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Abstract

Traffic congestion remains a critical challenge with profound economic, safety, and environ-
mental implications, exacerbated by the continuous growth of global population and vehicle
densities. The expansion of road infrastructure is often impractical due to excessive costs and
spatial constraints. In response, intelligent traffic management strategies have gained prom-
inence, leveraging advanced control methodologies to optimize flow and mitigate congestion.
Among these, Model Predictive Control (MPC) has been extensively applied due to its ca-
pacity to handle complex, constrained systems. However, the accuracy of the underlying
prediction models inherently determines its effectiveness. Traditional system identification
methods can have inherent uncertainties and are often only accurate to a certain confidence
level, leading to potential performance degradation in dynamic traffic conditions. To overcome
this limitation, learning-based MPC integrates machine learning techniques, particularly Re-
inforcement Learning (RL), that can enhance adaptability and closed-loop performance. This
integration can result in more responsive and robust traffic management systems capable of
handling uncertainties and dynamic environments.

The integration of MPC and RL has emerged as a compelling approach to control complex
nonlinear systems, capitalizing on the strengths of both methodologies. RL constantly im-
proves control policies based on observed system dynamics and performance feedback, while
MPC automatically chooses the best control actions over a limited prediction horizon while
still enforcing system constraints. This thesis investigates the integration of RL within the
MPC framework for highway traffic flow optimization, specifically focusing on the dynamic
regulation of Variable Speed Limits (VSL) and Ramp Metering (RM). The proposed approach
is evaluated against three benchmark models: a theoretically optimal MPC model with per-
fect system knowledge, assuming exact parameters; an MPC controller with an imperfect
prediction model, where these parameters deviate from their true values, leading to subop-
timal control decisions; and the MPC-RL model, which dynamically adjusts the learnable
parameters during training to improve overall system performance.
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Chapter 1

Introduction

This chapter serves as a general introduction to this thesis report. Firstly, the chapter provides
some background information and explains the motivation behind applying Reinforcement
Learning (RL) to highway traffic control. Then, the problem formulation and objectives are
briefly discussed. Lastly, the scope and main focus of this thesis are stated.

1-1 Background and motivation

As the global population continues to rise alongside an increase in the number of vehicles,
the capacity of roads is being exceeded. This results in significant costs due to unproductive
time loss, which negatively impacts the economy. For instance, traffic congestion can result
in employees arriving late for work and missing important meetings, which can ultimately
affect business productivity and profitability. More importantly, traffic congestion increases
the likelihood of accidents, adversely affecting public safety, and has detrimental effects on
the environment due to increased air pollution and fuel wastage. In some cases, the negative
environmental impacts of traffic congestion can lead to significant health problems, such as
respiratory diseases and noise. One solution to address the ever-growing traffic congestion
problem is to expand the road network by adding lanes or building new highway connections.
However, this approach is relatively expensive and may not be feasible in certain cities due
to space limitations or other logistical challenges. Dynamic traffic control is an alternative,
cost-effective, and efficient solution.

Dynamic traffic control refers to the use of technology to manage traffic flow in real-time
[7]. It is an important field of study in traffic engineering and transportation planning as
it offers the potential to improve traffic safety, reduce congestion, and enhance mobility for
road users without the need to increase the size and capacity of the current infrastructure.
Dynamic traffic control systems use a combination of hardware and software tools, such as
sensors, cameras, and algorithms, to collect and analyze real-time traffic data and make
informed decisions about traffic control strategies. These traffic control strategies are often
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2 Introduction

orchestrated by a central controller, i.e., a control system that, given the real-time measured
data, outputs the (possibly best) decision to be taken.

Variable Speed Limits (VSLs) and Ramp Metering (RM) are widely acknowledged as useful
control mechanisms for reducing traffic congestion on highways [8]. RM controls the flow
at the on-ramp via traffic lights with appropriate timings for red, green, and yellow.1 VSL
modifies speed limits on highway segments (via black displays) based on real-time traffic
circumstances, resulting in a more balanced traffic flow across the network. Both systems
aim to avoid traffic and reduce congestion by lowering the speed upstream of congestion,
preventing bottlenecks from forming or increasing. Together, RM and VSL can improve
highway network efficiency and safety.

Early implementations of RM and VSL were based on fixed-time methods, with control tim-
ings computed offline using past traffic data [9]. These solutions were unresponsive to real-time
traffic variations. Nowadays, more advanced control strategies use real-time traffic data to in-
crease performance. These real-time control methods are enabled by algorithms ranging from
simple feedback loops to more advanced methods such as Model Predictive Control (MPC)
[10, 1, 6] and machine learning [11, 12].

MPC is a widely used control method in traffic control due to its versatility in handling
multivariate, nonlinear, and constrained systems [13]. However, the effectiveness of an MPC
controller in satisfying constraints and achieving desired closed-loop performance relies heavily
on the accuracy of its prediction model. In practice, the design of the prediction model
often involves simplifying or approximating the complex dynamics of the real-world traffic
system. Additionally, the parameters of the model are typically estimated through system
identification techniques, which have inherent uncertainties and are often only accurate up to a
certain confidence level. Another downside of classical system identification techniques is that
it completely separates the identification procedure from the control design. In other words,
classical estimation algorithms try to find the best model parameters to match the observed
data, and only then the controller is designed on top of this estimated model [14], possibly
in an iterative manner until desired closed-loop control performance is met. On the contrary,
a much better idea is to estimate the model in such a way that the controller performance
on the true model is directly optimized. This approach can lead to performance degradation
in MPC-based traffic control systems, particularly in the face of unforeseen disturbances or
model errors. Therefore, there is a need to develop reliable and adaptive methods for designing
predictive controllers in MPC-based traffic control systems.

The advancements in machine learning have fueled a growing interest in control methodologies
that aim to learn different aspects of the controller scheme from data, with the objective of
reducing conservatism and improving closed-loop performance, as well as enhancing safety
and robustness [15]. One example of such adaptive and learning-based methodologies is
Learning-Based Model Predictive Control, which enables the automation of controller design
and adaptation by leveraging data collected during operation. This approach facilitates a
more dynamic and responsive traffic control system that can better handle changes in the
system or the task at hand [16]. Prominent machine learning techniques combined with MPC
include Reinforcement Learning (RL) [17, 5], Gaussian processes [18], and neural networks
[19], which are used to enhance prediction accuracy, adaptability, and decision-making in
dynamic environments.

1An on-ramp is a roadway section that allows vehicles to enter a highway.
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1-2 Problem formulation and objectives 3

1-2 Problem formulation and objectives

Combining MPC and RL has emerged as a promising approach for learning control policies for
complex nonlinear systems, while leveraging the benefits of both techniques. MPC provides
a framework for incorporating constraints and optimizing over a finite horizon, while RL can
learn a policy that is tailored to the dynamics of the system and performance objectives. The
combination of the two methods is particularly useful when a reliable prediction model of the
system is not available. The combination of MPC and RL has the potential to revolutionize the
way we approach control problems for complex nonlinear systems, including traffic control.
The question now is how to combine RL with MPC for the application for traffic control.
Therefore, the research question states:

How can the frameworks of MPC and RL be effectively combined to optimize high-
way traffic control and increase performance?

Computer simulations will assess performance in a case study. The specific focus of this thesis
is the application of an MPC-RL framework to highway traffic control, particularly for RM
and VSL control. While the effectiveness of MPC-RL for RM has been demonstrated [5], the
addition of VSLs to the control loop introduces new dimensions to the problem that have
not yet been fully explored. The MPC-RL model will initially be configured with parameter
deviations from the perfect MPC model to evaluate whether the RL agent can adjust and
optimize these parameters. The goal is to determine if the RL agent can minimize the cost
terms outlined in the MPC objective function, ultimately converging toward the performance
of the perfect MPC model. This approach addresses the research question by demonstrating
how the frameworks of MPC and RL can be effectively combined to optimize highway traffic
control and drive performance improvements.

1-3 Thesis outline

This section outlines the remainder of the study to facilitate the reading experience. The
sections of this thesis are listed as follows:

• Chapter 2 provides the background information necessary to understand the integra-
tion of MPC and RL in coordinated highway traffic control. It starts with an overview
of existing highway traffic control measures. Additionally, the chapter introduces key
concepts in RL, discussing its applications in traffic management and its potential to
enhance traditional control methods.

• Chapter 3 presents the theoretical framework and methodology used in this research.
The chapter starts by introducing traffic flow modeling, with a focus on the METANET
model, which serves as the foundation for the highway traffic simulations. The mathem-
atical formulation of the MPC-based control approach for coordinated VSLS and RM is
then introduced, along with necessary modifications to the standard MPC formulation.
Finally, the role of RL within this framework is detailed.

Master of Science Thesis N.F.A.J.J. Al Aeedanee



4 Introduction

• Chapter 4 describes the case study conducted to evaluate the proposed MPC-RL
framework. The experimental setup, including the benchmark highway network, para-
meter configurations, and implementation details, is outlined. Additionally, the per-
formance of the model is being discussed and analyzed.

• Chapter 5 concludes this thesis by summarizing the key findings and addressing the
research question. The chapter highlights the main contributions of this study and
suggests directions for future research.

Finally, additional technical details and supporting theoretical derivations are included in the
appendices for further reference.
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Chapter 2

Background Information

This chapter provides the necessary background to understand the theory of RL and MPC
for highway traffic control applications. The chapter begins with an overview of the current
state of highway traffic control, including existing implementations and challenges. Next,
the principles of RL and the applications are introduced in traffic scenarios with a focus on
Q-learning. The chapter then explores the integration between RL and MPC, highlighting
how these methods can be combined to create robust and adaptive traffic control systems.
For the last part of this chapter, current unresolved challenges in the field are highlighted,
which can be explored in future research.

2-1 Terminology

In order to understand the field of highway traffic control, it is required to first understand
the most common terminology used in highway traffic control before diving into the main
discussion of this section [1, 20]:

• Delay (hour): Delay refers to the additional travel time or waiting time experienced by
drivers.

• Congestion: Congestion in highway traffic control refers to a situation in which the
demand for travel on a highway exceeds the capacity of the highway, resulting in slower
speeds, and delays.

• Density (vehicles per kilometer): Density refers to the number of vehicles present in a
given section of highway at a particular time.

• Critical density (vehicles per kilometer): Critical density refers to the density of vehicles
at which, traffic flow changes from free-flow to congested flow. At this point, the capacity
of the highway is reached.
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6 Background Information

• Highway network: It is a system of connected highway links that allow vehicles to travel
from one location to another.

• Traffic flow (vehicles per hour): Traffic flow refers to the movement of vehicles on a
highway over time. It includes the number of vehicles that pass a certain point or
section on the lane per unit of time, the speed at which they travel, and the density of
vehicles on the lane at a given time.

• In/Outflow (vehicles per hour): Inflow / Outflow refers to the rate at which vehicles
enter / exit a highway segment.

• On-/Off-ramp: An on-/off-ramp is a roadway section that allows vehicles to enter/exit
a highway.

• Ramp queue (vehicles): A ramp queue is a line of vehicles waiting to merge into a
highway that has formed on a on-ramp.

• Downstream area: A downstream area is a section of a highway that is located further
down the traffic flow direction from a specific place of interest.

• Upstream area: An upstream area is a stretch of a highway that is positioned before a
given a specific place of interest.

• Critical area: The critical area is a section of the highway, where the capacity of the
roadway is most likely to be exceeded and congestion is most likely to occur.

• Traffic breakdown: When traffic flow becomes unstable and transitions from free flow
to congested flow, it causes a sudden decrease in speed and throughput. At some point,
traffic becomes too dense, and little changes in vehicle speed can set off a chain reaction
that leads to congestion and, eventually, breakdown.

• Bottleneck: It is a section of a highway network where the traffic capacity is insufficient
to meet the current traffic demand. The most notable characteristic of a bottleneck is
its tendency to cause congestion and queue formation, which in turn aggravates travel
delays and contributes to traffic congestion.

2-2 Current State of Highway Traffic Control

This section aims to discuss the current state of highway traffic control and the implementa-
tions used in traffic management. First, the highway traffic control problem will be formulated.
Secondly, the modelling approaches for highway traffic control will be discussed. Finally, the
common highway traffic control measures, their coordination, and the challenges associated
with their implementation will be discussed.

2-2-1 The Highway Traffic Problem

The highway traffic control problem is the challenge of managing and regulating highways of
vehicular traffic. It comes with several challenges:
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2-2 Current State of Highway Traffic Control 7

• Congestion: As population and vehicle ownership continue to grow, the roads become
increasingly congested. This can lead to increased fuel consumption and total travel
time.

• Safety: Ensuring safety is a primary objective and factors such as speeding and inad-
equate infrastructure can pose significant safety risks. The higher the traffic volume,
the higher the risk of crashing [21].

• Environmental impact: The impacts of the transportation sector can lead to air and
noise pollution, and environmental degradation. Traffic congestion increases vehicle
idling times and emissions. Effectively managing traffic while addressing environmental
concerns calls for the adoption of sustainable transportation options and alternative
travel methods [22].

These challenges involve balancing the following objectives:

• Ensuring the safety of all road users: The primary goal of traffic control is to
ensure that all road users, including drivers, passengers, pedestrians, and cyclists, can
travel safely on the roadways. This involves managing traffic flow, minimizing the
risk of collisions, and providing clear and consistent signage and road markings [23].
Traffic control measures must adhere to safety requirements in order to prevent unsafe
situations. In this sense, safety requirements can be viewed as a boundary condition or
constraint that must be met when designing and implementing traffic control measures.

• Maximizing the efficiency of the transportation system: This involves minimiz-
ing delays, minimizing the environmental impact of transportation by reducing emissions
and air pollution [24], and ensuring that traffic flow is optimized to meet demand [6].

• Network reliability: Ensuring that the transportation system is able to provide con-
sistent and predictable travel times for users, even in the face of unexpected events
or disruptions, such as incidents or weather conditions. This involves implementing
strategies and technologies that can quickly identify and respond to disruptions, and
improve the overall performance of the transportation network [25].

