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A B S T R A C T   

Driver behavior analytics is an important concept that plays a significant role in the understanding of road 
crashes. This paper investigates the optimal number of driver profiles to understand the most important char
acteristics that differentiate drivers and extract useful insights on the value of using different clustering ap
proaches in profile recognition. To this end, two Machine Learning clustering algorithms, the K-Means and 
OPTICS algorithms, are applied on driving data from a large naturalistic experiment using almost 18 K trips 
recorded from 130 drivers. The results revealed 3 profiles, the less risky drivers, the modest drivers and the more 
aggressive drivers. Clustering was based on 3 important driving behavior characteristics, namely the number of 
speeding, headway and harsh events per 100 km. The less risky drivers profile was revealed by both algorithms, 
whereas drivers of higher aggressiveness are distinguished by K-Means based on the driving feature that dom
inates the rest. The OPTICS algorithm showed that many drivers, especially the aggressive ones, present unique 
behavior that cannot be grouped together with other drivers. The interpretability of driver profiles resulting from 
the application of these unsupervised learning techniques is worsened as the number of clusters increases. The 
association between driver profiles and individual characteristics leads to the conclusion that aggressiveness is 
mainly driven by personality traits and less by specific characteristics such as gender, age or past accident 
history. The results of this study can be potentially used to develop profile-specific applications that provide 
feedback to drivers and reduce their crash risk.   

Introduction 

Driver behavior analytics is an emerging concept with several 
important applications during the past decades. As we have entered into 
the Big Data era, new data collection schemes and advanced modelling 
techniques related to Machine Learning (ML) and Artificial Intelligence 
(AI) are available. These create considerable opportunities for large- 
scale collection of new data such as driver physiological indicators, 
trip driving time and conditions, congestion, road surface and envi
ronment conditions, detailed weather and spatial information (Weidner 
et al., 2017; Ellison et al., 2015), which can be used for the analysis of 
driving behavior. 

According to (Nilsson, 1982), AI is a subpart of computer science, 
concerned with how to give computers the sophistication to act intelli
gently, and to do so in increasingly wider realms. It is the theory and 
development of computer systems able to perform tasks normally 
requiring human intelligence, such as reasoning, visual perception, 
speech recognition, automated learning and scheduling, robotics, 

decision-making and translation between languages. AI leverages com
puters to mimic the problem-solving and decision-making capabilities of 
the human mind. ML is a branch of AI that develops algorithms imitating 
human way of learning and gradually improve prediction accuracy. 

The feasibility and benefit of the highly accurate identification of 
driver profiles and driving styles based on metrics collected from inertial 
sensors (speed, acceleration, braking, steering etc.) across time and 
space is shown in literature (Weidner et al., 2017; Ellison et al., 2015; 
Tselentis et al., 2019; Tselentis et al., 2021; Papadimitriou et al., 2019; 
Mantouka et al., 2019; Mantouka and Vlahogianni, 2022). Nonetheless, 
it is also recently indicated that changes in driving behavior may 
sometimes be quick in time (Tselentis et al., 2021). In order to ensure 
that these behavioral shifts are correctly captured over time and that 
their safety implications are adequately understood, drivers should be 
continuously monitored at a high resolution. Moreover, there are several 
ML algorithms that have been used in these questions, but little research 
has been done to comparatively assess the advantages and limitations of 
different methods in driver behavior and profiling analysis. 
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It is clarified that this study explores the topic of driver profile 
recognition using the definition of driver profiles as provided by (Tse
lentis and Papadimitriou, 2023), which is a “group of drivers having 
similar driving behaviour and characteristics”. This is clarified because 
it was noticed that there is ambiguity in the way the terms ‘driver pro
files” and “driving patterns” are used in literature. The difference be
tween these two is that driving pattern is defined as “a driving behaviour 
characteristic, such as a driving manoeuver like a harsh braking event, 
which is occurring repetitively either by the same driver or by different 
drivers in a population. Hence, in our study driving pattern is a more 
microscopic aspect than personalized driving behaviour”. Therefore, the 
level of analysis is the most significant difference between these two, 
where in the field of driver profile recognition the analysis is focusing on 
the macroscopic characteristics of driving behaviour. 

Literature review and objectives 

K-Means is one of the best known clustering methodologies that 
belongs to unsupervised learning techniques and aims to group the data 
into a number of clusters K previously specified by the researcher. It has 
a wide range of application in road safety studies for discovering profiles 
and patterns of all road users including pedestrians and cyclists (Vogel 
et al., 2014; Kim and Yamashita, 2007). Several driver profiling studies 
have used the K-Means algorithm to identify the existing profiles (Tse
lentis et al., 2021; Mantouka et al., 2019; Warren et al., 2019). This 
algorithm can cluster several subjects into groups with similar behaviour 
based on multiple features. Its simplicity has made it popular among the 
developed clustering algorithms. 

Density-based clustering algorithms, such as DBSCAN, have been 
used in the past in this scientific field. For instance (Li et al., 2016) 
clustered driver physiological data into “Normal”, “Event” and “Noise” 
clusters using an application of the DBSCAN algorithm on real-world 
data. Other studies exploited density-based clustering to classify 
vehicle approaching patterns and analyse driver behaviour (Wen et al., 
2021). Nonetheless, no studies were found that have exploited any 
density-based clustering algorithm for driver profile recognition. 

