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Abstract

How do automatic object detector outputs align with
what humans consider good object detection? Our study
is based on the responses of 70 participants for a survey.
The participants are presented with images having bound-
ing box predictions, their task is to choose images which
according to them have an acceptable or a good detection.
The results show a correlation between the size of the object
and the evaluation metric IoU (Intersection over Union),
with the size of the bounding box. Furthermore, the data in-
dicates that the kind of box they prefer most for a detection
output, is also the most accepted detection by them. Addi-
tionally, the results suggest that based on the symmetry of
the object, position of the bounding box may or may not play
a role for considering a detection valid. Our study investi-
gates through human subjective choices if the traditional
threshold value of IoU for evaluation, and tight bounding
box outputs are always the best outputs in object detection
techniques.

1. Introduction
State-of-the-art object detection techniques are applied

in a wide variety of fields, raising a need for better accu-
racy and speed. Object detectors are evaluated based on
many metrics, among which Intersection over Union (IoU)
is one of the most commonly used metric. High IoU and
tight bounding boxes are considered good outputs and, low
overlap ratio of the box with the ground truth i.e low IoU,
is considered inaccurate or bad detection. In this paper, we
investigate how human’s choices of bounding box coincide
with the output of object detectors.

A low IoU means that the model didn’t detect the object
precise enough, it can also mean that the wrong part of the

object was detected in the image. The wrong part of the
object can sometimes be sufficient to recognise and identify
the location of the object. Since IoU is ratio of overlap of the
areas of ground truth and predicted box, there can be many
possibilities of predicted output box for the same IoU. The
boxes can vary is size and position but maintaining the same
overlap ratio (IoU).

Apart from using IoU in detection evaluation, it is also
very effective as a loss function as in [11, 26, 27]. Properties
of bounding box like location, dimension and orientation
are considered in the IoU computation process. Multiple
possible outcomes of a bounding box for a particular IoU, is
the motivation to explore how the various object detection
are distinguished by humans. More specifically, we study
the position of the bounding box, either top, bottom, right
or left and the scaling of the size of the bounding box. The
analysis is to find a relation of bounding box size across
different sizes of objects and IoU scores. Validation of the
obvious claims about higher IoU values been accepted the
most is also one of the goals of the research.

Contributions In general, we explore how output of ob-
ject detectors are perceived by humans. The main contri-
butions are as follows. First, we investigate how the IoU
value, the size of the object and the size of the bounding
box are correlated. Second, we analyse how the symmetry
of the object and the position of the bounding box plays a
role in considering or determining a good detection. Third,
we show that IoUs lower than the threshold value can also
be accepted as valid detection, depending on the other fac-
tors.

2. Related Works
Object detection networks The main goal of object

detectors is straight forward, to locate and classify ob-
jects accurately. Different models have predictors which
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(a) Scale

(b) Position

Figure 1: Main point of the paper. The research is divided
into two parts. First, is bounding box scale. We gener-
ate two different bounding boxes for the same image, one
smaller than the ground truth and one larger, keeping the
IoU score the same. Second, is position of bounding box.
Two categories of objects are considered. Symmetrical (eg.
keyboard) and asymmetrical (eg. cat) and the position of the
bounding box is changed keeping the IoU constant. From
data collected through a survey, we analyse what humans
consider good detection and if it is similar to what object
detectors, output.

get good at predicting certain sizes, aspect ratios, or
classes of object.[17] Depending on the size of the ob-
ject, different models perform differently. For example,
the SSD model performs very poorly on small objects[15]
whereas they are competitive with Faster RCNN and R-
FCN on large objects.[23]Similarly, when choosing a nor-
mal higher threshold, detection performance of small ob-
jects is poor.[17, 23] Considering the different roles that
IoU can play in various parts of the network, [28] proposes
novel IoU-based frameworks. We try to see how object size
affects people’s opinion on detections.

A lower threshold IoU will result in poor location accu-
racy caused by false positives[17, 10] and sometimes, there
will be low correlation between the classification score and

localization accuracy in detection results, this severely hurts
the average precision of the detection model. To solve this
problem, an IoU-aware single-stage object detector is pro-
posed in [24]. The effect of shifting the bounding box while
keeping the IoU constant can be a way to see how it af-
fects detections. There is some work on evaluating deep
networks based on humans skill and experience such as [6].
Here they compare the performance of DNNs with human
subjects on distorted images. It is shown that, although
DNNs perform better than or on par with humans on good
quality images, DNN performance is still much lower than
human performance on distorted images. Similarly, a task
of hyperparameter optimization or a given deep learning ar-
chitecture is carried out by humans to see how experience
of a participant is related to the final performance in [3]. On
the same lines, this research is based on human choices.