In general, safety and efficiency are two important objectives that are interconnected in high-
way traffic control. This means that improving safety can lead to greater efficiency, as there
are likely to be fewer accidents due to less congestion on the roads. Conversely, improving
efficiency can also lead to greater safety, as there may be fewer opportunities for accidents
to occur. However, there are also cases where safety and efficiency may conflict with each
other. For example, lower speed and densities could lead to higher safety, but leads to lower
efficiency as the traffic slows down. Therefore, it is important to carefully consider the specific
circumstances of each situation when designing traffic control strategies that aim to achieve
both safety and efficiency goals.
In order to improve the performance of highway traffic control, the focus should be on max-
imizing the efficiency of the transportation system by minimizing the delays, reducing con-
gestion, and optimizing the traffic flow to meet demand. For simplicity, ensuring safety of
all road users and network reliability are not primary concerns in this project. However, it
is important to note that in any practical application of traffic control, safety and network
reliability are critical factors that must be considered.
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2-2-2 Modelling Approaches for Highway Traffic Control

The problem of traffic control can be thought of as a traditional control problem, where
the highway traffic system serves as the "plant" and feedback control is utilized (see Figure
2-1). The plant, which encompasses the highway traffic system, includes various actuators,
such as traffic signals, RMs, and VSLs. These actuators are capable of interacting with and
influencing the state of the traffic system by, e.g., blocking entering vehicles or slowing down
incoming traffic.

Figure 2-1: A schematic representation of the control loop for managing dynamic traffic. The
actuators receive control signals from the controller, which are determined based on sensor meas-
urements. With a closed control loop, any deviations from the desired traffic system behaviour
are detected, and appropriate control actions are taken in response [1].

In order to design traffic control strategies effectively, it is important to have accurate models
of traffic flow [26]. These models help predict the evolution of traffic congestion and form the
basis of control decisions. There are various types of traffic flow models, ranging from simple
empirical models to more complex physics-based models. Traffic models can be categorized
based on the level of detail used to describe the traffic process, which includes three main
types [27]:

• Microscopic: It focuses on modelling the behaviour of individual vehicles, taking into
account their car-following and lane-changing behaviour. This behaviour is typically
influenced by the distance and relative speed of surrounding vehicles, as well as the
desired speed of the individual vehicle. In these models, each vehicle is modelled separ-
ately, allowing for the assignment of unique characteristics such as driving style, vehicle
type, destination, and chosen route. These models are better suited for simulation due
to their accuracy in capturing detailed vehicle behaviour, but their high dimensionality
makes them less practical for control applications.

• Macroscopic: It describes traffic flow in terms of averaged variables such as density,
speed, and flow rate computed over multiple vehicles. Macroscopic models are often
used in traffic control applications as they provide a high-level view of traffic flow that
can be easily incorporated into control algorithms.
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• Mesoscopic: This traffic flow models describe the behaviour of vehicles in probabilistic
terms without tracking them individually. These models include headway distribution
models, cluster models, and gas-kinetic models.

For highway traffic control, the focus is on aggregate traffic flow variables such as density,
speed, and flow rate. This means that macroscopic models are more desirable rather than
other described models. Additionally, macroscopic models are better suited to capture the
effects of traffic management strategies such as RM or VSLs, which can have significant
impacts on overall traffic flow but may not be discernible at the individual vehicle level.
Since macroscopic models focus on aggregate variables, they can be computationally efficient
compared to microscopic models that track individual vehicles. The efficiency is crucial for
RL algorithms, which often require numerous interactions with the environment (i.e., traffic
system) to learn optimal control policies. Additionally, a simplified state space representation
is preferred for RL algorithms to process, making macroscopic models beneficial. By providing
a higher-level view of traffic flow, macroscopic models can help transportation planners and
engineers to optimize traffic control strategies and improve the overall performance of highway
systems. In this thesis project, a macroscopic model is employed to describe the dynamics of
the system, which will be further discussed in the following chapter.

2-2-3 Highway Traffic Control Measures

Traffic congestion can often be expected in areas where the inflow of the main road and
the on-ramp lane exceeds the capacity of the downstream area. Consequently, on-ramps are
notorious for causing traffic jams and delays, making them a critical area for improvement.
Therefore, it is important to focus on these specific road sections to find ways to reduce
congestion and improve overall traffic flow. One potential solution to address the issue of
traffic congestion is to synchronize the inflow of vehicles on the on-ramp with the gaps in the
flow of the main lane traffic.

RM is a control measure that aims to achieve this synchronization. RM works by using
traffic signals at on-ramps to control the rate at which vehicles enter the highway, thereby
improving overall traffic flow and reducing congestion. The traffic signals use a combination
of red, green, and amber lights to regulate the number of vehicles that can enter the highway
at any given time. When the ramp meter is activated, the traffic signal at the on-ramp will
display a red light, indicating that vehicles should come to a stop before the on-ramp. After
a predetermined time, the signal will change to green, allowing a certain number of vehicles
to enter the highway. The green light duration is typically adjusted to maintain a steady flow
of traffic on the highway without causing congestion. The duration of the lights is depended
on the applied RM strategy. A visual representation of an on-ramp is depicted in Figure 2-2.

In order to evaluate the performance and effectiveness of RMs in pursuing traffic and safety-
related objectives (as per Section 2-1-1), literature has used various metrics and measures
such as queue length, delay, and travel time. It is important to evaluate RM systems to
ensure that they are meeting their objectives, which typically include improving traffic flow,
reducing congestion, and improving safety. While the analysis of highway and ramp demands
shows that RM can improve the total time spent in congested conditions, its effectiveness
is limited if ramp congestion cannot be adequately controlled. The main reason for this is
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Figure 2-2: Schematic representation of the RM application [2]. It includes detector loops that
feed information to the ramp meter controller, monitor the level of traffic and detect gaps in the
traffic stream. Loops are also installed on the on-ramp to monitor on-ramp queue. Finally, an
end of queue loop is placed at the entrance of the on-ramp to prevent backups onto local streets
by releasing the queue when the ramp fills the capacity.

that the RM rate cannot drop below a certain threshold, and as a result, the inflow of the
congested area cannot be restricted sufficiently [6]. Specifically, a ramp meter is only effective
if ramp congestion is present and the following condition is satisfied:

dhw < qdrop − qr,min, (2-1)

where dhw is the highway demand, qdrop the outflow of the ramp congestion (post capacity
drop), and qr,min the minimum ramp flow. This condition shows that RM must balance
highway demand and congestion at the ramp. Without satisfying this relationship, the ramp
meter cannot sufficiently control inflows, resulting in limited improvements to overall traffic
flow and congestion management.

One of the main drawbacks of existing RM strategies is their reliance on predefined traffic
models to predict traffic patterns and calculate control actions. These models may not be able
to accurately capture unusual conditions, such as extreme weather or traffic incidents, and the
parameters of the control algorithm must be fine-tuned. Furthermore, existing strategies have
limited capability to improve control efficiency in the long-term. Therefore, a new strategy
that improves RM and outperforms existing applications is desired.

As for VSLs, they are deployed as a control measure to achieve multiple objectives, including
reducing congestion, increasing traffic flow, and enhancing safety. VSLs are electronic signs
that display the current speed limit on a particular stretch of highway (see Figure 2-3) .
Unlike traditional speed limit signs, which are fixed and do not change, VSLs can be adjusted
to display different speeds in an effort to reflect changing traffic conditions or other factors
that affect the flow and safety of the road. One of the main benefit of VSLs is that they
improve safety. By reducing speed discrepancies between vehicles travelling in the same lane or
adjacent lanes, the behaviour of the drivers becomes more synchronized and discouraged from
changing lanes, leading to a decrease in the likelihood of collisions [28]. Another significant
benefit of VSL signs is their ability to resolve traffic breakdowns. When a highway approaches
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2-2 Current State of Highway Traffic Control 11

capacity, even minor disruptions to the traffic flow can quickly lead to congestion and traffic
breakdown. By slowing down traffic in advance of bottleneck locations, VSL signs can help
to prevent or delay the onset of traffic breakdowns, restoring the capacity of the highway
and keeping traffic moving smoothly [1]. At last, it can also lead to environmental benefits.
Congestion is often linked to increased fuel consumption and emissions, and by reducing
congestion, VSL signs can help to minimize these negative impacts [29].

Figure 2-3: VSLs used on a A15/A16 highway in the Netherlands [3].

In the end, VSLs are considered to be effective control applications. However, it is not
without limitations. It is still incapable of dealing against large variations in traffic flow. It is
therefore of interest to find a new strategy that improves VSLs and outperform the existing
applications.

2-2-4 Coordinated RM and VSL Control

Coordinated traffic control systems have emerged as a promising solution to manage traffic
flow and reduce congestion, combining RM and VSL signs to regulate traffic volume and
speed. Improving the synergy of these systems can yield an improvement of traffic flow
and reduced congestion on highways, leading to reduced travel times and improved safety
[6, 30]. Coordinated control systems for highway traffic control using RM and VSLs typically
consist of several components that work together to achieve the desired traffic flow. These
components include:

• Traffic simulation model: The model is used to simulate the traffic flow on the
highways, including the vehicles, their speeds, and their behaviour.

• Control input variables: The data collected includes density, speed of the mainstream
flow in the vicinity of the ramp, and queue length of the on-ramp, and is used as input
for control and decision-making processes. This data can be collected by using sensors.

• Decision making architecture: The architecture is tasked with processing the data
collected by the sensors to determine the appropriate actions to take. This is typically
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done using control algorithms. These algorithms take into account factors such as
traffic flow, capacity, and safety to determine the optimal RM rates and VSLs (control
objectives). The controller can adjust the RM rate based on current traffic conditions
and congestion levels, while VSLs can adjust the speed limit in real-time to improve
traffic flow and reduce congestion. Once the appropriate RM rates and VSLs have been
determined, these are implemented through various actuation mechanisms. Feedback
mechanisms are commonly used to monitor the effects of the control actions and adjust
them as needed. A requirement is to have a communication system that ensures that
the controllers receive accurate information about the traffic conditions on the highway,
allowing them to make the necessary adjustments to improve traffic flow.

There exist various approaches to integrate VSLs with RM. In addition to implementing the
aforementioned components, this integration is determined by the adopted model and the
design of the control strategy, and can be categorized as follows [30]:

• RM rate is determined before determining VSL. In this approach, the RM rate
is initially determined based on the traffic conditions and then the VSLs are adjusted
accordingly. The VSLs can be set to the maximum allowable speed if there is no con-
gestion or set to an intermediate or lower value if congestion is present. This approach
is simpler to implement but may result in suboptimal control as VSL decisions are
constrained by prior RM control actions.

• Determine VSL first before determining RM rate. In this approach, the VSLs
are determined first based on the traffic conditions and then the RM rate is adjusted
accordingly. The VSLs can be set to a lower value to reduce the inflow of traffic to
a congested area and then RM can be used to further manage the traffic flow. This
approach smooths traffic flow upstream by prioritizing VSL but limits the flexibility of
RM control actions.

• Determine RM and VSL simultaneously with coupled dynamic model in-
volving speed and density. In this approach, a dynamic model that can consider
both RMs and VSLs and can take into account the effect of their control on the traffic
speed and density must be employed. The model is used to determine the optimal RM
rate and VSL values simultaneously. This approach provides greater control flexibility
and as a higher degree of freedom, but is computationally intensive.

Various control methods are used in traffic management, with a focus on controlling VSLs
and RM. For instance, [31] combined VSL control with pre-determined RM rates using the
macroscopic model METANET to optimize traffic conditions. Their approach led to a 31.8%
reduction in total travel time and a 12.8% increase in total travelled distance. In another
study, [8] also designed VSL controls based on factors such as bottleneck flow and onramp
demand variation, using a linearized model to coordinate RM. This method facilitated effi-
cient numerical optimization. Similarly, [1] integrated VSL and RM to reduce vehicle travel
time in highway networks. They highlighted the need for distributed MPC to manage large
networks effectively while maintaining computational efficiency. Their approach reduced total
time spent by 14.3%, which was a better result compared to using RM alone. Other stud-
ies investigated the differences between distributed and centralized MPC control strategies.
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While centralized control is more effective, it is computationally more expensive. In con-
trast, distributed systems that allow communication between controllers can enhance traffic
performance with a lower computational cost [32].

2-2-5 Challenges

There are three aspects that make the application of a control mechanism challenging and
computationally complex in highway traffic control:

• The dynamics of the highway traffic flow are often non-linear and are influenced by a
variety of factors, including driver behaviour, vehicle characteristics, road design, and
environmental conditions. These factors can lead to highly dynamic and complex traffic
patterns, such as stop-and-go waves, and congestion.

• The VSLs are only permitted to take values from a discrete set, while the RM rates
are continuous control inputs. VSLs are limited to a discrete set of speed limits, which
are distinct and separate values often expressed as integers or whole numbers. In con-
trast, RM rates are continuous control inputs that can take any real value within a
given range. This means that VSLs can only be set to specific speed limits, such as 60
km/h or 80 km/h, but not to intermediate values like 65 km/h. In contrast to RM, the
RM rate can be set to 0.5 vehicles per second, 0.6 vehicles per second, or any value in
between. The limitation of discrete control inputs, such as VSLs, restricts the range
of control strategies that can be implemented. Continuous control inputs, such as RM
rates, provide greater flexibility, allowing for a wider range of control strategies and po-
tentially more effective traffic management. This could be challenging for optimization
problems, since it must deal with the combination of continuous and discrete control
inputs. This restriction limits the range of control strategies that can be implemented
and can potentially make the optimization problem more complex. The formulation
and complexity of the optimization problem will depend on the specific objectives and
constraints of the control problem, as well as the number and type of control inputs
involved. Mixed integer programming approach may be an appropriate optimization
method for combining RM with VSLs in highway traffic control, particularly when the
issue comprises both continuous and discrete variables. However, the effectiveness of
the method is dependent on the specific characteristics of the problem, such as the size
of the network, and the complexity of the control objectives.

• To achieve effective performance, MPC needs to be applied over a broad spatial scale
in order to coordinate multiple control measures. In highway traffic networks, there are
typically multiple control measures that need to be coordinated, such as VSLs and RM
installations. Coordinating these control measures requires a large-scale approach that
takes into account the interactions between different parts of the network. Moreover, the
large spatial scale of the highway traffic network means that the prediction model used
in the MPC controller needs to be able to accurately predict future system trajectories
over a wide area. This requires a high level of computational power and accuracy, which
can be challenging to achieve.
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2-3 Reinforcement Learning and its Applications in Traffic Man-
agement

This section introduces the key concepts of RL, and emphasizes the importance of the Markov
property in modelling the highway traffic control problem. It also explores Q-learning, a
model-free RL algorithm well-suited to highway traffic scenarios, and discusses the role of
hyperparameters in optimizing RL performance. It concludes with a review of RL applications
in traffic control, such as RM and VSLs, highlighting both the successes and limitations of
current methods.