Another clustering method that belongs to the density-based clus
tering algorithms is the OPTICS (Ordering points to identify the clus
tering structure) algorithm that has been widely applied to fields related 
to spatial data clustering (Ankerst et al., 1999; Agrawal et al., 2016; Pei 
et al., 2009; Deng et al., 2015; Duan et al., 2007; Malzer and Baum, 
2020). It has also been used in previous studies to understand the regular 
travel behaviour of private vehicles, identify the driving destination, 
(Liu et al., 2021; Levin and Håkansson, 2015). Literature review also 
revealed one study related to road safety, where the authors used OP
TICS to analyse the road traffic crashes through the identification of the 
road crash locations (Islam et al., 2021). 

Neural Networks (NN) have also been used in the past to classify 
driving behaviour in different profiles as normal or aggressive (Savelo
nas et al., 2020; Saleh et al., 2017). These classification methodologies 
were based on Recurrent Neural Networks (RNN), long-short-term 
memory (LSTM) RNN and Gated recurrent units (GRUs) and results 
showed a high accuracy precision. In most cases, studies that use RNN 
also make use of time-series data and make predictions of the driver 
profiles by observing a sequence of driving time, called time-slice or 
driving pulse (Tselentis and Papadimitriou, 2023). This task is also 
called time-series classification. Data in these studies were collected 
through naturalistic driving experiments and recorded through sensors 
installed in the vehicle and smartphone devices, such as GPS, acceler
ometer, gyroscope and compass. 

Based on the literature review conducted, the K-means algorithm is 
most commonly used, among the Artificial Intelligence methodologies 
that are used for driver profile identification. This is followed by NN- 
based models, the extended use of which also appears in recent 
studies (Mukherjee et al., 2021; Savelonas et al., 2020; Saleh et al., 
2017). Methodologies based on statistics and optimization are also 

utilized, whereas PCA is employed in studies to reduce dimensionality of 
the datasets used (Fugiglando et al., 2018; Constantinescu et al., 2010). 
Nonetheless, it is found that NN-based methodologies are usually used in 
supervised learning approaches when the driver classes are known and 
the scope is to assign drivers that have newly appeared to those classes. 
Moreover, they are usually found to be using time-series data and not 
trip or driver-level indicators that will be used in this study. 

In terms of the driving metrics used in driver profiling studies, the 
review revealed that speed and positive acceleration are the two driving 
metrics that were mostly collected and used. These two metrics are 
followed by negative acceleration (braking), timestamp, driver distrac
tion that is usually measured through mobile phone usage or eye- 
tracking, and GPS coordinates (Tselentis et al., 2019; Tselentis et al., 
2021; Mantouka et al., 2019; Warren et al., 2019; Bergasa et al., 2019; 
Fugiglando et al., 2018; Saleh et al., 2017). 

The collection of these driving metrics mainly takes place through 
naturalistic driving experiments that were record data either using 
sensors installed inside instrumented vehicles or mobile phone sensors 
(Tselentis et al., 2019; Tselentis et al., 2021; Papadimitriou et al., 2019; 
Mantouka et al., 2019; Warren et al., 2019; Bergasa et al., 2019; Saleh 
et al., 2017; Ellison et al., 2015). Since these experiments are natural
istic, the driver sample usually ranges between 6 and 300 and the 
recording duration from a few minutes (one trip) up to one year. In terms 
of the recording frequency, the most commonly used is 1 Hz, since driver 
profiling focuses on the macroscopic driving behaviour and therefore 
does not consider microscopic changes that need a higher frequency to 
be captured. It can be inferred that this is an acceptable frequency that is 
balancing both noisy data collection with lack of sufficient information 
(Tselentis and Papadimitriou, 2023). Therefore, it can be considered 
adequate for performing macroscopic analyses such as driver profile 
recognition. 

Finally, in terms of the driver profiles discovered in literature, the 
most commonly identified driver profiles are related to aggressiveness. 
There is certainly a relationship between this and what mentioned 
above, that most studies use the driving metrics of speed and accelera
tion for driver profile recognition. The number of profiles ranges from 2 
to 6, with 3 and 4 being the most frequent (Fugiglando et al., 2018; Liao 
et al., 2022; Nouh et al., 2021). Moreover, the profile of “normal” or 
“typical” drivers is also found to be a common driver profile by several 
studies (Tselentis et al., 2021; Saleh et al., 2017). Other groups also 
discovered are those of drowsy, calm, cautious and conservative drivers 
(Warren et al., 2019; Saleh et al., 2017). There are several other driver 
group characterizations in literature, e.g. in terms of driving efficiency, 
or consistency and stability of their temporal behavioural characteristics 
(Tselentis et al., 2021; Tselentis et al., 2019). Finally, it was found that 
some studies did not discuss the driver profiles discovered and focused 
mainly on the methodology used. 

Summarizing the above, driver profiling studies usually apply clus
tering methodologies, such as the K-Means algorithm that has proved to 
provide relatively good results, on driving data collected through 
naturalistic driving experiments. Nonetheless, an important gap found 
in existing research is the absence of a robust methodology for the 
identification of driver profiles in terms of safety (Tselentis and Papa
dimitriou, 2023). Moreover, to the best of our knowledge, the OPTICS 
algorithm has not been used in the driving behavior analysis field. The 
objective of this study is the development and comparison of two 
different methodological approaches for driver profile recognition, 
based on a commonly used clustering algorithm such as K-Means and a 
less used algorithm such as the OPTICS algorithm. It aims to shed light 
on the different driver profiles that exist in terms of safety, taking into 
account several driving characteristics recorded during a large-scale 
real-world naturalistic experiment across Europe. It will also provide a 
description of each driver profile discovered, including the recognition 
of risky behaviors such as aggressiveness. 