Since the basic idea of all detectors are similar, for this
study we don’t test any particular network. Based on the
initial findings, improvements can be made, if required, be-
fore training and testing a model. The fundamental idea is to
study the evaluation metric, IoU and its relation with object
size and bounding box size (tightness), based on choices of
humans.

3. Method
This section explains in detail, the research questions and

the procedure used to create the data for the survey.
Intersection over Union (IoU). IoU is one of the most
common metrics used to evaluate object detection algo-
rithms [25]. It is the ratio of the intersection of the areas
of ground truth and predicted bounding box, to the union
of the areas i.e it measures the overlap between the boxes
to see how similar the predicted box is with respect to the
ground truth. Equation 1 illustrates the mathematical for-
mula for calculating IoU. Ap and Agt represent the area of
the predicted box and the ground truth respectively. The
value of IoU varies between 0 to 1 and higher IoU value
represents higher accuracy. Usually, the threshold for IoU
is kept greater than 0.5. Sometimes more stringent thresh-
old are also applied. If a object detector outputs bounding
boxes with an IoU score less than the threshold, it is not
considered a good detection.

IoU =
Ap∩Agt

Ap∪Agt
(1)

Research Questions. Research is mainly divided into
two categories as follows.

• Scale of the bounding box

• Position of the bounding box

Scale of the bounding box: We investigated what hu-
mans consider good object detection when presented with
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two different sizes of predicted bounding boxes of the same
IoU score, for a particular object. For concentric boxes hav-
ing the same centre point, equation 1 will reduce to a ratio
of area of smaller box to area of larger box, see equations
2 and 3 . Here, two possibilities of object detector output
were considered with the same IoU value. First is that, the
predicted box is larger than the ground truth and the second,
the predicted box is smaller than the ground truth. In Fig.
2, the green box is the predicted output box by an object
detector and the blue box is the ground truth. IoUlb is the
IoU value for the large predicted box and IoUsb is for the
small box.

IoUlb =
Agt

Ap
(2)

IoUsb =
Ap

Agt
(3)

Position of the bounding box: Similar to the scaling
of the box sizes, we studied what humans consider good
object detection when presented with two different shifts in
position of the predicted bounding box with respect to the
ground truth, for the same IoU score. Here, we consider two
cases of shifts, one is left and right and the other is top and
bottom, depending on the dimensions of the object. From
the Fig. 3, we see that IoUsf and IoUsb is calculated in the
same way as in equation 3. IoUsf corresponds to the IoU
value of a bounding box shifted to the left and IoUsb for the
box shifted to the right.

Dataset. The MS COCO data [14] set is used in our
research since it has a wide range of object categories and
object sizes which are required for the study. There are 80
object categories and about 330k images. The objects in
the images are divided into small, medium and large ob-
jects based on the area. Number of pixels in the segmen-
tation mask gives the measure of area . In this dataset, ap-
proximately 24% of objects are large (area > 962), 34%
are medium (322 < area < 962), and 41% are small
(area < 322).

Survey and Image Creation.

Figure 2: Scale: Illustration of a predicted large box and a
small box with the same IoU value; blue box is the ground
truth and green box is the prediction.

A TU Delft licensed tool, Qualtrics was used for creat-
ing the survey. It consists of four sections. One for each
category of research questions. Two sections for analysing
the effect of scaling the size of bounding box and two sec-
tions on outcome of shifting the position of the bounding
box. The four questions are explained in detail in the next
section.

For all questions in the survey, we added the mask of the
objects under consideration, to easily identify the object for
which the bounding box is generated. As shown in Fig. 4,
the original image is multiplied with its binary mask to get
an image with the object highlighted.

To analyse the effect of various IoU values on different
object sizes, the bounding box scaling is done across three
object sizes, small medium and large, distinguished by the
pixel area, as in Fig.5. Four values of IoU 0.3, 0.5, 0.7 and
0.9 are taken for our study, refer table 1. The values are
chosen such that there is one value below (0.3) the tradi-
tional threshold 0.5, one above (0.7) and one value which
is considered good at all times (0.9), a sanity check. All
boxes are generated similar to how automatic object detec-
tors output predictions, taking into account the aspect ratio
of the boxes[19].

