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Abstract

Dynamic Spectrum Access (DSA) is a new spectrum sharing paradigm that
aims at increasing the utilization of radio frequencies as well as mitigating
the spectrum scarcity problem. It allows Secondary Users (SUs) to access
idle channels in the licensed spectrum while protecting the signals of Primary
Users (PUs) from harmful interference. Although local-sensing can detect
an empty radio frequency band, it does not provide a sufficient level of
protection to a PU’s transmission. Therefore, DSA currently relies on online
geo-location databases, White Space Databases (WSDBs), to distribute
information about the availability of radio spectrum white spaces. In this
thesis, we make three contributions to the field of Dynamic Spectrum Access
(DSA).

First, the access to WSDBs in terms of response message size and response
time is profiled using the state-of-the-art WSDB query technique Single-
location WSDB query. This comparative study helps us in understanding the
differences between the WSDBs’ performances and shows us the capabilities
and limitations of the current query technique. Our conclusion from this
part of the study is that the current WSDB query method has poor support
to white space-enabled mobile devices (MWSD).

Second, based on our previous conclusion, we propose a new WSDB
querying technique multi-location WSDB query that optimizes the access of
MWSD to a WSDB by reducing the number of needed queries to cover a
particular path and as a results the energy consumption of the query process
is reduced. Furthermore, We show that multi-location query has a much
quicker response time than single-location query.

We introduced the world’s first algorithm called Nuna that predicts the next
direction of a movement path, estimates the required size of the multi-location
WSDB query, and queries a WSDB. Nuna helps MWSD to use multi-location
query without they need to know their path in advance. Moreover, we
demonstrated by example that Nuna halves the required number of queries
to cover a particular path, improving the energy efficiency by 50%.

Finally, we shifted our focus from optimizing the access of MWSD to a
WSDB to optimize the information of a WSDB by providing local sensing
readings to a WSDB. Therefore, we developed an energy efficient Portable
Spectrum Sensing Platform (PoSSP) that can obtain its GPS position, sense
the spectrum, and send its data to an online server. We show that PoSSP is
by 60% more energy efficient than similarly designed sensing platforms.
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“Knowledge is the root of all good.”
—Ali ibn Abi Talib
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Chapter 1

Introduction

The chapter begins with a short introduction that summarizes the required
background as well as highlighting the main problems that are solved in this
thesis. After stating the problem formally and showing the outline of the
thesis, the reader is provided with an extended background and related work
to make the newly introduced concepts in the following chapters easier to
follow.

1.1 Introduction

The current spectrum management policy divides the frequencies into those
that are licensed, with exclusive rights needed for utilization, and unlicensed,
freely available frequencies |1]. As a result of this static way of dividing
the spectrum and the growing demand for radio frequencies, a spectrum
scarcity problem is starting to emerge [2,3]. Therefore, a new technology has
been developed that changes the focus of spectrum-sharing policy from the
exclusive usage right and publicly accessible to the used and unused spectrum
called Dynamic Spectrum Access (DSA) [3]. DSA enables other users besides
the primary user (PU) to access licensed spectrum provided that all PU
services are protected from harmful interference. Furthermore, DSA relies
originally on sensing technology to detect the free frequency bands.

However, it was verified by the Federal Communications Commission (FCC)
that sensing-only spectrum detect methods are unable to provide a sufficient
level of protection to the licensed services. Therefore, the PU’s protection
mechanism depends on online services called White Space Databases, which
in turn depend on known information about the incumbent services and their
exact protection requirements.

When a secondary user (SU) wants to access an empty band, it queries a
WSDB for the available spectrum in the SU’s location and the WSDB replies
with a message containing a list of the available spectrum for secondary



usage. Mostly this communication is governed by a protocol called Protocol
to Access a White Space (PAWS) [4].

In order to protect the PU’s services, policymakers make SUs query a
WSDB anew every time its current position is X meter (i.e. 50m in the UK
and 100m in the US) away from the last indicated location in the previous
query. This rule may not have a great impact on a fixed device, but it
certainly does on a mobile device, since it requires a mobile device to access
a WSDB very frequently, especially if it is moving at high speed,. This can
have a big impact on the battery life of a device like a smartphone.

Targeting this challenge, our research focuses on optimizing the access
of a mobile white space device (MWSD) to a WSDB. Furthermore, we
exploit a smartphone, a widely used device, and a cheap RTL-SDR dongle to
develop an energy-efficient and low-cost Portable Spectrum Sensing Platform
(PoSSP). PoSSP sends its local spectrum readings to a WSDB, which can be
used to validate WSDB information and improve its quality. However, our
focus is on the energy footprint of a PoSSP on a smartphone.

1.1.1 Motivation

Mobile devices are widely spread, and they are an essential part of our daily
life. Moreover, they constantly support more diverse functionality. Therefore,
enabling DSA to have better mobility support may open up a whole new
area of development and possibilities for even more diverse mobile services,
especially with the unique characteristics of white spaces. For example,
the authors of 5] propose connecting RTL-SDR dongles to smartphones
to crowdsource the spectrum. Currently there is a very rapid growth in
unmanned aerial vehicles (UAV). The white space in the TV bands (TVWS)
will enable UAVs to communicate over longer distances than 2.4 GHz or 5
GHz, in a way that is cheaper than licensed bands.

1.1.2 Problem Statement

The information in an available spectrum WSDB response message is valid for
a relatively short distance. This forces a mobile white space device (MWSD)
to almost constantly exchange messages with a WSDB, especially when the
device moves with a high speed. Furthermore, since the communication with
a WSDB is governed by PAWS, optimizing the access process of MWSD
without needing to modify PAWS itself is not trivial. In this study, first,
we focus on optimizing the access of mobile devices to a WSDB. Second,
the focus in on optimizing the information of WSDB by providing local
sensing readings from mobile devices to a WSDB. In this thesis, we answer
the following research questions:



e How can you provide white space spectrum to mobile devices in
an efficient way compared to the current state-of-the-art WSDB
querying technique?

e What is the energy cost of sensing the spectrum using a RTL-
SDR dongle connected to a smartphone and sending the data to a
WSDB?

1.1.3 Key Contributions

The main contributions of this thesis are as follows:

e A comparative study on WSDBs from an SU perspective. We spe-
cifically focus on the response message size and the WSDB response
time;

e Energy consumption modeling of accessing a WSDB from a mobile
device (a smartphone). Specifically, we propose models that capture
the energy consumption of accessing a WSDB by a mobile device using
the current query technique and our newly proposed one;

o We propose a new WSDB query technique called Multi-location WSDB
query that requires less frequent access to a WSDB to cover a particular
path in comparison with the current querying technique, Single-location
query. Multi-location WSDB query enables WSDB to have better
mobility support;

e We introduce Nuna, the world’s first multi-location WSDB query
algorithm. It enable mobile devices to utilize white space spectrum
without they need to know their paths in advance and in an efficient,
in terms of number of queries, way compare to the state-of-the-art
query technique. Furthermore, the results of testing Nuna on an
Android-based smartphone are presented;

e Developing an energy-efficient Portable Spectrum Sensing Platform
(PoSSP). We connect a RTL-SDR dongle to a smartphone using our
in-house developed On-The-Go switch, which enable us to reduce the
energy consumption of PoSSP significantly.

1.1.4 Limitations

e We are only concerned with fetching spectrum information and not
how to use it. Moreover, we are located in the Netherlands where white
space spectrum still not available for secondary usage.



e This study is done from a SU’s perspective. Therefore, the focus is on
the WSDBs response messages and the WSDBs themselves are seen as
black boxes.

1.1.5 Thesis Outline

Chapter 1

The rest of Chapter 1 presents relevant background information coupled with
the related work. Its goal is to position the reader such that she/he can
easily follow the new concepts in the following chapters.

Chapter 2

This chapter shows the results of querying the WSDBs using the current
state-of-the-art query technique. Firstly, we compare WSDBs performance
from an SU perspective. Then, the energy measurement tools are introduced
and the chapter ends with energy consumption model.

Chapter 3

In this chapter, we first introduce our new querying technique multi-location
WSDB query. Then we analyze its time and energy consumption and present
relevant analytical models. Finally, Nuna, a multi-location WSDB query
algorithm, is explained, and its performance is studied.

Chapter 4

This chapter presents our Portable Spectrum Sensing Platform (PoSSP) and
its energy consumption analysis. Furthermore, PoSSP is used to show the
benefit of the “in-house developed” On-The-Go Switch.

Chapter 5
The conclusions and future work are discussed in this chapter.