2-3-1 Introduction to Reinforcement Learning

RL techniques are increasingly being recognized as a valuable approach for tackling intricate
decision-making tasks. One reason for this is that RL has the capability to automatically
develop novel strategies for challenging problems that may be difficult for humans to devise.
It is a subfield of Artificial Intelligence (AI) that focuses on creating agents that can learn
how to make optimal decisions in complex environments [33]. RL agents learn through trial
and error by receiving feedback in the form of rewards or punishments for their actions. It
consists of five main subelements:

• Environment: The environment is the external system in which the agent operates. It
is a dynamic system that can change over time based on the actions of the agent. The
environment can be anything from a simple game to a complex real-world scenario.

• Agent: The agent is the decision-making entity that interacts with the environment.
It observes the state of the environment, selects actions based on its policy, and receives
feedback from the environment in the form of rewards or punishments.

• Reward signal: The reward signals are the feedback mechanism used by the environ-
ment to provide feedback to the agent, after an action is taken. The goal of the learning
agent is to maximize the total reward it receives over the simulation time. Rewards
can be positive or negative, and they reflect the desirability of the action taken by the
agent. As consequence, it can alter the policy. If an action selected by the policy is
followed by low reward, then the policy may be changed to select some other action in
that situation in the future.

• Policy: A policy can be seen as a guide that a learning agent follows to decide what
actions to take in different situations, when interacting with the environment. It essen-
tially describes the mapping from the states of the environment to actions to be taken
when in those states.

• Value function: Whereas the reward signal indicates what is good in an immediate
sense, a value function specifies what is good in the long run. The value of a state
given a policy is the total reward an agent can expect to accumulate over the future by
following that policy. Also, it captures the long-term desirability of states. For example,
a state with low immediate rewards might still have high value if it leads to future states
with substantial rewards. Conversely, a state with high immediate rewards might have
low value if it leads to poor outcomes in the long run.
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The agent interacts with the environment by taking actions that transition it from one state
to another. Each action results in a reward or punishment from the environment, and the
objective of the agent is to maximize the cumulative reward over time. To achieve this, the
agent must choose actions that yield high rewards according to the objective function. The
policy of the agent determines how it selects actions based on the current state, and the
value of a state is the expected return that can be achieved by following the current policy.
Depending on the methodology, these values may be stored for all states in a tabular form,
or learned via function approximation.

Figure 2-4: A schematic representation depicting how the agent interacts with the environment
[4].

Note that an RL problem is essentially a closed-loop optimal control problem, since the
actions of the agent influence the environment, and the resulting changes in the environment
impact the future decisions of the agent. This continuous cycle of interaction allows the
agent to learn from the consequences of its actions over time, adapting its policy to maximize
long-term rewards.

One of the challenges that arises in RL is the trade-off between exploration and exploitation.
To obtain high reward, an RL agent would intuitively prefer actions that it has tried in the
past and found to be effective in producing reward. When exploiting, the agent relies on past
experience, choosing actions it has already found to be effective. However, to discover such
actions or better actions, it has to try actions that it has not selected before. By exploring,
the agent gains new actions, which can help it make better decisions in the future. The agent
has to exploit what it already knows in order to obtain reward, but it also has to explore in
order to make better action selections in the future. The dilemma is that neither exploration
nor exploitation can succeed on its own without failing at the task. Therefore, the agent
should try and discover a variety of actions and progressively favour those that appear to be
best in term of rewards [33].

2-3-2 Markov Property in Highway Traffic Control

The Markov property means that the future state of a system depends only on its current
state and action, not on any past states. In other words, if the current state of the highway
control system provides enough information to predict the future state, then the system has
the Markov property. In the context of highway traffic control and depending on the model
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that is used (METANET), the states represent the density and speed on each segment, and
the queue at the on-ramp and mainstream origin. The actions are the control inputs such as
the RMs and VSLs. If the state representation of the system includes all relevant information
about the current states, the future state can be predicted without needing information about
past states, thereby satisfying the Markov property.

It is beneficial to have a Markov property in highway traffic control, since it simplifies both the
modelling and the application of RL algorithms, enabling more efficient and effective learning
for controlling highway traffic dynamics. With the Markov property, the current state of the
traffic system would be sufficient to predict the next state after applying a control action. This
eliminates the need to track complex histories of past states, flows, and control actions, which
simplifies both state representation and model design. Also, it reduces the computational
complexity because the agent can treat each decision step independently of the past.

Note that the highway traffic control problem has a Markov property and consists of infinite
states and actions. Therefore, the highway traffic control problem can be formulated as a
Markov Decision Process (MDP).

2-3-3 Q-learning Algorithm

Q-learning is a model-free, off-policy reinforcement learning (RL) algorithm. Q-learning aims
to find the optimal policy for an agent, which is the set of actions that maximizes the expected
cumulative reward when interacting with the environment [33]. It achieves this by learning
an action-value function, also called the Q-function. This function estimates the "quality" of
each action in each state, which makes it possible to make decisions that maximize long-term
rewards. This is described as:

Q(st, at) = E
[ ∞∑

t=0
γtrt | s0 = st, a0 = at

]
, (2-2)

where rt describes the reward at time step t, st and at are the current state and action,
respectively, and γ is the discount factor, which describes the importance of future rewards
and has always a value between 0 and 1. The main objective is to learn an estimate of
the Q-function through repeated interactions with the environment, in order to determine
the optimal action in each state (learning the optimal policy). This involves updating the
Q-values based on the Bellman equation:

Q(st, at)← Q(st, at) + α

[
rt+1 + γ max

at+1
Q(st+1, at+1)−Q(st, at)

]
, (2-3)

where α is the learning rate, rt+1 is the reward received at the next time step, and st+1 and
at+1 represent the next state and action, respectively. The agent repeats these steps over
many episodes, updating Q-values, and refining its policy. Note that this learning process
is independent of the current behaviour of the agent and can learn from data generated by
any other exploratory policy. This property, known as off-policy learning, allows the agent to
improve its target policy (the one it is learning to optimize) while following a different policy
for exploration.
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Note that Q-learning algorithm operates at within the framework of a MDP problem. Since
the highway traffic control problem can be formulated as MDP, the Q-learning algorithm is
well-suited for this application. Although a highway traffic model is often available to predict
traffic dynamics (and is model-based) and apply control actions, there are significant benefits
to applying a model-free RL approach like Q-learning. A highway traffic control model is
limited to unexpected behaviour or real-time variabilities, while Q-learning can learn policies
based on observed data and rewards, adapting directly to real conditions without relying on
model assumptions [34]. This has a potential to develop a more accurate highway traffic model
than the existing one. However, it is important to note that training in a model-free fashion
generally requires more interactions and significantly more time to learn effective policies
compared to model-based approaches, which leverage predictive models to reduce learning
time.

The step-by-step process of the Q-learning algorithm is depicted below [33].

• Initialize Q(st, at), ∀s ∈ A(s), arbitrarily, and Q(terminal-state, ·) = 0
• Repeat (for each episode):

– Initialize st

– Repeat (for each step of episode):
∗ Choose at from st using policy derived from Q
∗ Take action at, observe rt+1, st+1
∗ Q(st, at)← Q(st, at) + α (rt+1 + γ maxa Q(st+1, at)−Q(st, at))
∗ st ← st+1

until st is terminal

2-3-4 Hyperparameters

In RL, hyperparameters directly influence the ability of the agent to explore in its environ-
ment, learn effectively from experience, and converge to an optimal policy. Unlike model
parameters, which are learned during the training process, hyperparameters are predefined
values and options that determines the behaviour and efficiency of the learning process. Im-
properly set hyperparameters can lead to slow convergence, suboptimal policies, or unstable
training. It is therefore important to have optimal values for the hyperparameters to balance
exploration and exploitation, adapt to varying environments, and ensure stability during
training.

The key parameters are listed in Table 2-1, categorized into groups based on their tuning
priority.
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Table 2-1: Key parameters grouped by tuning priority

Group 1 (can be tuned) Group 2 (might be
tuned)

Group 3 (Least favourite
to tune)

Learning rate (α) Decay rate of the learning
process

Update frequency

Exploration (strength and
chance)

Discount factor (γ) Additional constraint for the
change update of the learn-
ing parameters

Disturbance at the demand Number of episodes to learn
Weights for the RL stage
cost

The learning rate determines how quickly the agent updates its knowledge (i.e., in the case
of Q-learning, its estimate of the action-value function). A proper learning rate is crucial
because a rate that is too high can cause the learning process to overshoot optimal solutions,
while a rate that is too low can make the process extremely slow. As for the exploration, too
much exploration can lead to inefficient learning, while too little can cause the agent to miss
out on potentially better actions. Furthermore, introducing noise or disturbance can help in
generalizing the learning process, making the agent robust to fluctuations. Lastly, fine-tuning
the stage cost weights for the RL agent can optimize the performance of the agent, since it
can influence the value for the TD-error and the update for the learnable parameters.

Although the parameters described in group 2 are not as immediately impactful as group
1 parameters, they play a critical role in fine-tuning the learning process for stability and
efficiency. The decay rate of learning rate and exploration controls how quickly the learning
rate decreases over time. Properly tuning the decay rate helps in preventing overshooting of
optimal solutions and ensures stable convergence to the optimal policy. The discount factor
determines how future rewards are valued compared to immediate rewards. Tuning this
factor is crucial for balancing long-term and short-term gains. A well-tuned discount factor
ensures that the agent makes decisions that optimize long-term performance without overly
discounting future rewards. Lastly, tuning the number of episodes is important to ensure that
the agent has sufficient number of interactions with the environment to learn effectively.

As for group 3, the parameters typically do not have as dramatic an impact on the overall
learning performance as group 1 or group 2 parameters. The update frequency determines
after how many episodes the learnable parameters of the agent are updated. In most cases, it
is set to update after each episode, which is a common and effective default setting. However,
this frequency can be adjusted depending on the learning environment or computational
constraints. For example, in scenarios where updates after every episode lead to instability
or inefficiency, a less frequent update schedule might be beneficial to improve convergence
or reduce computational overhead. Another parameter in this group involves fine-tuning
the maximum and minimum allowable changes for the learnable parameters during each
update. This parameter provides additional control over the stability of the learning process
by constraining the magnitude of adjustments made to the model. Such constraints can be
useful in environments when precise control over learning dynamics is required. Since these
parameters are less critical to the learning ability of the agent, they are typically tuned only
when necessary.
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2-3-5 RL in Highway Traffic Control

Numerous studies have explored the application of RL in highway traffic control to improve
the performance of the system. Table 2-2 provides a summary of state-of-the-art research on
the application of Q-learning to RM control.

Table 2-2: Summary of Q-learning applications in highway control for RM control.

Research
paper

Applied
method

State
variables/
Number of
ramp meters

Action Reward Traffic
model

[35] Tabular
method

Density of
bottleneck,
ramp queue
length,
ramp demand,
current metering
rate/ 1

Whether to
increase,
decrease,
or not change
the current
metering rate

Outflow,
ramp queue
length

Macro

[36] Tabular
method

Number of
vehicles
in mainline,
number of
vehicles
entered from
the ramp,
ramp signal
of the last step/ 1

Red/green
signal

Deviation of
density from
critical density

Macro

[37] Tabular
method

Mainline speeds,
ramp queue
lengths,
RM
signal status/ 1

Red/green
signal

Ramp queue
length, mainline
average speed

Macro

[38, 39]

Tabular method
with state-space
RM approximation
by k-nearest
neighbors

Density, ramp
flow/ 2

Direct red
phase lengths Total time spent Micro

[40]

Value function
RM approximation
by the deep neural
network

Densities, ramp
queue lengths,
off-ramp
presence and
absence/ 3

Metering rates
Number of
discharged
vehicles

Macro

The primary goals of these studies were to minimize the total time spent by vehicles in trans-
iting through the highway [38, 39], and reduce deviations of traffic density from the critical
density (at which flow is maximal) in the control target section [35, 36, 40]. Based on the
Q-learning method used, these studies can be classified into two categories: tabular methods
and value function approximation-based methods. Some examples of tabular methods include
studies [35, 36, 37, 39, 37] while value function approximation-based methods are exemplified
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by study [40]. Most studies used tabular methods for RL, but as the state variables of high-
way control problems are usually continuous and grows exponentially in larger networks, this
method is limited due to the computational cost and the curse of dimensionality of the state
space. Some studies used more complex methods like k-nearest neighbours to approximate
the continuous state spaces and make it less computationally heavy (such as [38, 39]).
To overcome challenges such as the high computational cost and the curse of dimensionality
in the state space, value and policy function approximation methods, such as those employing
artificial neural networks (ANNs), have been developed. To the extend of our knowledge, only
[40] used value function approximation-based reinforcement learning methods, and this study
used artificial neural networks as the approximate value functions. It employed an ANN as
the approximated value function for Q-learning. At each time step, the ANN takes all network
state variables as inputs and calculates the Q-values of all available actions as outputs. This
means that the ANN maps the state vector to another vector, where each element represents
the value of a state-action pair. ANNs provide a useful tool for function approximation
in RL, especially when dealing with large or continuous state and action spaces. However,
overfitting and generalization issues can arise if the ANN is too complex for the given task, or
is trained for too long, and the performance is dependent on the assigned hyperparameters.
Further research is needed to determine the limits and convergence of ANN-based function
approximation methods in reinforcement learning for highway traffic control.
Several studies have also explored the application of Q-learning approaches to VSL control.
Table 2-3 provides a summary of prior research on the application of Q-learning to VSL
control.

Table 2-3: Summary of Q-learning applications in highway control for VSL control.

Research
paper

Applied
method

State
variables/ Number
of VSLs

Action Reward Traffic
model

[41] Tabular
method

Densities of
mainline and
ramp/ 1

Speed limits
Deviation of
density from
critical density

Macro

[42] Tabular
method

Density of
controlled
VSL -,
immediate -,
and downstream
section/ 1

Speed limits Total crash risk Macro

[43]

Tabular method
with state-space
RM approximation
by k-nearest
neighbour

Densities and
speeds/ 3 Speed limits

Deviations of
densities from
critical density,
times to collision

Micro

[44, 45]
Value function
approximation by the
deep neural network

Lane-specific
occupancies in
mainline and
ramp/ 1

Lane-specific
speed limits

Total time spent,
bottleneck speed,
emergency brake,
emissions, reduce
crash probability

Micro

Again, the primary goals of these studies were to minimize the total time spent by vehicles
[45, 44], and reduce deviations of traffic density from the critical density in the control target
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section [41, 43]. One paper has a different objective, which is to reduce the total crash risk
[42]. Among the studies summarized in this section, [43, 44, 45] employed microscopic traffic
simulation models such as MOTUS [46], and SUMO [47]. [41, 42] used macroscopic dynamic
traffic flow models such as CTM as the simulation tools. As before, based on the Q-learning
method used, these studies can be classified into two categories: tabular methods and value
function approximation-based methods (see Table 2-3).