For the case of shift in position of bounding box, the
value of IoU is fixed to 0.5 and object size, to large ob-
jects. We are interested in how the shift influences humans

Figure 3: Position: Illustration of two predicted boxes with
the same IoU value, one positioned to the right and the other
to the left; blue box is the ground truth and green box is the
prediction.

(a) Original Image (b) Binary mask (c) Multiplied mask

Figure 4: The mask of an object is created my multiply-
ing the original image with its Binary mask.The segmented
mask is used in the survey to show people for which object
in an image, the bounding box has been generated.
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IoU Object size Bounding box size
0.3 L large

M small
S

0.5 L large
M small
S

0.7 L large
M small
S

0.9 L large
M small
S

Table 1: The table lists all the possible combinations of IoU,
object size and bounding box size. For the questions re-
lated to scaling, Q1 and Q2, bounding boxes are drawn in
all these combinations. L, M and S denote large, medium
and small objects respectively.

(a) Small Object (b) Medium Object (c) Large Object

Figure 5: Example of three categories of object sizes: small,
medium and large

choices of bounding boxes. Hence, the size of the objects,
the size of the bounding box and the IoU score is kept con-
stant. The objects are categorized into two groups sym-
metrical and asymmetrical objects. Symmetrical objects
consists of classes of objects from the dataset which are
symmetric either along the horizontal or the vertical axis.
Classes of objects which are asymmetric along any axis are
grouped under asymmetrical objects. Table 2 shows the dif-
ferent type of questions in Q3 and Q4.

4. Experiments

The first question asked in the survey is whether the par-
ticipants have a background in computer vision or are fa-
miliar with object detection. The reason to ask this question
is to see if there is any difference in the results of the study,
from these two groups of participants. Only the images with
the predicted bounding box is shown in there survey, type
of object, size of box and object and IoU value are not dis-
played.

Q1: Preference in size of box. In the first question, to
understand the preference of people over size of the box,
we asked the question ’Which green box do you think best

Object Symmetry Bounding box position
asymmetrical Q3: Top and Bottom

or
Left and Right
Q4: i. Front/Top part of the object
ii. Back/Bottom

symmetrical Q3: Top and Bottom
or
Left and Right
Q4: i. Front/Top part of the object
ii. Back/Bottom

Table 2: For the bounding box position questions, Q3 and
Q4, the possible combination of placement of bounding
box for the two categories asymmetrical and symmetrical
is listed in this table. The IoU is fixed to 0.5 and object size
to large.

(a) Large bounding box (b) Small bounding box

Figure 6: Example of scaling in size of bounding box. Both
figures 6a and 6b have the same IoU value of 0.3

identifies the (object) shown in the images below?’ and
presented them with three options. First is an image with
a bounding box larger than the object’s ground truth (see
Fig.6a) and the second is the same image with a bound-
ing smaller than the ground truth of the object (shown in
Fig.6b). If they feel its possible to detect the object with
either of the boxes or neither can be a good detection, they
can choose a third option, ’no preference’. With a combi-
nation of 4 IoU values and 3 object sizes, 12 unique type of
image pairs were created. The survey consists of a total of
72 questions, 6 questions of each type.

Q2: Do you accept this detection? Yes or No. A single
image with either a small bounding box or a large bounding
box was shown in the survey, such as in figure 7a. The
question,’Do you think the green box is sufficient to identify
the (object) in the image below?’ was asked and people had
to respond with ’Yes’ or ’No’. If they feel it can be accepted
as a good detection, ’Yes’ is selected otherwise ’No’. Since
each question has an individual image, there are 24 unique
type of images made with a combination of 4 IoU values, 3
object sizes and 2 bounding box sizes. The survey consists
of a total of 96 questions, 4 questions of each type.
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Question Unique questions Repeated questions Total questions
Q1 12 6 12 ∗ 6 = 72
Q2 24 4 24 ∗ 4 = 96
Q3 2 10 2 ∗ 10 = 20
Q4 4 5 4 ∗ 5 = 20

Table 3: The total number of questions in each research question. The details of unique types of questions are mentioned in
tables 1 and 2.

(a) ’Yes’ (b) ’No’

Figure 7: Example of question 2 under scaling of bounding
box size; figures 7a is a small box for a medium object with
a IoU of 0.5 and 7b is chosen when 7a is not accepted as a
good detection.