1.2 Background and Related Work

The multi-billion-dollar price for a 20 MHz band at the European 3G spectrum
auction and the overly crowded U.S frequency allocation chart in Fig.
strengthen the belief that we are running out of usable radio frequencies.
However, the spectrum usage measurements obtained by FCC’s Spectrum
Policy Task Force [6] tell a different story. At any moment and any location
most of the licensed spectrum lies idle |2]. This shows that the spectrum
scarcity problem comes from the frequency management policy and not the
actual physical limit. Therefore, efficient spectrum management is vital to
meet the ever-growing demand for wireless data traffic. Mobile data traffic
reached 2.5 exabytes per month at the end of 2014, surpassing 1.5 exabytes

4
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per month at the end of 2013. It is expected that this growth will continue
and will surpass 24.3 exabytes per month by 2019 .

1.2.1 Cognitive Radio

?Cognitive radio is viewed as a novel approach for improving the utilization
of a precious natural resource: the radio electromagnetic spectrum” .

The recent advances in software and hardware make it possible to develop
software-defined radio (SDR), which is a multiband radio that supports
multiple air interfaces and protocols and is reconfigurable by software @ﬂ
Cognitive radio, built on a software-defined radio platform, is an intelligent
radio that can sense and autonomously reason about its communication
environment and adapt its transmitter parameters accordingly . Cognitive
radio and Software Defined radio are the needed tools to access the spectrum
dynamically.

1.2.2 Dynamic Spectrum Access

The term dynamic (opportunistic) spectrum access (DSA) is the opposite
of the current static spectrum regulation policy. It aims at reusing sparsely
occupied frequency bands while protecting the licensed services from harm-
ful interference [11]. Dynamic spectrum access strategies can be basically
categorized under three models , see Fig.
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Figure 1.2: Dynamic spectrum access strategies classification [13].

Dynamic Exclusive Use Model The core idea of this model is to intro-
duce flexibility to the current static spectrum management, and thus improve
spectrum utilization. Two approaches have been proposed under this model.

o Dynamic spectrum allocation It assigns spectrum dynamically to dif-
ferent services based on the spatial and temporal traffic statistics [14].
Therefore, the overall efficiency of the spectrum usage will increase.

e Spectrum Property Right allows a licensee to sell or lease unoccupied
portions of its own spectrum to another one [15], in a process referred
to as spectrum trading [16,|17]. Based on this strategy, the market is
supposed to select the most profitable use of this scarce resource.

Open Share Model This model gives equal rights to all users to access the
spectrum, but they are subject to a certain protocol to manage the spectrum
sharing process [12,/18]. This model is supported by the phenomenal success of
wireless services operating in the unlicensed industrial, scientific, and medical
(ISM) frequency bands. Since the users have equal rights to access the
spectrum, avoiding frequency interference is not trivial. Different distributed
and centralized spectrum sharing strategies have been introduced to minimize
the interference problem [19-21].

Hierarchical Access Model The hierarchical access model allows Sec-
ondary users to have access to the licensed spectrum, while limiting the
interference to Primary users (licensees) [12]. There are two different ap-
proaches considered in this model:

e In the Spectrum underlay approach, an SU is permitted to transmit
with extremely low power, i.e. below the noise floor of the PU. In this
approach, high data rates for short-range communication are possible
using the ultra-wide band (UWB) technique |16]. Furthermore, an SU
does not need to detect the white spaces to transmit over them [12].

e Spectrum overlay does not impose severe restrictions on an SU’s trans-
mission power but on when and where an SU is allowed to transmit. In
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other words, an SU is allowed to identify and exploit the white space
spectrum [16]. However, the SU have to clear the frequency channel
once a PU’s activity is detected.

1.2.3 Spectrum Sensing

The first technique that enables a SU to access the idle spectrum (white space)
is spectrum sensing. The aim of spectrum sensing is to detect idle bands and
monitor PUs’ activity. After detecting an empty band a SU can communicate
over it.However, once a PU re-utilizes a channel, the cognitive radio should
switch to a new spectrum hole without causing harmful interference to the PU.
Detecting a spectrum hole, in the context of cognitive radio networks, involves
many challenges: (i) According to IEEE 802.22 the detection accuracy should
be at least 90% [22]. (ii) A wide spectrum bandwidth needs to be sensed
to find a sufficient number of white spaces. Moreover, (iii) an SU needs to
be able to sense the transmitted signals of “potentially” many PUs with
different characteristics [22].

Spectrum-sensing techniques can generally be categorised as local sensing
and cooperative sensing [23].

Local Sensing In the local sensing technique, each SU independently
senses the spectrum, detects unoccupied channels, and then chooses a white
space “empty band” to communication over it. This is called a listen-before-
talk strategy. Furthermore, an SU is responsible for constantly monitoring
the absence of PU signals to minimize any potential interference [23].

There are three dominant techniques to implement the local sensing
strategy:

o Energy Detection is the most common spectrum sensing method
because of its low computational and implementation complexities |24}
27]. Additionally, the receiver does not need any knowledge about
a PU’s signals. The energy detector compares the sensed level of



energy to a pre-defined threshold. The band is idle if the level is below
the threshold; otherwise the channel is occupied [28]. However, the
energy detection approach cannot distinguish between a signal and
noise and performs poorly under low signal-to-noise ratio (SNR) values.
Moreover, the energy detector method does not work efficiently when
a spread spectrum signal is involved [29).

e Matched Filter When the PU’s signal is known in advance (i.e. modu-
lation type, bandwidth, pulse shape and packet format), matched-filter
detection is the optimum method to detect its presence [30]. It detects
a single presence by correlating the features of the observed signal to
the information that the filter possess. An advantage of a matched-filter
detector is the short time it requires to achieve a certain false alarm or
misdetection rate [31]. Its disadvantages are the high implementation
complexity and large power consumption [13].

e (yclostationary feature detection Most of the modulated signals can
be characterized by the cyclostationary feature, because their means
and autocorrelations exhibit periodicity. Therefore, it is possible to
distinguish between a signal and noise, and distinguishing between
PUs’ signals is also possible [32].

In addition to the detection techniques discussed, there are other less
common detection techniques such us eigenvalue-based [33] and waveform-
based [34] detection techniques. Sensing-only detection methods do not
possess sufficient information about the incumbent services. Therefore,
they cannot guarantee enough protection [3}23}35] level to PUs’ services as
demanded by Federal Communication Commission (FCC) [36]. For example,
local-sensing techniques suffer from the hidden terminal, problem see Fig
where a PU’s receiver is within the range of an SU’s transmitter while the
SU is outside the range of the PU’s transmitter or the SU can not sense
the presence of the PU’s transmitter due to shadowing or multipath fading
effects.

Cooperative Sensing Cooperative sensing increases the accuracy of local
sensing detection and mitigates the effects of multipath fading and shadowing,
as well as reducing the probability of having a hidden terminal [3]. In
cooperative sensing, a group of SUs share their observations/decisions to
have a more general view about the communication environment. This can be
implemented using a central or distributed approach [37]. In the distributed
approach, the SUs exchange the local sensing decisions/observations and
then each SU makes its own independent decision about the selection of an
idle channel. In the centralized strategy, on the other hand, all SUs send
their sensing results/decisions to a central station, i.e. a base station, and
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Figure 1.4: An example of the available TV white space spectrum, TV
channels, for the secondary usage in the US using Google WSDB.

this central station processes the data and makes the decisions about the
network accessibility .

1.2.4 White Spaces

White spaces, or spectrum holes, are unused spectrum at specific times and
locations that can be exploited through spectrum sharing technology [39)].
TV white spaces (TVWS) are spectrum holes in the VHF /UHF band. In
Furope, the TVWS ranges from 470-790 MHz ,, while in the US it
occupies a non-continuous range from 54 MHz to 698 MHz . According
to modeling studies commissioned by Ofcom, the total capacity associated
with TVWS is significant. Over 50% of locations in the UK are likely
to have more than 150 MHz of interleaved spectrum, and even at 90% of
locations around 100 MHz of interleaved spectrum might be available for
cognitive access . TVWS’ propagation properties make it a convenient
and desirable spectrum for a wide range of wireless services . It allows
for non-line-of-sight coverage . Since TVWS frequencies are below 1
GHz, they can better propagate through obstacles than unlicensed industrial,
scientific, and medical (ISM) bands (2.4 and 5.7 GHz). Fig[1.4] from Google’s
spectrum database website, shows an example of the available TV channels
for secondary users in the US.



