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Abstract

Recent progress on the representation theory of certain infinite dimensional gauge groups has raised an interest

in the strongly continuous unitary representations of the group G = V oH d
= R4⊕Hom(R4, k)oSL(2,C)×K

that satisfy a certain positive energy condition[JN], where K is a semisimple compact Lie group with Lie
algebra k.

An equivalent formulation of the positive energy condition is obtained, allowing for a geometrical interpre-
tation of this condition and which yields necessary conditions for satisfying this condition. By the theory
of the Mackey machine, the strongly continuous unitary representations of G that are of positive energy are
classified by the corresponding stabilizers of the action of H on the dual group V̂ . For the case of K = SU(2),
these are fully determined up to equivalence.

Finally, a method is developed that embeds homogeneous bundles as eigenspace subbundles of trivial bundles
that in particular applies to the bundles obtained through the representation theory of G. The eigenspace
subbundles thus obtained allow for a more detailed understanding of the induced representation and moreover
resemble various theories in particle physics.
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The subject of this master thesis has interested me from the start and in the past eight months, I have
found myself becoming ever more intrigued by it, while slowly attaining a more comprehensive grasp of its
underlying mathematical theory; a process which does not seem to end. I have definitely grown towards my
mathematical aspirations, for which I am particularly grateful to my advisor Bas Janssens, who has excel-
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Chapter 1

Introduction

This thesis is concerned with the mathematical formulation of various theories of particle physics. A recent
result[JN] by B. Janssens and K.H. Neeb has made progress towards this goal, reducing the study of the
representation theory of an infinite-dimensional symmetry group to that of a much simpler to understand
group, for a subclass of representations that satisfy a so-called positive energy condition. The main purpose
of this thesis is to understand the strongly continuous unitary representations of this simpler group that
are of positive energy. A full understanding thereof could provide a significant stepping stone towards a
mathematical formulation of various theories in particle physics, including the standard model.

Motivation and historical perspective

The primary motivation of this thesis lies in the attempt of physicists and mathematicians to formulate
theories of particle physics in a mathematically rigorous way. Let us therefore consider a bit of the related
history leading up to the main goal of this thesis.

Now, the standard model of particle physics is a theory describing three out of four of the fundamental in-
teractions; electromagnetic, weak and strong interactions, thus leaving out gravity. In particular, the theory
is compatible with both the theory of quantum mechanics and special relativity. A mathematical treatment
of such a unification is often done using the language of Lie groups, which describe continuous symmetries,
and the unitary representations thereof in some Hilbert space.

On the one hand, quantum mechanics postulates that the state space of a quantum system is a projective
Hilbert space P(H) = H/C×I. Moreover, this state space comes with a symmetric map p : P(H)×P(H)→
[0, 1] whose value represents a transition probability. If ψ1, ψ2 ∈ H have unit norm, then p is defined by

p([ψ1], [ψ2]) 7→ |〈ψ1, ψ2〉|2.

The quantum automorphism group of such a system is defined as the set of topological automorphisms of
P(H) that preserve that map p, that is, that preserve the transition probabilities. Intuitively, these corre-
spond to the transformations that have no qualitative effect on the quantum system. A key result in the
history of quantum theory is Wigner’s theorem [Wig39], which states that every element in the group of
quantum automorphisms lifts to either a unitary or anti-unitary operator on the Hilbert space H and this
element is unique up to a phase factor (if dimH > 1).

On the other hand, special relativity asserts that neither the distance between two points in space nor the
time between two events is the same in all reference frames. That is, neither space nor time is separately
invariant under arbitrary changes of reference frames. Instead, the quantity that is invariant under such
changes of reference frames is the so-called space-time interval (∆s)2

(∆s)2 = c2(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2, (1.1)

where c denotes the speed of light. This means that one should not consider space and time separately, but
instead should consider the quadratic space R4 equipped with the Minkowski form η given by

η(x, y) = x0y0 − x1y1 − x2y2 − x3y3 (1.2)

The set of linear transformations of R4 that preserve η defines a Lie group O(1, 3) called the Lorentz group.
Since there is no preferred choice of origin (this is reflected by the ∆’s in 1.1), any physical theory that is
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compatible with special relativity should not have qualitatively different behaviour under transformations by
the inhomogeneous Lorentz group R4 oO(1, 3).

In particular, if we have any quantum system P(H) that is subject to the laws of special relativity, then
by Wigner’s theorem, there should be a projective unitary representation SO(1, 3)0 o R4 → PU(H), where
SO(1, 3)0 denotes the connected component of SO(1, 3). In 1939, Wigner classified such projective unitary

representations [Wig39] in terms of linear unitary representations of the group P̃ = R4oSL(2,C) and in 1948,
together with Bargmann, showed a strong connection of these representations with relativistic wave equa-
tions [BW48]. As an example, it was shown that the Dirac equation i~

∑3
k=0 γk∂kψ = mcψ, which describes

massive spin- 1
2 particles, corresponds to an irreducible unitary representation of the group P̃ . This means in

particular that the dynamical behaviour of such a particle is fully contained in the representation theory of P̃ .

More generally, if such a quantum system is known to be invariant under transformations in some symmetry
group G, then in view of Wigner’s theorem, if G is connected, there must be a projective unitary representa-
tion G→ PU(H) of G in H. Often, such symmetry groups are finite dimensional semi-simple Lie groups over
R or C. In that case, Bargmann’s theorem[Bar54], [HN91] implies that any continuous projective unitary

representation of G lifts to a strongly continuous unitary representation of its universal covering group G̃.
Conversely, any irreducible representations of the covering group descends to a projective representation of
the original group by Schur’s lemma. Thus, the study of continuous projective unitary representations of G
is reduced to the study of linear strongly continuous unitary representations of G̃.

The success of Wigner in relating the relativistic wave equations to the representation theory of the corre-
sponding symmetry group has led physicists to consider the unitary representations of the symmetry groups
corresponding to various interactions in order to obtain information about quantum systems subject to such
symmetries. For example, electromagnetism is known to contain U(1) symmetry, isospin is subject to SU(2)
symmetry whereas flavour possesses SU(3) symmetry. By choosing a symmetry group that includes multiple
of the above three, physicists have attempted to unify the various forces into a single and larger symmetry
group, yielding a single theory that encompasses each of the three forces above. There are many ways in
which this can be done, but the standard model is based on their product U(1)× SU(2)× SU(3).[BH09]

Now, these symmetries represent internal symmetries and are local, meaning that such symmetries may vary
(smoothly) at different positions in space-time. In order to make these theories compatible with special
relativity, one therefore has to consider a group that captures both the global symmetries of R4 o SO(1, 3)0

imposed by special relativity and the local symmetry K, for some simply connected semisimple compact Lie
group K (such as SU(2) and SU(3)).

Mathematically, this can be formulated in the language of principal fiber bundles. Explicitly, if P → R4 is a
principal K-bundle over R4, then one considers the associated group bundle K = P×AdK over R4 with typical
fiber K. Denote by Γc(K) the group of compactly supported sections of this bundle. Such a section assigns an
element in K to each point in the manifold M in a continuous manner. Now, given an action of R4oSO(1, 3)0

on R4 and a lift of this action to K, one considers the symmetry group G = Γc(K) o (R4 o SO(1, 3)0).

The representation theory of such groups is in general not well understood, so to simplify matters a bit,
the Minkowski space R4 can be replaced by its conformal compactification Q [FLV07, section 2]. With this
simplification, a recent result by B. Janssens and K.H. Neeb [JN] has reduced the study of a certain class
of projective representations of G satisfying a so-called positive energy condition to the study of strongly
continuous unitary representations of positive energy of the finite dimensional Lie group

R4 ⊕ (k⊗ R4) o SL(2,C)×K (1.3)

for some suitable action of SL(2,C)×K on R4 ⊕ (k⊗ R4), where k denotes the Lie algebra of K.

Having in mind the success of the study of the unitary representation theory of SL(2,C)oR4 and the various
symmetry groups U(1), SU(2) and SU(3) in relation to quantum systems subject to such symmetries, one is
motivated to similarly study the unitary representations of the group 1.3.

Now, Wigner’s classification of the strongly continuous unitary representations of R4 o SL(2,C) has led
to a general theory of induced representations for locally compact groups, developed largely by Mackey
[Mac49, Mac52]. This theory considers the question of how the representation theory of a given group G is
related to that of its closed subgroups. This theory is particularly nice and well-developed in the case that
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G is of the form G = N o H for some Abelian normal subgroup N . In this case, the strongly continuous
unitary representations of G are completely classified by those of the various stabilizers subgroups Hν of the
action of H on the dual N̂ of N .

In particular the group 1.3 is of this form, so an obvious approach towards an understanding of the positive
energy representations of this group is to try and apply the theory of induced representations to this group.

Goal of the thesis

The main purpose of this thesis is to follow up on the following result of B. Janssens and K.H. Neeb[JN]:

Theorem 1. There exists some H in a maximal Abelian subalgebra h of k such that there is a bijective
correspondence between smooth projective positive energy representations of Γ(Q,K)0 o (R4 oSO(1, 3)0) and
strongly continuous unitary representations of

G = R4 ⊕ (k⊗ R4) o SL(2,C)×K, (1.4)

that are of positive energy with respect to the cone

C ′ = {v ⊕ (H ⊗ v) : v0 ≥ 0 and η(v, v) ≥ 0} ⊂ R4 ⊕ (k⊗ R4) (1.5)

and where the action of SL(2,C)×K on R4 ⊕ (k⊗ R4) is given on simple tensors by

(w, k) · v1 ⊕ (X ⊗ v2) = φ(w)v1 ⊕ (Adk(X)⊗ φ(w)v2).

Here φ : SL(2,C)→ SO(1, 3)0 denotes the covering homomorphism.

Main goal

To develop an understanding of the strongly continuous unitary representations of the group
G that are of positive energy with respect to the cone C ′.

This problem is divided into three separate tasks:

1. To understand the meaning and implications of the condition of the positive energy re-
quirement.
In order to classify the representations of positive energy, a necessary first step is to determine which
strongly continuous unitary representation of G do or do not satisfy this condition.

2. To study the stabilizers of the action of SL(2,C) × K on R4 ⊕ (k ⊗ R4) corresponding to
representations of positive energy.
By the theory of induced representations, the strongly continuous representations of G are completely
determined by the representation theory of these stabilizers. A first step is thus to determine all those
stabilizers that correspond to a positive energy representation. These will then classify the strongly
continuous unitary representations of G that are of positive energy.

3. To understand the corresponding induced representations.
The induced representations are defined in abstract terms and therefore do not directly allow for a
detailed understanding or interpretation, which would require a more concrete realization of the induced
representations.
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Structure of the thesis

With these tasks in mind, the thesis is structured as follows.

1. Part I, which consists of the first three chapters, introduces various preliminaries. Explicitly, chapter 2
introduces the language of fiber bundles, which plays a major role throughout the thesis. The second
chapter discusses the theory of induced representations, which is the central tool used to classify the
strongly continuous representations of G. Finally, the third chapter is concerned with Clifford algebras
and spin groups. These spin groups are the universal covering group of the connected component
SO(V, q)0 of the group of isometries of some quadratic space (such as Minkowski space (R4, η)), and
are constructed using Clifford algebras. The general construction of this covering homomorphism as
well as some explicit cases will be relevant in both chapter 5 and chapter 6.

2. Part II is concerned with solving the three tasks mentioned above. Chapter 5 is devoted to the first
two tasks; two understand the meaning of the positive energy condition and determine the stabilizers.
To do so, an equivalent formulation of the positive energy condition is developed that admits a clear
geometric interpretation and can be exploited to explore the implications of this condition. The second
task is considered for the case K = SU(2), yielding a full classification of the stabilizers corresponding
to positive energy. Chapter 6 is concerned with the third task; to understand to corresponding induced
representations. To do so, inspiration is taken from the early work of Wigner, who showed that rela-
tivistic wave equations can be obtained by realizing certain homogeneous bundles encountered through
the induced representations as eigenspace subbundles of a suitable trivial bundle. An explicit method
to realize such an embedding is first developed that applies in particular to the bundles obtained via
the representation theory of G.

3. Finally, Part III consists of a conclusion and discussion of the obtained results, as well as the appendix.
The latter includes in particular the historically important example of the unitary representations of
R4 o SL(2,C), obtained using the theory of induced representations and their relation to relativistic
wave equations.
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Part I

Preliminaries
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Chapter 2

Fiber Bundles

In this chapter, the notion of fiber bundles is introduced. These objects play an essential role in the theory
of induced representations, which is most conveniently expressed in the language of fiber bundles. A good
understanding of fiber bundles is therefore necessary to properly discuss induced representations. Moreover,
a certain type of fiber bundles called homogeneous vector bundles, are the main object of study in chapter 6.

Now, the idea of fiber bundles is to generalize the notion of a product of two manifolds such that the re-
sulting object is locally a product space, but globally may have a different topological structure. There are
many variations of the notion depending on what additional structure is imposed. The most general notion
is considered first, providing the general framework for various variations, after which several more specific
structures are considered. In chapter 4, chapter 5 and chapter 6, the most relevant classes of fiber bundles
will be principal fiber bundles and homogeneous vector bundles.

A brief overview of the theory is given, focusing mostly on the definitions and results needed in chapter 4
and chapter 6. For a more detailed exposure on the theory of fiber bundles, see [HH94]. All constructions are
considered here in the smooth category. Nonetheless, the theory is similarly defined for topological spaces
and manifolds.

2.1 General fiber bundles

To idea of a fiber bundle is that it is a smooth manifold that is locally a product, but globally may have a
different topological structure. The precise definition is given below.

Definition 2. A fiber bundle with typical fiber F is a quadruple (E,M, π, F ), where

— E and M are smooth manifolds, known as the total space and base space,

— π : E →M is a surjective submersion,

— F is a smooth manifold

such that for every m ∈M , there exists some open neighborhood U ⊂M and a diffeomorphism
φU : π−1(U)→ U × F for which the following diagram commutes:

π−1(U) U × F

U

φU

π
Pr1

.

For any x ∈ M , its fiber π−1({x}) is denoted Ex or E(x). Since π is a surjective submersion, the fibers are
embedded submanifolds of E and are diffeomorphic to F by the local triviality condition. We also say that
E

π−→M is a bundle over M with typical fiber F .

6



Definition 3. A morphism between two fiber bundles E1
π1−→M1 and E2

π2−→M2 is a pair (f, f̃) of smooth

maps f : E1 → E2 and f̃ : M1 →M2 making the diagram below commute:

E1 E2

M1 M2

f

π1 π2

f̃

This morphism is an isomorphism if both f and f̃ are diffeomorphisms. If M = M1 = M2 it is usually
assumed that f̃ = id, unless explicitly stated otherwise.

A fiber bundle that is isomorphic to a product of smooth manifolds M ×F Pr1−−→M is called trivial. The last
condition of a fiber bundle then simply states that the bundle should be locally trivial. The maps φU are
called local trivializations.

Definition 4. A fiber bundle S
πS−−→ M is a subbundle of the vector bundle E

πE−−→ M if there exists a
bundle map f : S → E that is also a smooth embedding.

Definition 5. A section of a fiber bundle E
π−→ M is a smooth map s : M → E that is a right-inverse to

the projection π. That is, π ◦ s = idM . A local section is a section of the sub bundle π−1(U) → U for
some open U ⊂M . We denote the set of sections a fiber bundle E →M by Γ(M ;E) or by Γ(E) if the base
manifold M is clear.

Remark.

— Observe that the requirement π ◦ s = idM is equivalent to s(x) ∈ Ex for every x ∈M .

— Notice also that if the fiber bundle is trivial, say E = M×F . Then there is a one-to-one correspondence
between sections of the fiber bundle and smooth functions on M taking values in F :

Γ(E) ∼= C∞(M ;F ).

Therefore, the notion of sections can be regarded as a generalization of functions on a smooth manifold.

2.2 Vector bundles

A common example of fiber bundles are that of vector bundles, where the typical fiber is a (usually finite-
dimensional) vector space.

Definition 6. A vector bundle of rank k is a fiber bundle (E,M, π, V ), where V is a vector space of
dimension k, with the additional requirements that

— every fiber Ex is equipped with the structure of a real or complex vector space

— for every local trivialization φU : π−1(U) → U × V and x ∈ U , the map v 7→ φ−1
U (x, v) is a linear

isomorphism V → π−1(U).

If each fiber is a Hilbert space and the map v 7→ φ−1
U (x, v) is unitary, then (E,M, π, V ) is called a Hilbert

bundle.

Definition 7. A morphism of vector bundles is a bundle map (f, f̃) from a vector bundle E1 → M1 to

another vector bundle E2 → M2 such that fx
d
= f |E1(x) : E1(x) → E2(x) is a linear map for every x ∈ M1.

For a morphism of Hilbert bundles, we require additionally that fx is isometric.

Definition 8. A vector bundle U →M is a vector subbundle of the vector bundle E
→−→M if there exists

a morphism of vector bundles f : U → E such that both f is a smooth embedding.

As with any fiber bundle, we can again consider the sections of a vector bundle. Since each fiber is equipped
with the structure of a vector space sections can be added pointwise. Moreover, pointwise multiplication of
a section by a smooth function on M again yields a smooth section. That is, under the pointwise operations

(s1 + s2)(p)
d
= s1(p) + s2(p)

(f · s)(p) d
= f(p)s(p),

Γ(M ;E) becomes a module over C∞(M). Moreover, given a morphism E1
f−→ E2 of bundles over M , we

obtain a map Γ(E1)→ Γ(E2) given by s 7→ f ◦ s. This defines a functor Γ taking vector bundles over M to
modules over C∞(M).
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Remark. Given a vector bundle E →M , the space of compactly supported sections will be denoted by Γc(E).

Proposition 9. Let f : E → F be an injective morphism of vector bundles over X. Then f is a smooth
embedding. If f is bijective then it is a diffeomorphism.

Proof. Assume first that f is bijective. Then its inverse exists, so it remains to show it is smooth. In local
coordinates f is given by (u, v) 7→ (u, ρ(u)v) for some smooth ρ : U → GL(Rk). Locally, the inverse of f
is then given by (u, v) 7→ (ρ(u)−1v), which is smooth since A → A−1 is smooth in GL(Rk). Thus f is a
diffeomorphism.

Assume next that f is injective. The previous argument now applies to the map E
f−→ F (E), where F (E) is

given the smooth structure of a submanifold of F .

2.2.1 Operations

The vector space structure on each fiber of a vector bundle can be used to construct new vector bundles
from old ones, imitating similar constructions on vector spaces. As these constructions will be particularly
relevant in chapter 6, they are briefly discussed below.

Definition 10. A pre-vector bundle is a quadruple (E, π,X,B) consisting of the following data

— A set E,

— a smooth manifold X of dimension n, say.

— a surjective map E
π−→ X,

— a vector space structure on every fiber Ex = π−1({x}),

— a set, called the pre-bundle atlas, {(Uα, φα)}α, where {Uα}α is an open covering of X such that each
Uα is diffeomorphic to an open subset of Rn and φα : π−1(Uα) → Uα × Rn are bijective maps that
restrict to linear isomorphisms on the fibers and such that all transition functions Uα ∩ Uβ → GL(Rn)
of B are smooth.

Lemma 11. Suppose that we are given a pre-vector bundle (E, π,X,B). Then there is a unique smooth

structure on E for which B is a smooth atlas. With respect to this smooth structure, E
π−→ X becomes a

smooth vector bundle over X.

Proof. We endow each π−1(Uα) with the unique topology making the local trivializations φα into homeomor-
phisms. Next, the total space E is given the final topology with respect to all the injections Uα ↪→ E, that
is, the finest topology for which all the injections Uα ↪→ E are continuous. This makes E into a topological
manifold for which B is an atlas (after identifying Uα with the open subset of Rn it is diffeomorphic to). Since
the transition functions are smooth, B defines a smooth atlas on E, which is contained in a unique maximal
smooth atlas B̃, making E into a smooth manifold. Equipped with this smooth structure, E → M becomes
a smooth vector bundle.

This construction is usually applied in the case where a collection of vector spaces {Ex}x∈M indexed by M

is given. The total space E, as a set, is then taken to be the disjoint union E
d
=
∐
x∈M Ex and π : E → M

is the associated projection.

The previous lemma is applied to define various algebraic operations between vector bundles. Let E and F
be vector bundles over M of rank n and k, respectively. Let {(π−1

E (Uα), φα)}α and {(π−1
F (Uα), ψα)}α be local

trivializations of E and F .

Example (Tensor product of bundles).
As a concrete example, we define the tensor product E ⊗ F as bundle over M . Let E =

∐
x∈M Ex ⊗ Fx and

let π : E → M be the associated projection. For each x ∈ Uα, the map Ex ⊗ Fx :
φα,x⊗ψα,x−−−−−−−→ {x} × Rn ⊗ Rk

is a linear isomorphism. Thus for each α we have a bijection χα : π−1(Uα)→ Uα ×Rn ⊗Rk that restricts to
a linear isomorphism on each fiber. Moreover, choosing a basis for Rn ⊗ Rd shows that the elements of the
matrix representing a transition function Uα ∩ Uβ → GL(Rn ⊗ Rk) are polynomial functions of the matrix
elements of φα(x) and ψα(x), which are smooth functions on Uα ∩ Uβ by assumption. Hence the transition
functions are smooth, so that (E, π,M,B) is a pre-vector bundle, where B = {(Uα, χα)}α.
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One defines other algebraic operations in a similar fashion, defining the total space by applying the operations
fiber wise and constructing the local trivializations out the individual ones. An overview of various common
examples is given below.

— Dual E∗

— Direct sum E ⊕ F ,

— Tensor product E ⊗ F ,

— Exterior powers
∧k

E.

— Symmetric tensor products
∨k

E.

2.3 Principal fiber bundles

In the following, the notion of principal fiber bundles is considered. These are fiber bundles that locally look
like a product with some Lie group G and are equipped with a G-action that is locally simply multiplication
in G. These objects are one of the main ingredients for constructing the induced representations in chapter 4
and are strongly connected to representation theory, the reason being that any representation of G gives rise
to a vector bundle associated to the principal fiber bundle.

Definition 12. A principal fiber bundle is a fiber bundle (P,B, π,G) such that

— The typical fiber G is a Lie group,

— the total space P is equipped with a smooth right G-action,

— The local trivializations φU : π−1(U)→ U ×G are G-equivariant, where G acts on U ×G on the right
factor by right multiplication.

From the definition, it follows that the typical fiber of a principal G-bundle is diffeomorphic to the group
G and the action is locally just right-multiplication in G. In particular, the action of G preserves the fibers
of P so the projection π is G-equivariant. Notice that these observations imply that G acts freely and
transitively on each fiber. Together with the equivariance of π, this implies that π factors through the a

bijection P/G
π̃−→ B:

P

P/G B

q π

π̃

(2.1)

Definition 13. A morphism from a principal G1-bundles P1 → B1 to a principal G2 bundle P2 → B2 is a

pair (θ, λ) consisting of a smooth map P1
θ−→ P2 and a Lie group homomorphism G1

λ−→ G2 such that

θ(p · g) = θ(p) · λ(g) ∀p ∈ P1, g ∈ G1. (2.2)

Such a morphism is an isomorphism if θ is a diffeomorphism and λ is an isomorphism of Lie groups.

Remark.

1. The condition (2.2) implies that θ maps fibers to fibers and thus induces a map θ̃ : B1 → B2 such that

(θ, θ̃) is a morphism of fiber bundles:

P1 P2

B1 B2

θ

θ̃

2. If P1 and P2 are principal G-bundle, we write simply θ : P1 → P2 for the morphism (θ, idG).

3. Since the action of G preserves the fibers of a principal G-bundle, a morphism between two principal
G-bundles P1 and P2 is equivalently a smooth G-equivariant map P1 → P2.

9



Definition 14.

- A continuous mapping of locally compact Hausdorff spaces is proper if the preimage of any compact
set is compact.

- A smooth right action of a Lie group G on a manifold M is called proper if following map is proper:

M ×G→M ×M, (m, g) 7→ (m,m · g).

Lemma 15. Let P
π−→ B be a principal G-bundle. Then the G-action on P is proper.

Proof. Let K ⊂ P × P . To show its preimage under the map (p, g) 7→ (p, p · g) is compact, we show it is
sequentially compact, which is equivalent to being compact for manifolds. Let {(pi, gi)}i∈N be a sequence in
P ×G such that {pi, pi · gi} ⊂ K. After passing to a subsequence if necessary, we may assume that pi → p
and pi · gi → q for some p, q ∈ K. We need to show that {(pi, gi)}i∈N has a convergent subsequence. Since
pi → p, there exists a trivializing neighborhood U of p such that after discarding finitely many elements,
pi ∈ U for all i ∈ N. Let φ : π−1 → U ×G be a local trivialization. Write

(mi, xi) = φ(pi)

(m,x) = φ(p)

(m, k) = φ(q)

Since pi → p and pi · g → q, we know that (mi, xi)→ (m,x) and (mi, xi · gi)→ (m, k).
Then gi = x−1

i (xi · gi)→ x−1k and so (pi, gi)→ (p, x−1k).

Corollary 16. Let P
π−→ B be a principal G-bundle. There exists a unique smooth manifold structure on the

orbit space P/G making the projection P → P/G a surjective submersion. Moreover, the orbit space P/G is
diffeomorphic to B with respect to this smooth structure on P/G.

Proof. Since the G-action on P is proper and free, the quotient manifold theorem implies that there exists a

unique smooth structure on the orbit space P/Gmaking the projection P
q−→ P/G into a surjective submersion.

Since π and q are both surjective submersions, it follows that both π̃ and π̃−1 are smooth.

A converse of the previous corollary is given below, which completes a characterization of smooth principal
G-bundles.

Lemma 17. If G is a Lie group and P is a smooth manifold equipped with a right proper and free G-action,
then P → P/G is a principal G-bundle.

Proof. Since the action of G on P is proper and free, the quotient manifold theorem implies that there is a
unique smooth structure on P/G for which the canonical projection q : P → P/G is a smooth submersion.
It remains to show the equivariant local triviality condition. Since q is a surjective submersion, there exists a
collection {(Uα, sα)} such that {Uα} cover P/G and s : Uα → q−1(Uα) are smooth local sections of P → P/G.
Define for every α the smooth map

φα : Uα ×G→ q−1(Uα)

φα(u, x) 7→ sα(u) · x

Notice that this map is surjective and G-equivariant by construction. It is injective since the action of G on
P preserves the fibers, so if sα(u1) · x1 = sα(u2) · x2, applying q yields u1 = u2. Since G acts freely on P ,
also x1 = x2 follows. It remains to show the tangent mapping of φα is bijective, which would imply that φα
is a local diffeomorphism and therefore also a diffeomorphism, seeing as it is bijective. To do so, notice first
that by the G-equivariance of φα, it suffices to show that d(φα)(u,e) is bijective for all u ∈ Uα. As such, let

p = sα(u). Let Vpq
−1(Uα)

d
= ker dqp be the vertical subspace of Tpq

−1(Uα) and define

A#
p : g→ Vpq

−1(Uα),

A#
p (ξ) =

d

dt

∣∣∣∣
t=0

p · exp(tξ).

Notice that d
dt

∣∣
t=0

p · exp(tξ) ∈ Vpq−1(Uα) for any ξ ∈ g because the action of G preserves the fibers of P .
Now, we can identify T(u,e)(Uα ×G) ∼= TuUα × g. Then the tangent map of φα at (u, e) is given by

dφ(u,e) : TuUα × g→ Tpq
−1(Uα)

dφ(u,e)(v, ξ) = A#
p (ξ) + d(sα)u(v),

10



Now, the section sα determines a splitting of the exact sequence

0→ Vpq
−1(Uα)→ Tpq

−1(Uα)
dqp−−→ TuUα → 0,

so that we obtain a direct sum decomposition of vector spaces:

Tpq
−1(Uα) ∼= Vpq

−1(Uα)⊕ (dsu)(TuUα).

Thus dφ(u,e) is bijective if and only if both A#
p : g −→ Vpq

−1(Uα) and d(sα)u : TUα −→ (dsu)(TuUα) are
bijective. Notice that the latter is injective because dqp ◦ dsu = idTuUα and surjective by construction. To
see that A#

p is bijective, observe first that the map θp : G→ q−1(u) given by g 7→ p · g is a diffeomorphism.
Indeed, it is constant rank because it is G-equivariant and it is clearly smooth and bijective. Thus it is a
diffeomorphism. Then for any z ∈ Vpq

−1(Uα) there exists a smooth curve γ(t) in P satisfying γ(0) = p
and γ′(0) = z that is completely contained in q−1(u) for some small enough interval containing 0. Using the
diffeomorphism θ we obtain a smooth curve x(t) in G and the element ξ = d

dt

∣∣
t=0

x(t) ∈ g satisfies A#
p (ξ) = z.

Thus A#
p is surjective. Finally, to see A#

p is injective assume that A#
p (ξ) = d

dt

∣∣
t=0

p · exp(tξ) = 0. Then
p · exp(tξ) is constant so in fact p · exp(tξ) = p for all t. Since the action on P is free, this implies ξ = 0.

Corollary 18. If G is a Lie group and H is a closed subgroup, then G→ G/H is a principal H-bundle.

Proof. It is clear that H acts freely on G from the right. To show the claim, it remains to show that this
action is proper. We must show that the map

G×H → G×G, (x, h) 7→ (x, xh)

is proper. Notice that this map is the following composition:

G×H ↪→ G×G φ−→ G×G,

where φ(x, y) = (x, xy). Observe that φ is smooth and has a smooth inverse given by (x, y) 7→ (x, x−1y). It
is therefore a diffeomorphism and in particular proper. The inclusion G × H ↪→ G × G is proper because
H ×G is closed in G×G. The conclusion follows.

2.3.1 Associated fiber bundles

As mentioned previously, an important property of principal G-bundles is their tight connections with vector
bundles via representations of G. Explicitly, suppose we are given a principal G-bundle P

π−→ B and a left
action σ of G on some manifold F . The idea of an associated bundle is to define a fiber bundle E with
typical fiber F in a suitable way. We will be mainly concerned with the case where F is a vector space and
the resulting associated bundle is a vector bundle.

To construct the fiber bundle, consider first the product bundle P × F over B. The manifold P × F is
has a smooth right G smooth given by (p, f) · g = (p · g, σ(g)−1f). Notice that the typical fiber of this bun-
dle is G×F , so we may attempt to define a map that is locally the action σ. First we need the following lemma.

Lemma 19. Suppose G acts properly and freely on P from the right and F is a manifold equipped with a
smooth left G-action σ. Then G acts properly and freely on P ×G from the right.

Proof. Let p ∈ P , x ∈ G and v ∈ F . Suppose first that (p, v) · x = (p, v). Then in particular p · x = p so
x = e because G acts freely on P . Next, we must show that the map

α : P × F ×G→ (P × F )× (P × F ) (2.3)

(p, v, x) 7→ ((p, v), (p · x, σ(x−1)v)) (2.4)

is proper. As such, let K be a compact subset of (P × F ) × (P × F ). We will show α−1(K) is compact by
showing that its projection onto all separate factors is compact. Write

AP = PrP (α−1(K)),

AF = PrF (α−1(K)),

AG = PrG(α−1(K)).
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If all these projections are compact, then α−1(K) is compact, being a closed subset of the compact space
AP × AF × AG. Notice first that the projection of α−1(K) onto P ×G is compact because the action of G
on P is proper. This means in particular that AG is compact. Then AF ⊂ AG ·BF for some compact subset
BF ⊂ F . (In fact, BF can be taken to be the projection of K onto the first F .) Since the group action on F
is continuous and both AG and BF are compact, AG · BF is compact. Thus AF is compact, being a closed
subset thereof.

It follows by the previous lemma and the quotient manifold theorem that we can endow the orbit space

E = P×GF
d
= (P×F )/G with a unique structure of a smooth manifold making the quotient map P×F qE−−→ E

a smooth submersion. Since the fibers of P are preserved by the G-action, the projection π◦Pr1 : P ×F → B
induces a smooth surjective map E

πE−−→ B such that the following diagram commutes:

P × F E

P B

qE

Pr1 πE

π

. (2.5)

It turns out that E
πE−−→ B is a fiber bundle so that the above diagram defines a morphism of fiber bundles.

Lemma 20. Let P
π−→ B be a principal G-bundle and let σ be a left action of G on some manifold F . Then

P ×G F → B is a fiber bundle with typical fiber F and equation (2.5) defines a morphism of fiber bundles.

Proof. The local trivializations of E are defined such that the quotient map qE is locally just id×σ. Explicitly,
suppose that φα : π−1(Uα)→ Uα ×G is a local trivialization of the principal bundle P → B. Then the map

ψ̃α : π−1(Uα)× F φα×idF−−−−−→ Uα ×G× F
id×σ−−−→ Uα × F

is smooth and constant on G-orbits, where idF (v) = v for v ∈ F . Indeed, suppose that φα(p) = (m,x),

then the map above is given by ψ̃α(p, v) = (m,σ(x)v) and we have ψ̃α(p · g, σ(g)−1v) = (m,σ(x)v). Since qE
is a surjective submersion it follows that this map induces a unique smooth map ψα : π−1

E (Uα) → Uα × F
such that ψ̃α = ψα ◦ qE . Notice that ψα([φ−1

α (m,x), v]) = (m,σ(x)v). The situation is summarized in the
following commutative diagram.

π−1(Uα)× F π−1
E (Uα)

Uα ×G× F Uα × F

qE

φα×id
ψ̃α

ψα

id×σ

. (2.6)

We proceed by showing that in fact ψα is a diffeomorphism, so that the vertical arrows in the above diagram
are local trivializations and qE is locally just id× σ.

Define χα to be the following composition of smooth maps:

χα : Uα × F
φ−1
α (·,1)×idF−−−−−−−−→ π−1Uα × F → π−1

E (Uα),

that is, χα(m, v) = [φ−1
α (m, 1), v]. Suppose again that φα(p) = (m,x). We compute

(χα ◦ ψα)([p, v]) = χα(m,σ(x)v) = [φ−1
α (m, 1)σ(x)v] = [φ−1

α (m,x), v] = [p, v],

(ψα ◦ χα)(m, v) = ψα([φ−1
α (m, 1), v]) = ψα([φ−1

α (m,x) · x−1, v]) = ψα([p, σ(x)−1v] = (m, v).

This shows that χα and ψα are smooth inverses of each other, so indeed ψα is a diffeomorphism. Next,
observe that ψα also define local trivializations of the bundle E

πE−−→ B. This follows from equation (2.5). Let
π̃E be the unique smooth map such that πE = π̃E ◦ ψα:

π−1
E (Uα)

Uα × F Uα

ψα
πE

π̃E

.

We need to show that π̃E is just projection onto the first coordinate. Now, in the local coordinates defined
above, (2.5) becomes the commutative diagram

Uα ×G× F Uα × F

Uα ×G Uα

id×σ

π̃E ,
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where the arrows without label are the obvious projections. The assertion immediately follows.

Finally, observe that this also shows that the typical fiber of the constructed associated bundle E → B is F

and that πE is a submersion (seeing as B×F Pr1−−→ B is). We conclude that E
πE−−→ F is indeed a fiber bundle

with typical fiber F .

Lemma 21. Let P be a principal G-bundle and let σ be a finite dimensional representation of G on Hσ.

Then E
d
= P ×GHσ is a vector bundle over B and (2.5) is a morphism of vector bundles. If Hσ is a Hilbert

space and σ is a unitary representation, then P ×GHσ is a Hilbert bundle and (2.5) is a morphism of Hilbert
bundles.

Proof. For the first statement, the only thing that has not yet been shown is the fact that the local trivial-
izations ψα restrict to linear maps on the fibers. This follows immediately from the observation that each
ψ̃α : π−1(Uα)× F → Uα ×Hσ is linear on fibers. Recall that qE is locally just id× σ, which is linear since σ
is a representation. It is therefore clear that (2.5) is a morphism of vector bundles. Now, suppose that σ is a

unitary representation. Then each fiber Eb is equipped with an inner product via 〈[p, v1], [p, v2]〉Eb
d
= 〈v1, v2〉σ,

which is independent on the choice of p ∈ Pb since σ is unitary. Notice that with respect to this inner product
the local trivializations ψα become unitary on fibers, since

〈ψ−1
α (b, v1), ψ−1

α (b, v2)〉Eb = 〈[φ−1
α (b, 1), v1], [φ−1

α (b, 1), v2]〉Eb = 〈v1, v2〉σ.

Thus ψ−1
α restricts to an isometric and thence unitary map on fibers. It is then also clear that is a morphism

of Hilbert bundles since qE is locally id× σ, which is even unitary on fibers since σ is.

Lemma 22. For any fixed principal G-bundle P over B, the associated bundle construction defines a functor
F = P ×G − from the category of finite dimensional representations of G to vector bundles over B and from
the category of finite dimensional unitary representations of G to Hilbert bundles over B.

Proof. suppose we are given two representationsHσ1
,Hσ2

ofG and an intertwining map f ∈ HomG(Hσ1
,Hσ2

).
The composition

P ×Hσ1

id×f−−−→ P ×Hσ2
→ P ×G Hσ2

is smooth and constant on G-orbits. It therefore induces a unique smooth map F (f) : P ×GHσ1
−→ P ×GHσ2

that is a morphism of fiber bundles over B. Explicitly, it is given by F (f)([p, v]) = [p, f(v)]. A direct

computation shows that in local coordinates, F (f) is simply Uα×Hσ1

id×f−−−→ Uα×Hσ2
. Indeed, writing ψk,α

for the local trivializations of P ×G Hσk that were constructed above, we have

(ψ2,α ◦ F (f) ◦ ψ−1
1,α)(m, v) = ψ2,α([φα(m, 1), f(v)])

= ψ2,α ◦ ψ−1
2,α

= (m, f(v)).

It follows that F (f) is linear on fibers so that it is a morphism of vector bundles.

If we consider instead the categories of unitary representations and Hilbert bundles, then an intertwining
map f of unitary representations is additionally required to be isometric. Since F (f) is locally id × f , it
follows that also F (f) is isometric on fibers and thence defines a morphism of Hilbert bundles.

Finally, this assignment of intertwining maps to morphisms of vector bundles over B is functorial.