Q3: Preference in position of box. For this question,
bounding boxes of IoU 0.5 are generated for both asym-
metrical and symmetrical categories of object classes. Only
large boxes are considered since the shifted boxes will be
clearly visible in these images. The question asked in the
survey is ’Which green box would you prefer to identify the
(object) in the images shown below?’ with three answer op-
tions. First is an image with a bounding box on one extreme
side of the object (shown in Fig. 8a) and the other option is
the same sized box on the other side of the object (see Fig.
8b). If they think neither can be a good detection or the po-
sition of the boxes don’t matter, there is a third option, ’no
preference’. A total of 20 (questions) image pairs of top-
bottom shifted box or left-right shifted box were created ac-
cording to the dimensions object, 10 each for symmetrical
and asymmetrical object types.

Q4: Do you accept this detection? Yes or No. Single
images similar to the pair of image types discussed in the
previous question (Q3) was presented in the survey, as seen
in Fig. 9a. The response to the question,’Do you accept
that the green box is sufficient to identify the (object) in the
image below? is ’Yes’ if they think it can be accepted as
a good detection, else ’No’. There are 4 unique type of
images made for each shift in position of bounding box and
symmetry of object. The survey consists of a total of 20
questions, 5 questions of each type.

(a) Shifted bounding box to the
left

(b) Shifted bounding box to the
right

Figure 8: Example of shift in position of bounding box for a
symmetrical object along the left-right direction since top-
bottom shift does not apply here. Both figures 8a and 8b
have the same IoU value of 0.5

(a) ’Yes’ (b) ’No’

Figure 9: 9a is an example of bounding box shifted to the
bottom of an asymmetrical object. 9b is chosen when 9a is
not accepted as a good detection.

5. Results

All data are unpaired, they are independent. Hence it is
not necessary that the same person has to answer all 4 of the
research questions. A total of 77 responses were recorded
for question 1, 62 for question 2 and for question 3 and 4, 69
and 65 responses were recorded respectively, refer table 4.
Since there were multiple questions of each type, under the
4 research questions, the total count of data, for analysis, of
each type in question 1 is 77 ∗ 6 = 462 and in question 2 is
62∗4 = 248. For questions 3 and 4, the total data collect for
each type is 69 ∗ 10 = 690 and 65 ∗ 5 = 325, respectively.
In this section, the hypotheses considered for this study are
listed and all the results and findings are consolidated below.
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Question Total responses Data collected in each type
Q1 77 77 ∗ 6 = 462
Q2 62 62 ∗ 4 = 248
Q3 69 69 ∗ 10 = 690
Q4 65 65 ∗ 5 = 325

Table 4: A summary of the number of participants and total
data collected for the analysis in each question type men-
tioned in table3.

For high IoU value (0.9), people have no preference over
size of the bounding box.

This was our initial assumption since the difference in
the area of large and small bounding box is less than 20%
for an IoU of 0.9, hence both sizes of boxes will look sim-
ilar. For statistically supporting our hypothesis, we use Z-
test[22, 5], because our data is not normally distributed and
it is categorical data.
But looking at the graph in Fig.10a, we can say that in
our study, approximately only 50% of the time, there is
no preference. The other 50% there is preference for ei-
ther small or large box. The hypothesis couldn’t be verified
with enough proof, using the z- statistical test of proportion
since the p-value is greater than the the significance level
(0.2596 > 0.05). There is an exception for small objects.
The hypothesis is verified through z-test for this case.
In the case of acceptance, both large and small boxes are

accepted almost comparably. This means that size doesn’t
matter for boxes with IoU of 0.9 when shown individually
(see Fig.10b). This is supported by a z-score of 17.38. Since
p-value (< 0.000001) is less than the significance value
0.05.
Higher IoU are more accepted than lower IoU.
One of the evaluation metrics for object detectors is IoU
(Intersection over Union). Generally, the larger the value
of IoU, the higher is the accuracy of the detectors. Hence,
higher IoU values are more accepted than lower ones. IoU
values of 0.3 and 0.5 are low and 0.7 and 0.9 are high, see
Fig.11. This hypothesis is verified by z-test of proportion
with a z-score of 141.42 > 1.64 and p-value very less than
the significance value.
The most preferred box is also the most accepted box.