1.2.5 White Spaces Database

)

Since sensing technology can not offer sufficient level of protection to the PUs
services, as concluded by FCC [36], the focus now is on ab online service know
as White Space Database (WSDB). A WSDB, or Spectrum database, is an
online database that contains geo-location information about the availability
of the white space spectrum in the licensed/reserved spectrum [45]. One
advantage of relying on a WSDB is that it handles the complexity of spectrum
policy conformance on behalf of an SU. Another benefit of a WSDB is that
it relies on known information about the bands, including the exact types of
incumbent services and their specific protection requirements [45]. Although
WSDBs are still in an early stage of development, there are already quite a
number of them, for example Google Spectrum database [38], SpectrumBridge
WSDB [46] and Nominet WSDB [47].

Interestingly, the use of WSDBs goes far beyond aiding in accessing TV
white spaces (TVWSs). For example, spectrum databases are also considered
for helping in regular spectrum sensing for radar activity detection (in
L, S and C bands) [48] - also refer to US government plans for 3.5 GHz
Spectrum Access System [49]. More importantly, the use of WSDBs becomes
increasingly relevant with the advent of Licensed Shared Access (LSA) [50].
Also, in Program Making and Special Events (PMSE) [51, pp. 23-24],
where many independent stakeholders compete for the common spectrum
for wireless video links and wireless microphones, WSDB would immensely
automate spectrum allocation.

Generally, considering the existing WSDBs presented in Table the
knowledge of various WSDB performances is fragmented and comparative
performance studies are missing. Most importantly, the energy querying
cost imposed on the SU end device has never been considered in these
studies. A very preliminary consideration of TV WSDB has been presented
in [45]. One of the first complete local, sensing-free, WSDB implementation
and evaluation is [52], where a set of different performance metrics (e.g.
response time, database update time, white space computation time) have
been presented. Indoor TV white space exploitation based on local sensors
reporting to a WSDB has been evaluated in [53]. A very recent evaluation
of LSA using an incumbent WSDB is presented in [54].

1.2.6 Interaction of Mobile Devices with WSDBs

In the literature, there are several works that focus on the performance
of applications in mobile devices using different Internet access techniques.
For instance, in [55], by conducting massively crowdsourced (/30,000 users
in total) measurements on US carrier’s UMTS/HSPA and EVDO Radio
Access Techniques (RATSs), delay characteristics were measured [55, Figs.
4-7] (among others) of accessing popular Web services. However, no WSDBs

10



curl —XPOST https://www. googleapis.com/rpc —H ” Content—Type:

application/json” ——data ’{

”jsonrpc”: 72.07,

?method”: ”spectrum .paws.getSpectrum?” |

”apiVersion”: ”"vlexplorer”,

”params”: {
?type”: 7AVAILSPECTRUMREQ” ,
?version”: 71.07,
?deviceDesc”: { ”serialNumber”: ”your_serial_number”,
?fceld”: "TEST”, ”fccTvbdDeviceType”: "MODE1” },
?location”: { ”"point”: { 7center”: {”latitude”: 42.0986,

”longitude”: —75.9183} } 1},

?antenna”: { "height”: 30.0, ”heightType”: "AGL” },
?owner”: { Yowner”: { } 1},

”?capabilities”: { ”"frequencyRanges”:

[{ 7startHz”: 800000000,” stopHz”: 850000000 },
{ ”startHz”: 900000000, ”stopHz”: 950000000 }] },
?key”: ”your_API_key”

b
”id”: ”any_string”

} )

Figure 1.5: Google implementation of ” AVAIL_SPECTRUM _REQ” message
[38]

were considered here.

1.2.7 Protocol to Access White Space Database

The Protocol to Access White Space Database (PAWS) is a protocol that
enables a white-space device to communicate with a spectrum database to
obtain information about the white spaces for a specific location and time. A
device may be required to register with the database with some credentials
prior to being allowed to query [56]. According to PAWS, a WSD should
use the initialization messages, INIT_REQ and INIT_REPS, to exchange
capability information with WSDBs. The protocol also specifies two messages
for the registration process. Most importantly, a WSD queries a WSDB for
white spaces using an ”AVAIL_SPECTRUM_REQ” message, see Fig.
Furthermore, an SU can use batch query messages to ask for a frequency
for a group of locations. However, to the best of our knowledge, no single
WSDB supports this type of message. Finally, there are also messages for
notifications and validations [4].

1.2.8 Energy Cost of Internet Access Use

Here we focus on the systems-related research pertaining to this topic. One
of the first such studies can be found in [57]. Therein, energy consumption
measurements in three networking technologies (i) UMTS/WCDMA, (ii)

11



GSM/EDGE/GPRS and (iii) IEEE 802.11b were performed and it was
concluded that (i) and (ii) have a significant tail energy, it is the energy
consumed after competing a ntwork task and before going to sleep mode,
overhead. A more detailed investigation of this overhead (including state
machine modeling), i.e. characterization or radio resource control in 3GPP-
based networks, is discussed in [58].

Power characteristics of LTE (post-3G) RAT were studied empirically with
data collected from 20 LTE-enabled smartphones and compared with IEEE
802.11g and UMTS CDMA in [59], LTE was found to be less power efficient
than other networks due to its long high-power tail [59, Fig. 12].

A very recent piece of work about energy consumption measurements
and modeling of IEEE 802.11x and 3GPP-based systems (as is performed
in this paper) was presented in [60]. Therein, energy traces from three
mobile platforms were correlated with operating system logs to get high
granularity information on the RAT connection/disconnection and RAT
transmission/reception process [58, Sec. 2]. Another recent though less
detailed process of RAT access energy cost of Web services access is presented
in [61]. In all the above-mentioned works, energy profiling is only based
on popular web services. Thus the energy cost of WEDB access has never
been considered. Naturally, intrinsic features of WSDBs, e.g. large response
delays [52, Fig. 13], demand a re-evaluation of the energy profile studies.

1.2.9 Outdoor Localization

There is a broad range of outdoor localization techniques. GPS is considered
to be one of the most popular localization technologies |62]. However, since
GPS consumes relatively lots of energy, there are a number of methods/tech-
niques that try to replace GPS or rely on GPS only to enforce the estimation
of their own techniques. i.e. a cellular phone can use cell-tower triangulation
to localize itself [63], or city-wide WiFi, as investigated in [64,65], trading
accuracy to reduce power consumption. Another approach uses fingerprinting
techniques, where a device trying to match captures signatures against a set
of geotagged signatures to identify a device position [66]. We choose to use
GPS for localization, since it is the dominant outdoor localization technique.
Moreover, it is available on almost all smartphones.

This chapter started with introducing the essential tools, i.e. software-
defined radio, and technologies, i.e. sensing, that make opportunistic access
to the licensed spectrum possible. How these techniques have evolved, from
relying on local sensing to cooperative sensing to WSDBs. WSDBs are
regarded as the state-of-the-art technology that enables SUs to access white
space spectrum. To the best of our knowledge there is no work that considers
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optimizing the access of mobile white space-enabled devices to a WSDB.
Furthermore, we are also missing a comparative study between the WSDBs.
Therefore, the next chapter will compares the WSDBs’ performance from an
SU perspective.
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Chapter 2

WSDB: Single-Location
Query

The goal of this chapter is to provide the researcher/reader with a solid
technical understanding about the performance of WSDBs. We take a
comparative study approach to clarify the differences between the WSDBs.
This chapter begins by introducing the WSDBs involved in this study, then
WSDBSs’ response messages sizes are shown in Section and the response
delays are evaluated in Section [2.1.2] Furthermore, Section [2.2] introduces
the power measurement tools and shows the energy cost of querying a WSDB.
Finally, Section presents an analytical model for energy consumption.

2.1 Response Messages Characteristics

We begin by profiling the response messages in terms of size and delay using
a stationary MacBook Air running Ubuntu 14.4, R2014 MATLAB and cURL
v7.30.0. Table summarizes high-level information about the WSDBs that
are used in this study.