This research is based on the Rhapsody H2020 research project 
(Rhapsody, 2021–2023) that is developing new algorithms and models 

D.I. Tselentis and E. Papadimitriou                                                                                                                                                                                                         



Transportation Research Interdisciplinary Perspectives 21 (2023) 100900

3

using high-resolution, large-scale data collected through the naturalistic 
driving experiments of the i-Dreams H2020 research project (i-Dreams, 
2019–2022). Those data consist of both driving data such as harsh 
maneuvers and distance to the vehicle in front as well as physiological 
indicators of the driver recorded in real-time and data coming from 
questionnaires. Since there are no labelled data and there is no prior 
knowledge on what the different profiles are, an unsupervised learning 
methodology will be employed in order to discover the existing driver 
profiles. This approach will explore both machine learning approaches, 
namely K-Means and OPTICS clustering algorithms. 

Data collection, cleansing and pre-processing 

Naturalistic driving data were collected from the experimental data 
of the i-Dreams H2020 project (i-Dreams, 2019–2022) using an Appli
cation Programming Interface (API) service developed by the project 
partners. Almost 29 k trips were collected that took place between 
September 2021 and June 2022 by 130 passenger car drivers in Belgium 
(54 drivers), Germany (25 drivers) and the UK (51 drivers). Analytical 
information per trip was collected and data were aggregated to produce 
key trip performance indicators, which were the number of harsh ac
celeration, braking and cornering events, the level of headway distance 
and the level of speed limit violation. These indicators were initially 
recorded on a trip level and ultimately aggregated on a driver level 
during data pre-processing. 

For the purposes of this study, all harsh events recorded (accelera
tion, braking and cornering) were aggregated into one indicator named 
harsh events. The harsh acceleration and braking events are defined as 
harsh manoeuvers or vehicle movements related to a significant increase 
or reduction of longitudinal speed respectively. As for the harsh cor
nering events, those are defined as sudden right or left turn of the 
vehicle. It is highlighted at this point that the data provider used a 
classified algorithm to classify events as harsh or not. The exact details of 
this algorithm cannot be disclosed due to confidentiality reasons; in 
general, it uses data from several sensors such as the GPS and the 
accelerometer to detect the events taking place and their intensity level. 
This algorithm is trained using Machine Learning techniques and cali
brated through annotated field experiments. 

Headway distance events are recorded when the following vehicle is 
within a close distance from the leading vehicle and finally, speed limit 
violation events are those indicating the speed limit exceedance. A short 
description and the descriptive statistics of min, max, mean, median and 
standard deviation are provided for each indicator in Table 1. There are 
more indicators collected during the i-Dreams experiments but only 
these are currently available in a robust and validated way. As more 
indicators will become available in the future, they will be included in 
this research. 

During data cleansing, trips with distance less than 300 m as well as 
those with duration less than 90 s were eliminated. In order to be 
included in the final dataset, drivers should have travelled at least a total 
number of 20 trips and 200 km (Stavrakaki et al., 2020). The sample was 
checked for outlier driving behavior but no driver was found with such 
behavior. Outliers were detected using the boxplot definition of outliers 
that exist above maximum, i.e. higher than the Q3 + 1.5 * IQR (Inter- 
Quartile Range). The same was done also for the outliers below mini
mum value, i.e. Q1 – 1.5 * IQR. The final dataset that was analyzed, 
included 27,919 trips from 130 drivers. The driving metrics used in the 

analysis were estimated as the total number of events occurred per 100 
km travelled i.e. the number of harsh events per 100 km, the number of 
headway events per 100 km and the number of speeding violations per 
100 km. It should be noted that after data were cleansed and before 
applying the clustering algorithm, clustering features were standardized 
by subtracting the mean and dividing by the standard deviation to scale 
data values. Data collection, cleansing, pre-processing and analysis were 
implemented using Python 3.7 and the Python packages of requests, 
pandas, numpy and sklearn. 

Methodological approach 

As described above in brief, this research makes use of two clustering 
algorithms, the K-Means and the OPTICS algorithm, to identify the 
existing driver profiles. Apart from the description of these algorithms, 
this section provides also a short description of the elbow method that is 
used for the determination of the number of clusters that should be 
considered in this analysis as well as a description of the Silhouette 
analysis used to evaluate the performance of the resulting clusters that 
are identified by the two algorithms. It is clarified at this point that the 
number of clusters resulting from the elbow method will be used as an 
indication of the number of clusters that will be presented herein for 
both clustering methods. Similarly to that, the Silhouette analysis will 
also be used to assess the clustering performance for all clusters resulting 
from both methods. 

