect.

With the aim of further understanding the characteristics of defective commits, we
also computed the Kendall’s � correlation [190] between the number of �les per commit
and the number of defective �les. This is a non-parametric statistical test used to measure
the ordinal association between two measured quantities, with a value ranging between -1
and +1.6 In our case, the correlation between number of �les per commit and number of
defective �les turned to be equals to 0.42, thus indicating a positive concordance between
the two variables. This con�rms previous �ndings reporting that the more resources a
developer changes the higher the chances to introduce defects [191].

In conclusion, the results show the need of �ne-grained techniques to reduce the
number of resources to inspect in a defective commit.

Result 1: 44% of defective commits in our subjects are partially defective, i.e., com-
posed of both �les that are changed without introducing defects and �les that are
changed introducing defects. Further, in almost 31% of the changed �les a defect is
introduced, while the remaining �les are defect-free.

3.4.2 RQ2. Towhatextentcanthemodelpredictdefect-inducing
changes at file-level?

Table 3.4: Results of the RQ2 considering all commits in the history of the subject software systems.

Systems Precision Recall F-measure AUC-ROC
Accumulo 93% 94% 92% 92%
Angular-js 85% 86% 85% 91%
Bugzilla 91% 93% 91% 81%
Gerrit 83% 84% 80% 82%
Gimp 90% 91% 88% 88%
Hadoop 92% 92% 90% 86%
JDeodorant 77% 90% 77% 76%
Jetty 88% 88% 86% 87%
JRuby 87% 88% 84% 91%
OpenJPA 92% 90% 92% 90%
Overall 87% 89% 85% 86%

6(i) -1 represents a perfect negative linear relationship, (ii) +1 a perfect positive linear relationship, and (iii) the
values in between indicate the degree of linear dependence between the two measured quantities
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Table 3.5: Results of the RQ2 considering only partially defective commits in the history of the subject software
systems.

Systems Precision Recall F-measure AUC-ROC
Accumulo 97% 97% 97% 90%
Angular-js 98% 98% 97% 96%
Bugzilla 84% 97% 97% 86%
Gerrit 97% 89% 86% 88%
Gimp 88% 96% 94% 93%
Hadoop 95% 95% 95% 93%
JDeodorant 65% 64% 63% 70%
Jetty 94% 85% 92% 94%
JRuby 83% 85% 81% 89%
OpenJPA 95% 96% 96% 96%
Overall 89% 91% 89% 90%

Table 3.6: Results of the RQ2 considering only fully defective commits in the history of the subject software
systems.

Systems Precision Recall F-measure AUC-ROC
Accumulo 82% 82% 80% 83%
Angular-js 79% 79% 79% 87%
Bugzilla 90% 90% 89% 84%
Gerrit 78% 79% 76% 81%
Gimp 79% 81% 78% 82%
Hadoop 85% 86% 85% 90%
JDeodorant 87% 91% 88% 84%
Jetty 75% 75% 74% 80%
JRuby 79% 80% 79% 82%
OpenJPA 89% 88% 88% 91%
Overall 82% 83% 81% 84%

To answer our second research question we evaluate the e�ectiveness of the prediction
model described in Section 3.3.4 based on a machine learning algorithm built using the
Random Forest classi�er. For sake of clarity, we report the results of both RQ2 and RQ3
in three separated tables that have a similar structure. The columns “RQ2” report the
evaluation metrics, i.e., precision, recall, F-measure, and AUC-ROC, for each system. Table 3.4
is obtained evaluating our model considering indiscriminately all commits in the history
of the projects, instead Table 3.5 considers only partially defective commits and Table 3.6
represents only fully-defective commits.

Looking at the full-inclusive results of Table 3.4, we observe that the precision ranges
between 77% and 93% (overall=87%), the recall between 84% and 94% (overall=89%), while
the overall F-measure is equal to 85%. Interesting are the results in terms of precision: in
a context where the recommendations are given when developers are committing their
changes on the repository, having a tool able to pinpoint the �les that are likely defective
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can avoid the introduction of a consistent number of defects in a system. Assuming that
developers can recognize a defect should they get a true positive warning from our model,
the adoption of our model has the potential to be useful in practice, since its precision is
higher than 85% in most of the cases. The recall values tell us that our model locates more
than half of the defects actually present in the subject systems.

Considering also the AUC-ROC we observe that the model obtains levels between 76%
and 92% (overall=86%). The worst case observed in our dataset regards the JDeodorant
project, where our model achieves the lowest F-measure (77%). Investigating the likely
causes behind this result, we found that our model was not able to achieve better perfor-
mance because of the size of the project that limits also the size of the training set. An
additional cause that decreases the performance of our model is the variety of programming
languages. Projects such as Angular-js, Gimp, and JRuby that use J avaScript , C/C ++, or
Ruby tend to perform lower than projects developed in J ava. A speculative cause of this
di�erence can be found in the way how changes are applied to programming languages
such as C : when C sources are touched to �x a defect also several other �les (i.e., headers)
are modi�ed, this a�ects the metrics that consider the number of added or removed lines.

We do not observe large decays between the overall metric values and the highest/lowest
ones (i.e., the di�erence is always within 10%). This means that the �ne-grained just-in-time
model is consistent across the projects.

At the same time, we consider the performance degradation noticed on fully defective
commits as reasonable. Unfortunately, we are not able to speculate on the speci�c reasons
causing such degradation. Likely, the addition of further independent variables able to
characterize the defectiveness of commits as a whole (e.g., the metrics devised by Kamei
et al. [59]) can be bene�cial to improve the performance of the model further. A future
research e�ort can be devoted to the potential combination between just-in-time and �ne-
grained just-in-time models. In any case, our results show that in the majority of the cases
the model can provide further recommendations also when considering fully-defective
commits. Finally, the model including all commits inherits pros and cons observed in the
cases of the models built on partially and fully defective commits only. In other words,
it can predict partially defective commits better than fully defective ones, having higher
performance on the former and lower on the latter; that shifts performance in the middle
to the individual models.

Result 2: The proposed model achieves an overall AUC-ROC of 86% and obtains stable
performance across the considered projects.

3.4.3 RQ3. What are the features of the devised model that
the most to its performance?

Table 3.7 reports the results achieved when applying the Gain Ratio Feature Evaluation
algorithm [180] to understand which are the most relevant features that allow the model
to identify defect-inducing changes within the �les of a commit. For each variable and
project we report the expected entropy reduction the variable gives to the model for the
speci�c project.
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Table 3.7: Contribution provided by each feature to the prediction model, as computed by the Gain Ratio Feature
Evaluation algorithm [180], by software project.

Variable P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 All
COMM 0.022 0.031 0.122 0.015 0.015 0.036 0.016 0.016 0.000 0.081 0.017
ADEV 0.003 0.025 0.007 0.007 0.019 0.005 0.000 0.007 0.013 0.002 0.026
DDEV 0.007 0.049 0.024 0.017 0.014 0.037 0.013 0.011 0.032 0.087 0.015
ADD 0.072 0.277 0.024 0.034 0.050 0.047 0.022 0.076 0.051 0.068 0.045
DEL 0.044 0.152 0.002 0.009 0.050 0.003 0.000 0.058 0.033 0.042 0.014
OWN 0.003 0.003 0.018 0.006 0.000 0.021 0.002 0.007 0.008 0.022 0.009
MINOR 0.000 0.000 0.006 0.001 0.000 0.001 0.001 0.004 0.000 0.001 0.001
SCTR 0.486 0.303 0.120 0.151 0.165 0.291 0.095 0.436 0.196 0.477 0.272
NADEV 0.001 0.105 0.014 0.004 0.000 0.011 0.004 0.017 0.000 0.017 0.018
NDDEV 0.001 0.102 0.012 0.001 0.000 0.010 0.004 0.004 0.000 0.014 0.012
NCOMM 0.001 0.105 0.014 0.004 0.000 0.011 0.004 0.017 0.000 0.017 0.018
NSCTR 0.002 0.131 0.019 0.007 0.000 0.020 0.000 0.011 0.000 0.014 0.034
OEXP 0.128 0.287 0.082 0.061 0.074 0.167 0.004 0.131 0.095 0.132 0.161
EXP 0.126 0.285 0.083 0.067 0.081 0.168 0.000 0.132 0.056 0.135 0.163
ND 0.003 0.027 0.008 0.009 0.019 0.006 0.000 0.007 0.038 0.004 0.033
Entropy 0.008 0.124 0.012 0.003 0.034 0.009 0.000 0.038 0.029 0.021 0.039
LA 0.064 0.131 0.041 0.036 0.056 0.041 0.014 0.162 0.079 0.121 0.046
LD 0.011 0.043 0.006 0.017 0.028 0.002 0.007 0.123 0.038 0.069 0.012
LT 0.029 0.291 0.006 0.003 0.040 0.028 0.008 0.035 0.000 0.038 0.026
AGE 0.304 0.309 0.025 0.015 0.079 0.100 0.027 0.215 0.000 0.211 0.171
NUC 0.000 0.036 0.003 0.007 0.000 0.003 0.007 0.001 0.000 0.003 0.002
CEXP 0.006 0.040 0.007 0.003 0.013 0.002 0.013 0.015 0.055 0.006 0.004
REXP 0.004 0.020 0.000 0.002 0.013 0.002 0.005 0.042 0.011 0.007 0.004
SEXP 0.008 0.156 0.013 0.006 0.025 0.026 0.004 0.013 0.061 0.014 0.040

scrt (i.e., number of packages modi�ed by the commit) is the factor that provides the
highest contribution to the model, consistently across all the considered software projects
(this is in line with previous results reeporting that non-focused modi�cations tend to
have an adverse e�ect on source code quality [91]). exp and oexp (i.e., the experience of
the author, measured in terms of authored commits and lines) follow as the second and
third highest contributors, in all but few projects (e.g., Accumulo and JDeodorant). Finally,
worth mentioning is age (i.e., the time span between the current commit and the previous
one), which is a high contributing factor for several projects.

Overall, this analysis let emerge that defective commits are more likely the result of
changes that are scattered across multiple packages, done by authors not as expert of the
project, and close to each other in time. Our results are in partial agreement with the
�ndings by Kamei et al. [59]: indeed, only the experience of the committer is a powerful
predictor in both traditional and �ne-grained just-in-time defect prediction.

Result 3: Factors computing how much a change is scattered across packages, the
expertise of the commit author, and the frequency of changes are those that provide
the highest contribution to the prediction model.
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3.4.4 RQ4. How much effort can be saved using a fine-grained
just-in-time defect prediction model with respect to a
standard just-in-time model?

Table 3.8: Results for RQ4: The area under the e�ort curve (higher values indicate that less e�ort is required to
�nd more defects), by prediction models and their di�erences in percentage point (p.p.).

Area under the e�ort curve Area di�erence (in p.p.): Ours vs. ..Systems Optimal Ours Kamei et al. .. Optimal .. Kamei et al.
Accumulo 90% 64% 46% -26 18
Angular-js 84% 63% 49% -21 14
Bugzilla 77% 51% 52% -26 -1
Gerrit 78% 55% 51% -23 4
Gimp 78% 61% 52% -17 9
Hadoop 80% 58% 49% -22 9
JDeodorant 79% 62% 50% -17 12
Jetty 77% 54% 51% -23 3
JRuby 86% 41% 52% -45 -9
OpenJPA 84% 69% 52% -15 17
Mean 81% 58% 50% -24 8
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Figure 3.2: Results achieved for Accumulo.

This analysis is intended to provide evidence on the e�ort developers can save using
our model to guide the inspection of commits for defects. We consider the state of the
art just-in-time model (i.e., the one devised by Kamei et al. [59]) and the optimal results
for comparison. Figures 3.2 to 3.11 plot the e�ort-based cumulative lift charts of the
experimented techniques across the di�erent projects and Table 3.8 summarizes these
results in terms of the area under the curves and their di�erences, by project. A higher
value measured for the area under the curve indicates that the model is able to pinpoint
the defective �les earlier, thus the developer spends less e�ort compared to a model with a
lower value. On average, our model achieves better results than the technique of Kamei
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Figure 3.3: Results achieved for Angular-js.
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Figure 3.4: Results achieved for Bugzilla.

et al. [59], with an average increase in the area of 8% (Table 3.8). In only two systems
the results are lower for our model: Bugzilla and JRuby (i.e.,-1 and -9 percentage points,
respectively). Therefore, our technique seems to represents a more viable solution for
predicting defects at commit-level.

If we consider the di�erences between our technique and the optimal model, the
di�erence in the two areas is -24 percentage points on average. This means that, as expected,
the optimal model outperforms ours. Nonetheless, we can also see that the di�erence
is closer when considering a reduced e�ort budget, i.e., in cases where developers have
limited time to dedicate to defect �xing activities. For example, let consider a hypothetical
limited budget of 10%: in this case, using our technique, it is possible to identify 10% to
more than 20% of the defective �les. This indicates that, at least in the �rst phases, our
model can be considered as a valid solution to speed up the identi�cation of defects. At
the same time, we argue that more research on the topic would be needed, as there is still
ample room for improvement.

Finally, it is worth remarking that the results achieved on the entire set of defective
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Figure 3.5: Results achieved for Gerrit.
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Figure 3.6: Results achieved for Gimp.

commits were also con�rmed when considering partially and fully defective commits
independently.

Result 4: In comparison with the state of the art, our technique represents a more
e�ective solution to locate defects at commit-time.
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Figure 3.7: Results achieved for Hadoop.
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Figure 3.8: Results achieved for JDeodorant.
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Figure 3.9: Results achieved for Jetty.
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Figure 3.10: Results achieved for JRuby.
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Figure 3.11: Results achieved for OpenJPA.
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3.5 Conclusion
Many defect prediction models have been proposed to locate defect-prone �les or commits
exploiting long-term or short-term techniques, respectively. Nevertheless, such models su�er
from limitations due to the coarse-grained granularity of the predictions performed, which
hinder their practical applicability (e.g., in code review). For this reason, we investigated the
possibility to devise a �ne-grained just-in-time defect prediction model to locate defective
�les contained in a commit. Moreover, for replicability purposes, we re-implemented with
a di�erent framework the pipeline of steps needed to achieve our results and release these
scripts as a further contribution of this work. The study considered 10 open-source systems
written in di�erent programming languages and having di�erent size and scope. In total
we analyzed 164k commits of which 39k defective created by 2k developers.

The main contributions made by this Chapter are:

1. An empirical validation aimed at understanding the prominence of partially defective
commits, i.e., commits containing both defective and non-defective �les on a set of
10 di�erent open source software projects. The results highlight that almost half of
defective commits contain both defect-inducing and defect-free changes.

2. A �ne-grained just-in-time defect prediction model and its empirical evaluation,
which showed overall performance up to 86% in terms of AUC-ROC.

3. An assessment of the cost-e�ectiveness of our model and its comparison with the
standard just-in-time model proposed by Kamei et al. [59], with evidence that our
model is more cost-e�ective.

4. An online appendix [82] with the scripts and data to reproduce the analyses men-
tioned in the chapter and enable the same analysis on other projects.

Based on the results, our future agenda includes the replication of our study on a larger
set of systems, possibly performing an in-depth study in an industrial context. At the
same time, future studies can be designed and conducted to investigate (i) the role of other
independent variables, e.g., those reported by McIntosh et al. [168], on the performance
of �ne-grained defect prediction, (ii) the model in the context of cross-project defect
prediction, and (iii) the bene�ts provided by the usage of personalized defect prediction
[162, 163] as well as more sophisticated ensemble techniques [192]. Moreover, we plan to
evaluate the extent to which standard just-in-time approaches working at commit-level
can be combined with the �ne-grained solution we proposed, e.g., through a multi-stage
classi�cation process where the defective commits are identi�ed �rst and then the speci�c
defective �les are detected. Furthermore, the e�ectiveness of our model should be evaluated
in-�eld, through a controlled study with practitioners to incorporate in our model some of
the guidelines suggested by Lewis et al. [24] to make defect prediction more actionable
in practice and support human activities (e.g., by introducing a graphical user interface
supporting code reviewers when diagnosing defect-prone code components).
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4
Classifying code comments

in Java software systems

Code comments are a key software component containing information about the underlying
implementation. Several studies have shown that code comments enhance the readability of
the code. Nevertheless, not all the comments have the same goal and target audience. In this
paper, we investigate how 14 diverse Java open and closed source software projects use code
comments, with the aim of understanding their purpose. Through our analysis, we produce a
taxonomy of source code comments; subsequently, we investigate how often each category occur
by manually classifying more than 40,000 lines of code comments from the aforementioned
projects. In addition, we investigate how to automatically classify code comments at line level
into our taxonomy using machine learning; initial results are promising and suggest that an
accurate classi�cation is within reach, even when training the machine learner on projects
di�erent than the target one. Data and Materials [https://doi.org/10.5281/zenodo.2628361].

This chapter is partly based on

3q L. Pascarella, A. Bacchelli. Classifying code comments in Java open-source software systems, MSR’17 [193],
q L. Pascarella. Classifying code comments in Java Mobile Applications, MOBILESoft’18 (Student Research

Competition) [194], and
q L. Pascarella, M. Bruntink, A. Bacchelli. Classifying code comments in Java software systems , EMSE’19 [195],
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4.1 Introduction
While writing and reading source code, software engineers routinely introduce code com-
ments [196]. Several researchers investigated the usefulness of these comments, showing
that thoroughly commented code is more readable and maintainable. For example, Wood-
�eld et al. conducted one of the �rst experiments demonstrating that code comments
improve program readability [197], then Tenny et al. con�rmed these results with more
experiments [198, 199]. Hartzman et al. investigated the economical maintenance of large
software products showing that comments are crucial for maintenance [200]. Jiang et al.
found that comments that are not aligned with the annotated functions confuse authors
of future code changes [201]. Overall, given these results, having abundant comments in
the source code is a recognized good practice [202]. Accordingly, researchers proposed to
evaluate code quality with a metric based on code/comment ratio [203, 204].

Nevertheless, not all the comments are the same. This is evident, for example, by
glancing through the comments in a source code �le1 from the Java Apache Hadoop
Framework [205]. In fact, we see that some comments target end-user programmers (e.g.,
Javadoc), while others target internal developers (e.g., inline comments); moreover, each
comment is used for a di�erent purpose, such as providing the implementation rationale,
separating logical blocks, and adding reminders; �nally, the interpretation of a comment
also depends on its position with respect to the source code. De�ning a taxonomy of the
source code comments is still an open research problem.

Haouari et al. [206] and Steidl et al. [207] presented the earliest and most signi�cant
results in comments’ classi�cation. Haouari et al. investigated developers’ commenting
habits, focusing on the position of comments with respect to source code and proposing
an initial taxonomy that includes four high-level categories [206]; Steidl et al. proposed
a semi-automated approach for the quantitative and qualitative evaluation of comment
quality, based on classifying comments in seven high-level categories [207]. In spite of the
innovative techniques they proposed to understand developers’ commenting habits and to
assess comments’ quality, the classi�cation of comments was not in their primary focus.

In the work presented in this article, we focus on increasing our empirical understanding
of the types of comments that developers write in source code �les. This is a key step to
guide future research on the topic. Moreover, this increased understanding has the potential
to (1) improve current quality analysis approaches that are restricted to the comment ratio
metric only [203, 204] and to (2) strengthen the reliability of mining approaches that use
comments as input (e.g., [208, 209]).

To this aim, we conducted an in-depth analysis of the comments in the Java source
code �les of six major OSS systems and eight industrial projects. We set up our study as an
exploratory investigation. We started without hypotheses regarding the content of source
code comments, with the aim of discovering the comments’ purposes and roles, their format,
and their frequency. To this end, we (1) conducted three iterative content analysis sessions
(involving four researchers) over 50 source �les including about 250 comment blocks to
de�ne an initial taxonomy of code comments, (2) validated the taxonomy externally with 3
developers, (3) inspected 2,000 open source and 4,000 closed source code �les and manually
classi�ed (using a new application we devised for this purpose) over 24,000 comment blocks

1https://tinyurl.com/zqeqgpq
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comprising more than 40,000 lines, (4) used the resulting dataset to evaluate how e�ectively
comments can be automatically classi�ed, and (5) investigated how many comments from
an unseen project should be manually classi�ed to improve the performance of an automatic
classi�cation approach trained on other projects.

Our results show that developers write comments with a large variety of di�erent
meanings and that this should be taken into account by analyses and techniques that rely
on code comments. The most prominent category of comments summarizes the purpose
of the code, con�rming the importance of research related to automatically creating these
type of comments. Finally, our automated classi�cation approach, based on supervised
algorithms, reaches promising initial results, even when training on software projects that
are di�erent than the target project.

4.2 Motivating Example
Listing 4.1 shows an example Java source code �le that contains both code and comments.
In a well-documented �le, comments help the reader with a number of tasks, such as
understanding the code, knowing the choices and rationale of authors, and �nding addi-
tional references. When developers perform software maintenance, the aforementioned
tasks become mandatory steps that practitioners should attend. The �uency in performing
maintenance tasks depends on the quality of both code and comments. When comments
are omitted, much depends on the ability of developers and the complexity of the code;
when well-written comments are present, the maintenance could be simpli�ed.

4.2.1 Code/comment ratio to measure software maintainabil-
ity

When developers want to estimate the maintainability of code, one of the simplest solutions
is to compute the code/comment ratio, as proposed by Garcia et al. [204]. By evaluating
the aforementioned metric in the snippet in Listing 4.1, we �nd an overall indicator of
quality, which—however—is inaccurate. The inaccuracy arises from the fact that this
metric considers only one kind of comment. More precisely, Garcia et al. focus only on the
presence or absence of comments, omitting the possibility of use comments with di�erent
bene�ts for di�erent end-users. The previous sample of code represents a case where the
author used comments for di�erent purposes. The comment on line 31 represents a note
that developers use to remember an activity, an improvement, or a �x. On line 20 the
author marks his contribution on the �le. Both these two comments represent real cases
where the presence of comments increases the code/comment ratio without any real e�ect
on code readability or maintanability. This situation hinders the validity of this kind of
metric and indicates the need for a more accurate approach to tackle the problem.

4.2.2 An existing taxonomy of source code comments
A great source of inspiration for our work comes from Steidl et al. who presented a �rst
detailed approach for evaluating comment quality [207]. One of the key steps of their
approach is to �rst automatically categorize the comments to di�erentiate between di�erent
comment types. They de�ne a preliminary taxonomy of comments that comprises 7 high-
level categories: Copyright, Header, Member, Inline, Section, Code, and Task. They
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Figure 4.1: Example of Java �le.

provide evidence that their quality model, based on this taxonomy, provides important
insights on documentation quality and can reveal quality defects in practice.

The study of Steidl et al. demonstrates the importance of treating comments in a way
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that suits their di�erent categories. However, the creation of the taxonomy was not the
focus of their work, as also witnessed by the few details given about the process that led to
its creation. In fact, we found a number of cases in which the categories did not provide
adequate information or did not di�erentiate the type of comments enough to obtain a
clear understanding. To detail this, we consider three examples from Listing 4.1:

Member category. Lines 5, 6, 7 and 8 correspond to the Member category in the taxon-
omy by Steidl et al. In fact, Member comments describe the features of a method or �eld
being located near to de�nition [207]. Nevertheless, we see that the function of line 6
di�ers from that of line 7; the former summarizes the purpose of the method, the latter
gives notice about replacing the usage of the method with an alternative. By classifying
these two lines together, one would lose this important di�erence.

IDE directives. Lines 33 does not belong to any explicit category in the taxonomy by
Steidl et al. In this case, the target is not a developer, but the Integrated Development
Environment (IDE). Similarly, line 23 does not have a category in the taxonomy by Steidl
et al., but it is a possibly important external reference to read for more details.

Unknown. Line 36 represents a case of a comment that should be disregarded from any
further analysis. Since it does not separate parts, the Section would not apply and an
automated classi�cation approach would try to wrongly assign it to one of the other
categories. The taxonomy by Steidl et al. does not consider unknown as a category.

With our work, we speci�cally focus on devising an empirically grounded, �ne-grained
classi�cation of comments that expands on the previous initial e�orts by Steidl et al. Our
aim is to get a comprehensive view of the comments, by focusing on the purpose of the
comments written by developers. Besides improving our scienti�c understanding of this
type of artifacts, we expect this work to be also bene�cial, for example, to the e�ectiveness
of the quality model proposed by Steidl et al. and other approaches relying on mining and
analyzing code comments (e.g., [203, 208, 209]).

4.3 Methodology
This section de�nes the overall goal of our study, motivates our research questions, and
outlines our research method.

4.3.1 Research�estions
The ultimate goal of this study is to understand and classify the primary purpose of code
comments written by software developers. In fact, past research showed evidence that
comments provide practitioners with a great assistance during maintenance and future
development, but not all the comments are the same or bring the same value.

We started by analyzing past literature searching for similar e�orts on analysis of
code comments. We observed that a few studies completed a taxonomy of comments, in
a preliminary fashion. Indeed, most of past work focuses on the impact of comments on
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software development processes such as code understanding, maintenance, or code review
and the classi�cation of comments is only treated as a side outcome (e.g., [198, 199]).

RQ1. How can code comments be categorized?