2.1.1 Size Distribution

Fig. shows the cumulative distribution function (CDF) of available-
spectrum WSDB response messages sizes. Each WSDB is queried, along
a straight line, for 100 different locations, see Table The reasons for
the significant differences in message sizes are the amount of information
being communicated back by a WSDB and how it is presented, i.e. MSR
responds with an XML list. The order of the elements in this list represents
the number of a TV channel and a true or false indicates the availability of
the channel. FAI replies with a JSON message contain a list of frequencies to
indicate the start of a channel and the maximum allowed transmission power.
SBO responses have larger response message sizes than other WSDBs. SBO
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Table 2.1: List of WSDBs involved in the experiments

] Company ‘ Abbr.! ‘ Links ‘ Land ‘ Format ‘ Com? ‘ MLqg? ‘
Google GGL [38] Us JSON Yes Yes
Microsoft MRS [67] Us XML No No
SpectrumBridge SBI [46] US | XML-URL | Yes No
SpectrumBridge- | SBO [68] UK JSON No Yes
Ofcom
Nominet NOM | [47] | UK | JSON No | No
Csir CSI [69] SA JSON No No
Fairspectrum FAI [70] UK JSON No No

LAbbr: Abbreviation, 2Com: Commercial, >MLq: Multi-Location query

Table 2.2: Response time and response messages size of WSDBs

] WSDB H Size (kB) ‘ Variance (kB) H Delay (s) ‘ Variance (s) ‘
GGL 2.60 450.00 0.88 0.06
MSR 1.57 0.04 2.30 0.05
SBI 0.31 0.26 1.63 0.03
SBO 8.70 0.163 24.2 8.00
NOM 5.10 0.78 0.92 0.002
CSI 1.33 210.00 1.12 0.10
FAI 1.70 0.02 1.65 0.02

responses use a JSON template and in each entry in their frequencies list,
the response message specifies the start and stop frequencies, the maximum
allowed transmission power and the resolution bandwidths of 8 MHz and
100 kHz. The response messages of SBI are the smallest in size. The numbers
of the available channels are reported in one XML tag.

In the second column of Table the mean sizes of WSDB response
message sizes are shown, and the third column presents the variances of the
message sizes.

The essential difference between MSR and SBI, and other WSDBs, is that
the response messages of MSR and SBI are only about the TV white space
(TVWS). Their response messages cannot, in their current formats, carry
information about other frequency bands, whereas the response messages
of other WSDBs can easily specify other white spaces (WS). Unlike other
WSDBs, MSR, and SBI do not use JSON messaging format, and thus they
do not use PAWS as the communication protocol. SBI uses sbi-paws [71] as
its own implementation version of PAWS, whereas MSR uses KNOWS [72]
as its communication protocol. Furthermore, MSR and SBO reply with a
fixed message size (fixed template) and they control access to a particular
band by the transmission power. In other words, specifying a very low

16



Table 2.3: Starting and ending coordinates of the straight paths specified to
examine the size and the delay of the spectrum-available response messages.

Coordinates of Size distribution experiment
Land | Start (Latitude,Longitude) | End (Latitude,Longitude)
UK (51.785840, 0.288950) (51.785840, -2.062151)
US (40.725952, -74.665983) (36.115164, -95.891569)
SA (-29.00000, 25,000000) (-22.200000, 26.3000000)

Coordinates of Delay distribution experiment

UK (51.506753, -0.127686) (51.431471, -2.577637)
UsS (40.506753, -100.127686) (40.431471, -102.577637)
SA (-24.493247, 32,450314) (-24.568529, 30.3000363)
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Figure 2.1: CDF of response message size of different WSDBs, see Table
The reasons for the significant differences in message sizes are the amount of
information being communicated back and the way they are presented.

transmission power for a certain frequency band will prevent an SU from
communicating over it. Other WSDBs respond with a variable message size
that only contains the available spectrum.

2.1.2 Delay Distribution

To compare WSDB performance, we queried them at approximately the
same time and along equal distances in all three countries: the US, the UK
and SA, see Table The experiment includes querying 50 locations in
each country. Each location was queried 20 times and average response times
were computed.

Fig. shows the probability density function (PDF) of queries’ response
times, total time from sending a cURL request to a full WSDB reply. In
general, the response time is WSDB-dependent. For example, GGL is the
most delay-efficient, with a mean of 0.88 seconds, while SBO is the least,
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Figure 2.2: PDF of mean WSDB response times for querying along straight
lines, in the US, the UK and SA, divided into 50 intervals where each location
was queried 20 times.

Table 2.4: Locations used in the experiments

’ Symbol \ Latitude | Longitude Type

LA 34.047955 | 118.256013 downtown
\LAY 40.729655 | 74.002854 urban canyon

SC 41.102884 | -82.957361 flatland

LE 41.575416 | 81.585442 lake coast
CB 34.047955 | 77.885639 | Carolina Beach
ALpl | 70.789158 | -158.260175 —
ALp2 | 48.654895 | -103.933643 —
USpl | 61.091065 | -156.296335 —
USp2 | 32.708249 | -103.149980 —_—

with a significant mean delay of 24 seconds and a variance of 8 seconds, see
Table . Because of this extreme delay of SBO we excluded its results
from Fig. 2.2 for clarity. NOM has a consistent response with a variance
of 0.002 seconds. Furthermore, the PDF’s distributions indicate that the
response time is location dependent, since the response time only changes
when we change the queried location.

Delay: US vs Alaska

To further investigate the dependency between a queried location and the
WSDB response time, we queried GGL WSDB on straight lines across Alaska
and the US. A Google Remote Procedure Call (RPC)E| server |74] was also

!SBO response times varied from day to day. The fastest response we observed was
about 5 seconds and the slowest was about 28 seconds.

2Remote Procedure Call (RPC) allows a remote user to request a server to execute a
piece of code without having to know the details about the execution and obtaining the
return value [73]. In other words, calling an RPC server is like calling a normal function
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Figure 2.3: Response time of querying GGL WSDB across Alaska from ALpl
to ALp2 and US from USpl to USp2, see Table compared to querying
Google’s RPC server: https://www.googleapis.com/rpc/.

queried for comparison. The query process was as follow: Alaska and the
US were divided into 49 segments. We queried the first location of Alaska
and then the first location in the US and then the RPC server. This process
was repeated 20 times and the averages were computed. Then the query
process moved to the next location. The results, shown in Fig. indicate
that there is a dependency between a location and a WSDB response time,
confirming the results of Section [2.1.2

Furthermore, the response to any position in Alaska is almost always faster
than the response time to any other location in the US. The reason for this
difference is that, since the number of transmitters in Alaska is far less than
the number of transmitters in the US, and there is a geographic separation
between them, the database of Alaska is much smaller than the database of
the US. As a result, the internal calculation to find a result takes less time
in the Alaskan database than in the US one.

Locations and response time dependency

To further test the location and the WSDB response time dependency, we
chose three WSDBs, namely GGL, MRS, and SBI, and five different locations.
Each location was queried 50 times. The results presented in Fig. 2.4 clearly
show that there is a dependency between a location and a WSDB response
time. Moreover, the results also confirm the results shown in Fig. [2:2] Addi-
tionally, WSDBs’ response times, compared to the web server response times
of the respective organizations (Bing, Spectrumbridge, and Google) as in
Fig. are much longer (in the extreme case of MSR longer than 4 Seconds)lﬂ

where a programmer can provide the input parameters and receives the output without
caring about the details of the function itself.

3The same experiment performed using our developed code at US-headquartered
Adaptrum, Inc. for MSR WSDB revealed the same delay profile as in Fig.
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Figure 2.4: Query response delay for (a): MSR, (b): SBI, (c):

GGL, for 50 queries, see Table BG: http://www.bing.com, SB:
http://www.spectrumbridge.com/home.aspx, GL: http://www.google.com.
Kernel smoothing and box plot was implemented using MATLAB’second
R2013a ksdensity and boxplot function, respectively.

In order to see if the number of antennas around a queried location impacts
the WSDB response time. The following experiment was setup: we chose 30
locations with a different number of transmitters around each location in a
circle of 60 miles [75|/76]. Each site was queried 20 times. This experiment
was repeated at different day times. The average delay of all the 30 locations
with a number of antennas around a position ranges from 0 to 25, with a
mean of 0.82 and a variance of 0.36. In other words, the average delays
of locations with 25, 5, 0 and 3 TV transmitters around them were 0.74,
0.77, 0.71, 0.74 seconds respectively, see Fig. The results show that the
number of antennas around a location has no observable effect on the WSDB
response time. Therefore, we conclude that there is no correlation between a
WSDB response time and the number of antennas around a queried location.

2.2 Energy Cost of Querying WSDB

Since we are targeting mobile devices, energy consumption is of premium
importance. To realistically assess the energy costs associated with WSDB
access we used a battery-independent, high-resolution, fully portable power
meter called NEAT [77], see Fig. ??. NEAT can extract exactly the amount
of energy consumed in a particular operation, i.e. a WSDB query [78]. We
choose to carry out experiments using a Samsung Galaxy S3 (GT-19300)
smartphone running CyanogenMod version 10.2.0.
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Figure 2.6: The energy consumption of querying GGL WSDB for different
locations, using Samsung GalaxyS3.