We mention here that the functor P ×G− preserves direct sums and tensor products. The precise statements
are stated and proven in the next section, which discusses an equivariant setting. However, the result and
proofs given there remain valid in this more general setting upon slight modifications.
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2.3.2 Homogeneous Hilbert bundles

Finally, we consider the notion of a homogeneous Hilbert bundle, which is a Hilbert bundle equipped with
additional structure. Namely, both its total and base spaces should be equipped with structure-preserving
G-actions such that the projection map is equivariant. It is additionally required that the G acts transitively
on the base space, so that for any two fibers there exists a group element that identifies these fibers via the
group action. This type of equivariant bundles will play a prominent role in chapter 4 and chapter 6. In fact,
the group action of G on both the base and total space induces an action on the of sections of this bundle,
and it is this action that gives rise to the induced representation in chapter 4. As these objects will play a
major role throughout the thesis, they are discussed in a bit more detail.

Definition 23. Let G be a Lie group and E
π−→M be a vector bundle. Assume further that both E and M

are equipped with smooth left G-actions α and β. The vector bundle E → M is called homogeneous for
G if the action of G on M is transitive and (α(g), β(g)) is a isomorphism of vector bundles for every g ∈ G.
That is, the following diagram commutes:

E E

B B

α(g)

π π

β(g)

.

If E → M is a Hilbert bundle and α(g) is unitary for every g ∈ G, then E → M is called a homogeneous
Hilbert bundle.

Notice that the diagram above is equivalent to the statement that the projection E
π−→M is G-equivariant.

Definition 24. An morphism of homogeneous vector(Hilbert) bundles for G is a G-equivariant morphism
of vector(Hilbert) bundles. It is an isomorphism of it is an isomorphism of vector(Hilbert) bundles.

Suppose now that G is a Lie group and H is a closed subgroup. We have already seen that G → G/H is a
principal H-bundle. Now, left multiplication in G induces unique smooth left G actions on the coset space

G/H and on any associated vector bundle E
d
= G×HHσ such that β(g)◦q = lg ◦q and α(g)◦qE = qE ◦ lg× id:

G G

G/H G/H

lg

q q

β(g)

,

G×Hσ G×Hσ

E E

lg×id

qE qE

α(g)

.

It turns out that associated Hilbert bundles of this form are homogeneous, and conversely all homogeneous
vector bundles are of this form.

Lemma 25. Let G be a Lie group with closed subgroup H and let σ be a unitary finite dimensional repre-
sentation of H on the Hilbert space Hσ. Then G×H Hσ → G/H is a homogeneous Hilbert bundle.

Proof. The left G-action on G/H is clearly transitive. Write E = G ×H Hσ. Denote the left G-action on
E and B by α and β, respectively. Fix g ∈ G. It is clear that α(g) and β(g) are diffeomorphisms of E and
G/H and that α(g) is linear on fibers. It follows by the commutativity of the diagram below that they even
define a morphism of vector bundles:

G×Hσ G×Hσ E

G G G/H

lg×id

Pr1

qE

Pr1 πE

lg q

,

where lgG→ G denotes left-multiplication by g in G. Notice that the right-hand square is just (2.5). Indeed,
it follows that

πE ◦ α(g) ◦ qE = πE ◦ qE ◦ lg × id = q ◦ lg ◦ Pr1 = β(g) ◦ πE .
Since qE is surjective, this implies that πE ◦ α(g) = β(g) ◦ πE . Now, α(g) is unitary on fibers because
α(g) ◦ qE = qE ◦ lg × id maps any fiber {x} × Hσ above x ∈ G unitarily to EgxH . Since qE is unitary as a
map {x} ×Hσ → ExH , it follows that also α(g)|Ex : Ex → Egx must be unitary.

Lemma 26. Let G be a Lie group with closed subgroup H and let σ be a unitary finite dimensional rep-
resentation of H on the Hilbert space Hσ. Then G ×H − defines a functor from the category of unitary
representations of H to the category of G-homogeneous Hilbert bundles above G/H.
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Proof. In view of lemma 22, it remains to show that the map F (f) as in the proof of that lemma is in fact
G-equivariant. This is immediate from its definition.

Lemma 27. Let E → B be a homogeneous Hilbert bundle under the action of some Lie group G. Then for
any b ∈ B we have an equivalence of homogeneous Hilbert bundles:

G×Gb Eb E

G/Gb B

Φ

φ

.

Proof. To proof the claim, pick any b ∈ B. One checks that the map φ : G/Gb → B, [g] 7→ g ·b is well-defined,
injective and smooth. SinceG acts transitively onB, it is also surjective. The map is clearlyG-equivariant and
since G acts transitively on itself, it follows that it has constant rank. Thus, φ is a diffeomorphism. Similarly,
the map Φ : G×Gb Eb → E, [g, v] 7→ g · v is well defined and G-equivariant. Notice that Φ is a smooth map
because the G-action on E is smooth and the map G × Eb → E ×Gb Eb is a surjective submersion. The
smooth maps φ and Φ make the diagram above commute so that they do indeed define a bundle morphism.
Since Φ is linear on fibers, it is even a morphism of vector bundles. Now, Φ is surjective by homogeneity:
Eg·b = g · Eb and G acts transitively on B. Injectivity follows since g1 · v1 = g2 · v2 ⇐⇒ g−1

2 g1 ∈ Gb and
therefore

g1 · v1 = g2 · v2 =⇒ [g1, v1] = [g2(g−1
2 g1), v1] = [g2, (g

−1
2 g1) · v1] = [g2, v2].

It follows by proposition 9 that Φ is a diffeomorphism. Finally, Φ is isometric and thence unitary on fibers
by the following quick computation:

〈Φ([g, v1]),Φ([g, v2])〉Eg·b = 〈g · v1, g · v2〉Eg·b = 〈[g, v1], [g, v2]〉.

Notice that the last equality holds by the definition of the inner product on the fibers of G×Gb Hσ and the
fact that the fibers of E are all unitarily equivalent to Hσ.

Suppose G be a Lie group with closed subgroup H. Then G
q−→ G/H be the canonical map and let G×HHσ be

a homogeneous vector bundle. We can equivalently consider F as a right G space by defining v ·x d
= σ(x−1)v.

The following lemma establishes a connection between sections of the associated bundle G×GHσ and smooth
H-equivariant maps HomH(G,Hσ). The former admit a clear geometrical interpretation, but the latter can
easier to use in certain proofs.

Lemma 28. Let G be a Lie group with closed subgroup H. Let G
q−→ G/H be the canonical map. Let σ be a

finite dimensional representation of H on Hσ. Then there is a G-equivariant linear bijection

Γ(G×H Hσ)
Φ−→ HomH(G,Hσ),

where G acts on the two spaces according to

(g · s)(xH)
d
= g · s(g−1xH), s ∈ Γ(G×H Hσ),

(g · f)(x)
d
= f(g−1x), f ∈ HomH(G,Hσ).

Moreover, q(supp Φ(s)) = supp(s).

Proof. Write E = G×HHσ. The idea is to use the group action on E to translate all fibers to the fiber above
the identity coset, which is isomorphic to Hσ as a H-representation. Let φ : EH → Hσ be a H-equivariant
linear isomorphism. Define the maps

Φ : Γ(E)→ HomH(G,Hσ), Ψ : HomH(G,Hσ)→ Γ(E)

(Φs)(x)
d
= φ(x−1 · s(xH)), (Ψf)(xH) = x · φ−1(f(x))

Notice that all the maps involved are smooth as a composition of smooth maps and ψ(f) is indeed well-defined
by the H-equivariance of φ. Moreover, these two operations are each others inverse, thus showing bijectiviy.
Next, Φ is indeed G-equivariant since

Φ(g · s)(x) = φ(x−1g · s(g−1xH)) = φ((g−1x)−1 · s(g−1xH)) = φ(s)(g−1x) = (g · φ(s))(x).

Finally, the last statement follows trivially since x ∈ supp(Φ(s)) ⇐⇒ xH ∈ supp(s).
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Finally, the following lemma is concerned with the behaviour of homogeneous bundles under the bundle
operations defined in section 2.2.1 and will be heavily made use of in chapter 6.

Lemma 29. Let G be a Lie group with closed subgroup H. Suppose that F and {Fi}Ni=1 are finite dimensional
unitary representations of H. We have the following equivalences of G-homogeneous Hilbert bundles over
G/H:

G×H
⊕
i

Fi ∼=
N⊕
i=1

G×H Fi,

G×H
⊗
i

Fi ∼=
N⊗
i=1

G×H Fi,

G×H
k∨
F ∼=

k∨
G×H F ,

G×H
k∧
F ∼=

k∧
G×H F ,

G×H F∗ ∼= (G×H F)∗.

Where the inner products on
⊗

i Fi,
∨k F ,

∧k F and F∗ are defined by

〈v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk〉
d
=

k∏
i=1

〈vi, wi〉k,

〈v1 ∨ · · · ∨ vk, w1 ∨ · · · ∨ wk〉
d
=

k∏
i=1

〈vi, wi〉k,

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉
d
=

k∏
i=1

〈vi, wi〉k,

〈〈−, v〉, 〈−, w〉〉 = 〈v, w〉.

Proof. Write F = G×H
⊕

i Fi and Ei
d
= G×HFi. We proof the first equivalence, the others being completely

similar. Define the map

t : F →
⊕
i

Ei,

t : [x,⊕ivi] 7→ (xH,⊕i[x, vi]),

which is a well-defined, bijective G-equivariant morphism of vector bundles over G/H. By virtue of propo-
sition 9, it remains to show it is smooth and unitary on fibers, for which we consider local coordinates. Let

φ : q−1(U) → U × G be a local trivialization of G
q−→ G/H. The corresponding trivialization of a general

associated bundle G×H Hσ
p−→ G/H is the inverse of U ×Hσ → p−1(U), (u, z) 7→ [φ−1(u, 1), z]. By construc-

tion, the local trivialization of a direct sum of vector bundles is locally just the direct sum of the individual
trivializations. Therefore, denoting by ψF and ψE the corresponding local trivializations of E and F , we find

(ψE ◦ t ◦ ψ−1
F )(u,⊕ivi) = (ψE ◦ t)[φ−1(u, 1),⊕ivi]

= ψE(u,⊕i[φ−1(u, 1), vi])

= (u,⊕ivi).

Thus, t is in local coordinates simply the identity, which is obviously smooth and unitary on fibers.
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Chapter 3

Clifford Algebras, Spin Groups and
their Representations

In geometry, one may consider a vector space V together with a non-degenerate symmetric bilinear (or
quadratic) form q. In particular, Minkowski space (R4, η) is of this form. Any vector space defines an exte-
rior algebra and this algebra is of importance in fields such as physics, differential geometry and representation
theory. However, it has no concern for the additional geometric data defined on a quadratic space; the bilinear
form q. The idea of a Clifford algebra is to deform the exterior algebra by altering its multiplication in such a
way that it encodes this geometric data in an algebraic structure and in a suitable manner. It is therefore no
surprise that Clifford algebras have found an important role in geometry and physics; in particular in special
relativity.

The Clifford algebra is constructed such that it gives a one-to-one correspondence between the automorphisms
of the Clifford algebra leaving V invariant and elements in the orthogonal group O(V, q). This correspondence
suggests that Clifford algebras might play a prominent role in the study of these orthogonal groups and this
is indeed the case. Of particular interest in this thesis is the fact that they can be used to construct the
universal covering group of Spin(V, q)0 along with its covering homomorphism. The explicit construction of
this homomorphism will be relevant in section 4.5 and chapter 6.

This chapter is restricted to precisely those definitions and results that are needed in other chapters. Moreover,
most proofs are omitted for the sake of brevity. For a more detailed exhibition of these results, we refer to
[LM89], on which this exposition is based. The chapter starts out by defining the Clifford algebra and
examining some of its basic properties, after which the spin group Spin(V, q) is introduced. A main result of
the chapter is the fact that Spin(V, q)0 is the universal covering group of SO(V, q)0, along with the construction
of the covering homomorphism. Next, the representation theory of a Clifford algebra and its spin group is
considered to a very brief extent. Finally, the isomorphisms Spin(3) ∼= SU(2) and Spin(1, 3)0 ∼= SL(2,C) are
realized explicitly, which will be needed extensively in chapter 5 and chapter 6.
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3.1 Clifford algebra

As mentioned in the introduction, the idea of a Clifford algebra is to deform the exterior algebra by altering
its multiplication in such a way that it encodes this geometric data in an algebraic structure.

Before we dive into the definitions, we make a brief remark. Notice that the process of polarization yields
a bijective correspondence between non-degenerate quadratic forms and non-degenerate symmetric bilinear
forms on a real or complex vector space V . With this observation in mind, no distinction is made between
the two and we write q(v) for the quadratic form and q(v, w) for the corresponding bilinear form.

Definition 30.
A quadratic space (V, q) is a real or complex vector space V together with a non-degenerate quadratic form
q on V .

A morphism between two quadratic spaces (V1, q1)→ (V2, q2) is a linear map λ : V1 → V2 such that λ∗q2 = q1,
that is, q2(λ(v)) = q1(v) ∀v ∈ V1.

Given an quadratic space (V, q), define its orthogonal group O(V, q) to be its group of automorphisms and
SO(V, q) to be the automorphisms of determinant one:

O(V, q)
d
= {λ ∈ GL(V ) : λ∗q = q}

SO(V, q)
d
= O(V, q) ∩ SL(V )

We define the Clifford algebra Cl(V, q) up to isomorphism by the universal property we want it to satisfy. Its
existence and uniqueness are proven immediately after.

Definition 31. Let (V, q) be a quadratic space. Let Cl(V, q) be an associative unital algebra and V
ι−→ Cl(V, q)

be a linear map such that

1. ι(V ) generates Cl(V, q),

2. ι(v)2 = q(v) · 1

and such that V
ι−→ Cl(V, q) is universal with these properties, in the sense that for any other unital associative

algebra A together with a linear map V
f−→ A satisfying these properties, there exists a unique unital algebra

homomorphism Cl(V, q)
f̃−→ A making the diagram below commute.

V Cl(V, β)

A

ι

f
f̃

Then Cl(V, q) is called the Clifford algebra associated to (V, q).

Proposition 32. The Clifford algebra Cl(V, q) as defined above exists and is unique up to isomorphism.

Moreover, the map V
ι−→ Cl(V, q) is injective.

Proof. The proof given here is taken from [LM89, p. 8]. Let J be the two-sided ideal of the tensor algebra
T (V ) generated by all elements of the form
v ⊗ v − q(v) · 1. Define Cl(V, q) to be the quotient of the tensor algebra T (V ) by J :

Cl(V, q)
d
= T (V )/J .

Let ι : V → Cl(V, q) be the restriction of the canonical map T (V )→ Cl(V, q) to V =
⊗1

V . By construction
Cl(V, q) is a unital algebra generated by ι(V ) and subject to the relation ι(v)2 = q(v) · 1.

We show ι is injective. It suffices so to show V ∩ J = 0. By definition of J , any element φ ∈ J ∩ V can be
written as a finite sum of the form φ =

∑
i ai⊗ (vi⊗ vi− q(vi)1)⊗ bi for some tensors ai, bi ∈ T (V ). We may

assume that all ai, bi are of pure degree. Let k = maxi deg ai + deg bi <∞. Then since φ ∈ V , we find that∑
deg ai+deg bi=k

ai ⊗ vi ⊗ vi ⊗ bi = 0.
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Contracting with q this implies in particular that also∑
deg ai+deg bi=k

ai ⊗ q(vi)1⊗ bi = 0.

and therefore ∑
deg ai+deg bi=k

ai ⊗ (vi ⊗ vi − q(vi)1)⊗ bi = 0.

Induction on k yields that φ = 0, so ι is injective.

Next, we show that Cl(V, q) satisfies the required universal property. Let A be a unital associative algebra

and V
f−→ A be a linear map such that f(V ) generates A and f(v)2 = q(v)1. By the universal property

of the tensor algebra, the map f factors through the tensor algebra via a unique algebra homomorphism

T (V )
f−→ A. The properties mean precisely that this f(v ⊗ v − q(v)1) = 0 for any v ∈ V and therefore f

is trivial on the ideal J . This means that it factors through the quotient T (V )/J = Cl(V, q) via a unique

algebra homomorphism f̃ : Cl(V, q)→ A. Thus we are done.

Remark.

1. Notice that if q = 0, the ideal J from the previous proof is generated by all elements of the form v⊗ v.
It follows that we have an algebra isomorphism Cl(V, 0) ∼= Λ(V ).

2. By the above proposition, we may identify V as a linear subspace of Cl(V, q). Therefore, the embedding
ι is usually omitted and we simply write v ·w for v, w ∈ V instead of the more precise notation ι(v)·ι(w).

3. Notice that the condition v2 = q(v) may equivalently be given by v · w + w · v = 2q(v, w) · 1 by means
of polarization.

Corollary 33. The assignment (V, q) → Cl(V, q) defines a functor from the category of quadratic spaces
to the category of unital associative algebras. In particular, the group of orthogonal transformations O(V, q)
extends to a group of automorphisms of the Clifford algebra.

Corollary 34. The automorphism α of Cl(V, q) obtained by extending the map V → V, v 7→ −v induces a
decomposition of the Clifford algebra into its eigenspaces:

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q),

where Clk(V, q)
d
= {t ∈ Cl(V, q) : α(t) = (−1)kt}.

Moreover, this decomposition defines a Z2-grading on the Clifford algebra.

Definition 35. The subspace Cl0(V, q) is called the even part of Cl(V, q) where Cl1(V, q) is called the odd
part.

Finally, there are some close relations between a Clifford algebra and the exterior algebra. These results are
not needed in later chapters. Nonetheless, they show that the Clifford algebra is indeed an enhancement of
the exterior algebra determined by the form q. In view of clarity, we mention them without proof.

The natural filtration on the tensor algebra descends to a filtration {Fr} on the Clifford algebra with the
property that Fr · F l ⊆ Fr+l. This makes the Clifford algebra into a filtered algebra and we can define its
associated graded algebra by

⊕
r≥0 Fr+1/Fr.

Proposition 36. For any quadratic form q, the associated graded algebra of Cl(V, q) is naturally isomorphic
to Λ(V ).

Proof. See [LM89, p. 10].

Proposition 37. There is a vector space isomorphism Cl(V, q) ∼= Λ(V ) that is compatible with the filtrations.

Proof. See [LM89, p. 10].

Corollary 38. The Clifford algebra Cl(V, q) has dimension 2n, where n = dimV .
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3.2 Spin group

The Clifford algebra can be used to construct the universal covering group of SO(V, q)0 and to construct
explicitly the universal covering homomorphism onto SO(V, q)0. Explicitly, the group of units of the Clifford
algebra acts on the Clifford algebra by the adjoint action. It turns out that restricting this action to a suitable
subgroup yields the covering homomorphism. The precise construction of this homomorphism, in particular
the fact that it acts on Cl(V, q) via the adjoint action, will be relevant in chapter 6.

Let Cl×(V, q) be the multiplicative group of units of the Clifford algebra. This group acts on the Clifford
algebra via the adjoint representation

Ad : Cl×(V, q)→ GL(Cl(V, q)),

Adφ(x) = φxφ−1.

Proposition 39. Let v ∈ V be such that q(v) 6= 0. Then for all w ∈ V , we have

−Adv(w) = w − 2
q(v, w)

q(v)
v.

In particular, Adv(V ) = V , Ad∗vq = q and thus Adv ∈ O(V, q).

Proof. The proof makes use of the trivial observation that for q(v) 6= 0 the requirement v2 = q(v)1 implies
that v−1 = v

q(v) . Secondly, recall the equation vw + wv = 2q(v, w)1. We compute

−Adv(w) = −vwv−1 = −vwv
q(v)

= − (2q(v, w)1− wv)
v

q(v)
= w − 2

q(v, w)

q(v)
v.

The last equation follows by expanding out the terms using bilinearity

q(Adv(w)) = q

(
w − 2q(v, w)

q(v)
v, w − 2q(v, w)

q(v)
v

)
= q(w).

Definition 40.

1. Let P (V, q) be the subgroup of Cl×(V, q) generated by those v ∈ V for which q(v) 6= 0.

2. Define the Pin group Pin(V, q) to be the subgroup of Cl×(V, q) generated by all elements of v ∈ V
with |q(v)| = 1.

3. Define the Spin group by Spin(V, q) = Pin(V, q) ∩ Cl0(V, q).

Remark.

1. Proposition 39 implies that the adjoint action defines a homomorphism P (v, q)
Ad−−→ O(V, q).

2. The right hand side of proposition 39 is just a reflection across the hyperplane {w ∈ V : q(v, w) = 0}.
The minus sign on the left-hand side implies that in general, Ad is not surjective onto O(V, q). For
example, if V is the one-dimensional real line and v 6= 0, proposition 39 implies that −Adv is reflection
across the origin, so Adv is just the identity. More generally, for odd dimensions of V , we find that
Adv ∈ SO(V, q).

To remedy the non-surjectivity mentioned in the preceding remark, it turns out that one should consider a
twisted adjoint representation instead. Define

Ãd : Cl×(V, q)→ GL(Cl(V, q)),

Ãdφ(x) = α(φ)xφ−1,

where α is the automorphism of Cl(V, q) induced by the map v 7→ −v. Then for v, w ∈ V with q(v) 6= 0 we
have

Ãdv(w) = w − 2
q(v, w)

q(v)
v.
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Remark. Notice that Ãdφ = Adφ for φ ∈ Cl0(V, q). In particular, the twisted and non-twisted adjoint actions
coincide on Spin(V, q).

Suppose now that the vector space V is real. In that case we may find a basis of V such that q(x) =
x2

1 + · · ·+ x2
r − x2

r+1 − · · · − x2
r+s. We say that q has signature (r, s) and write Clr,s in place of Cl(V, q) and

O(r, s) = O(V, q). We come to the main result of this section.

Theorem 41. There are short exact sequences

0→ Z→ Spinr,s
Ad−−→ SO(r, s)→ 1

0→ Z→ Pinr,s
Ãd−−→ O(r, s)→ 1

for all (r, s). If (r, s) 6= (1, 1), these coverings are connected over each component of O(r, s). Moreover, Ad
is the universal covering homomorphism when restricted to the identity components in the following spacial
cases, where r ≥ 3:

0→ Z2 → Spin0
r

Ad−−→ SO(r)0 → 1

0→ Z2 → Spin0
r,1

Ad−−→ SO(r, 1)0 → 1.

Proof. For the proof, see [CGLM08, p. 20].

3.3 Explicit isomorphisms in low dimensions

Some of these groups are known explicitly for small dimensions and the explicit isomorphisms and covering
homomorphisms will be needed in chapter 5 and chapter 6, so they are discussed here. In particular, the uni-
versal covering homomorphism SL(2,C)→ SO(1, 3)0 is constructed, which also yields the universal covering
homomorphism SU(2)→ SO(3).

Let us first consider the construction of the covering homomorphism φ : SL(2,C)→ SO(1, 3)0. Let C denote
the real four-dimensional space of 2 × 2 complex Hermitian matrices. Let σ1, σ2 and σ3 denote the Pauli
matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(3.1)

and let σ0 be the identity. Then σ0, σ1, σ2 and σ3 form a orthogonal basis of C with respect to the inner
product 〈a, b〉 = tr(a∗b) = tr(ab), so we can identify R4 with C using this choice of basis. We denote this
identification by A so that

A : R4 → C

A : x 7→
3∑
i=0

xiσi

Observe that

tr(A(x)) = 2x0

det(A(x)) = η(x, x) = x2
0 − x2

1 − x2
2 − x2

3

. (3.2)

There is a continuous representation of SL(2,C) in C given by

ψ(m)ξ = mξm∗, m ∈ SL(2,C), ξ ∈ C. (3.3)

Under the identification A described above we thus obtain a continuous representation φ = A−1 ◦ ψ ◦ A of
SL(2,C) in R4. Notice that det(m) = 1 for m ∈ SL(2,C) and therefore we have det(mξm∗) = det(ξ) for any
ξ ∈ C. It follows that φ preserves the quadratic form induced by η so that φ maps into O(1, 3). This yields
a continuous Lie group homomorphism φ : SL(2,C)→ O(1, 3).

Lemma 42. The induced map on Lie algebras φ∗ : sl(2,C)→ so(1, 3) is an isomorphism.
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Proof. First, we claim that kerφ = {−1, 1}. Indeed, let m ∈ SL(2,C). If φ(m) = I, then mξm∗ = ξ for every
ξ ∈ C. Thus, taking ξ = I, it follows that m∗ = m−1. Therefore, mξ = ξm for every ξ, which implies that
m is a multiple of the identity. Since det(m) = 1, the claim follows. It follows that φ is locally injective and
φ∗ is injective. Since both sl(2,C) and so(1, 3) are six-dimensional[Var07, p. 333], φ∗ is an isomorphism.

Corollary 43. The map φ : SL(2,C)→ SO(1, 3)0 is the universal covering homomorphism.
In particular, SL(2,C) ∼= Spin(1, 3)0

Proof. The previous lemma implies that φ maps surjectively onto SO(1, 3)0, seeing as the latter is connected.
Any surjective Lie group homomorphism whose differential is an isomorphism is in fact a covering map. Since
SL(2,C) is simply connected, we are done.

Lemma 44. Identify SO(1, 2)0 with the subgroup of SO(1, 3)0 leaving the point e2 = (0, 1, 0, 0) fixed, then
φ−1(SO(1, 2)0) = SL(2,R) and therefore SO(1, 2)0 ∼= SL(2,R)/{±I}.

Proof. Indeed, observe that A(e2) = −i
(

0 1
−1 0

)
, so for m ∈ SL(2,C), we have

φ(m) ∈ SO(1, 2)0 ⇐⇒ m

(
0 1
−1 0

)
m∗ =

(
0 1
−1 0

)
.

A direct computation shows that this happens if and only if m ∈ SL(2,R).

Remark.

— The previous lemma is not saying that SL(2,R) is the universal covering group of SO(1, 2)0, which
would be false since SL(2,R) is not simply connected. Nonetheless, the result is useful when studying
the representation theory of SO(1, 2)0. The lemma above is used in the classification of the strongly
continuous unitary representations of R4 o SL(2,C), where the group SL(2,R) occurs as one of the
stabilizers of the action of SL(2,C) on R4. See also section 4.5.

Lemma 45. Embed R3 ↪→ R4 via x 7→ (0, x). Then φ(SU(2)) = SO(3) and φ−1(SO(3)) = SU(2).

SU(2) SO(3)

SL(2,C) SO(1, 3)0

φ

φ

.

Proof. Indeed, suppose m ∈ SL(2,C). Then by equation (3.2) φ(m) is orthogonal on R3 if and only if ψ(m)
preserves both det(·) and tr(·). Since det(m) = 1, ψ(m) always preserves the determinant. If m is unitary,
then by the conjugation invariance of the trace it is clear that φ(m) is orthogonal. Conversely, suppose that
ψ(m) is orthogonal so that it preserves tr(·). Then for every ξ ∈ C we have tr(ξ) = tr(mξm∗) = tr(m∗mξ).
That is, 〈m∗m, ξ〉C = 〈I, ξ〉C for every ξ ∈ C. This implies m∗m = I, so m∗ = m−1 and m is unitary.

Corollary 46. The restriction of φ to SU(2) is the the universal covering homomorphism onto SO(3).
Therefore Spin(3)0 ∼= SU(2).

Lemma 47. The representation of ψ|SU(2) on C decomposes as RI ⊕ su(2), where SU(2) acts trivially on

RI and via the adjoint representation Ad on su(2).

Proof. Notice first that ψ(u)ξ = uξu−1 for ξ ∈ C. Let S be the linear space generated by the Pauli matrices
{σ1, σ2, σ3}. Notice that S = {X ∈M2(C) : tr(X) = 0, X∗ = X}. Now, any element u ∈ SU(2) acts (via ψ)
trivially on the identity element and leaves S invariant. It follows that so that as a real SU(2) representation,
C decomposes as C ∼= RI⊕S, where SU(2) acts trivially on RI. Finally, it is trivial that S ∼= su(2) as SU(2)
representations.

Corollary 48. The adjoint representation of SU(2) on su(2) becomes the covering homomorphism under the
isomorphism su(2) ∼= R3.
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3.4 Representations

In this final section we discuss to small extent the representation theory of Clifford algebras and their spin
groups, mentioning only those results that are needed in chapter 6. Nonetheless, their representation theory
is understood in great detail and much more can be said than is done here. Moreover, as certain results are
quite standard they are given without proof. For a more detailed exposure, the interested reader may consult
[LM89, Chapter 1.5].

Now, any representation of the Clifford algebra ρ : Cl(V, q) → End(F) gives rise to a representation S :
Spin(V, q)0 → GL(F) of the connected component Spin(V, q)0 of the spin group by restriction S = ρ|Spin(V,q)0 .

From the previous section we know that the adjoint action of Spin(V, q)0 on Cl(V, q) becomes the covering
homomorphism φ when restricted to V :

Spin(V, q)0 SO(V, q)

GL(Cl(V, q))

φ

Ad

Therefore, the representation S of Spin(V, q)0 satisfies the following equivariance condition:

ρ(φ(w)v) = ρ(Adw(v)) = ρ(wvw−1) = S(w)ρ(v)S(w)−1 w ∈ Spin(V, q), v ∈ V. (3.4)

It is this equivariance condition that plays an essential role in the representation theory of R4 o SL(2,C),
as studied by Wigner[Wig39], see also section 8.3 for more details. In a related fashion, it will also play a
crucial role in chapter 6.

Definition 49. Given a representation ρ of Cl(V, q), the representation S of Spin(V, q)0 obtained by restric-
tion of ρ is called the spin representation associated to ρ.

In physics literature, representations of the Clifford algebra are often given in terms of the so-called gamma-
matrices or dirac-matrices, which are defined given a choice of basis for the vector space V . If {ek}nk=1 is a

basis of V , the gamma matrices are defined as γk
d
= ρ(ek) and satisfy{

γ2
k = q(ek)1

γkγr + γrγk = 0
(3.5)

Conversely, any set of endomorphisms {γk} satisfying equation (3.5) determines a representation of Cl(V, q)

by defining ρ(er)
d
= γr and extending it to Cl(V, q) using the universal property.

Finally, we consider the special case Cl1,3 and its unique irreducible representation ρ on C4[LM89, p. 32,
theorem 5.7]. Let S = ρ|SL(2,C) be the spin representation associated to ρ. We make a specific choice of
gamma matrices γr that exhibits S in a particularly nice fashion. Let σ1, σ2 and σ3 be the Pauli-matrices
defined in equation (3.1) and let γr be the 4× 4 matrices defined by

γ0 =

(
0 1
1 0

)
, γr =

(
0 −σr
σr 0

)
, r = 1, 2, 3. (3.6)

A computation on the level of Lie algebras [Var07, p. 201] shows that with this choice of gamma matrices, S
is given by

S(w) =

(
(w∗)−1 0

0 w

)
, w ∈ SL(2,C). (3.7)
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Chapter 4

Induced Representations

This chapter discusses the theory of induced representations, which was largely developed by Mackey [Mac49,
Mac52] and is concerned with the question of how the representation theory of a group G is connected to
that of its closed subgroups. In particular, it will provide the main tool that is used to study the irreducible
representations of the group R4⊕ (k⊗R4)oSL(2,C)×K, reducing the classification thereof to the represen-
tation theory of various subgroups. A similar approach was originally taken by Wigner in his classification
of the irreducible unitary representations of R4 o SL(2,C)[Wig39].

A brief overview of the theory is given below.

Any unitary representation of G restricts to a unitary representation of a closed subgroup H. It is then a nat-
ural question to ask whether or not there is a procedure in the opposite direction, that is, a way to construct a
unitary representations of the larger group G from unitary representation of the smaller subgroup H. It turns
out that such as an induction is indeed possible and is constructed in a very geometrical manner. Explicitly,

one has a natural G-action on the continuous sections of a homogeneous bundle E
d
= G ×H Hσ → G/H.

Using an invariant measure on G/H, an inner product can be defined on the space of such sections which
can be used the extend the aforementioned action to a unitary representation.

After a moment of consideration, one observes that the induced representation comes with additional struc-
ture. Indeed, compactly supported sections can be multiplied pointwise by elements in C0(G/H), thus
obtaining a non-degenerate ∗-representation M of the C∗-algebra C0(G/H) on the same space F . At the
same time, we have a natural action of G on C0(G/H) induced by the action of G on G/H. Moreover, M
is G-equivariant in the sense that π(x)M(φ)π(x)−1 = M(x · φ). such an equivariant pair (π,M) consisting
of a unitary representation of G and a non-degenerate ∗-representation of C0(G/H) is called a system of
imprimitivity for G based on G/H and defines a category, whose morphisms are isometric linear maps that
intertwine both the representations π and M .

It was proven by Mackey [Mac49, Mac58] that the induction procedure actually defines an equivalence of
categories. It follows that the induction process described above is really a two-fold process:

Unitary representations of H

Systems of imprimitivity for G based on G/H

Unitary representations of G

induction

restriction

.

It therefore remains to determine which representations of G actually lift to a non-trivial system of imprim-
itivity based on some homogeneous space G/H for some closed subgroup H. For those that do are induced
from a representation of H.

One example in which this happens for all representations of G is if it is of the particular form G = N oH
for some Abelian group N , where the action of H on N is required to be sufficiently ’nice’. Moreover, the
closed subgroups from which the representations are induced are precisely the stabilizers Gν of the action
of G on the dual group N̂ . This means that in fact the whole representation theory of G is determined by
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the representation theory of these stabilizers, which, as it turns out, can be further reduced to the subgroup
Gν∩H. This method of classifying the unitary representations of a group NoH is called the Mackey Machine.

In the following, the assumption is made that G/H has a G-invariant Radon measure, which allows for
significant simplifications. By corollary 146 and [Var07, p. 342, theorem 9.2], this assumption will suffice
for the purposes of this report. However, it is not needed for the theory of induced representations, which
extends more generally after suitable modifications. Once again we refer to [Fol95].

The exposition of this theory given below is based on [Fol95]. Some technical proofs are omitted for the sake
of brevity, which the interested reader may find in [Fol95]. Throughout this chapter, the following notation
is used. For any Lie group X, we denote by UR(X) the category of strongly continuous unitary representa-

tions of X. Let G be a fixed Lie group and let H be a closed subgroup and let G
q−→ G/H be the canonical

projection. Finally, let σ : H → U(Hσ) be a unitary representation of H on a Hilbert space Hσ and let µ be
an invariant measure on G/H.

4.1 Construction

We start with the construction of induced representations, treating two perspectives each starting its con-
struction on either side of the G-equivariant bijection Γ(G×HHσ) ∼= HomH(G,Hσ). The first one, called the
induced picture, is based on H-equivariant maps. This perspective is more convenient for proofs and more-
over extends more directly to infinite dimensional representations of H. The second construction considers
instead sections of the associated bundle G×H Hσ. It therefore has a clear geometric interpretation, thence
its name the geometric picture. The two are equivalent if Hσ is finite dimensional. Seeing as the induced
picture applies applies more generally, henceforth we will make use of the induced picture.

Induced picture

As mentioned, this perspective starts its construction from H-equivariant maps G→ Hσ. First, let us define
the space of continuous H-intertwining maps G→ Hσ:

CH(G,Hσ) = { f ∈ C(G,Hσ) : f(xξ) = σ(ξ)−1f(x) }.

Next, define

F0
d
= {f ∈ CH(G,Hσ) : q(supp f) is compact } . (4.1)

Consider F0 as a representation of G under the left-regular action. We aim to define an invariant inner product
this space such that the left regular action becomes isometric and extends to a unitary representation on the
Hilbert space completion of F0. The following result, taken from [Fol95, p. 152], describes the functions in
F0 in more detail.

Lemma 50. For α ∈ Cc(G,Hσ), define

fα(x) =

∫
H

σ(η)α(xη)dη.

Then fα ∈ F0 and fα is uniformly continuous on G.
Moreover, every element of F0 is of this form for some α ∈ Cc(G,Hσ).

Proof. We first show that every element of F0 is of this form. Let f ∈ F0. By lemma 143 there exists
ψ ∈ Cc(G) such that Aψ ≡ 1 on supp f , where A : Cc(G) → Cc(G/H) is the averaging map equation (8.2).
Let α = ψ · f . Then

fα =

∫
H

ψ(xη)σ(η)f(xη)dη =

∫
H

ψ(xη)f(x)dη = Aψf(x) = f(x)

Next, let α ∈ Cc(G,Hσ). Then q(supp fα) ⊂ q(suppα) is compact and fα is H-equivariant by the trans-
lation invariance of the left-Haar measure. It remains to show fα is uniformly continuous. Let N be a
compact neighborhood of 1 in G and let K ⊂ G be a compact lift of supp f (using lemma 142). Define
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J = K−1N(suppα) ∩ H, which is compact in H. Since α is continuous, there exists for any ε > 0 a
neighborhood Nε such that ‖α(x)−α(y)‖σ ≤ ε whenever xy−1 ∈ Nε. The for x ∈ K and xy−1 ∈ Nε, we have

‖fα(x)− fα(y)‖ = ‖
∫
J

σ(η)(α(xη)− α(yη))dη ≤ ε|J |.

This means that fα is uniformly continuous on K and hence on KH by H-equivariance. Since supp fα = KH,
we are done.

For any two f, g ∈ F0 the smooth map x 7→ 〈f(x), g(x)〉 factors through G/H, since the action on Hσ is
unitary and functions in F0 are H-equivariant. Thus, we can define

〈f, g〉 =

∫
G/H

〈f(x), g(x)〉dµ(xH) (4.2)

This is an inner product on F0, and since µ is invariant it is preserved by left translations. Let Fσ be the
Hilbert space completion of F0, that is,

Fσ = F0
〈.,.〉

(4.3)

Lemma 51. Let G and Fσ be as above. The left translation operators Lx extend to a strongly continuous
unitary representation on Fσ.

Proof. Consider first fixed x ∈ G. The translation-invariance of µ implies immediately that ‖Lxf‖ = ‖f‖ for
all f ∈ F0. By a standard approximation argument, it follows that Lx extends to an isometric operator on
Fσ. Since Lx is invertible (with inverse Lx−1), it is unitary.

It remains to show the strong continuity. Now, any f ∈ F0 is uniformly continuous so for any ε > 0 we
can find some open neighborhood Nε of 1 such that xy−1 ∈ Nε =⇒ ‖f(x) − f(y)‖σ < ε. By replacing
Nε with Nε ∩ N−1

ε , we may assume that Nε is symmetric (by the continuity of x 7→ x−1, N−1
ε is open).

For any g, x, y ∈ G, we have (x−1g)(y−1g)−1 ∈ Nε ⇐⇒ x−1y ∈ Nε ⇐⇒ xy−1 ∈ Nε. Therefore,
xy−1 ∈ Nε =⇒ ‖Lxf(g)− Lyf(g)‖σ = ‖f(x−1g)− f(y−1g)‖σ < ε and hence ‖Lxf − Lyf‖ < ε · |q(supp f)|.
This proves the asserted continuity for any f ∈ F0. As the operators Lx are all bounded and strongly
continuous on F0, the map is strongly continuous on all of F by a standard 3-ε argument and thus define a
unitary representation of G on Fσ.