Given the importance of comments in software development, the natural next step is to
apply the resulting taxonomy and investigate on the primary use of comments. Therefore,
we investigate whether some classes of comments are predominant and whether patterns
across di�erent projects or domains (e.g., open source and industrial systems) exist. This
investigation is re�ected in our second research question:

RQ2. How often does each category occur in OSS and industrial projects?

Subsequently, we investigate to what extent an automated approach can classify unseen
code comments according to the taxonomy de�ned in RQ1. An accurate automated classi�-
cation mechanism is the �rst essential step in using the taxonomy to mine information
from large-scale projects and to improve existing approaches that rely on code comments.
This leads to our third research question:

RQ3. How e�ective is an automated approach, based on machine learning, in classify-
ing code comments in OSS and industrial projects?

Finally, we expect that practitioners or researchers could bene�t by applying our
machine learning algorithm to an unseen real project. For this reason, we investigate
how much the performance are improved by manually classifying an increasing number
of comments in a new project and providing this information to our machine learning
algorithm. This evaluation leads to our last research question:

RQ4. How does the performance of an automated approach improve by adding
classi�ed comments from the system under classi�cation?

4.3.2 Selection of subject systems
To conduct our analysis, we focused on a single programming language (i.e., Java, one of
the most popular programming languages [117]) and on projects that are either developed
in an open source setting or in an industrial one.

OSS context: Subject systems. We selected six heterogeneous software systems: Apache
Spark [210], Eclipse CDT, Google Guava, Apache Hadoop, Google Guice, and Vaadin.
They are all open source projects and the history of the changes are controlled with
GIT version control system. Table 4.1 details the selected systems. We select unrelated
projects emerging from the context of di�erent four software ecosystems (i.e., Apache,
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Table 4.1: Details of the selected open source systems.

Project Java source lines Commits Contributors Sample sets

Code Comment Ratio Files Blocks
of comments Ratio

Apache Spark 753k 287k 38% 38k 1,351 61 465 7.7%
Eclipse CDT 1,239k 466k 38% 26k 211 799 6,009 7.5%
Google Guava 252k 88k 35% 4k 185 158 1,100 6.9%
Apache Hadoop 1,258k 396k 31% 15k 171 672 4,228 6.3%
Google Guice 9k 5k 56% 2k 32 59 718 12.1%
Vaadin 2,643k 1,101k 42% 91k 726 401 3,340 8.3%
Overall 6M 2.3M 38% 176k 2.7k 2k 16k 8%

Google, Eclipse, and Vaadin); the development environment, the number of contributors,
and the project size are di�erent: Our aim is to increase the diversity of comments that
we �nd in our dataset.

Industrial context: Subject systems. We also include heterogeneous industrial soft-
ware projects, which are clients of the company in which the second author works.
Table 4.2 reports the anonymized characteristics of such projects, respecting their non-
disclosure agreements.

Table 4.2: Details of the anonymize industrial systems.

Project Java source lines Sample sets

Code Comments Ratio Files Blocks
of comments Ratio

P1 478k 12k 2.5% 159 1,386 8.7%
P2 69k 0.1k 0.1% 236 102 0.4%
P3 2,044k 19k 1.0% 503 1,673 3.3%
P4 1,065k 5k 0.5% 761 1,223 1.6%
P5 1,026k 7k 0.6% 506 1,073 2.1%
P6 3,088k 5k 0.2% 503 273 0.5%
P7 1,173k 13k 1.1% 290 1,058 3.6%
P8 1,208k 4k 0.3% 1,042 1,179 1.1%
Overall 10M 65k 0.7% 4k 8k 2%

4.3.3 RQ1. Categorizing code comments
To answer our �rst research question, we (1) de�ned the comment granularity we consider,
we (2) conducted three iterative content analysis sessions [211] involving four software
engineering researchers with at least three years of programming experience, and we (3)
validated our categories involving other three professional developers.

Comment granularity. Java o�ers three alternative ways to comment source code:
inline comments, multi-line comments, and JavaDoc comments (which is a special case of
multi-line comments). A comment (especially multi-line ones) may contain di�erence pieces
of information with di�erent purposes, hence belonging to di�erent categories. Moreover,
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a comment may be a natural language word or an arbitrary sequence of characters that,
for example, represent a delimiter or a directive for the preprocessor. For this reason, we
conducted our manual classi�cation at character level. The user speci�es the starting and
ending character of each comment block and its classi�cation. For example, the user could
categorize two parts of a single inline comment into two di�erent classes. By choosing a
�ne-grained granularity at character level users are responsible for identifying comment’s
delimiters (i.e., the text is not automatically split into tokens). Even if this choice may
complicate the user’s work, this �exibility, chosen during the manual classi�cation, allowed
us both to de�ne the taxonomy precisely and to have a basis to decide the appropriate
comment granularity for the automatic classi�cation, i.e., line granularity (see Section 4.3.5
– ‘Classi�cation granularity’).

De�nition phase. This phase involved four researchers in software engineering (three
Ph.D. candidates and one faculty member). Two of these researchers are authors of this
paper. In the �rst iteration, we started choosing six appropriate OSS projects (reported
in Table 4.1) and sampling 35 �les with a large variety of code comments. Subsequently,
together we analyzed all source code and comments. During this analysis we could de�ne
some obvious categories and left undecided some comments; this resulted in the �rst draft
taxonomy de�ning temporary category names. In the course of the second phase, we
�rst conducted an individual work analyzing 10 new �les, in order to check or suggest
improvements to the previous taxonomy, then we gathered together to discuss the �ndings.
The second phase resulted in a validation of some clusters in our draft and the rede�nitions
of others. The third phase was conducted in team and we analyzed �ve �les that were
previously unseen. During this session, we completed the �nal draft of our taxonomy
verifying that each kind of comments we encountered was covered by our de�nitions and
those overlapping categories were absent.
Through this iterative process, we de�ned a hierarchical taxonomy with two layers. The
top layer consists of six categories and the inner layer consists of 16 subcategories.

Validation phase. We validated the resulting taxonomy externally with three profes-
sional developers who had three to �ve years of Java programming experience and were
not involved in the writing of this work. We conducted one session with each developer.
At the beginning of the session, the developer received a printed copy of the description
of the comment categories in our taxonomy (similar to the explanation we provide in
Section 4.4.1) and was allowed to read through it and ask questions to the researcher
guiding the session. Afterwards, each developer was required to login into ComMean
(a web application, described in Section 4.3.4) and classify—according to the provided
taxonomy—each piece of comment (i.e., by arbitrary specifying the sequence of adjacent
characters that identify words, lines, or blocks belonging to the same category) in three
Java source code �les (the same �les have been used for all the developers) that contained
a total of 138 di�erent lines of comments. During the classi�cation, the researcher was
not in the experiment room, but the printed taxonomy could be consulted. At the end
of the session, the guiding researcher came back to the experiment room and asked the
participant to comment on the taxonomy and the classi�cation task. At the end of all the
three sessions, we compared the di�erences (if any) among the classi�cations that the
developers produced.

All the participants found the categories to be clear and the task to be feasible; however,
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they also reported the need for consulting the printed taxonomy several times during the
session to make sure that their choice was in line with the description of the category.
Although they observed that the categories were clear, the analysis of the three sets of
answers showed di�erences. We computed the inter-rater reliability by using Fleiss’ kappa
value [212] and found a corresponding k value above 0.9 (i.e., very good) for the three
raters and the 138 lines they classi�ed. We individually analyzed each case of disagreement
by asking the participants to re-evaluate their choices after better extrapolating the context.
Following this approach, the annotators converged on a common decision.

Exhaustiveness by cross-license validation. As a side e�ect of investigating the
second industrial dataset (which covers di�erent commercial licenses and market strategies)
for RQ2, we cross-validated the exhaustiveness of the categories and subcategories present
in our taxonomy in a di�erent context.

In fact, we directly applied our de�nitions to the comments of 8 industrial projects
producing a manually classi�ed set of 8,000 block of comments. During the labeling phase,
we adopted all de�nitions present in the proposed codebook and even though we found
a signi�cant di�erent distribution of each category, we found that such de�nitions are
su�ciently exhaustive to cover all types of comment present also in the new set of projects.

This second validation provided additional corroborating evidence that the proposed
taxonomy (initially generated involving 4 software engineering researchers, which itera-
tively observed the content of a sample of 50 Java open source �les) �ts all the comments
that we encountered in both open and closed source projects, adequately.

4.3.4 A dataset of categorized code comments
To answer the second research question about the frequencies of each category, we needed
a statistically signi�cant set of code comments classi�ed accordingly to the taxonomy
produced as an answer to RQ1. Since the classi�cation had to be done manually, we relied
on random sampling to produce a statistically signi�cant set of code comments. Combining
the sets of OSS and industrial project, we classi�ed comments in a total of 6,000 Java
�les from six open source projects and eight industrial projects. Our aim is to give a
representative overview of how developers use comments and how these comments are
distributed.

To reach this number of �les for which we manually annotate the comments, we
adopted two slightly di�erent sampling strategies for OSS and industrial projects; we detail
these strategies in the following.

OSS Projects: Sampling �les. To establish the size of statistically signi�cant sample sets
for our manual classi�cation, we used as a unit the number of �les, rather than the
number of comments: This results in the creation of a sample set that gives an additional
overview of how comments are distributed in a system. We established the size (n) of
such set with the following formula ([213], pp. 328-331):

n = N ⋅ p̂q̂ (z�/2)2
(N −1)E2 + p̂q̂ (z�/2)2

The size has been chosen to allow the simple random sampling without replacement. In
the formula, p̂ is a value between 0 and 1 that represents the proportion of �les containing
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a given category of code comment, while q̂ is the proportion of �les not containing such
kind of comment (i.e., q̂ = 1− p̂). Since the a-priori proportion of p̂ is not known, we
consider the worst case scenario where p̂ ⋅ q̂ = 0.25. In addition, considering we are
dealing with a small population (i.e., 557 Java �les for Google Guice project) we use the
�nite population correction factor to take into account their size (N ). We sample to reach
a con�dence level of 95% and error (E) of 5% (i.e., if a speci�c comment is present in
f% of the �les in the sample set, we are 95% con�dent it will be in f% ± 5% �les of our
population). The suggested value for the sample set is 1,925 �les. In addition, since we
split the sample sets in two parts with an overlapped chunk for validation, we �nally
sampled 2,000 �les. This value does not change signi�cantly the error level that remains
close to 5%. This choice only validates the quality of our dataset as a representation of
the overall population: It is not related to the precision and recall values presented later,
which are actual values based on manually analyzed elements.

Industrial projects: Sampling �les. As done in the OSS case we selected a statistically
signi�cant sample of �les belonging to industrial projects. We relied on simple random
sampling without replacement to select a su�cient amount of �les representative of
the eight industrial projects that we considered in this study. According to the formula
[213] used for the sampling in the OSS context, we de�ned a sample of 2,000 Java �les
with a con�dence level of 95% and error of 5% (i.e., if a speci�c comment is present in
f% of the �les in the sample set, we are 95% con�dent it will be in f% ± 5% �les of our
population). Since we expected a similar workload for both domains we started with the
same number of �les. However, during the inspection, we found out that we still had
resources to conduct a deep investigation, because we found a less number of comments
per �le. Therefore, we decided to double the number of �les to inspect manually. This
condition led to the creation of a sample set of 4,000 Java �les for the industrial study.

Manual classi�cation. Once the sample of �les with comments was selected, each of
them had to be manually classi�ed according to our taxonomy. For the manual classi�cation,
we rely on the human ability to understand and categorize written text expressed in natural
language, speci�cally, code comments. To support the users during this tedious works that
may be error-prone due to the repetitiveness of the task (especially for large datasets), we
developed a web application named ComMean to conduct the classi�cation. ComMean
(i) shows one �le at a time, (ii) allows the user to save the current progress for further
inspections, and (iii) highlights the classi�ed instances with di�erent colors and opacity.
During the inspection, the user can arbitrarily choose the selection granularity (e.g., s/he
can select a part of a line, an entire line, or a block composed of multiple lines) by selecting
the starting and ending characters. For the given selection, the user can assign a label
corresponding to one of the categories in our taxonomy.

The �rst and last authors of this paper manually inspected the sample set composed
of 2,000 open source �les and 4,000 industrial �les. One author analyzed 100% of these
�les, while another analyzed a random, overlapping subset comprising 10% of the �les.
These overlapped �les were used to verify their agreement, which, similarly to the external
validation of the taxonomy with professional developers (Section 3.3), highlighted only
negligible di�erences. More precisely, every participant independently read and labeled his
own set of comments. If labels matched we accepted those cases as resolved, otherwise, we
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discussed each unmatched case. During the discussion, we evaluated the reasons behind
a certain decision. Then, we came to a conclusion of choosing a single label. In most
cases, the opinions di�ered due to the ambiguous nature of the comments. In these cases,
we analyzed the context and tried a second run. Finally, we resolved these comments by
carefully analyzing comments and the code context.

This large-scale categorization helped giving an indication of the exhaustiveness of the
taxonomy created in RQ1 with respect to the comments present in our sample: None of the
annotators felt that comments, or parts of the comments, should have been classi�ed by
creating a new category. Although promising, this �nding is applicable only to our dataset
and its generalizability to other contexts should be assessed in future studies. The annota-
tions referring to open source projects as well as ComMean are publicly available [214];
the dataset constructed with industrial data cannot be made public due to non-disclosure
agreements.

4.3.5 Automated classification of source code comments
In the third research question, we set to investigate to what extent and with which accu-
racy source code comments can be automatically categorized according to the taxonomy
resulting from the answer to RQ1 (Section 4.4.1). Employing sophisticated classi�cation
techniques (e.g., based on deep learning approaches [215]) to accomplish this task goes
beyond the scope of the current work. Our aim is twofold: (1) Verifying whether it is
feasible to create an automatic classi�cation approach that provides fair accuracy and (2)
de�ning a reasonable baseline against which future methods can be tested.

Classi�cation granularity. We set the automated classi�cation to work at line level.
In fact, from our manual classi�cation, we found several blocks of comments that had to
be split and classi�ed into di�erent categories (similarly to the block de�ned in the lines
5–8 in Listing 4.1) and in the vast majority of the cases (96%), the split was at line level. In
only less than 4% of the cases, one line had to be classi�ed into more than one category. In
these cases, we replicated the line in our dataset for each of the assigned categories, to get
a lower bound on the e�ectiveness in these cases.

Classi�cation technique. Having created a reasonably large dataset to answer RQ2
(it comprises more than 15,000 comment blocks totaling over 30,000 lines in OSS and up to
8,000 comment blocks that correspond to 10,000 lines in industrial systems), we employ
supervised machine learning [126] to build the automated classi�cation approach. This kind
of machine learning uses a pre-classi�ed set of samples to infer the classi�cation function.
In particular, we tested two di�erent classes of supervised classi�ers: (1) probabilistic
classi�ers, such as naive Bayes or naive Bayes Multinominal, and (2) decision tree algorithms,
such as J48 and Random Forest. These classes make di�erent assumptions on the underlying
data, as well as have di�erent advantages and drawbacks in terms of execution speed and
over�tting.

Data balancing. Chawla et al. study the e�ect of an approach to limit the problem
of data imbalance named Synthetic Minority Over-sampling Technique (SMOTE) [121].
Speci�cally, their method tries to over-sample the minority occurrences and under-sample
the majority classes to achieve better performance in a classi�cation task. Data imbalance,
in fact, is a frequent issue in classi�cation problems occurring when the number of instances
that refer to frequent classes is higher than uncommon instances (in our case Discarded,



4

68 4 Classifying code comments in Java software systems

Under development, and Style & IDE classes). To ensure that our results would not have
been biased by confounding factors, such as data imbalance [121], we adopt the SMOTE
package available in Weka toolkit2 with the aim of balancing our training sets. In addition,
we relied on the work of O’brien [122] to mitigate the issues that can derive from the
multi-collinearity of independent variables. To this purpose, we compared the results of
di�erent classi�cation techniques. Speci�cally, in our study, we address this problem by
applying the Random Over-Sampling algorithm [123] implemented as a supervised �lter
in the Weka toolkit. The �lter re-weights the instances in the dataset to give them the
same total weight for each class maintaining unchanged the total sum of weights across all
instances.

Classi�cation evaluation. To evaluate the e�ectiveness of our automated technique
to classi�cation code comments into our taxonomy, we use two well known Information
Retrieval (IR) metrics for the quality of results [216], namely precision and recall:

Precision = |TP |
|TP + FP |

Recall = |TP |
|TP + FN |

TP , FP , and FN are based on the following de�nitions:

• True Positives (TP ): elements that are correctly retrieved by the approach under
analysis (i.e., comments categorized in accord to annotators)

• False Positives (FP ): elements that are wrongly classi�ed by the approach under
analysis (i.e., comments categorized in a di�erent way by the oracle)

• False Negatives (FN ): elements that are not retrieved by the approach under
analysis (i.e., comments present only in the oracle)

The union of TP and FN constitutes the set of correct classi�cations for a given category
(or overall) present in the benchmark, while the union of TP and FP constitutes the set
of comments as classi�ed by the used approach. In other words, precision represents the
fraction of the comments that are correctly classi�ed into a given category, while recall
represents the fraction of relevant comments in that category, where the relevant comments
de�nition includes both true positive and false negative.

E�ort/performance estimation. With the fourth research question, we aim at esti-
mating how many new code comments a researcher or developers should manually classify
from an unseen project, in order to obtain higher performance when using our classi�cation
algorithm on such a project. Since the presence of classi�ed comments from a project
in the training set positively in�uences the performance of the classi�cation algorithm
on other comments from the same project, we want to measure how many instances are
required in the training set to reach the knee of a hypothetical e�ort/performance curve.

To this aim, we quantify the exact extent to which each new manually classi�ed block
of comments contributes to produce better results, if any. We consider the project for
which we obtained the worst results in cross-project validation when answering RQ3; then,
2https://www.cs.waikato.ac.nz/ml/weka/
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we progressively add to the training set a �xed number of randomly selected comments
belonging to the subject project and for each iteration we measure the performance of the
model.

This evaluation starts from a cross-project setting (i.e., we train only on di�erent
projects and test on an unseen one) and slowly gets to a within-project validation setting
(i.e., we train not only from di�erent projects, but also from comments in the project that
we are going to test with on unseen comments). We investigate what is among the lowest
reasonable amount of comments that one should classify to get as close as possible to a full
within-project setting.

4.3.6 Threats to validity
Taxonomy validity. To ensure that the comments categories emerged from our content
analysis sessions were clear and accurate, and to evaluate whether our taxonomy provides
an exhaustive and e�ective way to organize source code comments, we conducted a
validation session that involved three experienced developers (see Section 4.3.3) external
to content analysis sessions. These software engineers held an individual session on three
unrelated Java source �les. They found the categories to be clear and the task feasible,
and the analysis of the three sets of answers showed a few minor di�erences. We counted
the number of lines of comments classi�ed with the same label by all participants and the
number of lines of comments that at least two experts were in con�ict. Finally, considering
these two values we could calculate the percentage of comments that were classi�ed with
the same label by all participants. We measured that only 8% of the considered comments
in the �rst run led to mismatches. Moreover, we individually analyzed each case by asking
the participants to re-evaluate their choices after better extrapolate the context. Following
that approach, the annotators converged on a common decision. In addition, we reduce
the impact of human errors during the creation of the dataset by developing ComMean, a
web application to assist the annotation process.

External validity. One potential criticism of a scienti�c study conducted on a small
sample of projects is that it could deliver little knowledge. In addition, the study highlights
the characteristics and distributions of 6 open source frameworks and 8 industrial projects
mainly focusing on developers practices rather than end-users patterns. Historical evi-
dence shows otherwise: Flyvbjerg gave many examples of individual cases contributing
to discoveries in physics, economics, and social science [217]. To answer to our research
questions, we read and inspected more than 28,000 lines of comments belonging to 2,000
open source Java �les and 12,000 lines of comments belonging to 4,000 closed source Java
�les (see Section 4.3.4) written by more than 3,000 contributors in a total of 14 di�erent
projects (in accord to Table 1 and Table 2). We also chose projects belonging to di�erent
ecosystems and with di�erent ment environments, number of contributors, and size of the
project. To have an initial assessment of the generalizability of the approach we tested our
results simulating this circumstance using the cross-project validation and cross-license
validation (i.e., training on OSS systems and testing on industrial systems, and viceversa)
involving both open and closed source projects. Similarly, another threat concerning the
generalizability is that our taxonomy refers only to a single object-oriented programming
language i.e., Java. However, since many object-oriented languages descend to common an-
cestor languages, many functionalities across object-oriented programming are similar and
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it is reasonable to expect the same to happen for their corresponding comments. Further
research can be designed to investigate whether our results hold in other programming
paradigms.

After having conducted the entire manual classi�cation and the experiment, we re-
alized that the exact location and the surrounding context of a code comment may be a
valuable source of information to extract the semantic of the comment. Unfortunately,
our tool ComMean did not record this information, thus we could not investigate how
the performance of a machine learner would bene�t from it. Future work should take this
feature into account when designing similar experiments.

Moreover, RandomForest can be prone to over�tting, thus provide results that are too
optimistic. To mitigate this threat, we use di�erent training and testing mechanisms that
create conditions that should decrease this problem (e.g., within-project and cross-project).

Finally, a line of comment may have more than one meaning. We empirically found
that this was the case for 4% of the inspected lines. We discarded these lines, as we
considered this e�ect marginal, but this is a limitation of both our taxonomy and automatic
classi�cation mechanism.

4.4 Results and Analysis
In this section, we present and analyze the results of our research questions aimed at
understanding what developers write in comments and with which frequency, as well
as at evaluating the results of an automated classi�cation approach and how manually
classi�ed comments from a project help improving the performance of a classi�er trained
on di�erent projects.

4.4.1 RQ1. How can code comments be categorized?

Java code commments

Purpose

Summary
Expand
Rationale

Notice

Deprecation
Usage
Exception

Under
development

TODO
Incomplete
Commented
code

Style &
IDE

Directive
Formatter

Metadata

License
Ownership
Pointer

Discarded

Auto
generated
Unknown

Figure 4.2: Taxonomy of code comments.

Our manual analysis led to the creation of a taxonomy of comments having a hierarchy
with two layers (Section 4.3.3). The top level categories gather comments with similar
overall purpose, the internal levels provide a �ne-grained de�nition using explanatory
names. Figure 4.2 outlines all categories. The top level categories are composed of 6 distinct
groups and the second level categories are composed of 16 de�nitions. We now describe
each category with the corresponding subcategories.



4.4 Results and Analysis

4

71

A. Purpose
The Purpose category contains the code comments used to describe the functionality of
linked source code either in a shorter way than the code itself or in a more exhaustive
manner. Moreover, these comments are often written in a natural language and are used to
describe the purpose or the behavior of the referenced source code. The keywords ‘what’,
‘how’ and ‘why’ describe the actions that take place in the source code in summary, expand,
and rationale groups, respectively, which are the subcategories of Purpose:

A.1 Summary: This type of comment contains a brief description of the behavior of the
referenced source code. More generically, this class of comments represents answers
to the question word ‘what’. Intuitively, this category incorporates comments that
represent a sharp description of what the code does. Often, this kind of comments is
used by developers to provide a summary that helps to understand the behavior of the
code without reading it.

A.2 Expand: As with the previous category, the main purpose of reading this type of
comment is to obtain a description of the associated code. In this case, the goal is to
provide more details on the code itself. The question word ‘how’ can be used to easily
recognize the comments belonging to this category. Usually, these comments explain in
detail the purpose of short parts of the code, such as details about a variable declaration.

A.3 Rationale: This type of comment is used to explain the rationale behind some
choices, patterns, or options. The comments that answer the question ‘why’ belong to
that category (e.g., “Why does the code use that implementation?” or “Why did the
developer use this speci�c option?”).

B. Notice
The Notice category contains the comments related to the description of warning, alerts,
messages, or in general, functionalities that should be used with care. It covers the descrip-
tion of deprecated artifacts, as well as, the adopted strategies to move to new implemen-
tations. Further, it includes the use case examples giving to developer additional advice
over parameters or options. Finally, it covers examples of use cases or warnings about
exceptions.

B.1 Deprecation: This type of comment contains explicit warnings used to inform the
users about deprecated interface artifacts. This subcategory contains comments related
to alternative methods or classes that should be used (e.g., “do not use [this]”, “is it safe
to use?” or “refer to: [ref]”). It also includes the description of the future or scheduled
deprecation to inform the users of candidate changes. Sometimes, a tag comment such
as @version, @deprecated, or @since is used.

B.2 Usage: This type of comment regards explicit suggestions to users that are planning
to use a functionality. It combines pure natural language text with examples, use cases,
snippets of code, etc. Often, the advice is preceded by a metadata mark e.g., @usage,
@param or @return
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B.3 Exception: This category describes the reasons for the occurred exception. Some-
times it contains potential suggestions to prevent the unwanted behavior or actions to
do when that event arise. Some tags are used also in this case, such as @throws and
@exception.

C. Under development
The Under development category covers the topics related to ongoing and future devel-
opment. In addition, it envelopes temporary tips, notes, or suggestions that developers use
during development. Sometimes informal requests of improvement or bug correction may
also appear.