[44] and [45] developed a deep reinforcement learning (DRL) model for controlling differential
VSLs (DVSL) that can accommodate dynamic and varying speed limits among lanes. The
proposed DRL models use an actor-critic architecture where the actor generates the VSL
control action and the critic evaluates the policy of the actor. The Q-value that is estimated by
the critic is associated with the efficiency, safety and emission of vehicles in the transportation
network. Both the actor and critic functions use multi-layer neural networks as function
approximators. The objective of the actor is to maximize the value function Q, while the goal
of the critic is to produce a perfect approximation of the value function. Since obtaining the
true value function for a complex MDP requires trying out a large number of policies, the value
function can be learned by bootstrapping from the current estimate of the value function. In
this case, the goal of the training algorithm is to identify a parametrized policy using the actor
that maximizes the expected reward return throughout the DVSL controlled time period. The
Deep Deterministic Policy Gradient (DDPG) method is used for the training. DDPG uses a
stochastic behaviour policy for exploration while estimating a deterministic target policy [48].
The authors stated that one of the primary challenges in reinforcement learning is balancing
exploration, which involves actively seeking out actions that might yield high rewards and
lead to long-term gains, with exploitation, which involves maximizing short-term rewards
using the current knowledge of the agent. Without adequate exploration, the agent may not
discover effective DVSL control strategies. DDPG, as an off-policy RL framework, has the
benefit of exploration being independent of the learning algorithm.

Only one paper managed to discuss the application of RL to coordinated VSL and RM control.
[49] employed a decentralized reinforcement learning approach to address both RM and VSL
control simultaneously. A simple, microscopic traffic simulation model is employed for the
evaluation of the relative effectiveness of the control policies proposed by the reinforcement
learning agents. The RL algorithms for the RM and VSL problems were trained on four
scenarios of varying traffic demand. Each scenario consisted of a rush hour period with a
gradual increase in demand, a peak demand period lasting an hour, and a gradual decrease
in demand followed by a 90-minute period to allow for the system to return to free-flowing
traffic conditions. These scenarios were designed to simulate real-world traffic conditions and
provide a suitable test environment for the RL algorithms. The authors applied multi-agent
reinforcement learning (MARL), which is a specialized branch of reinforcement learning that
investigates the behaviour of multiple learning agents operating in a shared environment [50].
Using a MARL approach to solve both the RM and VSL problems simultaneously has shown
that there are possibilities for further reduction in Total Travel Time (TTS), although these
improvements are relatively minor [49]. Moreover, it has been observed that the utilization
of a MARL approach results in a more stable traffic flow in the presence of RM. Additionally,
the MARL approach has shown to achieve a better balance between protecting the flow of
traffic on the highway and maintaining an acceptable queue length at the on-ramp, compared
to other RM approaches, hinting at the fact that some coordination between RM and VSL
actions can be indeed beneficial. This is beneficial as it helps prevent congestion on the on-

Master of Science Thesis N.F.A.J.J. Al Aeedanee



22 Background Information

ramp from spilling back into arterial systems. However, we note that a decentralized approach
like MARL, while computationally lighter, can potentially lead to more suboptimal control
policies compared to centralized approaches.

Tabular Q-learning has been the most commonly used algorithm in the studies discussed in
this subsection, while Q-learning with value function approximation is still under development,
especially for coordinated RM and VSL control. Interestingly, there has been no investigation
into combining existing controllers with reinforcement learning, such as a MPC. Although it
has been shown that the cooperation of ramp meters and VSLs has led to good performance,
it is unclear which approach, reinforcement learning or traditional non-learning-based control
methodologies, is better. Further research is needed to compare the performance of these two
approaches. Overall, the potential benefits of using reinforcement learning in highway traffic
control are substantial, and more research in this area is needed to develop advanced control
algorithms and optimize reinforcement learning-based systems.

2-4 Combining RL and MPC

Combining RL and MPC requires an understanding of how the two methodologies can comple-
ment one another. RL learns from trial-and-error interactions with the environment, enabling
the design of policies that maximize long-term rewards. However, RL often struggles with
satisfying constraints, stability, and safety during the learning phase. MPC, on the other
hand, is a model-based method that computes optimal control actions by solving optimiza-
tion problems over a finite time horizon, taking explicit constraints into account. In general,
predictive controllers such as MPC are heavily bound to the quality of the prediction model,
which require a high level of accuracy during the system identification phase. The integration
of RL and MPC often focuses on overcoming the limits of one method while leveraging the
capabilities of the other. For example, the reliance on an accurate prediction model of the
MPC can be mitigated by incorporating the ability of the RL to learn models or policies from
data. Conversely, the exploration-driven learning process from RL can be guided by MPC to
ensure that actions remain safe and feasible.

The integration of RL with MPC has been investigated in a variety of fields. [51] proposes an
integration where Economic Non-linear Model Predictive Control (ENMPC) acts as a value
function approximator within the RL framework. Additionally, it acts as a policy generator.
ENMPC optimizes performance according to an economic objective while incorporating con-
straints and dissipativity conditions, providing a structured mechanism to ensure stability
and constraint satisfaction. The ENMPC controller uses a parametrized stage cost and con-
straints that RL fine-tunes via interactions with the real system. This approach requires that
the ENMPC controller can deliver the optimal control policy even when the underlying model
deviates from reality. One of the critical results demonstrated in the paper is that ENMPC
can approximate value - and action-value functions of the RL while maintaining safety guar-
antees. This is achieved through adaptive adjustments to the ENMPC parameters, including
stage costs and terminal components, which RL learns to optimize based on observed system
performance. The RL component, using methods such as Q-learning, systematically adjusts
the parameters of the MPC controller. This iterative adjustment aims to uncover the optimal
policy, either by direct computation or by refining the approximations of the action-value
function. This synergy allows the system to leverage the strengths of both MPC and RL,
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resulting in enhanced closed-loop performance. This approach can be described in Figure
2-5, where the MPC feeds actions to the real system (environment) according to its current
control policy, while the RL component refines the MPC parameters. This feedback loop
creates a data-driven mechanism that not only compensates for model inaccuracies but also
ensures continuous improvement in system performance.

Figure 2-5: Representation of the hybird MPC-RL approach [5].

A key advantage of this integration lies in its capacity to handle discrepancies between the
model used by the MPC scheme and the actual dynamics of the system. Even when the pre-
diction model is imperfect, the framework enables the MPC controller to adapt and converge
toward optimal policies and value functions through the learning-driven adjustments of its
parameters. The effectiveness of this technique, however, is dependent on the expressiveness
of the MPC parametrization. It should be rich enough to reflect the real and complete dy-
namics and aims of the underlying RL task. One of the standout benefits of this approach,
especially when compared to Neural Network (NN)-based RL methods, is the ability of MPC
to incorporate prior knowledge of the system through pre-defined imperfect prediction models.
NN-based RL methods often function as black-box models, offering limited interpretability
and posing difficulties in guaranteeing these critical control properties. Moreover, MPC con-
trollers handle constraints on states and actions explicitly and in a structured manner, an
area where NN-based approaches typically struggle [52]. This explicit constraint handling
ensures a safer and more stable learning process, allowing the system to maintain feasibility
even in the early stages of learning.
Traffic control is an ideal application domain for RL-MPC frameworks due to its complexity
and dynamic nature. Traffic systems often involve high-dimensional state spaces, nonlinear-
ity, and interactions between vehicles and infrastructure, making them challenging to model
and control with traditional methods. For example, [5] used this framework to optimize RM
strategies. The approach was designed to adapt dynamically to traffic conditions by embed-
ding RL into the MPC architecture. Specifically, the control problem was formulated as an RL
task using a stage cost function that accounts for traffic conditions, control action variability,
and queue constraints. The MPC-RL controller utilized MPC for its predictive capabilities
while allowing RL to refine the learnable parameters of the MPC and handle uncertainties
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in the traffic model. This design overcame the limitations of traditional MPC, which relies
heavily on accurate modelling, by enabling the system to learn improved policies directly from
real-time interactions with the environment. Testing on a benchmark highway network found
that the framework successfully decreased congestion and handled ramp queues. These find-
ings highlight the effectiveness of MPC-RL frameworks in improving traffic flow and meeting
real-world constraints.

In summary, combining RL and MPC involves integrating a differentiable parametrized MPC
scheme, serving as both policy provider and function approximator, with an Q-learning al-
gorithm. The Q-learning algorithm updates MPC parameters through gradient-based adjust-
ments using observed closed-loop data, enabling the automatic learning of congestion-free,
constraint-compliant policies. This method addresses model inaccuracies and uncertainties
by bypassing the need for precise system identification and manual parameter tuning, instead
learning (sub)optimal parameters through real-time interactions. It has been successfully im-
plemented and tested on a benchmark highway network, efficiently reducing bottlenecks and
managing queue lengths while incorporating constraint penalties into both the MPC objective
and RL reward function.

2-5 Summary and Identified Research Gaps

While RL has shown promise in learning adaptive policies directly from data and interaction
of the agent with the environment, and MPC excels at handling constraints and optimizing
over finite horizons, integrating the two approaches has revealed significant opportunities for
improving highway traffic control. However, despite these potentials, several challenges and
gaps remain that requires further investigation.

In general, highway traffic control continues to face challenges, such as congestion, safety
risks, and environmental concerns. Traditional control measures such as RMs and VSLs have
demonstrated effectiveness to some extent, but often rely on static models that struggle to
adapt to the dynamic and unpredictable nature of real-world traffic conditions. Coordinated
RM and VSL control strategies have emerged as a solution, yet their computational complexity
limits their scalability to large networks. Additionally, current RL methods often depend on
tabular techniques, which become computationally expensive and impractical for large-scale
traffic systems with continuous and high-dimensional state spaces. In contrast, value function
approximation methods were introduced to address these challenges, making them well-suited
for highway traffic control applications.

The integration of RL and MPC presents a promising alternative, leveraging the ability of
RL to adapt and learn and the capability of MPC to ensure stability and satisfy constraints.
RL-MPC frameworks can improve traffic flow and reduce congestion by enabling data-driven
adaptation while maintaining the prediction and constraint-handling capabilities of the MPC
scheme.

One of the primary research gaps lies in the scalability of RL methods for traffic networks.
While RL has been successfully applied to smaller, simplified highway segments, extending its
use to more complex, larger-scale networks remains a significant challenge. Neural network-
based approximations have shown promise for addressing the curse of dimensionality, but their
application in traffic control is still limited and underexplored. Similarly, the coordination
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of RM and VSL using RL-based methods has yet to be thoroughly investigated. Although
the combination of these control measures offers potential for improved traffic performance,
few studies have explored the integration of RL into this domain, particularly in comparison
to traditional control techniques. Safety and environmental considerations also remain un-
derexplored in the context of learning-based control frameworks. While traffic efficiency is a
primary focus, ensuring safety and minimizing environmental impacts, such as emissions and
fuel consumption, are critical objectives that require further attention. Incorporating these
metrics into RL-MPC designs could lead to more traffic control solutions. Lastly, real-time
adaptation and learning bring additional difficulties. Such frameworks need to find a balance
between making quick, reliable decisions and managing the challenge of RL of exploring new
actions while using what it has already learned. Keeping the system stable and safe during
this learning process, especially in real-world applications, is a major challenge for practical
use.

Addressing these gaps will require a combination of theoretical innovation and simulations.
Future research should aim to develop scalable RL-MPC frameworks capable of managing
large networks efficiently while incorporating real-time adaptation and coordination between
RM and VSL. It will also be important to expand the scope of objectives to include safety
and environmental metrics and to validate these frameworks in real-world settings.
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Chapter 3

Theoretical Framework and
Methodology

The combination of MPC and RL for highway traffic management is a potential technique to
reconciling real-time traffic needs with system-wide performance improvement. This chapter
describes the theoretical framework and methodology for this integration. To demonstrate the
proposed method, three preliminary components are essential. First, a modelling framework
is required to construct a representation of the dynamical behaviour of the highway network.
Secondly, a classical formulation of MPC is introduced that leverages this model for effective
implementation. Lastly, a suitable RL algorithm shall be applied, where the MPC scheme
can be used as a function approximation.

3-1 Traffic Flow Modeling

This section discusses the traffic model that is applied during the simulations. Different
modelling approaches for investigating traffic phenomena on highway networks exist. This
thesis project employs the macroscopic second-order METANET framework [53] to obtain
a discrete-time dynamical representation of highway traffic behaviour under ramp metering
and variable speed limit control. The METANET traffic flow model was selected for its
optimal balance between simulation speed and accuracy. It is deterministic, discrete-time,
and macroscopic, making it particularly suitable for model-based traffic control. The relatively
large simulation time steps and segment lengths of the discretized highway enable fast model
execution. In the remainder of this section, the basics of METANET are introduced.

3-1-1 Link Equations

The METANET model conceptualizes a network as a directed graph, where each link, indexed
by m, corresponds to a stretch of highway. These links are characterized by uniform attributes,
with no significant changes in geometry. Nodes are introduced where significant changes occur,
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such as an on-ramp or off-ramp. Each highway link m is subdivided into N segments, indexed
by i, each segment being Lm long.

Figure 3-1: A highway link m that is divided into segments [6].