Definition 52. The representation of G on Fσ obtained in the previous lemma is called the induced
representation, and is denoted indGH(σ).

The Hilbert space F can actually be identified as the space L2
H(G,Hσ;µ) of Hσ-valued functions that are

measurable, square integrable and that satisfy f(xξ) = σ(ξ−1)f(x) µ-almost everywhere[Bla61]. This result
will be of no consequence to us, so it is not discussed in detail.

Geometric picture

In the geometric picture, we assume that the H-representation Hσ is finite dimensional, and start instead
from sections of the associated bundle G×H Hσ. Other than that, we employ the same strategy.

Since H is a closed subgroup of the Lie group G, we know from corollary 18 that G
q−→ G/H is a principal H-

bundle. We can therefore construct the homogeneous Hilbert bundle G×HHσ → G/H. Write E
d
= G×HHσ

and E
πE−−→ G/H for the corresponding surjective submersion. The homogeneity implies that G acts on the

sections Γ(E) of this bundle via

(g · s)(xH)
d
= g · s(g−1xH).

Observe that g · s is indeed a section. Now, we can use the invariant measure on G/H to define an inner
product on Γ(E):

〈s1, s2〉
d
=

∫
G/H

〈s1(xH), s2(xH)〉ExHdµ(xH) (4.4)

let Gσ be the Hilbert space completion of compactly supported smooth sections with respect to this inner

product Gσ
d
= Γc(E)

〈·,·〉
. The following computation shows that this inner product is preserved by the action
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of G:

〈g · s1, g · s2〉 =

∫
G/H

〈g · s1(g−1xH), g · s2(g−1xH)〉ExHdµ(xH)

(1)
=

∫
G/H

〈g · s1(xH), g · s2(xH)〉EgxHdµ(xH)

(2)
=

∫
G/H

〈s1(xH), s2(xH)〉ExHdµ(xH)

= 〈s1, s2〉.

Here, (1) follows by the invariance of the measure µ and (2) by the homogeneity of the Hilbert bundle.

Define
F∞0

d
= {f ∈ HomH(G,Hσ) : q(supp f) is compact } .

Remark.

— Notice that by lemma 28, F∞0 is precisely the image of Γc(E) under the map Φ : Γ(E)→ HomH(G,Hσ)
defined in lemma 28.

Lemma 53. The space Γc(E) of compactly supported smooth sections is dense in the space of compactly
supported continuous sections of E → G/H, where both spaces are endowed with the topology defined by
(4.4).

Proof. It is well-known that for an arbitrary open subset Ω ⊆ Rn and finite-dimensional Hilbert space Hσ,
the space C∞c (Ω,Hσ) is dense in Cc(Ω,Hσ) with respect to the sup-norm. Then for any Radon measure ν on
Ω we find that C∞c (Ω,Hσ) is also dense in Cc(Ω,Hσ) with respect to the norm inherited from L2(Ω;Hσ, ν).
Indeed, for f ∈ Cc(Ω,Hσ) we can a compact set K ⊂ U such that supp f is properly contained in K and a se-
quence fn ∈ C∞c (Ω,Hσ) such that ‖fn−f‖∞ → 0 and supp fn ⊂ K. Then ‖fn−f‖L2 ≤ ν(K)‖fn−f‖∞ → 0.

Now, using a partition of unity we can reduce to the case above. Explicitly, let s : G/H → E be an arbitrary
compactly supported continuous section of the bundle E → G/H. Since G/H is a smooth manifold and
s is compactly supported, we can find a finite open covering {Uα}α of supp s and fiber-wise unitary local

trivializations π−1
E (Uα)

φα−−→ Uα ×Hσ such that each Uα is diffeomorphic to an open subset of Rn. Let {ψα}
be a smooth partition of unity subordinate to the covering {Uα}. Let sα = ψα · s so that s =

∑
α sα and

supp sα ⊂ Uα. By the local triviality, there exists fα ∈ Cc(Uα,Hσ) such that φ ◦ sα = (idUα , fα). Then

by the above argument, for fixed α we can find a sequence f
(nα)
α ∈ C∞c (Uα,Hσ) such that f

(nα)
α → fα

in L2(Uα;Hσ, µ) as nα → ∞. Since φ is fiber-wise unitary this implies that s
(nα)
α → sn in Gσ, where

s
(nα)
α = φ−1 ◦ (idUα , f

(nα)
α ). Because the covering {Uα} is finite, we find∑

α

s(nα)
α →

∑
α

sα = s in Gσ.

Corollary 54. Let Φ : Γ(E) → HomH(G,Hσ) be the G-equivariant bijection described in lemma 28. Then
Φ|Γc(E) extends to a unitary G-equivariant map Φ : Gσ → Fσ.

Proof. Notice first that Φ is isometric if HomH(G,Hσ) is endowed with the norm defined by equation (4.2).
Indeed, we compute

‖Φ(s)‖2Fσ =

∫
G/H

‖φ(x−1 · s(xH))‖2σdµ(xH)

=

∫
G/H

‖x−1 · s(xH))‖2EHdµ(xH)

=

∫
G/H

‖s(xH))‖2ExHdµ(xH)

= ‖s‖2Gσ .

By the previous lemma Φ extends to a unique linear map Ψ from the space of continuous compactly supported
sections of E → G/H into the closure of HomH(G,Hσ) with respect to the norm (4.2). This extension is
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given by the map that is defined precisely as in lemma 28, but for continuous instead of smooth maps. Using
the last statement of lemma 28, it is clear that the image of this map is precisely F0. Extending further to
Gσ gives the result.

Corollary 55. If Hσ is finite-dimensional, the unitary representations defined via the geometric and induced
picture are equivalent.

Corollary 56. Let G and E be as above. The G-action on Γc(E) extends to a strongly continuous unitary
representation of G on Gσ.

4.2 Properties

Next, let us consider some properties of the induction procedure. The first important observation is that it
is actually functorial:

Lemma 57. The assignment σ 7→ indGH(σ) defines a functor indGH : UR(H)→ UR(G).

Proof. Suppose that σ1 and σ2 are two unitary representations of H. Write Fσ1
and Fσ2

for the Hilbert
spaces on which indGH(σk) act (k = 1, 2) and write F1

0 and F2
0 for the corresponding dense subspaces as in

(4.1). Then any isometric intertwining map T ∈ HomH(σ1, σ2) induces an isometric map F1
0

T̃−→ F2
0 defined

by f 7→ T ◦ f . This map trivially intertwines the left-regular action and it is isometric with respect to the

inner products defined by (4.2) because T is isometric. It therefore extends to an isometric map Fσ1

T̃−→ Fσ2 .

It is clear that the assignment T 7→ T̃ is functorial.

Lemma 58. Let σ be a unitary representation of H and π = indGH(σ).
Then π(n)f(x) = σ(x−1nx)f(x).

Proof. Consider the induced picture. We compute π(n)f(x) = f(n−1x) = f(x(x−1nx)) = σ(x−1n−1x)f(x).

Lemma 59.

1. σ1
∼= σ2 in UR(H) =⇒ indGH(σ1) ∼= indGH(σ1) in UR(G)

2. If {σi}i are unitary representations of H, then indGH(
⊕

i σi)
∼=
⊕

i(indGH(σi)) in UR(G).

Proof.

1. We have already seen that indGH : UR(H) → UR(G) is a functor and every functor preserves isomor-
phisms.

2. This follows from the observation that the map HomH(G,
⊕

iHσi)→
⊕

i HomH(G,Hσi), f 7→ (Pri◦f)i
is a G-equivariant isomorphism.

The next theorem shows that if G is compact, then indGH is right-adjoint to the restriction functor.

Theorem 60 (The Frobenius Reciprocity Theorem).
Let G be a compact Lie group and H a closed subgroup, π an irreducible unitary representation of G and σ
an irreducible unitary representation of H. Then

HomG(π, indGH(σ)) ∼= HomH(π|H , σ)

Proof. A sketch of the proof is given. It is well-known that every irreducible representation of a compact
Lie group is finite-dimensional [Fol95, p. 126, Theorem 5.2]. As a consequence of this fact and theorem 145,
the Hilbert space F on which indGH(σ) acts can be identified with the subspace L2

H(G,Hσ) of L2(G,Hσ)
consisting of those square-integrable functions f that satisfy f(xξ) = σ(ξ−1)f(x) for all x ∈ G, ξ ∈ H.

Define a map

φ : Hπ −→ HomH(G,Hπ)

φv(x) = π(x)−1v
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This map is G-equivariant, since

(g · φv)(x) = π(g−1x)−1v = π(x)−1π(g)v = φπ(g)v(x).

Now, we have seen that any isometric T ∈ HomH(π|H , σ) induces a G-equivariant map

HomH(G,Hπ)
T◦−−−−→ HomH(G,Hσ).

Define for each isometric T ∈ HomH(π|,Hσ) the map AT as the following G-equivariant composition:

AT : Hπ
φ−→ HomH(G,Hπ)

T◦−−−−→ HomH(G,Hσ).

That is,
AT (v)(xH) = Tπ(x)−1v.

By the G-equivariance, it is clear that AT ∈ HomG(π, indGH(σ)). Moreover, if AT1
= AT2

, then in particular
AT1

(v)(e) = AT2
(v)(e) for all v ∈ Hπ, which just states that T1v = T2v and thus T1 = T2. The assignment

T 7→ AT is therefore injective. It remains to show it is surjective. Let A ∈ HomG(π, indGH(σ)). Suppose for
a moment that every function in the range of A can be evaluated pointwise and let ev1 be evaluation at the
identity. Define T = ev1 ◦A:

T : Hπ
A−→ HomH(G,Hσ)

ev1−−→ Hσ.

Notice that ev1 is H equivariant, since

ev1(Lxf) = f(h−1) = σ(h)f(1) = σ(h) ev1 f.

As A is G-equivariant by definition, it follows that T ∈ HomH(π|H ,Hσ). Finally, A = AT since

(AT v)(x) = (ev1 ◦A)(π(x)−1v) = (ev1 ◦L−1
x A)v = (Av)(x).

It therefore remains to prove that functions in the range of A can be evaluated pointwise. This is a consequence
of Peter-Weyl theorem, but we refer to [Fol95, p. 133, 160] for the details.

Theorem 61 (Induction in stages).
Let G be a Lie group. Suppose H is a closed subgroup of G and K is a closed subgroup of H.
Let σ be a unitary representation of K. Then indGK(σ) ∼= indGH(indHK(σ)) in UR(G).

Proof. The proof is due to Mackey and can be found in e.g. [Fol95, p. 166].

4.3 Systems of imprimitivity

In this section, the so-called systems of imprimitivity are introduced. To motivate their study and definition,
we first consider two different situations in which these objects naturally occur.

1. Firstly, let H be a closed subgroup of G and let σ be a finite dimensional unitary representation of H on
Hσ. Let E = G×HHσ and G = Γc(E) be the Hilbert space on which G acts according to the geometrical
picture. Notice that Γc(E) is closed under multiplications by elements in C0(G/H). Moreover, the latter
space has a natural G-action induced by the left action of G on G/H. Write π = indGH(σ). The following
lemma shows that we obtain a non-degenerate ∗-representation of C0(G/H) on G that is compatible
with the various actions of G.

Lemma 62. The linear operators M(φ)s
d
= φ · s defined on Γc(E) extend to a linear operator on G

for any fixed φ ∈ C0(G/H). This defines a non-degenerate ∗-representation of C0(G/H) on G that is
G-equivariant in the following sense:

π(x)M(φ)π(x)−1 = M(Lxφ), (4.5)

where Lxφ(gH) = φ(x−1gH).
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Proof. Notice first that for fixed φ ∈ C0(G/H) we have ‖M(φ)s‖ ≤ ‖φ‖∞‖s‖ for all s ∈ Γc(E), since

‖M(φ)s‖2 =

∫
G/H

‖φ(xH) · s(xH)‖2ExHdµ(xH) ≤ ‖φ‖2∞‖s‖2.

This means that M extends to a bounded linear operator on G. Next, we have M(φ) = M(φ)∗, because

〈φ(xH) · s1(xH), s2(xH)〉ExH = 〈s1(xH), φ(xH) · s2(xH)〉ExH

for every xH ∈ G/H and therefore 〈M(φ)s1, s2〉 = 〈s1,M(φ)s2〉. It is clear that M also respects
multiplication. We show M is non-degenerate. Suppose s ∈ G is such that M(φ)s = 0 for every
φ ∈ C0(G/H). Then φ(xH)s(xH) = 0 for every xH ∈ G/H and φ ∈ C0(G/H). This implies s = 0.
Finally, we compute

(π(x)M(φ)π(x)−1s)(gH) = (M(φ)π(x)−1s)(x−1gH) = φ(x−1gH) · s(gH) = M(Lxφ)s(gH).

Now, a completely similar construction also works if Hσ is infinite dimensional via the induced picture.

In this case, the ∗-representation C0(G/H)
M−→ L(Fσ) is given by M(φ)f = (φ◦ q) ·f for φ ∈ C0(G/H),

where G
q−→ G/H is the quotient map. In this case, M satisfies the same equivariance condition (4.5).

2. Secondly, suppose that G = N oH, where N is a non-trivial closed Abelian normal subgroup of the Lie
group G. Let π be a unitary representation of G on Hπ. Then π restricts to a unitary representation
of N . Since N is Abelian, we know from theorem 152 that there exists a unique Hπ-projection-valued
measure P on N̂ such that

π(n) =

∫
N̂

〈n, ν〉dP (ν).

G acts on N by conjugation which induces a left action on N̂ defined by

〈n, x · ν〉 d= 〈x−1 · n, ν〉 = 〈x−1nx, ν〉.

We know that π is a representation of G = N oH and so its restriction to N must be compatible with
the action of G on N , which imposes a compatibility condition on the spectral measure P . Indeed, for
every x ∈ G, n ∈ N we have:

π(xnx−1) =

∫
N̂

〈xnx−1, ν〉dP (ν) =

∫
N̂

〈n, x−1ν〉dP (ν) =

∫
N̂

〈n, ν〉dP (x · ν)

= π(x)π(n)π(x−1) =

∫
N̂

〈n, ν〉π(x)dP (ν)π(x)−1,

from which it follows that π(x)dP (ν)π(x)−1 = dP (x · ν) is satisfied.

Motivated by these two examples, we make the following more general definition

Definition 63. A system of imprimitivity for G based on S is an ordered triple Σ = (π, S, P ) consisting
of

1. a unitary representation π on Hπ

2. a topological space S equipped with a continuous left G-action.

3. a non-degenerate ∗-representation M of C0(S) on Hπ that satisfies

π(x)M(φ)π(x)−1 = M(Lxφ).

Notice that instead of specifying the non-degenerate ∗-representation, on may equivalently specify a regular
Hπ-projection-valued measure P on S that satisfies

π(x)P (E)π(x)−1 = P (xE) x ∈ G,E ⊂ S measurable .

The two formulations are related by the fact that any non-degenerate ∗-representation M of C0(S) is given
by M(φ) =

∫
S
φdP for some uniquely determined projection-valued measure P , see also corollary 153.
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Definition 64.

— We call a representation π imprimitive if it belongs to a non-trivial system of imprimitivity (π, S,M)
meaning that S is not a single point. Otherwise, it is called primitive.

— A system of imprimitivity (π, S,M) is called transitive if S is a homogeneous space, i.e., if S = G/H
for some closed subgroup H of G.

— A map T : Hπ1 → Hπ2 is said to intertwine two systems of imprimitivity Σ1 = (π1, S,M1) and
Σ2 = (π2, S,M2) if it intertwines both the unitary representations π1 and π2 and the *-representations
M1 and M2. Denote by HomG(Σ1,Σ2) the set of intertwining maps Σ1 → Σ2. Similarly, we write
HomG(Σ,Σ) by HomG(Σ).

Definition 65. The transitive system of imprimitivity obtained by the inducing construction that is described
in lemma 62 is called the canonical system of imprimitivity associated to indGH(σ). The corresponding
spectral measure on G/H is P (E)s = χEs for E ⊂ G/H Borel-measurable. In the induced picture we have
instead M(φ)f = (φ ◦ q)f with spectral measure P (E)f = (χE ◦ q)f .

Lemma 66. Let G be a Lie group with closed subgroup H. Let σ1 and σ2 be two representations of H and
let Σk = (indGH(σk), G/H,Mk) be the canonical system of imprimitivity associated to indGH(σk) for k = 1, 2.
If T ∈ HomH(σ1, σ2), then indGH(T ) ∈ HomG(Σ1,Σ2).

Proof. We have already seen in lemma 57 that indGH(T ) ∈ HomG(indGH(σ1), indGH(σ2)), so it remains to show
it intertwines M1 and M2. It suffices to consider the dense subspaces F1

0 and F2
0 defined by (4.1). Recall that

T̃ : F1
0 −→ F2

0 is simply given by T ◦ −. Using the fact that T is linear, we have for any x ∈ G, φ ∈ C0(G/H)
and f ∈ F1

0 :

(T̃M1(φ)f)(x) = T (φ ◦ q)(x) · f(x) = (φ ◦ q)(x) · (T ◦ f)(x) = (M2(φ)T̃ f)(x).

Now, we have a defined category with TSOIGH with transitive systems of imprimitivity (π,G/H,M) as ob-

jects and intertwining maps as morphisms. In the preceding sections, a functor UR(H)
indGH−−−→ TSOIGH was

constructed, which sends a unitary representation σ of H to the canonical system of imprimitivity Σ associ-
ated to indGH(σ) and intertwining maps T ∈ HomH(σ1, σ2) to T̃ ∈ HomG(Σ1,Σ2).

The following two theorems state that this functor is an equivalence of categories, which further clarifies the
importance of the notion of a system of imprimitivity:

Unitary representations of H ∼= Systems of imprimitivity for G based on G/H.

This result is really the crux of the matter. Nonetheless, for brevity and seeing as we will only need the result
and not so much the methods used to prove them, we give these results without proof. Still, the proofs are
interesting in their own right. The results are due to Mackey and can be found e.g. in [KT12, p. 125] and
[Fol95, p. 178].

Theorem 67.
Suppose H is a closed subgroup of G and that σ1, σ2 are unitary representations of H.
Let Πk = indGH(σk) and Σk = (Πk, G/H,M) be the associated system of imprimitivity, where k = 1, 2.

Then the map T 7→ T̃ is a bijection from HomH(σ1, σ2) to HomG(Σ1,Σ2).

Theorem 68 (The Imprimitivity Theorem).
Let Σ = (π,G/H,M) be a transitive system of imprimitivity on G.

There is a unitary representation σ of H such that Σ is equivalent to the system of imprimitivity associated
to indGH(σ). Moreover, σ is uniquely determined up to equivalence.

It follows that the induction process described above is really a two-fold process:

Unitary representations of H

Systems of imprimitivity for G based on G/H

Unitary representations of G

induction

restriction

.
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Therefore, if a representation of G lifts to a non-trivial system of imprimitivity for G based on some non-
trivial homogeneous space G/H, then it is the induction of a unitary representation of H. The question
remains for which representations of G such a lift is possible.

4.4 Mackey machine

The previous section has resulted in a sufficient condition for a representation of G to be completely de-
termined by its restriction to a non-trivial closed subgroup H. Namely, the representation should lift to
a non-trivial transitive system of imprimitivity for G. It turns out that for Lie groups of the special form
G = N o H for some Abelian N , the situation is particularly nice and such a lift is always possible. The
obtained method of studying the representation theory of groups of this form is called the Mackey machine,
and can be used to obtain a full classification of the representation theory of the group in terms of induced
representations. The aim of this section is three-fold:

1. Every irreducible unitary representation π of G = N oH is part of a transitive system of imprimitivity
for G based on some homogeneous space G/Gν , where ν ∈ N̂ and Gν is its stabilizer. This means that
it is induced by a representation σ of Gν .

2. The restriction of the representation σ to N acts on Hσ simply according to the scalar action of the
character ν and is unique up to equivalence.

3. The representations of Gν that restrict to the scalar action of ν on N are up to equivalence uniquely
characterized by the representations of the so-called Little group Hν = Gν ∩H.

It follows in particular that the representation theory of G is fully determined by the representation theory of
the various stabilizers Gν , by inducing them up to G. The Mackey machine is the main tool used to classify
the irreducible representations of the group R4 ⊕ (k ⊗ R4) o SL(2,C) × K in terms of the representation
theory of various closed subgroups of this group.

The proofs given here are based on [Fol95, p. 182-187].

0. Regularity of the group action on N̂ .

Now, the Mackey machine applies only if the action of G on N̂ satisfies a certain regularity condition. Before
discussing the three points above, let us first say a few words regarding this regularity. The relevant notion
is defined below.

Definition 69. Suppose G is a locally compact group acting on a locally compact space M . We say that
the orbit space is countably separated if there is a countable family {Ej} of G-invariant Borel sets in M
such that each orbit in M is the intersection of all the Ej ’s that contain it.

The following lemma establishes an equivalent formulation and was proven by Glimm [Gli61, p. 124].

Lemma 70. Suppose that a locally compact group G acts on a locally compact topological space M and both
G and M are Hausdorff and second countable. Then the following are equivalent

1. For every m ∈M , the map G/Gm → Om is a homeomorphism, where Om = G ·m is given the subspace
topology as a subspace of M .

2. The orbit space is countably separated.

Proof. For the proof, we refer to [Gli61, Theorem 1].

Notice that G = NoH is a Lie group (by assumption), which is in particular Hausdorff and second countable.
The following two lemmas show sufficient conditions for the orbit space to be countably separated that will
be enough for the purposes of this thesis.

Lemma 71. Suppose G is a linear algebraic group defined over R and let V be an affine algebraic variety
defined over R. Let further π : G× V → V be a real algebraic action defined by restriction to the real points
of an algebraic action over R. Then each orbit of π is locally closed and is an embedded submanifold of V .
In particular, the orbit space is countably separated.

Proof. See [FFB+98, p. 72, Corollary 4.9.3].
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Remark.

— Consider the setting of lemma 71 and assume further that V is equipped with a non-degenerate G-
invariant bilinear form β. Consider the action of G on V̂ determined by 〈v, g · ξ〉 = 〈π(x−1)v, ξ〉 and

identify V̂ ∼= V via
〈v, w〉 = eiβ(v,w), v, w ∈ V.

Under this identification, the G-invariance of β implies that the action of G on V̂ transfers simply to
the action π on V . The previous lemma now implies that the orbit space of V̂ is countably separated.

1. Every irreducible unitary representation is part of a transitive system of imprimitivity.

Assume that G contains a closed Abelian normal Lie subgroup N . Then G acts on N by conjugation, which
induces an action of G on its dual group N̂ given by

〈n, x · ν〉 d= 〈x−1, nx, ν〉, x ∈ G,n ∈ N, ν ∈ N̂ .

Denote for each ν ∈ N̂ the stabilizer of ν by Gν and the orbit by Oν .

Suppose that π is a unitary representation of G. Notice that since N is Abelian, proposition 151 implies that
we may identify N̂ with the spectrum Ω(L1(G)) of L1(G). This is the main reason for transferring the action

of G on N over to N̂ . Moreover, from theorem 152 we know that there is a projection-valued measure P on
N̂ such that

π(n) =

∫
〈n, ν〉dP (ν) n ∈ N. (4.6)

We have already seen that (π, N̂ , P ) is a system of imprimitivity, so remains to show it is in fact a transitive
system of imprimitivity. The strategy will be to show that P is supported on a single orbit, which by the
previous lemma is a homogeneous space O ∼= G/Gν for some ν ∈ O. Then (π,G/Gν , P ) is a transitive
system of imprimitivity.

First, observe that if π is irreducible, then P is ergodic in the sense of the lemma below.

Lemma 72. Let π be an irreducible representation of G. If E ⊂ N̂ is a G-invariant Borel-set, then either
P (E) = 0 or P (E) = I.

Proof. Since (π, N̂ , P ) is a system of imprimitivity and E is G-invariant, we have

π(x)P (E)π(x)−1 = P (x · E) = P (E).

This means that P (E) ∈ HomG(π). By Schur’s lemma, it follows that P (E) is a multiple of the identity,
which implies the result since P (E) is a projection.

Proposition 73. Suppose that the orbit space of N̂ under the action of G is countably separated. If π is
irreducible, then there is an orbit O in N̂ such that P (O) = I.

Proof. Let {Ej}j∈N be a countable family of G-invariant Borel-measurable sets, so that for every orbit O ⊂ N̂ ,
there is some J ⊂ N such that O =

⋂
j∈J Ej . In particular, O is measurable and P (O) is a projection onto

the intersection of all the ranges P (Ej), j ∈ J . Notice that P (Ej) = 0 or P (Ej) = I for every j. If P (Ej) = 0
for some j ∈ J , then P (O) = 0. Therefore, for every orbit O we either have P (O) = 0 or P (O) = I. If
P (O) = 0 for every orbit, this means that for every orbit O there exists some EjO containing O on which P

is zero. Since N̂ =
⋃
O∈G\N̂ EjO , this implies P (N̂) = 0, contradiction the fact the P (N̂) = I.

Notice that P (N̂/O) = 0 since I = P (O) + P (N̂/O). Therefore, the orbit in the above proposition is also
unique. We have completed the first goal; that every irreducible unitary representation of G = N oH lifts
to a transitive system of imprimitivity for G based on some homogeneous space G/Gν . By the imprimitivity
theorem 68, (π,G/Gν , P ) is unitarily equivalent to the canonical system of imprimitivity associated to indGH(σ)
for some unitary representation σ of H.
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2. σ is unique up to equivalence and its restriction to N acts according to ν.

Lemma 74. Let π = indGH(σ) be an induced representation and (π,G/Gν , P ) be the canonical system of
imprimitivity associated to π. Then π(n)f(x) = 〈n, x · ν〉f(x).

Proof. We consider the induced picture. By equation (4.6) we have

π(n) =

∫
G/Gν

〈n, x · ν〉dP (xGν) = M(φ),

where φ ∈ Cb(G/Gν) is given by φ : xGν 7→ 〈n, xν〉. This follows by an application of the Borel-functional
calculus, which holds for bounded measurable functions, so in particular for φ. Then

(π(n)f)(x) = (M(φ)f)(x) = 〈n, xν〉f(x) = 〈x−1nx, ν〉f(x) = 〈n, x · ν〉f(x).

Lemma 75. Let G be a Lie group with closed subgroup H. Suppose that σ is a unitary representation of H
on some Hilbert space Hσ. Let F0 be defined by equation (4.3). The set {f(1) : f ∈ F0} is dense in Hσ.

Proof. The following proof is based on [Fol95, p. 158]. Let {Un}n∈N be a non-increasing sequence of open
sets such that Un ↓ {1} as n→∞. Using Tietze’s extension theorem, there exists a family {ψn ∈ Cc(G)}n∈N
such that for all n ∈ N it holds that suppψn is compact and contained in Un, ψn ≥ 0 and

∫
H
ψn(η)dη = 1.

Notice that for any n, by lemma 50 the function

fn(x) =

∫
H

ψn(xη)σ(η)vdη, x ∈ G

is in F0. Moreover, by continuity of σ, we can find for any ε > 0 an open neighborhood Nε of 1 in H such
that for any η ∈ Nε we have ‖σ(η)v − v‖ < ε. Since Un ↓ {1} there exists N ∈ N such that Un ⊂ Nε for all
n ≥ N . Then for all n ≥ N we have

‖fn(1)− v‖σ ≤
∫
Un

ψn‖σ(η)v − v‖σdη < ε

∫
Un

ψn = ε.

Lemma 76. Suppose that (π,G/Gν , P ) is a transitive system of imprimitivity for some ν ∈ N̂ with π
irreducible. Then π is unitarily equivalent to indGGν (σ) for some irreducible representation σ of Gν that
satisfies σ(n) = 〈n, ν〉I for all n ∈ N .

Proof. We may assume that (π,G/Gν ,M) is the canonical system of imprimitivity associated to indGGν (σ) for
some unitary representation σ ofGν . Combining lemma 58 with the previous lemma, we have σ(x−1nx)f(x) =
〈x−1nx, ν〉f(x). In particular σ(n)f(1) = 〈n, ν〉f(1). By lemma 75, {f(1)|f ∈ F0} is dense in Hσ and the
result follows.

It turns out that we also have the following converse statement.

Lemma 77.
Suppose that the orbit space of N̂ under the action of G is countably separated. If ν ∈ N̂ and σ is an irreducible
representation of Gν such that σ(n) = 〈n, ν〉I for all n ∈ N , then indGGν (σ) is irreducible. Moreover, if

σ′ is another such irreducible representation of Gν such that indGGν (σ′) ∼= indGGν (σ) in UR(G), then σ′ ∼=
σ in UR(Gν).

Proof. Let Σ = (π,G/Gν , P ) be the canonical system of imprimitivity associated to indGGν (σ). By the same
argument as in the proof of lemma 74, we know that π(n)f(x) = 〈n, x · ν〉f(x) =

∫
G/Gν

〈n, x · ν〉dP (xGν).

It follows that P is the spectral measure for π|N after identifying G/Gν ∼= Oν ↪→ N̂ . This implies both
statements of the lemma. Firstly, if T ∈ HomG(π) then by theorem 152, T also commutes with also P (E)

for every Borel set E ⊂ N̂ . This means that T ∈ HomG(Σ) by corollary 153. The converse is trivially true.
Thus, we have

HomG(π) = HomG(Σ) ∼= HomGν (σ),

using the fact that indGGν : UR(Gν)→ TSOI(G) is an equivalence of categories for the latter equality. Since
σ is irreducible, Schur’s lemma implies that HomGν (σ) = CI. Thus also HomG(π) = CI, which means that π
is irreducible. Secondly, it follows in similar fashion that an equivalence between the unitary representations
indGGν (σ) and indGGν (σ′) actually defines an equivalence between their canonical systems of imprimitivity. The
uniqueness in theorem 68 now implies that σ ∼= σ′ in UR(Gν).
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Thus, we have completed the second aim of this section; that the irreducible representations of G are up to
equivalence precisely given by representations of the stabilizer Gν whose restriction to N is just the scalar
action of ν on N .

3. The representations of Gν that restrict to ν on N are determined by the Little group.

Now, let Hν = Gν ∩ H ∼= Gν/N . This group is called the Little group associated to ν. Observe that
Gν = N oHν . The following proposition completes the classification.

Proposition 78. Let ν ∈ N̂ . Then every unitary representation σ of Gν satisfying σ(n) = 〈n, ν〉I is of the
form ρ(n, h) = 〈n, ν〉ρ(h) for some unitary representation ρ of Hν . Moreover, σ is irreducible if and only if
ρ is. Finally, writing νρ for such representations, we have

νρ1
∼= νρ2 in UR(Gν) ⇐⇒ ρ1

∼= ρ2 in UR(Hν).

Proof. If σ is a representation of Gν = N oHν on Hσ satisfying σ(n) = 〈n, ν〉I, then we have

σ(n,m) = σ(n, 1)σ(0, h) = 〈n, ν〉ρ(h),

where ρ(h) = σ(0, h) is a unitary representation of Hν . Next, any subspace W ⊂ Hσ is σ-invariant if and
only if it is ρ-invariant, since N just acts by scalars. This implies the statement on irreducibility. The last
statement follows similarly.

In summary, we have obtained the following:

Theorem 79. Suppose G = N oH, where N is Abelian. Suppose further that the orbit space of N̂ under
the action of G is countably separated. If ν ∈ N̂ and ρ is an irreducible representation of Hν , then indGGν (νρ)
is an irreducible representation of G and every irreducible representation of G is of this form. Moreover,

νρ1
∼= νρ2 in UR(Gν) ⇐⇒ ρ1

∼= ρ2 in UR(Hν).

We make a final remark concerning the bundles that occur when applying the Mackey machine that is
particularly relevant in chapter 6 and section 8.3.

Lemma 80. Let ν ∈ N and Gν = N o Hν be the corresponding stabilizer. Let σ be any representation of
Gν on Hσ. There is an isomorphism of H-homogeneous Hilbert bundles:

H ×Hν Hσ G×Gν Hσ

H/Hν G/Gν

Φ

φ

.

Proof. The map Φ is defined by Φ : [v, h] 7→ [v, (1, h)]. This is well-defined and smooth. It is directly
checked that this map is injective. To see surjectivity, notice that any element [v, (n, h)] ∈ G ×Gν Hσ
has a representative of the form (v′, (1, h)) for some appropriate v′. Next, φ : H/Hν → G/Gν is defined
by [h] 7→ [(1, h)], which is also well-defined, smooth and bijective. Since it is H-equivariant and H acts
transitively on H/Hν , it has constant rank and is thus a diffeomorphism. The diagram above commutes
and Φ is H-equivariant and linear on fibers, so Φ is a morphism of homogeneous Hilbert bundles for H. An
application of proposition 9 shows that it is a diffeomorphism, so we are done

Corollary 81. Consider the same setting as the previous lemma.

indGGν (σ)
∣∣∣
H

∼= indHHν (σ|Hν ).
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4.4.1 Regularity of the action of Spin(r, s)0 ×K on V ⊕ (k⊗ V ).

The main goal of this thesis is to study the representation theory of the group G = N o H
d
= R4 ⊕ (k ⊗

R4) o SL(2,C) ×K for some compact semisimple Lie group K with real lie algebra k. The strategy to do
so is to apply the theory of the Mackey machine, so that every strongly continuous unitary representation of
the group G is obtained by inducing a suitable representation of a Little group up to G. Now, the Mackey
machine only applies if the orbit space of the action of SL(2,C) × K on the dual space N̂ is countably
separated. The aim of this section is to address this matter and justify the use of the Mackey machine in
chapter 5 and chapter 6.

Now, in chapter 6 we will be concerned with a more general family of groups, namely groups of the form

N oH = V ⊕ (k⊗ V ) o Spin(r, s)0 ×K, (4.7)

where (V, q) is a real quadratic space of signature (r, s) and the action of H on V is given on simple tensors
by

(w, k) · v1 ⊕ (X ⊗ v2) = φ(w)v1 ⊕ (AdkX ⊗ φ(w)v2), (4.8)

where φ : Spin(r, s)0 → SO(r, s)0 denotes the covering homomorphism. Thus, we consider groups of this
more general form (4.7). Notice that the non-degenerate bilinear form q is Spin(r, s)0-invariant and because
K is semisimple and compact there exists a Ad-invariant inner product κ on k. It follows that the bilinear
form β = q ⊕ (κ ⊗ q) on N is H-invariant and non-degenerate. Thus, we may use it to identify N̂ ∼= N via
the pairing

〈v1 ⊕ t1, v2 ⊕ t2〉 = eiβ(v1⊕t1,v2⊕t2)

so that under this identification, the action of H on N̂ transfers to the action (4.8) on N . We aim to apply
lemma 71 to the action (4.8) of H on N .

Observe that Spin(r, s)0 acts on V via SO(r, s)0. Now, SO(r, s) is a linear algebraic group defined over R
and V is vacuously an affine variety defined over R. Moreover, it is clear that the defining action of SO(r, s)
on V is also a morphism of algebraic varieties, meaning that it is defined by restriction of a polynomial map.
Thus, lemma 71 yields that the action of SO(r, s) on V is countably separated. However, we are interested
in the action of the connected component of the identity SO(r, s)0. It is not clear that this subgroup is also
a subvariety of SO(r, s) so that lemma 71 does not directly yield the required result. Instead we make use of
the following lemma.

Lemma 82. Suppose that G = H oZ2 is a Lie group that acts smoothly on some vector space V . Let v ∈ V
and write OHv and OGv for the H- and G-orbit of v, respectively. Endow both OHv and OGv with the subspace
topology, as subspaces of V . If the orbit map G/Gv → OGv is a homeomorphism, then also the orbit map
H/Hv → OHv is a homeomorphism.

Proof. Define the map ι : H/Hv → G/Gv by ι([h]) = [h, 1]. Notice that this map is smooth and well-defined.
To proof the claim, it suffices to show that ι is actually an embedding. We distinguish the two possible cases.

1. Suppose first that Gv = Hv o Z2. Then G/Gv = (H o Z2)/(Hv o Z2) ∼= H/Hv, where the latter
diffeomorphism is given by [h, 1] 7→ [h]. Indeed, notice that any element in (H oZ2)/(Hv oZ2) admits
a unique representation of the form [h, 1]. Moreover this map is of constant rank by H-equivariance
and since it is also bijective, it is a diffeomorphism. It follows that ι : H/Hv → G/Gv ∼= H/Hv is just
the identity, which is clearly an diffeomorphism and in particular an embedding.

2. Suppose instead that Gv = Hv ×{1}. In this case, G/Gv = (H oZ2)/(Hv o {1}) ∼= H/Hv ×Z2, where
the latter diffeomorphism is given by A : [h, n] 7→ ([h], n). Indeed, this map is well-defined and bijective
because Hv acts trivially on Z2. Now, let qHv : H → H/Hv and q1 : H o Z2 → (H o Z2)/(Hv × {1})
be the quotient maps. Define further q2 = qHv × id : H oZ2 → H/Hv ×Z2. Notice that A is a smooth
map making the diagram below commute:

H o Z2

(H o Z2)/(Hv × {1}) H/Hv × Z2

q1 q2

A

. (4.9)

Since both q1 and q2 are smooth submersions by corollary 18, it follows that both A and A−1 are
smooth. We conclude that ι : H/Hv → G/Gv ∼= H/Hv × Z2 is given by [h] 7→ ([h], 1), which is clearly
an embedding.
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Corollary 83. Consider the setting of lemma 82 and consider the action of Spin(r, s)0 on V̂ given by

〈v, x · ξ〉 d= 〈x−1 · v, ξ〉. If SO(r, s) ∼= SO(r, s)0 oZ2, then the orbit space of the action of Spin(r, s)0 on V̂ is
countably separated.

Proof. Notice first that we may identify V̂ ∼= V using the Spin(r, s)-invariant quadratic form q via the pairing

〈v, w〉 = eiq(v,w).

Under this identification, the action of Spin(r, s)0 on V̂ transfers to the original action on V . By lemma 71,
the orbit space of the action of SO(r, s) on V is countably separated, which by lemma 70 is equivalent to
the statement that every orbit map of SO(r, s) is a homeomorphism. Then lemma 82 implies that also every
orbit map of SO(r, s)0 is a homeomorphism, which completes the proof, again by lemma 70.

Remark.