2.3 Modeling Energy Cost of Querying WSDB

To measure the energy consumption we used NEAT . It is fully portable
and phone battery-independent power meter capable of extract the exact
amount of energy consumed in a WSDB query. It is embedded into an
enlarged back cover and record the data on a micro SD card. Furthermore,
A logging application running on the smartphone records events from the
Android kernel and user-space programs. Events are later overlaid onto the
collected power trace, using synchronization points established through a
hardware trigger.

The authors in have proposed an energy consumption model for
querying a WSDB. They queried two WSDBs, namely SBI and GGL, over
three different networks: Vodafone, T-mobile, and kpn. Their conclusion
was that choosing a cellular network does not have a significant impact on
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the energy consumption of querying a WSDB (excluding the tail energy).
Although we agree with this conclusion, we think choosing only two locations
may not generate a representative model. Therefore, we propose an energy
consumption model based on querying GGL WSDB, see Fig for over 250
different locations,

Eq(tg) = (qctq + aq), (2.1)

where t, is a query response time. Based on the used MATLAB linear
fitting function ¢. and a, are 0.7 and 0.3 respectively. Since the dominant
factor that affects the energy consumption is the response time, namely the
time from sending the query to a WSDB until receiving a full response. We
will further generalize this model in the following chapter, see Section [3.2.2

In this chapter, the performance of WSDBs was compared from an SU’s
perspective. We observed that there are relatively big differences in the re-
sponse message sizes of WSDBs. Furthermore, there are noticeable variations
in the mean response times of WSDBs and their delay distributions. We also
investigated the dependency between a queried location and a WSDB'’s re-
sponse time. Finally, we proposed an energy consumption model of querying
a WSDB. In the next chapter, we present our new querying technique that
offers better mobility support.
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Chapter 3

WSDB Multi-Location
Query

This chapter begins by introducing our new WSDB query technique denoted
as Multi-location WSDB query. Its response time and energy consumption are
analyzed, and their analytical models are tested. Furthermore, we describe
three different scenarios for doing a Multi-location WSDB query, and propose
a Multi-location query algorithm called Nuna. Its implementation on an
Android-based smartphone is explained. Finally, we show that Nuna reduces
the energy consumption and the number of queries by 50%.

3.1 WSDB Multi-Location Query

PAWS specifies a way to query a batch of locations in one request [4, Sec 4.5.4].
This feature might reduce the number of queries a white-space enabled device
needs to cover a particular path. However, to the best of our knowledge,
there is no single WSDB to support this feature. Inspired by batch query
we were ableﬂ to find a new query technique that enables an SU to query a
group of locations in one request, denoted as Multi-location WSDB query.
A spectrum-available request message is divided into a header- and a
data-part |79]. The data-part is represented as a JSON object for some
WSDBs. To make a Multi-location query, an SU has to concatenate the
data-parts for the intended locations into one JSON array to be the data-part
of the new Multi-location request message. The WSDB response message
contains a list of the available frequencies for each position, and these lists

We built an online php tool that enables us to easily interact with WSDBs, and to
gather some statistics. During the test on changing the query parameters we discovered
this model of operations, Multi-location query, is possible for some WSDBs. Furthermore,
we tried many different parameter combinations of the request messages, including the
batch query proposed by PAWS, and they were all recognised as invalid requests by the
WSDBs.
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are concatenated into one big list for the entire queried path. This makes
the access to WSDB less frequent, and an SU less dependent on a regulator’s
WSDB.

An essential difference between a batch query and a multi-location query
is that a batch query only allows latitude and longitude to be changed, while
a multi-location query allows an SU to change any parameter in the request
message. This difference can be very important if, for example, an antenna
is mounted on a drone, which means that in addition to the longitude and
latitude parameters, the elevation parameter needs to be changed. In other
words, a multi-location query is more general than a batch query. It should
be highlighted that this feature is not supported by all WSDBs. GGL and
SBO WSDBs do support multi-location queries, but other WSDBs do not.

GGL WSDB allows a maximum of 3000 locations in one multi-location
query. This extends the distance that a device can move in without the need
to re-query WSDB from 100 m to 300 km. The maximum sizeE] of an SBO
multi-location query is 1000. However, it is significantly slower than GGL as
will be shown in Section 3.2l

3.2 Time and Energy Analysis of Multi-Location
WSDB queries

This section shows the response time of a multi-location WSDB query for
a stationary station. Furthermore, it presents energy consumption and
response time models for mobile devices. Finally, we discuss the response
message size.

3.2.1 Response time

To examine how the GGL WSDB response time increases when the number
of locations in a multi-location query increases and if a path location may
affect the average response time, the following experiment, using a MacBook
Air with Ubuntu 14.04 running MATLAB R2014b and cURL v7.30.0, was
set up.

We chose three randomly located paths (Path 1, Path 2, and Path 3, see
Fig. in the US, that are approximately of the same length of 12 km,
with different start and end coordinates. We divided each path equally such
that the biggest multi-location query covered the entire path. The query
process started with querying one location and then kept doubling the size
of the query until it became 128 locations. Furthermore, each multi-location

2This is the highest number of locations that we obtained responses for. Above 1000
locations we did not receive any reply. When going above 3000 locations, GGL responds
with a message indicating that the request exceeds the maximum allowed number of
locations.
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Figure 3.1: Response time of GGL multi-location WSDB queries along
different paths, using MacBook Air running Ubuntu 14.04 with MATLAB
and cURL

was generated 20 times and its average was computed. Fig. shows that
the response delay along the paths have almost the same response time for
each multi-location WSDB query.

In order to find out the effect of increasing the step size (128 locations
across 10 km vs. 128 locations across US from coast-to-coast) on GGL WSDB
response time, Path 4 and Path 5 were chosen with different lengths, 50 km
and 4000 km (coast-to-coast) respectively. The results presented in Fig. 3.1
clearly show that the step size does not alter the response delay. Remarkably,
in all five paths there is a relatively big difference of about one second in
delay between querying one and two locations in one request. Neither we nor
the Google WSDB engineer [80] were able to give a clear explanation for this
behavior. After that the delay increment is marginal: there is an increase of
about two seconds when the number of queried locations is increased from
2 to 128 locations. The results also indicate that a multi-location query is
extremely faster to cover a particular path than the current query technique:
querying GGL for 128 locations sequentially takes, at least, about 1 minute,
whereas a multi-location query takes about 4 seconds. MATLAB errorbar
function was used to show the overall error of each path. Finally, we also
tested SBO for the multi-location query response time, which was far slower
than GGL. For a query of 32 locations the average response time was 106 s
and for 64 locations 215s. Therefore, we proceeded only with GGL.

3.2.2 Energy Model

To estimate how a multi-location WSDB query process affects a smartphone’s
battery life, we derived an analytical model for energy consumption of multi-
location WSDB queries for an Android-OS based smartphone. The portable
power meter NEAT [81] was used to extract the exact amount of energy
consumed on a multi-location query. Tail energy [78] was excluded since it is

25



Time (sec)

Figure 3.2: Energy consumption of GGL multi-location WSDB querying
(excluding tail energy) as a function of query time.

Table 3.1: Energy consumption model validation

Query time | Measured energy | Estimated energy | Accuracy
(s) (J) (J) (70)
2.00 1.72 1.60 93
2.58 2.10 2.15 97
6.70 6.20 6.00 96
8.90 8.60 8.15 91

10.60 10.98 9.77 88
29.77 25.60 27.98 90

independent of the multi-location query size. Over several days we collected
more than 1000 multi-locaion WSDB queries. The sizes of the multi-location
queries range from 1 to 150 locations.

Eq(t) = Qth + ac, (3.1)

where t, is the time span of a query in seconds. Using MATLAB fitting
function polyfit, as shown in Fig. [3.2] gives the values of ¢. = 0.95 and of
ac. = -0.3 (the energy model will not produce a minus energy value since the
time of the query of a mobile device is always greater than 1). The number
of queries with different time durations, test data, was chosen to estimate the
accuracy of our proposed model. The results, shown in Table indicate
that the model predicts energy consumption with a high accuracy. Finally,
since a multi-location query is just a single query that contains multiple
locations, we can regard the single location query as a special case of the
multi-location query.
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Figure 3.3: Number of locations vs. response time of multi-location WSDB
query on an Android-based smartphone.

3.2.3 Time Model

Another important statistical model is the estimated response time of a
particular multi-location WSDB query size for mobile stations. In Fig. |3.3
the x axis represents the multi-location query size. The number of locations
was increased by a size of 5 locations and for each size 10 multi-location
queries were generated, giving a total of 160 multi-location queries.