At time instant k, each segment i is defined by its traffic density ρj(k), average speed vj(k),
and the outflow qm,i(k). Conversely, each origin o is characterized by its queue length wo(k).
To ensure stability, the segment length (Lm) and the simulation time step (T ) must meet
specific criterion for each link m:

Lm > vfree,mT, (3-1)

where vfree,m represents the average speed assumed by drivers when traffic conditions are
free-flowing, i.e., there is no congestion in the link m. The density and average speed of
the vehicles in each segment, and the queue length in each origin or on-ramp are considered
as the states of the system. The density of a segment is computed by taking the previous
density, adding the inflow from the upstream segment, and then subtracting the outflow of
the segment, ensuring the conservation of vehicles:

ρm,i(k + 1) = ρm,i(k) + T

Lmλm
(qm,i−1(k)− qm,i(k)) , (3-2)

where the flow of each segment can be computed as the density multiplied by the mean speed
and the number of lanes on that segment (λm):

qm,i(k) = ρm,i(k)vm,i(k)λm . (3-3)

In the METANET model, the mean speed at simulation step k + 1 is determined by three
components: the mean speed at time k, a relaxation term indicating the tendency of the
drivers to achieve their equilibrium speed V (ρ), a convection term showing speed variation
due to vehicle inflow, and an anticipation term depicting speed adjustments in response to
downstream density changes:

vm,i(k + 1) = vm,i(k) + T

τ
(V (ρm,i(k))− vm,i(k)) +

T

Lm
vm,i(k) (vm,i−1(k)− vm,i(k))−

ηT

τLm

ρm,i+1(k)− ρm,i(k)
ρm,i(k) + κ

,

(3-4)
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where τ , η, and κ are model parameters. The equilibrium speed can be computed as

V (ρm,i(k)) = vfree,m exp
[
− 1

am

(
ρm,i(k)
ρcrit ,m

)am
]

,

where am is a model parameter, and ρcrit,m is the critical density at which the traffic flow
is maximal on a homogenous highway. It is important to note that the speed should also
depend on the speed limit displayed on the VSLs. Taking this into account, the equation can
be reformulated and extended as follows for segments equipped with VSLs [54]:

VVSL (ρm,i(k)) = min
(

vfree,m exp
[
− 1

am

(
ρm,i(k)
ρcrit ,m

)am
]

, (1 + α)vcontrol,m,i(k)
)

, (3-5)

where vcontrol,m,i(k) is the speed limit for segment i of link m at simulation step k, and
(1 + α) is the non-compliance factor. If (1 + α) > 1, drivers aim to exceed the speed limit; if
(1 + α) < 1, they drive below it. Thus, α is positive when target speeds are higher than the
limit and negative when they are lower, allowing the model to account for both enforced and
unenforced speed limits. The length of the queue at origin o at time k, denoted as wo(k),
is determined by adding the demand do(k) to the previous queue length and subtracting the
outflow qo(k):

wo(k + 1) = wo(k) + T (do(k)− qo(k)) . (3-6)

The outflow from origin o is dictated by the prevailing traffic conditions on the main roadway
and, for a metered on-ramp, by the ramp metering rate ro(k), with ro(k) ranging from 0 to 1.
The ramp flow qo(k) is computed as the ramp metering rate multiplied by the minimum of the
available traffic at simulation step k (queue plus demand), the capacity of the on-ramp, and
the maximum flow that can merge onto the highway given the current mainstream conditions:

qo(k) = ro(k) min
[
do(k) + wo(k)

T
, Co, Co

(
ρmax,m − ρm,1(k)
ρmax,m − ρcrit ,m

)]
, (3-7)

where Co represents the on-ramp capacity (veh/h) under free-flow conditions, ρmax (veh/k-
m/lane) denotes the maximum density of a segment, and m is the index of the link to which
the on-ramp is. To account for the speed reduction caused by merging phenomena at an
on-ramp, the term

− δTqo(k)vm,1(k)
Lmλm(ρm,1(k) + κ) (3-8)

is added to Equation (3-4) of the first segment of link m (i.e., Equation (3-8) is added exclus-
ively to the segment connected to the ramp, while the remaining segments remain unchanged).
Here, vm,1(k) and ρm,1(k) represent the speed and density of the segment connected to the
on-ramp, as illustrated in the figure below. The parameter δ is a model-specific constant.
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Figure 3-2: When there is an on-ramp connected to the highway. The speed vm,1(k) in the first
segment of link m is reduced by merging phenomena.

In the case of a lane drop, as depicted in the figure below, the speed reduction resulting from
weaving phenomena can be described as follows:

−
ϕT∆λmρm,Nm(k)v2

m,Nm
(k)

Lmλmρcrit ,m
, (3-9)

which is added to Equation (3-4), where ∆λm = λm − λm+1 is the number of lanes being
dropped, and ϕ is a model parameter.

Figure 3-3: When a lane drop occurs, the speed vm,Nm
(k) in the last segment of link m is

reduced due to merging phenomena.

3-1-2 Mainstream Origin

To effectively distinguish a mainstream origin link qo,main from a standard on-ramp, an ad-
ditional flow constraint is incorporated to a modified version of Equation (3-7):

qo,main(k) = min
[
do(k) + wo(k)

T
, qlim,µ,1(k)

]
, (3-10)

where qlim,µ,1(k) is the maximal inflow determined by the limiting speed in the first segment
of link µ, that is attached to the origin. This modification is necessary because the queue
at a mainstream origin represents the aggregate effect of upstream sections of the highway
network being modelled. The segment inflow, and thus the outflow from the mainstream
origin, may be constrained by either an imposed speed limit or the actual speed on the first
segment, whichever is lower at critical density. Consequently, the maximum inflow is derived
from the speed-flow relationship defined in Equations (3-3) and (3-5), using the smaller value
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between the speed limit and the actual speed on the first segment. This is described by the
following criteria:

qlim,µ,1(k) =
{

qspeed,µ(k) if vlim,µ,1(k) < V (ρcrit,µ)
qcap,µ if vlim,µ,1(k) ≥ V (ρcrit,µ)

(3-11)

Here, the limiting speed vlim,µ,1(k) is defined as the minimum of the control speed vcontrol,µ,1(k)
and the actual speed vµ,1(k):

vlim,µ,1(k) = min(vcontrol,µ,1(k), vµ,1(k)). (3-12)

The speed that limits the flow, qspeed,µ(k), is given by

qspeed,µ(k) = λµvlim,µ,1(k)ρcrit,µ

[
−aµ ln

(
vlim,µ,1(k)

vfree,µ

)] 1
aµ

(3-13)

On the other hand, the capacity flow qcap,µ is expressed as

qcap,µ = λµV (ρcrit,µ)ρcrit,µ (3-14)

By applying these equations, the maximal inflow can effectively be modelled into the first
segment of link µ based on either the speed limit or the actual speed conditions.

3-1-3 Boundary Conditions

To effectively model the traffic network, it is essential to establish boundary conditions for
both the entry and exit points. Since the state of a segment in METANET is influenced
by the upstream speed, the outflow from the upstream node, and the downstream density,
we must specify the upstream speed and inflow at the entry points of the network, and the
downstream density at the exit points.
The incoming speed vµ of the origin is decided to be the speed of the first segment of the
leaving link:

vµ(k) = vm,1(k), (3-15)

where µ is the first link after the origin. As for the inflow, it can be assumed that the inflow
for the first segment is equal to the main stream flow, which is described in Equation (3-
14). Lastly, the downstream boundary conditions are here considered to be affected by no
congestion. In cases where the last segment of the incoming link is experiencing congestion,
the downstream density is defined as the critical density ρcrit,µ. On the other hand, if there
is no congestion, the downstream density is determined by the density of the final segment of
the incoming link:

ρµ,Nµ+1(k) = min
(
ρµ,Nµ(k), ρcrit,µ

)
, (3-16)

where µ here instead is the last link connected to the destination.
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3-2 The MPC scheme

This section discusses the fundamental of the MPC scheme, together with the formulation
of the MPC scheme. The MPC [52] method have been proven to be very effective in con-
trolling VSLs and RM installations together [1]. MPC is an advance control methodology
in optimal control which is able to provide optimal control input sequences that minimize
an arbitrary objective function. To achieve so, a prediction model is used to forecast future
system behaviour along a prediction horizon. This allows for the determination of multiple
control inputs and their impact on various parts of the network. Therefore, the MPC method
is ideal for coordinating VSLs and RM installations. Additionally, an MPC scheme allows
to impose constraints on states and inputs of the system and to systematically handle these
during the optimization process. This ensures that maximum queue lengths at on-ramps are
not exceeded, which helps to avoid congestion.

In general, the methods in the MPC framework use the following strategy [52] (depicted in
Fig. 3-4):

• The future control inputs are determined by optimizing an objective function. The
goal of this function is usually to minimize the difference between the process and a
predetermined reference trajectory. The optimization process aims to find the set of
control inputs that will bring the process as close as possible to the desired trajectory.
However, this cost function can also include economic terms. For instance, instead of
focusing solely on minimizing the tracking error between the process and the reference
trajectory, the objective could be designed to optimize other practical performance
metrics, such as reducing the total time spent on the highway by the driver, minimizing
energy consumption, or maximizing operational efficiency. This alternative approach is
often referred to as Economic MPC (EMPC) [55].

• Only the current optimal control input value, u⋆(k|k), is sent to the system, while all
other predicted input values for future time steps are discarded. This procedure is
repeated at every time step for the remaining future control inputs. This is also known
as a receding horizon strategy.

• At each discrete time instant k, the model predictive control algorithm predicts the
future outputs y(k + l|k) for l = 1, . . . , Np, where Np is the prediction horizon length.
This prediction depends on the past inputs and outputs as well as on the future control
signal u(k + l|k) for l ranging from 0 to Np − 1, and the dynamic prediction model
employed by the controller to estimate the evolution of the state. Note that this pre-
diction model does not necessarily need to match the real system dynamics, although
the closer it approximates the actual behaviour, the better the prediction performance.
The predicted outputs are calculated for all samples within the prediction accuracy, and
they are used to optimize the future control inputs that will bring the system as close
as possible to a reference trajectory.
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Figure 3-4: A presentation of the rolling horizon strategy that is used with MPC.

MPC is an effective method for traffic management because it combines several essential
features, such as coordinating control actions, predicting their effects by the given prediction
model, optimizing overall performance, utilizing feedback loops, and managing constraints.
These properties make MPC particularly well-suited for complex traffic systems.

3-2-1 MPC Formulation for Coordinated Highway Traffic Control

Two critical elements for successful network control are coordination and prediction. MPC
inherently incorporates both. Prediction is vital since the effects of control measures often
take time to reach distant parts of the network. Additionally, in traffic systems, sometimes
one have to deliberately reduce traffic flow in certain areas to prevent bigger issues, like
congestion or gridlock, from occurring later. This might result in a temporary decrease in
performance (for example, slowing traffic down temporarily) but leads to better performance
overall, once the problem is resolved. An example of this is when traffic flow is intentionally
slowed or limited to avoid gridlock, which would otherwise cause a major standstill. Once the
congestion clears, the traffic can return to its usual speed and efficiency. MPC is naturally
aligned with the challenges of traffic control. Most traffic models are based on discrete time,
which fits well within the MPC framework, making it a practical tool for managing traffic
networks.

Define Np as the prediction horizon and Nc as the control horizon, with the condition that
Nc ≤ Np

M , where M is a positive integer. This setup distinguishes the system simulation time
step T from the control timescale Tc = T

M . In this framework, the system evolves M times
faster than the controller, so the MPC algorithm is only executed once every M simulation
steps rather than at every individual step. By allowing the system to evolve faster than the
controller, the computational load is reduced because the optimization problem is solved less
frequently, improving overall computational efficiency without sacrificing excessive control
performance. Additionally, solving the control problem every M steps helps avoid abrupt
changes in control actions. This smoothens transitions, leading to more stable traffic flows and
minimizing potential disruptions caused by frequent control changes. After the optimization
problem is solved, the first control action is applied for the following M simulation steps in a
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rolling horizon manner. Control action indices on the MPC timescale are denoted by ic, and
are related to the system’s time indices i by the relation

ic(i) = min
{⌊

i

M

⌋
, Nc − 1

}
. (3-17)

The primary goal of traffic control is to enhance network performance, but this can be defined
in various ways, leading to different objective functions. One of the most common objectives
is minimizing the total time vehicles spend in the network (TTS), as it directly correlates with
reducing the average travel time— a common goal in traffic management. This is described
as

JTTS = T

∑
m,i

ρm,i(j)Lmλm +
∑

o

wo(j)

 , (3-18)

where ρm,i(k) represents the vehicle density in segment i of link m at time step k, Lm denotes
the length of a segment in link m, and λm refers to the number of lanes in link m. wo(k)
corresponds to the number of vehicles queued at origin o.

After incorporating TTS as a key performance indicator in highway traffic control, it is essen-
tial to also consider control variability. Control variability refers to the rate at which control
measures change over time. While minimizing TTS optimizes network efficiency, frequent or
abrupt changes in control actions—such as ramp metering rates or speed limits—can cause
drivers confusion, reduce compliance, and destabilize traffic flow. To address this, a control
variability term can be added to the objective function, which penalizes large fluctuations in
control actions. This results in smoother transitions, improved compliance of the driver, and
enhanced traffic stability by reducing the risk of congestion. This is described as

JVAR =
∑

o∈Oramp

(ro(j)− ro(j − 1))2 +
∑

(m,i)∈Ispeed

(
vcontrol,m,i(j)− vcontrol,m,i(j − 1)

vfree,m

)2

,

(3-19)

where Oramp represents the set of indices o corresponding to on-ramps where ramp metering
is applied, and Ispeed denotes the set of index pairs (m, i) for the links and segments where
speed control is implemented.

The objective function is designed to balance these two objectives, with the first term targeting
traffic efficiency and the second penalizing abrupt changes in control actions. This helps
to enhance both the operational performance of the traffic network and the overall driving
experience. The MPC objective can be expressed as follows:

min
ûk,x̂k

Np∑
i=0

JTTS(x̂i|k) + η
Nc−1∑
i=0

JVAR(ûi|k). (3-20)

The weighting factor η balances the importance of optimizing traffic flow and ensuring smooth
transitions in control actions. This trade-off is crucial because while minimizing TTS improves
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traffic efficiency, control actions that change too abruptly can lead to driver discomfort,
reduced compliance, and traffic instability.

The MPC controller begins with the current state of the traffic system, denoted by xk, and
uses this as the initial condition for predicting future states over a defined prediction horizon
Np:

x̂0|k = xk.

It is assumed that the state xk is fully measurable without noise. The predicted future states
of the system evolve based on a state transition function f(·), which serves as prediction model
for the MPC controller. This function accounts for the current state x̂i|k, control inputs ûi|k,
and any external disturbances dk:

x̂i+1,|k = f(x̂i|k, ûi|k, dk), i = 0, . . . , Np − 1.