K-means algorithm 

Clustering allows finding and analyzing the groups that were formed 
naturally, instead of defining groups prior to looking at the data. K- 
Means clustering is a type of unsupervised learning, which aims to find 
the optimum way to group given data, with the number of groups rep
resented by the variable k that is given as input. This data grouping is 
based on the feature similarity of the observations. The centroid of each 
cluster is a collection of feature values that defines resulting groups, 
based on which the average behavior of the resulting groups is inter
preted (Hartigan and Wong, 1979). K-Means is an iterative algorithm 
that starts with randomly selecting K points as the initial centroids and 
assigning each observation to each cluster based on their distance to 
each centroid. Once the full sample is assigned to K clusters for the first 
time, the centroids are recalculated. The process of measuring the dis
tances between each observation and each centroid is repeated using the 
new centroid position and the full sample is re-assigned. This procedure 
is repeated again several times until either the centroids are changing or 
the maximum number of algorithmic iterations is reached. 

OPTICS algorithm 

OPTICS, which stands for ordering points to identify the clustering 
structure, is a density-based clustering algorithm, which was proposed 
by (Ankerst et al., 1999). The concept of density-based clustering is that 
the neighborhood of a given radius has to contain at least a minimum 
number of objects for each object of a cluster. In other words, a point p is 
a core point of a cluster if at least the minimum number of points are 
found within its neighborhood (including point p itself). These two pa
rameters (maximum radius and minimum number of points that form a 
cluster) are the minimum required inputs for a density-based clustering 

Table 1 
Indicators used in this study and their statistical metrics per driver.  

Driving performance indicator Description Min Max Mean Median St. Dev. 

Harsh events Number of harsh acceleration, braking and cornering maneuvers 597 17,171 5,587 4,552 5,466 
Headway distance Number of headway distance events 330 14,427 4,535 4,094 4,054 
Speed limit violation Number of speed limit violations 306 11,609 3,503 2,814 2,848  
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to be performed. OPTICS is used for finding density-based clusters in 
spatial data and works similarly to the DBSCAN algorithm (Ester et al., 
1996). Nonetheless, OPTICS is capable of detecting meaningful clusters 
in data of varying density, which is DBSCAN’s major weakness. This is 
achieved by ordering the points to be clustered in such a way that closest 
points become neighbors in the ordering. The distance between points 
and therefore, the density threshold for considering both points to be in 
the same cluster is represented through a dendrogram that is created. 

Elbow method 

Since clustering is an unsupervised learning process, the number of 
clusters should be decided beforehand. This can be determined by 
running the K-Means algorithm for k times and comparing the results. 
One of the most commonly used metrics for comparing results across 
different values of k is the mean distance between cluster centroids and 
the data points assigned to each one of them, which is decreased while 
the number of clusters is increased. When this metric is plotted as a 
function of the number of clusters k, k can be used to estimate the “elbow 
point”, which is the point where the rate of this metric’s decrease 
sharply shifts. 

Silhouette analysis 

The separation distance between the clusters resulting from a clus
tering algorithm can be studied through Silhouette analysis. The 
silhouette index provides a measurement of how close each point within 
a cluster is to points in the neighboring clusters. This measure is in the 
range of − 1 to 1 and it is helpful for the assessment of the total number 
of clusters. The silhouette index can be displayed in a silhouette plot. 
Silhouette indices closer to + 1 provide an indication that neighboring 
clusters are well-separated and distanced from each other. Values closer 
to 0 show that clustered points are very close to the decision boundary 
between two neighboring clusters. On the other hand, values close to − 1 
are clearly showing that these clustered points have most probably not 
been assigned to the correct cluster. 

Results and main contributions 

Number of clusters 

Fig. 1 illustrates the results of the elbow method, which is used to 
indicate the optimal number of clusters, which represents the number of 
driver profiles. This optimal number is found to be in the range of 3 to 5, 

since this is the point where a sharp shift in the clustering score is 
observed. As previously described, this score is calculated using the sum 
of distances between each observation and the centroid of the cluster at 
which it is assigned. 

This range is rational also from the perspective of producing 
explainable results, considering that the driver sample size could not 
justify a much higher number of clusters since each cluster would not 
have a sufficient number of drivers to draw statistically significant re
sults. This study will investigate the full range of 3 to 6 clusters, which 
will also test the robustness of the two algorithms. 

Results of the K-means algorithm 

Table 2 illustrates the results of the K-Means algorithm. For each 
clustering performed, between 3 and 6 driver clusters, this table shows 
the number of drivers and their number of trips as well as the average 
trip distance and number of events per 100 km for the 3 clustering 
features, harsh events, headway and speeding. These metrics are pro
vided for each clustering group formed. The silhouette plots together 
with the detailed 3D illustrations of each of the clusters 3 to 6 are pre
sented in Fig. 2. 

Regarding the 3-cluster results, the algorithm revealed the three 
driver profiles of less risky, modest and most aggressive drivers. Less 
risky drivers appear to have significantly lower number of all types of 
events, headway, speeding and harsh events. This becomes apparent 
also from the fact that cluster 1 is very well separated from the other, 
which is shown in Fig. 2. On the other hand, clusters 0 and 2 have 
equally high number of speeding violations per 100 km but have a 
noticeable difference in headway events and especially in harsh events. 
The silhouette score of 0.409 shows a medium to low performance of the 
clustering algorithm in terms of how well the three clusters are 
separated. 

The results of the 4-clusters shown in Fig. 3 run show that the less 
risky driver cluster (cluster No 1) remains almost the same, which in
dicates that it is better separated from the rest. This is also shown in 
Fig. 3. The main part of the modest drivers also remains the same in this 
run, which is confirmed by the fact that the metrics of cluster No 3 of this 
run are exactly the same with those of cluster No 0 of the 3-cluster re
sults. Moreover, the more aggressive part of the modest drivers is moved 
towards the cluster of the most aggressive drivers that is now split into 2 
parts, those performing either more harsh events (cluster number No 2) 
or speeding violations (cluster number No 0). In this run, the silhouette 
score is 0.384 indicating that drivers are slightly worse clustered 
compared to the 3-cluster run. 