C.1 TODO: This type of comment regards explicit actions to be done or remarks both
for the owners of the �le and for other developers. It contains explicit �x notes about
bugs to analyze and resolve, or already treated and �xed. Furthermore, it references to
implicit TODO actions that may be potential enhancements or �xes.

C.2 Incomplete: This type comprises partial, pending or empty comment bodies. It may
be introduced intentionally or accidentally by developers and left in the incomplete state
for some reason. This type may be added automatically by the IDE and not �lled in by
the developer e.g., empty “@param” or “@return” directives.

C.3 Commented code: This category is composed of comments that contain source
code commented out by developers. It envelopes functional code in a comment to try
hidden features or some work in progress. Usually, this type of comment represents
features under test or temporarily removed. The e�ect of this kind of comments is
directly transposed to the program �ow.

D. Style & IDE
The Style & IDE category contains comments that are used to logically separate the code
or provide special services. These comments may be added automatically by the IDE or
used to communicate with it.

D.1 Directive: This is an additional text used to communicate with the IDE. It is in form
of comments to be easily skipped by the compiler and it contains text of limited meaning
to human readers. These comments are often added automatically by the IDE or used by
developers to change the default behavior of the IDE or compiler.

D.2 Formatter: This type of comment represents a simple solution adopted by the
developers to separate the source code in logical sections. The occurrence of patterns or
the repetition of symbols is a good hint at the presence of a comment in the formatter
category.

E. Metadata
The Metadata category aims to classify comments that de�ne meta information about the
code, such as authors, license, and external references. Usually, some speci�c tags (e.g.,
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“@author” ) are used to mark the developer name and its ownership. The license section
provides the legal information about the source code rights or the intellectual property.

E.1 License: Generally placed on top of the �le, this types of comments describes the
end-user license agreement, the terms of use, the possibility to study, share and modify
the related resource. Commonly, it contains only a preliminary description and some
external references to the complete policy agreement.

E.2 Ownership: These comments describe the authors and the ownership with di�erent
granularity. They may address methods, classes or �les. In addition, this type of comment
includes credentials or external references about the developers. A special tag is often
used e.g., “@author”.

E.3 Pointer: This types of comments contains references to linked resources. The com-
mon tags are: “@see”, “@link” and “@url”. Other times developers use custom references
such as “FIX #2611” or “BUG #82100” that are examples of traditional external resources.

F. Discarded
This category groups the comments that do not �t into the categories previously de�ned;
they have two �avors:

F.1 Automatically generated: This category de�nes auto-generated notes (e.g., “Auto-
generated method stub”). In most case, the comment represents the skeleton with a
comment’s placeholder provided by the IDE and left untouched by the developers.

F.2 Unknown: This category contains all remaining comments that are not covered by
the previous categories. In addition, it contains the comments whose meaning is hard to
understand due to their poor content (e.g., meaningless because out of context).

Finding 1: The manual inspection of a sample of representative Java �les from diverse
open source software systems has led to the creation of a taxonomy for code comments
composed by two layers with 6 top coarse-grained categories and 16 inner �ne-grained
categories.

4.4.2 RQ2. How often does each category occur in OSS and in-
dustrial projects?

The second research question investigates the occurrence of each category of comments
in the 6,000 source �les that we manually classi�ed from our six OSS systems and eight
industrial projects. We �rst describe the results separately, then we contrast how the
comments are distributed in the two settings.

OSS projects: Distribution of comments. Figure 4.3 shows the distribution of the
comments across the categories in the considered OSS systems. The �gure reports the
cumulative value for the top level categories (e.g., Notice) and the absolute value for the
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inner categories (e.g., Exception). For each category, the top red bar indicates the number
of blocks of comments in the category, while the bottom blue bar indicates the number of
non-blank lines of comments in the category.

Comparing blocks and lines, we see that the longest type of comments is License, with
more than 11 lines on average per block. The Expand category follows with a similar
average length. The Summary category has only an average length of 1.4 lines, which is
surprising, since it is used to describe the purpose of possibly very long methods, variables,
or blocks of code. The other categories show negligible di�erences between number of
blocks and lines.

We consider the quality metric code/comment ratio, which was proposed at line granu-
larity [203, 204], in the light of our results. We see that 59% of lines of comments should
not be considered (i.e., categories from C to F), as they do not re�ect any aspect of the
readability and maintainability of the code they pertain to; this would signi�cantly change
the results. On the other hand, if one considers blocks of comments, the result would be
closer to the original code/comment metric purpose. In this case, a simple solution would
be to only �lter out the Metadata category, because the other categories seem to have a
more negligible impact.

Considering the distribution of the comments, we see that the Summary subcategory
is the most prominent one. TThis is in line with the value of research e�orts that attempt
to generate summaries for functions and methods automatically, by analyzing the source
code [218]. In fact, these methods would alleviate developers from the burden of writing
a signi�cant amount of the comments we found in source code �les. On the other hand,
the Summary accounts for only 24% of the overall lines of comments, thus suggesting that
they only give a partial picture on the variety and role of this type of documentation. The
second most prominent category is Usage. Together with the prominence of Summary, this
suggests that the comments in the systems we analyzed are targeting end-user developers
more frequently than internal developers. This is also con�rmed by the low occurrence of
the Under development category. Concerning Under development, the low number of
comments in this category may also indicate that developers favor other channels to keep
track of tasks to be done in the code.

Finally, the variety of categories of comments and their distribution underlines once
more the importance of a classi�cation e�ort before applying any analysis technique on
the content and value of code comments. The low number of discarded cases corroborates
the completeness of our taxonomy.

Industrial projects: Distribution of comments. Figure 4.4 shows the distribution
of the comments across the categories in the considered industrial systems. To di�erentiate
from the case of OSS systems, we use other colors: The top green bar indicates the number
of blocks of comments, while the bottom yellow bar indicates the number of non-blank
lines of comments.

Comparing number of blocks and number of lines, we see that most categories show
a negligible di�erences between the two granularities. The largest, yet unremarkable
di�erence is in the Purpose category (this is expected since this category includes both
the Summary and the Expand subcategories), in which we found 4,167 lines distributed
over 3,436 blocks, with an average of 1.21 lines per block.

Considering the quality metric code/comment ratio in the industrial context, we see
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that 31% of the lines of comments should not be considered (i.e., categories from C to F).
This percentage is signi�cantly lower than the case of OSS systems, whose distribution
of comment lines is skewed by the License category. Past research has shown that these
types of comments, which are especially structured, can be detected with high precision
and recall even in free form documents [219].

The Summary subcategory is the most prominent one, thus corroborating the impor-
tance of research investigating ways to automatically generate this kind of comments (e.g.,
[218]), also in the industrial setting. Matching the case of OSS systems, the second most
prominent subcategory is Usage, immediately followed by Incomplete. This indicates
that most comments target internal developers in the system, which is to be expected in a
close source setting.

Finally, also in the industrial setting, the taxonomy was extensive enough to allow us
to categorize all the source code comments without dropping any instance, even though
we created this taxonomy from comments in OSS projects.

OSS vs. Industrial: Comparison of the distributions. Figure 4.5 shows a compari-
son of the distribution of comments for the considered OSS systems and industrial projects,
as a proportion of the total number of lines/blocks of comments in each context. The large
di�erence in the frequency of License lines is evident, while we see that the categories
Purpose, Notice, Style & IDE, and Discarded have substantially similar distributions.
Another large di�erence regards the Under development category: The industrial projects
we analyzed use source code comments for commenting code and leave incomplete com-
ments far more frequently than OSS systems. This could be an indication that, if we exclude
the License category, using code comments as an indicator for quality could be more ap-
propriate for OSS systems. In fact, Incomplete and Commented code subcategories could
be an indication of bad practices and low readability and maintainability of code, thus
hindering the value of a comment/code metric. Investigating this hypothesis is beyond the
scope of our current work, but studies can be devised and conducted to verify to which
extent some types of comments indicate problems in the code, rather than a higher quality.

Finding 2: By comparing the distribution of comments in open and closed source
software projects, we found that on average the former class of projects uses 4 times
the number of comments compared to second set. The Metadata category is the most
popular category in OSS and Purpose is the most popular category in closed source.

4.4.3 RQ3. How effective is an automated approach, based on
machine learning, in classifying code comments in OSS
and industrial projects?

To evaluate the e�ectiveness of machine learning in classifying code comments we em-
ployed a supervised learning method. Supervised machine learning bases the decision
evaluating on a pre-de�ned set of features, training on a set of labeled instances. Since we
set to classify lines of code comments, we computed the features at line granularity.

Text preprocessing. We preprocessed the comments by doing the following in this
order: (1) tokenizing the words on spaces and punctuation (except for words such as
‘@usage’ that would remain compounded), (2) splitting identi�ers based on camel-casing
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(e.g., ‘ModelTree’ became ‘Model Tree’), (3) lowercasing the resulting terms, (4) removing
numbers and rare symbols, and (5) creating one instance per line.

Feature creation. Table 4.3 shows all the features that appear in the �nal model (these
features are a subset of all that we initially devised). Since the optimal set of features
is not known a priori, we started with some simple, traditional features and iteratively
experimented with others more sophisticated features, in order to improve precision and
recall for all the projects we analyzed.
A set of features commonly used in text recognition [220] consists in measuring the
occurrence of the words; in fact, words are the fundamental tokens of all languages we
want to classify. To avoid over�tting to words too speci�c to a project, such as code
identi�ers, we considered only words above a certain threshold t . We found this value
experimentally starting with a minimum of 3 and increasing up to 10, in one-unit steps.
Since the values above 7 do not change the precision and recall quality, we chose that
threshold.
In addition, other features consider the information about the context of the line, such as
the text length, the comment position in the whole �le, the number of rows, the nature of
the adjacent rows, etc.
The last set of features is category speci�c. We de�ned regular expressions to recognize
speci�c patterns. We report three detailed examples:

• This regular expression is used to match comments in single line or multiple lines
with empty body.

^\s*\/(\*|\s)*(\/|\*\s*\*\/)\n*$

• This regular expression matches the special keywords used in the Usage category.

(?i)@param|@usage|@since|@value|@return

• The following regular expression is used to �nd patterns of symbols that may be
used in Formatter category.

([^*\s])(\1\1)|^\s*\/\/\/\s*\S*|\$\S*\s*\S*\$

Machine learning validation with 10-fold. We tested both probabilistic classi�ers
and decision tree algorithms. When using probabilistic classi�ers, the average values of
precision and recall were usually lower those obtained using decision tree algorithms.
While, using decision tree algorithms, the percentage value associated with the correctly
classi�ed instances is improved. Particularly, with Random Forest we obtain up to 98.4%
correctly classi�ed instances. Nevertheless, in the latter case, many comments belonging
to classes with a low occurrence were wrongly classi�ed. Since the purpose of our tool
is to best �t the aforementioned taxonomy we found that the best classi�er is based on a
probabilistic approach.
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In Table 4.4 we report only the results (precision, recall, and weighted average TP rate)
for the naive Bayes Multinominal classi�er that on average, considering whole categories,
achieves a better result accordingly to the aforementioned considerations. In Table 4.4
we intentionally leave empty cells that correspond to categories of comments that are
not present in related projects. For the evaluation, we started with a standard 10-fold
cross validation. Table 4.4 and Table 4.5 show these results in the columns ‘10-fold’ for
open and closed source, respectively. In both cases, we obtain promising performance
for the six high-level categories. Generically, the performance in the open source case
is slightly higher than the closed source one. For OSS systems, precision and recall are
always above 93%; for closed source projects, we have a drop of the performance up to 70%
of precision for the Discarded category. This di�erence is most likely attributable to the
smaller number of instances available for the training set of closed source projects. Indeed,
the same trend is also visible in �ne-grained categories. The precision for inner categories
is in average better for OSS projects (with a minimum of 50% in the case of the Rationale
category). In the closed source projects, both precision and recall for inner categories reach
high value up to 100% for several categories, however, there are categories (Rationale
Deprecation, and Unknown) where the performance is below 70%.

Cross-project validation. Di�erent systems have comments describing di�erent code
artifacts and are likely to use di�erent words and jargons. Thus, term-features working for
the comments in one system may not work for others. To better test the generalizability of
the results achieved by the classi�er, we conduct a cross-project validation, as also previously
proposed and tested by Bacchelli et al. [221]. In practice, cross-project validation for OSS
case consists in a 6-fold cross validation, in which folds are neither strati�ed nor randomly
taken, but correspond exactly to the di�erent systems: In the open source case, we train
the classi�ers on �ve systems and we try to predict the classi�cation of the comments
in the remaining system. We do this six times rotating the test system. Similarly, in the
industrial context we divided the dataset in eight folds corresponding to the eight industrial
projects, then we used one fold as test dataset and the remaining folds to train the model.
We repeated this process eight times to evaluate the performance for each project. The
right-most columns (i.e., ‘cross-project’) in Table 4.4, 4.5, and 4.6 show the results by tested
systems.

Cross-license validation. The di�erent development setting, i.e., OSS or industrial,
may have an impact on software development [222]. In line with the hypothesis of Paulson
et al. [222], we indeed found a di�erence in the comments usage between these two di�erent
categories of development processes. We found that open source projects have on average
up to 8 blocks of comments per �le, while the industrial projects decrease have an average
of 2 blocks of comments per �le. Therefore, these di�erences during the training of a
machine learning classi�er can become crucial, as they may impact on the performance of
the model.
To evaluate the impact of the di�erent development setting on an automated approach to
classify code comments, we de�ne and conduct a cross-license validation. We de�ne cross-
license validation when the training set di�ers from the testing set for the license/setting
of the �le to which the comment pertain, i.e., OSS or industrial. In our study, we conduct a
2-fold cross-license validation, in which we train on projects from one setting (e.g., OSS)
and we test on projects from the other setting (e.g., industrial). In this validation, we
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alternate OSS and industry as test and training sets. Table 4.7 contains the results, in
terms of precision and recall, obtained by evaluating our model on the top categories.
The �rst row represents the results obtained training the model on the OSS projects and
testing it on the industrial ones, instead the second row refers to the opposite situation
where we trained the model with the industrial comments and tested it with OSS ones.
Even though the di�erences are not major (e.g., 0.73 of precision for both Discarded
categories), training the model with the open source data achieves better results on average
(e.g., the precision is up to 10% higher for the category Under Development using open
source training set); this result may be due to the higher number of comments in the OSS
dataset or more diverse distributions of the features across the data. Overall, the within-
project performance is marginally better than the cross-project one, when the training is
accomplished with open-source data. Indeed, cross-project validation achieves performance
above 0.73 in terms of weighted average TP rate, while within-project validation conducted
only on open-source projects is up to 0.88 in terms of weighted average TP rate. Based on
our experience gained through the manual classi�cation, we argue that many comments
in OSS systems are written with a di�erent purpose than comments in closed-source
projects. For example, OSS programmers rely on code comments to communicate their
development strategies, vice-versa, industrial driven developers seem to rely on alternative
channels to communicate with their team. This observation is also re�ected the di�erent
number of comments present in the two domains as well as the di�erent distribution across
found categories. Moreover, this di�erence would have an impact on the creation of new
tools aimed at helping developers to increase their productivity and to improve software
reliability.

Summary. The values for 10-fold cross validation reported in Table 4.4 show accurate
results (mostly above 95%) achieved for top-level categories. This means that the classi�er
could be used as an input for tools that analyze source code comments of the considered
systems. For inner-categories, the results are lower; nevertheless, the weighted average
TP rate remains 0.85. Furthermore, we do not see large e�ects due to the prominent class
imbalance. This suggests that the amount of training data is enough for each class.

As expected, testing with cross-project validation, the classi�er performance drops.
However, this is a more reliable test for what to expect with Java comments from unseen
projects. The weighted average TP rate that goes as low as 0.74. This indicates that project-
speci�c terms are key for the classi�cation and either an approach should start with some
supervised data or more sophisticated features must be devised.

The last analysis (i.e., the cross-license validation), where we divided the dataset in
two parts gathering in the same dataset all projects with the same commercial license
(i.e., OSS and industrial projects), shows that results are higher when using open source
dataset to train the model (up to 15% of Precision for Style & IDE category). Even though
cross-license shows a negative performance when using industrial comments to train the
model, the di�erences are in average below 7% for Purpose and Metadata categories
in terms of Precision. In the end, Discarded achieves the same performance for both
categories (0.73 in Precision). These results suggest that the proposed open source dataset
may be used by both open source organization and industrial companies to categorize Java
code comments. The higher performance of training on OSS may be due to the higher
number of manually classi�ed instances from the OSS projects; a further study could
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investigate whether a higher number of training instances from the industrial context
would lead to similar results.

Finding 3: The within-project validation achieves the best performance (up to 0.95 for
weighted average TP rate) compared to cross-project or cross-license validation where
the performance is typically 15% lower. Although this, it remains above 0.74 in terms
of weighted average TP for unseen �les that may be due to the use a project-speci�c
set of terms. In addition to di�erences in the terminology used in the comments, this
di�erence may be increased by the di�erent communication strategies used in the
inspected developmental domains.

4.4.4 RQ4. Howdoes theperformanceofanautomatedapproach
improve by adding classified comments from the system
under classification?

The answer to our previous research question shows that it is possible to create an automatic
classi�er for code comments. However, when such a classi�er is tested on an unseen project,
it achieves lower results, compared to testing it on a project for which some of the comments
are part of the training set. This is expected, since words used in the text are parts of the
training features. In this research question, we investigate how many instances should one
classify from an unseen system to make the classi�cation algorithm reach higher results.

To this aim, we selected the industrial project that achieved the worst performance in
cross-project validation, then, we progressively added to the training set a �xed number of
manual classi�ed comments (i.e., in steps of 5 comments). For each iteration, we evaluated
the performance of a Random Forest classi�er and computed precision and recall.

Figure 4.6 shows the classi�er’s results by progressively including new manually classi-
�ed comments. The blue line indicates the evolution of the precision curve by progressively
adding 5 random selected manual classi�ed comments of the subject system; the red line
indicates the trend of the recall values. The lines show that the classi�er starts from a
minimum of 0.65 and 0.74 for precision and recall, respectively. This is the scenario in
which no comments belonging to the unseen project are included in the training set. The
maximum performance corresponds to 0.89 of precision and 0.94 of recall, and it is reached
when at least 100 manually classi�ed comments of the subject system are added to the
training set. The trend shows that the performance reaches a plateau after 100 manually
classi�ed instances.
Finally, we observe that in the starting phase (left side of the chart) the performance of the
model remains stably below 0.80 of precision and recall until the comments contribution is
below 30 threshold; instead it improves rapidly in the interval included between 30 and 70
blocks of comments. This observation seems to indicate the presence of an optimal interval
of comments that a human classi�er should manually classify to boost the performance of
the proposed solution for a novel project.

The investigation highlights that the performance of the proposed model can be easily
and signi�cantly increased by manually classifying a small sample of new comments (e.g.,
in our case the manual classi�cation of just 60 blocks of comments boosted the prediction
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of 30%). We empirically found this sample size to be between 40 and 80 block of comments,
which corresponds to about 10 Java open source �les (or about 3 hours of labeling e�orts).

Finding 4: The improvement achieved by manual classifying a sample between 40
and 80 code comment from an unseen project is up to a 37% and 27% gain in precision
and recall, respectively. This indicates that it is possible to signi�cantly improve the
accuracy of the automatic classi�cation for an unseen project with a minor e�ort.
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Figure 4.3: Frequencies of comments per category in open source projects. Top, red bars show the occurrences by
blocks of comments and bottom, blue bars by lines.
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Figure 4.4: Frequencies of comments per category industrial projects. Top, green bars show the occurrences by
blocks of comments and bottom, yellow bars by lines.
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Figure 4.5: Frequencies of comments per category. Top, red bars show the occurrences by blocks of comments
and bottom, blue bars by lines.
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Table 4.3: Machine learning features for comments classi�cation.

Feature Type Description

words numeric counts the occurrence of each word in the bag
of unique words

punctuation boolean
used in combination of a regular expression to
distinguish source code from natural language
e.g., object.method(par1, par2);

words
count numeric measures the length of the comment, using

the words as unit size
unique
words
count

numeric measures the length of the comment, only
unique words are counted

row
position numeric detects the absolute position of the comment

adjacent
rows numeric recognizes the nature of the adjacent rows

e.g., comments or code

deprecation boolean true if a comment contains special tags
like @deprecation

usage boolean true if a comment contains special tags
such as @usage, @return or @value

exception boolean true if a comment contains special tags
such as @exception or @throws

TODO boolean true if a comment contains keywords such
as todo or �x or a link to a bug is detected

incomplete boolean true if a comment contains an empty body
commented
code boolean true if a comment contains code snippets

directive boolean true if a comment contains special sequence
of symbols used by IDE

formatter boolean true if a comment is composed of patterns
of symbols or characters

license boolean true if a comment contains words such as
license, copyright, legal or law

ownership boolean true if a comment contains tags such as
@author or @owner

pointer boolean true if a comment contains a reference to an
external linkable resource

automatic
generated boolean

true if a comment contains text automatically
inserted by IDE e.g., Auto-generated
method stub
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Table 4.4: Results of the classi�cation with naive bayes multinomial classi�er in OSS.

Validation
P = Precision

R = Recall Cross project

Top
categories

Inner
categories

10-fold CDT Guava Guice Hadoop Vaadin Spark

P 0.88 0.96 0.68 0.61 0.72 0.62 0.65Summary R 0.82 0.99 0.61 0.69 0.56 0.69 0.84
P 1.00 0.84 0.00 0.00 0.09 0.00 0.00Expand R 0.98 0.64 0.00 0.00 0.05 0.00 0.00
P 0.50 0.56 0.15 0.00 0.10 0.03 0.67Rationale R 0.69 0.84 0.23 0.00 0.41 0.17 0.17
P 0.99 0.77 0.77 0.81 0.80 0.83 0.68

Purpose

Purpose R 0.99 0.98 0.98 0.81 1.00 1.00 1.00
P 0.74 0.75 0.22 0.14Deprecation R 0.78 0.81 1.00 1.00
P 0.86 0.85 0.50 0.43 0.67 0.90 0.56Usage R 0.90 0.87 0.45 0.64 0.61 0.65 0.15
P 0.76 0.75 0.43 0.00 0.58 0.69 0.13Exception R 0.98 0.95 0.87 0.00 0.88 0.97 0.29
P 1.00 0.50 0.50 0.36 0.60 1.00 1.00

Notice

Notice R 0.98 0.50 0.50 1.00 0.41 0.33 0.17
P 0.61 0.97 0.57 0.29 0.03 0.19TODO R 0.52 0.96 0.83 1.00 0.16 0.11
P 0.91 0.92 0.11 0.95Incomplete R 0.96 1.00 0.88 0.91
P 0.91 0.91 0.05 0.92Commented

code R 0.91 0.95 0.06 0.50
P 0.98 1.00 0.00 0.00 0.00 0.00

Under
dev.

Under
development R 0.93 0.67 0.00 0.00 0.00 0.00

P 0.96 0.96 0.00Directive R 1.00 1.00 0.00
P 0.81 0.93 0.00 0.00Formatter R 0.77 0.28 0.00 0.00
P 0.97 1.00 1.00 0.00

Style
& IDE

Style & IDE R 0.99 1.00 1.00 0.00
P 0.99 1.00 0.98 1.00 0.99 0.99 1.00License R 0.98 0.99 1.00 0.95 0.99 1.00 1.00
P 0.80 1.00 1.00 0.57 0.00 1.00Ownership R 0.96 1.00 0.08 0.27 0.00 0.98
P 0.84 0.80 0.82 0.81 0.79 0.97 1.00Pointer R 0.94 0.74 0.52 0.54 0.70 0.85 0.60
P 1.00 1.00 1.00 1.00 1.00 1.00 0.89

Metadata

Metadata R 1.00 0.68 0.68 0.57 0.57 0.95 1.00
P 0.90 0.91 0.13 0.84Auto

generated R 1.00 1.00 1.00 1.00
P 0.65 1.00 0.00 0.00 0.00Unknown R 0.77 0.39 0.00 0.00 0.00
P 0.96 0.00 0.00 0.00 0.00

Discarded

Discarded R 0.98 0.00 0.00 0.00 0.00
Weighted average

TP rate 0.85 0.88 0.77 0.79 0.74 0.80 0.83



4

86 4 Classifying code comments in Java software systems

Table 4.5: Results of the classi�cation with random forest classi�er in industrial projects.