The dynamics of the METANET model is used for describing the transition function. The
states xk, control inputs uk, and disturbances dk at time k can be compactly represented as
vectors

xk =



ρ1,1(k)
ρ1,2(k)

...
ρ1,ni(k)
ρ2,1(k)

...
ρm,i(k)
v1,1(k)
v1,2(k)

...
v1,i(k)
v2,1(k)

...
vm,ni(k)
w1(k)

...
w|O|(k)



, uk =



r1(k)
...

r|Oramp|(k)
vcontrol,1(k)

...
vcontrol,|Ispeed|(k)


, dk =

 d1(k)
...

d|O|(k)

 ,

where Oramp and Ispeed are the sets of indices of ramps and speed limits, while |Oramp| and
|Ispeed| represent their cardinality. Furthermore, ni denotes for the number of segments for
a given link m and |O| denotes the number of origins for a given highway network. These
variables are fed into the nonlinear traffic dynamics function f , which models the evolution
of the traffic states over time. The decision variables in this optimization problem are the
predicted control actions and states over both the control horizon Nc and the prediction
horizon Np, grouped together as:
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ûk =
[
û0|k, . . . , ûNc−1|k

]
∈ Rnu×Nc ,

x̂k =
[
x̂0|k, . . . , x̂Np|k

]
∈ Rnx×(Np+1),

where nu is the number of control inputs and nx is the number of states. At each time step,
the system must respect a set of constraints, ensuring that the control actions and system
states remain within safe and feasible bounds. These constraints could include limits on the
states, ramp metering rates, and speed limits:

h(x̂i|k, ûi|k) ≤ 0, i = 0, . . . , Np

In general, the states and the control actions are not allowed to take negative values. Fur-
thermore, the ramp metering rate is always between 0 and 1. Lastly, the flow is not allowed
to exceed the capacity of the network. All of these conditions, and others if needed, can be
imposed as constraints inh. Overall, the final MPC formulation can be described as

min
ûk,x̂k

Np∑
i=0

JTTS(x̂i|k) + η
Nc−1∑
i=0

JVAR(ûi|k)

s.t. x̂0|k = xk,

x̂i+1|k = f(x̂i|k, ûi,c|k, dk), i = 0, . . . , Np − 1,

h(x̂i|k, ûic(i)|k) ≤ 0, i = 0, . . . , Np,

(3-21)

3-2-2 Modifications to the MPC Formulation

MPC is a powerful tool for optimizing control actions in dynamic systems. However, real-
world applications, such as traffic management, often require modifications to address prac-
tical constraints and ensure safe and reliable operation. These modifications are necessary to
handle safety-critical scenarios, enhance flexibility, and maintain feasibility during real-time
operations.

Safety motivation

One of the primary motivations for modifying the MPC formulation is to manage safety-
critical scenarios. In traffic control systems, for instance, it is essential to prevent conditions
that may lead to unsafe or unstable behaviour, such as long vehicle queues at on-ramps.
Excessive queue lengths can lead to gridlock that degrade overall network performance and
create safety risks. To address this, additional constraints can be integrated into the MPC
framework to ensure that the control actions prevent queue lengths from exceeding a critical
threshold. For example, a constraint can be added to the optimization problem to ensure
that the queue length wo(k) at on-ramp remains below a predefined maximum limit wmax,
which can be described as
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h0(xk, σk) := wo(k)− wmax − σk, (3-22)

where σk is a slack variable to be included as additional optimization variable in the MPC
optimization. This ensures that the system operates safely, without allowing congestion to
build up in critical areas. Note that a soft constraint is applied here to provide flexibility
in maintaining performance. Instead of strictly enforcing the maximum queue length wmax,
the slack variable σk allows for minor violations, which are penalized in the objective func-
tion. This ensures that the system can still operate efficiently, even under fluctuating traffic
conditions, while discouraging excessive queue lengths. By penalizing violations rather than
strictly forbidding them, the control system remains feasible and avoids suboptimal decisions
during high-demand situations. Furthermore, for learning purpose, a mechanism is needed to
both relax constraints during the learning process and penalise violations, in order to allow
the agent to learn discerning between safe and unsafe policies. Note that this leads to an
additional term in the cost function. Soft constraints are linked to a penalty function, which
should be added to the objective function. In this minimization problem, the result is a trade-
off between competing objectives: minimizing the primary objective while also reducing the
penalties associated with constraint violations.

Ease numerical complexity

The MPC formulation can be more computationally simplified. Solving the current MPC
formulation can be challenging, especially when using gradient-based solvers, as they can
encounter difficulties due to the specific structure of the problem. Specifically, when solving
the MPC, issues can arise from the min operators, described in Equation (3-7) and Equation
(3-5). These operators can cause the gradient to become zero over large regions of the state-
action space. When this happens, the gradient-based solver may struggle to find an optimal
solution because it cannot sense which direction to move in to improve the performance.
This problem is particularly significant when MPC is integrated into a RL framework, as
the complexity of the control architecture increases, making optimization more difficult. To
address this issue, the proposed control approach can be changed slightly.

First, instead of controlling the ramp metering rate ro(k), which indirectly influences the flow
at the on-ramp qo(k), we directly control qo(k) (the flow at the on-ramp itself). To ensure
that the MPC controller can always output a feasible control action for any on-ramp flow,
additional constraints must be introduced. These constraints guarantee that for every flow
value generated by the controller, there exists a corresponding metering rate that can achieve
it. The third term in the minimum operator (Equation (3 − 7)) can represent the on-ramp
flow limit based on a combination of ρmax, ρj(k), and ρcrit, which can be less or equal to C0
under realistic traffic conditions. Moreover, since the on-ramp flow will always be less than or
equal to the values determined by the minimum operator when the maximum ramp-metering
rate is applied (ro(k) = 1), the flow constraints can be simplified. Therefore, the separate
term C0 in the minimum operator can be disregarded. This leads to the introduction of the
following additional constraints:
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h1(xk, uk) := qo(k)− dw
o (k)− wo(k)

T
, (3-23)

h2(xk, uk) := qo(k)− Co

(
ρmax − ρj(k)
ρmax − ρcrit

)
. (3-24)

As for the VSL, VVSL(ρm,i(k)) can be directly controlled. Controlling vcontrol(k) is equival-
ent to controlling VVSL(ρm,i(k)), provided that the constraint VVSL(ρm,i(k)) ≤ V (ρm,i(k)) is
satisfied. In other words, if this constraint holds, for any given value of VVSL(ρm,i(k)), the
corresponding equivalent value of vcontrol(k) can always be determined. Thus the constraint
is

h3(xk, uk) = VVSL(ρm,i(k))− V (ρm,i(k)). (3-25)

These modifications simplify the control problem by bypassing two min operators, reducing
the chances of encountering numerical issues and making the overall optimization process more
efficient. The rest of the dynamics remain unchanged. Now, the action can be structured as

uk =
[
q0,1(k) q0,2(k) . . . q0,|Oramp| VVSL,1(k) VVSL,2(k) . . . VVSL,|Ispeed|(k)

]⊤
.

Note that implementing these modifications lead also to a change to the cost of the control
variability:

JVAR =
∑

o∈Oramp

(
qo(j)− qo(j − 1)

Co

)2
+

∑
(m,i)∈Ispeed

(
VVSL(ρm,i(k))(j)− VVSL(ρm,i(k))(j − 1)

vfree,m

)2

,

= JVAR, ramp + JVAR, speed.
(3-26)

The new MPC formulation retains its equivalence to the original but is easier to solve numeric-
ally. For clarity, the additional constraints can be ordered as h(xk, uk, σk) =

[
h0(xk, σk) h1(xk, uk) h2(xk, uk) h3(xk, uk)

]⊤
.

As a result, the final MPC formulation becomes:

min
ûk,x̂k,σ

Np∑
i=0

JTTS(x̂i|k) + η
Nc−1∑
i=0

JVAR(ûi|k) + ζ⊤σ,

s.t. x̂0|k = xk,

x̂i+1|k = f(x̂i|k, ûi,c|k, dk), i = 0, . . . , Np − 1,

h(x̂i|k, ûi,c|k, σk) ≤ 0, i = 0, . . . , Np,

σ ≥ 0,

(3-27)

where σ =
[
σ0 . . . σNp

]⊤
is the collection of slack variables along the prediction horizon,

and ζ ∈ RNp+1 is the corresponding vector of positive weights for the slack penalty.
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3-3 MPC-based RL for RM and VSLs

This section discusses how MPC can be integrated with RL. In model-based RL, MPC can
be employed as a function approximator [56]. In this setup, the MPC controller acts as a
policy, mapping the current state of the system to an optimal action based on predefined
performance criteria, and it acts also as function approximation for the value functions of
the underlying control problem. The RL algorithm, in turn, adjusts the parameters of the
MPC controller through gradient-based methods, with the goal of discovering the optimal
control policy that maximizes long-term performance. Techniques like sensitivity analysis
can be used to enable RL methods, such as Q-learning or policy gradients, by differentiating
the MPC problem with respect to its parameters and updating them iteratively.

MPC-based RL has several advantages over deep neural network-based approaches, as it
leverages the structure of the underlying optimization problem, enhancing guarantees on
stability and safety features. However, maintaining safety and stability remains a challenge.
If the RL updates are not carefully controlled, the MPC parameters could be driven to unsafe
configurations, leading to constraint violations and suboptimal performance [17].

The system to be controlled (e.g., the METANET model in this work) can be described as
a discrete Markov-Decision Process (MPD) having the (possibly) stochastic state transition
dynamics

P[s+ | s, a], (3-28)

where s, a is the current state-input pair and s+ describing the next state. The goal of the
RL algorithm is to find the optimal policy for the system, which is described as

π∗
θ = arg min

θ
J(πθ), (3-29)

where J(πθ) is the performance for a given policy πθ parametrized in θ ∈ Rnθ (in this work,
this policy is provided by the MPC controller). For performance, it is essential in highway
traffic control to minimize the stage cost for a given state-action pair. The more effectively the
RL algorithm can minimize the cost accumulated at each time step, the better it performs
in terms of reducing congestion and improving traffic flow. Therefore, the performance is
described as

J(πθ) = E
[ ∞∑

k=0
γkL (sk, πθ(sk))

]
, (3-30)

where L(sk, πθ(sk)) is the stage cost function for a given policy πθ(sk) and γ ∈ [0, 1) is the
discount factor.

In order to find the optimal policy π∗
θ that dictates the best action to take in every possible

state to maximize the expected reward over time, the optimization problem (3-29) should
be solved. Note that, in general, the true unknown optimal value functions and policy are
impossible to find and characterise. To tackle this problem, function approximation techniques
can be considered [57]. The key advantage is that approximation can be made for πθ, Qθ, and
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Vθ, which are used to solve the minimization problem via iterative gradient updates of the
parametrization. This can be solved directly via the policy gradient methods, which explicitly
parametrise and learn the approximation πθ of the optimal policy itself. Briefly, these method
try to estimate the gradient of the objective, described in Equation (3-30), with respect to
the learnable parameters θ, and updates the learnable parameters using gradient descent

θ ← θ + α∇θJ(πθ). (3-31)

Instead of directly optimizing the policy πθ, value-based methods focus instead on estimating
value functions (Vθ, Qθ) from the underlying RL task. By learning these value approximations,
the optimal policy can be then recovered indirectly. This will be further discussed in Section
3-3-3.

3-3-1 The RL task

To effectively implement an RL algorithm for task of controlling RM and VSL actuators, it
is essential to first establish a suitable stage cost function that can evaluate the performance
of a policy in managing effectively the traffic process, which is described in Equation (3-30).
This is decribed as:

L(xk, uk) = cTTSJTTS(xk) + cVARJVAR(xk) + cCVJCV(xk), (3-32)

where JCV(xk) is defined as:

JCV(xk) = max {0, wo(k)− wmax} . (3-33)

In Equation (3-32), the first and second terms encourage low TTS and control variability
respectively, as described in Section 3-2-2, while the third term penalizes any violations of
the queue length constraint, encouraging the agent to develop control policies that respect
this limit. Note that the weights cTTS, cVAR and cCV are included that balance each term
differently. It is ultimately the task of the designer to select these values in a way that
effectively incorporates the learning objective into the RL stage cost.

3-3-2 MPC as Function Approximator in RL

In MPC, parametric approaches involve defining adjustable parameters, such as weights in
the cost function or constraints on states and inputs, that influence the optimization prob-
lem. These parameters play a critical role in ensuring that the controller adapts effectively to
dynamic environments. However, fine-tuning these parameters manually is challenging, par-
ticularly in complex traffic systems modeled such as METANET, due to their nonlinear and
high-dimensional nature. This difficulty in fine-tuning motivates the use of RL as an adaptive
mechanism to adjust the MPC parameters automatically. By learning from real-time data,
RL can continuously refine the performance of the MPC, eliminating the need for manual
intervention in complex closed-loop systems.
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To do this, the cost function, the prediction model and some of the constraints should first
be parameterized. The overall goal is to enhance the closed-loop performance (3-30), and
this can be done by the RL algorithm, which refines the parameter settings by utilizing the
observed state transitions and corresponding rewards. The parametrization θ of the MPC
controller that is used in this thesis is the following:

min
ûk,x̂k,σ

Np∑
i=0

γi
(
θT JTTS(x̂i|k) + θC,iσi

)
+

Nc−1∑
i=0

γMi
(
θV,rampJVAR,ramp(ûi|k)

+ θV,speed
v2

free
ṽ2

free
JVAR,speed(ûi|k)

)

+ λθ(x̂0|k) +
Np−1∑
i=1

γiℓθ(xk) + γNpΓθ(xNp), (3-34a)

s.t. x̂0|k = xk, (3-34b)

x̂i+1|k = fθ(x̂i|k, ûic(i)|k, dk), i = 0, . . . , Np − 1, (3-34c)

hθ(x̂i|k, ûic(i)|k, σk) ≤ 0, i = 0, . . . , Np, (3-34d)

σ ≥ 0. (3-34e)

Note that the MPC parameters θT , θV , and θC are distinct from the RL stage cost weights
cTTS, cVAR, and cC in Equation (3-32). Adding additional learnable cost terms to the MPC
objective increases the flexibility and degree of freedom of the function approximation, allow-
ing the controller to better handle complex, dynamic systems. This flexibility helps balance
competing objectives, such as JTTS and JVAR, while ensuring stability and compliance with
constraints. Furthermore, these learnable cost functions enable the controller to approximate
the true system costs, which are often uncertain or non-linear, by adjusting parameters during
learning. The initial learnable cost function is considered as

λθ(xk) =
∑
m,i

(
θρ

λ,m,i

ρm,i(k)
ρmax

+ θv
λ,m,i

vm.i(k)
vmax

)
+
∑

o

θw
λ,o

wo(k)
wmax

, (3-35)

where ρmax, vmax and wmax are here used as fixed, non-learnable normalization constants in
order to improve the stability of the learning process. For the stage and terminal costs, Huber
Loss functions are considered. The goal is to ensure that densities and speeds closely track
the fixed, non-learnable setpoints ρsp and vsp, while minimizing queue lengths as much as
possible. Importantly, deviations from the setpoints are not penalized symmetrically. High
densities and low speeds are penalized more heavily than low densities and high speeds. To
achieve this, the left-sided Huber Loss function ϕl is applied to track the density setpoint,
while the right-sided Huber Loss function ϕr is used to track the speed setpoint. A detailed
definition of the Huber Loss function can be found in Appendix A . Accordingly, the stage
and terminal costs are defined as
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ℓθ(xk) =
∑
m,i

(
θρ

ℓ,m,iϕl

(
ρm,i(k)− ρsp; θρ

ℓ,lin
)

+ θv
ℓ,m,iϕr

(
vm,i(k)− vsp; θv

ℓ,lin
))

+
∑

o

θw
ℓ,o

(
wo(k)
wmax

)2

(3-36)

Γθ(xk) =
∑
m,i

(
θρ

Γ,m,iϕl

(
ρm,i(k)− ρsp; θρ

Γ,lin
)

+ θv
Γ,m,iϕr

(
vm,i(k)− vsp; θv

Γ,lin
))

+
∑

o

θw
Γ,o

(
wo(k)
wmax

)2

(3-37)
The transition function fθ mentioned in Equation (3-34) include three learnable paramet-
ers: ρ̃crit, ã, and ṽfree. This approach enables the agent to partially tune the prediction
model based on performance metrics (3-30) rather than solely relying on system identifica-
tion. Consequently, the learned parameters may diverge from the values of the true underlying
dynamics. Additionally, the constraints hθ is also parametrized, since ρ̃crit also appear in the
constraint Equation (3-24). The whole parametrization is summarized in Table 3-1.