In the 5-cluster run shown in Fig. 4, the less risky drivers cluster 
remains again almost the same as in the previous runs. On the other 
hand, the cluster of the modest drivers are split into two in this run, the 
less and the more aggressive part. The more aggressive part of the 
modest drivers has incorporated also a part of the initially (3-cluster run 
shown in Fig. 2) defined aggressive drivers. The higher aggressiveness of 
this part of the modest drivers is mainly depicted in the number of harsh 
acceleration events. The split of the most aggressive drivers cluster re
mains but leads to significantly smaller clusters. Again, their main dif
ference is that half of them are performing a high number of harsh events 
whereas the other half is performing a higher number of speeding vio
lations. Overall, the most aggressive driver cluster appears to be cluster 
1 where apart from the number of speeding events, the number of 
headway and harsh events are higher compared to the rest. The 
silhouette score is also found here to be reduced to 0.356 compared to 
the previous two runs. 

As for the 6-cluster results shown in Fig. 5, the cluster of the less risky 
drivers remains again almost the same as in the previous runs. The 
modest drivers cluster remains also split into two parts, the less and 
more aggressive modest drivers. The less aggressive part is almost the 
same as in the previous clustering, whereas the more aggressive part 
includes also some drivers that were initially defined as aggressive. 

Fig. 1. Elbow graph showing the clustering score for different numbers of 
driver clusters. 
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Regarding the most aggressive drivers, they are now split into 3 but in 
significantly smaller clusters. As also indicated in Table 2, the first group 
of aggressive drivers includes those performing a huge number of harsh 
events (cluster No 3). Apart from the number of speeding events, drivers 
of this cluster present a number of headway and harsh events that is 
close to the average. The other 2 clusters (clusters No 0 and 5) with a 
large number of harsh events but differ in speeding violation and 
headways. In fact, cluster No 0 presents normal number of speeding 
violation and headways events, being closer to the profile of modest 
drivers. Similarly to the above, the silhouette score is reduced to 0.344 
now that the number of clusters is increased. 

Results of the OPTICS algorithm 

As explained above, density-based clustering assigns points to clus
ters only when a minimum number of points is found within the 
neighborhood of a point. This is why in each clustering presented in 

Table 3, there is also a row dedicated to those drivers that were not 
assigned to any cluster. As the number of clusters grows, the number of 
drivers not clustered is reduced due to the fact that more drivers are 
assigned to at least one cluster. 

Considering that i) the number of clusters when using the OPTICS 
algorithm is a result of parameter tuning and that ii) the purpose of this 
study is to compare and explain the performance of 2 clustering algo
rithms that are performing on a totally different basis, the 2 main pa
rameters of OPTICS were fine-tuned so that they provide the same 
number of clusters 3 to 6. Table 3 provides the OPTICS parameters used 
for each clustering. 

Table 4 presents the results of the OPTICS algorithm for 3 to 6 
clusters. Similarly to the results of the K-Means algorithm, this table 
shows the number of drivers and their number of trips as well as the 
average trip distance and number of events per 100 km for the 3 clus
tering features used in each clustering performed (3 and 6 driver clus
ter). These metrics are provided for each clustering group formed. The 

Table 2 
Clustering results of the K-Means algorithm.  

Clustering # Driver cluster ID # of drivers # of trips Average trip distance Harsh events/ 100 km Headway events/ 100 km Speeding violations/ 100 km 

3 0 71 6,216 14 24 19 15 
3 1 30 3,906 14 18 2 4 
3 2 29 7,797 10 37 23 16 
4 0 32 8,001 11 29 22 18 
4 1 29 3,777 14 18 1 4 
4 2 9 2,227 9 53 23 12 
4 3 60 3,914 15 24 19 14 
5 0 42 8,654 16 23 20 13 
5 1 15 3,605 11 32 26 21 
5 2 29 3,777 14 18 1 4 
5 3 8 2,010 9 53 22 11 
5 4 36 9,873 12 27 18 15 
6 0 17 5,162 9 33 18 12 
6 1 28 3,501 14 18 0 3 
6 2 29 7,387 12 24 19 16 
6 3 5 1,297 9 58 21 11 
6 4 40 8,135 17 24 21 13 
6 5 11 2,437 13 31 29 27  

Fig. 2. Results of the K-Means 3-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  
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silhouette plots together with the detailed 3D illustrations of each of the 
clustering performed are presented below. 