— It is known [Kna02, p. 73, proposition 1.124] that for every r, s > 0 the group SO(r, s) has two
connected components. The question therefore remains for which r, s > 0 the following exact sequence
splits:

1→ SO(r, s)0 → SO(r, s)→ Z2 → 1.

— In the case we are mostly interested in, namely that of (r, s) = (1, 3), this sequence is known to split
[Var07, p. 333, theorem 9.1].

Lemma 84. Suppose that K is a linear algebraic Lie group with real Lie algebra k. Then the adjoint action
of its Lie algebra k is an algebraic action defined over R.

Proof. Notice that the Lie algebra k is vacuously an algebraic variety over R. Since K is a linear algebraic
group defined over R, the adjoint action on its Lie algebra consists of multiplication and inversion in GL(Rn),
where n = dim k. Since GL(Rn) is an algebraic group, we are done.

Remark. Observe that in particular SU(N) is a linear algebraic group defined over R.

Proposition 85. Suppose that K is a linear algebraic Lie group defined over R with real Lie algebra k and
assume that SO(r, s) ∼= SO(r, s)0 oZ2. Then the orbit space of the action of Spin(r, s)0×K on Rd⊕ (k⊗Rd)
is countably separated.

Proof. Since K is a linear algebraic group defined over R, also Spin(r, s) × K is a linear algebraic group
defined over R. Now, R4 ⊕ (k ⊗ Rd) is vacuously an algebraic variety defined over R. Since both the action
of Spin(r, s) on Rd and of K on k are algebraic actions defined over R, the same holds for the action of
Spin(r, s) × K on Rd ⊗ k. Indeed, choosing a basis for Rd × k reveals that the components of this action
are given by the product of the corresponding components of the separate actions of Spin(r, s) on Rd and
K on k. Therefore, lemma 71 implies that the orbit space under the action of Spin(r, s) × K is countably
separated. Furthermore, because Spin(r, s) = Spin(r, s)0 o Z2, also the orbit space under the action of
Spin(r, s)0 ×K is countably separated. Indeed, this follows by an application of lemma 82 after noting that
(Spin(r, s)0 o Z2)×K ∼= (Spin(r, s)0 ×K) o Z2, where Z2 acts trivially on K.

Corollary 86. Suppose that K is a linear algebraic Lie group defined over R with real Lie algebra k. The
orbit space of the action of SL(2,C)×K on R4 ⊕ (k⊗ R4) is countably separated.
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4.5 Projective unitary representations of the Poincaré group

In this section, the Mackey machine is applied to the Poincaré group, leading to a full classification of
its continuous projective unitary representations in terms of the representation theory of the various Little
groups. The results of this section are based in [Fol95, p. 190]. The Poincaré group is defined by

P = R4 o SO(1, 3)0 (4.10)

With the group law (b1, T1) · (b2, T2) = (b1 + T1b2, T1T2). Now, Bargmann’s theorem[Bar54] implies that
any continuous projective unitary representation of P lifts to a strongly continuous unitary representation
of its universal covering group P̃. The study of the projective unitary representations of the Poincaré group
therefore leads us to study the strongly continuous irreducible unitary representations of its universal covering
group, which is P̃ = R4oSL(2,C). By corollary 83, we know that the orbit space of the action of SL(2,C) on

R̂4 is countably separated, so that the use of the Mackey machine is justified. In the following, we determine
the orbits and corresponding stabilizers of this action. Recall that any irreducible induced representation of
P̃ corresponds to a spectral measure that is supported on one of these orbits. Moreover, if the representation
of the corresponding stabilizers is finite dimensional, then the induced representation is constructed out of
sections of homogeneous Hilbert bundles over the respective orbit.

Let SL(2,C)
φ−→ SO(1, 3)0 be the covering homomorphism constructed in equation (3.3). Let η be the

Minkowski form and use it to identify R̂4 with R4 via the pairing

〈x, p〉 = eiη(x,p)

By SL(2,C)-invariance of the Minkowski form η, the action of SL(2,C) on R̂4 transfers under this identifi-
cation to the action on R4 given by w · p = φ(w)p.

Let us first determine the of the action of SL(2,C) on R4 explicitly. Notice that for every λ ∈ R, the level
sets

Mλ =
{
p ∈ R̂4 : η(p, p) = λ

}
are invariant under the action of SL(2,C). For s ∈ R4 write s =

(
t
x

)
with t ∈ R and x ∈ R3. Consider the

case when λ > 0. Notice that
s ∈Mλ ⇐⇒ t2 − |x|2 = λ

Mλ is therefore a hyperboloid of two sheets O±λ , where

O±λ =

{(
t
x

)
∈Mλ : ±t > 0

}
.

Notice that these sheets are the connected components of Mλ. Since SL(2,C) is connected any orbit must
also be connected and it follows that each of the sheets O±λ must be invariant under the action of SL(2,C).

Lemma 87. For λ ≥ 0, each of the sheets O±λ is an orbit of SL(2,C). For λ < 0 the level set Mλ is an
orbit.

Proof. We need to show that SL(2,C) acts transitively on each of these sheets. We consider first O+
λ . To

prove the claim, we will show that for every point s ∈ O+
λ , there exists As ∈ SO(1, 3)0 such that As maps

the point eλ = (
√
λ, 0, 0, 0) to s. In that case, if s, z ∈ O+

λ , then z = AzA
−1
s s and therefore the action of P

on O+
λ is transitive.

Notice first that by rescaling s if necessary, we may assume that λ = 1. Moreover, because the action of
SO(3) ⊆ SO(1, 3)0 on S2 is transitive, we may further assume that x = (x0, 0, 0), so t2 − x2

0 = 1. Let γ ∈ R
be such that t = cosh(γ) and x0 = sinh(γ). Define

Aγ =


cosh(γ) sinh(γ) 0 0
sinh(γ) cosh(γ) 0 0

0 0 1 0
0 0 0 1


Then Aγe1 = s. Moreover, notice that Aγ preserves η and [0, γ]→ O(1, 3), t 7→ At defines a continuous path
connecting the identity and Aγ . Thus Aγ ∈ SO(1, 3)0 and completing the proof of the claim for O+

λ .
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Next, observe thatAγ maps the point−e1 to (− cosh(γ),− sinh(γ), 0, 0) ∈ O−1 and the point e2 to (sinh(γ), cosh(γ), 0, 0) ∈
M−1, so a similar arguments also prove the transitivity of the action on O−λ for λ > 0 and on Mλ for λ < 0.

Finally, consider λ = 0. Since the origin is an invariant element, {0} is a distinguished orbit. Moreover the
subsets O±0 are once again invariant. Observe that Aγ maps ±(e1 + e2) to ±(cosh(γ) + sinh(γ), sinh(γ) +
cosh(γ)) ∈ O±0 , so once more a similar argument also proves transitivity of the action on O±0 .

We conclude that the orbits are Mλ for λ < 0, O±λ for λ ≥ 0 and {0}. They are depicted in figure 4.1.

Figure 4.1: Two-dimensional representation of the orbits of the action of P̃ on R̂4.

Next, let us determine the stabilizers Hν of the action of SL(2,C) on R4 corresponding to the various orbits
Oν . Notice for any point ν ∈ R4, its stabilizer is simply the pre-image under φ of its stabilizer with respect
to the SO(1, 3)0-action.

— First, consider Mλ for λ < 0. Take a = (0,
√
|λ|, 0, 0). Choosing a basis for R4 that containing a, one

finds that the stabilizer in SO(1, 3)0 is given by SO(1, 2)0 ↪→ SO(1, 3)0. From lemma 44 we know that
Ha = φ−1(SO(1, 2)0) = SL(2,R).

— Next, consider O±λ with λ > 0. Choose the point b = (±λ 1
2 , 0, 0, 0). Then once again, after choosing an

appropriate basis one finds that the stabilizer of b in SO(1, 3)0 is SO(3) ↪→ SO(1, 3)0. By corollary 48,
it follows that Hb = SU(2).

— The origin is an invariant element which means that H0 = SL(2,C).

— Finally, consider the light-like orbits O±0 . Consider the points α± = (±1, 0, 0,±1) ∈ O±0 and let

F± = SL(2,C)α± be the corresponding stabilizers. Let A : R4 → C, x 7→
∑3
i=0 xiσi be as in the

construction of the covering homomorphism φ. Notice that A(α±) = ±2

(
1 0
0 0

)
and therefore

w ∈ F± ⇐⇒ φ(w)α± = α± ⇐⇒ w

(
1 0
0 0

)
w∗ =

(
1 0
0 0

)
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A computation shows that

F± = E
d
=

{(
z a
0 z−1

)
: z, a ∈ C, |z| = 1

}
.

Write mz,a =

(
z a
0 z−1

)
. Notice that mz,1 ·m1,a ·m−1

z,1 = m1,z2a. Thus if we identify z ∈ U(1) with

mz,0 and a ∈ C with m1,a, we find that F± ∼= C oσ U(1) where C is considered as an Abelian group
under addition and σ(z)a = z2a. Now, let θ : U(1) → SO(2) be an isomorphism. Then the mapping
(a, z) 7→ (a, θ(z2)) is a surjective homomorphism from C oσ U(1) to R2 o SO(2) with kernel {±1}.
Therefore, we find that

φ(E) ∼= E/{±I} ∼= Coσ U(1)/{±I} ∼= R2 o SO(2) =: E(2).

We conclude that the irreducible strongly continuous unitary representations of P̃ are precisely those of
SL(2,R), SU(2), SL(2,C) and E induced up to P̃ according to the theory of the Mackey machine. Not all
of these are currently physically relevant. Wigner related the representations induced from SU(2) and E to
certain wave equations, see also section 8.3 for a detailed exhibition.
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Chapter 5

Positive Energy Representations

This chapter finally begins addressing the main goal of this thesis; to obtain an understanding of the strongly
continuous unitary representations of the group R4 ⊕ (k ⊗ R4) o SL(2,C) × K that are of positive energy,
in a specific sense. Before diving into the details, let us recall briefly the motivation leading up to this problem.

The main historical motivation lies in the attempt of physicists and mathematicians to formulate theories
of particle physics in a mathematically rigorous way. Such theories should in particular be compatible with
both the theory of quantum mechanics and that of special relativity and the connection between these two
theories is mathematically found in representation theory.

Recall that the state space of a quantum system is a projective Hilbert space. If it is known that such
a quantum system exhibits an invariance with respect to some connected symmetry group, then Wigner’s
theorem [Wig39] states that there must exist a projective unitary representations of this group on the state
space of the quantum system.

In particular, there must be a projective unitary representation of the group R4oSO(1, 3)0 in the state space
of any quantum system that is consistent with the theory of special relativity. Moreover, various fundamental
interactions are known to exhibit further symmetries. In particular isospin exhibits SU(2) symmetry and
flavour is subject to SU(3) symmetry. These interactions are internal and the corresponding symmetries are
local, meaning that they may vary (smoothly) at different positions in space-time. On the other hand, the
symmetry of R4 o SL(2,C) imposed by special relativity is global. A symmetry group capturing both these
local and global symmetries can mathematically be described in terms if fiber bundles.

Explicitly, let K be a simply connected semisimple compact Lie group with real Lie algebra k. If P → R4 is a
principal K-bundle, then one considers the associated group bundle K = P ×Ad K over R4 with typical fiber
K. Now, given the action of R4 oSO(1, 3)0 on R4 and a lift of this action to K, one considers the symmetry
group G = Γc(K)o(R4oSO(1, 3)0), where Γc(K) denotes the group compactly supported sections of K → R4.

The representation theory of such groups is in general not well understood, but a simplification is obtained
if the Minkowski space R4 is be replaced by its conformal compactification Q [FLV07, section 2]. With this
simplification, a recent result[JN] by B. Janssens and K.H. Neeb has reduced the study of a certain class of
projective representations of G satisfying a so-called positive energy condition to a much simpler problem.
The precise result is given below.

Theorem 88. There exists some H in a maximal Abelian subalgebra t of k such that there is a bijective
correspondence between smooth projective positive energy representations of Γ(Q,K)0 o (R4 oSO(1, 3)0) and
strongly continuous unitary representations of

V oH
d
= R4 ⊕ (k⊗ R4) o SL(2,C)×K,

that are of positive energy with respect to the cone

C ′ = {v ⊕ (H ⊗ v) : v0 ≥ 0 and η(v, v) ≥ 0} ⊂ R4 ⊕ (k⊗ R4) (5.1)

and where the action of SL(2,C)×K on R4 ⊕ (k⊗ R4) is given on simple tensors by

(w, k) · v1 ⊕ (X ⊗ v2) = φ(w)v1 ⊕ (Adk(X)⊗ φ(w)v2).
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Here φ : SL(2,C)→ SO(1, 3)0 denotes the covering homomorphism.

This chapter is devoted to an understanding of the strongly continuous unitary representations of the Lie
group V oH that are of positive energy at the cone (5.1).

This amounts firstly to an understanding of the positive energy condition, which is reformulated in a way
that allows for a geometric interpretation. This leads in to a detailed understanding of the condition.

Secondly, as the group V o H is of a form compatible with the Mackey machine, the strongly continuous
unitary representations of V o H are determined by the representation theory of the various Little groups
Hν . As such, the second half of the chapter is concerned with the classification of the various stabilizers Hν

corresponding to representations of positive energy for the special case that K = SU(2). A full classification
of these stabilizers is obtained.

5.1 The positive energy condition

In the following, the the notion of a representation of positive energy is introduced. After stating the definition
given in [JN] its meaning and implications are examined in detail, yielding a further understanding of this
condition.

Definition 89. Suppose G = N oα H where N is Abelian. Let ρ : G → U(H) be a strongly continuous
unitary representation. Then

1. The representation ρ is said to be of positive energy at Z ∈ Lie(N) if the spectrum of the infinitesimal

generator −i dρ|Lie(N) (Z)
d
= −i d

dt

∣∣
t=0

ρ(exp(tZ), 1) is bounded from below.

2. The positive energy cone C ⊆ Lie(N) associated to ρ is the cone of elements in Lie(N) at which ρ
is of positive energy.

Remark.

1. By the theory of the Mackey machine we know that if the orbit space of N̂ under the action of H
is countably separated, then for every irreducible unitary representation ρ there exists some ν ∈ N̂
such that the spectral measure associated to ρ is supported on the orbit Oν and moreover, there
is a representation of its stabilizer Gν such that ρ ∼= indGGν (σ). The Hilbert space Fσ on which
this space acts is defined according (4.3). Now, the Abelian part acts as a multiplication operator
ρ(n)f(x) = 〈n, x · ν〉f(x) for f ∈ Fσ. Recall that ν : N → U(1) is a Lie group homomorphism. Then
ν∗ : Lie(N)→ iR, and

−i dρ|Lie(N) (Z)f(x) = −i(x · ν)∗(Z)f(x), Z ∈ Lie(N), f ∈ Fσ, x ∈ G.

2. If further N is a vector space equipped with a non-degenerate symmetric bilinear form β that is H-
invariant, we can identify N̂ ∼= N via the pairing 〈v, w〉 = eiβ(v,w). Under this identification, the action

of H on N̂ ∼= N becomes h · n = α(h)n. Notice also that Lie(N) ∼= N . We have

−i(x · ν)∗(n)f(x) = −i d
dt
〈tn, x · ν〉f(x) = −i d

dt
eitβ(n,x·ν)f(x) = β(n, x · ν)f(x).

Therefore,
Spec(−i dρ|N (n)) = β(n,Oν).

In particular, we see that whether or not a representation is of positive energy at the point n only
depends on the orbit Oν on which the spectral measure corresponding to ρ has its support.

In view of the second point in the previous remark, we make the following definition.

Definition 90. Suppose G = N oα H where N is a real vector space equipped with a non-degenerate
symmetric bilinear form that is H-invariant. Assume further that the orbit space of N is countably separated.
We say that the orbit Oν ⊂ N is of positive energy at n ∈ N if β(n,Oν) is bounded from below. A point
ν ∈ N is said to be of positive energy at n ∈ N if Oν is of positive energy at n ∈ N .
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Proposition 91. Consider G = R4 oSL(2,C), where R4 is equipped with the Minkowski form η. The orbits
in R4 that are positive at all elements in the open cone

C = {p ∈ R4 : p0 > 0 and η(p, p) > 0} (5.2)

are precisely the orbits that lie within the closure C of this cone.

Proof. Notice first that η(p,Oν) = η(φ(w)p, φ(w)Oν) = η(φ(w)p,Oν) for p ∈ C, w ∈ SL(2,C) and ν ∈ R4.
Therefore, η(p,Oν) is bounded from below if and only if η(φ(w)p,Oν) is bounded from below. We know from
section 4.5 that any point in C is in the orbit of me0 for some m > 0, so by the previous observation an orbit
Oν is of positive energy at all points in C if and only if η(e0,Oν) is bounded from below. As such, consider
the linear functional η(e0,−). The kernel of this map is Span{e1, e2, e3}. Moreover, η(e0, e0) = 1 is positive
and therefore η(p0,Oν) is bounded from below if and only if Pr0(Oν) is bounded from below, where Pr0 is
the projection onto the first coordinate. The various orbits have been determined explicitly in section 4.5
and the conclusion follows.

5.1.1 The positive energy condition for R4 ⊕ (k⊗ R4)o SL(2,C)×K

Let us examine in detail what it means for a strongly continuous unitary representation of the group
R4 ⊕ (k⊗ R4) o SL(2,C)×K to be of positive energy at the cone (5.1).

Let K be a simply connected compact Lie group with semisimple real Lie algebra k. Consider the group
R4 ⊕ (k⊗ R4) o SL(2,C)×K, where SL(2,C)×K acts on R4 ⊕ (k⊗ R4) according to

(w, k) · (v1 ⊕ (X ⊗ v2))
d
= φ(w)v1 ⊕ (AdkX ⊗ φ(w)v2).

Here, SL(2,C)
φ−→ SO(1, 3)0 denotes the covering homomorphism as in corollary 43. Assume further that

the corresponding orbit space is countably separated, so that the theory of the Mackey machine applies. In
view of corollary 86 this holds in particular if K = SU(N).

Now, we have already observed that in this case, the positive energy requirement is really a condition on the
orbits on which the projection-valued measure corresponding to some irreducible representation is supported.
Thus, we will be concerned with the orbits of positive energy, in the sense of definition 90.

Obtaining an equivalent formulation

First, an equivalent formulation is determined for an orbit to be of positive energy at the cone C ′, which
gives this definition a more geometrical and intuitive interpretation. Eventually, this leads to the conclusion
that for points ν = p+A with p ∈ ∂C the condition forces A to be a rank-one operator of the form η(p, ·)X
for some X ∈ k. On the other hand if p is in the interior p ∈ C0, then the condition virtually imposes no
restriction on the possible stabilizers corresponding to orbits of positive energy.

Identify R4∗ ∼= R4 using η, k∗ ∼= k using an Ad-invariant positive definite inner product κ on k, which exists
because K is compact so that the Killing form is negative definite on t. Furthermore, identify k ⊗ R4 ∼=
R4∗ ⊗ k ∼= Hom(R4, k) according to equation (8.10). These identifications are discussed in more detail in
section 8.4. In particular, under these identifications the action of SL(2,C)×K transfers on Hom(R4, k) to
the action given by

(w, k) ·A = Adk ◦A ◦ φ(w)−1, (w, k) ∈ SL(2,C)×K, A ∈ Hom(R4, k).

Thus, we are interested in the strongly continuous representations of the group

G = V oH = R4 ⊕Hom(R4, k) o SL(2,C)×K (5.3)

Denote by (−)? : Hom(R4, k) → Hom(k,R4) the transpose obtained via the identifications R4∗ ∼= R4 and
k∗ ∼= k. Then according to lemma 163, the bilinear on Hom(R4, k) corresponding under these identifications
to the bilinear form η⊗κ on R4⊗k is given by β(A,B) = tr(A?B) = tr(B?A). Finally, the cone (5.1) becomes

C ′′ = { v ⊕ η(·, v)H : v ∈ C } . (5.4)

Lemma 92. Let β be the bilinear form on Hom(R4, k) given by β(A,B) = tr(A?B). Fix v ∈ C and define
Mv = η(·, v)H ∈ Hom(R4, k) for some non-zero H ∈ t. Then for any A ∈ Hom(R4, k), we have

β(Mv, A) = κ(Av,H).
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Proof. By lemma 160 we know that M?
v is the unique linear map k→ R4 satisfying κ(Mvp,X) = η(p,M?

vX)
for all p ∈ R4 and X ∈ k. We compute that

κ(Mvp,X) = η(p, v)κ(H,X) = η(p, κ(X,H)v).

Therefore M?
v = κ(·, H)v and hence M?

vAp = κ(Ap,H)v. Since η(v, v) 6= 0 and η is symmetric, we may extend
v to a η-orthogonal basis of R4 and using this basis one finds that β(Mv, A) = tr(M?

vA) = κ(Av,H).

Lemma 93. Let ν = p + A ∈ R4 ⊕ Hom(R4, k), H ∈ t be non-zero and let v ∈ C be arbitrary. Define
Mv = η(·, v)H. Then Oν is of positive energy at v ⊕Mv if and only if η(v,Op+A?X) is bounded from below
for every X in the adjoint orbit of H, where Op+A?X is the orbit of p + A?X in R4 under the action of
SL(2,C).

Proof. By definition, the orbit Oν is of positive energy at v ⊕Mv if (η ⊕ β)(v ⊕Mv,Oν) is bounded from
below. By the previous lemma 92, this is equivalent to

∃Kv ≥ 0 : η(v, φ(w)p) + κ(AdkAφ(w)−1v,H) ≥ −Kv ∀w ∈ SL(2,C), k ∈ K.

Write OH for the adjoint orbit of H in k. Fix w ∈ SL(2,C). Then we have

η(v, φ(w)p) + κ(Aφ(w)−1v,OH)

= η(v, φ(w)p) + η(φ(w)−1v,A?OH)

= η(v, φ(w)p) + η(v, φ(w)A?OH)

= η(v, φ(w)(p+A?OH)).

Therefore, p+A is of positive energy at v⊕Mv if and only if η(v,Op+A?X) is bounded from below for every
X ∈ OH .

Corollary 94. Let ν = p+A ∈ R4 ⊕Hom(R4, k) and let H ∈ t be non-zero. Then Oν ⊂ R4 ⊕Hom(R4, k) is
of positive energy at all points in the cone (5.4) if and only if p+A?OH ⊆ C, where OH denotes the adjoint
orbit of H in k.

Proof. For fixed X ∈ OH , we know from proposition 91 that η(v,Op+A?X) is bounded from below at all
points v ∈ C if and only if p + A?X ∈ C. Therefore, ν satisfies the positive energy condition at all points
v ⊕Mv ∈ C ′′ if and only if p+A?OH ⊆ C.

Remark.

— It holds that (AdkAφ(w)−1)? = φ(w)A?Ad−1
k , see also section 8.4. Indeed, using lemma 160 we know

that A? is the unique linear map satisfying κ(Ap,X) = η(p,A?X) for every p ∈ R4 and X ∈ k. Thus,
using the invariance of η and κ we compute that

κ(AdkAφ(w)−1p,X) = κ(Aφ(w)−1p,Ad−1
k X) = η(φ(w)−1p,A?Ad−1

k X) = η(p, φ(w)A?Ad−1
k X).

The condition p+A?OH ⊆ C can be visualized quite explicitly, as is shown in figure 5.1. The value of A?H
can be interpreted as a perturbation of p and the perturbation p + A?H is not allowed to go outside the
closed light-cone. Notice that in these images all A?OH has the shape of an ellipsoid, which is not the case
in general.
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Figure 5.1: Two-dimensional representation of various orbits of p + A?H that satisfy the positive energy
condition at the cone (5.4).

Implications of the positive energy condition

Let us proceed with some further implications of the positive energy requirement. Notice first that the
following are equivalent:

p+A?OH ⊆ C,
⇐⇒ A?OH ⊆ C − p,
⇐⇒ A? convOH ⊆ C − p,

where convS denotes the convex hull of S.

The Weyl group of the root system for t may be defined as the quotient W = N(t)/Z(t), where

Z(t) = { k ∈ K : Adk(H) = H, ∀H ∈ t } ,
N(t) = { k ∈ K : Adk(H) ⊂ t, ∀H ∈ t } .

The Weyl group acts on t via [k] ·X = Adk(X). Moreover, the roots of t in kC are elements of it∗. Because K
is compact we may identify it∗ ∼= it ∼= t using κ. Thus, we will consider the roots of t as elements in t using
these identifications. The fact will also be needed that if k is simple, then the Weyl-group acts irreducibly on
t, see also[Hum72, p. 53, 73]. In particular, this implies that the roots of t span t.

Lemma 95. Assume k is simple and let H ∈ t be arbitrary. Then the center of mass of the Weyl-orbit
OWH ⊂ t is zero. That is,

1

|OWH |
∑

Z∈OWH

Z = 0.

Proof. Let Z0 be the center of mass. Since every element of the Weyl-group maps OWH bijectively onto itself,
Z0 is an W -invariant element. In particular, for every root Hα the reflection sα across the hyper plane
kerκ(Hα, ·) leaves Z0 invariant. Then Z0 ⊥ Hα for every root Hα. Since the roots span t, this implies that
Z0 = 0.

Corollary 96. Assume that k is simple. The center of mass of any adjoint orbit OH ⊂ k is zero. That is,∫
K

Adk(H)dµ(k) = 0,

where µ is the normalized Haar-measure on K.
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Proof. Using the translation-invariance of the Haar-measure, we have∫
K

AdkHdµ(k) =
1

|OWH |
∑

Z∈OWH

∫
K

AdkZdµ(k) =
1

|OWH |

∫
K

Adk
∑

Z∈OWH

Zdµ(k) = 0.

As a consequence, we obtain the following necessary condition for a point p+A ∈ R4 ⊕Hom(R4, k) to be of
positive energy at the cone (5.4).

Corollary 97. Assume k is simple. If p+A ∈ R4⊕Hom(R4, k) is of positive energy at all points v⊕Mv ∈ C ′′,
then p ∈ C.

Proof. The center of mass of any adjoint orbit OH is zero and therefore we must have 0 ∈ convOH . From
corollary 94 we know that p + A is of positive energy at the cone ∈ C ′′ if and only if A? convOH ⊆ C − p.
Thus in particular we must have 0 ∈ C − p, or equivalently p ∈ C.

Lemma 98. Assume k is simple and let H ∈ t. Then either H = 0 or the interior of convOH contains 0.

Proof. Notice first 0 ∈ convOH because it is the center of mass of convOH , according to corollary 96.

Assume that H 6= 0. Observe that Span OWH is W -invariant. Since the Weyl group acts irreducibly
on t, it follows that Span OWH = t. Because K is compact, every adjoint orbit intersects t in a Weyl-
orbit, see also[ABH+80, p. 74]. This implies that Span OH = k. Indeed, any X ∈ k may be written as
X =

∑
Z∈OWH

cZAdkZ ∈ Span OH for some k ∈ K.

It is well-known that a bounded closed convex set is the intersection of all the closed half-spaces containing
it [HUL01, p. 56]. It follows that if 0 is on the boundary of convOH , then there exists a non-zero linear
functional φ such that φ(convOH) ≥ 0. Let V = (kerφ)⊥ and notice that V has codimension one. Let PV be
the κ-orthogonal projection onto V and let E ∈ V be the unique element satisfying φ(E) > 0 and κ(E,E) = 1.
Notice that for any X ∈ OH , it holds that φ(X) = κ(X,E)φ(E). Because φ(convOH) ≥ 0, it follows that
for any X ∈ OH we have κ(X,E) ≥ 0. Observe further that Span PV OH = PV Span OH = PV k = V
and therefore there exists an element k0 ∈ K such that κ(Adk0 , E) > 0. By continuity, there is an open
neighborhood U ⊂ K of k0 such that for all k ∈ U it holds that κ(AdkH,E) > 0. Then we have∫

K

κ(AdkH,E)dµ(k) ≥
∫
U

κ(AdkH,E)dµ(k) > 0.

Extending E to a basis of k, this implies that the center of mass of OH is nonzero. In view of corollary 96,
we are done.

Corollary 99. Suppose that k is semisimple and that H ∈ t is not contained in any proper ideal of k. Then
the interior of convH contains 0.

Proof. Suppose k =
⊕

i ki decomposes k into finitely many simple subalgebras and K =
∏
iKi, where Ki is the

unique simply connected Lie group integrating k. Similarly, let t =
⊕
ti be the corresponding decomposition

of t into maximal Abelian Lie subalgebras of ki. By assumption, the projection Hi of H onto ti is non-zero
for every i. Now lemma 98 applies to each of the adjoint orbits of Hi of the action of Ki on ki, so that 0 is
contained in the interior convex hull of every adjoint orbit OHi . This implies the result.

Remark.

— Observe that we may assume without loss of generality that each H is not contained in any proper
ideal of k by considering the smallest ideal of k containing H along with its unique integrating simply
connected Lie group. We make this assumption from now on.

Lemma 100. Let p ∈ ∂C be non-zero and let V = p⊥ be the orthogonal complement of Span{p} with respect
to the standard inner product on R4. Then for any v ∈ V , at most one of p+ v and p− v is contained in C.

Proof. Write p = (pt, px) for pt ∈ R and px ∈ R3. Let p′ be the element p′ = (pt,−px). Observe that

η(p, p′) = ‖p‖2,
η(p′, p′) = 0,

〈p, p′〉 = η(p, p) = 0.

(5.5)
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Define A = Span{p′} ⊂ V and let B = {p, p′}⊥ be the orthogonal complement of A in V . We obtain an
orthogonal decomposition V = A ⊕ B such that for any a ∈ A, b ∈ B we have η(a, a) = 0 and η(p, b) =
η(a, b) = 0. This latter observation holds in view of (5.5) because the codimension of both ker η(p, ·) and
ker η(p′, ·) is one. As a consequence, the equations

η(p, b) = ptbt − 〈px, vx〉 = 0,

〈p, b〉 = ptbt + 〈px, vx〉 = 0,

imply that ptbt = 0 and therefore bt = 0 for any b ∈ B. This means that η(b, b) = −‖bx‖2 < 0. Finally, fix
v = a+ b ∈ A⊕B. Then we compute

η(p+ (a+ b), p+ (a+ b)) = 2η(p, a+ b) + η(a+ b, a+ b) = 2η(p, a) + η(b, b) = 2η(p, a)− ‖bx‖2

η(p− (a+ b), p+ (a+ b)) = −2η(p, a+ b) + η(a+ b, a+ b) = −2η(p, a) + η(b, b) = −2η(p, a)− ‖bx‖2

Thus at least one of these two must be negative, which completes the proof.

Lemma 101. Suppose that p ∈ ∂C. If p + A is of positive energy at all points v ⊕Mv ∈ C ′′, then A is in
the orbit of η(p, ·)X for some X ∈ k.

Proof. We have seen 0 is in the interior of convOH so convOH contains an open ball around the origin. This
ball is mapped by A? to some ellipsoid E centered at the origin. (This can be seen using e.g. the singular
value decomposition.) Let P⊥ be the orthogonal projection onto Span{p}⊥. Suppose v ∈ E. Notice that
also −v ∈ E. If P⊥v 6= 0, then by lemma 100 either p + P⊥v or p − P⊥v is not contained in C. It follows
that ImA? ⊆ Span{p} is necessary. This means that A? is a rank-one operator so there exists some X ∈ k
such that A? = κ(X, ·)p and A = η(p, ·)X is necessary.

The condition above is not sufficient. Indeed, if A = η(p, ·)HA for some HA ∈ t, then A? = κ(HA, ·)p so
A?OH = κ(HA,OH)p. Therefore,

A?OH ⊆ C − p ⇐⇒ κ(HA,OH) ≥ −1. (5.6)

Thus, let us proceed to obtain a necessary and sufficient condition for points ν = p+ A with p ∈ ∂C on the
boundary of the light cone.

Definition 102. For any X ∈ k, let kX = {Y ∈ k : [X,Y ] = 0} be the centralizer of X and let kX = [X, k]
be the image of ad(X).

Notice that kX and kX fit in an exact sequence:

0 −→ kX −→ k
ad(X)−−−−→ kX −→ 0.

We need the following few lemmas, which are standard results in the theory of compact Lie algebras. The
proofs are taken from [ABH+80].

Lemma 103. For any X ∈ k, the spaces kX and kX are perpendicular complements with respect to any
invariant inner product 〈·, ·〉.

Proof. Notice that by definition of an invariant inner product, we have

〈[X,Z], k〉 = −〈Z, [X, k]〉,

The inclusion (kX)⊥ ⊆ kX follows immediately. Since ker ad(X) = kX , the rank nullity theorem applied to
ad(X) states that dim(kX) + dim(kX) = dim(k). It follows that dim((kX)⊥) = dim(kX). Therefore, we must
have (kX)⊥ = kX .

Lemma 104. The map f : OH → R, Z 7→ κ(Z,HA) attains its minimum at the centralizer kHA .

Proof. Since K is compact, so is the adjoint orbit OH . It follows by continuity that f attains its minimum
at, say, Z0. Let X ∈ k be arbitrary. Then the function t 7→ f(Ad(exptX(Z0))) has a minimum at t = 0, hence

0 =
d

dt

∣∣∣∣
t=0

f
(
et ad(X)(Z0)

)
= κ

(
d

dt

∣∣∣∣
t=0

et ad(X)(Z0), HA

)
= κ ([X,Z0], HA) .

Therefore, κ([k, Z0], HA) = −κ(Z0,−[HA, k]) = 0. Thus, Z0 ∈ (kHA)⊥ = kHA .
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Lemma 105. If H ∈ t is a regular element, then kH = t.

Proof. Suppose that X ∈ k is such that [H,X] = 0. Then, in the complexification kC, we may decompose X
as X = X0 +

∑
α∈RXα with X0 ∈ t + it and Xα ∈ kCα. Then

0 = [H,X] =
∑
α∈R

α(H)Xα.

Since H is regular, Xα = 0 for every root α. That is, X = X0 ∈ t + it. Since X ∈ k we must have X ∈ t.

Corollary 106. Suppose that H ∈ h is a regular element.
The map f : OH → R, Z 7→ κ(Z,H) attains its minimum at the Weyl orbit OWH .

Using these standard results, we can formulate for p ∈ ∂C the following necessary and sufficient condition
on satisfying the positive energy condition at all elements in C ′, so long as the element H ∈ t defining the
positive energy condition is regular.

Corollary 107. Suppose that p ∈ ∂C and let A = η(p, ·)HA be such that HA ∈ t is a regular element. Then
ν = p+A satisfies the positive energy condition at all elements in the cone C ′′ if and only if κ(HA,OW−H) ≤ 1.

Proof. We have seen in equation (5.6) that p + A?OH ⊂ C ⇐⇒ κ(HA,OH) ≥ −1 ⇐⇒ κ(HA,O−H) ≤ 1.
From corollary 106 we know that κ(HA,OH) achieves its minimum at the Weyl-orbit OWH , or equivalently
κ(HA,O−H) achieves its maximum at the Weyl-orbit OW−H .

Remark.

— The requirement κ(HA,OW−H) ≤ 1 defines a system of linear inequalities; one for each point on the
Weyl-orbit of −H and therefore defines a polytope in t. A point p + A as in corollary 107 satisfies
the positive energy condition at the cone C ′′ if and only if HA is contained in the convex hull of this
polytope.

We have found that for p ∈ ∂C, the positive energy condition is very restrictive and enforces A to be a rank
one operator. On the other hand, if p ∈ C0 in the open cone, the situation is quite the opposite.

Lemma 108. Suppose p ∈ C0. Then for any A ∈ Hom(R4, k), there exists some constant c > 0 such that
the positive energy condition is satisfied by p+ c ·A at all elements in the cone C ′′.

Proof. Since p ∈ C0, there exists an open ball Br(0) around the origin such that Br(0) ⊆ C − p. Notice that
OH is bounded since K is compact and A? is a bounded operator. It follows that there is some ball BR(0)
around the origin in R4 such that A?OH ⊆ BR(0). Then

(
r

R
·A)? =

r

R
·A?OH ⊆

r

R
BR(0) = Br(0) ⊆ C − p

and therefore the positive energy condition is satisfied for p+ r
R ·A.

Remark. Notice that the stabilizers of c ·A and A are the same. It follows that for p ∈ C0 the positive energy
condition does not impose a restriction on the stabilizers.
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5.2 Stabilizers of the action of SL(2,C)×SU(2) on R4⊕Hom(R4, su(2))

Consider the group (5.3) for the special case that K = SU(2). By the theory of the Mackey machine, the
representation theory of V o H is completely classified by the representation theory of the various Little
groups Hν , which are the stabilizers of the action of H on V ∼= V̂ . As such, the first step in an understanding
of the full representation theory of V oH is to determine these stabilizers. The following is concerned with
the classification of these stabilizers, up to equivalence, corresponding to orbits of positive energy. A full
classification is obtained. First, let us make precise what is meant by equivalent stabilizers.

Definition 109. Let G be a Lie group. We call two closed subgroups H1 and H2 equivalent if there

exists a Lie group isomorphism G
λ−→ G that restricts to an isomorphism H1 → H2. We say that λ defines

an equivalence between H1 and H2.

Remark.

1. Notice that an equivalence between two closed subgroups H1 and H2 of G in the sense of definition 109
also defines an isomorphism (λ, λ|H1

) of principal bundles from G→ G/H1 to G→ G/H2 .

2. In particular, this implies that for any unitary representation σ of H2 on Hσ, we obtain also a unitary
representation σ ◦ λ|H1

of H1 on the same space. Moreover, because λ is G-equivariant we obtain an
isomorphism of homogeneous Hilbert bundles from G ×H1

Hσ → G/H1 to G ×H2
Hσ → G/H2 given

by [x, v] 7→ [λ(x), v]. Therefore the corresponding induced representations are also equivalent.

3. If two closed subgroups of G are conjugate, then they are equivalent. In particular, the stabilizers of
different points in the same orbits of a smooth G-action are always equivalent. However, points in
different orbits can also be equivalent.

Now, we have seen that the positive energy condition imposes very strong restrictions on elements ν = p+A
for p in the light-cone p ∈ ∂C, forcing A to be rank-one, which makes a computation of the stabilizer much
simpler. On the other hand, for p of positive mass p ∈ C0, it does not impose any restriction on the cor-
responding isomorphism classes of stabilizers, but the action can be restricted to a unitary action which
simplifies the computation of stabilizers, in particular allowing us to make use of lemma 159. This dichotomy
is therefore very useful when classifying the isomorphism classes of stabilizers corresponding the orbits of
positive energy.