For a smartphone to do a query, the following set of events might need
to happen: phone wakes up, does the query, and goes to sleep. We are only
interested in the query time and not the time required for wake up or go
to sleep, since they are independent of the multi-location query size. The
overall time increment when the number of locations was increased from
one to 75 is about 4 seconds. Using MATLAB fitting function polyfit the
following model was generated,

tq(n) = agn + by, (3.2)

with a; = 0.087 and of b; = 3. n is the number of locations queried in
one multi-location query. The value of the parameter a, shows the benefit of
using a multi-location query technique. The addition of one extra location
to a multi-location query increases the query time by only 0.09 s, and this
increment leads to a very marginal increase in energy consumption.

Combining the two proposed model gives us a model that estimate the
energy consumption of a multi-location WSDB query for a particular size.

Eq(n) = cqn +dy, (3.3)

where ¢, is 0.082 and d, is 2.55, respectively. This model also shows that
increasing the multi-location query size by one location will add only 0.082J
extra.
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Table 3.2: Plain text, compressed (Using gzip), and the compression ratio of
GGL WSDB response message sizes

No. locations | Message size | Compressed size | Compression ration

(kB) (kB) (%)

1 2.1 0.626 70

2 4.2 0.642 85

4 8.4 0.697 92

16 33.6 0.899 97

64 134.3 1.600 98

128 268.5 2.600 99

3.2.4 Response Message Size

Increasing the number of locations in a multi-location WSDB query will
increase the response message size, i.e. GGL WSDB responds with an
available-spectrum response message of about 2 MB when the number of
positions is about 1000. This may lead to extra expenses for a user. However,
a user can ask for compressed response messages, which reduces the size sig-
nificantly. Table shows the compression ratio of the response messages to
different multi-location queries. We see that the compression ratio surpasses
the 90% very quickly.

3.3 Multi-location WSDB queries: scenarios and
techniques

Multi-location WSDB queries may serve different purposes. For instance,
a master device serves other slave devices in a particular region. In such a
scenario, the interest is not in a particular path but rather the entire region.
It is also possible that the master device wants to communicate over white
spaces. In this situation it has to know its current location or process the
white space data for the entire region to find one common frequency to
eliminate the localisation problem.

e Area Multi-location (AML): If the starting and the farthest locations
on the path are known, but the path is completely unknown, an SU
can query the entire region by putting the locations within a circle.
Its center is the start location and the farthest location of the path
on its circumference. However, the number of locations increases
quadratically with the length of the distance between the two locations.
For example, if the distance is 1 km, then the number of locations
in the circular area is about 314, while if the distance is 10 km then
the number of locations is about 31400. Additionally, this technique
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from multiplying the query time be the speed of the device. r, the remaining
distance.

may impose a start-up delay, since querying 3000 locations from GGL
WSDB in one multi-location query takes, based on our experiments,
about 20 seconds using a laptop.

o Oracle Multi-location (OML): If the path and all its coordinates are
known in advance, i.e. by using Google Maps, an SU can query it in
one multi-location query.

AML and OML describe techniques to obtain the frequencies from a
WSDB for a particular region or path, but not where to use them. If
the device needs to communicate over white space spectrum it has
to know its location. However, these techniques may service different
purposes, for example, providing data for analysis by a master device or
a secondary server. We observed a lot of similarities in the frequencies
list in the response messages. This may enable a mobile device to find
one common frequency band for the entire region and communicate
over it without the need for localization in this region.

e On-Demand Multi-location query (ODML): If the path is not known
in advance, but a device can track the user movements, this is enough
for state-of-the-art WSDB querying techniques. A device can try to
predict the next direction of movement and query it in a multi-location
WSDB query fashion.

3.4 Nuna: Multi-Location On-demand Query Al-
gorithm

Nuna is the first algorithm that does on-demand multi-location WSDB query,
designed for location-aware mobile devices, i.e. smartphones. It predicts the
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next direction of movement and queries a WSDB for the available spectrum
in it.

3.4.1 Core Idea

Before introducing the core idea of Nuna let us highlight the main elements
of the problem of querying a WSDB from a mobile device. There is a device
moving with a certain speed (v4) and querying a WSDB. Therefore, we have
Query Time (t;): the time consumed by querying the WSDB from sending
a query until a full reception of a WSDB response message. Moreover, the
information we receive is valid in a particular area or to a certain distance.
The core idea is to convert the query time (t4) to Query Distance (d,): The
distance crossed by the device while sending the query and receiving the
response is given by:

dq = vgty, (3.4)

This will also give us the Remaining Distance (ry), which is the distance
that a device can cross without the need to query the WSDB again, see
Fig. 3.4l Dividing the remaining distance (r;) by the query distance gives us
the Enlarge Factor (eq), i.e.

The enlarge factor (e;) shows how many times we can increase the size of
a query successively, sending the queries back-to-back, while staying within
the remaining distance (ry). At this stage the algorithm has decided the
number of locations to be queried.

The algorithm needs to predict the direction of movement to distribute the
locations along the predicted path, from the history of movement (longitudes
and latitudes). The algorithm computes the change factors of longitude and
latitude by dividing the average change along one of the coordinates by the
sum of the averages. The change factors specify the direction of movement
along a straight line. The algorithm also compares the last computed change
factors to the previous ones to check if there is a change in the direction or
the device is moving in the same direction. If there is a change in direction,
the query starts from the current location. If there is no change in the
direction detected then the query starts from the last queried location.

3.4.2 Android Implementation

We have implemented Nuna as an application on an Android-OS. In the
implementation phase Nuna was divided into three main stages:
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Figure 3.5: Overview of the implementation of Nuna on an Android-OS based
smartphone. The app contains an Android service to receive the locations
update from GooglePlay services and another service for the algorithm and
the query service.

e The first query stage is used as an initialization process. Nuna queries
only the device’s current location, see Algorithm [I]line [f] The current
location could be a group of surrounding locations, which is particularly
useful when the device moves with a high speed.

The second query stage. In this stage the algorithm predicts the
direction of movement based on the history collected from the first
query stage, see Algorithm [1] lines Moreover, it calculates the
size of the multi-location query, line [I3] as explained in Section [3.4] and
does the first multi-location WSDB query, line

In the next query stage the algorithm does not only decide the size of
the multi-location query and predicts the direction of movement, but
it also compares the current direction to the direction of movement
during the previous query, see Algorithm [1] line If there is
a significant change then the process will start again from the First
query stage, as a recovery mechanism. Otherwise, the algorithm does a
multi-location query starting from the last queried position, unless the
remaining distance (r,) is longer than what the device can cross with
its maximum speed, see Line If the remaining distance is longer
than that the algorithm does not generate the query and waits until
the next iteration. This reduces the number of generated queries to
WSDB and stops very long straight paths from being queried. As a
consequence, energy consumption of the mobile device is reduced while
gaining more freedom for faster movement.

If the device was moving with a relatively low speed then the enlarge factor
(eq) becomes very large and thus the number of queried locations becomes
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Algorithm 1 Nuna

1: (tp,ta) < (0,0) > Times before and after (multi) global query
2: START ¢ TRUE
3: while running: do

4: if START then
5: l + CURRENTLOCATION()
6: (tp,ta) < LOCATIONQUERY(])
T START < FALSE
8: SECOND <— TRUE
9: else
10: if SECOND then
11: L <~ GETLOCATIONS (1, t,)
12: D < GETDIRECTION(L)
13: Nol <+~ NUMBEROFLOCATION(.S)
14: ! +— CURRENTLOCATION()
15: (th,ta) ¢ MULTILOCATIONQUERY (I, Nol, D)
16: SECOND <— FALSE
17: else
18: L + GETLOCATIONS(ty,, t,)
19: L, + GETLOCATIONS(t,, teurrent)
20: D + GETDIRECTION(L)
21: D, < GETDIRECTION(L,)
22: Nol + NUMBEROFLOCATION(SS)
23: ! +— CURRENTLOCATION()
24: if D— D, < A then
25: if 145t — | < Dpax then
26: (tb, ta) < MULTILOCATIONQUERY (I, Nol, D)
27: else
28: SECOND 4— TRUE
29: (tw,ta) < LOCATIONQUERY(])
30: SLEEP(ts)

very large too. Therefore, we put a limit on the size of a multi-location query
between 5 and 20, depending on the speed of the device.