This assumption is verified for both size of bounding box
and shift in position of bounding box. Large bounding box
is the most preferred box as well as the most accepted box,
derived from the graphs in Fig.10a and Fig.10b. The z-
test gave significant evidence to support this since z-score
141.42 < 1.64 (critical value) and p-value is 0.000001 <
0.05. Asymmetrical objects: With enough evidence from z
statistical test (z-score > 1.64 and p-value < 0.05), we can
say, bounding box that is generated at the most significant
side (front/top) of the object so that the object is uniquely

large box

(a) Bounding box size preference for different IoUs

(b) Bounding box size acceptance for different IoUs

Figure 10: From the graph 10a, we see that how the prefer-
ence of different box sizes varies and graph 10b show how
much small and large boxes are accepted across IoUs. For
high IoU value 0.9, there isn’t enough evidence to prove that
there in no preference over size of object. When it comes to
acceptance, both the size boxes are accepted widely, hence
we can say size of box doesn’t matter for 0.9. For the rest
of the cases, large box is remains highly preferred and ac-
cepted.

distinguishable, is the most preferred and also the most ac-
cepted box. Figure 12 and 13b show that front is the most
preferred and accepted box. Symmetrical objects: From
the figure 12, we see that ’no preference’ is the most pre-
ferred, and from figure 13a, its seen that both shifted boxes
are approximately, equally accepted. hence, position of the
bounding box doesn’t matter is the opinion majority of the
time. This result is verified using z-test with a z-score of
6.55 and p-value of < 0.000001.
For symmetrical objects, shift doesn’t matter.
As is the figure 12, ’No preference’ is high compared to ei-
ther of the shifted boxes, i.e. shift doesn’t matter.The z-test
is also inline with this result with a z-score of 6.55 > criti-
cal value and p-value < 0.05.
For acceptance (figure 13a), both shifted boxes are accepted

7



with a high percentage, we can say shift in position of the
bounding box doesn’t matter to humans. A z-test with z-
score of 5.38 and p-value < 0.000001, aligns with this re-
sult.
For asymmetrical objects, shift matters.

Seen from figure 12, bounding box generated at the
front/top of the object so that the object is uniquely iden-
tifiable, is the most preferred box.
In case of acceptance (fig13b), the bounding box shifted to
the top/front side of the object is most accepted. Z-test sup-
ports both the results listed above, with sufficient evidence.
The z-score > 1.64 and p-value < significance level 0.05.
There is a relationship between the size of the object, bound-
ing box size and the IoU value.
The chi-squared test of independence is used to check the
correlation. This test is used since our survey data is cate-

Figure 11: Proportion of accepted boxes of higher IoU val-
ues, 0.7 & 0.9, to lower IoU values 0.3 & 0.5. From the
graph we see that the proportion of accepting higher IoUs
is just a little more than 50%, across object sizes, but when
statistically tested, this is sufficient to say that higher IoUs
are more accepted.

Figure 12: Preference of position of bounding box for sym-
metrical and asymmetrical objects. We see that for sym-
metrical objects, the position of the bounding box doesn’t
matter, since no preference is high and for asymmetrical
objects, there is a preference in position of the box, front is
more preferred.

(a) Acceptance of position of bounding box for symmetrical ob-
jects

(b) Acceptance of position of bounding box for symmetrical ob-
jects

Figure 13: Acceptance ratio of the different positions of the
bounding box for symmetrical and asymmetrical objects.
For asymmetrical objects, front/ top side is accepted more
than the back/bottom, which is the same case in preference.
But for symmetrical objects, both positions are not equally
accepted, even so, by statistically verifying, we can say they
are accepted comparably.

gorical.
We found a strong correlation between the IoU value and
bounding box size, which is supported by a chi-squared
statistic of 222.8989 and p-value < 0.00001. Fig. 14a
shows, across all IoU values except 0.9, large box is always
preferred compared to small. No preference is most for 0.9.
But, we saw a gradual increase in preference of small box as
the IoU value increases and a comparatively higher increase
in having no preference.
There is a significant correlation between Object size and
bounding box size. This is backed by the chi-squared test.
The chi-squared statistic is 42.7072 and the p-value is <
0.00001. No matter the size of the object large, medium
or small, large bounding box is always preferred more than

8



(a) Relation between the IoU and the size of bounding box

(b) Relation between the size of the object and the size of bounding
box

Figure 14: Graphical representation of the variation of the
preferred bonding box size across IoUs and object sizes,
respectively. From the first graph, we see that there is a
gradual increase of small box as the IoU increases and there
is a decrease in preference of large box. As the IoU gets
higher, there is no preference of bounding box, since the
large box goes below the ’no preference’ line, in the graph.
When object size and box size are compared, the preference
of small box decreases as the size of the object decreases.
For small objects, size of the box doesn’t matter.

small box.But a gradual decrease in the preference of small
bounding box was observed as the size of object decreases
and moves to having no preference (refer fig. 14b). No
preference increases steadily.