Explicitly, for p ∈ C0 and after restricting the action to SU(2) × SU(2), we can either restrict the action
further to SU(2)×U(1) or reduce the problem to a classification up to equivalence of the stabilizers of End(R3)
under the action of SU(2)× SU(2). The latter can be done explicitly, which is mainly a consequence of the
fact that rotations, their invariant subspaces and (complex) eigenvectors are well-understood. The relevant
results on this matter are described in section 8.5.
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5.2.1 Points p ∈ ∂C on the boundary of the light cone

Assume that p ∈ ∂C and ν = p+A ∈ R4⊕Hom(R4, su(2)) satisfies the positive energy condition at the cone
C ′ (5.1) so that A = η(p, ·)X for some X ∈ su(2). In view of the results of section 4.5 we may assume that
p = (1, 0, 0, 1) by acting with SL(2,C) appropriately.

Lemma 110. Consider the action of SL(2,C)× SU(2) on R4 ⊗ su(2) defined by (w, k) · p⊗X = φ(w)p⊗
Adk(X). Let t = p⊗X be a simple tensor. Then the stabilizer of t is the product SL(2,C)p × SU(2)X .

Proof. Notice that t is stabilized by (w, k) if and only if φ(w)p = λp, Adk(X) = µX and λ · µ = 1 for some
λ, µ ∈ R. Now, since the adjoint action Ad is orthogonal with respect to the Killing form, we find that
µ = ±1 is necessary. Every element in the restricted Lorentz group SO(1, 3)0 preserves the direction of time
so only λ = µ = 1 is possible.

Now, recall from section 4.5 that

SL(2,C)p = E =

{(
z a
0 z

)
: z, a ∈ C, |z| = 1

}
.

Therefore, by lemma 110 the stabilizer of ν = p+ η(p, ·)X is simply given by

Gν = E ×KX .

Remark.

— There are only two possibilities for the stabilizer SU(2)X . Indeed, we have seen in corollary 48 that the
adjoint map becomes the covering homomorphism SU(2)→ SO(3) under the identification su(2) ∼= R3.

Thus, we must either have SU(2)X
conj
= U(1) or SU(2)X = SU(2). It follows that the stabilizers of ν

are up to equivalence given by E × U(1) and E × SU(2).

5.2.2 Points p ∈ C0 in the interior of the light cone

Let ν = p + A ∈ R4 ⊕ Hom(R4, su(2)). For p ∈ C0 we can assume that p = me0 for some m > 0 and from
section 4.5 we know that SL(2,C)p = SU(2). Thus, we may restrict the action further to SU(2) × SU(2)
and the stabilizer of ν in SL(2,C)× SU(2) is the stabilizer of A in SU(2)× SU(2).

Now, we know from lemma 47 that if we embed R3 ↪→ R4 via x 7→ (0, x), then the restriction of the covering

homomorphism SL(2,C)→ SO(1, 3)0 to SU(2) is precisely the covering homomorphism SU(2)
φ−→ SO(3) and

so the action of SU(2) on R4 given by ψ
d
= 1⊕φ. On the other hand, recall from corollary 48 that su(2) ∼= R3

and under this isomorphism, the adjoint action becomes the covering homomorphism SU(2)
φ−→ SO(3). Thus,

we are concerned with the action of G = SU(2)× SU(2) on Hom(R4,R3) given by

(u1, u2) ·A = φ(u2) ◦A ◦ 1⊕ φ(u1)−1, u1, u2 ∈ SU(2).

Observe that Hom(R4,R3) decomposes as a SU(2)× SU(2)-representation into two irreducible components
according to

Hom(R4,R3) ∼= R⊗ R3 ⊕ End(R3) ∼= R3 ⊕ End(R3),

where the left factor SU(2) acts trivially on R3 and the right factor SU(2) acts on R3 via the covering map
φ. Indeed, the intertwining map is given by (

a A0

)
7→ a⊕A0.

It follows in particular that given an element A = a⊕ A0 ∈ R3 ⊕ End(R3), its stabilizer is GA = Ga ∩GA0
.

Now this decomposition allows us to distinguish two cases.

1. If a = 0 we obtain GA = GA0
so the problem is reduced to finding the stabilizers of elements in End(R3),

which can be done because the invariant subspaces of rotations are well-understood. The strategy in
this case is to restrict the action further to stabilizers of AT0 A0 and A0A

T
0 to simplify the computations.

2. If a 6= 0, then SU(2)a = Ua(1) ∼= U(1) covers the rotations about a.
We find that GA ⊆ Ga = SU(2) × Ua(1). We may thus restrict the action further to Ga and the
stabilizer GA can be determined directly.
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— Case a = 0.

Let us first determine the stabilizers in G = SU(2) × SU(2) of elements of the form A = (0, A0) for some
A0 ∈ End(R3). In this case, the stabilizer of A equals that of A0. Notice that SU(2)×SU(2) acts on End(R3)
via

(u1, u2) ·A = φ(u2) ◦A ◦ φ(u1)−1, u1, u2 ∈ SU(2).

Observe that φ is orthogonal on R3. In view of lemma 159 it follows that GA0 ⊂ GAT0 A0
∩GA0AT0

so that we

may restrict the action further to this latter subgroup to simplify the computations, where SU(2) acts on
the symmetric matrices End(R3)sa via u ·M = φ(u) ◦M ◦ φ(u)−1. As such, let us first consider the possible
stabilizers in SU(2) of AT0 A0 (and thus also of A0A

T
0 ).

Denote by Ua(1) ⊂ SU(2) the subgroup of SU(2) covering all rotations about a ∈ S2. Similarly, denote by
U ta(1) the subgroup of SU(2) covering all rotations Rv(π) for some v ∈ Span{a}⊥ ⊂ R3. From lemma 169
we know in that

Ue3(1) =

{(
z 0
0 z

)
: z ∈ U(1)

}
,

U te3(1) =

{(
0 u
u 0

)
: u ∈ U(1)

}
.

Lemma 111. There is an isomorphism of groups

U(1) oγ Z2 → Ue3(1) ∪ U te3(1),

is an isomorphism of groups, where γ([n])z = z((−1)n).

Proof. Notice first that the set on the right is indeed closed under the group operations and that its subgroup
Ue3(1) is normal. It is moreover clear that any element on the right-hand side admits a unique decomposition

of the form

(
z 0
0 z

)(
0 1
1 0

)n
, so that the group on the right is indeed a semi-direct product U(1) o Z2.

Finally, a direct computation shows the correct action of Z2 on U(1).

Remark.

— From now on, we will write U(1) oγ Z2 for the subgroup Ue3(1) ∪ U te3(1) of SU(2).

Lemma 112. Consider the action of SU(2) on the symmetric linear maps End(R3)sa given by

u ·M = φ(u) ◦M ◦ φ(u)−1.

Let M ∈ End(R3)sa. Then the stabilizer SU(2)M is in the sense of definition 109 equivalent to one of the
following subgroups:

SU(2),

U(1) oγ Z2,

Q8,

where Q8 = {±I,±σ1,±σ2,±σ3}.

Proof. A rotation R ∈ SO(3) stabilizers M if and only if [M,R] = 0, which by lemma 157 is equivalent to the
statement that R leaves all the eigenspaces of M invariant. The invariant subspaces of rotations are known
precisely, see also corollary 168. This allows us to determine all rotations that stabilize M .

Let u ∈ SU(2) be arbitrary and write φ(u) = R ∈ SO(3). The identity element is always in the stabilizer
so we assume that u 6= ±I and thus R 6= I. By acting with SU(2), we may assume that the {e1, e2, e3}
are eigenvectors of M , which affects the stabilizer SU(2)M only by a conjugation. Let λ1, λ2, λ3 be the
eigenvalues of M .

— Case I: λ1 6= λ2 6= λ3.
By corollary 168, the only rotations that preserve all three one-dimensional eigenspaces are I and Rek(π)
for k = 1, 2, 3. By lemma 169, the elements of SU(2) covering these rotations are φ−1(I) = ±I and
φ−1(Rek(π)) = ±σk which form a subgroup of SU(2) is isomorphic to quaternion group Q8.
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— Case II: λ1 = λ2 6= λ3.
In this case, a rotation is covered by an element in the stabilizer of M if and only if it preserves both

the one- and two-dimensional eigenspaces Vλ3
= Span{e3} and W

d
= Span{e3}⊥. Using corollary 168,

we find that the only possible such rotations are Re3(θ) for some θ ∈ [0, 2π) or Rw(π) with w ∈W .

Now the stabilizer SU(2)M is generated by the elements covering these rotations, which we know from
lemma 169 to be U(1) oγ Z2.

— Case III: λ1 = λ2 = λ3.
In this case the corresponding eigenspace is all of R3 which is trivially kept invariant by R. Thus in
this case stabilizer of M is all of SU(2).

Remark.

— Given a subgroup H of SU(2), We will denote any subgroup of G = SU(2)× SU(2) of the form
{(u,±u) : u ∈ H} by H oβ Z2. This is justified by lemma 113.

— Similarly, we write (U(1) × U(1)) oτ Z2 for the subgroup of SU(2) × SU(2) on the right-hand side of
lemma 114

Lemma 113. If H is a group, define G = {(h,±h) : h ∈ H}. Then we have an isomorphism of groups

H oβ Z2
∼= G,

where β([n])h = (−1)nh.

Proof. The isomorphism is given by (h, [n]) 7→ (h, (−1)nh).

Lemma 114. There is an isomorphism of groups

(U(1)× U(1)) oτ Z2 → Ue3(1)× Ue3(1) ∪ U te3(1)× U te3(1),

where τ([n])(z1, z2) = (z
((−1)n)
1 , z

((−1)n)
2 ).

Proof. The proof is completely similar to that of lemma 111.

Theorem 115. Let G = SU(2)× SU(2) and consider its action on End(R3) given by

(u1, u2) ·A0 = φ(u2) ◦A0 ◦ φ(u1)−1.

Then for any A0 ∈ End(R3), its stabilizer GA0
is in the sense of definition 109 equivalent to one of the

following subgroups:

SU(2)× SU(2),

(U(1)× U(1)) oτ Z2,

(U(1) oγ Z2) oβ Z2,

Q8 oβ Z2,

where Q8 = {±I,±σ1,±σ2,±σ3} ⊂ SU(2) and Z2 = {±I} ⊂ SU(2).

Proof. Let (ei)
3
i=1 be an orthonormal basis of R3. According to the singular value decomposition, there exists

u0, u1 ∈ SU(2) such that
A0 = φ(u0) ◦ Σ ◦ φ(u1)−1,

where the matrix of Σ with respect to the basis (ei)
3
i=1 is given by diag(σ1, σ2, σ3). Thus, by acting with

SU(2)×SU(2) if necessary we may assume that with respect to the standard basis (ei)
3
i=1 of R3, A0 is given

by
A0 = Σ = diag(σ1, σ2, σ3),
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affecting the stabilizer of A only by a conjugation. Then the matrix of both AT0 A0 and A0A
T
0 is the diagonal

matrix diag(λ1, λ2, λ3), where λk = σ2
k. In particular, their stabilizers in SU(2) are the same. Moreover,

notice that the permutation matrix

P =

0 0 1
1 0 0
0 1 0


is in SO(3) and the matrix of PΣP−1 is given by diag(σ3, σ1, σ2). Thus, by conjugating with P we may fur-
ther permute the singular values in this cyclic fashion, which affects the stabilizer of A only by a conjugation.

Because the stabilizer of A must be contained in F = SU(2)AT0 A0
× SU(2)A0AT0

, we restrict the action of G

on Hom(R4,R3) further to F . The strategy is to determine the stabilizer A according to lemma 159:

GT =
{

(x, y) ∈ F : φ(y) ◦ A0|Vk = A0 ◦ φ(x)|Vk ∀k
}
, (5.7)

where all eigenspaces Vk of AT0 A0 are considered that correspond to a non-zero singular value σk. Seeing as
we have assumed A0 = Σ, this simplifies to

GT =
{

(x, y) ∈ F : φ(y)|Vk = φ(x)|Vk ∀k
}
. (5.8)

Now, the stabilizers of SU(2)AT0 A0
and SU(2)A0AT0

have already been determined in the section above. They
are given by lemma 112. From section 8.4 we know that for elements in F the subspaces Uσ and Vσ spanned by
the corresponding singular vectors are reducing subspaces for the action of F . Denote V = kerA⊥0 = Im(A0).

— Case I: A rank 1.
We may assume that σ1 = σ2 = 0 and σ3 6= 0. In this case, SU(2)ATA = SU(2)AAT = U(1) oγ Z2,
V = Span{e3}. According to lemma 169, the rotations covered by this subgroup are Re3(θ) and Rw(π)
for some w ∈ Span{e1, e2}. Now, we need to determine all (x, y) ∈ F such that φ(y)e3 = φ(x)e3. Notice
that Re3(θ)e3 = e3 for all θ and Rw(π)e3 = −e3 for all w ∈ Span{e1, e2}. We thus find that

GA = (U(1)× U(1)) oτ Z2.

— Case II: A rank 2.
We distinguish the cases when the two non-zero singular values are distinct and when they are not.

– Case A: 0 6= λ1 = λ2 and λ3 = 0.
Then V = Span{e1, e2} and we once again have SU(2)ATA = SU(2)AAT = U(1) oγ Z2. Notice
that

Rv1(π)|V = Rv2(π)|V ⇐⇒ v1 = ±v2 v1, v2 ∈ V,
Re3(θ1)|V = Re3(θ2)|V ⇐⇒ θ1 = θ2.

It follows that φ(x)|V = φ(y)|V if and only if x = ±y. Thus,

GA = (U(1) oγ Z2) oβ Z2.

– Case B: λ1, λ2 6= 0, λ3 = 0 and λ1 6= λ2.
Now V = Span{e1, e2} and SU(2)ATA = SU(2)AAT = {±I} ∪ {±iσk}3k=1

∼= Q8. For (x, y) ∈ F
we again have φ(x)|V = φ(y)|V if and only if x = ±y and thus

GA ∼= Q8 oβ Z2.

— Case III: A rank 3.
A computation completely similar to the previous two yields

λ1 6= λ2 6= λ3 =⇒ GA ∼= Q8 oβ Z2,

λ1 = λ2 6= λ3 =⇒ GA ∼= (U(1) oγ Z2) oβ Z2,

λ1 = λ2 = λ3 =⇒ GA ∼= SU(2) oβ Z2.
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— Case a 6= 0.

Next, we proceed with the case that A =
(
a A0

)
for some non-zero a ∈ R3 and some A0 ∈ End(R3). In this

case, the stabilizer SU(2)a = Ua(1) ∼= U(1) covers the rotations about a. Therefore,

GA = Ga ∩GA0 ⊆ Ga = SU(2)× Ua(1)

so we may restrict the action further to Ga. The various possible stabilizers of A0 in Ga can be determined
directly, which leads to the following theorem.

Theorem 116. Let G = SU(2)× SU(2) and consider its action on Hom(R4,R3) given by

(u1, u2) ·A = φ(u2) ◦A ◦ (1⊕ φ(u1)−1).

Then for any A ∈ End(R3) of the form A = (a,A0) for some A0 ∈ End(R3) and non-zero a ∈ R3, its
stabilizer GA is in the sense of definition 109 equivalent to one of the following subgroups.

SU(2)× U(1),

U(1)× U(1),

U(1)× {1},{
(z, z2) ∈ Ue3(1)× U(1)

}
,{

(z, z2) ∈ Ue3(1)× U(1)
}
,

Z2 × {1}.

where Z2 = {±I} ⊂ SU(2).

Proof. By first acting with the right factor SU(2), we may assume that a = e3. Since the stabilizer of A must
in particular stabilize a, we may restrict the action of G to Ga = SU(2)×U(1), where embed U(1) ↪→ SU(2)

via z 7→
(
z 0
0 z

)
.

It remains to determine which elements in Ga also stabilize A0 ∈ End(R3). Notice that

End(R3) ∼= R3 ⊗ R3

is an equivalence of Ga-representations, where R3∗ ∼= R3 using the standard inner product on R3 and where
Ga acts on a simple tensor x⊗ y according to

(u, z) · φ(u)x⊗ φ(z)y.

Moreover, because U(1) leaves both the subspace Span{e3} and its orthogonal complement invariant, R3⊗R3

decomposes as a Ga-representation into two irreducible components:

R3 ⊗ R3 ∼= (R3 ⊗ R2)⊕ (R3 ⊗ R) ∼= (R3 ⊗ R2)⊕ R3.

Moreover, R2 ∼= C as a U(1)-representation and therefore we obtain another equivalence ofGa-representations:

R3 ⊗ R2 ∼= R3 ⊗ C ∼= C3.

Thus, we consider the action of Ga on C3 ⊕ R3 given by

(u, z) · (v, p) = (zφ(u)v, φ(u)p), (u, z) ∈ Ga, (v, p) ∈ C3 ⊕ R3.

It remains to determine the stabilizer in Ga of a general element (v, p) ∈ C3 ⊕ R3.
Write H = Ga = SU(2) × U(1). Observe that H(v,p) = Hv ∩Hp. Thus, let us determine both Hv and Hp

separately. Fix (v, p) ∈ C3 ⊕ R3. Notice that Hp = SU(2)p × U(1) so that there are two possibilities:

p = 0 =⇒ Hp = SU(2)× U(1),

p 6= 0 =⇒ Hp = Up(1)× U(1).

On the other hand, an element (u, z) ∈ H stabilizes v ∈ C3 if and only if φ(u)v = zv. Corollary 172 now
yields the various possibilities. Suppose that b ∈ R3 and that w is a fixed eigenvector of the rotations covered
by Ub(1). Define the homomorphism λw : Ub(1)→ U(1) by the equation:

φ(u)w = λw(u)w, u ∈ Ub(1).

55



Using corollary 172, we find that we have the following possibilities:

v = 0 =⇒ Hv = SU(2)× U(1),

v ∈ R3 =⇒ Hv = Uv(1)× {1},

v ⊥ v =⇒ Hv =
{

(u, λv(u) ∈ Ub(1)× U(1))
}
, b ∈ Span{v, v}⊥,

v /∈ R3, v 6⊥ v =⇒ Hv = Z2 × {1}.

Now, notice that Ub(1) is conjugate to Ue3(1) and λv is conjugation invariant. We know from corollary 167 and

lemma 169 that φ(z)e3 = z2e3 for z ∈ U(1). Therefore if b ∈ Span{v, v}⊥, then
{

(u, λv(u) ∈ Ub(1)× U(1)
}

is conjugate to one of {
(z, z2) ∈ Ue3(1)× U(1)

}
,{

(z, z2) ∈ Ue3(1)× U(1)
}
.

Notice further that if b /∈ Span{e3}, then Ue3(1) ∩ Ub(1) = {±I}. Taking all possible intersections Hp ∩Hv

now yields the result.

In summary, we have proven the following.

Theorem 117. Let G = SL(2,C)× SU(2) and consider its action on R4 ⊕Hom(R4,R3) given by

(w, u) · p⊕A = φ(w)p⊕ (φ(u) ◦A ◦ (1⊕ φ(w)−1)).

Suppose ν = p⊕A ∈ R4⊕Hom(R4,R3) satisfies the positive energy condition in the sense of definition 90 at
the cone C ′′ given by equation (5.4). Write A =

(
a A0

)
for some a ∈ R3 and A0 ∈ End(R3).

Then p ∈ C. Moreover, if p ∈ ∂C, then A = η(p, ·)X for some X ∈ su(2) and the stabilizer Gν is equivalent,
in the sense of definition 109, to one of the following subgroups:

E × U(1),

E × SU(2).

If p ∈ C0 and a = 0 then Gν is equivalent to one of the following subgroups:

SU(2)× SU(2),

(U(1)× U(1)) oτ Z2,

(U(1) oγ Z2) oβ Z2,

Q8 oβ Z2,

If p ∈ C0 and, a 6= 0 then Gν is equivalent to one of the following subgroups:

SU(2)× U(1),

U(1)× U(1),

U(1)× {1},{
(z, z2) ∈ Ue3(1)× U(1)

}
,{

(z, z2) ∈ Ue3(1)× U(1)
}
,

Z2 × {1}.

where Z2 = {±I} ⊂ SU(2) and Q8 = {±I,±σ1,±σ2,±σ3} ⊂ SU(2).

Recall that according to the theory of the Mackey machine, the representation theory of the group V o H
(5.3) for the case K = SU(2) is completely determined by that of the various stabilizers Hν of the action of

H on V ∼= V̂ , meaning that every irreducible strongly continuous unitary representation of V oH is obtained
by inducing irreducible representations from the stabilizers Hν up to the full group V o H. Theorem 117
completes a full classification, up to equivalence, of the stabilizers that correspond to representations of
V oH that are of positive energy at the cone C ′′ (5.4) and therefore of the positive energy representations
of V o H. Moreover, the representation theory of the various stabilizers is completely known so that in
fact theorem 117 completely solves the problem of classifying all irreducible strongly continuous unitary
representations of V oH that are of positive energy at the cone C ′′ for the special case of K = SU(2).
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Chapter 6

Homogeneous Bundles as Embedded
Subbundles of Trivial Bundles

The homogeneous bundles that arise when constructing induced representations are defined in abstract fashion
and are thus not easy to understand in more detail. When considering the representation theory of R4 o
SL(2,C), Wigner showed[BW48] that the obtained bundles could be realized as subbundles of trivial bundles
over R4, see also the appendix section 8.3 for a detailed exhibition. The fibers of these bundles are described
by certain eigenvalue equations that exposed the fact that the Fourier transform (in an appropriate sense) of
sections of these bundles satisfy particular wave equations. An example of an equation that can be realized
in this way is the famous Dirac equation, which describes relativistic spin 1

2 massive particles:

i~
4∑
k=0

γk∂kψ = mcψ. (6.1)

Embedding the bundle in a trivial bundle has played an important role in the understanding these homoge-
neous bundles, and therefore also of the unitary representations of R4 o SL(2,C). Nonetheless, despite the
success in physics of the theory developed by Mackey and Wigner, it does not directly provide a method to
embed other homogeneous bundles in trivial bundles. In fact, the method uses à priori the physical knowledge
that solutions of the Dirac equation should define a representation of the group R4 o SL(2,C) to explicitly
construct a homogeneous Hilbert bundle. One then proceeds to show that this bundle is equivalent to one of
the bundles of the form SL(2,C)×SU(2) Hσ.

One could try to understand the unitary positive energy representations of the group

V ⊕ (k⊗ V ) o Spin(r, s)0 ×K

of positive energy in analogous fashion to Wigner’s analysis for case of R4 oSL(2,C). This could potentially
yield a description or differential equation of relativistic particles that takes into account notions such as
electric charge or color charge. As a stepping stone towards such a similar analysis, a more direct method is
developed that realizes homogeneous bundles as eigenspace subbundles of trivial bundles.

In more detail, using the examples obtained via representations of R4oSL(2,C) as guidance, the observation
is made that in a particular equivariant setting, homogeneous bundles can be realized as embedded eigenspace
subbundles of trivial bundles. Several examples are given of bundles that can be embedded in trivial bundles
using this technique, including bundles encountered when applying the Mackey machine to representations
of V o Spin(r, s)0 and koAd K for some semisimple Lie group K with Lie algebra k. Finally, the bundles are
considered that are encountered via the unitary representations of V ⊕ (k⊗ V ) o Spin(r, s)0 ×K.
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6.1 Homogeneous bundles as eigenspace subbundles

6.1.1 First observations

Using as guidance the results obtained by Wigner on the representation theory of R4 o SL(2,C) and its
relation to wave equations, which are described in section 8.3, let us make some observations that provide
further understanding on how one could try to realize homogeneous bundles as eigenspace subbundles.

Denote by φ : SL(2,C)→ SO(3, 1)0 the covering homomorphism described in equation (3.3) and let η denote
the Minkowski bilinear form, as usual. Consider the homogeneous Hilbert bundle bundle

E = SL(2,C)×SU(2) C2 → Om

for some m > 0, where
Om = {p ∈ R4 : η(p, p) = m2, p0 > 0}

is an orbit of the action of SL(2,C) on R4. Let us first briefly describe the result obtained in section 8.3. Let
{γr} be the Dirac matrices defined by equation (3.6). Recall that these matrices define a representation ρ of
the Clifford algebra Cl(R4, η) and the restriction of this representation to SL(2,C) defines a representation
S of SL(2,C) on the same space that satisfies the equivariance condition (6.2):

ρ(φ(w)p) = S(w)ρ(p)S(w)−1. (6.2)

We know from section 8.3 that there exists an isomorphism of SL(2,C)-homogeneous Hilbert bundles over
Om:

SL(2,C)×SU(2) C2 Φ−→

{
(p, v) ∈ Om × C4 :

3∑
k=0

pkγkv = mv

}
=
{

(p, v) ∈ Om × C4 : ρ(p)v = mv
}
,

where the latter is endowed with the SL(2,C) action given by w · (p, v) = (φ(w)p, S(w)v) and with the
smoothly varying SL(2,C)-invariant hermitian bilinear form given by

v 7→ m−1〈γ0v, v〉. (6.3)

This form defines a positive definite inner product on the fibers of
{

(p, v) ∈ Om × C4 : ρ(p)v = mv
}

, see
also section 8.3 for more details.

Now, observe the following:

1. The equivariance condition (3.4) implies that if Φ maps the fiber above some p0 onto an eigenspace
of ρ(p0), then in fact Φ maps the fiber above any p ∈ Om onto the eigenspace of ρ(p) with the same
eigenvalue.

2. The restriction of the action of SL(2,C) to SL(2,C)p ∼= SU(2) on an arbitrary fiber Ep is equivalent
to the representation σ of SU(2) on C2. By the equivariance of Φ, the same is true for the action
of SL(2,C)p on Φ(E)p. This means that we have SU(2)-equivariant maps C2 ∼= Ep ∼= Φ(E)p ↪→ C4.
Thus, the representation of SU(2) on C4 contains σ as a subrepresentation.

3. In fact, suppose that G is a Lie group with closed subgroup H and let σ be a finite dimensional
representation of H on Hσ. If we have any homogeneous vector bundle E = G×H Hσ → G/H and an
injective G-equivariant morphism of vector bundles

Ψ : G×H Hσ ↪→ G/H ×Fδ

for some finite dimensional representation δ of G on Fδ, then there must be an injective H-equivariant
map θ : Hσ → Fδ. That is, δ|H must contain σ as a subrepresentation.
Indeed, the representation of H on any fiber ExH is equivalent to σ, so there are H-equivariant maps

Hσ ∼= ExH ∼= Ψ(E)xH ↪→ {xH} × Fδ.

It can therefore be concluded that for the existence of such a G-equivariant injective morphism of vector

bundles E
Ψ−→ G/H ×Fδ, it is a necessary condition that δ contains σ as subrepresentation.

58



6.1.2 Construction

Having in mind the last few observations in the previous section, we proceed with the converse, namely a
construction of an isomorphism between a homogeneous vector bundles and an eigenspace subbundle of a
trivial bundle, that works in a specific equivariant setting.

Suppose that G is a Lie group G with a closed subgroup H so that quotient space G/H is a smooth manifold
and G→ G/H is a principal H-bundle. Let σ be a finite dimensional unitary representation of H on Hσ and
let E = G×H Hσ be the associated Hilbert bundle over G/H.

Suppose that we are given a finite dimensional representation δ of G on Fδ and an injective H-equivariant
linear map
θ : Hσ ↪→ Fδ. Then the following bundle map is well defined

Φ : E ↪→ G/H ×Fδ
[x, z] 7→ (xH, δ(x)θ(z))

Moreover, this map is smooth and injective and linear on fibers. Injectivity and linearity are clear. To see
that it is smooth notice first that the map (x, z) 7→ δ(x)θ(z), G × Hσ → Fδ is smooth, being the following
composition of smooth mappings:

G×Hσ
id×θ−−−→ G×Fδ

δ−→ Fδ.

It follows that φ : G × Hσ → G/H × Fδ, (x, z) 7→ (xH, δ(x)θ(z)) is smooth. Since the quotient mapping
q : G×Hσ → E is a smooth submersion (see section 2.3.1), it follows that Φ is smooth.

Lemma 118. The smooth map Φ : E → G/H ×Fδ is a smooth embedding.

Proof. Since Φ is an injective and smooth morphism of vector bundles, proposition 9 yields the result imme-
diately.

We endow G/H ×Fδ with a G-action given by

g · (xH, v) = (gxH, δ(g)v).

Corollary 119. The map Φ is a morphism of G-homogeneous vector bundles.

Proof. It remains only to show Φ is G-equivariant. As such, let x, g ∈ G and z ∈ Hσ. We compute

Φ([gx, z]) = (gxH, δ(gx)θ(z)) = g · (xH, δ(x)θ(z)) = g · Φ([x, z]).

Next, we use this bundle morphism to transfer the inner product on the fibers of E to a smoothly varying
G-invariant positive definite inner product on the image Φ(E) ⊂ G/H×Fδ. Notice that Φ is an isomorphism
of G-homogeneous vector bundles E → Φ(E), so by pulling back along Φ−1 we obtain a smoothly varying
inner product on Φ(E). Explicitly, define

〈Φ([x, z1]),Φ([x, z2])〉Φ(E)xH
d
= 〈[x, z1], [x, z2]〉ExH = 〈z1, z2〉H . (6.4)

Corollary 120. With respect to the inner product (6.4) on the fibers of Φ(E), the map Φ is an injective
morphism of G-homogeneous Hilbert bundles. In particular E is equivalent to Φ(E) as Hilbert bundles.

Remark.

1. If it so happens that Fδ is itself equipped with an inner product, the restriction of this inner product
to Φ(E) in general does not equal the inner product defined by equation (6.4).

2. This is true, however, if the inner product on Fδ is G-invariant and coincides with (6.4) on any fiber
of Φ(E). In fact, it is enough to have a G-invariant bilinear form on Fδ that agrees with (6.4) on any
fiber of Φ(E), as is the case for the form (6.3).

3. Suppose that a G-invariant bilinear form restricts to an inner product on θ(Hσ) and θ : Hσ → θ(Hσ)
is isometric. Then the inner product on Fδ automatically coincides with (6.4) on the fiber above the
identity Φ(E)H , so by G-invariance the restriction of the bilinear form on Fδ to Φ(E) agrees with (6.4)
everywhere.
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Endow End(Fδ) with a G-action given by

g · T d
= δ(g) ◦ T ◦ δ(g)−1. (6.5)

Lemma 121. Suppose that ρ : G/H → End(Fδ) is a G-equivariant map and that θ(Hσ) is an eigenspace of
ρ(H) corresponding to some eigenvalue λ. Then

Φ(E) = { (xH, v) ∈ G/H ×Fδ : ρ(xH)v = λv } .

Proof. The last assumption implies that the fiber Φ(E)H above the identity coset is precisely the eigenspace
of ρ(H). The G-equivariance of ρ allows us to translate this eigenvalue equation to all other fibers. Explicitly,
let x ∈ G. We show that Φ(E)xH is precisely the eigenspace of ρ(xH) corresponding to the eigenvalue λ. As
such, let v = δ(x)θ(z) ∈ Φ(E)xH . Then we indeed have

ρ(xH)v = δ(x)ρ(H)δ(x)−1v = λv.

To show the converse, notice that by homogeneity of G×H Hσ, any fiber Φ(E)xH is of the same dimension
as Φ(E)H . Now, using the G-equivariance of ρ and the fact that conjugating by δ(x) preserves the dimension
of eigenspaces, it follows by reasons of dimensionality that Φ(E)xH is precisely the eigenspace of ρ(xH)
corresponding to eigenvalue λ.

We summarize the result in a theorem.

Theorem 122. Suppose H is closed subgroup of a Lie group G. Let δ be a finite dimensional representation
of G on Fδ and suppose that we are given a G-equivariant map ρ : G/H → End(Fδ). If an eigenspace
Hλ of ρ(H) with eigenvalue λ is invariant under the H-representation δ|H , then there is an equivalence of
homogeneous vector bundles over G/H given by

G×H Hλ ∼= { (xH, v) ∈ G/H ×Fδ : ρ(xH)v = λv } ,

where G/H ×Fδ is equipped with the G-action given by g · (xH, v) = (gxH, δ(g)v).

If Hλ is a Hilbert space and the action of H on Hλ is unitary with respect to this Hilbert space structure,
then the above is an equivalence of homogeneous Hilbert bundles, where the fiber of the bundle on the right
are endowed with the inner product given by equation (6.4).

Remark.

— Consider once more the bundle SL(2,C) ×SU(2) C2 → Om. Recall from section 4.5 that SU(2) is the
stabilizer SL(2,C)p0 of the point p0 = me0. Let ρ : Cl(1, 3) → End(C4) be the representation of
the Clifford algebra defined by the gamma matrices equation (3.6). Equation (6.2) states that ρ is
SL(2,C)-equivariant. Now, ρ(p0) = mγ0 has two two-dimensional eigenspaces V±m of eigenvalues ±m

given by V±1 =

{ (
v
±v

)
: v ∈ C2

}
. Moreover, the restriction of the SL(2,C)-representation S to

SU(2) is given by

S(u) =

(
u 0
0 u

)
, u ∈ SU(2).

In particular, both eigenspaces V±m are SU(2)-invariant so that C4 decomposes as SU(2)-representation
into two the two irreducible components

C4 ∼= Vm ⊕ V−m.

The SU(2)-representation on both Vm and V−m is equivalent to the fundamental representation σ1 of
SU(2) on C2. Theorem 122 now implies that we have equivalences of homogeneous Hilbert bundles

SL(2,C)×SU(2) C2 ∼=
{

(p, v) ∈ Om × C4 : ρ(p)v = mv
}

∼=
{

(p, v) ∈ Om × C4 : ρ(p)v = −mv
}
.

— In the upcoming sections, we will see that there is a natural way to apply theorem 122 to bundles that
are encountered via the Mackey machine in the representation theory of the groups V o Spin(r, s) for
some quadratic space (V, q) of signature (r, s), koAdK for some semisimple compact Lie group K with
Lie algebra k and finally V ⊕ (k ⊗ V ) o Spin(r, s) × K. In particular, theorem 122 can be applied to
the bundles that occur in the representation theory of R4⊕ (k⊗R4)oSL(2,C)×K, which is the main
group of interest in this thesis.
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6.1.3 Operations

When considering the category of unitary representations of a fixed group G, there are multiple ways to form
a new representations from a given set of representations. In section 2.2.1 it was established that the functor
G ×H − from finite dimensional unitary representations of H to homogeneous Hilbert bundles over G/H is
compatible with various such operations. In this section we consider how a homogeneous bundle, obtained
via one of the operations of vector bundles described in section 2.2.1, can be realized as a subbundle of a
trivial bundle if the individual bundles are à priori known to be subbundles of trivial bundles.

The following lemma is a main tool to complete the aim of this section, which then follows by an application
of lemma 29.

Lemma 123. Let V, Vi be a vector spaces. Let ρ ∈ End(V ), {ρi ∈ End(Vi))}Ni=1 be finitely many operators
on these spaces and let Eλ, Eλi ⊂ V be the eigenspaces of these operators corresponding to some eigenvalues
λ, λi ∈ C. Then the following are linearly isomorphic⊗

i

Eλi
∼=

{
t ∈
⊗
i

Vi : ρiit = λit ∀i

}
, (6.6)

N∧
Eλ ∼=

{
t ∈ AN (V ) : ρit = λt ∀i

}
, (6.7)

N∨
Eλ ∼=

{
t ∈ SN (V ) : ρit = λt ∀i

}
. (6.8)

where AN (V ) and SN (V ) denote the subspaces of V ⊗N consisting of the alternating and symmetric tensors
of order N and where

ρii = 1⊗ · · · 1⊗ ρi ⊗ 1 · · · ⊗ 1, (ith factor),

ρi = 1⊗ · · · 1⊗ ρ⊗ 1 · · · ⊗ 1, (ith factor).

Moreover, of ρ is a normal operator, then the algebraic dual space E∗λ is linearly isomorphic to { ξ ∈ V ∗ : ρ∗ξ = λξ }.

Proof. For the latter two equations, notice that we can make the following identifications:

N∧
Eλ ∼= AN (Eλ) ↪→ AN (V ),

N∨
Eλ ∼= SN (Eλ) ↪→ SN (V ).

After making this observation, the proof for first the three equations is completely similar, so only the first
one is proven. Moreover, we consider for simplicity only the case N = 2. The argument extends without
problems to the general case.

Let first t ∈ Eλ1
⊗ Eλ2

be a simple tensor, say v = v1 ⊗ v2. Then

ρ1
1t = ρ1(v1)⊗ v2 = λ1v1 ⊗ v2 = λ1t.

The same computation also shows ρ2
2t = λ2t. By linearity ρiit = λit follows also for general tensors.

Conversely, suppose that t ∈ V1⊗V2 is some arbitrary tensor satisfying ρiit = λt for i = 1, 2. Let {fk} be basis
of V2. Taking a basis expansion in the second component, we may write t =

∑
k vk ⊗ fk for some sequence

(vk) ∈ V1. We have

0 = ρ1
1t− λ1t =

∑
k

(ρ1(vk)− λ1vk)⊗ fk.

Since {fk} is a basis for V2, this implies ρ1(vk) = λivk for all k and thus t ∈ Eλ1
⊗ V2. A similar argument

shows t ∈ Eλ1 ⊗ Eλ2 .

Finally, for the last statement observe that ρ is diagonalizable because it is normal. Thus, we may decompose
V into its eigenspaces V ∼=

⊕
µ Vµ. Let v ∈ Vµ and ξ ∈ V ∗. Then it holds that

〈ρv, ξ〉 = µ〈v, ξ〉 = λ〈v, ξ〉 ⇐⇒ µ = λ or 〈v, ξ〉 = 0.

The conclusion follows.
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Lemma 124. Suppose δ is a continuous representation of a Lie group G on F . Consider the representations
of G on

∧N F and
∨N F given by

g · v1 ∧ · · · ∧ vN
d
= δ(g)v1 ∧ · · · ∧ δ(g)vN ,

g · v1 ∨ · · · ∨ vN
d
= δ(g)v1 ∨ · · · ∨ δ(g)vN

If we endow AN (F) and SN (F) with the G-action δ⊗N , then the linear isomorphisms
∧N F Alt−−→ AN (F)

and
∨N F Sym−−−→ SN (F) induced by the symmetrization and skew-symmetrization maps are G-equivariant.