Validation
P = Precision

R = Recall Cross project

Top
categories

Inner
categories

10-fold P1 P2 P3 P4 P5 P6 P7 P8

P 0.97 0.52 0.64 0.84 0.73 0.63 0.78 0.83 0.68Summary R 1.00 0.86 0.87 0.89 0.86 0.97 0.69 0.89 0.77
P 1.00 0.75 1.00 0.86 0.57 0.96 0.13 0.60Expand R 1.00 0.14 0.29 0.90 0.57 0.53 0.10 0.53
P 1.00 0.18 0.50 0.13 0.71 0.00 0.54 0.53 0.00Rationale R 0.70 0.30 0.10 0.83 0.71 0.00 0.43 0.16 0.00
P 0.98 0.56 0.92 0.92 0.95 0.72 0.88 1.00 0.70

Purpose

Purpose R 0.99 0.99 0.97 0.91 0.84 0.94 0.79 0.72 0.83
P 0.83 0.00 1.00 0.67 0.85Deprecation R 0.45 0.00 0.86 0.54 0.72
P 1.00 0.40 0.00 0.77 0.90 0.81 0.97 0.84 0.67Usage R 1.00 0.91 0.00 0.86 0.69 0.98 0.85 0.84 0.81
P 1.00 1.00 1.00 1.00 1.00 0.72 1.00 1.00Exception R 0.96 0.94 0.25 1.00 1.00 0.70 0.31 0.96
P 1.00 1.00 0.00 0.73 0.65 0.80 0.87 1.00 0.69

Notice

Notice R 1.00 0.58 0.00 0.88 0.99 0.97 0.85 0.58 0.89
P 0.99 0.56 0.00 1.00 0.15TODO R 0.86 0.55 0.00 0.53 0.08
P 1.00 1.00 0.50 1.00Incomplete R 1.00 0.24 0.75 0.79
P 0.98 0.68 1.00 1.00 0.27 1.00 0.70 0.37Commented

code R 0.98 0.62 1.00 1.00 0.25 1.00 0.58 0.41
P 0.99 0.96 0.95 0.11 0.67 0.27 0.75 0.95 0.37

Under
dev.

Under
development R 0.97 0.78 0.96 0.34 0.69 0.33 0.88 1.00 0.45

P 0.94 0.00 0.78 0.00 0.71Directive R 0.92 0.00 0.53 0.00 0.42
P 1.00 0.90 0.88Formatter R 0.84 0.55 0.68
P 1.00 0.00 0.99 0.54 0.00 0.00 0.00 0.81 0.87

Style
& IDE

Style & IDE R 0.85 0.00 0.08 0.34 0.00 0.00 0.00 0.52 0.55
P 1.00 0.00 0.63 0.90 0.00 1.00 1.00License R 1.00 0.00 0.69 0.87 0.00 1.00 1.00
P 1.00 0.54 1.00 1.00 1.00 1.00 1.00Ownership R 1.00 0.51 0.97 0.78 1.00 1.00 0.81
P 1.00 0.51 1.00 1.00 1.00 1.00 0.89 0.57 0.57Pointer R 0.98 0.70 0.97 0.32 0.71 0.45 0.73 0.63 0.31
P 1.00 1.00 0.84 0.91 0.98 1.00 0.96 0.96 0.97

Metadata

Metadata R 0.99 0.32 0.61 0.87 0.26 0.47 0.79 0.81 0.98
P 0.94 0.10 0.00Auto

generated R 1.00 0.56 0.00
P 0.60 0.25Unknown R 0.99 0.20
P 0.70 0.78 0.28 0.00 0.00

Discarded

Discarded R 0.99 1.00 0.15 0.00 0.00
Weighted average

TP rate 0.95 0.75 0.68 0.73 0.77 0.70 0.78 0.76 0.71
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Table 4.6: Results of the classi�cation with random forest classi�er in cross-project validation.

Cross project validationP = Precision
R = Recall Open source Closed source

Top
categories

Inner
categories CDT Guava Guice Hadoop Vaadin Spark P1 P2 P3 P4 P5 P6 P7 P8

P 0.95 0.85 0.93 0.65 0.79 0.74 0.84 0.69 0.89 0.88 0.84 0.85 0.75 0.93Summary R 0.98 0.96 1.00 1.00 0.96 1.00 1.00 0.97 1.00 1.00 0.96 0.99 0.90 0.94
P 0.85 0.70 1.00 0.15 0.15 1.00 1.00 0.42 1.00 1.00 1.00 0.24 0.57Expand R 0.64 0.85 1.00 0.13 0.75 0.25 1.00 1.00 1.00 1.00 1.00 0.19 0.57
P 0.55 0.00 1.00 0.15 0.00 0.00 1.00 0.40 1.00 1.00 0.32 0.56 0.72 0.36Rational R 0.68 0.00 1.00 0.51 0.00 0.00 0.86 0.29 0.86 0.87 0.62 0.36 0.71 0.56
P 0.99 0.85 0.79 .98 0.70 0.70 0.97 0.86 0.90 0.89 0.90 0.99 0.89 0.74

Purpose

Purpose R 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.98 0.99 0.99 0.97 0.84 0.78
P 0.75 0.00 0.00 1.00 1.00 1.00 1.00Deprecation R 0.81 0.00 0.00 1.00 1.00 1.00 1.00
P 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84Usage R 0.90 0.85 0.90 1.00 0.35 0.33 0.92 0.38 0.92 0.93 0.84 0.92 1.00 0.81
P 0.72 1.00 0.63 1.00 1.00 1.00 1.00 1.00 0.74 0.68 1.00Exception R 0.98 1.00 0.88 1.00 1.00 0.55 0.65 0.50 0.75 0.43 0.87
P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74 0.96

Notice

Notice R 0.99 0.76 0.73 0.97 0.24 0.65 0.95 0.81 0.87 0.91 0.81 0.73 0.86 0.85
P 0.59 1.00 0.00 0.21 0.96 0.00 0.77 0.15TODO R 0.50 0.65 0.00 0.32 0.67 0.00 0.67 0.08
P 0.90 0.87 0.78 0.89 1.00Incomplete R 0.88 0.73 0.63 0.10 0.25
P 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.17Commented

code R 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.41
P 0.99 1.00 0.76 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 1.00

Under
dev.

Under
development R 0.95 0.55 0.85 0.86 0.67 0.99 0.86 0.85 0.86 0.87 0.86 0.87 0.99

P 1.00 0.00 1.00 1.00 1.00 1.00Directive R 1.00 0.00 1.00 1.00 0.75 1.00
P 0.90 0.87 0.98Formatter R 1.00 0.42 0.57
P 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Style
& IDE

Style & IDE R 1.00 0.00 0.79 1.00 0.89 0.89 0.82 0.90 0.84
P 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00License R 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00Ownership R 0.98 1.00 0.97 1.00 1.00 1.00 0.97 1.00 0.91
P 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.95 0.57 0.67Pointer R 0.99 0.82 1.00 0.68 1.00 0.45 0.42 0.99 0.71 0.85 0.86 0.99 0.57 0.40
P 1.00 1.00 0.99 0.99 0.94 0.90 1.00 0.99 0.91 0.99 0.99 0.99 1.00 0.99

Metadata

Metadata R 0.95 0.94 0.89 0.99 1.00 1.00 1.00 1.00 0.97 0.95 0.98 0.98 0.91 0.95
P 0.00 0.23 0.78 0.10 0.00Auto

generated R 0.00 1.00 0.89 0.78 0.00
P 1.00 0.21Unknown R 0.40 0.17
P 0.38 0.55 0.00 0.10 0.00 0.00 0.00

Discarded

Discarded R 0.15 0.56 0.00 0.15 0.00 0.00 0.00
Weighted average

TP rate 0.90 0.92 0.90 0.98 0.76 0.86 0.94 0.94 0.95 0.91 0.83 0.90 0.86 0.88

Table 4.7: Results of the cross-license validation in terms of precision (P) and recall (R), using a random forest
classi�er.

Top categories

Purpose Notice Under
development

Style
& IDE Metadata Discarded

Testing on: P R P R P R P R P R P R
Industrial
systems 0.75 0.98 0.96 0.49 0.87 0.69 0.78 0.13 0.99 0.69 0.73 0.91

OSS
systems 0.68 0.99 0.88 0.67 0.77 0.50 0.63 0.66 0.98 0.55 0.73 0.30
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Figure 4.6: Number of comments required to increase the performance for an unseen project.
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4.5 Related Work
4.5.1 Information Retrieval Techniqe
Lawrie et al. [223] use information retrieval techniques based on cosine similarity in
vector space models to assess program quality under the hypothesis that “if the code is
high quality, then the comments give a good description of the code”. Marcus and Maletic
propose a novel information retrieval techniques to automatically identify traceability
links between code and documentation [224]. Similarly, de Lucia et al. focus on the
problem of recovering traceability links between the source code and connected free text
documentation. They propose a comparison between a probabilistic information retrieval
model and a vector space information retrieval [225]. Even though comments are part of
software documentation, previous studies on information retrieval focus generally on the
relation between code and free text documentation.

4.5.2 Comments Classification
Several studies regarding code comments in the 80’s and 90’s concern the bene�t of using
comments for program comprehension [197–199]. Stamelos et al. suggest a simple ratio
metric between code and comments, with the weak hypothesis that software quality grows
if the code is more commented [226]. Similarly, Oman and Hagemeister propose a tree
structure of maintainability metrics that also consider code comments [203] and Garcia et
al. also use lines of comments to measure the maintainability of a module [204].

New recent studies add more emphasis to the code comments in a software project.
Fluri et al. present a heuristic approach to associate comments with code investigating
whether developers comment their code. Marcus and Maletic propose an approach based
on information retrieval technique [227]. Maalej and Robillard investigate API reference
documentation (such as javadoc) in Java SDK 6 and .NET 4.0 proposing a taxonomy of
knowledge types. They use a combination of grounded and analytical approaches to create
such taxonomy [228]. Instead Witte et al. used Semantic Web Technologies to connect
software code and documentation artifacts [229]. However, both approaches focus on
external documentation and do not investigate evolutionary aspects or quality relationship
between code and comments, i.e., they do not track how documentation and source code
changes together over time or the combined quality factor. More in focus is the work of
Steidl et al. where they investigate the quality of the source code comments [207]. They
proposed a model for comment quality based on di�erent comment categories and use a
classi�cation based on machine learning technique tested on Java and C/C++ programs.
They de�ne 7 high-level categories that are generically available in both Java and C/C++
programming languages. Moreover, they evaluated the quality of their taxonomy with a
survey by involving 16 experienced software developers. Despite the quality of the work,
they found only 7 high-level categories of comments based mostly on comment syntax,
i.e., inline comments, section separator comments, task comments, etc. This limitation
may be a consequence of the aggregation of di�erent programming languages such as Java
and C/C++. In our study, we re�ne such categories by including a �ne-grained taxonomy
composed of 16 categories. Our taxonomy is tailored speci�cally for Java programming
language, indeed, the study involved only Java sources.

Padioleau et al. [209] also conducted an extensive evaluation and classi�cation of source
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code comments. They had a di�erent aim than ours: They focused on understanding to
what extent developers’ needs can be derived from code comments (e.g., how comments are
used for code annotations or to communicate intentions behind the software development
paradigm); moreover they considered a di�erent context (i.e., code comments from three
Unix-like operating systems (i.e., Linux, FreeBSD, and OpenSolaris) written in C). They
conducted a classi�cation along four dimensions: content, people involved, code location,
and time and evolution. The ‘content’ dimension is the most aligned with our work.
Although their focus (developers’ needs and software reliability) and data sources (C
systems) were di�erent, some of their categories along the ‘content’ dimension share
strong similarities with our taxonomy (e.g., ‘PastFuture’ includes TODOs, as our ‘C. Under
Development’ does). Especially if we account for the subjective di�erences that are common
in manual classi�cation studies, these similarities seem to indicate that it would be possible
to derive a taxonomy of code comments that goes beyond the boundaries of a single
programming language (indeed they also performed a preliminary investigation trying to
classify comments of a Java system according to their taxonomy that further suggests this
possibility [209]). Interestingly, Padioleau et al. also showed how more than 50% of the
comments can be exploited by existing or to be proposed tools. We did not consider this
aspect in our work, but future studies can be devised to investigate it using our publicly
available dataset. An additional di�erence between our work and that of Padioleau et al. is
that we studied how our manually analyzed code comments can be automatically classi�ed
according to our taxonomy using machine learning.

4.6 Conclusion
Code comments contain valuable information to support software development, especially
during code reading and code maintenance. Nevertheless, not all the comments are the
same: For accurate investigations, analyses, usages, and mining of code comments, this
has to be taken into account. By recognizing di�erent kinds of code comments, as well as
di�erent meaning brought by code comments we want to simplify developers’ activities and
provide better data for metrics. Following this direction, a developer may exclude comments
that do not involve a speci�c task and focus only on a subset (e.g., a developer that plans a
maintainability task may be not interested in comments related to metadata information
such as license and ownership). Relying on our �ndings, a developer may dynamically
choose which categories highlight during a speci�c development phase. Moreover, our
classi�cation system can be used to improve techniques that use comments as a way to
measure the maintainability of a software system. In fact, in this work, we investigated how
comments can be categorized, also proposing an approach for their automatic classi�cation.

The contributions of our work are:

• A novel, empirically validated, hierarchical taxonomy of code comments for Java
projects, comprising 16 inner categories and 6 top categories.

• An assessment of the relative frequency of comment categories in 6OSS Java software
systems.

• An estimation of the relative frequency of comment categories in 8 industrial Java
software systems.
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• An exhaustiveness by cross-license validation of proposed taxonomy in a di�erent
context.

• A publicly available dataset of more than 2,000 source code �les with manually
classi�ed comments, also linked to the source code entities they refer to.

• An empirical evaluation of an enhanced machine learning approach to automatically
classify code comments according to the aforementioned taxonomy.

• An empirical evaluation aimed at understanding how many instances should be
manually classi�ed from an unseen system to make the classi�cation algorithm
perform similarly to an already seen project.
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5
On the Performance of

Method-Level Bug
Prediction: A Negative

Result

Bug prediction is aimed at identifying software artifacts that are more likely to be defective
in the future. Most approaches de�ned so far target the prediction of bugs at class/�le level.
Nevertheless, past research has provided evidence that this granularity is too coarse-grained for
its use in practice. As a consequence, researchers have started proposing defect predictionmodels
targeting a �ner granularity (particularly method-level granularity), providing promising
evidence that it is possible to operate at this level. Particularly, models mixing product and
process metrics provided the best results.

We present a study in which we �rst replicate previous research on method-level bug-prediction,
by using di�erent systems and timespans. Afterwards, based on the limitations of existing
research, we (1) re-evaluate method-level bug prediction models more realistically and (2)
analyze whether alternative features based on textual aspects, code smells, and developer-
related factors can be exploited to improve method-level bug prediction abilities. Key results of
our study include that (1) the performance of the previously proposed models, tested using the
same strategy but on di�erent systems/timespans, is con�rmed; but, (2) when evaluated with a
more practical strategy, all the models show a dramatic drop in performance, with results close
to that of a random classi�er. Finally, we �nd that (3) the contribution of alternative features
within such models is limited and unable to improve the prediction capabilities signi�cantly. As
a consequence, our replication and negative results indicate that method-level bug prediction
is still an open challenge.

This chapter extends Chapter 2 and to avoid repetitions it focuses on new parts only. It is based on

q L. Pascarella, F. Palomba, A. Bacchelli. On the Performance of Method-Level Bug Prediction: A Negative
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5.1 Introduction
The necessary evolution of software systems often leads to the introduction of defects,
which possibly preclude the correct functioning of a piece of software and reduce its
overall reliability [88]. To tackle this problem, researchers have been developing several
techniques to support developers (e.g., veri�cation and testing [231]): one of the most
investigated areas is bug-prediction [32], which consists in detecting the areas of a software
more likely to contain bugs in the future. Researchers have proposed and evaluated a
variety of bug prediction models based on product [90, 97, 150], process [92, 100, 147],
socio-technical [49, 232], and developer-related [43, 91] metrics. These models have been
evaluated both in within-project scenarios and in cross-project ones [36–38], with several
approaches achieving remarkable prediction performance [233]. Nevertheless, the practical
relevance of bug prediction research has been put into question by studies that suggest
that bug prediction does not address any real need of developers [24, 93, 94]. One of the
main criticisms regards the granularity at which bugs are found [93]. In fact, most of
the presented models predict bugs in modules or �les – a granularity that is deemed not
informative enough for practitioners, because �les and modules can be arbitrarily large
and inspecting them can require too much work [35]. In addition, considering that larger
classes tend to be more bug-prone [44, 46], the e�ort required to identify the defective part
in these classes is even more pronounced [90, 95, 96, 144].

To tackle this limitation, Menzies et al. [97] and Tosun et al. [98] conducted the �rst
investigations on a �ner granularity, i.e., function-level. Successively, Hata et al. [99] applied
this idea to the context of object-oriented systems, proposing a method-level prediction
model built using a set of historical metrics and that reported promising performance.
Giger et al. [35] went even further and investigated the value of both product and process
metrics for method-level prediction model. Speci�cally, Giger et al. devised three prediction
models based on the combination of the two sets of features and evaluated how well they
could classify which methods would have at least a bug (binary classi�cation) within a
speci�ed time frame. They considered single snapshots of 21 open source software (OSS)
projects in Java and reported promising results: 84% precision and 88% recall.

In this paper, we present a work that continues on this line of research.1 First, we
replicate the investigation conducted by Giger et al. [35] on bug prediction at method-level.
We use the same features and classi�ers as the reference work, but on a di�erent dataset to
test the generalizability of their �ndings. While our results show similar performance as the
reference work, we observed two key limitations that may possibly bias the interpretation
of the achieved �ndings. On the one hand, Giger et al. [35] took the change history and
predicted bugs from the same time frame (which could lead to incorrect results) and used
cross-validation (which have been reported as at the risk of producing biased estimates
in certain circumstances [116]). On the other hand, they did not consider a number
of alternative features that have been proved to impact the performance of class-level
bug prediction models, namely textual, code smell-related, and developer-based metrics

Result, JSS’19 [230]

1The work presented here is an extension of the conference paper ‘Re-evaluating Method-Level Bug Predic-
tion’ [87], appeared in the proceedings of the 25th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2018. pp. 592-601.
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[113, 147, 234]. We tackle these limitations by (1) estimating the models’ performance using
data from subsequent releases (as done by more recent studies, which did it at a coarser
granularity [100]), and by (2) adding a set of new alternative features to the considered
method-level bug prediction model.

Our results show that—when evaluated on a release-by-release strategy—all the existing
method-level bug prediction models present lower performance, close to that of a random
classi�er. As a consequence, even though we could replicate the reference work, a more
realistic evaluation lead to negative results. Furthermore, all the alternative features we
experiment with only marginally improve the performance, suggesting that method-level
bug-prediction is still not a solved problem.

5.2 Background and Related Work
Research in the �eld of bug prediction is highly active [32, 235] and can be roughly divided in
two sets: On the one hand, researchers focused on the characteristics relating to source code
being more defect prone [39, 40, 42–47, 49, 148]; on the other hand, researchers de�ned bug
prediction techniques based on unsupervised [50–52] and supervised [53–57] approaches.
More recently, the concept of just-in-time bug-prediction has been introduced—techniques
with the purpose of recommending defective �les as developers commit them [59, 60, 62,
87, 236–238].

The current paper presents a work that focuses on investigating how well supervised
approaches can identify bug-prone methods. In this section we discuss the literature
related to class-/method-level bug prediction and describe the role of textual information
for software quality.

5.2.1 Class-level Bug-Prediction
The approaches in this category di�er from each other mainly for the underlying prediction
algorithm, e.g., Logistic Regression vs Random Forest, and for the considered features, e.g.,
product (e.g., lines of code) or process metrics (e.g., number of changes performed to a class).

Product metrics. Basili et al. [90] found that �ve CK metrics [101] can help one to
determine defective classes and that Coupling Between Objects (CBO) is the most related to
bugs. These results were re-con�rmed in further studies [95, 102, 103]. Ohisson et al. [104]
focused on design metrics (e.g., ‘number of nodes’) to identify bug-prone modules, revealing
the applicability of such metrics for the identi�cation of buggy modules. Nagappan and
Ball exploited two static analysis tools to predict the pre-release bug density for Windows
Server [105]. Nagappan et al. [106] experimented with code metrics for predicting buggy
components across �ve Microsoft projects, �nding that no single metric is the best across
all projects. Zimmerman et al. [57] investigated complexity metrics for bug-prediction
and reported a positive correlation between code complexity and bugs. Nikora et al. [107]
showed that measurements of a system’s structural evolution (e.g., ‘number of executable
statements’) can serve as bug-predictors. More recently, Dam et al. [239] reported an
experience report of using product metrics and abstract representation of source code in
practice, showing that it is possible to achieve good prediction accuracy when employing
them within deep learning models.



5

96 5 On the Performance of Method-Level Bug Prediction: A Negative Result

Process metrics. Graves et al. [108] experimented with both product and process
metrics for bug-prediction, �nding that product metrics are poorer predictors for bugs.
Moser et al. [110, 111] performed two comparative studies, which provided additional
corroborating evidence on the superiority of process metrics in predicting buggy code
components. Later on, D’Ambros et al. [112] performed an extensive comparison of
bug-prediction approaches relying on both product and process metrics, �nding that no
technique works better in all contexts.

Despite the aforementioned promising results, a study by Shihab et al. [93] reported
that developers consider class or module level bug-prediction too coarse-grained for being
useful in practice. Also, a study by Lewis et al. [24] reported similar issues when trying
defect prediction in practice at Google. This situation calls for the creation of methods
able to provide a more �ne-grained prediction (e.g., at method-level), re-evaluating and
adapting what has been learned in the preceding work.

Alternative metrics. Despite product and process features have been the most widely
used for bug prediction purposes, researchers have been also investigating the value of
alternative metrics. In this category, several researchers exploited developer-related factors.
For example, Hassan investigated a technique based on the entropy of developers’ code
changes [89], �nding that it has better performance than models based on changes to code
components. Ostrand et al. [113, 114] proposed the use of the number of developers who
modi�ed a code component as a bug-proneness predictor: however, the performance of
the resulting model was poorly improved with respect to existing models. Later on, Di
Nucci et al. [91] de�ned a bug-prediction model based on a mixture of code, process, and
developer-based metrics outperforming the performance of existing models. As part of
their experimentation, Di Nucci et al. also re-assessed the contribution given by the metric
proposed by Ostrand et al. [113, 114], showing that in certain circumstances the number of
developers may represent a relevant factor to characterize the bug-proneness of classes.
Bird et al. [240] found that the addition of an information related to the code ownership of
classes can make bug prediction models more accurate; these �ndings were later con�rmed
by other researchers [241, 242]. On a similar line of research, socio-technical factors have
been also exploited for bug prediction: for instance, Posnett et al. [49] proposed two novel
metrics based on the developer’s social-network that may be used as predictors of faults in
production, while Bird et al. [232] studied how developers contribute to source code and
found that lack of collaboration and coordination are associated with an increase of the
number of bugs.

Other researchers focused on improving bug prediction capabilities using the informa-
tion coming from code smells [243], i.e., sub-optimal design implementations applied by
developers. Khomh et al. [44] and Palomba et al. [46] indeed reported that such smells have
a strong, negative impact on the bug proneness of source code. Following these �ndings,
Taba et al. [244] studied how the addition of variables characterizing the presence of 13
di�erent types of code smells can improve the performance of bug prediction models built
using standard product metrics: they reported an improvement close to 13% in terms of
F-Measure. Later on, Palomba et al. [147] showed that the intensity of code smells, namely
a measure of their severity, can further improve bug prediction capabilities with respect to
the work of Taba et al. [244].

Finally, a less explored yet worth to discuss bug prediction angle concerns the usage of
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textual metrics. In the �rst place, the use of textual information has represented a promising
and orthogonal dimension to improve software quality assessment [197, 200, 245]. For
instance, textual information has already been used in several software engineering tasks or
activities such as information retrieval [224, 245, 246], code smell detection [47, 247, 248],
refactoring [249–251], and meaning extraction [193]. Perhaps more importantly, the
addition of textual-related information has been proved to enhance the performance of
bug prediction models. Marcus et al. [245] de�ned the Conceptual Cohesion of Classes
(C3) and added it within a bug prediction model based on product metrics, �nding that
textual information can provide a boost of ≈23% in terms of F-Measure. Walid et al. [234]
provided initial compelling evidence that a lack of coherence between code comments and
corresponding source code (due to the missing update of code documentation) impacts the
bug-proneness of code elements. Aman et al. [252] further explored the problem and found
that certain types of code comments (e.g., those explaining functionalities implemented in
a class) are associated with a higher bug-proneness of the code. Later on, Buse and Weimer
[253] found that poor readability of source code contributes to the identi�cation of buggy
classes. These �ndings were also con�rmed by Binkley et al. [254], who showed that a
lower source code readability is often associated to an increase of the production code
fault-proneness; When employed within predictive models, readability metrics provide an
additional contribution that allow these models to perform ≈10% better than models built
without using them.

Inspired by the results of these previous studies, in this work we aim at evaluating the
e�ect of characterizing bug-prone methods considering alternative features, thus providing
a wider overview of the performance achievable with method-level bug prediction.2

5.2.2 Method-level Bug-Prediction
While the seminal idea of lowering the granularity of bug prediction is to attribute to
Menzies et al. [97] and Tosun et al. [98], the work by Giger et al. [35] was the �rst explicitly
aimed at predicting bugs at method-level in object-oriented software systems. Giger et al.
de�ned a set of product and process metrics to characterize a method and evaluated these
metrics in three method-level bug prediction models, respectively based on: (i) product
metrics, (ii) process metrics, and (iii) their combination. Giger et al. [35] found that both
product and process metrics contribute to the identi�cation of buggy methods and their
combination achieves the best performance (i.e., F-Measure=86%). To produce the dataset
used in their evaluation, Giger et al. took the following steps [35]: they (1) considered
a large time frame in the history of 21 Java OSS systems, (2) focused on the methods
present at the end of the time frame, (3) computed product metrics for each method at
the end of the time frame, (4) computed process metrics (e.g., number of changes) for
each method throughout the time frame, and (5) counted the number of bugs for each
method throughout the time frame, relying on bug �xing commits. Finally, they used
10-fold cross-validation [115] to evaluate the three aforementioned models, considering
the presence/absence of bug(s) in a method as the dependent (binary) variable. Similarly to
the paper discussed above, Hata et al. [99] proposed a �ne-grained prediction model in
which they computed a number of historical metrics to predict the bug-proneness of Java
methods. Their results reported that method-level predictions are more e�ective than �le-
2This part is a novel contribution of this paper.
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and package-level ones when considering the e�ort required by developers to locate and
debug a potential defect in source code.