The 3-cluster run of the OPTICS algorithm shown in Fig. 6 revealed 2 
clusters of less risky drivers, which are both part of the less risky drivers 
cluster of the K-Means algorithm. This is confirmed both by Table 4 and 
Fig. 6. Both these clusters have 0 headway events per 100 km and there 
are only slight differences between them in terms of speeding and harsh 
events. This means that less risky drivers consistently present driving 

risk metrics that are close to 0 and therefore, a low variability in their 
behavior. This conclusion is based on the fact that the OPTICS algorithm 
detects high-density areas i.e., areas with drivers that present very 
similar behavior. The 3rd cluster represents modest drivers and it is part 
of the modest drivers cluster discovered also by the K-Means algorithm, 
including slightly more aggressive drivers. It is also observed that the 
85% of drivers is not assigned to any cluster. Those drivers present a 
very high variability in terms of behavioral characteristics with none of 

Fig. 3. Results of the K-Means 4-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  

Fig. 4. Results of the K-Means 5-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  
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them having at least 4 drivers with similar characteristics to form a 
common group. This can be interpreted as that the OPTICS algorithm 
creates small and compact profiles with very common behaviors and it 
does not necessarily assign every driver to a specific group if no other 
driver is observed to have similar behavior. The significantly higher 

silhouetted index of 0.683 is measured for this clustering, showing that 
despite the fact that not all drivers are clustered, the clusters formed are 
compact and well-separated from the rest that were discovered. 

The less aggressive cluster of the OPTICS algorithm’s 4-cluster run 
shown in Fig. 7 is almost the same as the respective one of the K-Means 
algorithm, which is confirmed by both Table 4 and Fig. 7. In this run, 3 
clusters of modest drivers are discovered (clusters No 1 to 3), with 
cluster No 3 being the most aggressive compared to the rest. Its slightly 
higher aggressiveness is observed especially in the number of headway 
and harsh events and not in overspeeding. The percentage of drivers not 
belonging to any cluster is significantly reduced to 65% displaying a 
sensitivity of the algorithm to the maximum radius and the minimum 
number of points in a cluster considered. The silhouette index is 
significantly reduced to 0.598, which indicates that the clusters of 

Fig. 5. Results of the K-Means 6-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  

Table 3 
Parameters used for each clustering of the OPTICS algorithm.  

# clusters Minimum number of points Maximum radius 

3 5  0.3 
4 6  0.7 
5 5  0.4 
6 5  0.7  

Table 4 
Clustering results of the OPTICS algorithm.  

Clustering # Driver cluster ID # of drivers # of trips Average trip distance Harsh events/ 100 km Headway events/ 100 km Speeding violations/ 100 km 

3 Not clustered 111 25,002 13 27 18 14 
3 0 7 470 24 18 0 5 
3 1 7 847 15 21 0 3 
3 2 5 1,600 16 33 28 14 
4 Not clustered 84 19,602 12 28 20 15 
4 0 27 3,337 14 19 0 3 
4 1 6 1,685 9 27 14 13 
4 2 7 1,512 19 22 23 13 
4 3 6 1,783 17 34 29 14 
5 Not clustered 90 19,925 12 27 18 14 
5 0 7 470 24 18 0 5 
5 1 7 847 15 21 0 3 
5 2 11 2,786 10 26 15 14 
5 3 7 1,950 19 37 31 15 
5 4 8 1,941 18 21 21 12 
6 Not clustered 86 19,087 12 28 19 14 
6 0 7 470 24 18 0 5 
6 1 7 847 15 21 0 3 
6 2 11 2,786 10 26 15 14 
6 3 8 1,941 18 21 21 12 
6 4 6 1,783 17 34 29 14 
6 5 5 1,005 10 15 7 10  
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modest drivers may have some similarities to each other. 
In the 5-cluster run of the OPTICS algorithm shown in Fig. 8, the 

cluster of less risky drivers is split again into two parts, showing that 
these two parts do not significantly differ. The other 3 clusters represent 
also the modest drivers with cluster No 3 having included a few more 
aggressive drivers in terms of all three driving features considered. The 
driver percentage not clustered is almost not altered and the silhouette 
index is reduced to 0.561. 

Finally, the 6-cluster run of the OPTICS algorithm shown in Fig. 9, 

revealed a new cluster of modest drivers that is less aggressive than the 
rest (cluster No 5). It is apparent from Fig. 9 that this cluster less dense 
than the rest meaning that the distance of each driver from the average 
driver behavior of this cluster is higher than it is in the other clusters. 
The results for the rest of the driver clusters are very similar to those of 
the 5-cluster run. This stands also for the silhouette index that was 0.546 
in this run. 

Fig. 6. Results of the OPTICS 3-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  

Fig. 7. Results of the OPTICS 4-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  
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Discussion 

Main findings 

One significant finding of this analysis is that the less risky/aggres
sive driver profiles are more consistently identified by the clustering 
algorithms. The less risky drivers were identified by both algorithms in 
all runs performed, which shows that this profile is very dominant, most 
probably because being consistently less risky can only be achieved by 

performing a low number of events in all risk indicators considered. On 
the other hand, the instability in the algorithmic detection of more 
aggressive driver clusters shows a difficulty in their identification which 
can be interpreted as that extreme behaviors are much more diverse in 
terms of their potential measurement characteristics. In other words, 
this means that despite the fact that more aggressive drivers exist, they 
present unique behavior and therefore, cannot form a specific group. 
This was confirmed also by the OPTICS algorithm that did not reveal any 
cluster of highly aggressive drivers showing that their behavior can be 

Fig. 8. Results of the OPTICS 5-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  

Fig. 9. Results of the OPTICS 6-cluster clustering. (a) Silhouette plot for all clusters; (b) 3D illustration of the 3 normalized features used in clustering.  
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extremely variable. 
Moreover, drivers of higher aggressiveness are distinguished based 

on their dominant driving feature, which is also an indication that the K- 
Means clustering algorithm is more sensitive to the higher values of 
aggressiveness indicators used and less to the lower ones. This is also 
related to the observation mentioned above that it is more rare to 
observe drivers that present safe behavior in terms of all driving safety 
aspects and more frequent for drivers to be aggressive at least to one of 
those aspects. This is also an indication that this driver group is het
erogeneous, which may be considered as one of the reasons of not 
having one single group of aggressive drivers in different clustering 
findings. 