If moreover F is a finite dimensional Hilbert space, δ is unitary and the various spaces are equipped with the
following inner products:

〈v1 ⊗ · · · ⊗ vN , v1 ⊗ · · · ⊗ vN 〉
d
=

N∏
i=1

〈vi, wi〉F ,

〈v1 ∧ · · · ∧ vN , v1 ∧ · · · ∧ vN 〉
d
=

N∏
i=1

〈vi, wi〉F ,

〈v1 ∨ · · · ∨ vN , v1 ∨ · · · ∨ vN 〉
d
=

N∏
i=1

〈vi, wi〉F .

Then the maps Alt and Sym are unitary.

Proof. Notice that the inverses of the linear isomorphisms Alt and Sym are simply given by

AN (F)→
N∧
F , SN (F)→

N∨
F ,

v1 ⊗ · · · ⊗ vN 7→ v1 ∧ · · · ∧ vN , v1 ⊗ · · · ⊗ vN 7→ v1 ∨ · · · ∨ vN .

In both cases, it is clear that these maps are equivalences of G-representations and moreover are isometric
with respect to the inner products as defined above, in the case that F is a Hilbert space.

Proposition 125. Let G be a Lie group with closed subgroup H. Let H and {Hi}Ni=1 be (unitary) finite
dimensional representations of H and let δ, δi be (unitary) finite dimensional representations of G on F and
Fi. Let ρ and ρi be maps

ρ : G/H → End(F),

ρi : G/H → End(Fi).

and assume they are G-equivariant, where End(F) and End(Fi) are equipped with the G action as in equa-
tion (6.5). Suppose further that we have the following equivalences of homogeneous vector/Hilbert bundles:

G×H H ∼= {(xH, v) ∈ G/H ×F : ρ(xH)v = λv } , λ ∈ C
G×H Hi ∼= {(xH, vi) ∈ G/H ×Fi : ρi(xH)vi = λivi } , λi ∈ C,

where the right-hand side is equipped with a left G action as in theorem 122. Then we have the following
equivalences of vector/Hilbert bundles:

G×H
N⊕
i=1

Hi ∼=

{
(xH, v) ∈ G/H ×

N⊕
i=1

Fi : ρi(xH)vi = λivi ∀i = 1, · · · , N

}
,

G×H
N⊗
i=1

Hi ∼=

{
(xH, t) ∈ G/H ×

N⊗
i=1

Fi : ρii(xH)t = λit ∀i = 1, · · · , N

}
,

G×H
N∧
H ∼=

{
(xH, t) ∈ G/H ×AN (F) : ρi(xH)t = λt ∀i = 1, · · · , N

}
,

G×H
N∨
H ∼=

{
(xH, t) ∈ G/H × SN (F) : ρi(xH)t = λt ∀i = 1, · · · , N

}
,
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where

ρii(xH) = 1⊗ · · · 1⊗ ρi(xH)⊗ 1 · · · ⊗ 1, (ith factor),

ρi(xH) = 1⊗ · · · 1⊗ ρ(xH)⊗ 1 · · · ⊗ 1, (ith factor)

and where the spaces on the right are equipped with the following G-actions:

g · (xH, v) = (gxH,⊕iδi(g)vi), v ∈
N⊕
i=1

Fi,

g · (xH, t) = (gxH, δ1(g)⊗ · · · ⊗ δN (g)t), t ∈
N⊗
i=1

Fi,

g · (xH, t) = (gxH, δ(g)⊗N t), t ∈ AN (F) or t ∈ SN (F).

Moreover, if ρ(xH) is a normal operator for every xH ∈ G/H, then the following is an isomorphism of
vector/Hilbert bundles:

G×H H∗ ∼= {(xH, ξ) ∈ G/H ×F∗ : ρ(xH)∗ξ = λξ } , (6.9)

where the bundle on the right is equipped with the G-action given by g · (xH, ξ) = (gxH, δ∨(g)ξ).

Proof. It is immediate from lemma 29 and lemma 123 that the above are isomorphisms of vector/Hilbert
bundles and moreover the first two are G-equivariant and unitary on fibers in case of Hilbert bundles.
By lemma 124 also the vector bundle isomorphisms regarding symmetric and exterior powers two are G-
equivariant and unitary on fibers in the case of Hilbert bundles.

To be a bit more concrete, let us show the case of G×H
∧N H in detail. Write

E
d
= {(xH, v) ∈ G/H ×F : ρ(xH)v = λv } ∼= G×H H.

There is a G-equivariant injective morphism of Hilbert bundles E ↪→ G/H × F and therefore also
∧N

E ↪→
G/H ×

∧N F . Moreover, G/H ×
∧N F ∼= G/H ×AN (F) as Hilbert bundles over G/H. By lemma 124 this

latter equivalence is G-equivariant so that E is isomorphic as a Hilbert bundle to the image of the composition∧N
E ↪→ G/H ×

∧N F ∼= G/H ×AN (F). This image is computed fiber-wise in lemma 123. The conclusion
follows.

Remark.

— Consider the setting as in proposition 125. Identify F ∼= CN for some N ∈ N. We may identify
CN with the dual space (CN )∗ using the linear isomorphism v 7→ 〈−, v〉. Under these identifications,
equation (6.9) becomes

G×H H∗ ∼=
{

(xH, v) ∈ G/H × CN : ρ(xH)tv = λv
}
. (6.10)
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6.2 Bundles arising via V o Spin(r, s)0

The example SL(2,C) ×SU(2) C2 discussed in section 6.1.2 makes use of the fact that a representation ρ of
the Clifford algebra Cl(R4, η) on some vector space satisfies the equivariance condition (3.4) and the fact
that this representation is reducible to an eigenspace of ρ(H). This construction can be extended to bundles
encountered in the representation theory of V o Spin(r, s)0 via the Mackey machine, for some finite dimen-
sional real quadratic space (V, q) of signature (r, s). We assume further that SO(r, s) ∼= SO(r, s)0 o Z2 so

that according to corollary 83 the orbit space of V̂ is countably separated and so the theory of the Mackey
machine does indeed apply.

Write G = Spin(r, s)0. We can use the quadratic form q to identify V with its dual V ∗. Under this identifi-
cation, the action of G on V ∗ is simply given by w · v = φ(w)v, where φ : Spin(r, s) → SO(r, s) denotes the
covering homomorphism defined in theorem 41. Let α be any point in the orbit O and let Gα ⊂ G be the
corresponding stabilizer subgroup. Identify G/Gα ∼= Oα via [w] 7→ w · α. We consider homogeneous Hilbert
bundles of the form G×Gα Hσ, where σ is a finite dimensional representation of Gα on Hσ.

Notice that O ⊆ V ↪→ Cl(r, s). So any finite dimensional representation ρ of the Clifford algebra on some
vector space F allows us to interpret elements of V as operators on this space. Moreover, if we restrict

this representation to G we obtain a representation S
d
= ρ|G of the latter group satisfying the required

equivariance condition (3.4). The following shows that for any finite dimensional representation ρ of Cl(r, s),
we obtain a representation of Gα satisfying the necessary conditions of theorem 122.

Lemma 126. Let ρ : Cl(r, s) → End(F) be a representation of Cl(r, s) and set S = ρ|Spin(r,s)0 . Let α ∈ V
be arbitrary. Then S|Gα leaves all eigenspaces of ρ(α) invariant.

Proof. This follows by the Spin(r, s)0 by equivariance of ρ. Indeed, we have for k ∈ Gα:

ρ(α) = ρ(φ(k)α) = S(k)ρ(α)S(k)−1 w ∈ Gα (6.11)

And therefore ρ(α) intertwines the representation S|Gα .

Lemma 127. For any finite dimensional representation ρ of Cl(r, s) on some vector space F and for any
α ∈ V satisfying q(α) 6= 0, there is an eigenspace of ρ(α) with eigenvalue a square root of q(α) that is
invariant under the Gα-representation ρ|Gα .

Proof. Notice that any orbit O is contained in a level set O ⊂ q−1({λ}) for some λ ∈ C. Since v2 = q(v)I in
Cl(r, s) we have for any v ∈ O : ρ(v)2 = q(v)I = λI. It follows that ρ(v) is diagonalizable and the spectrum
of ρ(v) is contained in {±m} where m :=

√
λ is any choice of a (complex) square root of λ. (Diagonalizability

of ρ(v) follows since the minimal polynomial of ρ(v) divides x2 − λ = (x−m)(x+m) and hence must be a
product of distinct linear factors). The corresponding eigenspaces are invariant with respect to the action of
the stabilizer subgroup Gα by lemma 126. Therefore, F decomposes as Gα-representation as F = Fm⊕F−m.
We obtain by restriction a non-trivial Gα-representation on at least one of the eigenspaces F±m.

Proposition 128. Suppose ρ is a finite dimensional representation of Cl(r, s) on some vector space F and
set S = ρ|Spin(r,s)0 . Let α ∈ V . Suppose that Eλ ⊂ F is a non-trivial eigenspace of ρ(α). In view of
lemma 126, we may consider Eλ as a Gα-representation by restricting S to Gα. There is an equivalence of
homogeneous vector bundles

Spin(r, s)0 ×Gα Eλ ∼=
{

(v, ξ) ∈ Oα ×F : ρ(v)ξ = λξ

}
, (6.12)

where Spin(r, s)0 acts on the bundle on the right according to w · (v, ξ) = (φ(w)v, S(w)ξ). If F is a Hilbert
space and the action of Gα on Eλ is unitary, then this is an equivalence of homogeneous Hilbert bundles,
where the fibers of the bundle on the right are endowed with the inner product given by equation (6.4).

Proof. The map ρ : Cl(r, s)→ End(F) is Spin(r, s)0-equivariant, so theorem 122 yields the result immediately.

Remark.

— The Clifford algebra Cl(r, s) has either one or two inequivalent irreducible representations [LM89, p.
32, theorem 5.7]. In the case of Cl(1, 3), there is a single irreducible representation, which acts on C4

and is determined by the gamma matrices given in equation (3.6).

— Notice that in general, the representation of Gα on Eλ as in proposition 128 is not irreducible.
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6.3 Bundles arising via koAd K

There is another family of homogeneous vector bundles for which theorem 122 applies, namely those encoun-
tered via the representation theory of koAd K for a semisimple compact Lie group K with real Lie algebra
k. These bundles are of independent interest; in particular they are relevant when considering the repre-
sentation theory corresponding to the symmetry groups SU(2) and SU(3) related to the weak and strong
interactions in particle physics. However, they also provide a useful stepping stone towards understanding
bundles obtained via the representation theory of V ⊕ (k⊗ V ) o Spin(r, s)0 ×K.

The idea is that the Killing form allows us to identify the dual space k∗ of k with k. Then for any representa-
tion of K, elements k can be interpreted as operators on the same space using the infinitesimal representation
and this satisfies the equivariance required to apply theorem 122.

Explicitly, let α ∈ k be any point and let Kα be the stabilizer of α under the adjoint action Ad of K on k.
Identify K/Kα and Oα via [k] 7→ Adk(α). We are interested in homogeneous Hilbert bundles over Oα of the
form K ×Kα Hσ, where σ is a finite dimensional representation of Kα on Hσ, with the aim of realizing such
bundles as eigenspace subbundles of trivial bundles using theorem 122. As such, let δ be a finite dimensional
representation of K on some vector space Fδ.

Since K is compact and semisimple, the Killing form defines an Ad-invariant inner product on k, allows us
to identify k̂ ∼= k∗ ∼= k. Under these identifications, the action of K on the dual space k̂ transfers simply to
the adjoint action on k. Moreover, O ⊆ k so we can interpret elements in the orbit as operators on Fδ using
the infinitesimal representation

δ∗(X)v
d
=

d

dt

∣∣∣∣
t=0

δ(exp(tX))v.

Then δ∗ satisfies the required K-equivariance, because

δ(k)δ∗(α)δ(k)−1v =
d

dt

∣∣∣∣
t=0

δ(k exp(tα)k−1)v =
d

dt

∣∣∣∣
t=0

δ(exp(tAdk(α)))v = δ∗(Adk(α))v. (6.13)

If an eigenspace Vλ of δ∗(α) is Kα-invariant under the representation δ|Kα , then theorem 122 implies that
there is an equivalence of homogeneous Hilbert bundles:

Oα ×Kα Hσ ∼=
{

(X, v) ∈ Oα × V : δ∗(X)v = λv

}
. (6.14)

Remark.

— From lemma 84 we know that if K is a linear algebraic group defined over R, then the adjoint action on
its Lie algebra is an algebraic action defined over R. Thus, lemma 71 implies that the orbit space of k is
countably separated. It follows that the strongly continuous representations of koAd K are completely
classified by that of the various stabilizers Kα via the induction procedure described in section 4.4.
Observe that in particular SU(N) is a linear algebraic group defined over R.

— Consider now the special case in which K = SU(N) for some N , a case which is of particular importance
in gauge theories. The Lie algebra su(N) consists of skew-Hermitian matrices with trace zero. In
particular, all elements in su(N) are diagonalizable so that lemma 157 implies that stabilizer of α are
precisely those elements in SU(N) that leave every eigenspace of α invariant.

— In particular, suppose that δ is the defining representation of SU(N) on CN so that δ∗(X) = X. Then,
seeing as any X ∈ su(N) is diagonalizable, CN decomposes as a Gα-representation according to

CN ∼=
⊕
λ

Eλ,

where Eλ is the eigenspace of α corresponding to the eigenvalue λ. By theorem 122, this implies that
for any such Eλ we have an isomorphism of homogeneous Hilbert bundles

K ×Kν Eλ ∼=
{

(X, v) ∈ Oα × CN : Xv = λv
}
,

where the bundle on the right is equipped with the SU(N)-action given by u · (X, v) = (AduX,uv) and
its fibers are endowed with the inner product inherited from CN .
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6.3.1 Adjoint orbits

The bundles discussed in section 6.3 are bundles over adjoint orbits of K on k. A detailed understanding of
these bundles requires in particular further understanding of these adjoint orbits. It turns out that they can
be classified by elements in a positive Weyl-chamber and that they are an algebraic variety. This means in
particular that sections of bundles over the orbits satisfy p(X)s(X) = 0 for some polynomials p ∈ S(k∗). If
we can take a Fourier transform, in an appropriate sense, this would mean that the sections satisfy Dpŝ = 0
for some differential operators Dp. This section is merely a collection of relevant results. We thus mention
them without proof, giving references instead.

Theorem 129. Let Y ∈ k and fix a maximal Abelian subalgebra t. Let OY be the adjoint orbit of Y in k.
That is, OY = Ad(G)Y . Then the intersection OY ∩ t is an orbit of the Weyl group.

Proof. A proof can be found in [ABH+80, p. 74]

Since the Weyl group acts transitively on the set of Weyl-chambers [Hum72, p.51], it follows that every Weyl-
orbit intersects the closure C of a fixed Weyl-chamber in some point. By theorem 129 the same holds for a
general adjoint orbit OY , which means that these orbits are classified by points in C. Orbits that intersect
C in its interior are called non-degenerate or generic, whereas ones that intersect C on the boundary are
called degenerate. See also figure 6.1, below.

Figure 6.1: Root diagram for SU(3) and illustration of degenerate and generic orbits. The black dots indicate
the Weyl orbit of µ0. Reprinted from [BH08, p. 4].

Because K is compact, the adjoint orbits are an algebraic subvariety of k [Cro17, corollary 5.5]. This variety
can be made explicit using the invariant polynomials S(k∗)K . Notice first that by K-invariance, any p ∈
S(k∗)K is constant on the adjoint orbits. We begin with a definition.

Definition 130. A polynomial function of the form x 7→ tr(π(x)k) for some irreducible finite dimensional
representation π of k and some integer k is called a trace polynomial.

Theorem 131. The map

γ : S(k∗)K → S(h∗)W ,

γ : p 7→ p|h

is an algebra isomorphism. Moreover, S(k∗)K is generated by dim h algebraically independent trace polyno-
mials (and the unit).

Proof. A proof of the statement that γ is an algebra isomorphism and S(k∗)K is generated by trace polynomi-
als can be found in [Hum72, p. 127-128]. BecauseW is a finite reflection group, a theorem by Chevalley[Che55]
implies that the h-algebra S(h)∗)W is generated by dim h algebraically independent homogeneous polynomials,
which completes the proof.

Lemma 132. Let H1, H2 ∈ h lie in distinct Weyl-orbits.
Then there exists ph ∈ S(h∗)W such that ph(H1) 6= ph(H2).

Proof. For a proof of this statement, see [Hum72, p. 131].

The previous two lemmas imply that the trace polynomials separate the adjoint orbits of k and it follows
immediately that

OH =
{
X ∈ k : p(X) = p(H) ∀p ∈ S(k∗)K

}
.
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6.4 Concrete examples

6.4.1 su(2)oAd SU(2)

In this section, we apply the techniques developed in the previous sections to the homogeneous bundles
encountered when applying the Mackey machine to su(2) oAd SU(2), where su(2) is equipped with the
Killing form κ. Before starting, we make a the observation this case falls under both the settings considered
in section 6.2 and section 6.3.

Lemma 133. There is an isomorphism of Lie algebras

su(2) ∼= R3,

where R3 is considered as a Lie algebra equipped with the cross product × as Lie bracket.

Proof. The identification is given by

su(2)→ R3

vx =

3∑
k=1

xkiσk 7→
3∑
k=1

xkek = x,

where {σi} are the Pauli matrices described in equation (3.1).

Now, recall from corollary 48 that Spin(3) ∼= SU(2) and that covering homomorphism φ extends to the
adjoint action on Cl(R3). Therefore, the previous lemma implies that there is an isomorphism of groups

R3 oφ SU(2) ∼= su(2) oAd SU(2).

Notice that the standard inner product on R3 is invariant under the cross-product (in the sense that
〈x × y, z〉 + 〈y, x × z〉 = 0) and R3 is simple, so that the standard inner product must be a multiple of the

Killing form on R3. Identify R̂3 with R3 according to

〈x, p〉 = ei〈x,p〉R3 .

Under this identification and by the invariance of the inner product, SU(2) acts on R̂3 by u · x = φ(u)x.

The line spanned by e3 is a maximal Abelian subalgebra (as is any other one-dimensional subspace of R3). A
positive Weyl chamber is C = R≥0 and the points in C parametrize the adjoint orbits. The origin corresponds
to the only degenerate case and non-zero multiples elements represent non-degenerate orbits.

Since SO(3) acts by rotations, we know that the orbits are just spheres mS2 for some m > 0. We can obtain
the same result using the procedure described in section 6.3.1. Indeed, consider the defining representation of
su(2) on C2 and let X =

∑3
k=1 xkiσk be an element in su(2), then tr(X) = 0 and tr(X2) = −2(x2

1 + x2
2 + x2

3)
so that the orbits are described by level sets of the invariant polynomial x2

1 + x2
2 + x2

3.

Now, fix the point α = (0, 0,m) ∈ C. By the last remark in section 6.3, the stabilizer of α are those elements
of SU(2) that leave invariant all the eigenspaces of imσ3. Thus, the stabilizer is the one-dimensional torus

U(1) ↪→ SU(2), where the latter embedding is given by z 7→
(
z 0
0 z

)
.

The induced representations are constructed using associated homogeneous Hilbert bundles of the form

SU(2)×U(1) H → Om,

for some finite dimensional representation of U(1) on H. Recall that the irreducible representations of U(1)
are all one-dimensional and are given by σn : z 7→ zn with n ∈ Z.

In case of the trivial representation σ0, the above bundle becomes trivial

SU(2)×U(1) C0
∼= SU(2)/U(1)× C0

∼= O2
m × C0,

so the corresponding induced representation is the left regular representation on L2(S2,C0).
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Next, for any n ∈ N we have σn ∼= σ⊗n1 and σ−n ∼= σ⊗n−1 . Therefore lemma 29 implies that for any n ∈ N:

SU(2)×U(1) Cn ∼= (SU(2)×U(1) C1)⊗n,

SU(2)×U(1) C−n ∼= (SU(2)×U(1) C−1)⊗n.

By 125 it suffices to consider to the bundles SU(2) ×U(1) C1 and SU(2) ×U(1) C−1. Now, consider the the
defining representation δ of SU(2) on C2 so that δ∗(X) = X for X ∈ su(2). Its restriction to U(1) decomposes
as U(1)-representation according to

C2
∼= C1 ⊕ C−1.

Moreover, these invariant subspaces are precisely the eigenspaces of α corresponding to the eigenvalues ±im.
We find that we have equivalences of homogeneous Hilbert bundles:

SU(2)×U(1) C1
∼=
{

(X, v) ∈ Oα × C2 : Xv = imv
}
,

SU(2)×U(1) C−1
∼=
{

(X, v) ∈ Oα × C2 : Xv = −imv
}
,

where both these bundles are equipped with the SU(2)-action given by u · (X, v) = Adu(X,uv). Notice
further that the inner product on these bundles inherited from C2 is SU(2)-invariant and coincides with the
inner product induced from SU(2)×U(1) C1 on the fiber above α, because θ is isometric. Therefore, the two
are equal on every fiber. Moreover, under the identification su(2) ∼= R3 above, these become

SU(2)×U(1) C1
∼=

{
(X, v) ∈ Oα × C2 :

3∑
k=1

pkσkv = mv

}
,

SU(2)×U(1) C−1
∼=

{
(X, v) ∈ Oα × C2 :

3∑
k=1

pkσkv = mv

}
.

Now, using 125 we find that there are equivalences of homogeneous Hilbert bundles:

SU(2)×U(1) Cn ∼=

{
(p, t) ∈ Om × C2⊗n :

3∑
k=1

pkσ
ν
kt = mt, ν = 1, · · · , n

}
,

SU(2)×U(1) C−n ∼=

{
(p, t) ∈ Om × C2⊗n :

3∑
k=1

pkσ
ν
k t = −mt, ν = 1, · · · , n

}
,

where σνk = 1⊗ · · · ⊗ 1⊗ σk ⊗ 1⊗ · · · ⊗ 1.

Finally, notice that the U(1)-representation C−1 is equivalent to the dual representation C−1
∼= C∗1. Thus,

we may as well have applied equation (6.10) to find

SU(2)×U(1) C−1
∼=
{

(X, v) ∈ Oα × C2 : Xtv = imv
}
,

where the bundle on the right is now equipped with the SU(2)-action u · (X, v) = (Adu(X), uv).
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6.4.2 su(3)oAd SU(3)

Next, we consider the case where K = SU(3) and k = su(3). Notice that the complexification of su(3) is
sl(3,C). The adjoint action of SU(3) on su(3) uniquely extends to an action on sl(3,C). Since su(3) is
invariant under the adjoint action of SU(3) on sl(3,C), we can perform the computations in sl(3,C) and
consider the SU(3)-orbits in sl(3,C) that lie within su(3). A maximal Abelian subalgebra it of su(3) is given
by the span of iH1 and iH2, where

H1 =

(
σ3 0
0 0

)
, H2 =

(
0 0
0 σ3

)
.

Define the Cartan subalgebra h of g
d
= sl(3,C) by h = t ⊕ it. It is clear that the orbits that lie in su(3) are

precisely classified by elements of it. Let T = exp(it) ∼= U(1)× U(1) ∼= T2 be a maximal torus.

We use the inner product defined by 〈X,Y 〉 = tr(X∗Y ) to identify g and g∗. Notice firstly that this is indeed
a multiple of the Killing form and secondly that when restricted to h, this inner product coincides with the
one obtained by identifying h ↪→ C3.

Now, g has two positive simple roots

α(H1) = 2, β(H1) = −1,

α(H2) = −1, β(H1) = 2.

Under the identification h ∼= h∗, these correspond to α = H1 and β = H2. The fundamental weights are
given by

µ1 =
2

3
H1 +

1

3
H2 〈µ1, H1〉 = 1 〈µ2, H1〉 = 0,

µ2 =
1

3
H1 +

2

3
H2 〈µ1, H2〉 = 0 〈µ2, H2〉 = 1.

It follows that the fundamental Weyl chamber is C = iR+µ1 + iR+µ2. For general µ ∈ C, write

µ = 3iaµ1 + 3ibµ2

= (2a+ b)iH1 + (a+ 2b)iH2

= i diag (2a+ b, b− a,−(2b+ a))

for some a, b ≥ 0.

Let us now give an explicit description of the adjoint orbits in su(3). From theorem 131 we know that S(k∗)K

is generated by two algebraically independent trace polynomials. Notice further that all elements in su(3)
have trace zero. Therefore, these generators can not be of degree one. Consider the defining representation
of su(3) on C3. Let

X =

 ix u v
−u iy w
−v w −i(x+ y)

 , u, v, w ∈ C, x, y ∈ R

be a generic element of su(3). Then we compute

tr(X2) = −2p2(X)

tr(X3) = 3ip3(X),

where

p2(X) = |u|2 + |v|2 + |w|2 + (x+ y)2,

p3(X) = x2y + y2x− (x+ y)(|v|2 − |u|2)− 2 Im(uvw).

So p2 and p3 are the generators of S(k∗)K and the orbit corresponding to µ is given explicitly by

Oµ =
{
X ∈ k : p2(X) = c21 + c22, p3(X) = c21c+ c1c

2
2

}
, (6.15)

where c1 = 2a+ b and c2 = a+ 2b.
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Next, let us proceed with realizing the homogeneous Hilbert bundles obtained via the Mackey machine as
eigenspace subbundles of trivial bundles.

We consider first a non-degenerate orbit, which means that a, b > 0. Notice that the stabilizer Kν is precisely
the subspace of SU(3) for which all eigenspaces of µ are reducing subspaces. That is, Kν = T2 = U(1)×U(1),
which is considered as subgroup of SU(3) via (z1, z2) 7→ z1 ⊕ z2 ⊕ z1z2.

In view of lemma 154, the irreducible representations of U(1) × U(1) are given by Cn,m
d
= Cn ⊗ Cm for

n,m ∈ Z, where Ci denotes the irreducible representation z 7→ zi of U(1). Notice that C∗n ∼= C−n and
Ca,b ⊗ Cc,d ∼= Ca+c,b+d.

First, let us consider the trivial representation. We have

SU(3)×Kµ C0,0
∼= Oµ × C0,0.

Consider next the case |n|+ |m| > 0. By lemma 29 we have

SU(3)×Kµ Cn,m = SU(3)×Kµ (Cn,0 ⊗ C0,m)

= (SU(3)×Kµ Csgnn,0)⊗n ⊗ (SU(3)×Kµ C0,sgnm)⊗m.

In view of proposition 125 it suffices to consider the bundles SU(3)×Kµ C1,0 and SU(3)×Kµ C0,1. Now, let
δ be the defining representation of SU(3) on C3 so that δ∗(X) = X for X ∈ su(3). The restriction of the
defining representation to Kµ decomposes into irreducible Kµ-representations as follows:

C3 ∼= C1,0 ⊕ C0,1 ⊕ C−1,−1.

These invariant subspaces are precisely the eigenspaces of µ corresponding to the eigenvalues i(2a+b), i(b−a)
and −(2b+ a). By theorem 122 we obtain the following equivalences of homogeneous Hilbert bundles:

SU(3)×Kµ C1,0
∼=
{

(X, v) ∈ Oµ × C3 : Xv = i(2a+ b)v
}
,

SU(3)×Kµ C0,1
∼=
{

(X, v) ∈ Oµ × C3 : Xv = i(b− a)v
}
.

Using equation (6.10), we also obtain

SU(3)×Kµ C−1,0
∼=
{

(X, v) ∈ Oµ × C3 : Xtv = i(2a+ b)v
}
,

SU(3)×Kµ C0,−1
∼=
{

(X, v) ∈ Oµ × C3 : Xtv = i(b− a)v
}
,

where the bundles on the right are equipped with the SU(3)-action given by u · (X, v) = (Adu(X), uv).
An application of proposition 125 yields the general case Cn,m with |n|+ |m| > 0. As an example, consider
the case where n < 0 and m > 0. Using proposition 125 we find that there is an equivalence of homogeneous
Hilbert bundles

SU(3)×Kµ Cn,m ∼=
{

(X, q) ∈ Oµ × C3⊗(n+m) : (Xq)νq = i(2a+ b)q ν = 1, · · · , n

Xνq = i(b− a)q ν = n+ 1, · · · , n+m

}, (6.16)

where Xν = 1⊗· · · 1⊗X⊗1 · · ·⊗1 with X at the ν-th location and where the bundle on the right is equipped
with the SU(3)-action given by u · (X, q) = (Adu(X), (u⊗n ⊗ u⊗m)q.

Next, consider the degenerate case. Suppose that b = 0, so µ = idiag(2a,−a,−a). The stabilizer of
µ is precisely the subspace of SU(3) for which all eigenspaces of µ are reducing subspaces. That is,
Kµ = S(U(1)× U(2)). Similarly, if a = 0, then µ = idiag(b, b,−2b) so Kµ = S(U(2)× U(1)).

Return to the case where b = 0, a > 0 and thus Kµ = S(U(1)× U(2)).
Observe first that U(2) ∼= S(U(1) × U(2)) = Kµ via the isomorphism u 7→ det(u)−1 ⊕ u and secondly that
U(2) ∼= U(1)× SU(2)/{±(I, I)}. It follows that the irreducible representations of Kµ are precisely the irre-
ducible representations of U(1)× SU(2) that are trivial on (−1,−I).

Denote
∨m C2 the mth symmetric power of C2. It is known that SU(2) acts irreducibly on

∨m C2 for every
m ∈ N and all irreducible unitary representations of SU(2) are obtained in this manner, see also section 8.2.
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Denote by σm the irreducible representation of SU(2) on
∨m C2. By lemma 154, the irreducible unitary

representations of Kµ are precisely the representations πn,m of U(1)×SU(2) acting on Wn,m = Cn⊗
∨m C2

and Wn,0
d
= Cn that are trivial on (−1,−I). Now, for s⊗ v1 · · · vm ∈Wn,m we have

πn,m(−1,−I)(s⊗ v⊗m) = (−1)ns⊗ (−v1) · · · (−vm) = (−1)n+ms⊗ vm.

Therefore, the representations of Kµ are precisely πn,m where n ∈ Z and m ≥ 0 are such that n+m is even.
Notice that the inner product on Wn,m for m > 0 is defined by

〈z1 ⊗ v1 · · · vm, z2 ⊗ w1 · · ·wm〉 = z1z2

m∏
i=1

〈vi, wi〉.

Consider n+m even and m > 0. By lemma 29 we have

SU(3)×Kµ (Cn ⊗
m∨

C2) ∼= (SU(3)×Kµ Cn)⊗ (SU(3)×Kµ
m∨

C2)

∼= (SU(3)×Kµ Csgnn)⊗n ⊗
m∨

(SU(3)×Kµ C2)

In view of proposition 125 it suffices to consider the bundles SU(3)×KµC1 and SU(3)×KµC2. Now, consider
the defining representation δ of SU(3) on C3 so that δ∗(X) = X. Its restriction to Kµ decomposes as C1⊕C2,
where U(1)×SU(2) acts on C1 via U(1) and SU(2) acts trivially and vice-versa for the action of U(1)×SU(2)
on C2. Moreover, C1 is precisely the eigenspace of µ = idiag(2a,−a,−a) corresponding to the eigenvalue
i2a and C2 is the eigenspace of µ corresponding to eigenvalue −ia. By theorem 122 we obtain the following
equivalences:

SU(3)×Kµ C1
∼=
{

(X, v) ∈ Oµ × C3 : Xv = 2iav
}
,

SU(3)×Kµ C2 ∼=
{

(X, v) ∈ Oµ × C3 : Xv = −iav
}
.

An application of 125 now yields the general case. For n+m even and n,m > 0 we have

SU(3)×Kµ Wn,m
∼=
{

(X, q) ∈ Oµ × C3⊗n ⊗ Sm(C3) : Xνq = i2aq ν = 1, · · · , n

Xνq = −iaq ν = n+ 1, · · · , n+m

}
,

where the action of SU(3) on this bundle is given by u · (X, t) = Adu(X), u⊗nt. If on the other hand n < 0,
we obtain

SU(3)×Kµ Wn,m
∼=
{

(X, q) ∈ Oµ × C3⊗n ⊗ Sm(C3) : (Xt)νq = i2at ν = 1, · · · , n

Xνq = −iat ν = n+ 1, · · · , n+m

}
,

where now SU(3) acts according to u · (X, q) = (Adu(X), (u⊗n⊗u⊗m)q). Finally, For m = 0 and 0 6= n even,
we have

SU(3)×Kµ C0
∼= Oµ × C0

SU(3)×Kµ Cn ∼=
{

(X, v) ∈ Oµ × C3 : Xνv = 2iav ν = 1, · · · , n
}
,

SU(3)×Kµ C−n ∼=
{

(X, v) ∈ Oµ × C3 : (Xt)νv = 2iav ν = 1, · · · , n
}
,

with the appropriate SU(3)-action on these bundles.

Choosing a basis reveals more explicitly what differential equations the Fourier transform of sections of these
bundles would satisfy, assuming that the Fourier transform can indeed be suitably defined. Consider for
example the degenerate case with n,m > 0 and n + m even. Let {Ek}8k=1 be a basis of su(3) (such as the
Gell-Mann matrices) and identify su(3) ∼= R8 using this choice of basis. Then we obtain

SU(3)×Kµ Wn,m
∼=
{

(p, q) ∈ Oµ × C3⊗n ⊗ Sm(C3) :

8∑
k=1

pkE
ν
kq = i2aq ν = 1, · · · , n

8∑
k=1

pkE
ν
kq = −iaq ν = n+ 1, · · · , n+m

}
.
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6.5 Bundles arising via V ⊕ (k⊗ V )o Spin(r, s)0 ×K

In this final section, we consider the embedding of the homogeneous bundles that occur in representations of
the group G = V ⊕ k⊗ V o Spin(r, s)×K in eigenspace subbundles of trivial bundles. The main motivation
for doing so is to pursue an analysis of the representation theory of G in analogous fashion to Wigner’s anal-
ysis of the representation theory of R4 o SL(2,C), where differential equations describing certain relativistic
particles are recovered by embedding the corresponding bundles in eigenspace subbundles of trivial bundles.
It turns out that the method developed in theorem 122 can be successfully applied to associated bundles over
arbitrary orbits in V ⊕Hom(V, k) for an appropriate representation of the stabilizer.

We assume that the orbit space of V ⊕ (k ⊗ V ) under the action of Spin(r, s)0 ×K is countably separated.
In particular, this is true for the case where K = SU(N) and (V, q) is the Minkowski space (R4, η).

From section 8.4 we know that under the identifications V ∗ ∼= V using η and k ⊗ V ∼= k ⊗ V ∗ ∼= Hom(V, k),
the action on V ⊕Hom(V, k) becomes

(w, k) · p⊕A = φ(w)p+ Adk ◦A ◦ φ(w)−1. (6.17)

As in chapter 5, we use the bilinear form q on V and an Ad-invariant inner product κ on k to identify
V ∗ ∼= V and k∗ ∼= k. Denote by (−)? : Hom(V, k)→ Hom(k, V ) the transpose map under these identifications.
See also section 8.4 for more details on these identifications. In particular, from section 8.4 we know that
(AdkAφ(w)−1)? = φ(w)A?Ad−1

k .

In this setting, there are two natural ways in which the requirements of theorem 122 can be satisfied. That
is, in which there exist a representation of G on some vector space F and a way to interpret elements in
V ⊕ Hom(V, k) as operators F in an equivariant manner such that the eigenspaces of these operators are
invariant under the restricted action of the stabilizer. The idea is to consider representations of G on which
either Spin(r, s)0 or K acts trivially and to define equivariant projections of V ⊕Hom(R4, k) into either V or k.
In section 6.2 and section 6.3 we have already encountered suitable ways to interpret elements in these latter
two spaces as operators acting on the vector space of some Spin(r, s)0 or K-representation, so by composition
we obtain an equivariant map V ⊕Hom(V, k)→ End(F).

Lemma 134. Let ν = p0 +A0 ∈ Hom(V, k) be arbitrary.

1. Oν is a fiber bundle over the Spin(r, s)0-orbit Op0 , where the projection map is Spin(r, s)0-equivariant
and given by

ξ : Oν → Op0 , ξ : p⊕A 7→ p. (6.18)

2. Write X0 = A0p0. Then Oν is a fiber bundle over the adjoint orbit OX0
, where the projection map is

K-equivariant and given by
χ : Oν → OX0 , χ : p⊕A 7→ Ap. (6.19)

3. Write pA = A?0A0p0. Then Oν is a fiber bundle over the Spin(r, s)0-orbit OpA , where the projection
map is Spin(r, s)0-equivariant and given by

ψ : Oν → OpA , ψ : p⊕A 7→ A?Ap. (6.20)

Proof.

1. Notice first that there are diffeomorphisms Oν ∼= G/Gν and Op0 ∼= G/Gp0 , so by corollary 18 G is
a principal fiber bundle over both these orbits. In particular the quotient maps qν : G → G/Gν and
qp : G → G/Gp0 are smooth submersion and locally trivial. Since Gν ⊂ Gp0 , the quotient qp factors

through a map G/Gν
f−→ G/Gp0 . This map is clearly surjective and its differential df is a surjective

bundle map because dqp = df ◦ dqν is surjective. Therefore f is a smooth submersion. Finally, f is
locally trivial. To see why, notice that qp is locally the projection U × Gp0 → U and qν is in these
local coordinates given by the projection U ×Gp0 → U ×Gp0/Gν . The result follows from qp = f ◦ qν .
Finally, notice that under the isomorphisms Oν ∼= G/Gν and Op ∼= G/Gp0 , the map Oν → Op0 is given
by g · p⊕A 7→ g · p for g ∈ G. It is in particular clear that this map is equivariant.
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2. We employ a completely similar argument. Notice that OX0
∼= K/KX0

∼= G/GX0
, where Spin(r, s)0

acts trivially on k. Moreover, if (w, k) ∈ Gν , then φ(w)p = p and Adk ◦A ◦ φ(w)−1 = A. Thus,

AdkX = AdkAp = AdkAφ(w)−1φ(w)p = Aφ(w)p = Ap = X.

Therefore, Gν ⊂ GX0 . Using the same argument as in the first point, we obtain a locally trivial smooth
submersion Oν → OX0

given by g · ν 7→ g · X. Unraveling the definitions with g = (w, k) ∈ G, this
means

φ(w)p⊕Adk ◦A ◦ φ(w)−1 7→ Adk(Ap) = (Adk ◦A ◦ φ(w)−1)(φ(w)p).

3. Similarly, notice that OpA ∼= G/GpA . This implies Gν ⊂ GpA , because if (w, k) ∈ Gν , then

φ(w)pA = φ(w)A?Ap = (AdkAφ(w)−1)?(AdkAφ(w)−1)φ(w)p = A?Aφ(w)p = A?Ap = pA.