In this work, we re-evaluate the paper by Giger et al. [35] using data from subsequent
releases (i.e., a release-by-release validation), which better models a real-case scenario
where a prediction model is updated as soon as new information is available.3 The choice of
focusing on the work of Giger et al. [35] rather than the one of Hata et al. [99] is motivated
by the fact that Giger et al. experimented with both code and process metrics (as opposed
to Hata et al. who only considered process metrics), thus giving us the opportunity of
providing a wider overview of the performance of method-level defect prediction.

5.3 Research Goals and Context
In this section, we de�ne both the research questions guiding our study and the context of
our investigation.

5.3.1 Research�estions
The goal of the empirical study is to re-evaluate how bug prediction can be applied at
method-level, with the purpose of understanding the performance of models built using
di�erent sets of features. We start our investigation by replicating the study conducted
by Giger et al. [35] on a partially overlapping set of software systems (but considering
di�erent moments in time) to evaluate the generalizability of their �ndings. Thus, we ask:

RQ1. How can code comments be categorized?

While replicating the methodology proposed by Giger et al. [35], we detected some
limitations concerning the validation approach: (1) it uses 10-fold cross-validation, which is
at the risk of producing biased estimates in certain circumstances [116], (2) product metrics
are considered only at the end of the time frame (while bugs are found within the time
frame), and (3) the number of changes and the number of bugs were both considered in the
same time frame (this time-insensitive validation strategy may have led to biased results).
Thus, in the second part of our study we try to overcome the aforementioned limitations
by re-evaluating the performance using data from subsequent releases. A release-by-release
validation better models a real-case scenario where a prediction model is updated as soon
as new information is available. Our expectation is that the performance is going to be
weaker in this setting. This leads to our second research question:

RQ2. How often does each category occur in OSS and industrial projects?

A second limitation we identify is related to the independent variables exploited by
Giger et al. [35]. While they performed an extensive analysis of product and process metrics,
the role of other types of information—that have been shown to boost the performance
of bug prediction models in the past [234, 245, 254]—was not assessed. In the context of
3This part was previously presented at an academic software engineering conference [87].
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our study, we assess the impact of three families of metrics such as: (1) textual features,
whose aim is to capture the readability of the considered code as well as its alignment
with code comments and their types; (2) code smells [243], which describe potential design
�aws in source code; and (3) developer-related factors, that analyze properties related to
the developers working on a system. Hence, we ask:

RQ3. How e�ective is an automated approach, based on machine learning, in classifying
code comments in OSS and industrial projects?

Table 5.1: Overview of the projects used in this study.

Projects LOC Developers Releases Methods Buggy Methods
Ant 213k 15 4 42k 2.3k
Checkstyle 235k 76 6 31k 4.1k
Cloudstack 1.16M 90 2 85k 13.4k
Eclipse JDT 1.55M 22 33 810k 3.3k
Eclipse Platform 229k 19 3 7k 2.7k
Emf Compare 3.71M 14 2 9k 0.7k
Gradle 803k 106 4 73k 4.6k
Guava 489k 104 17 262k 1.2k
Guice 19k 32 4 9k 0.5k
Hadoop 2.46M 93 5 179k 5.8k
Lucene-solr 586k 59 7 213k 8.7k
Vaadin 7.06M 133 2 43k 11.3k
Wicket 328k 19 2 30k 4.9k
Overall 19M 782 91 1.8M 63.5k

5.3.2 Subject systems
The context of our work consists of 13 software systems whose characteristics are reported
in Table 5.1. For each system, the table reports its size (in terms of LOCs) and how many
developers contributed over the entire history, as well as the number of releases, methods,
and buggy methods. In particular, we focus on systems implemented in Java (i.e., one of
the most popular programming languages [117]), since both the metrics previously de�ned
by Giger et al. [35] and the alternative features proposed in this study mainly target this
programming language. In addition, we select projects whose source code and change
history are publicly available (i.e., open-source software projects using a version control
system) to enable the extraction of product, process, and alternative metrics.

Starting from the 81,327,803 open-source systems written in Java available at the time
of the analysis on Github,4 we �rst �lter out those having less that 1,000 commits and
more than 5,000 methods: this �lter gives us a total of 6,753,654 systems. Finally, we
randomly select 13 of them. Compared to Giger et al. [35], we consider fewer, but larger
4https://github.com
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systems, which are composed of a much larger number of methods (1.8M vs 112,058) and
bugs (63,400 vs 23,762). This choice allows us to test the e�ectiveness of method-level bug
prediction on software systems of a di�erent scale.

5.4 RQ3. Evaluating Alternative Metrics
Our RQ3 seeks to evaluate the potential of alternative metrics for method-level bug predic-
tion.

5.4.1 RQ3 - Methodology
We de�ne a set of metrics based on textual aspects of source code as well as on code smells,
and developer-related factors, which we include in the method-level bug prediction models
experimented in our previous research questions. In the following, we �rst describe the
metrics and the rationale for their choice, and then we detail the model de�nition and
evaluation process.

Textual Metrics. As summarized in Section 5.2, previous work [234, 252–254] high-
lighted that textual aspects of source code could impact its bug proneness and be useful
when considered within bug prediction models. Thus, we �rst challenge these �ndings and
explore the role of textual features when applied to method-level bug prediction. Table 5.2
lists the considered metrics. We include:

Code Readability. Based on the �ndings by Buse and Weimer [253] and Binkley et al.
[254], we compute a measure of readability of source code. We directly employ the tool
proposed in [253]: This outputs an index, which is a decimal score ranging between 0 and
1, where 0 represents unreadable code and 1 refers to easily readable code. This tool relies
on a readability model composed of 19 metrics (including line length, number and length
of identi�ers, number of a prede�ned list of characters, branches, loops). To compute
it, we rely on the publicly available version of the tool provided by the authors.5 Code
readability is not code complexity, which we already de�ned in other metrics previously.

Textual Coherence. Based on the �ndings reported by Walid et al. [234], we measure
the textual coherence, i.e., the extent to which comment and source code of a method are
aligned. To compute it, we �rst normalize comments and source code using a standard
Information Retrieval (IR) process [119].6 Then, we apply the Vector Space Model (VSM)
[119] and measure the textual similarity between comments and source code (i.e., the
vectors of VSM) using the cosine distance.

Comment Classi�cation. Based on the �ndings by Aman et al. [252], who reported
that di�erent comments types are associated to di�erent bug proneness, we classify
source code comments exploiting the model proposed by Pascarella and Bacchelli [193]:
It analyzes the text contained in a comment and classi�es its semantic. Speci�cally,

5URL: http://www.arrestedcomputing.com/readability.
6In detail, we (i) separate composed identi�ers, (ii) lower case the extracted words, (iii) remove special characters,
programming keywords, and common English stop words, and (iv) stem words to their original roots via Porter’s
stemmer [255].

http://www.arrestedcomputing.com/readability
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Table 5.2: List of the considered method-level textual metrics.

Metric name Description (applies to method level)
Readability Source code readability index [253]
Textual
Coherence

Measure of the textual coherence between
source and code comments [234]

Purpose # of code comments used to describe
the functionality of linked source code

Notice # of code comments related to the description
of warning, alerts, or messages

Under
Development

# of code comments covers the topics
related to the ongoing and future development

Style&IDE # of code comments used to logically separate
the code or provide special services

Metadata # of code comments used to classify comments
that de�ne meta-information about the code

Other # of code comments that do not �t into
the previously de�ned categories

Pascarella and Bacchelli de�ned a hierarchical taxonomy with two levels: the �rst coarse-
grained contains 6 categories, while the second �ne-grained contains 16 sub-categories.
In our study, we de�ne 6 new method-level textual metrics based on the �rst level, as
described by the last six rows in Table 5.2.

Code smells. These are poor design or implementation choices introduced by devel-
opers when maintaining and/or evolving software systems [243, 256]. The addition of the
information on the design quality of classes into existing bug prediction models has been
proved to improve bug identi�cation capabilities [147, 244]. The contribution of measures
of code smell severity appeared to be particularly useful in class-level bug prediction [147].
Following these �ndings, in the context of our work, we �rst identify code smell types that
a�ect methods and then compute their intensity. We focus on:

Long Method. This smell refers to methods implementing more than one functionalities
and is generally detected by considering its size [243]. Methods a�ected by this smell
are poorly cohesive and possibly impact their understandability, change- and defect-
proneness [46].

Long Parameter List. This smell refers to methods having a long list of parameters.
Instances of this smell can lower the maintainability of methods and possibly indicate
that the method is poorly cohesive [243].

Message Chains. This smell occurs when a client requests an object; this requires yet
another one, and so on, thus creating a long concatenation of method calls [243]. This
smell has been associated to a higher defect-proneness of the a�ected methods [41, 46].
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The rationale behind the selection of these code smell types is twofold. In the �rst place,
these have been reported to occur in software projects [46]. Perhaps more importantly,
they in�uence the bug-proneness of the a�ected methods [41, 46], thus perfectly �tting
the goal of our paper.

To detect them we rely on Decor [257], a method to de�ne code smell detection rules
using a Domain-Speci�c Language. The approach uses a set of rules, called “rule cards”,7
which describe the intrinsic characteristics that a method should have to be a�ected by a
certain code smell type. In the case of Long Method, Decor identi�es it by considering the
number of lines of code of a method: If this is higher than 80, then a code smell is detected.
As for Long Parameter List, it considers a method a�ected by this smell if it has more than
three parameters. Finally, Message Chains instances are detected if a method contains a
statement in which more than three method calls are performed.

According to several empirical studies [47, 247, 258], the accuracy of Decor is relatively
high both in terms of precision and recall, with typical values of F-Measure around 75%.
This makes the detector more accurate than other available tools [259] and, therefore,
suitable for our study.

Once detected code smell instances, we compute their intensity. We follow a similar
approach as previous work [47, 260]: as Decor classi�es a method as smelly if a speci�c
condition is satis�ed, for instance, if its lines of code > 80, we can say that the higher
the distance between the actual code metric value and the �xed threshold, the higher the
intensity of the smell. We use this approach to compute the intensity of all the three smells
considered.

Developer-related factors. Aspects capturing how developers work on source code
and what is the change process they apply when performing software maintenance and
evolution activities have been often successfully applied in bug prediction as they showed
a great potential for improving predictive models [43, 89, 91, 114, 240].

These previous �ndings lead us to consider how developer-related factors work when
employed in the context of method-level bug prediction. In particular, we focus on three
orthogonal aspects such as:

Number of developers. In the �rst place, for each method of the considered dataset, we
compute how many distinct developers worked on it over the history of the project. The
contribution of this metric to bug prediction capabilities was �rstly assessed by Ostrand
et al. [113, 114], who reported that individual developer’s data provides a limited boost
to bug prediction models; Nevertheless, Di Nucci et al. [91] performed a larger empirical
evaluation of the value of this metric, showing that it can improve the performance of
these models by up to 10%. This is the reason why we seek to understand its value at a
�ner-level. We compute the metric by (i) mining all commits in the change history that
changed a method m and (ii) counting the number of developers who made changes to it.
To distinguish di�erent developers, we consider the e-mail address they left on Github—
we are aware that this computation may be imprecise in cases where a developer uses
multiple e-mails when working on the project, however there is no practical way to solve
this problem.

7http://www.ptidej.net/research/designsmells/
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Code ownership. According to Bird et al. [240], developers having a higher experience
on the source code they touch are less prone to introduce bugs. The authors assessed
this relation by computing the code ownership of classes and measuring its impact on
the performance of bug prediction models, �nding that models including this metric
have an accuracy that is 24% higher than those not including it as a feature. In our
work, we compute code ownership at method-level by following the same approach of
Bird et al. [240]: given a method m, we compute the ratio of number of commits that
a contributor c has made on m with respect to the total number of commits made by
c. Once computed the metric for all developers who contributed to m, we assign to the
method the maximum ownership computed.

Entropy of code changes. Finally, we take into account the way developers make changes
in a system and compute the entropy of changes originally de�ned by Hassan [89] for
class-level bug prediction. This metric has been shown to strongly impact on the perfor-
mance of predictive maintenance models [89, 261]. Following the algorithm of Hassan
[89], we �rst identify all commits which modi�ed a method m and then run a pattern-
based technique that can detect the so-called feature-introduction modi�cations, namely
changes applied to introduce new or enhancing existing features. Afterwards, the entropy
of changes on m is computed exploiting the concept of Shannon entropy [262] as in the
following equation:

entropy(m,�) = −(pm,� ⋅ log2 pm,� ) (5.1)

where pm,� indicates the probability that m was changed received feature introduction
modi�cations over its change history. This probability is computed considering the
fraction between the number of feature introduction modi�cations applied on m in the
change history over the total number of feature introduction modi�cations applied by
developers.

It is important to remark that other alternative metrics have been proposed by re-
searchers in the bug prediction �eld, like for instance socio-technical [49, 91] or code
coverage features [263]. Being aware of those alternative metrics, we decided to exclude
them from our study as they cannot be easily computed at method-level. For instance,
let consider the case of socio-technical congruence [264]: this measures how much the
organizational structure of a development community re�ects the actual technical orga-
nization among developers. While the metric has been de�ned in terms of how much
the developers’ social network matches the modularization of packages, no de�nition
is available with respect to the socio-technical congruence between developers’ social
network and division of methods among classes. Thus, we preferred to be conservative
and not de�ne any novel metric that would have deserved a separate validation before
being used in our context. Rather, we relied on metrics that can be directly computed at
method-level, e.g., the considered code smells are all directly computable at method-level.

Model De�nition and Data Analysis. To test the contribution given by the consid-
ered families of features, we build �ve classes of method-level bug prediction models on the
basis of those de�ned for RQ1. Our methodology is inspired by the one of Bird et al. [240]:
starting from the baseline one, namely the product + process one de�ned by Giger et al. [35],
we progressively fed up the model with additional features, so that we can measure the
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Figure 5.1: Comparison of the distribution of F-measure values considering the combination of product, process
and textual metrics.
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Figure 5.2: Comparison of the distribution of AUC-ROC values considering the combination of product, process
and textual metrics.

contribution given by each family of features to the capabilities of method-level bug predic-
tion (if any). Hence, we build models relying on (i) product + process + textual features, (ii)
product + process + textual + code smell-related features, and (iii) product + process + textual
+ code smell-related + developer-related features. Furthermore, we also build models relying
on the various families of features independently so that we can assess the independent
value of each of them for method-level bug prediction.

As done in the context of the previous research questions, we apply the Random
Over-Sampling and Correlation-based Feature Selection [125] algorithms to deal with
data balancing and multicollinearity. The performance of all experimented method-level
bug prediction models are evaluated using the same validation strategy (i.e., release-by-
release) and evaluation metrics (i.e., precision, recall, F-Measure, and AUC-ROC) used in
the context of the previous research question. We also conduct a statistical comparison
of the performance of the prediction models considered. The Mann-Whitney test [265] is
not recommended in the case of comparisons of multiple models over multiple datasets,
since the performance of a speci�c model might vary between two datasets [266]. Thus,
we compared the AUC-ROC values of the experimented models over the di�erent systems
using the Scott-Knott E�ect Size Di�erence (ESD) test [133].
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5.4.2 RQ3 - Results
Figures 5.1 and 5.2 show the distribution of F-Measure and AUC-ROC, respectively, achieved
by the prediction models built progressively using the various families of features consid-
ered in our study. We also report on the performance achieved by the models only relying
on individual sets of features. Consistently with the methodology adopted for the �rst
research question, we analyze how their performance varies when considering di�erent
classi�ers (i.e., Simple Logistic, Logistic, Multilayer Perceptron, Random Forest, J48, Decision
Table, and Naive Bayes). However, we limit the discussion of the results to Random Forest
because it was the classi�er providing slightly better performance (see Table ??).8

When looking at the �gures, we can see that the models built using individual sets of
features have poor performance: for instance, the AUC-ROC of the only textual model is
close to 53%, which indicates that it is just slightly better than a random classi�er. A similar
discussion can be drawn for the other individual models, thus con�rming that taking
those features alone does not give advantages when it comes to the prediction of defective
methods. These results con�rm what has been previously reported in the literature on
the importance of combining multiple features to boost the performance of bug prediction
models [90, 91, 100].

Turning the attention to the combined models, we notice that the progressive addition of
metrics only gives a marginal contribution to the overall classi�cation accuracy. Speci�cally,
the inclusion of textual metrics into a model containing product and process metrics allows
the model to have 4% and 5% more F-Measure and AUC-ROC. In the �rst place, this indicates
that these metrics provide a limited amount of additional information to predict future
bugs. At the same time, our �ndings represent a negative result with respect to the �ndings
reported by all prior studies that we exploited to derive the textual features [234, 252–254];
indeed, we could not �nd any textual measure able to signi�cantly increase the performance
of the experimented prediction models.

The discussion is similar when considering the addition of code smell-related informa-
tion. According to previous �ndings in the �eld [147, 244], including a measure of code
smell severity within models relying on a combination of process and product metrics
provides an increase of ≈15% in terms of F-Measure. Unfortunately, this is not the case
when lowering the granularity of the predictions. In our case, indeed, the F-Measure
of the product + process + textual + code smell-related model is even lower than the one
not including any smell-related information (-2% ). This may indicate that code smells
computed at method-level have limited predictive power when compared to class-level
code smells. Thus, our �ndings are again negative with respect to previous work [147, 244].
Perhaps more importantly, we could not con�rm the results of D’Ambros et al. [41], in
which the authors reported that one of the considered smells, i.e., Message Chains, is the
one that mostly a�ects the bug-proneness of source code methods.

As for the developer-related factors (named All metrics in Figures 5.1 and 5.2), their
inclusion provides an increase of 4% with respect to the second best performing model
(the product + process + textual one). So, also in this case, we claim that the contribution
is marginal and that we could not con�rm the role of developer-related factors for bug
prediction when the granularity is that of methods.

8A complete overview of the results achieved when using other classi�ers is available in our appendix [129].
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The results discussed so far are all statistically signi�cant. According to the ranking of
the performance provided by the Scott-Knott ESD test [133], there is no model performing
statistically better than the others, thus indicating that the addition of alternative metrics
does not boost the performance of bug prediction.9

To conclude the discussion, based on the �ndings discussed so far we argue that the
research on method-level bug prediction still needs notable steps to do for better supporting
developers. Our paper provides initial compelling evidence of the need of novel, speci�c
metrics able to capture method-level information that actually relate to the bug-proneness
of methods.

Result 3: The addition of alternative features based on textual, code smells, and
developer-related factors improves the performance of the existing models only
marginally, if at all.

5.5 Threats to Validity
We describe the factors that can a�ect the validity of our empirical results.

Threats to Construct Validity. A �rst factor in�uencing the relationship between
theory and observation is related to the dataset exploited. In our study, we relied on the
same methodology previously adopted by Giger et al. [35] to build our own repository of
buggy methods, i.e., we �rst retrieved bug-�xing commits using the textual-based technique
proposed by Fisher et al. [69] and then considered as buggy the methods changed in that
commits. While we cannot exclude possible imprecision and/or incompleteness of the data
used in this study, we have re-evaluated the performance of the tool by Fisher et al. in
our context �nding that it could detect buggy commits with a precision of 84% correctly.
Still in this category, we re-implemented the product and process metrics used to build
the experimented models. This was due to the lack of a publicly available tool. When
re-implementing such metrics we faithfully followed the descriptions provided by Giger et
al. [35]. As for the alternative metrics, instead, we used available tools whenever possible
(e.g., in the case of the comment classi�cation [193] or when detecting method-level code
smells [257]). To enable and stimulate the replicability of our study, we made all tools and
scripts exploited publicly available in our online appendix [129]. As for the selection of
the classi�er to use when building the bug prediction model, we tested the performance of
di�erent classi�ers, �nding Random Forest to be the one providing the best performance.
All the tested classi�ers use the default parameters, since �nding the best con�guration for
all of them would have been too expensive [143]. Future work can be devised to investigate
the impact of parameters’ con�guration on our �ndings.

Threats to Conclusion Validity. A �rst point of discussion regards the data pre-
processing techniques adopted before the construction of the experimented bug prediction
models. To ensure that the results would not have been biased by confounding e�ects
such as data unbalance [121] or multi-collinearity [124], we adopted formal procedures
aimed at (i) over-sampling the training sets [121] and (ii) removing non-relevant indepen-
dent variables through feature selection [125]. As for the evaluation of the models, we
9Detailed statistical results are reported in our appendix [129].
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complemented the results concerning the F-measure by relying on a threshold-independent
metric such as the AUC-ROC. Furthermore, we supported our �ndings with an appropriate
statistical test like the Scott-Knott ESD one [133].

Threats to External Validity. This category refers to the generalizability of our
�ndings. While in the context of this work we analyzed software projects having di�erent
size and scope, we limited our focus to Java systems because some of the tools exploited to
compute the considered metrics only work for this programming language (e.g., certain
code smells have been only de�ned for Java [243]). Thus, we cannot claim generalizability
concerning systems written in di�erent languages as well as to projects belonging to
industrial environments. Similarly, we considered a subset of the available metrics in each
of the �ve families of features considered: in particular, we limited ourselves to the analysis
of the metrics which previous works have analyzed, while we cannot exclude that di�erent
results could be achieved when considering di�erent metrics (e.g., other method-level code
smell types).

5.6 Conclusion
We investigated (i) the performance of di�erent types of method-level bug prediction
models when applied in a real-case scenario and (ii) the contribution given by textual
features to existing bug prediction models. The main contributions made by our study are:

1. A re-evaluation on di�erent systems/timespans of previously de�ned method-level
bug prediction models. The results con�rm previous �ndings in the �eld [35].

2. An empirical analysis of how the performance of existing method-level bug prediction
models changes when applied to a more realistic, release-by-release scenario. Our
results provide evidence that current method-level bug prediction models do not
dramatically outperform a random classi�er; hence we reveal the need for further
research in this area.

3. An empirical analysis of whether the performance of existing method-level bug
prediction models can be improved by considering alternative features. Our results
reveal that the overall prediction capabilities lead to negligible improvements.

4. An online appendix [129] that reports the dataset and all the additional analyses
performed in the work described in this paper.

Based on the results achieved so far, our future agenda includes (i) the replication of
our study on a broader set of systems also considering ensemble methods [54, 132], (ii) the
investigation of novel metrics to properly work for method-level bug prediction, and (iii)
an in-vivo analysis of the capabilities of method-level bug prediction models, involving
practitioners during their daily activities [94].
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6
Information Needs in

Contemporary Code Review

Contemporary code review is a widespread practice used by software engineers to maintain high
software quality and share project knowledge. However, conducting proper code review takes
time and developers often have limited time for review. In this paper, we aim at investigating
the information that reviewers need to conduct a proper code review, to better understand this
process and how research and tool support can make developers become more e�ective and
e�cient reviewers.

Previous work has provided evidence that a successful code review process is one in which
reviewers and authors actively participate and collaborate. In these cases, the threads of
discussions that are saved by code review tools are a precious source of information that can be
later exploited for research and practice. In this paper, we focus on this source of information as
a way to gather reliable data on the aforementioned reviewers’ needs. Wemanually analyze 900
code review comments from three large open-source projects and organize them in categories
by means of a card sort. Our results highlight the presence of seven high-level information
needs, such as knowing the uses of methods and variables declared/modi�ed in the code under
review. Based on these results we suggest ways in which future code review tools can better
support collaboration and the reviewing task.

This chapter is based on

3q L. Pascarella, D. Spadini, F. Palomba, A. Bacchelli. Information Needs in Contemporary Code Review,
CSCW’18 [267]
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6.1 Introduction
Peer code review is a well-established software engineering practice aimed at maintaining
and promoting source code quality, as well as sustaining development community by
means of knowledge transfer of design and implementation solutions applied by others [7].
Contemporary code review, also known as Modern Code Review (MCR) [7, 268], represents
a lightweight process that is (1) informal, (2) tool-based, (3) asynchronous, and (4) focused
on inspecting new proposed code changes rather than the whole codebase [14]. In a typical
code review process, developers (the reviewers) other than the code change author manually
inspect new committed changes to �nd as many issues as possible and provide feedback
that needs to be addressed by the author of the change before the code is accepted and put
into production [269].