Regarding the optimal number of driver profiles, it was highlighted 
that the silhouette index is reducing while the number of clusters is 
increasing and that profiles present less significant differences because 
they are as well-separated as in cluster runs with lower number of 
clusters. Based on the interpretation of the physical meaning of the 
clusters, increasing the number of clusters more than 4 does not provide 
more meaningful results. This might be an indication that the optimal 
number of clusters is 3 to 4, at least based on this sample. The results of 3 
and 4 clusters are also confirmed by (Sanjurjo-De-No et al., 2020; 
Fugiglando et al., 2018; Liao et al., 2022; Nouh et al., 2021; Chronis 
et al., 2021), who found that similar results were produced by the K- 
Means and hierarchical clustering algorithms. A few other studies 
though support the existence of 5 or 6 driver profiles or states (Weidner 
et al., 2017; Mantouka et al, 2019; Warren et al, 2019; Constantinescu 
et al., 2010; Payyanadan and Angell, 2022). 

The main driver profiles discovered found are those of less risky, 
modest drivers and more aggressive drivers. Results indicate that 
modest drivers can be possibly further divided into two sub-profiles of 
lower and higher aggressiveness, which is still lower than that of the 
more aggressive drivers. Finally, more aggressive drivers exist but 
probably need more data to draw conclusions on which are the groups 
that present consistently common characteristics compared to the rest. 
Based on the above, it is suggested to choose a combination of these 
types of clustering to identify different levels of profiles and their un
derlying sub-profiles. The results found herein in terms of the types of 
driver profiles discovered are also similar to those found in the past 
literature (Tselentis et al., (2019, 2021, 2023), Bergasa et al., 2019; 
Saleh et al., 2017; Liao et al., 2022; Nouh et al., 2021; Abdulwahid et al., 
2022), which are categorizing drivers in terms of driving risk, normality 
and aggressiveness. There are also studies utilizing different driving 
characteristics, such as drowsiness and mobile phone usage, and 
therefore revealing different types of profiles. For instance, these pro
files could be defined by stress, resilience, distraction, velocity etc. 
(Chronis et al., 2021; Weidner et al., 2017). 

In terms of the clustering algorithms tested, the K-Means algorithm 
assigned all drivers to the derived clusters, whereas the OPTICS algo
rithm created mini-profiles and not necessarily assigned everyone to one 
cluster/group. It was found that approximately 65% of drivers was not 
assigned to clusters displaying thus a unique and highly variable 
behavior of most drivers without significant similarities with the rest of 
the drivers’ sample. This leads to the general remark that drivers present 
significant diversity in terms of driving characteristics and only a mi
nority presents common characteristics that could be grouped. 

At this point, it is highlighted that one of the goals of this study was 
to present two different clustering approaches for the purpose of driver 
profile recognition. The fact that the OPTICS algorithm did not assign all 
drivers to a profile/cluster may have a twofold interpretation, i) the 
OPTICS algorithm should always be coupled with another algorithm and 
ii) the rest of the drivers not assigned to a cluster/profile present a 
diverse behaviour and therefore cannot be considered part of any driver 
group or profile. An alternative interpretation would be to exploit the 
results of this algorithm to identify dense clusters areas and utilize this as 
an indication of the actual number of driver profiles. 

As for the above suggestion to couple the OPTICS algorithm with 

another method, a suggestion would be to couple it with an optimization 
method that will assign the not clustered drivers to an existing cluster, 
by finding the optimal fit to a profile/ cluster in terms of the driving 
characteristics considered. Building a similarity index that will be 
calculated between each combination of driver profile and driver not 
clustered to measure could be helpful towards this direction. The algo
rithm would aim to minimize the total sum of all similarity indices and 
constraints such as a maximum number of drivers or a specific value 
range for a driving metric in each profile could be considered. 

Finally, regarding the important features used in this analysis, both 
clustering algorithms showed sensitivity in all 3 features considered, 
which shows that all of them are significant in driver profiling. 

Association between profiles and driver characteristics 

Further analysis was performed on the association between driver 
profiles discovered by KMeans and the driver characteristics of each 
cluster. The results of the KMeans algorithm and not those of the OPTICS 
algorithm were analysed because the OPTICS algorithm assigns the 
minority of the drivers to clusters and the rest are categorized as outliers. 
It is highlighted that the interpretation of this association is based on 
descriptive statistics and not on statistical tests. This was not done in this 
study since, because on the one hand it was not in our main scope, and 
on the other hand the incompleteness of driver data (as shown in 
Table 5) would result in a total sample that would not be adequate for 
statistical comparisons. 

The driver characteristics collected through questionnaires admin
istered during the project were gender, age, income and accident 
involvement within the last 3 years. The association of these charac
teristics was investigated for all clustering tests from 3 to 6 and results 
were found to be similar. For this reason, the results for 3 clusters will be 
indicatively shown here, but it is highlighted that similar findings were 
discovered regardless of the number of clusters. Table 5 shows the dis
tribution of age groups across clusters for KMeans clustering of 3 clus
ters. Almost half of the drivers’ sample belongs to the 30–60 age group 
whereas 9% has not declared their age group. The 26% is younger than 
30 years old and the rest are over 60 years old. It becomes apparent that 
Cluster 1 of the less aggressive drivers has the highest % of younger 
drivers. Moreover, the majority of older drivers are concentrated in 
Cluster 0, which is the cluster of the moderate drivers. 