Variables Test statistic p-value
IoU vs box size 222.8989 < 0.00001
Object size vs box size 42.7072 < 0.00001

Table 5: Chi-squared statistical test; the bounding box size
is more correlated with IoU than it is with object size.

Difference in analysing data from two different groups of
respondents of the survey.
One set of people are who are familiar with object detection
and the other set is of people who don’t. All experiments
discussed above were repeated for these two sets of data
and verified using statistical tests. There is no significant
difference in the results between the two groups. (People
who have and don’t have knowledge on object detection)
on the basis of their choice of images.

6. Conclusion
IoU, object size and box size related. Through our

study, we found that there is a strong relationship of the IoU
values and the object size, with the bounding box size. As
the IoU value increases, the preference of small box grad-
ually increases and the preference for large box slowly de-
creases. As the size of objects decrease, the preference of
small box increases gently although the preference of large
box in general, is much higher than small box. The findings
are summaries in table 6. Most accepted box is also the

IoU values→ 0.3 0.5 0.7 0.9
Large objects large large large large
Medium objects large large large no preference
Small objects large large large no preference

Table 6: Results from our study. Summary of the trend of
the size of bounding box across different IoU values and
objects sizes

most preferred box. The most preferred and also the most
accepted box with regards to size of the bounding box is,
large box. In the case of shifted position of box, the most
preferred and accepted for asymmetrical is the front/top and
for symmetrical objects is, ’no preference’.

For asymmetrical objects position of the bounding
box matters but for symmetrical, it doesn’t matter. Sym-
metrical objects look symmetric along horizontal or vertical
or both directions, hence shift in position of bounding box
doesn’t affect people’s choice of good detection. Whereas,
asymmetrical objects are not symmetric. People choose
bounding boxes that define or help identity the object, so
position of the bounding box matter in this case.

7. Discussion
In this work, we investigated what humans consider as

good or accepted object detection. The initial hypothe-
ses were analysed using statistical tests to give a numerical
backing for our assumptions. We found that as the almost
always a box larger than the ground truth is considered a
good detection. Only in very high IoU values, size doesn’t
matter because there won’t be much difference between a
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box smaller than the ground truth and a box larger than the
ground truth. Similarly, to consider a detection as good, the
placement of the box depends on the type of object class.
The limitations and recommendations are listed below.
Limitations. Limited data. A fair number of participants
answered the survey. The collected data was much more
than the basic requirement to perform statistical analysis.
But, collecting data from more people for the study will
make the result and conclusions more robust to potential
outliers. Furthermore, it can help us generalize our findings
over a broader audience, and provide the possibility to test
more refined hypotheses.

Centered boxes. In this study, we have only considered
bounding boxes generated which have the center same as
the ground truth. Output may not be exactly centered in all
detector settings. Similarly, random shifts in position were
not considered. Hence, only some of the possibilities of
bounding box generation were considered. But the reason
behind this was that if too many parameters are considered,
evaluating it will be difficult.

Single dataset. In this work, all analysis was done only
on one dataset. It can be argued that the findings could vary
on other datasets. The predicted boxes are based on the
hand annotated ground truths, hence using other datasets
with good/ tight ground truths annotations will give similar
results.

Recommendations. This work is a different study of
analysing the predicted bounding box based on human
choices; it is interesting to extend this study further by in-
cluding multiple datasets and train different models, taking
choices preferred by humans into consideration, to see if
actual outputs are satisfying.

It will be interesting to further analyse how these choices
and preferences of humans change when we deal with oc-
cluded images, truncated images and images with multiple
objects very close by. We can also investigate what hap-
pens when the boxes are not centered and the position of
the shifts are very random.
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2
Dataset and processing

The MS COCO data set is used in our research since it has a wide range of object categories and object sizes
which are required for the study. There are 80 object categories and about 330k images. The objects in the
images are divided into small, medium and large objects based on the area. Number of pixels in the segmen-
tation mask gives the measure of area . In this dataset, approximately 24% of objects are large (ar ea > 962),
34% are medium (322 < ar ea < 962), and 41% are small (ar ea < 322). Examples of small, medium and large
objects are shown in figure 2.1.