Learnable parameters Scope Space
ρ̃crit prediction model, cost, constraint R

ã prediction model R
ṽfree prediction model R
θT cost - TTS weight R

θV,ramp cost - control variability weight for ramp flow R|Oramp|

θV,speed cost - control variability weight for equilibrium speed R|Ispeed|

θC cost - slack weights RNp

θ
{ρ,v}
{λ,ℓ,Γ} {initial, stage, terminal} cost - {ρ, v} weights R

∑m

i=1 ni

θw
{λ,ℓ,Γ} {initial, stage, terminal} cost - w weights R|O|

θ
{ρ,v}
{ℓ,Γ},lin {stage, terminal} Huber Loss cost - {ρ, v} linear slope value R

∑m

i=1 ni

Table 3-1: parametrization θ of the MPC function approximation described by Equation (3-34)

Finally, the parametrized vector θ can be considered as

θ =



ρ̃crit

ã

ṽfree

θ{T,V{ramp,speed},C}

θ
{ρ,v,w}
{λ,ℓ,Γ}

θ
{ρ,v}
{ℓ,Γ},lin


. (3-38)

The parametrized MPC scheme described in Equation (3-34) can be considered as value
function V [56]:

Vθ(xk) = min
ûk,x̂k,σ

(3-34a)

s.t. (3-34b) – (3-34e)
, (3-39)
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followed by the Q-function and policy defined as

Qθ(xk, uk) = min
ûk,x̂k,σ

(3-34a)

s.t. (3-34b) – (3-34e)
û0|k = uk.

, (3-40)

πθ(xk) = arg min
u

Qθ(xk, u) (3-41)

As discussed further in the next subsection, the optimal action received by solving Equation
(3-39) is used as initial condition û0|k when solving Equation (3-40). In order to find the
optimal policy π∗ by the MPC scheme, θ should be rich enough [56]. As consequence, many
combinations of parametrization choice will be possible to yield a valid solution.

3-3-3 Second-Order LSTD Q-learning

Linear least-squares techniques have been effectively applied to prediction tasks in reinforce-
ment learning. While they do not offer the same level of generalization as more complex meth-
ods like deep RL algorithms, they are significantly simpler to implement and troubleshoot
[58]. Additionally, Least Square Temporal Difference (LSTD) Q-learning make an efficient
use of data and tend to converge faster than more basic temporal-difference learning methods.
In order to use this algorithm, one seeks an indirect (or value-based) methods that aim to
find the optimal policy by first estimating the state- and action-value functions Vθ, Qθ from
the underlying RL task. The policy is then implicitly derived from these value functions. The
objective of Q-learning can then be expressed as minimizing the least squares of the Bellman
residual error with respect to θ:

min
θ

E
[
∥Q⋆(s, a)−Qθ(s, a)∥2

]
, (3-42)

where Qθ, obtained from the MPC scheme in Equation (3-40), serves as an approximation
of the true unknown action-value function Q⋆. In this equation, the goal is to find the
parametrization that best aligns the action-value function Qθ with the observed data. By
approximating the unknown optimal Q⋆ through this process, the aim is to indirectly derive
the optimal policy. Consider an approximation of the Bellman optimality equation, which is
commonly used in Temporal Difference (TD)-based learning approaches:

Q⋆(s, a) ≈ L(s, a) + γQθ(s+, πθ(s+)) ≈ L(s, a) + γVθ(s+), (3-43)

where L(s, a) denotes the stage cost in the reinforcement learning (RL) scheme. By substi-
tuting Equation (3-43) into Equation (3-42), the least squares problem for first-order LSTD
Q-learning can be solved using data collected from the transitions si, ai → si+1 as follows:

E [δ∇θQθ(si, ai)] = 0, (3-44)
δ = L(si, ai) + γVθ(si+1)−Qθ(si, ai), (3-45)
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where δ is the temporal difference error (TD-error). Both value and action-value functions,
respectively are obtained from the MPC formulations. At last, a Newton’s method can be used
to enhance Equation (3-45) as first order solution to Equation (3-42). Leveraging second-order
Newton’s method, combined with an experience replay buffer that stores past transitions [59],
and reformulating the Q-fitting problem as a least-squares optimization, leads to improved
convergence speed and greater sample efficiency compared to standard first-order approaches.
The second order LSTD Q-learning scheme can be described as:

θ ← θ − αA−1b, (3-46)

A = E
[
δ∇2

θQθ +∇θQθ∇⊤
θ δ
]

, b = E
[
δ

∂Qθ

∂θ

]
, (3-47)

where α ≥ 0 is the learning rate and b is the gradient, and A the Hessian. Evaluating the
gradient and Hessian of Qθ can be done by introducing the Lagrange function Lθ correspond-
ing to the MPC optimization problem (3-40). The Lagrange function combines the cost of the
MPC problem and the constraints. In simplified terms, the Lagrange function is described as

Lθ = Φθ + λ⊤Gθ + µ⊤Hθ, (3-48)

where Φθ is the cost function for the MPC, and λ and µ are Lagrange multipliers vectors
that help enforce constraints. Specifically, λ is associated with equality constraints, while µ
is associated with inequality constraints. Gθ and Hθ represent the equality and inequality
constraints of Equation (3-40), respectively.

Let the primal variables (state and control inputs) be labeled as p = {X, U}, where X rep-
resents the state trajectories and U represents the control input trajectories. The combined
primal-dual variables are represented as z = {p, λ, µ}, with λ and µ being Lagrange multi-
pliers for equality and inequality constraints, respectively. To compute the gradient ∇θQθ

and Hessian ∇2
θQθ required for optimization in Equation (3-47), a sensitivity analysis is con-

ducted [60, 61]. The gradient of Qθ with respect to θ is derived from the Lagrange function
Lθ(s, a, z⋆), where z⋆ is the optimal solution for the problem. This gives:

∂Qθ

∂θ
= ∂Lθ(s, a, z⋆)

∂θ
(3-49)

Additionally, the Hessian is calculated as follows:

H(Qθ) = D

Dθ

(
∂Lθ(s, a, z⋆)

∂θ

)
≈ ∂2Lθ(s, a, z⋆)

∂θ2 , (3-50)

where z⋆ is the primal-dual solution of Equation (3-40) and D is the total derivative.

As for the update for the learnable parameters, one can impose lower and upper bounds on
the parametrization to enhance stability and ensures that the parameters change increment-
ally while remaining within a range that foster stability of the learning process. Note that the
Hessian should be modified to a semi-postive definite matrix, since it is necessary to guarantee
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that the optimization process will converge to a minimum. This is achieved by increment-
ally adding identity matrices to the Hessian matrix until it becomes numerically feasible for
Cholesky decomposition [62]. Therefore, the update rule for the learnable parameters can be
described as

∆θ⋆ = arg min
∆θ

1
2∆θ⊤Ĥ∆θ + αb⊤∆θ

s.t. θlb ≤ θ + ∆θ ≤ θub
∆θlb ≤ ∆θ ≤ ∆θub,

(3-51)

where Ĥ is the modified semi-definite Hessian. This formulation limits the rate of change for
each parameter using the bounds ∆θlb and ∆θub. The parameters are then updated according
to the rule θ ← θ + ∆θ⋆.

To prevent the Q-learning agent from getting stuck in very suboptimal local minima, one
can add enough exploration on top of the policy. It can therefore discover better actions and
improve its long-term performance. This can be done by adding a perturbation term to the
MPC objective (3-34a), which can be described as q⊤u0, where q is randomly chosen from a
normal distribution.
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Chapter 4

Case Study: Using MPC as Function
Approximation in RL for Highway

Traffic Control

This chapter focuses on applying the proposed method for highway traffic control to a bench-
mark highway network, by using MPC as function approximation for RL. The goal is to
evaluate the effectiveness of the algorithm in managing traffic flow and reducing congestion.
This chapter details the setup of the highway network benchmark, the configuration of the
learning-based controller and algorithm, and the results obtained from the simulations.

4-1 Setup

This section presents the algorithmic framework for integrating MPC with RL to enhance
highway traffic control. The approach leverages predictive capabilities of MPC and adaptab-
ility of RL to dynamically optimize traffic flow and improve performance.

4-1-1 Algorithm Approach

The foundation of this framework is a macroscopic traffic model (METANET) that simu-
lates highway dynamics, including vehicle flow, density, and speed across multiple segments.
The MPC serves as both control methodology and function approximation within the RL
framework. It computes optimal control actions by minimizing the cost function over a finite
prediction horizon. The RL component updates the MPC learnable parameters by using the
second-order LSTD Q-learning method. Here is how the algorithm works step-by-step:

1. The traffic model is initialized with baseline configurations, including steady-state condi-
tions, control inputs, and demand profiles. Additionally, the learnable MPC parameters

Master of Science Thesis N.F.A.J.J. Al Aeedanee



46 Case Study: Using MPC as Function Approximation in RL for Highway Traffic Control

are initialized to reasonable but poorly tuned values, e.g., the MPC prediction model is
different from the real traffic model (as explained later in Section 4-1-3).

2. The value function Vθ is solved for the initial state, initial learnable MPC parameters
and control action, yielding the first optimal action and corresponding objective value,
before the learning episodes begin.

3. The learning loop begins. The optimal action derived from the value function is applied
to the environment, resulting in the new state and the RL stage cost.

4. The first action-value function Qθ is solved using the current state and the current
values of the learnable MPC parameters. Additionally, a0 is updated based on the
action determined by the value function at the current time step. This step is crucial
for computing the objective value of the action function and its sensitivities.

5. The value function Vθ for the next time step is computed using the new state and the
action derived from the value function of the current time step. This yields the optimal
action for the next time step and the objective value of the next time step.

6. The computed objective values and the RL stage cost are used to calculate the TD
error.

7. The learnable parameters are updated using the TD error and the sensitivities.

8. Steps 3 through 7 are repeated until the learning episode concludes.

The nonlinear optimisation problems were formulated and solved with the CasADi framework.
IPOPT (Interior Point OPTimizer) is used as a Non-linear Programming solver to solve the
optimization problem.

4-1-2 Network Environment and Configuration

A simplified highway traffic network is used as benchmark, adapted from [1], which serves as
the RL environment for this study. The network comprises two origins (a mainstream and an
on-ramp), two highway links, and one destination. The main origin, O1, features two lanes
with a total capacity of 2000 veh/h/lane. This is followed by the highway link L1, which also
has two lanes and spans 4 km, divided into four 1 km segments. The third and fourth segment
of link L1 consists of VSLs. At the end of L1, a single-lane on-ramp O2 with a capacity of
2000 vehicles per hour merges with the mainline. After the on-ramp, the network transitions
to link L2, which consists of two lanes divided into two 1-km segments and terminates at
destination D1, where outflow is open and uncongested . The queue length at O2 is restricted
to a maximum of 100 vehicles to ensure smooth traffic operations on adjacent roads. The
network is depicted in Figure 4-1.
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Figure 4-1: Network that consist RM and VSLs [1]

The METANET network parameters are adopted from [54] (see Table 4-1).

Table 4-1: Traffic model parameters for the METANET model

Parameter Initial Value Unit
T 10 s
τ 18 s
κ 40 veh/km/lane
η 60 km2/h

ρmax 180 veh/km/lane
δ 0.0122 -
a 1.867 -

vfree 102 km/h
ρcrit 33.5 veh/km/lane

Note that the parameters in Table 4-1 are the parameters used to simulate the real evolution
of the METANET dynamics, and are fixed. Conversely, in the MPC prediction model, a,
vfree and ρcrit are made learnable, i.e., are adjusted by the RL algorithm. To simulate a
more challenging learning scenario, these parameters in the MPC model are initialized with
a deviation with respect to the real ones in the METANET dynamics (which will be further
discussed in Section 4-1-3).

Demand Scenario

To investigate the impact of combining RL and MPC for highway ramp metering and co-
ordinated highway traffic control (including VSLs), a representative traffic demand scenario
is considered. In this scenario, the mainline traffic flow starts at a consistently high level, then
decreases sharply after 120 minutes, reaching a lower, steady rate. Meanwhile, the on-ramp
demand rises, remains stable for 15 minutes, and then declines to a constant low rate. Since
RL often struggles with overfitting to specific demand patterns or scenarios, stochasticity is
added to the demand profiles. stochasticity acts as a regularizer, forcing the agent to gen-
eralize its policy to handle both typical and atypical demand fluctuations. The demand at
each time step is perturbed by stochasticity from a normal distribution with zero mean and
standard deviation proportional to the demand value, calculated as 20% of the original de-
mand. After adding the stochasticity, the data is smoothed using a third-order Butterworth
filter applied with the forward-backward filtering method to preserve the phase of the signals
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characteristics. Finally, a non-negativity constraint is enforced, ensuring that all demand
values remain zero or positive. Figure 4-2 shows the distribution of these demand profiles.
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Figure 4-2: The demand scenario considered in the simulation experiments. The dashed lines
represent the original deterministic demand profiles, while the solid lines represent the mean of
the noisy demand profiles after applying stochasticity and filtering. The shaded regions represent
the standard deviation ranges from which the random demands are sampled from.

4-1-3 MPC parameters

The controller (3-34) is employed to manage the control actions, with the primary objective
of preventing congestion within the traffic network. The sampling interval for the process
dynamics is set to 10 seconds, while the controller operates every 60 seconds (M = 6).
Hence, the sampling time of the controller is equal to 1 minute. The prediction horizon is
defined as Np = 7, and the control horizon is set to Nc = 5.
The initial values of the objective function parameters for the MPC optimization problem
are left untuned, simulating a design process with limited expertise and poor identification
phase. Furthermore, to evaluate the influence of RL on the performance of the MPC con-
troller, the parametrization of the controller is initialized with suboptimal values, introducing
a 30% error relative to their true values. This approach mimics the effects of an imperfect
system identification process. The initialization focuses on the MPC learnable parameters
that directly impact the performance, specifically:


ρ̃crit = 0.7ρcrit,

ã = 1.3a,

ṽfree = 1.3vfree.
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The initial values of the learnable parameters introduced by Equation (3-34) are summarized
in Table 4-2.