Modern code review is a collaborative process in which reviewers and authors conduct
an asynchronous online discussion to ensure that the proposed code changes are of suf-
�ciently high quality [7] and �t the project’s direction [15] before they are accepted. In
code reviews, discussions range from low-level concerns (e.g., variable naming and code
style) up to high-level considerations (e.g., �t within the scope of the project and future
planning) and encompass both functional defects and evolutionary aspects [270]. For
example a reviewer may ask questions regarding the structure of the changed code [271]
or clari�cations about the rationale behind some design decisions [272], another reviewer
may respond or continue the thread of questions, and the author can answer the questions
(e.g., explaining the motivation that led to a change) and implement changes to the code to
address the reviewers’ remark.

Even though studies have shown that modern code review has the potential to support
software quality and dependability [16, 268, 273], researchers have also provided strong
empirical evidence that the outcome of this process is rather erratic and often unsatisfying
or misaligned with the expectations of participants [7, 270, 274]. This erratic outcome
is caused by the cognitive-demanding nature of reviewing [21], whose outcome mostly
depends on the time and zeal of the involved reviewers [268].

Based on this, a large portion of the research e�orts on tools and processes to help code
reviewing is explicitly or implicitly based on the assumption that reducing the cognitive
load of reviewers improves their code review performance [21]. In the current study, we
continue on this line of better supporting the code review process through the reduction
of reviewers’ cognitive load. Speci�cally, our goal is to investigate the information that
reviewers need to conduct a proper code review. We argue that—if this information would
be available at hand—reviewers could focus their e�orts and time on correctly evaluating
and improving the code under review, rather than spending cognitive e�ort and time on
collecting the missing information. By investigating reviewers’ information needs, we can
better understand the code review process, guide future research e�orts, and envision how
tool support can make developers become more e�ective and e�cient reviewers.

To gather data about reviewers’ information needs we turn to one of the collaborative
aspects of code review, namely the discussions among participants that happen during this
process. In fact, past research has shown that code review is more successful when there is
a functioning collaboration among all the participants. For example, Rigby et al. reported
that the e�ciency and e�ectiveness of code reviews are most a�ected by the amount of
review participation [275]; Kononenko et al. [169] showed that review participation metrics
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are associated with the quality of the code review process; McIntosh et al. found that a lack
of review participation can have a negative impact on long-term software quality [16, 276];
and Spadini et al. studied review participation in production and test �les, presenting a set
of identi�ed obstacles limiting the review of code [184]. For this reason, from code review
communication, we expect to gather evidence of reviewers’ information needs that are
solved through the collaborative discussion among the participants.

To that end, we consider three large open-source software projects and manually analyze
900 code review discussion threads that started from a reviewer’s question. We focus on
what kind of questions are asked in these comments and their answers. As shown in
previous research [277–280], such questions can implicitly represent the information needs
of code reviewers. In addition, we conduct four semi-structured interviews with developers
from the considered systems and one focus group with developers from a software quality
consultancy �rm, both to challenge our outcome and to discuss developers’ perceptions.
Better understanding what reviewers’ information needs are can lead to reduced cognitive
load for the reviewers, thus leading, in turn, to better and shorter reviews. Furthermore,
knowing these needs helps driving the research community toward the de�nition of
methodologies and tools able to properly support code reviewers when verifying newly
submitted code changes.

Our analysis led to seven high-level information needs, such as knowing the uses of
methods and variables declared/modi�ed in the code under review, and their analysis in
the code review lifecycle. Among our results, we found that the needs to know (1) whether
a proposed alternative solution is valid and (2) whether the understanding of the reviewer
about the code under review is correct are the most prominent ones. Moreover, all the
reviewers’ information needs are replied to within a median time of seven hours, thus
pointing to the large time savings that can be achieved by addressing these needs through
automated tools. Based on these results, we discuss how future code review tools can better
support collaboration and the reviewing task.

6.2 Background and Related Work
This section describes the basic components that form a modern code review as well as the
literature related to information needs and code review participation.

6.2.1 Background: The code review process
Figure 6.1 depicts a code review (pertaining to the OpenStack project) done with a typical
code review tool. Although this is one of the many available review tools, their functionali-
ties are largely the same [18]. In the following we brie�y describe each of the components
of a review as provided by code review tools.

Code review tools provide an ID and a status (part 1© in Figure 6.1) for each code review,
which are used to track the code change and know whether it has been merged (i.e., put
into production) or abandoned (i.e., it has been evaluated as not suitable for the project).
Code review tools also allow the change author to include a textual description of the code
change, with the aim to provide reviewers with more information on the rationale and
behavior of the change. However, past research has provided evidence that the quality
and level of detail of the descriptions that accompany code changes are often suboptimal
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Change 107871 - Merged

Implement EDP for a Spark standalone cluster

This change adds an EDP engine for a Spark standalone cluster.
The engine uses the spark-submit script and various linux
commands via ssh to run, monitor, and terminate Spark jobs.

Currently, the Spark engine can launch "Java" job types (this is
the same type used to submit Oozie Java action on Hadoop clusters)

A directory is created for each Spark job on the master node which
contains jar files, the script used to launch the job, the
job's stderr and stdout, and a result file containing the exit
status of spark-submit.  The directory is named after the Sahara
job and the job execution id so it is easy to locate.  Preserving
these files is a big help in debugging jobs.

A few general improvements are included:
* engine.cancel_job() may return updated job status
* engine.run_job() may return job status and fields for 
job_execution.extra
in addition to job id

Still to do:
* create a proper Spark job type (new CR)
* make the job dir location on the master node configurable (new CR)
* add something to clean up job directories on the master node (new CR)
* allows users to pass some general options to spark-submit itself (new 
CR)

Partial implements: blueprint edp-spark-standalone

Change-Id: I2c84e9cdb75e846754896d7c435e94bc6cc397ff

Author Alice <alice@redhat.com>

Committer Alice <alice@redhat.com>
5698799ee3642a28797c6022dd35f228616764e1

e23efe5471ed3e3ef3356918f80d91838f1c6585

I2c84e9cdb75e846754896d7c435e94bc6cc397ff

Commit
Parent(s)
Change-id

Owner Trevor McKay

Reviewers

5698799ee3642a28797c6022dd35f228616764e1

e23efe5471ed3e3ef3356918f80d91838f1c6585
Project
Branch

Bob Alice John Rob

Edward Sam Ryan Alex

Enzo Frank

Files Comments

sahara/service/edp/job_utils.py 46
sahara/service/edp/oozie/engine.py 46
sahara/service/edp/job_utils.py 18
sahara/service/edp/oozie/oozie.py 7
sahara/service/edp/resources/launch_command.py 66
sahara/service/edp/spark/engine.py 161
sahara/tests/unit/service/edp/spark/__init__.py 0
sahara/tests/unit/service/edp/spark/test_spark.py 383
sahara/tests/unit/service/edp/test_job_manager.py 10

sahara/plugins/spark/plugin.py 33

Alice
Patch Set 4:

The patch LGTM, apart from the small comment on the commit message.
One important question, though, is about the data sources. How is input and output specified for each jon submitted through Spark EDP?
Spark does not support Swift for now, so I would expect only HDFS to be available.

Bob
Patch Set 1:

sahara/service/edp/job_manager.py
     Line 68:                                           should this be guarded with:
                                                                       if job_info.get('status') in job_utils.terminated_job_states:
                            just in case 'status' doesn't exist?

…………..

Alice                        Uploaded patch set 1

History

1

2

3

4

5

Figure 6.1: Example of code review mined from Gerrit.



6.2 Background and Related Work

6

113

26
27
28
29
30
31
32
33
34
35
36
37
38
39

class FormPostTest(ObjectStorageFixture):

    @classmethod
    def setUpClass(cls):
        super(FormPostTest, cls).setUpClass()
        cls.key_cache_time = (
                cls.objectstorage_api_config.tempurl_key_cache_time)

        cls.object_name = cls.behaviors.VALID_OBJECT_NAME
        cls.object_data = cls.behaviors.VALID_OBJECT_DATA
        cls.content_length = str(len(cls.behaviors.VALID_OBJECT_DATA))
        cls.http_client = HTTPClient()
        cls.redirect_url = "http://example.com/form_post_test"

        cls.tempurl_key = cls.behaviors.VALID_TEMPURL_KEY

26
27
28
29
30
31
32

33
34
35
36
37
38
39

class FormPostTest(ObjectStorageFixture):

    @classmethod
    def setUpClass(cls):
        super(FormPostTest, cls).setUpClass()
        cls.key_cache_time = (
                cls.objectstorage_api_config.tempurl_key_cache_time)

        cls.object_name = cls.behaviors.VALID_OBJECT_NAME
        cls.object_data = cls.behaviors.VALID_OBJECT_DATA
        cls.content_length = str(len(cls.behaviors.VALID_OBJECT_DATA))
        cls.http_client = HTTPClient()
        cls.redirect_url = "http://example.com/form_post_test"

40
41
42
43

        keys_set = cls.behaviors.check_account_tempurl_keys()
        if keys_set:
            metadata_response = cls.client.get_account_metadata()
            cls.tempurl_key = \
            metadata_response.headers.get("X-Account-Meta-Temp-Url-Key")

    @ObjectStorageFixture.required_features('formpost')
    def test_object_formpost_redirect(self):
        """

40
41
42

44
45
46
47

    @ObjectStorageFixture.required_features('formpost')
    def test_object_formpost_redirect(self):
        """

Alice
Should there be a default value for the cls.tempurl_key, or should the fixture assert if keys_set is empty?
All of the tests depend on the attribute, but for whatever reason, if the X-Account-Meta-Temp-Url-Key is not 
present in the headers, the attribute will not exist, and the tests will error out in a ungraceful manner.

Apr 22, 2015

Reply Quote Done

Bob
So the check_account_tempurl_keys method will first check to see if the account keys are set and if they 
aren't, it will set them to some defaults. If, for some reason, it fails to set them properly, keys_set should be 
False instead of True. So, what I will do is have an else statement here which will raise an Exception but in 
all likelihood it would fail in the behaviors beforehand.

Apr 22, 2015

Reply Quote Done

Figure 6.2: Example of code review comments mined from Gerrit.

[271], thus making it harder for reviewers to properly understand the code change through
this support. The fact that the change description is often not optimal strengthens the
importance of the goal of our study: An improved analysis of developers’ needs in code
review can provide bene�ts in terms of review quality [169].

The second component of a typical code review tool is a view on the technical meta-
information on the change under review (part 2© in Figure 6.1). This meta-information
include author and committer of the code change, commit ID, parent commit ID, and change
ID, which can be used to track the submitted change over the history of the project.

Part 3© of the tool in Figure 6.1 reports, instead, more information on who are the
reviewers assigned for the inspection of the submitted code change, while part 4© lists the
source code �les modi�ed in the commit (i.e., the �les on which the review will be focused).

Finally, part 5© is the core component of a code review tool and the one that involves
most collaborative aspects. It reports the discussion that author and reviewers are having
on the submitted code change. In particular, reviewers can ask clari�cations or recommend
improvements to the author, who can instead reply to the comments and propose alternative
solutions. This mechanism is often accompanied by the upload of new versions of the code
change (i.e., revised patches or iterations), which lead to an iterative process until all the
reviewers are satis�ed with the change or decide to not include it into production. Figure
6.2 shows a di�erent view that contains both reviews and authors comments. In this case,
the involved developers discuss about a speci�c line of code, as opposed to Alice from the
previous example who commented on the entire code change (Figure 6.1, end of part 5©).

6.2.2 Related Work
Over the last decade the research community spent a considerable e�ort in studying code
reviews (e.g., [184, 268, 270, 281–284]). In this section, we compare and contrast our work
to previous research in two areas: �rst, we consider studies that investigate the information
needs of developers in various contexts, then we analyze previous research that focused
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on code review discussion, participation, and time.

Information needs
Breu et al. [279] conducted a study—which has been a great inspiration to the current study
we present here—on developers’ information needs based on the analysis of collaboration
among users of a software egineering tool (i.e., issue tracking system). In their study, the
authors have quantitatively and qualitatively analyzed the questions asked in a sample of
600 bug reports from two open-source projects, deriving a set of information needs in bug
reports. The authors showed that active and ongoing participation were important factors
needed for making progress on the bugs reported by users and they suggested a number
of actions to be performed by the researchers and tool vendors in order to improve bug
tracking systems.

Ko et al. [277] studied information needs of developers in collocated development teams.
The authors observed the daily work of developers and noted the types of information
desired. They identi�ed 21 di�erent information types in the collected data and discussed
the implications of their �ndings for software designers and engineers. Buse and Zimmer-
mann [280] analyzed developers’ needs for software development analytics: to that end,
they surveyed 110 developers and project managers. With the collected responses, the
authors proposed several guidelines for analytics tools in software development.

Sillito et al. [285] conducted a qualitative study on the questions that programmers
ask when performing change tasks. Their aim was to understand what information a
programmer needs to know about a code base while performing a change task and also
how they go about discovering that information. The authors categorized and described 44
di�erent kinds of questions asked by the participants. Finally, Herbsleb et al. [286] analyzed
the types of questions that get asked during design meetings in three organizations. They
found that most questions concerned the project requirements, particularly what the
software was supposed to do and, somewhat less frequently, scenarios of use. Moreover,
they also discussed the implications of the study for design tools and methods.

The work we present in this paper is complementary with respect to the ones discussed
so far: indeed, we aim at making a further step ahead investigating the information needs
of developers that review code changes with the aim of deepening our understanding of the
code review process and of leading to future research and tools to better support reviewers
in conducting their tasks.

Code Review Participation and Time
Extensive work has been done by the software engineering research community in the
context of code review participation. Abelein et al. [287] investigated the e�ects of user
participation and involvement on system success and explored which methods are avail-
able in literature, showing that it can have a signi�cant correlation with system quality.
Thongtanunam et al. [288] showed that reviewing expertise (which is approximated based
on review participation) can reverse the association between authoring expertise and
defect-proneness. Even more importantly, Rigby et al. [275] reported that the level of re-
view participation is the most in�uential factor in the code review e�ciency. Furthermore,
several studies have suggested that patches should be reviewed by at least two developers to
maximize the number of defects found during the review, while minimizing the reviewing
workload on the development team [14, 289–291].
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Thongtanunam et al. [276] showed that the number of participants that are involved
with a review has a large relationship with the subsequent defect proneness of �les in the Qt
system: A �le that is examined by more reviewers is less likely to have post-release defects.
Bavota et al. [292] also found that the patches with low number of reviewers tend to have
a higher chance of inducing new bug �xes. Moreover, McIntosh et al. [16, 168] measured
review investment (i.e., the proportion of patches that are reviewed and the amount of
participation) in a module and examined the impact that review coverage has on software
quality. They found that patches with low review investment are undesirable and have a
negative impact on code quality. In a study of code review practices at Google, Sadowski et
al. [293] found that Google has re�ned its code review process over several years into
an exceptionally lightweight one, which–in part–seems to contradict the aforementioned
�ndings. Although the majority of changes at Google are small (a practice supported by
most related work [294]), these changes mostly have one reviewer and have no comments
other than the authorization to commit. Ebert et al. [295] made the �rst step in identifying
the factors that may confuse reviewers since confusion is likely impacts the e�ciency and
e�ectiveness of code review. In particular, they manually analyzed 800 comments of code
review of Android projects to identify those where the reviewers expressed confusion.
Ebert et al. found that humans can reasonably identify confusion in code review comments
and proposed the �rst binary classi�er able to perform the same task automatically; they
also observed that identifying confusion factors in inline comments is more challenging
than general comments. Finally, Spadini et al. [184] analyzed more than 300,000 code
reviews and interviewed 12 developers about their best practices when reviewing test �les.
As a result, they presented an overview of current code review practices, a set of identi�ed
obstacles limiting the review of test code, and a set of issues that developers would like to
see improved in code review tools. Based on their �ndings, the authors proposed a series
of recommendations and suggestions for the design of tools and future research.

Furthermore, previous research investigated how to make a code review shorter, hence
making patches be accepted at a faster rate. For example, Jiang et al. [296] showed that
patches developed by more experienced developers are more easily accepted, reviewed
faster, and integrated more quickly. Additionally, authors stated that reviewing time is
mainly impacted by submission time, the number of a�ected subsystems by the patch and
the number of requested reviewers. Baysal et al. [297] showed that size of the patch or
the part of the code base being modi�ed are important factors that in�uenced the time
required to review a patch, and are likely related to the technical complexity of a given
change.

Recently, Chatley and Jones have proposed an approach aimed at enhancing the per-
formance of code review [298]. The authors built Diggit to automatically generate code
review comments about potentially missing changes and worrisome trends in the growth
of size and complexity of the �les under review. By deploying Diggit at a company,
the authors found that the developers considered Diggit’s comments as actionable and
�xed them with an overall rate of 51%, thus indicating the potential of this approach in
supporting code review performance.

Despite many studies showing that code review participation has a positive impact
on the overall software development process (i.e., number of post-release defects and
time spent in reviewing), none of these studies focused on what are the developers needs
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when performing code review. To �ll this gap, our study aims at increasing our empirical
knowledge on this �eld by mean of quantitative and qualitative research, with the potential
of reducing the cognitive load of reviewers and the time needed for the review.

6.3 Methodology
The goal of our study is to increase our empirical knowledge on the reviewers’ needs when
performing code review tasks, with the purpose of identifying promising paths for future
research on code review and the next generation of software engineering tools required to
improve collaboration and coordination between source code authors and reviewers. The
perspective is of researchers, who are interested in understanding what are the developers’
needs in code review, therefore, they can more e�ectively devise new methodologies and
techniques helping practitioners in promoting a collaborative environment in code review
and reduce discussion overheads, thus improving the overall code review process.

Starting from a set of discussion threads between authors and reviewers, we start our
investigation by eliciting the actual needs that reviewers have when performing code
review:

• RQ1: What reviewers’ needs can be captured from code review discussions?

Speci�cally, we analyze the types of information that reviewers may need when re-
viewing, we compute the frequency of each need, and we challenge our outcome with
developers from the analyzed systems and from an external company. Thus, we have three
sub-questions:

• RQ1.1: What are the kinds of information code reviewers require?

• RQ1.2: How often does each category of reviewers’ needs occur?

• RQ1.3: How do developers’ perceive the identi�ed needs?

Once investigated reviewers’ needs from the reviewer perspective, we further explore
the collaborative aspects of code review by asking:

• RQ2: What is the role of reviewers’ needs in the lifecycle of a code review?

Speci�cally, we �rst analyze how much each reviewers’ need is accompanied by a
reply from the author of the code change: in other words, we aim at measuring how much
authors of the code under review interact with reviewers to make the applied code change
more comprehensible and ease the reviewing process. To complement this analysis, we
evaluate the time required by authors to address a reviewer’s need; also in this case, the
goal is to measure the degree of collaboration between authors and reviewers. Finally, we
aim at understanding whether and how the reviewers’ information needs vary at di�erent
iterations of the code review process. For instance, we want to assess whether some speci�c
needs arise at the beginning of the process (e.g., because the reviewer does not have enough
initial context to understand the code change) or, similarly, if clari�cation questions only
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appear at a later stage (e.g., when only the last details are missing and the context is clear).
Accordingly, we structure our second research question into three sub-questions:

• RQ2.1: What are the reviewers’ information needs that attract more discussion?

• RQ2.2: How long does it take to get a response to each reviewers’ information need?

• RQ2.3: How do the reviewers’ information needs change over the code review process?

The following subsections describe the method we use to answer our research questions.

6.3.1 Subject Systems
The �rst step leading to address our research goals is the selection of a set of code reviews
that might be representative for understanding the reviewers’ needs when reviewing source
code changes. We rely on the well-known Gerrit platform,1 which is a code review tool
used by several major software projects. Speci�cally, Gerrit provides a simpli�ed web
based code review interface and a repository manager for Git.2 From the open-source
software systems using Gerrit, we select three: OpenStack,3 Android,4 and QT.5 The
selection was driven by two criteria: (i) These systems have been extensively studied in the
context of code review research and have been shown to be highly representative of the
types of code review done over open-source projects et al. [16, 168, 292]; (ii) these systems
have a large number of active authors and reviewers over a long development history.

6.3.2 Gathering Code Review Threads
We automatically mine Gerrit data by relying on the publicly available APIs it provides.
For the considered projects, the number of code reviews is over one million: this makes the
manual analysis of all of them practically impossible. Thus, as done by Breu et al. [279], we
select a random subset composed of 300 code reviews per project, for which we identify
up to 1,800 messages (i.e., we extract a total of 900 code review threads). Since we are
interested in discussions, we take into account only closed code reviews by considering
both merged and abandoned patches, while we do not consider recently opened or pending
requests.

We detect reviewers’ questions (considering the presence of a ‘?’ sign) that start a
discussion thread and we extract all the subsequent comments (made by the author, the
reviewer, or other developers) in the whole thread.

The considered threads refer to both patch sets and inline discussions. To better
illustrate the mining process of general discussions, Figure 6.1 reports a code review
extracted from OpenStack. As shown in the bottom of the �gure (part 5©), author and
reviewers opened a discussion on the performed change. Figure 6.2 shows a thread of
discussion started at line level. In both cases, all the comments among the participants
1https://www.gerritcodereview.com/
2https://git-scm.com/
3https://review.openstack.org/
4https://android-review.googlesource.com/
5https://codereview.qt-project.org
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Figure 6.3: The taxonomy of reviewers’ information needs that emerged from our analysis

represent the types of discussion threads that we use to detect the information needs of
reviewers.

For each identi�ed thread, we store the following information:

• the Gerrit id of the code review;

• the revision id that identi�es the patch set of a code review;

• the opening question, the answers, and the source code URL identi�er of the change;

• the practitioner name e.g., author or reviewer;

• the code review status, i.e., whether it is merged or abandoned;

• the size of the thread counting the number of comments present into discussion;

• the creation and the update time.

We use the aforementioned pieces of information to answer our research questions as
detailed in the following.

6.3.3 RQ1 - Identifying the Reviewers’ Needs from Code Re-
view Discussions

To answer RQ1.1, we manually identify the reviewers’ needs in code review by following
a similar strategy as done in previous work on information needs [277, 279, 280, 285,
286]. Speci�cally, we perform a card sorting method [76] that involves all the authors of
this paper (2 graduate students, 1 research associate, and 1 faculty member - who have
at least seven years of programming experience). From now on, we refer to them as
the inspectors. This method represents a well-established sorting technique that is used
in information architecture with the aim of creating mental models and allowing the
de�nition of taxonomies from input data [76]. In our case, it is used to organize code review
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threads into hierarchies and identify common themes. We rely on code review threads
(i.e., questions and answers) to better understand the meaning behind reviewers’ questions
that may implicitly de�ne the reviewers’ need. Finally, we apply an open card sorting: We
have no prede�ned groups of reviewers’ information needs, rather the needs emerge and
evolve during the procedure. In our case, the process consists of the three iterative sessions
described as follow.

Iteration 1: Initially, two inspectors (the �rst two authors of this paper) independently
analyze an initial set of 100 OpenStack code review threads each. Then, they open a
discussion on the reviewers’ needs identi�ed so far and try to reach a consensus on the
names and types of the assigned categories. During the discussion, also the other two
inspectors participate with the aim of validating the operations done in this iteration and
suggesting possible improvements. As an output, this step provides a draft categorization
of reviewers’ needs.

Iteration 2: The �rst two inspectors re-categorize the 100 initial reviewers’ needs accord-
ing to the decisions taken during the discussion; then, they use the draft categorization
as a basis for categorizing the remaining set of 200 code review threads belonging to
OpenStack. This phase is used for both assessing the validity of the categories emerging
from the �rst iteration (by con�rming some of them and rede�ning others) and for
discovering new categories. Once this iteration is completed, all the four inspectors open
a new discussion aimed at re�ning the draft taxonomy, merging overlapping categories
or better characterizing the existing ones. A second version of the taxonomy is produced.

Iteration 3: The �rst two inspectors re-categorize the 300 code review threads previously
analyzed. Afterwards, the �rst inspector classi�es the reviewers’ needs concerning the
two remaining considered systems. In doing so, the inspector tries to apply the de�ned
categories on the set of code review threads of Android and QT. However, in cases where
the inspector cannot directly apply the categories de�ned so far, the inspector reports
such cases to the other inspectors so that a new discussion is opened. Unexpectedly this
event did not eventually happen in practice; in fact, the inspector could �t all the needs
in the previously de�ned taxonomy, even when considering new systems. This result
suggests that the categorization emerging from the �rst iterations reached a saturation
[299], valid at least within the considered sample of threads.
Additional validation. To further check and con�rm the operations performed by the
�rst inspector, the third author of this paper—who was only involved in the discussion of
the categories, but not in the assignment of the threads into categories—independently
analyzed all the code review threads belonging to the three considered projects. The
inspector classi�ed all the 900 threads according to the second version of the taxonomy,
as de�ned through iteration 2. The inspector did not need to de�ne any further categories
(thus suggesting that the taxonomy was exhaustive for the considered sample), however
in six cases there were a disagreement between the category he assigned and the one
assigned by the �rst author: as a consequence, the two authors opened a discussion in
order to reach an agreement on the actual category to assign to those code review threads.
Overall, the inter-rater agreement between this inspector and the �rst one, computed
using the Krippendor�’s k [300], was 98%.
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Following this iterative process, we de�ned a hierarchical categorization composed
of two layers. The top layer consists of seven categories, while the inner layer consists
of 18 subcategories. Figure 6.3 depicts the identi�ed top- and sub-categories. During the
iterative sessions, ≈4% of the analyzed code review threads are discarded from our analysis
since they do not contain useful information to understand the reviewers’ needs. We assign
these comments to four temporary sub-categories that indicate the reasons why they are
discarded (e.g., they are noise or sarcastic comments), successively, we gathered these
comments, in an additional top-category Discarded.