2.1. Data Segregation
The annotation file for the MS Coco dataset [9] is in json file format. Since only about 1000 images were used
to make create the data for this study, the json file was converted to xml files for each image. Working with
the xml file was easier. The validation set of the coco dataset was used since the number of images in this set
is the least and therefore, the conversion time is less comparatively.

According to the area of the object, which is the number of pixels in the segmented mask, the images were
segregated into ones having large, medium and small objects. For each of these categories, bounding boxes
were created.

2.2. Segmentation mask
For all questions in the survey, the mask of the object in the image was added to the survey questions to easily
identify the object for which the bounding box is generated. As shown in figure 2.2, the original image is
multiplied with its binary mask to get an image with the object highlighted.

2.3. Bounding box creation
The following equations were used to find out the possible coordinates of the predicted bounding box.

I oUl b = Ag t

Ap
(2.1)

(a) Small Object
(b) Medium Object (c) Large Object

Figure 2.1: Example of three categories of object sizes: small, medium and large

12



2.4. Image selection 13

(a) Original Image (b) Binary mask (c) Multiplied mask

Figure 2.2: The mask of an object is created my multiplying the original image with its Binary mask

(a) Large bounding box (b) Small bounding box (c) Bounding box shifted to the right (d) Bounding box shifted to the left

Figure 2.3: The blue box is the ground truth, the black dashed boxes are all the possible bounding boxes when the IoU is fixed, the red
solid box is the final bounding box chosen, with good aspect ratio and red dashed box in 2.3d and 2.3c are the centred boxes which are

translated to either sides

I oUsb = Ap

Ag t
(2.2)

2.3.1. Large and small bounding box
Using the ground truth coordinates from the annotations file, the area of ground truth, Ag t was calculated.
To generate the large bounding box, the area, Ap was found using equation 2.1. The area Ap was found for
all four IoU values - 0.3, 0.5, 0.7 and 0.9. From the area of the bounding box, all possible heights and widths
of the box were found and with this, in return, the coordinates to draw the box was found. Among all the
possible choices of boxes, like shown in figure 2.3a, the box with a good aspect ratio of 1:1, 2:1 or 1:2, were
selected[13].

Similar procedure was followed to create small bounding boxes, except, equation 2.2 was used. Example
of possible bounding boxes for a given ground truth area and IoU value, is shown in figure 2.3b.

2.3.2. Shifted bounding box
The shifted bounding boxes are small bounding boxes which are not centered. The coordinates of the bound-
ing boxes are obtained as usual. To create a shift in position, the x and y coordinates of the box are moved
horizontally or vertically, depending on the type of shift, by a certain amount. The shift is done such that the
shifted predicted boxes are contained inside the ground truth, see figures 2.3c and 2.3d.

2.4. Image selection
Images for the study were picked in such a way that the object under consideration is clearly visible and not
truncated in the image. If the object is too close to the edge, the bounding box generated maybe go out of
frame from the image. Such images were avoided.

The Coco dataset doesn’t have existing classes of symmetrical and asymmetrical objects. Amongst the
large sized objects, object classes were hand picked, classifying objects as symmetrical and asymmetrical
based on its symmetry along the horizontal, vertical or both axes. Examples of symmetrical classes include
laptop, cell phone, stop sign, sofa, orange etc, shown in figure 2.4a and object classes like person, cat, dog,
airplane, truck etc. come under asymmetrical object class (figure 2.4b).



2.5. Survey tool 14

(a) Symmetrical object from the class ’laptop’ (b) Asymmetrical object from the class ’airplane’

Figure 2.4: Examples of symmetrical and asymmetrical object classes

2.5. Survey tool
A TU Delft licensed tool, Qualtrics was used for the survey. Permission from the Human Research Ethics
Committee was not required to conduct the survey since no person data was collect from the participants.

Since the survey was answered by both people familiar with object detection or computer vision and those
unaware of the area, the questions asked were simple with little or no technical terms used.



3
Statistical tests

Data collected from the survey needs to be interpreted. Statistical tests are used for verifying and providing
support to the initial hypotheses in our study. Hypothesis testing involves two hypothesis, one is the null
hypothesis H0 and the other is Ha , alternate hypothesis. Once the statistical test is performed on the survey
data, we decide whether to reject or fail to reject the null hypothesis.