Regarding drivers’ income, it was found that high income drivers 
(>5K€/month) are distributed across all clusters. It was also discovered 
that Cluster 2 (more aggressive drivers) includes a slightly higher 
number of lower income drivers (<2K€/month). 

Significant differences in the drivers’ distribution across clusters 
were not found in terms of drivers’ gender. Cluster 0 follows a gender 
distribution that is very similar to the overall sample distribution, 
whereas Cluster 1 includes slightly more male drivers and Cluster 2 
slightly more female drivers. 

Finally, regarding accident involvement in the past 3 years, no spe
cific cluster of drivers was found to have a significantly higher 
involvement than the rest. The 87% of drivers were not involved in any 
accident within the last 3 years and the 13% were involved in at least 1. 
A similar distribution is followed by Cluster 0 and 1, with Cluster 2 
(more aggressive drivers) showing a slight difference in accident 
involvement that was 19%. 

It should be highlighted that this study used a relatively small sample 
size and large, heterogeneous age groups. Moreover, when comparing 
clusters in terms of a certain variable e.g. gender, the confounding effect 
other variables such as age and income, was not adjusted. Therefore, a 
larger and more homogeneous sample should be collected to draw sta
tistically significant results and understand whether significant differ
ences exist between drivers with different characteristics. It is also 
important to adjust for the effect of other variables when comparing 
clusters in terms of one variable. Based on the findings of this research, it 
can be concluded that aggressiveness is mainly related to personality 
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traits of each individual driver rather than to drivers’ demographics 
such as the gender or the income group. It is likely that a correlation 
exists between previous accident involvement and aggressive driving, 
but the available dataset is not sufficient to draw conclusions. None
theless, this could also be attributed to the lack of enough variability in 
age and traffic accidents (such as narrow age range, etc.) or to the non- 
sensitivity of this research method for discovering different driver cat
egories because of high homogeneity of study population to this section. 

Conclusions and future work 

This paper applied an interdisciplinary research approach based on 
Machine Learning (ML) and driver behavior / road safety disciplines and 
employed two ML clustering algorithms (K-Means and OPTICS) to 
identify driver profiles. Different clustering approaches seem to provide 
better insights on the optimal number of driver profiles and how these 
could be defined. The profiles that exist in the examined sample are i) 
less risky drivers, ii) modest drivers and iii) aggressive drivers. It was 
also found that less risky drivers can be clearly defined by both clus
tering algorithms, while more aggressive drivers present a more diverse 
behavior. Moreover, both algorithms produced more robust results 
when the number of clusters was reduced. Finally, no significant asso
ciation between driver characteristics and clustering was found other 
than that of drivers’ age. The less aggressive cluster has the highest 
percentage of younger drivers and the majority of older drivers are 
concentrated in the cluster of moderate drivers. There is an indication 
that more aggressive drivers have a higher accident involvement. 

The implementation of this research contributes to the discovery of 
existing driver profiles. It was observed that the K-Means algorithm 
identifies the main driver profiles but also presents some disadvantages 
such as that it necessarily assigns all drivers to clusters. On the other 
hand, the OPTICS algorithm identified driver profiles with very similar 
characteristics but presented some difficulties in the process of identi
fying more aggressive profiles with higher variability. It is suggested for 
future research to investigate whether combining the results of these 
two types of clustering algorithms could lead to improved overall re
sults. Especially in order to deep dive into more aggressive driver pro
files, it is recommended to use a larger sample of drivers, which will 
provide a clearer picture for all profiles as well. Incorporating more 
driving behavior characteristics as clustering features such as mobile 
phone usage and drowsiness level while driving, and analyzing profiles 
separately in different road types and time periods would also be very 
insightful in terms of the number and types of profiles. Finally, future 
studies should define and optimize parameter tuning (minimum number 
of points and maximum radius per cluster) for the OPTICS algorithm. 

The characteristics of each driver and driver profile identified can 
potentially be used to develop applications that can support drivers and 
reduce crash risk. According to the results of the OPTICS algorithm, 
many drivers present unique behavior that cannot be grouped together 
with other drivers into profiles. Therefore, those drivers not belonging to 
profiles should be treated individually when developing mechanisms for 
feedback and interventions. For instance, in a case where a driver is 
being monitored and classified as aggressive driver with high number of 
harsh events, a feedback in the form of a message could be provided 
through a Smartphone application suggesting that the number of should 
be decreased to become less risky. Another example in the same direc
tion could be real-time warnings provided by the vehicle’s ADAS to a 

driver of the same aggressive profile, when a harsh event is foreseen 
based on the driver’s macroscopic behavior. 

The information on driver profiles could be used to predict the future 
state of a driver profile. Having quantified the probability of involve
ment into a road crash for each driver profile, the results of this study 
could be exploited from a traffic manager to quantify the total risk of a 
traffic network on the basis of the measured indicators, and their future 
changes. It would be important to investigate driver profiles in separate 
road types as well as to examine whether driver profiles differ from 
country to country. Each driver profile should be further investigated to 
understand which specific driving patterns are associated with each of 
them. 
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