To answer RQ1.1, we report the reviewers’ needs belonging to the categories identi�ed
in the top layer.

Subsequently, to answer RQ1.2 and understand how frequently each category of our
needs appears, we verify how many information needs are assigned to each category. In
this way, we can overview the most popular reviewers’ needs when performing code review
tasks. We answer this research question by presenting and discussing bar plots showing
the frequency of each identi�ed category.

To answer RQ1.3, we discuss the outcome of the previous sub-RQs with developers of
the three considered systems and an external company. This gives us the opportunity to
challenge our �ndings, triangulate our results, and complement our vision on the problem.

Table 6.1: Interviewees’ experience (in years) and their working context.

ID Years as developer Years as reviewer Working context
P1 15 10 OpenStack
P2 20 10 OpenStack
P3 25 20 Qt
P4 10 10 Android

FG1 8 7 Company A
FG2 10 10 Company A
FG3 7 5 Company A

Interviews with reviewers from the subject systems. To organize the discussion
with the developers of Android, OpenStack, and Qt, we use semi-structured interviews–a
format that is often used in exploratory investigations to understand phenomena and seek
new insights [301]. A crucial step in this analysis is represented by the recruitment strategy,
i.e., the way we select and recruit participants for the semi-structured interviews. With the
aim of gathering feedback and opinions from developers having a solid experience with
the code review practices of the considered projects, we select only developers who had
conducted at least 100 reviews6 in their respective systems. Then, we randomly select 10
per system and invite them via email to participate in an online, video interview. Four
experienced code reviewers accepted to be interviewed: two from OpenStack, one from Qt,
and one from Android. The response rate achieved (17%) is in line with the one achieved
by many previous works involving developers [47, 302, 303]. Table 6.1 summarizes the
interviewees’ demographic.
6This minimum number of reviews to ensure an appropriate experience of the interviewees is aligned with the
numbers used in previous studies on code review (e.g., [7]).
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The interviews are conducted by the �rst two authors of this work via Skype. With
the participants’ consent all the interviews are recorded and transcribed for analysis. Each
interview starts with general questions about programming and code reviews experience. In
addition, we discuss whether the interviewees consider code reviews important, which tool
they prefer, and generally how they conduct reviews. Overall, we organize the interview
structure around �ve sections:

1. General information regarding the developer;

2. General perceptions on and experience with code review;

3. Speci�c information needs during code review;

4. Ranking of information needs during code review;

5. Summary.

The main focus regarding the information needs is centered around points 3 and 4: We
iteratively discuss each of the categories emerged from our analysis (also showing small
examples where needed). Afterwards, we discuss the following main questions with each
interviewee:

1. What is your experience with <category>?

2. Do you think <category> is important to successfully perform a code review? Why?

3. Do you think current code review tools support this need?

4. How would you improve current tools?

Our goal with these questions is to allow us to better understand the relevance of each
developer’s need and whether developers feel it is somehow incorporated in current code
review tools or, if not, how they would envision this need incorporated. Successively, we
ask developers to rank the categories according to their perceived importance. Our goal is
to understand what the interviewees perceive as the most important needs and why. To
conclude the interview, the �rst two authors of this paper summarize the interview, and
before �nalizing the meeting, these summaries are presented to the interviewee to validate
our interpretation of their opinions.

Focus group with an external commercial company. While the original develop-
ers provide an overview of the information needs identi�ed in the context of the systems
analyzed in this study, our �ndings may not provide enough diversity. To improve this
aspect, we complement the aforementioned semi-structured interviews with an additional
analysis targeting experts in assessing the source code quality of systems. In particular, we
recruited three employees from a �rm in Europe specialized in software quality assessments
for their customers. The mission of the �rm is the de�nition of techniques and tools able
to diagnose design problems in the clients’ source code, with the purpose of providing
consultancy on how to improve the productivity of their clients’ industrial developers. Our
decision to involve these quality experts is driven by the willingness to receive authoritative
opinions from professionals who are used to perform code reviews for their customers.
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The three participants have more than 15 years in assess code quality and more than 10
years of experience in code review.

In this case we proceed with a focus group [70, 71] because it better �ts our methodology.
Indeed, this technique is particularly useful when a small number of people is available for
discussing about a certain problem [70, 71] and consists of the organization of a meeting
that involves the participants and a moderator. The moderator starts the discussion by
asking general questions on the topic of interest and then leaves the participants to openly
discuss about it with the aim of gathering additional qualitative data useful for the analysis
of the results. In the context of this paper, the �rst two authors of the paper are the
moderators in a meeting directly organized in the consultancy �rm. The focus group is one
hour long and the participants re�ected on and discuss the information needs we identi�ed
and what are the factors in�uencing their importance. From this analysis, our aim is also
to better understand the external validity of our taxonomy.

6.3.4 RQ2 - On the role of reviewers’ needs in the lifecycle
of a code review

In the context of the second research question we perform a �ne-grained investigation
of the role of reviewers’ needs in code review. We analyze which of them capture more
replies, what is the time required for getting an answer, and whether reviewers’ needs
change throughout the iterations.

Speci�cally, we consider code review threads related to the same reviewer’s need
independently. Then, to answer RQ2.1 we computed the number of replies that each group
received: this is a metric that represents how much in deep reviewers and authors should
interact to be able to exchange the information necessary to address the code review. We do
not assess the quality of the responses, since we aim at reporting quantitative observations
on the number of answers provided by authors to a reviewer’s need.

As for RQ2.2, this represents a follow-up of the previously considered aspect. Indeed,
besides assessing the number of replies for each reviewers’ need, we also measure the time
(in terms of minutes) needed to get a response. This complementary analysis can possibly
provide insights on whether certain needs require authors to spend more time to make
their change understandable, thus providing information on the relative importance of
each need which might be further exploited to prioritize software engineering research
e�ort when devising and developing new techniques to assist code reviewers.

Finally, to answer RQ2.3 and understand how the reviewers’ needs change over the
code review iterations, we measure the number of times a certain need appears in each
iteration of a code review. This analysis may possibly lead to observations needed by the
research community to promptly provide developers with appropriate feedback during the
di�erent phases of the code review process.

As a �nal step of our methodology, we compute pairwise statistical tests aimed at
verifying whether the observations of each sub-research question are statistically signi�cant.
We apply the Mann-Whitney test [304]. This is a non-parametric test used to evaluate
the null hypothesis stating that it is equally likely that a randomly selected value from
one sample will be less than or greater than a randomly selected value from a second
sample. The results are intended as statistically signi�cant at �=0.05. We also estimate the
magnitude of the measured di�erences by using the Cli�’s Delta (or d), a non-parametric
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e�ect size measure for ordinal data [305]. We follow well-established guidelines to interpret
the e�ect size values: negligible for |d |<0.10, small for 0.10≤ |d | < 0.33, medium for 0.33
≤ |d | < 0.474, and large for |d | ≥ 0.474 [305].

6.4 Results
In this section, we present and analyze the results of our study by research question.

6.4.1 RQ1 - A Catalog of Reviewers’ Information Needs
We report the results of our �rst research questions, which aimed at cataloging reviewers’
information needs in code review and assessing their di�usion. For the sake of comprehen-
sibility, we answer each sub-research question independently.

RQ1.1: What are the kinds of information code reviewers require?

Following the methodology previously described (Section 6.3.3), we obtained 22 groups
of reviewers’ information needs. They were then clustered according to their intention
into seven high-level categories that represent the classes of information needs associated
with the discussion threads considered in our study. We describe each high-level category
also including representative examples.

N1. Suitability of An Alternative Solution
This category emerged by grouping threads in which the reviewer poses a question
to discuss options and alternative solutions to the implementation proposed by
the author in the �rst place. The purpose is not only to evaluate alternatives but
also to trigger a discussion on potential improvements. The example reported in
the following reports a case where the reviewer starts reasoning on how much an
alternative solution is suitable for the proposed code change.

R: “. . . Since the change owner is always admin, this code might be able to move
out of the loop? The following should be enough for this? [lines of code]"

N2. Correct understanding
In this category, we group questions in which the reviewers try to ensure to have
captured the real meaning of the changes under review; in other words, this category
refers to questions asked to get a consensus of reviewers’ interpretation and to clarify
doubts. This is more frequent when code comments or related documentation is
missing. as reported in the example shown in the following.

R: “This is now an empty heading . . .Or do you feel it is important to point out
that these are C++ classes?”
A: “The entire page is split up into [more artifacts]. The following sections only
refer to [one artifact]. I added a sentence introducing the section."
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N3. Rationale
This category refers to questions asked to get missing information that may be
relevant to justify why the project needs the submitted change set or why a speci�c
change part was implemented/designed in a certain way. For example, a reviewer
may request more details about the issue that the patch is trying to address. These
details help the reviewer in better understanding whether the change �ts with the
project scope and style. For instance, in the example reported below the reviewer (R)
asks why the author replaced a piece of code.

R: “Can you explain why you replaced [that] with [this] and where exactly was
failing?”

N4. Code Context
In this category, we grouped questions asked to retrieve information aimed at clari-
fying the context of a given implementation. During a code review, a reviewer has
access to the entire codebase and, in this way, may reconstruct the invocation path
of a given function to understand the impact of the proposed change. However,
we observed that the reviewer needs contextual information to clarify a particular
choice made by authors. These questions range from very speci�c (i.e., aimed at
understanding the code behavior) to more generic (i.e., aimed at clarifying the context
in which such code is executed). The author replies to such questions by providing
additional explanations on the code change or contextual project details. For instance,
let consider the thread reported below, where the Author (A) replies to the Reviewer
(R) by pointing R to the �le (and the line) containing the asked clari�cation.

R: “In what situations would [this condition] be false, but not unde�ned?”
A: “See [�le], exactly in line [number], in this case the evaluation of the expression
returns false.”
R: “It may be helpful to add a comment documenting these situations to avoid
future regressions.”

N5. Necessity
In this category, the reviewer needs to know whether a (part of) the change is really
necessary or can be simpli�ed/removed. For example, a reviewer may spot something
that seems like a duplicated code, yet is unsure if whether the existing version is
a viable solution or it should be implemented as proposed by the author. In the
example below, the reviewer asks whether a certain piece of code could be removed.

R: “Is this needed?”
A: “I believe its only required if you have methods after the last enum value, but
I generally add it regardless. We have a pretty arbitrary mix.”
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N6. Specialized Expertise
Threads belonging to this category regard situations in which a reviewer �nds or
feels there is a code issue, however, the reviewer’s knowledge is not appropriate to
propose a solution. In these cases, typically a reviewer asks other reviewers to step
in and contribute with their specialized expertise. Sometimes, reviewers may ask
the author to propose informal alternatives that may better address the found issue.
The examples reported below show two cases where the reviewer encourages other
developers to reason on how to �x an issue.

R: “. . . Lars, Simon, any ideas? We really need to �x this for [the next release]
and the time draws nigh”

R: “I need a better way to handle this . . . not a good idea to hard code digits in
there. example also needs to be removed, its there just to make the tests pass.”

N7. Splittable
For several reasons (including reducing the cognitive load of reviewers [306]), authors
want to propose changes that are atomic and self-contained (e.g., address a single
issue or add a single feature). However, sometimes, what authors propose may be
perceived by reviewers as something that can be addressed by di�erent code changes,
thus reviewed separately. For this reason, a reviewer needs to understand whether
the split she has in mind can be done; based on this the reviewer asks questions aimed
at �nding practical evidence behind this idea. In other words, this category gathers
questions proposed by reviewers who need to understand whether the proposed
changes can be split into multiple, separated patches. For example, the thread below
reports a question where the reviewer (R) asks the author about the possibility of
splitting unrelated changes, but the feasibility of this split is not con�rmed.

R: “This looks like an unrelated change. Should it be in a separate commit?”
A: “Actually its related. The input object is needed to log the delete options.”
R: “OK, I wasn’t sure because in the previous version we don’t pass ‘force’ into
the method, but now we do pass it in via the ‘input’.”

In addition to the aforementioned categories, we found several cases in which the
presence of a question or question mark did not correspond to a real information need,
similarly to the aforementioned categorized information needs, we provide an example in
the following.

R: “I hate name as a name. What kind of name is this?”

R: ‘If you thought it was necessary to check exe() for errors, then why’d you leave
out [another part] here? :)”
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Figure 6.4: Distribution of reviewers’ information needs across the considered systems.

RQ1.2: How often does each category of reviewers’ needs occur?

Figure 6.4 depicts bar plots that show the distribution of each reviewers’ need over the
considered set of code review threads. The results clearly reveal that not all the information
needs are equally distributed and highlight the presence of a particular type (i.e., N1.
‘Suitability of an alternative solution’), which has a way larger number of occurrences
with respect to all the others (the result is consistent over the three considered systems).
Thus, we can argue that one of the most useful tools for reviewers would de�nitively be
one that allows them to have just-in-time feedback on the actual practicability of possible
alternative solutions with respect to the one originally implemented by the authors of the
committed code change.

The second most popular category is represented by ‘Correct understanding’ (N2), i.e.,
questions aimed at assessing the reviewers’ interpretation of the code change and to clarify
doubts. This �nding basically con�rms one the main outputs of the work by Bacchelli and
Bird [7], who found that code review is understandability. The popularity of this category is
similar in all the considered projects, con�rming that this need is independent from the
type of system or the developers working on it.

Still, a pretty popular need is ‘Rationale’ (N3). This has also to do with the understand-
ability of the code change, however in this case it seems that a common reviewers’ need
is having detailed information on the motivations leading the author to perform certain
implementation choices.

Other categories are less di�used, possibly indicating that reviewers do not always need
such types of information. For instance, ‘Splittable’ (N7) is the category having the lowest
number of occurrences. This might be either because of the preventive operations that the
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development community adopts to limit the number of tangled changes [307] or because of
the attention that developers put when performing code changes. In any case, this category
seems to be less di�used and, as a consequence, one can claim that future research should
spend more e�ort on di�erent (most popular) reviewers’ information needs.

RQ1.3: How do developers’ perceive the identi�ed needs?

In this section, we present the results of our interviews and focus group with developers.
First, we report on the participants’ opinions on the taxonomy derived from the previous
two sub-research questions, then we describe the most relevant themes that emerged from
the analysis of the transcripts. We refer to individual interviewees using their identi�ers
(P# and FG#).

Participants’ opinion on the taxonomy. In general, all interviewees agreed on
the information needs emerged from the code review threads: For all the categories, the
developers agreed that they were asking those types of question themselves, several times
and repeatedly. Furthermore, the order of importance of the categories was also generally
agreed upon: According to the interviewees, the most important and discussed topic is
‘suitability of an alternative solution’ (N1), followed by ‘understanding’ (N2), ‘rationale’
(N3), and ‘code context’ (N4). Interestingly, the ‘splittable’ (N7) category is perceived as
very important for the interviewed developers, but they con�rmed that it happens rarely
to receive big and long patches to review.

Although also the participants in the focus group agreed with the taxonomy of needs
and their ranking, they stated that questions regarding ‘correct understanding’ (N2) are
not common (in our taxonomy is ranked second). When discussing this di�erence with
the focus group participants, they argued that this discrepancy was probably due to the
type of projects we analyzed: Indeed, we analyzed open-source systems, while the focus
group was conducted with participants working in an industrial, closed-source setting.
One developer said: "if I don’t understand something of the change, I just go to my colleague
that created it and ask to him. This is possible because we are all in the same o�ce in the
same working hours, while this is not the case in the projects you analyzed."

Understanding a code change to review. An important step for all the interviewees
when it comes to reviewing a patch is to understand the rationale behind the changes (N3).
P1 explained that to understand why the author wrote the patch, he �rst reads the commit
message, since “[it] should be enough to understand what’s going on.” Interviewees said
that it is very useful to have attached a ticket to the commit message, for example a
JIRA issue, to really understand why it was necessary submitting the patch [P1−4, FG1−3].
However, sometime the patch is di�cult to understand, and this leads to reviewers asking
for more context or rationale of the change, as P1 put it: "Sometime the commit message
just says "Yes, �x these things." And you say "Why? Was it broken? Is there a bug report
information?" So in this case there is not enough description, and I would have to ask for
it". Interestingly, P1 reported that this issues generally happens with new contributors
or with novice developers. During the focus group, FG3 said he also uses tests to obtain
more context about the change: "In general, to get more context I read the Java docs or the
tests." Finally, all the interviewees explained that to obtain more context, or the rationale
behind the change, they use external IRC channels (outside Gerrit) to get in touch with
reviewers/authors, e.g., by emails, or Slack.
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Authors’ information needs. Considering the point of view of the author of a
change, the interviewees explained that code review is sometimes used as a way to get
information from specialized experts, thus underling the dual nature of the knowledge
exchange happening in code review [15, 15]. P2 explained that it is sometimes di�cult
for an author to have all the information they need to make the change, for example if
the change is in a part of the system where they are not expert. In this case, P2 explained:
"when you make a change, you usually add the experts of the system to your review, and then
you ping them on IRC, asking for a review, if they have some time." Interestingly, this point
also came up during the focus group, where a developer said "if it’s a new system [...] my
knowledge lacks at one front, it may be technology, it may be knowledge of the system." In
this case, the developer would ask the help of colleagues. This is also in line with another
need we discovered in the previous research question, that is the ‘Specialized Expertise’
(N6). Indeed, interviewees said that when they are not familiar with the change, or they do
not have the full context of the change, they ask an expert to contribute: "[in the project
where I work] we have sub-system maintainers: they are persons with knowledge in that area
and have more pleasure or willingness to work on those specialized areas. If the reviewers do
not reach consensus during the review, we always ask to those experts." [P4].

Small and concise patches. When discussing with developers the ‘Splittable’ (N7)
need, all agreed that patches should be self-contained as much as possible [P1−4, FG1−3].
P3 said: "I always ask to split it, because in the end it will be faster to get it in [the system]."
P4 added that it is something that they do all the time, because usually people do not see
this issue. P2 said: "It’s always better to have 10 small reviews than one big review with all
the changes, because no one will review your code. It’s like that. So if you want to merge
something big, it’s always better to do it in small changes."

Another point raised during the interviews is that large patch sets are di�cult to review
and require a lot of time to read [P1−4, FG1−3], thus this may delay the acceptance of the
patches. P4 explained: "You can have a large patch set that is 90% okay and 10% that not
okay: the 10% will generate a lot of discussion and will block the merge of 90% of the code. So
yes, it’s something that I do all the time. I ask people, you need to organize better the patch."

When talking about the issue, P1 also added that having small patches is very important
for making it easier to revert them: "yes this is something I �nd it to be really, really important.
Bugs are everywhere – there is always another bug to �x. So the patch should be small enough
that [in case of bugs] you can revert it without breaking any particular code."

Interestingly, all the interviewees agreed that tools could help reviewers and authors
in solving this need: for example, when submitting a large patch, the tool could suggest
the author to split it into more parts to ease the reviewing process.

O�ering a solution. All interviewees agreed that to do a proper code review, reviewers
should always pinpoint the weak parts in the code and o�er a solution [P1−4, FG1−3]. P3 said:
"When I request the change, I usually put a link or example because I know that maybe the other
guy doesn’t know about the other approach. This is usually the main reason why somebody
didn’t do something: because he didn’t know it was possible." P1 added: "[...] whenever you
propose a change, you should always explain why you need to change it and what. Just putting
[the score to] minus two, or even minus one without explanation, is bad because then people
don’t know what to do. We have to try being more friendly as a community." This constructive
behavior was also agreed upon during the focus group: one developer said that the worst
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Figure 6.5: Distribution of the number of replies for each reviewers’ need.

thing that can happen in a code review is a non-constructive comment. Interestingly, this
reported behavior con�rms what we discovered in our previous research question: indeed,
‘Suitability of an alternative solution’ (N1) is the most frequent type of question when
doing code review.

In addition, concerning constructive feedback, interviewees said that when they do not
fully understand a change, they �rst ask the author explanations: "For example, if you don’t
understand correctly the change this person is trying to add, you just ask him, and they are
forced to answer you. And if you don’t have the context information, they should be able to
provide it to you."[P2] Interviewees said that it is better to ask explanation to the author �rst,
and only after decide to/not merge the patch. P4 also explained that sometime it is better
to accept a patch than start a big discussion on small detail: "Even though I understand that
a better solution will be doable, I’ll probably won’t propose it because a lot of times people
won’t have time to actually rework on a new proposal, and you need to balance how you want
the project to move forward: Sometimes it’s better to have a code that is not the best solution,
but at least does not regress and it �xes a bug."

6.4.2 RQ2 - TheRoleofReviewers’ InformationNeeds InACode
Review’s Lifecycle

We present the results achieved when answering our second research question, which was
focused on the understanding of the role of reviewers’ information needs in the lifecycle of
the code review process. We report the results by considering each sub-research question
independently.

RQ2.1: What are the reviewers’ information needs that attract more discussion?

To answer RQ2.1 and understand to what extent the reviewers’ needs attract developers’
discussions, we compute, for each discussion thread that we manually categorized, the
number of iterations that involve the developers of a certain code review.

Figure 6.5 depicts box plots reporting the distribution of the number of answers for
each reviewers’ need previously identi�ed (red dots indicate the mean). Approximately
18% of code review threads (considering both merged and abandoned patches of every
projects) do not have an answer. The �rst observation regards the median value of each
distribution: as shown, all of them are within one and three, meaning that most of the
threads are concluded with a small amount of discussion. From a practical perspective,
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Figure 6.6: Distribution of the number of hours needed to answer each reviewers’ need category.

this result highlights that authors can address almost immediately the need pointed out by
a reviewer; at the same time, it might highlight that tools able to address the reviewers’
needs identi�ed can be particularly useful to even avoid the discussion and lead to an
important gain in terms of time spent to review source code. Among the reviewers’ needs,
the ‘Specialized expertise’ (N6) is the one with the largest scattering of discussion rate.
This result seems to indicate that the more collaboration is required due the largest number
of replies a discussion receives, which possibly preclude the integration in the codebase of
important changes that require the expertise of several people.

The statistical tests con�rmed that there are no statistically signi�cant di�erences
among the investigated distributions, with the only exception of ‘Suitability of an alternative
solution’ (N1), for which the �-value is lower than 0.01 and the Cli�’s d is ‘medium’. This
category is the one having the lowest mean (1.7) and we observed that often authors of the
code change tend to directly implement the alternative solution proposed by the reviewer
without even answering to the original comment. This tendency possibly explain the
motivation behind this statistical di�erence.

Overall, according to our results, most of the reviewers’ information needs are satis�ed
with few replies–most discussions are closed shortly. The only category having more
scattered results is the one where reviewers ask for the involvement of more people in the
code review process.

RQ2.2: How long does it take to get a response to each reviewers’ information need?
Figure 6.6 reports the distribution of the number of hours needed to get an answer for

each group of reviewers’ information need. In this analysis we could only consider the
questions having at least one answer; similarly, if a reviewer’s comment got more than one
reply, we considered only the �rst one to compute the number of hours needed to answer
the comment.

Looking at the results, we can observe that the median is under 7 hours for almost
all the categories. A possible reason for that consists of the nature of the development
communities behind the subject systems. Indeed, all the projects have development teams
that span across di�erent countries and timezones: thus, we might consider as expected
the fact to not have an immediate reaction to most of the comments made by reviewers.
Some di�erences can be observed in the distributions of two reviewers’ information needs
such as ‘Necessity’ (N5) and ‘Suitability of an alternative solution’ (N1). In this case, the
median number of hours is higher with respect to the other categories (7 vs 5), while the
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Figure 6.7: Distribution of reviewers’ needs over di�erent iterations of the code review process.

3rd quartiles are around one day (meaning that 25% of the questions in this category took
more than one day to have a response). Conversely, the discussion of other categories
generally took less time to start. For instance, the ‘Specialized expertise’ (N6) need has a
median of one hour and a 3rd quantile equal to four. Such di�erences, however, are not
statistically signi�cant.

To conclude the analysis of our �ndings for this research question, we can argue
that developers generally tend to respond slower to questions regarding the proposal of
alternatives and the evaluation of the actual necessity of a certain code change; on the other
hand, questions where more reviewers are called to discuss seem to get a faster response
time.

RQ2.3: How do the reviewers’ information needs change over the code review process?

The last research question targets the understanding of whether reviewers’ needs vary
over the di�erent iterations of the code review process. Figure 6.7 presents the result
of our analysis, with box plots depicting the distribution of each reviewers’ information
need in the various iterations: for the sake of better comprehensibility of the results, we
considered the normalized number of iterations available in each of the 900 code review
threads analyzed.7

Almost all the categories have their median around 0.5, meaning that the majority of
reviewers’ information needs are raised in the �rst half of the review process. Moreover,
we are not able to map reviewers’ information needs with any speci�c iteration. This result
might indicate that there is not a time-sensitive relationship between those needs and that
they arise independently from how much discussion has already been going on in the
review.