A null hypothesis is the default hypothesis[4] and often proposes that there is no significant difference or
relation in a set of given observations. The result of the test gives sufficient evidence to either ’reject’ or ’fail
to reject’ the null hypothesis. In general, the we assume the hypothesis we want to prove, as the alternate
hypothesis and we assume the opposite of our hypothesis as the null hypothesis. Since we are considering
only a sample of the whole population, we can’t accept the null hypothesis, we can only fail to reject it due to
insufficient statistical evidence.

There are two ways of interpreting the result of a statistical test. One is with the p-value and the other is
the with the critical value.

p-value. Given the hypothesis, p-value is the probability that the null hypothesis is true. This is compared
to a pre-chosen threshold value called significance value α. 5% or 0.05 is the most common value used for α.

• If p-value >α: Fail to reject the null hypothesis i.e. The result is not significant.

• If p-value <=α: Reject the null hypothesis i.e. the reult is significant.

Con f i dence l evel = 1−α (3.1)

We can either say that the test carried out on the data, for example, rejected the null hypothesis at 0.05
significance level or at a confidence level of 0.95.

Critical value. The test result is interpreted in a similar way to that of p-value. Each statistical test has a
different formula to calculate the test statistic value. The test statistic value is compared to the critical value
at a chosen significance level.

• If test statistic < critical value: Fail to reject the null hypothesis.

• If test statistic >= critical value: Reject the null hypothesis.

Our survey data is discrete dataset. Since it is neither a continuous data nor is it normally distributed, The
most suitable statistical tests for our data was found to be z-test for proportions. The data collected is cate-
gorical, for example- ’yes’ or ’no’,’small’ or ’large’ etc., they don’t contain numeric values. To analyse if there
is a relation between the various variables of the data, another test, the chi-squared test of independence in
used.

3.1. Z-test of proportion
Z-test of proportion for discrete values is also known as one sample dichotomous Z-test[15]. The z test statis-
tic or the z-score is calculated using the formula in equation 3.3, where p̂ is the sample proportion, the pro-
portion of our sample. It is computed by taking the ratio of the number of successes to the sample size,
equation 3.2. n is the sample size and p0 is a known proportion to which we compare our sample proportion.
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3.2. Chi-squared test of independence 16

In our study, we have taken it as 0.5 since anything more than 50% is considered a majority and it is required
to test most of our hypothesis.

p̂ = x
n (3.2)

z = p̂−p0√
p0(1−p0)

n

(3.3)

3.2. Chi-squared test of independence
The chi-squared test [6, 14] of independence is used to show relationship between two variables. In our case,
IoU and object size with box size, respectively. The test statistic is calculated using the formula in equation
3.5. The variables and the sample data associated with them are tabulated and the degree of freedom is
calculated as follows.

d = (r −1)(c −1) (3.4)

χ2
d = Oi−Ei

2

Ei
(3.5)

d = degree of freedom
r = number of rows
χ2

d = chi-squared test statistic
Oi = observed value
Ei = expected value
i = i th position in the table.



4
Additional Analysis

Object detection techniques have been used in a wide variety of fields, hence anyone without deep knowledge
about object detection might have to deal with them. Because of this reason, we distributed our survey to a
wide range of people from different backgrounds.

4.1. Experiment and hypothesis testing
The recorded survey data was divided into two groups, one set of data is from participants who are familiar
with computer vision or object detection and the second set of data is by people who are unaware of object
detection.

All hypotheses which were tested earlier, were repeated for these two sets of data. The z-score, 141.42 >
critical value, 1.64 and the p-value < 0.000001. This can be explained with an example graph in figure 4.1. The
proportion of our sample for this case was 0.759. We always take the opposite of what we want to prove, as
the null hypothesis. We see from that graph that our sample proportion is far from the rejection region. So it
is safe to say that we would expect to see a sample proportion of 0.759 < 0.0001% of the time under the null
hypothesis. In other words, the null hypothesis can almost never be true.

Figure 4.1: Example of a sample proportion under a null distribution

4.2. Result
Out of the total data, about 60% was of people who are familiar with object detection and the other set was
40%. The tests were carried out on proportion and there it was not necessary to have equal numbers.

No difference in results of two groups. All statistic tests gave the same result as for the whole data. There
is no significant difference in the results between the two groups, on the basis of their choice of images.
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