The error in GPS positioning estimation may make Nuna predict a change
in the direction or make the predicted path line not perfectly aligned with
the real path. To reduce the number of false direction change detections and
to make use of the allowed distance of movement, 100 m for GGL WSDB, a
tolerance threshold of 0.08 in the direction change estimation was introduced.
This value was chosen based on a large number of tests, as a balance between
GPS estimation error and small direction changes that should not generate a
new query, i.e. changing from one lane to another, and to make the algorithm
able to correct its direction and track the device movement.
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Figure 3.6: The red pointers show the predicted-queried paths by Nuna and
the black arrows indicate the real taken paths
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Figure 3.7: Number of generated queries and energy consumption of Nuna
on a circular path (CP) and long lines path (LP), compared to querying the
path using a single-location query technique.
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Figure 3.8: Comparing the number of generated queries and energy consump-
tion of different multi-location WSDB query techniques and single-location
queries for the RP path of 12 km. The blue bar represents the energy con-
sumption with the GPS, while the yellow ones show the energy consumption
without the GPS.
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Figure 3.9: A one-minute snapshot of power traces. Q denotes the query
time
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3.4.3 Evaluation

Nuna was tested using a Samsung Galaxy S3 running Android version 4.3.1,
using a kpn cellular network. The test took place in Almere, the Netherlandsﬂ
We drove along one path where it approaches the best performance
and another where it approaches its worst performance |3.6(b)| and a third
random path to give a representative picture.

Experiment Set-up

e We chose a long-line path (LP) [3.6(c)| of 3km. The top speed was
80km/h and the number of iterations was five;

e We chose a circular path (CP) [3.6(b)[ of 3km. The top speed was
40km/h and the number of iterations was five;

e We chose a random path (RP) [3.6(a)| of 12km. The top speed was

80km/h and the number of iterations were one.

Since Nuna always predicts the direction of movement along a straight line
and then checks if there is a change in the direction, its best performance is
along a straight line, and the worst is on a path of a constantly changing
direction. Fig. [3.7] shows the number of generated queries and the energy
consumed by these queries. Since the path length is 3 km, the required
number of single-location queries is 30, which is represented in the third bar
of Fig The average number of generated queries along the LP is less
than one third of the number generated along CP and SL.

From the energy perspective Nuna is much more efficient than single-
location query technique on a straight-lines path, see Fig. On the
other hand, Nuna is marginally worse than a single-location query technique
on the circular path. This is because multi-location queries are generated,
but mostly only one location of the query is used, as shown in Fig. [3.6(b)|

Fig. |3.8(b)| shows the energy consumption of different WSDB querying
techniques used to provide white spaces on the RP. The blue bars represent
energy consumption when the GPS is on, whereas the yellow bars represent
doing the same queries while the GPS is off. The way the yellow bars are
generated is by extracting the size of the multi-location queries from the
experiments when the GPS is on and letting the app do some queries without
the need for location, speed and direction information. The distance between
the farthest two points on the path was about 7 km. Therefore, applying
AML required querying 15394 locations, which was done in 16 queries. The
time of querying 1000 locations with a one multi-location query was over a
minute. Finally, the OML technique was applied, where the entire path was

3 Although we drove around Almere, all the coordinates were shifted in real time to
the US.
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queried in one multi-location query of 120 locations. The query consumed
about 11 Joules.

Fig. shows a one-minute snapshot of the power trace when Nuna
and when single-location query technique are used to query GGL WSDB.
Comparing the two traces shows the benefit of Nuna, and more generally
of multi-location WSDB queries. Because the number of queries is reduced
when Nuna is applied, the CPU may go into suspend mode in between the
queries, meaning the power trace goes from high state to low state. The
total energy consumption when the RP is queried in the single-location
query technique is 1595 Joules, while applying Nuna reduces the energy
consumption by 30%.

3.4.4 Limitations

e The minimum time Nuna needs to react to a change in the direction
of movement is equal to the time to query WSDB and get a full
response. In our implementation Nuna checks the direction every 8s.
This interval is an estimation for the longest query time. If a change in
direction starts and ends within this interval, it will not be recognized
by Nuna. Therefore, turning with relatively high speed might make
Nuna exceed 100m. To overcome this limitation, Nuna either has
to check direction change on a shorter interval or query along three
parallel lines when a device moves faster than a predefined threshold,
i.e. 50km/h.

e Because of the way Nuna predicts the direction of movement along
a straight line and then checks if there is a change in direction, it is
slightly less efficient than doing a single location query on a constantly
changing path, i.e. a circular path. Nuna always generates a number
of unused queried locations. However, the cost of the extra locations
that were queried in terms of energy and time is marginal.

In this chapter we present our new WSDB query technique, multi-locaiton
WSDB query. We show that it requires less frequent access to cover a
particular path compared to the current query technique. Therefore, it saves
energy and has a better mobility support. Furthermore, we introduce Nuna:
a multi-location WSDB query algorithm, and show that it reduces the energy
consumption, excluding the tail energy, and the number of queries by 50%.
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Chapter 4

Portable Spectrum Sensing
Platform

Many sensing applications use a combination of a smartphone and a USB-
connected device, e.g. crowd-sourced radio spectrum sensing [5]. Unfortu-
nately, USB devices deplete the battery of the phone. According to the USB
specification, the USB device has to manage its own power consumption by
going to a suspended state when possible or requested [82]. However, many
USB devices do not support the suspend state [83]. Even if supported, a
suspended USB device is still consuming energy [82]. Therefore, connecting
a USB device to a smartphone, e.g. via a USB On-The-Go cable [84], can
decrease a smartphone’s battery life—both because USB device keeps the
smartphone awake and because of the USB device’s own consumption.

To alleviate the problem we introduce On-The-Go Switch (OTGS): a
hardware/software platform that enables a smartphone to control via the
audio port the logical connection state of a physically connected USB device.
This approach limits both the duration at which the smartphone needs to
act as USB master and the duration at which the USB device is consuming
energy. Our proposed OTGS could work on any smartphone with USB OTG
capabilities and a headphones connector without relying on custom kernels,
rooted /jailbraked firmware’s or even the operating system. Finally, we show
how OTGS can reduce the overall power consumption of a radio spectrum
sensing platform.

4.1 OTG Switch

Inspired by the design of [85] we propose OTG switch, which replaces the
OTG cable connecting a smartphone and USB device. Following the USB
standard [82] OTG cables use a fifth connection (called ID connection) within
the OTG connector to signal their presence to a USB master. The OTGS
simulates the physical connection and disconnection of the OTG cable by
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(a) OTG switch, components: Cl1 = 1pF, L1: LPR6235,(b) OTG switch,
T1: ZSM61P03F, T2: ZSM61NO3F, D1: DFLS120L-7, T3: FDV301N, PCB
R1 =1MQ

(c) PoSSP hardware components: R: RTL-SDR dongle, S: OTG Switch, A: Antenna. Not
fully shown: C and C’ are connected with an audio cable.

Figure 4.1: PoSSP platform: @ OTGS schematics; @ OTGS; and

system overview.

switching this ID connection between pull-down and its default pull-up state,
see Figure |4.1(a)l The ID-connection, while in pull-down state, will enable
the phones USB master mode to provide power and communication to the
attached USB device. On a hardware level, the switching is done by a
FET transistor that is controlled from the phone’s headphone output. To
enable the OTGS the attached smartphone plays an audio signal through its
headphone connector, this waveform is rectified on the OTGS to provide a
suitable signal to switch the FET. The audio signal outputted by the phone
is a 15 kHz sinusoid that proved to provide the highest amplitudes (hence,
most energy) on most of the tested smartphones. The OTGS needs around
one second to stabilize after changing state. The combination of the large
drain resistor and parasitic input capacitance mitigates the need for an extra
storage capacitor.
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Table 4.1: PoSSP Power Consumption per Component

| Wave |  Audio | USB | Dongle | Power (mW) |

Posteep | — — — — 390 T
Poon | — — — — 789
+ Pyave on headphones — — 870
+Pygs | on OTGS | O0TGS| — 1015

4+ Pysh on OTGS OTGS | connected 15572

1 Average power consumption for the phone while it is in a low power state in the non-sensing
period.

2 Average power consumption of four RTL-SDR. dongles.

Table 4.2: Power consumption of Tuners, Chipsets and RTL-SDR dongles

’ Type ‘ Tuner ‘ Chipset ‘ No. ‘ Pish ‘ o ‘
USB HDTV Stick E4000 | RTL2832U | 1 454 | n/a
ezcap FCO0013 | RTL2832U | 1 | 434 | n/a
NooElec R820T2 | RTL2832U | 4 662 | 18
DVB-T+DAB+FM | R820T RTL2832 4 615 | 12

4.2 Energy consumption of PoSSP

In this section, we introduce our Portable Spectrum Sensing Platform
(PoSSP), analyze its power consumption and show how this can be sig-
nificantly reduced by the OTGS.