Thus we obtain a locally trivial smooth submersion Oν → OpA given by g · ν 7→ g · pA. Unraveling the
definitions, we similarly find that this map is given by p⊕A 7→ A?Ap.

Corollary 135. Let ν = p0 ⊕ A0, X0 = A0p0, ξ, χ and ψ be as in lemma 134. Let E → Oν be a vector
bundle. Then any section s ∈ Γ(Oν , E) satisfies the following three equations, where µ = p + A ∈ Oν is
arbitrary:

(q ◦ ξ)(µ)s(µ) = q(p0)s(µ),

(q ◦ ψ)(µ)s(µ) = q(pA)s(µ),

(P ◦ χ)(µ)s(µ) = P (X0)s(µ), ∀P ∈ S(k∗)K .

Remark.

— If we assume that a suitable Fourier transform can be defined on the space of sections Γ(Oν , E), then
each of the equations in corollary 135 would yield a partial differential equation satisfied by the Fourier
transform f̂ of such a section f . For example, if we consider the case of Minkowski space (V, q) = (R4, η),

then the first equation would correspond to ( ∂
2

∂t2 −
∂2

∂x2 − ∂2

∂y2 −
∂2

∂z2 )f̂ = η(p0, p0)f̂ .

Proposition 136. Consider a finite dimensional representation ρ : Cl(V, q) → End(F) of the Clifford
algebra Cl(V, q) and set S = ρ|Spin(r,s)0 be its restriction to the connected component of the spin group.

Let ν = p0 + A0 ∈ V ⊕ Hom(R4, k). Let c1, c2 ∈ R be arbitrary. Suppose that Eλ is an eigenspace of
c1ρ(p0) + c2ρ(A?0A0p0) with eigenvalue λ. Then there is an equivalence of homogeneous vector bundles over
Oν :

G×Gν Eλ ∼= { (p⊕A, v) ∈ Oν ×F : c1ρ(p)v + c2ρ(A?Ap)v = λv } , (6.21)

where Gν acts on Eλ via (w, k) · v = S(w)v and where the bundle on the right is equipped with the G-action
given by

(w, k) · (p⊕A, v) = (φ(w)p⊕Adk ◦A ◦ φ(w)−1, S(w)v).

Proof. Let ξ, ψ be defined by (6.18) and (6.20). We have already seen in equation (3.4) that the assignment

V
ρ−→ End(F) is equivariant with respect to the action of Spin(r, s)0:

ρ(φ(w)p) = S(w)ρ(p)S(w)−1.

Since both ξ and ψ are Spin(r, s)0-equivariant maps, it follows that the map

θ : Oν → GL(F), θ = c1 · (ρ ◦ ξ) + c2 · (ρ ◦ ψ)

is G-equivariant, where K acts trivially on the latter space. Furthermore, we have seen in the proof of
lemma 134 that Gν ⊂ Gp0 ∩GpA , where pA = A?0A0p0. It follows that for any g ∈ Gν , we have

θ(ν) = θ(g · ν) = S(w)θ(ν)S(w)−1

and therefore S|Gν leaves the Eλ invariant. Thus, if we consider the representation δ of G on F on which

Spin(r, s)0 acts via S and K acts trivially, then δ|Gν leaves the eigenspace Eλ of (θ)(ν) invariant. The result
now follows by theorem 122.
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Corollary 137. Consider the setting of proposition 136 and let ξ, ψ be as in (6.18) and (6.20). Define
θ = c1 · ξ + c2 · ψ. Write

E1 d
= { (p⊕A, v) ∈ Oν ×F : c1ρ(p)v + c2ρ(A?Ap)v = λv } ,

E2 d
=
{

(p, v) ∈ Oθ(ν) ×F : ρ(p)v = λv
}
.

Then (θ × id, θ) is a surjective morphism of G-homogeneous Hilbert bundles (E1,Oν) → (E2,Oθ(ν)), where
K acts trivially on E2 and Oθ(ν), and Spin(r, s)0 acts on E2 by w · (p, v) = (φ(w)p, S(w)v).

Remark.

— The attentive reader may recognize that E1 is precisely the pullback bundle of E2 by θ.

— Any section s ∈ Γ(Oν , E1) satisfies ρ(p)s(µ) = λs(µ) for all µ ∈ θ−1({p}).

— Suppose in particular that V = R1,3 and consider the point ν = me0 ⊕ A0 with m > 0. Let ρ :
Cl(1, 3)→ End(C4) be the representation defined by equation (3.6) and write S = ρ|SL(2,C).

Notice that ρ(me0) = mγ0 has two non-trivial two-dimensional eigenspaces E±m with eigenvalues ±m.
Then proposition 136 yields that

G×Gν E±m ∼=
{

(p⊕A, v) ∈ Oν × C4 : ρ(p)v = ±mv
}
,

which recovers the eigenvalue equation corresponding to the Dirac equation for spin 1
2 -particles. How-

ever, we obtain more information, namely the orbit of ν in R4 ⊕Hom(R4, k). In view of corollary 135,
this corresponds to a set of equations satisfied by sections of homogeneous bundles over Oν .

Now, an application of 125 yields

G×Gν
N∨
E±m ∼=

{
(p⊕A, t) ∈ Oν × SN (C4) : ρν(p)t = ±mt, ∀ν = 1, · · · , N

}
,

where ρν = 1⊗ · · · ⊗ ρ⊗ 1 · · · ⊗ 1. This similarly recovers the Dirac equation corresponding to higher
spin, with the information of the orbit of A0.

— Consider the same setting as in the previous point. Notice that for any p ∈ Ome0 , the eigenspaces of ρ(p)
are two-dimensional. Taking c2 = 0 in proposition 136 can thus never directly apply to homogeneous
bundles over Oν of the form G ×Gν C. Yet, we have seen in theorem 117 that many of the stabilizers
Gν have one-dimensional irreducible representations. Taking c2 6= 0 may resolve the matter. To see
why, consider

Γ
d
= iγ0γ1γ2γ3 =

(
1 0
0 −1

)
.

In view of equation (3.7), Γ commutes with S(w) for every w ∈ SL(2,C). Suppose that pA = e0 − e3.
A direct computation shows that Γ commutes with ρ(pA) = γ0 − γ3. By equivariance of ρ, it leaves
the eigenspaces of ρ(p) invariant for all p ∈ OpA . Now, ρ(pA) has a single two-dimensional eigenspace
E0 with eigenvalue zero that is spanned by e1 and e2. The eigenspaces of Γ decompose E0 further
according to E0 = E+

0 ⊕ E
−
0 where γv = ±v on E±0 and because Γ intertwines S, the stabilizer GpA

leaves both subspaces E±0 invariant. Recalling from the proof of lemma 134 that Gν ⊂ GpA , we find
using proposition 136 and lemma 27 that

G×Gν E±0 ∼=
{

(p⊕A, v) ∈ Oν × C4 : ρ(A?Ap)v = 0, Γv = ±v
}
. (6.22)

Notice that because Γ anti-commutes with every γk it does not leave the eigenspaces of ρ(p) invariant
whenever η(p, p) 6= 0. Therefore, a similar idea works only if c1, c2 ∈ R can be chosen such that
η(θ(ν), θ(ν)) = 0, where θ = c1 · ξ + c2 · ψ : Oν → V .
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Proposition 138. Let ν = p0 + A0 ∈ V ⊕ Hom(V, k) be arbitrary. Suppose that π : K → F is a finite
dimensional representation of K and let Spin(r, s)0 act trivially on this space. Then for any eigenvalue λ of
π∗(A0p0) with eigenspace Eλ, there is an equivalence of homogeneous vector bundles

G×Gν Eλ ∼= { (p⊕A, v) ∈ Oν ×F : π∗(Ap)v = λv } , (6.23)

where Gν acts on Eλ according to (w, k) · v = π(k)v and where the bundle on the right is equipped with the
G-action given by

(w, k) · (p⊕A, v) = (φ(w)p⊕Adk ◦A ◦ φ(w)−1, π(k)v).

Proof. Let χ be as in (6.19). We have already seen in equation (6.13) that π∗ is K-equivariant. In view of
lemma 134 the map π∗ ◦χ is G-equivariant. It follows that the eigenspaces of (π∗ ◦χ)(ν) are invariant under
the action of the stabilizer. Explicitly, we have for any g = (w, k) ∈ Gν :

π(k)(π∗ ◦ χ)(ν)π(k)−1 = π∗(χ(g · ν)) = (π∗ ◦ χ)(ν).

Thus, we obtain a non-trivial Gν-representation on each of the eigenspaces Eλ of (π∗ ◦χ)(ν). The result now
follows by an application of theorem 122.

Corollary 139. Consider the setting of proposition 138, let χ be as in lemma 134 and let X0 = A0p0. Write

E1 d
= { (p⊕A, v) ∈ Oν ×F : π∗(Ap)v = λv } , (6.24)

E2 d
= { (X, v) ∈ OX0 ×F : π∗(X)v = λv } . (6.25)

Then (χ × id, χ) is a surjective morphism of G-homogeneous Hilbert bundles (E1,Oν) → (E2,OX0
), where

Spin(r, s)0 acts trivially on E2 and OX0
, and K acts on E2 by k · (X, v) = (Adk(X), π(k)v).

Remark.

— Consider K = SU(N) and its defining representation π on CN . Then any element X = Ap in the Lie
algebra su(N) is diagonalizable. The proof of proposition 138 shows that every eigenspace Eλ of X is
Gν-invariant and therefore, CN decomposes as a Gν-representation according to

CN ∼=
⊕
λ

Eλ.

Now, proposition 138 applies to each of the Gν-representations Eλ.

— Corollary 139 states the sense in which all eigenvalue equations encountered in section 6.3 are contained
in the representation theory of G. Indeed, any section s ∈ Γ(Oν , E1) satisfies the equation π∗(X)s(µ) =
λs(µ) for all µ ∈ χ−1(X) in the fiber of X ∈ OX0

. In particular, this applies to the case where K =
SU(N) and π is the defining representation on Cn. Now, all of the eigenvalue equations encountered in
section 6.4.1 and section 6.4.2 were obtained by restricting the defining representation to the eigenspaces
of some X ∈ su(N), N = 2, 3 and applying various bundle operations. Therefore all these equations
are contained in the representation theory of V ⊕ k⊗V o Spin(r, s)0×K, in the sense described above.
However, we obtain additionally the information of the orbit Oν the associated bundle G ×Gν H is
defined over.

— For massive points and K = SU(2), the values of Ap have a direct relationship with the stabilizers
obtained in theorem 117 and the method that was used to prove this result.

Indeed, suppose that V = R1,3 and consider the point ν = p0⊕A0 ∈ V + Hom(V, k) with p0 = mpe0 for
some mp > 0. Write A0 =

(
X B

)
for some X ∈ k and B ∈ Hom(R3, k). Then A0p0 is simply given by

A0p0 = mpX. Now, for K = SU(2) there are two possibilities. If X = 0, then A0p0 = 0 has only one
eigenspace, namely all of C2 and Ap = 0 for every p ⊕ A ∈ Oν . If on the other hand X 6= 0, then X
has two one-dimensional eigenspaces C− and C+ corresponding to some eigenvalues ±ms 6= 0. Notice
that this is precisely the distinction a = 0 or a 6= 0 made in section 5.2. In both cases, proposition 138
immediately yields isomorphisms of homogeneous vector bundles:

X = 0 =⇒ G×Gν C2 ∼= Oν × C2, (6.26)

X 6= 0 =⇒ G×Gν C± ∼=
{

(p⊕A, v) ∈ Oν × C2 : (Ap)v = ±mpmsv
}
. (6.27)

— On the one hand, proposition 136 realizes bundles G×GνHS as eigenspace subbundles of trivial bundles,
where Gν ∩K acts trivially. On the other hand, proposition 138 does the opposite; it considers bundles
G×Gν HK where Gν ∩Spin(r, s)0 acts trivially. Proposition 125 can be applied to obtain similar results
for representations of Gν where both Gν ∩ Spin(r, s)0 and Gν ∩K act non-trivially.
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6.5.1 The case of K = SU(2)

In the following, an example is considered of how the results of the previous section may be applied to study

the representation theory of G = V o H
d
= R4 ⊕ Hom(R4, su(2)) o SL(2,C) × SU(2). By corollary 86 we

know that the orbit space of the action of H on V is countably separated. Thus, according to the theory of
the Mackey machine, the irreducible representations of G are classified by that of the various stabilizers of
the action of H on V̂ . As in the previous section, we identify R4∗ ∼= R4 using η and su(2)∗ ∼= su(2) using κ.
Denote by (−)? : Hom(R4, k) → Hom(k,R4) the corresponding transpose map. We may use the G-invariant

bilinear form β(x⊕A, p⊕B) = η(x, p) + tr(A?B) to identify V̂ ∼= V via the pairing

〈x⊕A, p⊕B〉 d= eiβ(x⊕A,p⊕B).

Under these identifications, the action of H on V̂ transfers to the action

(w, k) · p⊕A = φ(w)p+ Adk ◦A ◦ φ(w)−1.

In section 5.2, the stabilizers of this action where determined up to equivalence. They are given by theo-
rem 117.

Identify su(2) ∼= R3 using the Pauli matrices as in lemma 133 and consider a basis of R4 in which η corresponds
to the matrix D = diag(1,−1,−1,−1). Let us consider a non-trivial example corresponding to the case a 6= 0
in the proof of theorem 117 whose stabilizer is a product of compact subgroups, namely consider the case
that Hν = U(1) × U(1), where U(1) embeds in SU(2) and SL(2,C) via z 7→ z ⊕ z. In view of the proof of
theorem 117, the corresponding element in R4 ⊕Hom(R4, k) is ν = me0 +A0, where

A0 =

0 0 0 0
0 0 0 0
r 0 0 s


for some r, s 6= 0. Now, by lemma 154, the irreducible representations of Hν = U(1) × U(1) are given by
Cn ⊗ Cm with n,m ∈ Z. We consider the representations C± ⊗ C0 and C0 ⊗ C±, noticing that the general
case follows by means of suitable bundle operations using proposition 125.

First, let us consider the representations of Hν where K acts trivially. Consider the representation
ρ : Cl(1, 3) → End(C3) defined by the Dirac matrices γk, which are given in equation (3.6) and set
S = ρ|SL(2,C). We aim to choose the constant c1, c2 ∈ R in proposition 136 appropriately, following the
last remark succeeding corollary 137.

From lemma 160 we know that A? is the unique map satisfying κ(Ap, x) = η(p,A?x) for all p ∈ R4 and
x ∈ R3. In our choice of basis, this becomes pTATx = pTDA?x, where (−)T denotes the usual transpose of
vectors and matrices. Thus DA? = AT so that the matrix of A? is given by DAT , seeing as D−1 = D.

Using the preceding observation, one computes that A?0A0p0 is given by r2m · e0− rsm · e3. Let ξ, ψ be as in
lemma 134 and define θ : Oν → R4 by θ = r(s− r) · ξ + ψ. In that case, it holds that θ(ν) = mrs(e0 − e3).
We have seen in the last remark succeeding corollary 137 that the element Γ = iγ0γ1γ2γ3 intertwines the
SL(2,C)-representation S and leaves the eigenspace of γ0 − γ3 corresponding to eigenvalue 0 invariant. This
eigenspace is spanned by e1 and e2. In view of equation (3.7) we find that the action U(1) ⊂ SL(2,C) on
Span{e1} and Span{e2} is equivalent to C−1 and C1, respectively. Thus using proposition 136 and lemma 27,
we find:

G×Gν (C±1 ⊗ C0) ∼=
{

(p⊕A, v) ∈ Oν × C4 : r(s− r)ρ(p)v + ρ(A?Ap)v = 0, Γv = ∓v
}
.

On the other hand, because A0p0 = mre3 equation (6.26) implies that

G×Gν (C0 ⊗ C±1) ∼=
{

(p⊕A, v) ∈ Oν × C2 : (Ap)v = ±mr · v
}
.
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Part III

77



Chapter 7

Discussion and Conclusion

Following recent developments by B. Janssens and K.H. Neeb [JN], the strongly continuous unitary repre-
sentations of groups of the form G = R4 ⊕ Hom(R4, k) o SL(2,C) × K were studied that satisfy a certain
positive energy condition.

For an element p+A ∈ R4⊕Hom(R4, k), the of positive energy requirement was found to be equivalent to the
condition that A? maps the adjoint orbit of H into the closed future-pointing light cone: A?OH ⊆ C. This
equivalent formulation could be used to obtain the result that p ∈ C is a necessary requirement for satisfying
the positive energy condition and that for p ∈ ∂C in the future-pointing light cone, it is even necessary that
A is a rank-one operator of the form A = η(p, ·)X for some X ∈ k.

By the theory of the Mackey machine, the irreducible strongly continuous representations of G that satisfy
the positive energy condition are classified by the corresponding stabilizers of the action of SL(2,C)×K on
R4⊕Hom(R4, k). These stabilizers were completely determined up to equivalence for the case of K = SU(2).
The result is given in theorem 117. Now, the representation theory of these stabilizers is completely un-
derstood, so that a full classification of the strongly continuous representations of G satisfying the positive
energy condition is obtained.

The condition A?OH ⊆ C admits a physical interpretation. Namely, the projection of a point p ∈ C to the
time-axis is usually interpreted as its total energy, whereas the value of η(p, p) is interpreted as its mass. It
is therefore tempting to interpret these values similarly for the perturbed point p + A?H. In this case, the
positive energy condition states precisely that the point p + A?H can not have negative mass nor can it be
in the orbit of point with negative total energy.

In order to understand to induced representations of positive energy in more detail, a method was developed
that embeds homogeneous bundles as eigenspace subbundles of trivial bundles that in particular applies to
the bundles obtained in the representation theory of R4⊕(k⊗R4)oSL(2,C)×K. The eigenspace subbundles
thus obtained recover in particular the Dirac equation as well as various eigenvalue equations corresponding
to the intrinsic symmetries imposed by K.

Moreover, these eigenspace subbundles resemble various theories in particle physics. For example, elements
X ∈ su(N) in the adjoint representation of SU(N) are commonly considered to act on vectors in a repre-
sentation of SU(N) via the infinitesimal representation, examples being pions and gluons. Such an interplay
between the SU(N), its adjoint representation on su(N) and the actions of these two on some vector space
is precisely how the eigenspace subbundles are obtained. Moreover, degenerate orbits in the adjoint repre-
sentation su(3) of SU(3) may be connected to the phenomenon known to physicists as symmetry breaking.

In the case of K = SU(2), a clear connection was found between the obtained eigenvalue subbundles and
the method that was used to determine the stabilizers in theorem 117. Namely, the distinction made in the
proof corresponds precisely to whether or not the value of Ap in su(2) is zero.
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Future Research

The results obtained in this thesis leave a number of open ends and possible directions for future research.

Firstly, in order to allow for a clear physical interpretation of the obtained eigenspace subbundles, it would
be beneficial to show that the sections of these bundles can be interpreted as tempered distributions whose
Fourier transform satisfy corresponding wave equations. This would complete the analogy to Wigner’s anal-
ysis of the representation theory of R4 o SL(2,C)[BW48].

Secondly, now that the strongly continuous unitary representations satisfying the positive energy condition
of the group G = R4⊕Hom(R4, k)oSL(2,C)×K have completely been classified for the case of K = SU(2),
it remains to apply the results of section 6.5 to realize the corresponding homogeneous bundles as eigenspace
subbundles. If we assume that a suitable Fourier transform can be defined on the space of sections of these
bundles, this would yield various differential equations that correspond to irreducible representations and
these could possibly be related to elementary particles.

It would be interesting to study the case of K = SU(3) in a similar fashion, namely by determining the
stabilizers corresponding to positive energy representations and realizing the resulting homogeneous bundles
as eigenspace subbundles using section 6.5. Because SU(3) is related to the symmetry group of the strong
interaction, this case is of particular physical interest and could provide a further understanding of elementary
particles.

Now, in order to determine these stabilizers, it is noteworthy to mention that the main idea of the proof of
theorem 117 can be done more generally; namely to recursively restrict the action of SL(2,C)×K to smaller
subgroups, decompose R4⊕Hom(R4,⊗k) into irreducible representations of the restricted group and consider
the various cases in this decomposition. There is good hope that such an approach works more generally
because the adjoint action of SU(N) on su(N) takes values in SO(su(N), κ), which are simply higher-
dimensional rotations. In particular, the invariant subspaces of such transformations are well-understood so
that the stabilizers of AA∗ ∈ End(k) can be determined.

Furthermore, as physicists are often interested in invariant quantities that distinguish or characterize various
particles, it is of interest to determine the center of the universal enveloping algebra of R4⊕(k⊗R4)osl(2,C)⊕k.
Such elements will act by scalars on any representation of the corresponding Lie algebra.

Finally, besides the physical relevance of the results obtained in this thesis, the method for embedding homo-
geneous bundles in trivial bundles could possibly be applied more generally and could therefore shed light on
the representation theory of other groups, as well as on homogeneous bundles obtained through other means
than representation theory.
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Chapter 8

Appendix

8.1 Analysis on locally compact groups

This section consists of various results on locally compact groups that are needed throughout the text.
Explicitly, two matters are addressed:

1. the construction of the induced representation given in section 4.1 makes the assumption that of the
existence of an invariant measure on a quotient space G/H for some closed subgroup H of G. The first
section gives some relevant results justifying this assumption.

2. Secondly, the Mackey machine heavily makes use of spectral theory for representations of an Abelian
locally compact group. Specifically relevant is the fact that such a representation corresponds to
a spectral measure on its dual group. This spectral measure plays an essential role in the Mackey
machine. The second section is devoted to a summary of the relevant results.

The results in this section, including the proofs, are taken from [Fol95].

8.1.1 Invariant measures on homogeneous spaces

Let G be a locally compact group and let λ be a left Haar measure. This section is concerned with the
existence of a G-invariant measure on homogeneous spaces G/H.

We first introduce the so called modular function ∆, which measures the extent to which the left Haar mea-
sure fails to be right-invariant.

Define for every x ∈ G a new left Haar measure λx by λx(E) = λ(Ex). Since the left Haar measure on G
is unique up to a positive constant, we obtain for every x ∈ G a number ∆(x) > 0 such that λx = ∆(x)λ.
Moreover, this number ∆(x) does not depend on the original choice of λ, since

(cλ)x = cλx = c∆(x)λ = ∆(x)(cλ).

This yields a function ∆ : G→ R× called the modular function of G, where R× denotes the multiplicative
group of positive real numbers. Notice that λ is both a left and right Haar measure if and only if ∆ ≡ 1. In
this case, G is called unimodular.

Proposition 140. The map ∆ : G→ R× is a continuous homomorphism. Moreover, for any f ∈ L1(G),∫
Ryfdλ = ∆(y−1)

∫
fdλ. (8.1)

Proof. It is trivially verified that λxy = (λx)y which implies that ∆(xy)λ = ∆(y)∆(x)λ = ∆(x)∆(y)λ.
The equality 8.1 is clear on simple functions since λ(Ey−1) = ∆(y−1)λ(E). The general case follows by
approximation. Continuity of ∆ follows since for any fixed f ∈ L1(g), the map g 7→

∫
Rgfdλ is continuous

and by 8.1 we have

∆(g) =

∫
fdλ∫
Rgfdλ

,

which is continuous in g.
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The following proposition gives some classes of unimodular locally compact groups.

Proposition 141. Let G be a locally compact group and let ∆ denote its modular function.

1. If K is any compact subgroup of G then ∆|K ≡ 1.

2. If G is compact, then G is unimodular.

3. If G/[G,G] is compact, then G is unimodular

4. If G is a connected semi-simple Lie group, then G is unimodular.

Proof.

1. Since ∆ is continuous, ∆(K) must be compact and since ∆ is a homomorphism, it is a subgroup of R×.
The only compact subgroup of Rx is {1}, so that ∆|K ≡ 1.

2. This is immediate from the previous assertion.

3. Since Rx is Abelian, we have ∆([x, y]) = [∆(x),∆(y)] = 1. It follows that ∆ factors trough G/[G,G].
The conclusion now follows from the first assertion.

4. For a semi-simple Lie algebra g it holds that [g, g] = g. But [g, g] is the Lie algebra of [G,G]. Since G
is connected, it follows that [G,G] = G. Then G/[G,G] = {1}, which is clearly compact.

Now, consider a locally compact group G with closed subgroup H. Let G
q−→ G/H be the quotient map. It

will be of particular interest to know when the quotient space G/H possesses a G-invariant Radon measure.
This question is addressed in the following.

Let ξ be a left Haar measure of H and denote by ∆G and ∆H the modular functions of G and H, respectively.

To define a G-invariant measure on G/H, the idea is to construct a surjective map Cc(G)
A−→ Cc(G/H) and

attempt to define ∫
G/H

Afdx =

∫
G

f,

which would define a G-invariant linear functional on Cc(G/H) and thence a G-invariant Radon measure
on G/H. Of course, one still needs to address to question of whether or not such an integral is actually
well-defined, as well as define such a surjective map A.

Define the following map, which we call the averaging map:

A : Cc(G)→ Cc(G/H)

(Af)(xH)
d
=

∫
H

f(xξ)dξ.
(8.2)

Notice that the resulting map is indeed well-defined by the left invariance if ξ. Moreover, it satisfies

A((φ ◦ q) · f) = φ ·Af

for every φ ∈ Cc(G/H) and f ∈ Cc(G).

Lemma 142 (Lifting compact sets).
Let E ⊂ G/H be compact. Then there exists a compact set K ⊂ G such that q(K) = KH = E.

Proof. Let V be an open neighborhood of 1 with compact closure. Since q is an open map, {q(xV )}x∈G is an
open cover of E so by compactness there exists a finite sub cover {xjV }nj=1. Take K = q−1(E)∩

⋃n
j=1 xjV .

Lemma 143. If E ⊂ G/H is compact, then there exists f ≥ 0 in Cc(G) such that Af = 1 on E.

Proof. Let F ⊃ E be compact in G/H and let K ⊂ G be a compact lift of F . Let φ ∈ Cc(G/H) be such that
φ ≥ 0, suppφ ⊂ E and φ|F = 1. (Such a function exists e.g. by Tietze’s extension theorem.) Let g ∈ Cc(G)
be such that g ≥ 0 on K. Take

f =
φ ◦ q
Ag ◦ q

· g.
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Lemma 144 (Surjectivity of A).
Let φ ∈ Cc(G/H). Then there exists f ∈ Cc(G) such that φ = Af and q(supp f) = suppφ. Moreover, if
φ ≥ 0 we can take f ≥ 0.

Proof. Let g ≥ 0 in Cc(G) be such that Ag ≡ 1 on suppφ. Let f = (φ ◦ q) · g. Then Af = φ. The other
properties are obvious.

Finally, the main result of this section can be stated, which comes with a sort of Fubini theorem:

Theorem 145. Suppose G is a locally compact group and H is a closed subgroup. There is a G-invariant
Radon measure µ on G/H if and only if ∆G|H = ∆H . In this case, µ is unique up to a constant factor and
if this factor is suitably chosen, we have∫

G/H

Afdµ =

∫
G

f(x)dx =

∫
G/H

∫
H

f(xξ)dξdµ(xH). (8.3)

Proof.
A proof can be found in [Fol95, p. 57].

Corollary 146.
Let G be a locally compact group and H a closed subgroup of G.

Then G/H has a G-invariant Radon measure of one of the following is satisfied

1. H is compact,

2. G is a Lie group and both G and H are semisimple and connected.

Proof. Both assertions follow by proposition 141

1. If H is compact, then both ∆G|H ≡ 1 and ∆H ≡ 1.

2. If G is a semisimple Lie group, then since H is closed, it is a semisimple Lie group of its own right. By
assumption they are both connected, so proposition 141 yields ∆G ≡ 1 and ∆H ≡ 1.

8.1.2 The group algebra

This section is mainly concerned with the results needed in the Mackey machine (section 4.4). Particularly
important is the result that any representation of such a group corresponds to a unique projection-valued
measure on the dual group Ĝ. The group algebra L1(G) associated to a locally compact group is first intro-
duced. This algebra has very strong connections with the original group G, but being a Banach-∗-algebra
has more structure and is thus easier to handle. In particular, the Gelfand representation is available and
the image of non-degenerate ∗-representation of L1(G) yields a C∗-subalgebra of L(H), so that the spectral
theorem is available.

A proof of the results mentioned here can be found e.g. in [Fol95]. We assume that G is σ-compact, which is
in particular true if G is connected. In this case, the Haar measure of G is σ-finite and L1(G)∗ ∼= L∞(G) holds.

Let G be a locally compact group, let λ denote its left Haar measure and ∆ the modular function. Write
dx for dλ(x). Then L1(G) is a Banach ∗-algebra with an approximation of the identity with the operations
[Fol95, p.49-54]

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dy

f∗(x) = ∆(x−1)f(x−1).

This algebra is called the group algebra of G. The theory of unitary representation G is strongly related
to non-degenerate ∗-representations of its group algebra L1(G). Indeed, suppose that π is a unitary repre-
sentation of G on Hπ. Define for f ∈ L1(G) the operator π(f) on Hπ by

π(f) =

∫
G

f(x)π(x)dx,

where the integral is to be interpreted in the weak sense, i.e, 〈π(f)u, v〉 =
∫
G
f(x)〈π(x)u, v〉dx. Notice that

|〈π(f)u, v〉| ≤ ‖f‖1‖u‖‖v‖ so π(f) is a bounded linear operator on Hπ with norm ‖π(f)‖ ≤ ‖f‖1.
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Theorem 147. Let π be a unitary representation of G. Then Φ : f 7→ π(f) defines a non-degenerate
∗-representation of L1(G) on Hπ
Proof. It is clear that Φ is linear. It is a a routine calculation to show Φ is an ∗-homomorphism L1(G) →
L(Hπ), making use of Fubini-Tonelli and the substitution rule dλ(x−1) = ∆(x−1)dλ(x). To see it is non-
degenerate, we show that for any u 6= 0 there exits some f ∈ L1(G) such that π(f)u 6= 0. Fix u 6= 0. Since
π is (strongly) continuous and G is locally compact, we can find a compact neighborhood V of 1 ∈ G such
that ‖π(x)u− f‖ ≤ ‖u‖. taking f = |V |−1

1V we find ‖π(f)u− u‖ ≤ ‖u‖ so in particular π(f)u 6= 0.

Lemma 148. The assignment F : π(x)→ π(f) defines a functor from the category of unitary representation
of G to the that of non-degenerate ∗-representations of L1(G).
Moreover, this functor is fully faithful. That is, for any two unitary representations π1, π2 ∈ UR(G) there is
a bijection between the Hom sets:

HomG(π1, π2) ∼= HomL1(G)(F (π1), F (π2)).

Proof. It is clear that any linear map intertwining two unitary representations π1, π2 of G also intertwines
the representations F (π1) and F (π2). Therefore F is indeed a faithful functor. It remains to show it is full.
Suppose πi acts on Hi and T ∈ HomG(π1, π2). Notice that∫

G

f(x)〈Tπ1(x)u, v〉dx =

∫
G

f(x)〈π2(x)Tu, v〉dx ∀f ∈ L1(G), u, v ∈ H1

⇐⇒ 〈Tπ1(x)u, v〉 = 〈π2(x)Tu, v〉, ∀x ∈ G, u, v ∈ H1

⇐⇒ Tπ1(x) = π2(x)T, ∀x ∈ G.

The following theorem shows that this functor is essentially surjective on objects and therefore establishes
an equivalence of categories between unitary representations of G and non-degenerate ∗-representations of
L1(G).

Theorem 149. Suppose π is a non-degenerate ∗-representation of L1(G) on the Hilbert space Hπ. Then π
arises from a unique unitary representation of G on Hπ.

Proof. A proof can be found in [Fol95, p. 74, Theorem 3.11].

Definition 150. Denote by Ĝ the dual space, that is, the set of equivalence classes of irreducible unitary
representations of G.

— Suppose that G is Abelian. By Schur’s lemma, all irreducible representations of G are one-dimensional.
Thus, if π is any irreducible representation of G, we may take Hπ = C and π(x)(z) = ξ(x)z for some

character ξ, that is, a continuous group homomorphism ξ : G → U(1). Therefore, we may identify Ĝ
with the set of characters of G. We use the notation ξ(x) = 〈x, ξ〉. Now, by theorem 147 any character

ξ ∈ Ĝ determines a non-degenerate ∗-representation of L1(G) on B(C) ∼= C:

ξ(f) =

∫
G

〈x, ξ〉f(x)dx (8.4)

— It turns out that every element in the spectrum of L1(G) arises in this manner so that Ω(L1(G)) ∼= Ĝ.
This fact is essential in the theory of the Mackey machine described in section 4.4.

Proposition 151. Ĝ can be identified with the spectrum of L1(G) via 8.4. That is, 8.4 determines a
multiplicative functional on L1(G) and every multiplicative functional of L1(G) is of the form 8.4.

Proof. Notice that this is not an application of 149, since elements in the spectrum of L1(G) are not necessarily
∗-homomorphisms. The proof given here is taken from [Fol95, p. 88].
Now, let τ : L1(G)→ C be a non-trivial algebra homomorphism. Since L1(G)∗ ∼= L∞(G), there exists some
φ ∈ L∞(G) such that τ(f) =

∫
G
φfdx. Let f ∈ L1(G) be such that τ(f) 6= 0. Then for any g ∈ L1(G) we

have

τ(f)

∫
φ(y)g(y)dy = τ(f)τ(g) = tau(f ∗ g)

=

∫ ∫
ψ(x)f(xy−1)g(y)dydx

=

∫
τ(Lyf)g(y)dy.
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Since this holds for all g we obtain φ(y) =
τ(Lyf)
τ(f) almost everywhere. By replacing φ by this expression if

necessary, we may assume equality holds everywhere. Then φ is continuous and τ(f) =
∫
fφdx so it remains

to show it is a character. Notice that

φ(xy)τ(f) = τ(Lxyf) = τ(LxLyf) = φ(x)φ(y)τ(f).

Thus φ is multiplicative. Since φ is bounded, this implies that |φ(x)| = 1.

Remark. Notice that Ĝ is an Abelian group under pointwise multiplication. If we endow Ĝ with the weak-∗-
topology then it is compact by the Banach Alaoglu theorem, being a closed subset of the unit ball in L1(G)∗.

Thus, Ĝ is a locally compact Abelian group.

Now, the non-degenerate ∗-representations of an Abelian Banach-∗-algebra are very well understood, because
they are decomposed by a regular spectral measure on its spectrum. This spectral measure simultaneously
decomposes unitary representation of G, which one may expect given the equivalence of categories. The
general idea followed by the precise statements are given below. For more details, see [Fol95, p. 26].

Assume for simplicity that A is unital, an assumption that is not necessary but simplifies matters. Suppose
that we are given a ∗-representation φ : A → L(H). the idea is to obtain a spectral measure on B and pull
this back to A using φ.

Let B = φ(A). Then B is a C∗-subalgebra of L(H). The Gelfand representation [Mur90, p. 15] b 7→ b̂
realizes B as the continuous functions on its spectrum: B ∼= C(Ω(B)). This can be used to construct a

functional calculus on the bounded measurable functions B(Ω(B)) → B that sends b̂ 7→ b. Applying this
functional calculus to indicator functions on the spectrum yields a projection valued measure P on Ω(B) that

satisfies b =
∫

Ω(B)
b̂dP for any b ∈ B. Now, φ induces an injective continuous map Ω(B)

φ∗−→ Ω(A). This map

can be used to pull the projection-valued measure P back to a projection-valued measure PA on Ω(A) via
PA = P ◦ φ∗. Moreover, it then holds that φ(a) =

∫
Ω(A)

âdPA.

In particular, given a non-degenerate ∗-representation of L1(G) there exists a unique regular projection-valued

measure P on the spectrum Ω(L1(G)) ∼= Ĝ such that

π(f) =

∫
Ĝ

ξ(f)dP (ξ), f ∈ L1(G).

Where ξ(f) is given by 8.4. Now, the following theorem asserts that this projection-valued measure simulta-
neously decomposes the corresponding unitary representation π of G:

Theorem 152. Let π be a unitary representation of the locally compact Abelian group G. There is a unique
regular Hπ-projection-valued measure P on Ĝ such that

π(x) =

∫
Ĝ

〈x, ξ〉dP (ξ) x ∈ G,

π(f) =

∫
Ĝ

ξ(f)dP (ξ) =

∫
Ĝ

∫
G

〈x, ξ〉f(x)dxdP (ξ) f ∈ L1(G)

Moreover, an operator T ∈ B(Hπ) belongs to the commutant Hom(π) of π if and only if T commutes with

P (E) for every Borel set E ⊂ Ĝ.

Corollary 153. Let S be a locally compact Hausdorff space and let φ be a non-degenerate ∗-representation
on H. There is a unique regular projection-valued measure P on S such that φ(f) =

∫
S
fdP for all f ∈ C0(S).

A linear operator T ∈ L(H) belongs to the commutant Hom(φ) if and only if T commutes with P (E) for
every Borel set E.
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8.2 Some facts from representation theory of Lie groups.

Irreducible representations of a product of compact Lie groups

Lemma 154. Suppose G1, G2 are two compact Lie groups. Then any irreducible representation of G =
G1 ×G2 can be written as ρ1 ⊗ ρ2 for some irreducible representations ρ1, ρ2 of G1 and G2, respectively.

Proof. Suppose that π is a representation of G1 × G2 on V . The embeddings Gi ↪→ G1 × G2 induce
representations of G1 and G2 on V that intertwine each others action. Now, V decomposes into irreducible
G1 representations V ∼=

⊕
k Vk and by Schur’s lemma, G2 acts by a scalar on each component Vk. This

implies that the action of G2 on each Vk takes values in CI so that the action is irreducible. It follows that
π ∼=

⊕
π1|Vk ⊗ π2|CI is a decomposition into irreducible representations of G1×G2. Thus, if π is irreducible,

this direct sum decomposition contains only one term, proving the claim.

Representations of SU(2)

We first describe the irreducible representations of SU(2). These are well-known, see e.g. [Hal03].
For n ∈ N, let Pn(C2) denote the space of homogeneous complex-valued polynomials of degree n. Then the
left regular representation σn of SU(2) on Pn(C2) given by (σn(u)p)(z) = p(u−1z) is an irreducible represen-
tation. Moreover, these are all inequivalent and exhaust all up to equivalence all finite dimensional irreducible
representations of SU(2). Notice that SU(2) is compact and therefore its representations are unitarizable by
averaging the action over the whole group.

Lemma 155. The representation σn on Pn(C2) is equivalent to the representation σ̃n on
∨nC2, where the

action σ̃n is given by σ̃n(u)v1 · · · vn = (uv1) · · · (uv2).