Besides this general conclusion, we also notice some di�erences between the category
‘Necessity’ (N5) and the others. In the case of the ‘Necessity’ (N5) category the median and
mean reach both 0.67, thus indicating that most of such questions come later in the process.
It is interesting to note that modi�cations aimed at performing perfective changes that
improve the overall design/style of the source code rather than solving issues are mainly
requested by reviewers in a later stage of the code review process, i.e., likely after that
most important �xes solving problems impacting the functioning of the system are already
submitted by the author and answers about understanding the context of the change are
7We also conducted an analysis using the absolute number of iterations, yet results were equivalent.
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given. Such an observation may need further investigations and validation, however it
may possibly reveal the possibility to devise strategies to guide the next generation of
code review tools toward a selection of the information that a reviewer might need in a
earlier/later stage of the code review process.

6.5 Threats to Validity
Our study might have been subject to a number of threats to validity that may a�ect our
results. This section summarizes the limitations of our study and how we tried to mitigate
them.

Validity of the de�ned reviewers’ needs. Since the meaning of a question may be
dependent by the context, we may lack of a full understanding of its nature and background.
This type of threat may �rst apply to our study when we identify code review threads
composed of both questions and answers: to this aim, we automatically mined the Gerrit
repository that is a reliable source for the extraction of code review data [270, 308]. To
extract code review threads we employed the publicly available APIs of such repository:
For this reason, we are con�dent on the completeness of the extracted data.

The adopted open card sorting process is also inherently subjective because di�erent
themes are likely to emerge from independent card sorts conducted by the same or di�erent
people. To ensure the correctness and completeness of the categories associated to the
reviewers’ needs identi�ed with the card sorting, we iteratively conducted the process by
merging and splitting reviewers’ need categories if needed. As an additional step, we also
took into account authors responses and discussion threads when classifying questions
made by reviewers, with the aim of properly understand the context in which a certain
question has been made. Moreover, all the authors of this paper, who have more than
seven years of experience in software development, assessed the validity of the emerged
categories, thus increasing its overall completeness. Of course, we cannot exclude the
missing analysis of speci�c code review threads that point to categories that were not
identi�ed in our study.

We consider questions asked by reviewers through the Gerrit platform as indicators of
the actual reviewers’ needs. This assumption may not hold for all projects, as many active
projects do not use the Gerrit platform. For example, Tsay et al. [309] highlighted how
several developers contribute to the software development by using di�erent platforms
(e.g., GitHub). However, we partly mitigated this threat to validity by carefully selecting
software systems broadly studied in code review research [16, 168, 292] and having a large
number of code review data (which indicates they actively use Gerrit). The study of
di�erent platforms such as GitHub, GitLab, or Collaborator is left for future work.

External validity. As for the generalizability of the results, we conducted this study on
a statistically signi�cant sample of 900 code reviews that include more than 1,800messages
belonging to three well-known projects that use the Gerrit platform since 2011. A threat
to validity in this category may arise when we consider closed-source projects. In that case,
the experience of closed-source reviewers may a�ect the need to asks clari�cation questions,
therefore, the �ndings that we found in open-source project may be not generalizable to a
closed-source context. As part of our future research agenda, we plan to extend this study
by including closed-source projects.
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6.6 Discussion and Implications
Our quantitative and qualitative results showed that reviewers have a diversity of infor-
mation needs at di�erent conceptual levels and pertaining to di�erent aspects of the code
under review. In this section we discuss how our results lead to recommendations for
practitioners and designers, as well as implications for future research.

1. Selection of assistant experts. The results achieved by mining code review repos-
itories and interviewing practitioners indicate that ‘Suitability of An Alternative
Solution’ (N1) and ‘Correct Understanding’ (N2) are not only the most recurring
needs, but also those perceived as the most important. When discussing these topics
with developers from both open-source and industrial systems, we uncovered pos-
sible areas where current code review tools can o�er better features. For example,
a key need for the reviewers is being able to communicate with the experts of the
sub-system under review; this underlines the importance of tools able to recognize
developers’ expertise and create recommendations.
Researchers have conducted the �rst steps into this direction. For instance, among
others, Patanamon et al. [22] proposed RevFinder, an approach to search and recom-
mend reviewers based on similarity of previous reviewed �les, while Thongtanunam
et al. [310] validated the performance of a reviewer recommendation model based
on �le paths similarity. An interesting novelty that emerged from our analysis, with
respect to existing previous work on reviewers recommendation, is the target of
the recommendation. In fact, existing reviewer recommendation mechanisms target
the author of the change who has to select the reviewer and propose reviewers for
full changes or �les. Instead, we found that also the reviewers have the need to
consult an external expert, maybe for a more speci�c part of the entire change under
review. For instance P3 explained that “reviewers sometimes ask for other reviewers
that may be more expert”, thus having an assistant that can help the selection of
an expert reviewer may increase her productivity. Targeting reviewers instead of
change authors and having a �ner grained focus for the recommendation mechanism
can lead to interesting changes in both the model (which may use di�erent features
to compute expertise and the di�erence of expertise among reviewers) and the evalu-
ation approach (which may no longer be based on just matching actually selected
reviewers). Further studies can be designed and conducted to better understand this
novel angle.

2. Early detection of splittable changes. Even if the ‘Splittable’ (N7) category is the
less frequently occurring, interviewees argued that it is really useful to automatically
detect splittable code changes before a submission. For example, in the focus group
all the participants (FG1−3) suggested: “if it’s an unrelated change [...], pull it out of
this ticket and put it on another issue.” In fact, this would (1) decrease the time spent
in detecting this issue and asking the author to re-work the change, as well as (2)
reduce the risks of introducing defects in the source code [307].
Researchers have already underlined the risks of tangled code changes (i.e., non-
cohesive code changes that may be divided in atomic commits) for mining software
repositories approaches [307] and have proposed mechanisms for automatically
splitting them. For instance, Herzig and Zeller [307] proposed an automated approach
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relying on static and dynamic analysis to identify which code changes should be
separated; Yamauchi suggested a clustering algorithm tuned to identify unrelated
changes in a commit message [311]; and Dias et al. [312] proposed a methodology
to untangle code changes at a �ner-granularity, i.e., by selecting the single statement
of a code review that should be placed in other commits. More recently researchers
also proposed untangling techniques tailored explicitly to code review [306, 313]
and conducted the �rst experiments to measure the e�ects of tangled code changes
on code review [313, 314] substantiating the value of separating unrelated changes.
Despite these advances in splitting algorithms and their immediate practical value,
no commercial code review tool o�ers this feature. Our analysis underlines even
more the relevance of having such a feature integrated as early as possible in the
development process, possibly in the development environment, so that authors send
already self-contained patches for review. Moreover, despite the notable research
advances in the �eld, we believe that there is still room for improvement, e.g., by
complementing state-of-the-art methods with conceptual-related information aimed
at capturing the semantic relationships between di�erent code changes.
Also, early improvements of code changes before review are in line with the work by
Balachandran [315]. He reported that the time to market can be reduced also creating
automatic bots able to conduct preliminary reviews [315]. In this regard, there are
still plenty of opportunities and challenges on how and when bots can automatically
help reviewers during their activities and whether they may be employed to assist
some of the developers’ needs in code review.

3. Automatically detecting alternative solutions. In connection with the most
frequent need (i.e., ‘Suitability of an alternative solution’ (N1)), an interviewee from
one of the open-source projects explained to prefer to propose an alternative solution
before rejecting a patch: “[...] usually I put a link or an example.” In this light, a
promising avenue for an impactful improvement in code review is to integrate a
toll that automatically mines alternative solutions. Accordingly, a �rst interesting
step would be to investigate how to integrate at code review time an approach such
as the one proposed by Ponzanelli et al., which systematically mines community
based resources such as forums or Stack Over�ow to propose related changes [316].
Another promising starting point in this direction is the concept of programming with
“Big Code,” as proposed by Vechev and Yahav [317], to automatically learn alternative
solutions from the large amount of code available in public code repositories such as
GitHub.

4. Synchronous communication support. The absence of a proper real-time com-
munication channel within code review tools was a common issue that emerged
from both the interviews with the open-source developers and the focus group. In
fact, two interviewees ([FG1] and [FG3]) explained: “you can just go to the author
and ask to him in person, and maybe it would be a long discussion [...]”. This is in
line with the experience reported by developers at Microsoft in a previous study by
Bacchelli and Bird [7]. Nevertheless, in-person discussions can happen only if both
author and reviewer are co-located, otherwise logistic barriers could impose serious
constraints [7]. Yet, open-source developers are able to ful�ll this real-time commu-
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nication need using alternative channels; P2 stated: “we usually have an IRC channel
[...]”. The two observations suggest that, when it is possible, developers prefer to rely
on direct communication to discuss feedback; this may be to avoid discussing di�cult
criticism online in a public forum and to have a higher communication bandwidth
than small online thread comments. In both scenarios, our results show that current
code review tools are clearly not able to fully satisfy the communication need of the
involved people. Future work should be conducted to understand how communica-
tion can be facilitated within the code review tool itself (thus improving traceability
of discussions, which is relevant for future developers’ information needs [272]); in
principle, this future analysis should take into account not only technical aspects
to increase the communication bandwidth, but also the social aspects that could
currently hinder developers from discussing certain arguments with the current
tools.

5. Automatic change summarization. ‘Correct understanding’ (N2) and ‘Rationale’
(N3) are also key information needs for reviewers. Normally this is achieved by
perusing the code change description or additional comments. Nevertheless, our
interviewees reported cases in which these sources of information were insu�cient
to ful�ll this need; on this P3 reported: “I even had cases where the description didn’t
have anything in common with the code”. Indeed this shows that another signi�cant
source of delay in a code review process is when patches contain unaligned or missing
information (i.e., the commit message is not clear enough or it does not match with
the actual patch). Code summarization techniques appear to be a good �t for this
task: Indeed, past literature presented di�erent summarization techniques that can
be used to both produce or check the current documentation. For example, Buse and
Weimer proposed a technique to synthesize human-readable documentation starting
from code changes [318], but also several other researchers have been contributing
with more approachess: Canforaet al. experimented Ldiff [319], Parnin and Görg
developed CILDiff [320], and Cortés-Coy et al. designed ChangeScribe [321]. Our
analysis suggests that supporting code review is a ripe opportunity for research on
code summarization techniques to have another angle of impact on a real-world
application.

6.7 Conclusions
Modern code review is an important technique used to improve software quality and pro-
mote collaboration and knowledge sharing within a development community. In a typical
code review process, authors and reviewers interact with each other to exchange ideas,
�nd bugs, and discuss alternative solutions to better design the structure of a submitted
code change. Often reviewers are required to inspect author patches without knowing the
rationale or without being aware of the context in which a code change is supposed to be
plugged-in. Therefore, they must ask questions aimed at addressing their doubts, possibly
waiting for a long time before getting the expected clari�cations. This might potentially
result in causing delays in the integration of important changes into production.

In this work we investigate the reviewers’ information needs by analyzing 900 code
review threads of three popular open-source software systems (OpenStack, Android,
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and QT). Moreover, we conduct four semi-structured interviews with developers from
the considered projects and one focus group with developers from a software quality
consultancy company, with the aim of challenging and discussing our outcome.

We discovered the existence of seven high-level reviewers’ information needs, which are
di�erently distributed and have, therefore, di�erent relevance for reviewers. Furthermore,
we analyzed the role played by each category of reviewers’ information needs across the
lifecycle of a code review, and in particular what are the reviewers’ information needs that
attract more discussion, for how long a reviewer should wait to get a response, and how
the information needs change over the code review lifecycle.

Based on our �ndings, we provide recommendations for practitioners and researchers,
as well as viable directions for impactful tools and future research. We hope that the
insights we have discovered will lead to improved tools and validated practices which in
turn may lead to higher code quality overall.
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7
Conclusion

This closing chapter revisits our original research questions, presents study implications,
and contains concluding remarks on the e�ectiveness of using �ne-grained defect prediction
in code review with an outlook into future work on improving code review further.

7.1 Research�estions Revisited
This section revisits the research questions de�ned in Chapter 1.

RQ1. Are current defect prediction algorithms a feasible solution for supporting code
review?

Despite the initial expectations, we found that current prediction algorithms are loosely
suitable for actual usage. We obtained this result by conducting a study where we replicated
previous research on method-level defect prediction. We evaluated the performance of the
state of the art of defect prediction models considering di�erent systems and timespans—we
focused on 13 Java open-source software systems whose repositories are publicly available
on GitHub. Successively, we revisited the evaluation strategy by proposing a more realistic
scenario based on a release-by-release approach.

In our initial replication, we observed that although our results are ten percentage points
lower than those obtained in the literature, they are far from being random. In particular,
method-level defect prediction models trained with process metrics perform better than
those based on product metrics. This result con�rms the replicability of the state of the art
on defect prediction and provides evidence that the combination of predictors of di�erent
nature does not dramatically improve the prediction capabilities. However, when those
results are re-evaluated with a release-by-release evaluation strategy, all the experimented
method-level defect prediction models show a signi�cant drop in performance (up to 20
points percentage less in terms of AUC-ROC) that are close to the results of a random
classi�er.

We learn from this research question that existing defect prediction algorithms cannot
support code review because the performance achieved in a realistic scenario is similar to
a random classi�er and would not reduce reviewer e�ort.
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RQ2. To what extent do �ne-grain defect prediction models improve prediction perfor-
mance?

With the second research question, we seek to understand how much e�ort a �ne-
grained just-in-time defect prediction algorithm can save if hypothetically employed in
a context of code review. We achieved this by examining the performance of advanced
�ne-grained just-in-time defect prediction models. In particular, we �rst investigated the
prominence of partially defective commits (e.g., commits that contain both defective and
non-defective �les) because not all �les in a defective commit are defective. Then, we
proposed and evaluated a novel �ne-grained just-in-time defect prediction model to predict
�les that are likely to be defective. Finally, we estimated how much e�ort, in terms of
lines of code to inspect, a �ne-grained prediction model can save during a code review.
We considered ten di�erent open-source repositories to evaluate the performance of our
model.

We observed that almost half of the defective commits contain both defect-inducing
and defect-free changes (i.e., composed of both �les that are changed without introducing
defects and �les that are changed introducing defects). In those partially defective commits,
more than half of the �les are defect-free. Consequently, these defect-free �les unneces-
sarily attract reviewers’ e�ort while inspecting sources. Then, by building a �ne-grained
prediction model that achieves an overall stable performance across the considered projects,
we con�rmed how developer-related factors are those that generally provide the highest
contribution to the prediction of defective �les within commits.

By answering this research question, we understand how a �ne-grained prediction
model could save reviewers’ e�ort by localizing half of the defects in only a quarter of the
lines of code. We conjecture that such a model would save e�ort during a code review.

RQ3. How can alternative features improve defect prediction performance?

With the third research question, we aim at understanding whether the performance of
a method-level defect prediction model—evaluated with a more realistic release-by-release
strategy—can be improved further by using alternative features based on textual aspects,
code smells, and developer-related factors. We answered this question by investigating
how developers use code comments in open and closed software, and how alternative
metrics derived by the above factors impact the prediction performance.

Speci�cally, Chapter 4 focuses on how diverse software projects use code comments to
understand their role in source code. In this case, we merged the results of three studies that
analyze six traditional open-source software systems, �ve mobile open-source applications,
and eight industrial projects. Finally, the Chapter 5 extends the work presented in Chapter
2 and evaluates to what extent the performance of a release-by-release defect prediction
model can be improved by using the aforementioned additional features.

With the Chapter 4, our manual inspection of 40,000 lines of code belonging to di�erent
project domains has led to the creation of a taxonomy for code comments composed of two
layers with six top coarse-grained categories and 16 �ne-grained inner categories. Then, by
comparing the distribution of comments in open and closed source software, we found that
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on average, the former class of projects uses four times the number of comments compared
to the second with a di�erence also in the distribution of comments for each category.

Finally, although within validation achieves 95% of true positive, the cross-project
or cross-license validation is typically 15% lower. However, by manually adding a small
sample of 80 lines of code comments of an unseen project, the performance of the proposed
machine learning can achieve a 37% boost in precision. Consequently, defect prediction
aimed at supporting code review can bene�t from features derived by those metrics.

Regarding the Chapter 5, we observed that the performance of release-by-release defect
prediction algorithms does not improve in a realistic way when trained with alternative
features based on textual aspects, code smells, and developer-related factors. We registered
a gain of only two percentage points when using all proposed metrics as machine learning
features.

By answering this research question, we assessed that method-level release-by-release
defect prediction models gain only a marginal advantage when trained with alternative
features.

RQ4. What are reviewers’ information needs and how does defect prediction ful�ll them?

This research question investigates the role of the information that reviewers need
while conducting code review and how-to guide future research e�ort to design tools that
better support code review to make reviews more e�ective and e�cient. We answered
this research question by conducting a quantitative and a qualitative study on the role
of information needs in code review. We analyzed the threads of discussions that are
recorded by code review tools. Then, we built a double-layer taxonomy that summarizes
the purpose of needs argued in the threads’ discussions. Finally, we validated our �ndings
with expert developers from both open-source and industrial domains. We started with
a manual analysis of 900 code review comments from three large open-source projects.
We later continued with four semi-structured interviews with at least a senior reviewer
from each open-source project and a focus group with developers of a software quality
consultancy company.

In this study, we observed the presence of seven high-level information needs such
as insights on the questions and answers discussed by reviewers for knowing the uses of
methods and variables declared/modi�ed in the code under review which are di�erently
distributed and have, therefore, di�erent relevance for reviewers. Furthermore, we clari�ed
the role played by each category of reviewers’ information needs across the lifecycle of a
code review, and in particular the reviewers’ information needs that attract more discussion,
for how long a reviewer should wait to get a response, and how the information needs
change over the code review lifecycle.

By conducting this study, we explore alternative ways to reduce further the mental
load of reviewers during code review without compromise their e�ectiveness—other than
supporting code review with defect prediction. We provided recommendations for practi-
tioners and researchers, as well as viable directions for impactful tools and future research.
In addition, we assess that code review needs more support when it comes to dealing with
large systems to reduce the review e�ort in catching defects and improving the overall
quality.
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7.2 Implications
We discuss the implications that we derive from this thesis.

7.2.1 Combining the performance of defect prediction mod-
els

During software maintenance and evolution, developers modify the source code to add
new features or �x defects encountered by users. Such continuous changes naturally lead
to the risk of introducing new defects: for this reason, developers must carefully verify
that the performed modi�cations do not introduce new defects in the code. This task is
usually executed directly during the development (e.g., by running test cases) or when the
changes are reviewed (e.g., through code review). Defect prediction represents a potential
way to allocate inspection and testing resources to the portion of source code more likely
to be defective.

In our research, we �rst investigated the state of the art of defect prediction models
in a realistic scenario, con�rming a dramatic drop in performance with results close to
that of a random model. Then, to decrease the e�ort required by developers during code
inspection, we proposed a �le-level just-in-time defect prediction model that anticipates
feedback at commit time. Later, to allow real applicability of defect prediction models,
we propose to tackle the problem from a di�erent perspective by exploring what sets of
alternative metrics can capture non-functional properties (e.g., by retrieving non-functional
properties through code comments taxonomy in Chapter 4) with the goal of improving the
performance of defect prediction further.

However, to help developers, research should focus on boosting prediction performance
further by combining �ne-grained (e.g., method-level) with just-in-time defect prediction
models. Those models would generate localized recommendations to guide developers
during a code review with the aim of delivering better software while saving developers’
e�ort.

7.2.2 Better support for code review tools
With our research, we aim at establishing to what extent code review can bene�t from
defect prediction models. However, when we investigate the information that reviewers
need to conduct a proper code review, we discovered how several areas of code review
need further support or new development. To this aim, we suggest the following research
directions for supporting code review further in di�erent review phases:

• Selection of experts. A key need for the reviewers is being able to communicate
with the experts of the sub-system under review; this underlines the importance
of tools able to recognize developers’ expertise and create recommendations. Re-
searchers have conducted the �rst steps into this direction. For instance, among
others, Patanamon et al. [22] proposed RevFinder, an approach to search and recom-
mend reviewers based on similarity of previous reviewed �les, while Thongtanunam
et al. [310] validated the performance of a reviewer recommendation model based
on �le path similarity.
An interesting novelty that emerged from our analysis, with respect to previous
work on reviewer recommendation, is the target of the recommendation. In fact,
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existing reviewer recommendation mechanisms target the author of the change who
has to select the reviewer and propose reviewers for full changes or �les. Instead,
we found that also the reviewers have the need to consult an external expert, maybe
for a more speci�c part of the entire change under review. Targeting reviewers
instead of change authors and having a �ner grained focus for the recommendation
mechanism can lead to interesting changes in both the model (which may use di�erent
features to compute expertise and the di�erence of expertise among reviewers) and
the evaluation approach (which may no longer be based on just matching actually
selected reviewers).

• Detection of splittable changes. Automatically splitting changes into small parts
would (1) decrease the time spent in detecting this issue and asking the author to
re-work the change, as well as (2) reduce the risks of introducing defects in the
source code [307]. Researchers have already underlined the risks of tangled code
changes (i.e., non-cohesive code changes that may be divided in atomic commits)
for mining software repositories approaches [307] and have proposed mechanisms
for automatically splitting them. For instance, Herzig and Zeller [307] proposed an
automated approach relying on static and dynamic analysis to identify which code
changes should be separated; Yamauchi suggested a clustering algorithm tuned to
identify unrelated changes in a commit message [311]; and Dias et al. [312] proposed
a methodology to untangle code changes at a �ner-granularity, i.e., by selecting the
single statement of a code review that should be placed in other commits. More
recently researchers also proposed untangling techniques tailored explicitly to code
review [306, 313] and conducted the �rst experiments to measure the e�ects of tan-
gled code changes on code review [313, 314] substantiating the value of separating
unrelated changes. Despite these advances in splitting algorithms and their immedi-
ate practical value, no commercial code review tool o�ers this feature. Our analysis
underlines even more the relevance of having such a feature integrated as early as
possible in the development process, possibly in the development environment, so
that authors can easily send already self-contained patches for review. Despite the
notable research advances in the �eld, there is still room for improvement, e.g., by
complementing state of the art methods with conceptual-related information aimed
at capturing the semantic relationships between di�erent code changes.

• Explore alternative solutions. A promising avenue for improving code review
is to integrate a tool that automatically mines alternative solutions. Accordingly, a
�rst interesting step would be to investigate how to integrate at code review time
an approach such as the one proposed by Ponzanelli et al., which systematically
mines community based resources such as forums or Stack Over�ow to propose
related changes [316]. Another promising starting point in this direction is the
concept of programming with “Big Code,” as proposed by Vechev and Yahav [317],
to automatically learn alternative solutions from the large amount of code available
in public code repositories such as GitHub.

• Synchronous communication channels. The absence of a proper real-time com-
munication channel within code review tools is a common issue. This is in line with
the experience reported by developers at Microsoft in a previous study by Bacchelli
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and Bird [7]. Nevertheless, in-person discussions can happen only if both author
and reviewer are co-located, otherwise logistic barriers could impose serious con-
straints [7]. When it is possible, developers prefer to rely on direct communication
to discuss feedback; this may be to avoid discussing di�cult criticism online in a
public forum or to have a larger communication bandwidth than small online thread
comments. In both scenarios, our results show that current code review tools are not
able to fully satisfy the communication need of the involved people. Future work
should be conducted to understand how communication can be facilitated within the
code review tool itself (thus improving traceability of discussions, which is relevant
for future developers’ information needs [272]); in principle, this future analysis
should take into account not only technical aspects to increase the communication
bandwidth, but also the social aspects that could currently hinder developers from
discussing certain arguments with the current tools.

• Change summarization. Developers typically write code change summarizations
at commit time. Nevertheless, our research reported cases in which these sources
of information were insu�cient to ful�ll reviewers’ needs. These cases, together
with patches that contain unaligned or missing data (i.e., the commit message is not
clear enough or it does not match with the actual patch), are a dramatic source of
delay. Code summarization techniques appear to be a good �t for this task: Indeed,
past literature presented di�erent summarization techniques that can be used to
both produce or check the current documentation. For example, Buse and Weimer
proposed a technique to synthesize human-readable documentation starting from
code changes [318], but also several other researchers have been contributing with
more approaches: Canforaet al. experimented with Ldiff [319], Parnin and Görg
developed CILDiff [320], and Cortés-Coy et al. designed ChangeScribe [321]. Our
�ndings suggest that supporting code review tools with summarization techniques
is a promising research direction to have another angle of impact on a real-world
application.

7.3 Concluding Remarks
In this thesis, we focus primarily on improving code review. We study this assuming that
the human nature of reviewers is the point that can be more successfully improved. We seek
to understand how to improve defect prediction to support code review. We analyze how
the meaning of code comments combined with other alternative sets of metrics improve
defect prediction. We study how anticipating feedback at commit time reduces the code
review inspection e�ort. And �nally, we consider how reviewers’ needs can guide the
improvement of code review further. With these studies, we show how to support code
review with boosted prediction models while reporting a list of guidelines to design e�cient
code review tools that reduce the mental load of reviewers.

We see that code review needs to be provided with a lot more support when it comes to
dealing with software quality. Aware that our study has scratched only the surface setting
the ground of this topic, we hope that future research can bring further investigation in
this direction.
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