Our PoSSP platform setup consists of a Samsung Galazy S3 running
Android 4.5.1, our OTGS, an RTL-SDR dongle [86], and an antenna, see Fig-
ure We also developed a spectrum sensing app using rtl_power [87],
which periodically performs a sensing operation, obtains the GPS position
and uploads the output to an online server.

4.2.1 Energy Consumption of Components

The power consumption of the PoSSP components is measured using a
Monsoon [88] power monitor set to a voltage of 4.19 V. The device under
test is an Android smartphone in airplane mode with the screen enabled.
This phone is running a custom app, generating a 15 kHz audio signal.

Table shows power measurements for different combinations of PoSSP
components. These results show that the audio generator consumes 81 mW
while the OTGS adds another 145 mW. This increase in energy consumption,
while the switch is enabled, is lower than the amount of energy otherwise
wasted by keeping the radio dongle continuously enabled. Furthermore,
measurements show that not all RTL-SDR, dongles have the same energy
consumption, see Table
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Figure 4.2: Power consumption of different frequency ranges (bandwidth).
The bandwidth starts with 1 MHz and ranges up to 100 MHz with a step of
1 MHz. The experiment was repeated with different FFT-bin sizes.
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Figure 4.3: Energy consumption of different FFT sizes. FFT size ranges
from 10kHz to 210kHz. The bandwidth is fixed to 40 MHz.

4.2.2 Energy Consumption Reduction

In this experiment, we use NEAT It enables us to extract the exact
amount of consumed energy during a sensing operation, by overlaying the
phone events on the phone’s power trace. Furthermore, we chose to use
rtl_power , a command line tool, to control the RTL-SDR dongle because
it is freely available on the Internet, used by other researchers [5], and can
easily be integrated in an Android app. Moreover, rtl_power enables a user
to scan the spectrum with different FFT-bin sizes and bandwidths, start and
stop frequencies.

The results in Fig. [£.2] show that increasing the frequency bandwidth is
indeed increasing the energy consumption. However, increasing the frequency
range from 1 MHz to 100 MHz costs only 5J more. Furthermore, we observe,
see Fig that the FFT-bin size below 1MHz does not alter the energy
consumption of PoSSP significantly. in contradiction, the FFT-bin size
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Figure 4.4: Example NEAT power traces of PoSSP, top (light) line shows
consumption without, bottom (dark) line shown with OTGS. The sensing
period for both traces is marked with %5, see Section for details.

of 1 MHz and above does change the energy consumption of the spectrum
sensing.

In order to understand why the spectrum sensing peaks when the FFT-
bin size is 1 MHz, we need to understand how the rtl_power does work.
rtl_power divides the specified, by the user, bandwidth to smaller bands,
then it hops from one band to another to extract (sense) the energy of the
frequency bands.

When the FFT-bin size is below 1 MHz rtl_power always divides the
specified bandwidth to an equal number of frequency bands independent
of the FFT-bin size. However, when the FFT-bin size is exactly 1 MHz
rtl_power divides the bandwidth by 1 MHz which is in turn the smallest
frequency band size that rtl_power divides the bandwidth by. Therefore, it
requires the largest number of hops. As a result, it consumes the greatest
amount of energy.

Figure shows the power traces of PoSSP while doing a periodic sensing
operations every two minutes with, and without OTGS. A sensing operation
takes ~ 208, and it consumes =~ 34J. OTGS, on one hand, adds two extra
joules to the cost of a sensing operation, and, on the other hand, reduces the
energy consumption of a non-sensing period from 130J to 51J . Moreover,
OTGS will save more energy if the interval between two sensing operations
is increased.

4.2.3 Energy Consumption Model

OTGS allows a smartphone to go into sleep mode after a sensing oper-
ation by powering off the OTG-device, thus saving energy. To calculate
the amount of saved energy we propose the following model: E(tiota1) =
(ttotal/tp) ((Pusb + P, ,on — Pp,sleep) (tp - ts) - (Pwave =+ Potgs) ts) , where E is
the amount of saved energy in an experiment of duration tiot, with tg as
sensing duration repeated with period t;,. Pysh, Ppon, Ppsleeps Pwave and Poggs
are the amount of energy for the USB connection, phone being awake, phone
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being asleep, wave generator software, and the switch hardware, respectively.
See Table [A.1] for typical values.

In this chapter we introduced our Potable Spectrum Sensing platform.
The energy consumption of PoSSP is analyzed. We show that PoSSP energy
consumption for FFT-bin size below 1MHz is independent of the FFT-
bin size. However, when the FFT-bin size is 1 MHz PoSSP consumes the
maximum amount of energy, assuming other parameters are fixed and the
energy consumption decreases when we increase the FFT-bin size above the
1MHz. Finally, OTGS is introduced, and we showed that it reduces the
energy consumption of PoSSP substantially.
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Chapter 5

Conclusions and Future
Work

5.1 Conclusions

This study was focused on White Space Database (WSDB) and was done
from a Secondary User (SU) perspective. In general, this study can be
divided into two main parts:

e Comparative study between WSDBs. In Section we compared the
performance of seven WSDBs. Specifically we compared the response
message size and the response time. The results show that Google
WSDB (GGL) is the fastest responding WSDB, while SpectrumBridge
WSDB (SBI) replies with the smallest message size. We observed that
there is a dependency between a location and the WSDB response
time. Furthermore, we concluded that the state-of-the-art WSDB query
technique offers poor support for mobility, causing a mobile device
to access a WSDB very frequently, which consumes a relatively high
amount of energy.

e Optimization process, which can be divided into two processes:

— WSDB mobile device access optimization: Based on our conclusion
from the comparative study, we proposed a new WSDB query
technique that offers better mobility support than the current
query technology, called mulit-location WSDB query. As its name
suggests, it enables a user to query a group of locations in one
request. Furthermore, we showed that this technique can reduce
the number of required queries significantly, and thus save a
considerable amount of energy. Based on the multi-location query
method, we proposed a WSDB query algorithm denoted as Nuna
for mobile devices. We implemented Nuna on an Android-based
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mobile device (the app contains more than 1500 lines of code, and
the algorithm alone is about 400 lines of code). Furthermore, the
evaluation of Nuna was shown and compared with other WSDB
query techniques (we drove over 300km to test, optimize and
evaluate Nuna). We showed that Nuna reduced the number of
queries and the energy consumption to half that of state-of-the-art
query techniques.

— WSDB information optimization: As a first step towards provid-
ing a WSDB with local spectrum reading, we have developed
an energy-efficient Portable Spectrum Sensing Platform (PoSSP).
PoSSP consists of an RTL-SDR dongle, an Android-based smart-
phone, an in-house-developed On-The-Go switch (OTGS), antenna
and a custom Android app (with more than 1100 lines of code)
that is able to sense the spectrum, get its GPS position and upload
the data to an online PHP server. OTGS enabled us to turn the
RTL-SDR dongle on/off periodically, thereby saving energy by
powering off the dongle when it was not in use and by allowing
the smartphone to go to sleep during a non-sensing period.

5.2 Future Work

We spit the future work as follows:
e Multi-location WSDB query:

— The next logical step for a mobile device is to communicate
over the obtained white space. However, an algorithm is needed
to process a WSDB response message and to extract the best
parameters for communication, i.e. the frequency band with the
highest transmission power.

— Building a secondary server. Its function is to answer the following
question. Given a particular path by a mobile device, what is the
minimum set of white spaces (frequencies) that cover the entire
path?

e Nuna:

— Reducing the dependency of Nuna on the GPS. A way to achieve
this goal is by using a local sensor and enforce its estimation
with the GPS positioning. This will help in reducing the energy
consumption and make the algorithm work reasonably well when
the GPS signal is lost.

e Portable Spectrum Sensing Platform: The Portable Spectrum Sensing
Platform (PoSSP) can serve different purposes:
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— Replacing the RTL-SDR with, for instance, hackRf [89], to sup-
port transmission mode. Once this upgrade happens, we can
study spectrum management between mobile SUs based on local
sensing and WSDB. In this scenario, the WSDB is responsible for
protecting the licensed services and the local sensing technique is
used to manage the white space spectrum between mobile SUs.

— PoSSP can be used to make an energy map. That can help, for
example, in finding the best places for energy-harvesting devices.
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