Proof. The claim is trivial for n = 1. Assume n > 1. A basis for the nth symmetric power
∨nC2 is given by

{ei1 · · · ein : i1 ≤ · · · in}. Notice such a basis element only depends on the number of occurrences of each i
in i1, · · · in. Therefore, this basis can be equivalently be written as {ep11 e

p1
2 : p1 + p2 = n}. Define the map

Φ :

n∨
C2 → Pn(C2)

Φ(ep11 e
p2
2 ) 7→ xp11 x

p2
2

It is clear that this is a linear bijection. However, this map is not SU(2)-equivariant. Let u ∈ SU(2). We
have

Φ((ue1)p1(ue2)p2) = Φ ((u11e1 + u21e2)p1(u12e1 + u22e2)p2)

= (u11x1 + u21x2)p1(u12x1 + u22x2)p2

= Φ(ep11 e
p2
2 )(utx)

Thus, pre-composing Φ with the linear automorphism of
∨n C2 given by v1 · · · vn 7→ v1 · · · vn yields an

SU(2)-equivariant isomorphism
∨nCk → Pn(Ck).

Representations of the group Coσ U(1)

The group G
d
= Coσ U(1) is of the form suitable for the Mackey machine. Therefore, all irreducible unitary

representations of G can be obtained by inducing representations of the stabilizer of the action of U(1) on C
up to G. Notice that the inner product Re(b∗a) on C is invariant under the action of U(1). Therefore, the
pairing

〈a, b〉 = eiRe(b∗a)

identifies Ĉ with C and under this identification, the action of U(1) on Ĉ is becomes just z · b = z2b. The

orbits in Ĉ under this action are {0} and ρ · U(1) for ρ > 0. The corresponding stability subgroups are U(1)
and {±1}, respectively. Thus, the irreducible unitary representations of G are those of U(1) and {±1} lifted
up to G.

Since U(1) is Abelian, its irreducible representations are its one-dimensional characters. They are given by
z 7→ zn, n ∈ Z. Finally, {±1} has only two representations, namely the trivial one and the one which sends
±1 to itself.
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8.3 Relation between projective representations of the Poincarè
group and wave equations

There is a strong connection between the projective unitary representations of the Poincaré group
P = R4 o SO(1, 3)0 and some early results in the theory of relativistic quantum mechanics, which was first
discovered by Wigner[Wig39, BW48]. A detailed exhibition of these results is given in this section, which is
mainly based on [Var07, p.356-362 ].

It is well-known that the solution spaces of certain partial differential equations that occur in physics, such
as the Maxwell or Dirac equations, are invariant under transformation by the Poincaré group. Moreover,
quantum mechanics tells us that the state space of a particle subject to such an equation is a projective
Hilbert space. In view of Wigners theorem[Wig39], there must be a projective unitary representation of the
Poincaré group on this state space, so that we should be able to give a physical interpretation of some of
the obtained representations. Now, Bargmann’s theorem[Bar54] implies that any continuous projective uni-
tary representation of P lifts to a strongly continuous unitary representation of its universal covering group
P̃ = R4 o SL(2,C) and thus we are led to consider the representation theory of P̃.

It is shown in corollary 83 that the orbit space of R̂4 under the action of SL(2,C) is countably separated.
As a consequence, the theory of the Mackey machine applies (section 4.4) so that the irreducible strongly

continuous unitary representations of P̃ are obtained by inducing a suitable representation up to P̃ from one

stabilizers of the action of SL(2,C) on R̂4. In section 4.5, the various stabilizers and orbits are determined.
Recall further from section 4.1 that for finite dimensional unitary representations of such stabilizers, the
induced representations are obtained as section of a homogeneous Hilbert bundle. In order to relate such
induced representations to wave equations, these homogeneous bundles are realized as eigenvalue subbundles
that correspond to these equations.

By lemma 27, we know that every Hilbert bundle E → B that is homogeneous with respect to the action of
some group G is equivalent to G ×Gb Eb → G/Gb for any b ∈ B. Therefore, the strategy in the succeeding
is as follows: First, with the help of physical knowledge we obtain explicitly a Hilbert bundle E → B that
is homogeneous with respect to a suitable P̃-action. If it is shown that the stabilizer P̃b at any point b
is isomorphic to a certain Little group H of interest and the the representation of P ∗b on Eb is equivalent

to a representation σ of H, then it follows that E ∼= G ×H Hσ and the induced representation indP̃H(σ) is
constructed out of the sections of this bundle.

Before we begin, a brief remark on how these Hilbert bundles might be obtained. The various orbits of the

action of (2,C) on R̂4 are subspaces of R̂4, which is physically interpreted as the momentum space. The
differential equations are to be satisfied in the position-domain and so, via the Fourier transform we obtain a
corresponding equation in the momentum-domain. Now, the idea is to consider a bundle such that sections
of this bundle correspond to solutions to this latter equation. The Fourier transform of these sections, in the
sense of tempered distributions then satisfies the corresponding differential equation. The following result
makes the connection precise, the proof of which can be found in [Var07]:

Lemma 156. Denote by αλ the invariant measure on O+
λ , λ ≥ 0. Let s ≥ 0 and suppose that f is a

complex-valued measurable function on R̂4 such that∫
O+
λ

|f(p)|2p−s0 dαλ(p) <∞,

Then the distribution

Tf : φ 7→
∫
O+
λ

f(p)φ(p)dαλ, φ ∈ C∞c (R̂4),

is well-defined, tempered and its Fourier transform T̂f satisfies the wave equation:

(� +m2)T̂f = 0

Where � = ∂2

∂x2
0
− ∂2

∂x2
1
− ∂2

∂x2
2
− ∂2

∂x2
3
.
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Representations corresponding to O+
λ

We consider the representations corresponding to the orbits O+
λ and the Little group SU(2). Physically,

these orbits correspond to particles with half-integer spin and mass m = λ
1
2 .

We start describing the Hilbert bundle corresponding to the defining representation σ1 of SU(2), which
corresponds to spin 1

2 particles and mass m. These are known to satisfy the Dirac wave equation of the

electron, which is given by
∑3
r=0 iγr

∂
∂xr

Φ = mΦ, where {γr} are the Dirac matrices defined by equation (3.6).

Because the orbits O+
λ ⊂ N̂ and N̂ is interpreted as momentum space, we are motivated to take the Fourier

transform of this equation and define the corresponding bundle by

B
+, 12
m =

{
(p, v) ∈ O+

λ × C4 |
3∑
k=0

pkγkv = mv

}
(8.5)

π : B
+, 12
m → O+

λ , (p, v) 7→ p. (8.6)

Now, the Dirac matrices {γk} satisfy (3.5) and thus define a representation ρ : Cl(R4, η)→ C4 of the Clifford

algebra of (R4, η) in C4 such that ρ(ek) = γk. In terms of this representation, the bundle B
+, 12
m can be written

as
B

+, 12
m =

{
(p, v) ∈ O+

λ × C4 | ρ(p)v = mv
}
.

The restriction of the representation to the connected component of the identity of the spin group defines a
representation S of SL(2,C) on the same space that satisfies that equivariance condition (3.4)

ρ(φ(w)p) = S(w)ρ(p)S(w)−1.

Notice that as a consequence of this equivariance, the fibers above all points are of the same dimension and
equal the dimension of the eigenspace of ρ(p) corresponding to the eigenvalue m. Above the point (m, 0, 0, 0),
this is precisely the eigenspace of γ0 corresponding to the eigenvalue 1, which is the two-dimensional subspace
spanned by e0 + e2 and e1 + e3.

Next, let us define an action of SL(2,C) on B
+, 12
m such that the bundle projection π is equivariant. Notice

that by the above equivariance, if (p, v) ∈ B+, 12
m , then (φ(w)p, S(w)v) ∈ B+, 12

m for any w ∈ SL(2,C) so that

we can endow B
+, 12
m with the smooth SL(2,C)-action given by (w, b) · (p, v)

d
= (φ(w)p, S(w)v). This makes

the bundle B
+, 12
m SL(2,C)-homogeneous. Indeed, the action of SL(2,C) on the orbit O+

λ is transitive and it
is clear that the map (p, v) 7→ g · (p, v) is a linear isomorphism from the fiber above p to the fiber above g · p.

We proceed by defining a family of inner products on the fibers of the bundle B
+, 12
m such that the ac-

tion G becomes unitary on fibers, making the bundle into a homogeneous Hilbert bundle. A computa-
tion based on equation (3.6) and equation (3.7) shows that S(w)∗γ0S(w) = γ0, thus the representation S
leaves the Hermitian bilinear form v 7→ m−1〈γ0v, v〉 invariant. This form is seen to be positive definite on
all fibers by noting that γ0 is self-adjoint and γk is skew-hermitian for k = 1, 2, 3. Therefore, the equa-
tion

∑3
k=0 pk〈γkv, v〉 = m〈v, v〉 decomposes into its real and imaginary part, from which it follows that∑3

k=1 pk〈γkv, v〉 = 0. Thus p0〈γ0v, v〉 = m〈v, v〉 and m−1〈γ0v, v〉 = p−1
0 〈v, v〉 for all v ∈ B

+, 12
m (p), which

shows the assertion. This also shows that the form is equivalently given by v 7→ p−1
0 〈v, v〉. By the invariance

of this form, the action of SL(2,C) on B
+, 12
m is unitary on fibers so we do indeed obtain a homogeneous

Hilbert bundle.

It remains to check that the representation of any stabilizer subgroup SL(2,C)p on the fiber above p is
equivalent to the fundamental representation σ1 of SU(2).
Consider the point p = (m, 0, 0, 0). We have already seen in section 4.5 that the fiber above p is the eigenspace
of γ0 corresponding to eigenvalue one, which is the subspace of vectors in C4 of the form (z, z) for some z ∈ C2.
Moreover, we know from section 4.5 that SU(2) is the stabilizer of p. From equation (3.7), it follows directly
that the representation of SU(2) on Ep is given by u · (z, z) = (uz, uz), which is unitarily equivalent to the
representation σ1.

In view of lemma 27 and lemma 80, it can be concluded that the bundles B
+, 12
m and P̃ ×SU(2) C2 are isomor-

phic as Hilbert bundles and thus, the representation indP̃SU(2)(σ1) is constructed out of the sections of the
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bundle B
+, 12
m .

Next, we consider σn for n > 1. We know from lemma 155 that this representation acts on the nth symmetric
power

∨nC2. Define the following bundle using the symmetric product of bundles

B
+,n2
m

d
=

n∨
B

+, 12
m

with the natural projection πn. If we identify
∨nC2 with the subspace Sn(C2) of C2⊗n consisting of symmetric

tensors, the fiber B
+,n2
m (p) is precisely the subspace of symmetric tensors satisfying

3∑
r=0

prγ
ν
r t = mt, ν = 1, 2, ..., n (8.7)

where γνr = 1⊗ · · · ⊗ γr ⊗ 1 · · · ⊗ 1. Indeed, it is clear that any symmetric tensor in the fiber satisfies these
equations. Conversely, if a symmetric tensor satisfies all these equations, then expanding the tensor out in
bases in all except the νth factor shows that this factor is in the eigenspace of ρ(p) with eigenvalue m. Since

ν is arbitrary, it follows that t ∈ B+,n2
m (p). Now, the fiber B

+,n2
m (p) is equipped with the inner product given

by

〈v1 ⊗ · · · vn, v′1 ⊗ · · · ⊗ v′n〉 = p−n0

n∏
i=1

〈vi, v′i〉n vi, v
′
i ∈ B

+, 12
m (p). (8.8)

Define Sn(w)
d
= S(w)⊗n. Then Sn leaves the space of symmetric tensors invariant and so SL(2,C) acts on

B
+,n2
m by (w, b) · (p, v1⊗ · · ·⊗ vn) = (φ(w)p, Sn(w)v1⊗ · · ·⊗ vn). This action projects to a transitive action of

SL(2,C) on O+
λ and Sn leaves the positive definite inner product defined above invariant, making the bundle

into a homogeneous Hilbert bundle.

It remains to show that the representation of any stabilizer subgroup SL(2,C)p on the fiber above p is
equivalent to the representation σn of SU(2). We have for any p ∈ O+

λ the following equivalence of unitary
SU(2)-representations.

B
+,n2
m (p) ∼=

n∨
B

+, 12
m (p) ∼=

n∨
C2.

In view of lemma 155 and by lemma 27, we conclude that we have an equivalence of homogeneous Hilbert
bundles

B
+,n2
m
∼= SL(2,C)×SU(2)

n∨
C2.

Observe that by lemma 156, the Fourier transform of the sections of the bundle B
+,n2
m are tempered distri-

butions, and they satisfy the equation

3∑
r=0

iγνr
∂

∂xr
Φ = mΦ, ν = 1, 2, · · · , n.

Representations corresponding to O+
0

We consider the representations corresponding to the orbits O+
0 and the Little group E(2). We only consider

the representations z 7→ zn of U(1) induced up to E(2), as the others are not of much physical interest.

Consider the representations z 7→ z±1. The corresponding Hilbert bundles can be obtained from B
+, 12
m by

taking the limit m ↓ 0. Explicitly, consider the bundle

B+,
0 =

{
(p, v) ∈ O+

0 × C4 :

3∑
r=0

prγrv = 0

}

with the projection map π0 : B+,
0 → O

+
0 . This bundle is a homogeneous vector bundle with respect to the

SL(2,C) action given by w ·(p, v) = (φ(m)p, S(w)v). That is, SL(2,C) acts transitively on O+
0 , the projection

map is equivariant and the map π−1
0 (p)→ π−1

0 (g · p) is a linear isomorphism.
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Using elementary linear algebra, one finds that for any m > 0, the fiber B
+, 12
m (p(m)) above the point p(m) =

(
√

1 +m2, 0, 0, 1) is spanned by the vectors

v
(m)
1 =

1

2
me1 +

1

2

(
1 +

√
1 +m2

)
e3

v
(m)
2 =

1

2

(
1 +

√
1 +m2

)
e2 +

1

2
me4

which converge in R4 × C4 to e3 and e2 respectively under the limit m ↓ 0. These span the fiber B+,
0 (p0) at

p0 = (1, 0, 0, 1).

By homogeneity, it follows that for any point (p, v) ∈ B+,
0 , there exists a sequence of points (p(m), v(m)) ∈ B+, 12

m

such that (p(m), v(m)) → (p, v) in R4 × C4 as m ↓ 0. A consequence of this fact is that the Hermitian form
v 7→ p−1

0 〈v, v〉 is S(w)-invariant for every w ∈ SL(2,C) and positive definite on each fiber. Indeed, we know

that these statements holds true for on B
+, 12
m for any m > 0 and therefore, by continuity, also for B+,

0 .

Now, the same argument can be used to exhibit B+,
0 as the limit of the bundles B

+, 12
m as m ↑ 0. One observes

that

Γ
d
= iγ0γ1γ2γ3 =

(
1 0
0 −1

)
.

Since Γ anti-commutes with all γr, one finds that it transforms B
+, 12
m to B

+, 12
−m for any m > 0. Thus, in

the limit it leaves the fibers invariant. Moreover, since Γ commutes with S(w) for every w ∈ SL(2,C), the
eigenspaces coincide. This means that the representation of the stability group E(2) at any point p ∈ O+

0 in
the fiber above p can be reduced by the eigenspaces of Γ. Therefore, we define

B
+,± 1

2
0

d
=
{

(p, v) ∈ B+,
0 : Γv = ∓v

}
By the preceding discussion, E(2) leaves B

+,± 1
2

0 both invariant. It remains to show that the representation
of any stabilizer subgroup SL(2,C)p on the fiber above p is equivalent to the representation z 7→ z±1. To do
so, consider the point p0 = (1, 0, 0, 1). Recall that the fiber B+,

0 (p0) is spanned by e2 and e3, and E(2) acts
on this fiber by mz,a 7→ S(mz,a). A computation based on equation (3.7) shows that

S(mz,a)(c2e2 + c3e3) = (z−1c2e2 + zc3e3).

Thus, since e1, e2 span the eigenspace of Γ corresponding to the eigenvalue +1 and e3, e4 that corresponding

to the eigenvalue −1, it follows directly that the representation of E(2) on B
+,± 1

2
0 (p0) is mz,a 7→ z±1, which

is equivalent to the representation z 7→ z±1 of U(1) on C.

Next, we consider the representations z 7→ z±n, n ∈ N. We proceed as in the case of m > 0. Define the
bundle

B
+,±n2
0

d
= B

+,±1
2

0 ⊗ · · · ⊗B+,±1
2

0 (n factors)

=

{
(p, t) ∈ O+

0 × C4⊗n :

(
3∑
r=0

prγ
ν
r

)
t = 0, Γνt = ∓t, ν = 1, 2, · · · , n

}

Where Γν = iγν0γ
ν
1γ

ν
2γ

ν
3 . Now, SL(2,C) acts on B

+,±n2
0 by w · (p, t) = (φ(w)p, Sn(w)t) and each fiber is given

the inner product defined by

〈v1 ⊗ · · · vn, v′1 ⊗ · · · ⊗ v′n〉 = p−n0

n∏
i=1

〈vi, v′i〉n vi, v
′
i ∈ B

+,±n2
0 (p). (8.9)

making B
+,±n2
0 into a Homogeneous Hilbert bundle. The action of E(2) on B

+,±n2
0 is equivalent to the

representation z 7→ z±1 ⊗ · · · ⊗ z±1 on C⊗n, which is equivalent to the representation z±n on C.

Observe that by lemma 156, the Fourier transform of sections of the bundle B
+,±n2
m are tempered distributions

and they satisfy the following equations, which are related to Majorana fermions.

3∑
r=0

iγνr
∂

∂xr
Φ = 0,

iγν0γ
ν
1γ

ν
2γ

ν
3 Φ = −Φ, ν = 1, 2, · · · , n.
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8.4 External tensor product of group actions

In order to understand It is beneficial to reformulate theorem 88 in a more familiar setting. As such, an
understanding of an external tensor product of group actions is first developed in a general setting. Now, in
section 5.2 a setting is encountered similar to that of theorem 88, in which all actions considered are in fact
unitary. This case is a bit simpler to understand, so that it also provides a decent stepping stone towards
the case in which only an invariant non-degenerate bilinear form is available; as is the case for the action of
SL(2,C) on Minkowski space (R4, η).

Suppose that G = G1 ×G2 is a Lie group and Gi has a smooth representation πi on Vi for i = 1, 2. Let us
consider the action π = π1 ⊗ π2 of G on V = V1 ⊗ V2 defined on simple tensors by

π(g) · v1 ⊗ v2
d
= π1(g1)v1 ⊗ π2(g2)v2.

Assume that we are given a G-invariant inner product κ on V1 and a G-invariant non-degenerate symmetric
bilinear form η on V2. Notice that we have the following vector spaces are linearly isomorphic:

V1 ⊗ V2
∼= V1 ⊗ V ∗2 ∼= Hom(V2, V1),

where the isomorphism is given on simple tensors by

Φ : V1 ⊗ V2 → Hom(V2, V1),

u⊗ v 7→ η(·, v)u.
(8.10)

Under these isomorphisms and using the invariance of η, the G action on Hom(V2, V1) becomes

π(x)T = π1(x1) ◦ T ◦ π2(x2)−1, T ∈ Hom(V2, V1). (8.11)

Therefore, x ∈ G stabilizes T ∈ Hom(V2, V1) if and only if

T ◦ π2(x2) = π1(x1) ◦ T (8.12)

That is, if we define the representations of G

ρ1 : G→ GL(V1), ρ2 : G→ GL(V2)

ρ1(x1, x2) = π1(x1) ρ2(x1, x2) = π2(x2),

then (8.12) states precisely that the stabilizer GT of T in G is the largest subgroup H of G for which T
intertwines the representations ρ1|H and ρ2|H of H.

In case of unitary actions

Consider the special case in which the bilinear form η on V2 is actually a positive definite inner product.
Because κ and η are G1- and G2-invariant, respectively, this means that G1 and G2 act by unitary trans-
formations. In this case, the action of G on Hom(V2, V1) is in particular compatible with the singular value
decomposition, which means that a lot of information of the G action is contained in the separate actions of
G1 and G2 on End(V1) and End(V2).

Explicitly, let T ∈ Hom(V2, V1) be an arbitrary linear map and let T = UΣV ∗ be its singular value decom-
position. Recall that the non-zero elements of Σ are precisely the positive square roots of the eigenvalues of
both T ∗T and TT ∗. Let S = {σk} denote the distinct non-zero singular values and let Uk and Vk be the
subspaces spanned by the corresponding left- and right-singular vectors. The singular value decomposition
tells us that T is a linear isomorphism between the subspaces Vk and Uk for every σk ∈ S.

Now, since G1 and G2 act on V1 and V2 by unitary transformations, the action of G on Hom(V2, V1) simply
changes the unitary matrices U and V in the singular value decomposition, thus leaving the singular values
invariant. Recall that the singular values are the eigenvalues of T ∗T and TT ∗. We can make the assignments
T 7→ T ∗T and T 7→ TT ∗ equivariant if we endow End(V1)sa and End(V2)sa with the G1 and G2 actions,
respectively, given by:

x1 ·A = π1(x1)Aπ1(x1)−1, A ∈ End(V1), x1 ∈ G1,

x2 ·B = π2(x2)Bπ2(x2)−1, B ∈ End(V2), x2 ∈ G2.
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Notice in particular that

x1 ·A = A ⇐⇒ π1(x1)A = Aπ1(x1), A ∈ End(V1), x1 ∈ G1,

x2 ·A = A ⇐⇒ π2(x2)A = Aπ2(x2), B ∈ End(V2), x2 ∈ G2.

Lemma 157. Suppose that X,Y ∈ End(V ) for some finite dimensional vector space V . Assume further that
X is diagonalizable and Y is bijective. Then [X,Y ] = 0 if and only if Y leaves every eigenspace Vλ of X
invariant.

Proof. If [X,Y ] = 0 and Xv = λv, then XY v = λY v, so Y : Vλ → Vλ. Conversely, if T leaves every
eigenspace Vλ of X invariant, then X and Y commute on all eigenspaces Vλ of X. These span V since X is
diagonalizable so X and Y commute everywhere.

Definition 158. Let H be a Hilbert space, and let A ∈ L(H) be a bounded linear operator on H. A subspace
M is called reducing for A if both M and M⊥ are A-invariant subspaces.

Remark.

— If M is a reducing subspace for A ∈ L(H) as in the definition above, then A = A|M ⊕ A|M⊥ .

— A subspace M is reducing for A ∈ L(H) if and only if it is invariant for both A and A∗, where A∗

denotes the Hermitian adjoint of A. In particular, if A is invertible and M is A-invariant, then we have
AM = M and therefore A−1M = A−1AM = M so that M is also A−1-invariant. Thus, if A is unitary
then M is reducing for A if and only if M is A-invariant.

— Lemma lemma 157 above implies that

x1 ∈ (G1)TT∗ ⇐⇒ π1(x1) leaves all eigenspaces of TT ∗ invariant,

x2 ∈ (G2)T∗T ⇐⇒ π2(x2) leaves all eigenspaces of T ∗T invariant.

Seeing as both π1 and π2 act by unitary transformations, by the above observation this is equivalent to

x1 ∈ (G1)TT∗ ⇐⇒ all eigenspaces of TT ∗ are reducing for π1(x1),

x2 ∈ (G2)T∗T ⇐⇒ all eigenspaces of T ∗T are reducing for π2(x2).

Lemma 159. Let T and {Vk}σk∈S be as above. Then

GT =
{

(x1, x2) ∈ (G1)TT∗ × (G2)T∗T : π1(x1) ◦ T |Vk = T ◦ π2(x2)|Vk ∀σk ∈ S
}
. (8.13)

Moreover, for every x = (x1, x2) ∈ GT , the subspaces Uk and Vk are reducing for π1(x2) and π2(x2),
respectively.

Proof. Notice first that GT ⊂ (G1)TT∗ × (G2)T∗T because the assignments T 7→ TT ∗ and T 7→ T ∗T are
G1 and G2-equivariant, respectively. The last statement is clear from the observations above and implies in

particular that kerT =
(⊕

σk∈S Vk
)⊥

is π2|GT -invariant. The equation (8.13) is now just a restatement of
(8.12), noting that the latter is always satisfied for elements in kerT .

Remark. Notice that in the lemma above, only the eigenspaces Vk are considered that correspond to non-zero
singular values.

The observations above give a more detailed understanding of the stabilizer of T in G. Indeed, it is the largest
subgroup H of G for which the representation ρ1|H of H on Im(T ) decomposes as Im(T ) ∼=

⊕
σk∈S Uk, the

representation ρ2|H of H on ker(T )⊥ decomposes as ker(T )⊥ ∼=
⊕

σK∈S Vk and T defines an equivalence
between these two H-representations.

The general case

Now, η is generally not a positive definite inner product and in general there is no way to reconstruct
T ∈ Hom(V2, V1) from an eigen-decomposition of T ∗T and TT ∗. Nonetheless, we pursue an analysis inspired
by previous setting. In the following, we will be using η and κ to identify V1 and V2 with their algebraic dual
spaces, so let us first convince ourselves of the various basic properties of such identifications.
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Lemma 160. Let V,W be two arbitrary vector spaces. Suppose that κ and η are non-degenerate bilinear
forms on V and W , respectively. Denote by Ψκ : V ∗ → V and Ψη : W ∗ →W the isomorphisms they induce.
Define

φη,κ : Hom(W,V )→ Hom(V,W ), A 7→ Ψη ◦A∗ ◦Ψ−1
κ

Then φη,κ(A) is the unique linear map that satisfies κ(Aw, v) = η(w, φη,κ(A)v) for all v ∈ V and W ∈W .

Proof. Fixing v ∈ V , it is immediate from the non-degeneracy of η that there can be at most one linear map
satisfying the above equation. Finally, φ(A) satisfies this equation by the following quick computation

η(w, φη,κ(A)v) = (Ψ−1
η ◦ φη,κ(A)v)(w)

= (A∗ ◦Ψ−1
κ v)(w)

= κ(Aw, v)

Now, let us return to the original setting. That is, consider the action of G = G1×G2 on Hom(V2, V1) defined
by 8.11 and assume that we are given a G-invariant inner product κ on V1 and a G-invariant non-degenerate
symmetric symmetric bilinear form η on V2.

We identify V ∗2
∼= V2 using η and V ∗1

∼= V1 using κ. For A ∈ Hom(V2, V1), let us write A? = φη,κ(A) ∈
Hom(V1, V2) for its dual under these identifications. Similarly, using the same notation as in lemma 160,
write

R? = φκ,κ(R), R ∈ End(V1),

S? = φη,η(S), S ∈ End(V2).

Remark.

— Notice that if A,R, S are as above, then

φκ,η(R ◦A ◦ S) = φη,η(S) ◦ φκ,η(A) ◦ φκ,κ(R),

which justifies the notation (RAS)? = S?A?R?. The situation is depicted in the commutative diagram
below.

V ∗1 V ∗1 V ∗2 V2

V1 V1 V2 V2

R∗

Ψκ

A∗

Ψκ

S∗

Ψη Ψη

R? A? S?

.

In the following it is shown that the orbits of T ∈ Hom(V2, V1) can be categorized by the eigenvalues of T ?T
and TT ?.

Lemma 161. Let T ∈ Hom(V2, V1), The eigenvalues of the linear maps (x ·T )?(x ·T ) and (x ·T )(x ·T )? are
the same for all x ∈ G, counting multiplicities. That is, they are constant on G-orbits.

Proof. By the invariance of η, we have η(π2(x2)v, w) = η(v, π2(x2)−1w) for v, w ∈ V2 and therefore π2(x2)? =
π2(x2)−1. Using this fact we find that

(x · T )?(x · T ) = π2(x2)T ?Tπ2(x2)−1

(x · T )(x · T )? = π1(x1)TT ?π1(x1)−1

Since conjugation by invertible linear maps preserves the eigenvalues, the result follows.

Lemma 162. The non-zero eigenvalues of T ?T and TT ? coincide, counting multiplicities.

Proof. Observe first that if v is an eigenvector of T ?T with eigenvalue λ 6= 0, then Tv 6= 0 is an eigenvector
of TT ? with eigenvalue λ. Interchanging the roles of T and T ? shows that T maps the eigenspace Vλ of
T ?T into the eigenspace Wλ of TT ? and T ? maps in the converse direction. It remains to show that the
restrictions of T and T ? to these eigenspaces Vλ and Wλ are injective, so that the eigenspaces have the same
dimension. This follows from the definition of the eigenspaces. If T ?Tv = λv with v 6= 0, then in particular
Tv 6= 0, so T is injective on Vλ. Similarly, T ? is injective on Wλ. It follows that T and T ? are bijections
between the eigenspaces Vλ and Wλ.
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Notice that V1 ⊗ V2 is equipped naturally with the bilinear form η ⊗ κ. The following lemma determines the
corresponding bilinear form β on Hom(V2, V1) under the isomorphism Φ : V1 ⊗ V2 → Hom(V2, V1) defined in
(8.10). Denote for a bilinear map α on V1 ⊗ V2 the corresponding bilinear map on Hom(V2, V1) by

Φ∗(α)(A,B) = α(Φ−1(A),Φ−1(B)), A,B ∈ Hom(V2, V1)

Lemma 163. Define β
d
= Φ∗(η ⊗ κ). Then β(A,B) = tr(A?B).

Proof. We show that an identity holds between the two on simple tensors, which by linearity shows the
claim. Suppose t = u ⊗ x. Then T := Φ(t) = η(·, x)u and T ? = κ(u, ·)x. Thus, T ?T = η(·, x)κ(u, u)x and
TT ? = η(x, x)κ(u, ·)u. Choosing any orthogonal basis of V1 containing u, we find immediately that

tr(TT ?) = tr(T ?T ) = η(x, x)κ(u, u) = (η ⊗ κ)(x⊗ u, x⊗ u).

The identity now follows on simple tensors by an application of the polarization identity.
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8.5 Some relevant facts on rotations

In the proof of theorem 117, some facts regarding rotations are needed. These are collected in this section.
Write Rx(θ) ∈ SO(3) for the counter clock-wise rotation about x 6= 0 of angle θ.

Lemma 164. Let v, w ∈ S2. Suppose that R ∈ SO(3) is such that Rv = w. Then

Rw(θ) = R ◦Rv(θ) ◦R−1

Proof. Choosing an orthogonal basis (x, y, v) of R3 of positive orientation so that Rv(θ) is given bycos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

A direct computation shows that this is also the matrix representation of R ◦ Rv(θ) ◦ R−1 with respect to
the basis (Rx,Ry,w). Since (Rx,Ry,w) is again of positive orientation, this is also the matrix of Rw(θ) with
respect to this basis and so we are done.

Corollary 165. Let R ∈ SO(3) be arbitrary. Then there exists a rotation R0 ∈ SO(3) such that
R = R0 ◦Re3(θ) ◦R−1

0 for some angle θ ∈ [0, 2π).

Proof. SO(3) acts transitively on S2. Now apply lemma 164.

Remark. By lemma 47, this corollary implies that the adjoint representation of SU(2) on its Lie algebra su(2)
is surjective onto SO(su(2), κ).

Lemma 166. Let R = Re3(θ) ∈ SO(3) be a rotation about e3 with angle θ and let z = eiθ. Then its
complexification of R has eigenvalues zk for k = −1, 0, 1. The corresponding eigenvectors are

q0 = e3, q1 =

i1
0

 q−1 =

−i1
0

 .

Proof. One checks directly that Re3 = e3 and Rq±1 = e±iθq±1.

Combining the previous lemma with corollary 165 reveals some relevant facts:

Corollary 167.

1. the eigenvalues of Rv(θ) are 1 and e±iθ for any v ∈ S2.

2. For a rotation R the two (possibly complex) eigenvectors v1, v−1 other than its axis of rotation are
related by v1 = v−1.

3. The only invariant elements in R3 of a non-trivial rotation are those in its axis of rotation.

Proof.

1. This is immediate from lemma 166 and corollary 165.

2. Notice that q1 = q−1. Any rotation is conjugate to Re3(θ) by corollary 165 so that its eigenvalues are
of the form Rqk for some rotation R. Then Rq1 = Rq1 = Rq−1.

3. By the above lemma, there is a single one-dimensional real eigenspace with eigenvalue 1 unless R is
trivial.

Corollary 168. Let R = Ra(θ) ∈ SO(3) be a non-trivial rotation about a of angle θ ∈ [0, 2π). The following
hold:

1. The subspaces Span{a} and Span{a}⊥ of R3 are R-invariant.

2. If θ ∈ {0, π} then every one-dimensional subspace of R3 contained in Span{a}⊥ is R-invariant. Every
two-dimensional subspace of R3 containing Span{a} is R-invariant.

Moreover, these exhaust all invariant subspaces.
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Proof. Notice first that by corollary 165, we may assume that a = e3. Let us consider first the one-dimensional
invariant subspaces. Consider the basis {qk}1k=−1 of C3 as in lemma 166, and let v =

∑
k ckqk ∈ R3 be non-

zero. Notice that v ∈ R3 =⇒ c1 = c−1 and c0 = c0. Now, suppose that Rv = µv for some µ ∈ C. Since
Rqk = zkqk, where z = eiθ, this implies that

∑1
k=−1 z

kckvk = µ
∑1
k=−1 ckvk or equivalently zkck = µ for all

k for which ck 6= 0. Notice that since c1 = c−1 we have c1 6= 0 ⇐⇒ c−1 6= 0. Moreover, since R is non-trivial
we can not have ck 6= 0 for all k. This leaves two cases

1. If c0 6= 0, then c−1 = c1 = 0 and thus v ∈ Span{a}.

2. If c0 = 0, then v ∈ Span{a}⊥ since both c1 and c−1 are non-zero. In this case we require z−1 = z, i.e.,
z2 = 1. This implies that z = eikπ for some k ∈ Z so that θ ∈ {0, π}.

This completes the statements regarding one-dimensional subspaces. Those regarding two-dimensional sub-
spaces can be reduced to the first case by the observation that since R is orthogonal, the orthogonal comple-
ment of an R-invariant subspace is again R-invariant.

The following few lemmas are concerned with elements in SU(2) covering certain specific rotations.

Lemma 169. Let φ : SU(2)→ SO(3) be the covering homomorphism as in corollary 48. Then

1. φ−1(Rek(π)) = {±σk},

2. φ−1(Re3(θ)) = ±

(
ei
θ
2 0

0 e−i
θ
2

)
,

3. If v = Re3(θ)e1, then φ−1(Rv(π)) = ±
(

0 eiθ

e−iθ 0

)
.

Proof. Recall from corollary 48 under the linear isomorphism R3 → su(2) given by xiei 7→ xiiσi, φ becomes
the adjoint representation Ad of SU(2) in su(2) and moreover that φ is a double covering.

1. It suffices to check that both the elements ±σk act map to Rek(π). Under the isomorphism R3 → su(2)
above, this amounts to checking that Ad(σi)σi = σi and Ad(σi)σj = −σj for j 6= i. This follows
immediately from the equations

σ2
k = I, ∀k = 1, 2, 3,

σiσj + σjσi = 0, i 6= j.

2. This follows from the fact that if z =

(
ei
θ
2 0

0 e−i
θ
2

)
, then

Adz(σ1) =

(
0 eiθ

e−iθ 0

)
= cos(θ)σ1 − sin(θ)σ2,

Adz(σ2) =

(
0 −ieiθ

ie−iθ 0

)
= sin(θ)σ1 + cos(θ)σ2.

3. Notice that by lemma 164, Rv(π) = Re3(θ)Re1(π)Re3(π)−1. By the first point we know that {±σ1}
covers Re1(π) and by the second point we know that z covers Re3(θ). It follows that ±Adz(σ1) covers

Rv(π), where z is as above. We have already seen that Adz(σ1) =

(
0 eiθ

e−iθ 0

)
and we are done.

Remark.

1. If φ(u)v = w, then φ−1(Rw(θ)) = uφ−1(Rv(θ))u
−1

2. The rotations about some fixed axis a ∈ S2 are covered by a subgroup conjugate to U(1). We denote
this subgroup by Ua(1) and simply write U(1) if a = e3.

3. In fact, the stabilizer of the action of SU(2) on S2 via φ is U(1), so that S2 ∼= SU(2)/U(1) and by
corollary 18, SU(2)→ S2 is a principal U(1)-bundle, called the Hopf-fibration.
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4. We know from lemma 169 that the elements of the form

(
0 u
u 0

)
covers the rotations of the form Rv(π)

for some v ∈ Span{e1}⊥.

Lemma 170. Let q1 and q−1 be as in lemma 166. Let q ∈ C3 be non-zero and such that q ⊥ q and q ⊥ e3.
Then q is a complex multiple of either q1 or q−1.

Proof. The condition q ⊥ e3 implies that q = (z1, z2, 0) for some z1, z2 ∈ C. Now, q ⊥ q states that z2
1 +z2

2 = 0
and therefore z2 = ±iz1. Thus q = (z1,±iz1, 0) = z1 · (1,±i, 0).

Corollary 171. Let q ∈ C3 be non-zero and such that q ⊥ q. Let a ∈ Span{q, q}⊥.
Then q is an eigenvector of φ(u) for any u ∈ Ua(1).

Proof. There exists some rotation R such that Re3 = a. Notice that the complexification of a rotation is
unitary. This means that R−1q satisfies the requirements of lemma 170 so that R−1q is an eigenvector of
φ(u) for any u ∈ Ue3(1). Then by lemma 164 q is an eigenvector of φ(u) for any u ∈ Ua(1).

Corollary 172. Let q ∈ C3 be non-zero, u ∈ SU(2) and s ∈ U(1). The following hold.

1. If q ∈ R3, then φ(u)q = q if and only if u ∈ Uq(1).

2. If q ⊥ q, then q is an eigenvector of φ(u) if and only if u ∈ Ua(1), where a ∈ Span{q, q}⊥.

3. If q /∈ R3 and q 6⊥ q, then q is an eigenvector of φ(u) if and only if φ(u) = I.

Proof.

1. This is immediate from corollary 168.

2. By corollary 171 it remains to show the ’only if’ direction. As such, suppose that q is an eigenvector
of φ(u). The condition q ⊥ q, implies in particular that q /∈ R3 and so by corollary 168, q and q
must be eigenvectors corresponding to the conjugate eigenvalues. This implies that u ∈ Ua(1), where
a ∈ Span{q, q}⊥ ⊆ R3.

3. By corollary 168 Any eigenvector of a non-trivial rotation φ(u) not in its axis of rotation must be part
of a conjugate pair of eigenvectors.
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