Table 4-2: Initial values, dimensions, and parameters of the parametrization.

Symbol Initial Value Bounds Dimension
ρ̃crit 0.7ρcrit [10, 180] veh/km/lane

ã 1.3a [1.1, 6] -
ṽfree 1.3vfree [10−3, 150] km/h
θT 1 [10−3,∞) veh−1h−1

θV,ramp 500 [10−3,∞) veh2/h2

θV,speed,{1,2} 50 [10−3,∞) km2/h2

θC 5 [10−3,∞) veh−1

θ
{ρ,v,w}
{λ} 1 (∞,∞) -

θ
{ρ,v,w}
{ℓ,Γ} 1 [10−3,∞) -

θ
{ρ,v}
{ℓ,Γ},lin 2 [10−3,∞) -

The remaining fixed parameters in Equation (3-34) are assigned the same values as those used
in the real system. At last, the setpoints and the normalization coefficients are described in
Table 4-3.

Table 4-3: Setpoints and normalization coefficients for the parametrized MPC scheme

Symbol Value Dimension
ρsp 0.7ρcrit veh/km/lane
vsp 1.3vfree km/h

ρmax 180 veh/km/lane
wmax 100 veh
vmax 1.3vfree km/h

4-1-4 RL parameters

A single simulation episode lasts 150 minutes and the RL agent is trained for 80 episodes.
Note that at the end of each episode and when a new episode starts, new random demands
are generated (as described in Section 4-1-2) and the state is reset to steady-state. The RL
hyperparameters that were considered to tune are described in Table 2-1.

The weight cTTS is assigned to the term JTTS(xk), while the weight cVAR includes cV,ramp and
cV,speed, which are assigned to the term JVAR(xk). Here, cV,ramp accounts for the variability
in each on-ramp flow, whereas cV,speed addresses the variability in each equilibrium speed
action. The weight cCV is assigned to the penalty term JCV(xk), ensuring compliance with
queue length constraints at on-ramps.

As for the update of the learnable parameters θ, the maximum change of each parameter is
equal to 30% of its current value, hence ∆θ = 0.3θ. The learnable parameters of the MPC are
updated using a second-order LSTD Q-learning that relies on information stored in a buffer,
whose size corresponds to the number of times the MPC is solved within a single episode. At
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each timestep, the Q-function is evaluated for the current state-action pair, and its gradient
(b), Hessian (A) and corresponding TD error are stored in the buffer. Before a parametrization
update (3-51) is carried out, these terms are then averaged over the buffer to stabilize the
updates and mitigate the effects of noisy gradients or outliers. The update of θ happens at
the end of each learning episode. The learnable parameters are incrementally updated to
minimize the TD error. To ensure numerical stability and feasibility during optimization, the
Hessian term A is made positive semi-definite (PSD) using Cholesky factorization with added
regularization. Finally, the learning rate (α) is decayed after each update, reducing the step
size as training progresses to stabilize convergence. In this case study, different learning rates
are considered for the learnable parameters. Specifically, the learning rate for ρ̃crit (αρcrit)
and the learning rate for ã (αa) are distinct from each other and also differ from the learning
rate assigned to the remaining learnable parameters (αθ). However, all parameters share the
same learning rate decay αdecay, ensuring a consistent reduction in step size over time.

To facilitate exploration during training, the objective function of the MPC framework is
perturbed with random stochasticity. This happens when solving the value function, described
in Equation (3-39). Specifically, a perturbation term, q⊤, is introduced, which is randomly
generated, multiplied by the first control action, u0, and added to the objective function.
The resulting product is further scaled by the maximum control actions, ensuring that the
magnitude of the perturbation remains proportional to the scale of the control inputs. During
each training step, random stochasticity is independently generated for the on-ramp flow and
the VSLs. The stochasticity is drawn from a normal distribution with zero mean and a
standard deviation that decays over time. The exploration strength is determined by the
standard deviation, where σq,ramp determines the exploration strength for the on-ramp flow
action, and σq,speed determines the exploration strength for the desired speed control action.
For the on-ramp flow, the stochasticity is scaled by the ramp’s capacity, while for the VSLs,
it is scaled by vfree. Note that the share the same exploration decay, which is determined
by σdecay. The primary purpose of this exploration mechanism is to allow the controller
to discover new, potentially superior control strategies and improve performance. Early in
training, the higher standard deviation in the perturbations facilitates broader exploration
of the solution space, enabling the RL agent to gather more diverse data for learning. As
training advances, the decaying variance reduces exploration, allowing the MPC controller to
refine and exploit the learned optimal policies.

Note that infeasibilities in the nonlinear MPC problems for Vθ and Qθ can occur if the solution
cannot satisfy the given constraints or poor initialization of the decision variables. Therefore,
a simulation result is considered valid if the number of infeasibilities remains below 10% of
the total number of MPC solver calls during a learning episode. The RL parameters that
were considered are described in Table 4-4.
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Table 4-4: RL parameters for MPC-RM-VSL case study

Symbol Value
cTTS 5

cV,ramp 16
cV,speed 1

cCV 5
γ 0.98

αρcrit 0.5
αa 0.1
αθ 0.9

αdecay 0.91
∆θ 0.3

σq,ramp 1
σq,speed 0.5
σdecay 0.9

4-2 Results

This section discusses the results obtained from the simulations. The performance of all the
previously mentioned methods is evaluated within the traffic network environment. To ac-
count for variability caused by stochastic factors such as exploration, the results are averaged
over 5 simulations, each initialized with a different random seed. It is important to note
that the same random seed number was used across all simulations for every model to ensure
consistency of the results. The RL stage cost, as previously mentioned, includes the TTS,
control variability, and constraint violations. These components collectively serve as valuable
metrics for assessing the performance of the learning. The results are compared against three
distinct models: an MPC with a perfect prediction model, which assumes exact knowledge
of the learnable parameters influencing the dynamics (a, ρcrit, and vfree); an MPC with a
imperfect model, where these parameters are initialized with incorrect values that deviate
from their true values as specified in Table 4-2; and the RL-MPC agent, which dynamically
adjusts the learnable parameters during the training process to enhance performance.

4-2-1 Cost Objective Terms

The results for the evolution of the TTS during learning are shown in Figure 4-3. The MPC
with the perfect prediction model, which has precise knowledge of the system parameters,
consistently achieves low TTS and exhibits stable performance across all episodes. On the
other hand, the MPC with the imperfect prediction model, despite starting with suboptimal
parameters, performs surprisingly well, maintaining TTS levels close to those of the perfect
model. However, keep in mind that, although the MPC with imperfect model outperforms
the MPC with the perfect prediction model in terms of TTS, this does not necessarily imply
that the former is superior overall. The objective function used in the evaluation considers
multiple performance metrics as shown in Equation (3-32), including constraint violations
and control variability. The MPC-RL model starts with high TTS due to its suboptimal
initial parametrization, and demonstrates significant improvement over the learning episodes.
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Thanks to RL, the controller adapts its parameters and progressively learns more effective
policies. As a result, the TTS for the MPC-RL controller steadily decreases and starts to
approach the performance of the perfect model. This highlights the ability of the RL frame-
work to enhance the performance of the controller through adaptation, even when starting
with a poor initialization. It can also be observed from the plot that the MPC-RL model
has the potential to outperform the MPC with the perfect prediction model if more learning
episodes are considered. However, achieving this requires careful consideration of the initial
hyperparameter values, particularly the learning rate and its decay. It is crucial to ensure
that, toward the end of the learning process, the learning rate has decayed sufficiently to
allow for smaller updates. This promotes stability and increases the chance of convergence
to an optimal value. The MPC-RL model has reached an averaged value of 1372.46veh · h in
the last episode, and has showed a 46.24% reduction in comparison with its initial value.
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Figure 4-3: Evolution of the TTS over the learning episode. The solid line represents the mean
result over 5 agents, while the shaded areas indicate the standard deviation.

The results for the constraint violation are shown in Figure 4-4 and is depicted in logarithmic
scale. The MPC with the perfect prediction model exhibits consistently low violations values
throughout the episodes, reflecting its ability to adhere strictly to system constraints. In
contrast, the MPC with the imperfect prediction model shows occasional significant spikes
in constraint violation values, particularly around the 45th, 60th, and 80th episodes. These
spikes indicate episodes where the imperfect model struggles to meet constraints, likely due
to inaccuracies in its parameter estimates and high randomness in the demand. However,
between these episodes, the imperfect MPC demonstrates performance closer to the perfect
model, suggesting that it can operate effectively under certain conditions despite its imperfec-
tions. The MPC-RL model is not plotted, as its constrain violation values remain consistently
zero across all learning episodes. This highlights the effectiveness of the RL component in dy-
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namically adjusting the learnable parameters to fully satisfy constraints, even in the presence
of initial parameter deviations. This means that the queue length did not excel the maximum
allowable queue length on the on-ramp.
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Figure 4-4: Evolution of the constraint violation over the learning episode

The results for the control variability are shown in Figure 4-5. The MPC model with perfect
parameters consistently demonstrates the lowest control variability, as it has exact knowledge
of the dynamics, allowing it to make smooth and stable control decisions. In contrast, the
MPC with the imperfect prediction model exhibits higher variability due to parameter in-
accuracies, which lead to less precise predictions and more aggressive or oscillatory control
actions. The MPC-RL model starts with a relatively high control variability, reflecting the
exploration phase of the learning process. However, as the learning progresses, the control
variability decreases significantly, indicating that the model is refining its policy and moving
toward more stable control actions. By the later episodes, the MPC-RL model achieves a level
of variability lower than the MPC with the imperfect prediction model and approaches that
of the MPC with the perfect prediction model. After the 40th learning episode, exploration
significantly decreases, resulting in oscillations around a steady value.
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Figure 4-5: Evolution of the control variability over the learning episode

The control variability reaches a relatively low value, indicating smooth and stable control
actions over time. This implies that adjustments to control variables are minimal and con-
sistent. This can be observed in the results of the control actions, depicted in Figure 4-6. In
general, it is desired to have stable and smooth control actions, in order to guarantee safety
traffic conditions.

4-2-2 Control Actions

The results of the control actions are depicted in Figure 4-6. A single MPC model (both
with perfect and imperfect prediction model) was simulated 80 times using a specific random
seed that introduced stochasticity in the demand. The actions from these 80 simulations were
averaged for that particular random seed. This process was repeated for five different random
seeds, and the resulting averaged actions were further averaged across these five simulations
to obtain the final result. For the MPC-RL model, the last action from each learning episode
was considered. These final actions were then averaged across the five different simulations
to derive the overall result.
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(b) Equilibrium speed (VVSL,1).
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(c) Equilibrium speed (VVSL,2).

Figure 4-6: Results of the control action on average
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For ramp flow, all models show significant variability during the initial stages as the system
responds to dynamic traffic demands. The MPC with the imperfect prediction model exhibits
oscillations, particularly during the first 90 minutes. In contrast, both the MPC with the
perfect prediction model and MPC-RL demonstrate smoother ramp flow trajectories, with
fewer oscillations. Toward the end of the simulation, all models converge to similar ramp flow
values, with the MPC-RL aligning closely with the MPC with the perfect prediction model. It
can also be observed that during the high demand at the beginning of the simulation lead to
sharp oscillations in the MPC with the perfect prediction model, whereas the MPC-RL model
shows a smoother response. This suggests that the MPC-RL model effectively incorporates
safety conditions into its decision-making process, even under conditions of elevated demand.
Consequently, the MPC-RL model outperforms the MPC model in managing ramp flow and
maintaining safety conditions in such scenarios.

The equilibrium speed of the MPC with the imperfect prediction model show similar oscilla-
tions trend. It struggles to maintain stable speed limits, showing erratic and large oscillations.
This can lead to unsafety conditions, hence a high chance to number of accidents. On the
other hand, the MPC with the perfect prediction model manages more consistent speed limit
control, with minor transient deviations. The MPC-RL model shares the same performance,
achieving stable and smooth VSL adjustments after the initial transient phase. Both equi-
librium speeds show that the MPC-RL model adapts effectively to the traffic environment,
providing results that closely align with those of the perfect model. Furthermore, it can be
observed that the equilibrium speeds in the MPC-RL model are higher than those of the
MPC with the perfect prediction model toward the end of the simulation. This behaviour is
lead to the MPC-RL model prioritizing higher speeds during periods of low demand, while
lowering the equilibrium speeds more significantly than the MPC with the perfect prediction
model during high-demand phases. Additionally, while some spiky oscillations are present,
they remain within a reasonable range and do not compromise safety conditions, indicating
that the system maintains stable and controlled adjustments.

4-2-3 Learnable MPC Parameters

The results for the learnable MPC parameters that influence the prediction model are shown
in Figure 4-7. The critical density parameter, ρ̃crit, starts at the initialization of the MPC with
the imperfect prediction model. Over the learning episodes, the RL algorithm adjusts ρ̃crit,
converging on average toward an optimal value of approximately 26 veh/km/lane. However,
it can be observed that this learnable parameter does not reach the value of the MPC with
the perfect prediction model. This means that the MPC-RL model adopts a more pessimistic
stance toward congestion. Specifically, the transition to congested flow is predicted to occur at
lower densities compared to the real ρcrit-value given by the MPC with the perfect prediction
model. As consequence, the MPC-RL model overestimates congestion. Moreover, in the con-
text of constraint h2 (3-24), a lower ρ̃crit tightens the constraint, limiting the control actions
(ramp flow) to prevent congestion. The parameter ã exhibits a distinct learning trajectory.
Initially, the MPC-RL model starts at the MPC with the imperfect prediction model initializ-
ation of 1.3a, but steadily approaches value of the MPC with the perfect prediction model (a).
By the 40th learning episode, the averaged parameter stabilizes around 2.1, slightly higher
than the perfect value. This implies that VVSL favours prediction of higher speeds at lower
densities and lower speeds for higher densities compared to the a-value given by the MPC
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with the perfect prediction model, according to the relation described in Equation (3-5).
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Figure 4-7: Evolution of the learnable MPC parameters that influence the prediction model
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The free-flow speed, ṽfree, starts at 132.6 km/h, corresponding to 1.3vfree from the MPC with
the imperfect prediction model. Unlike ρ̃crit and ã, vfree demonstrates minimal changes during
learning. The MPC-RL model maintains a consistently higher value compared to the value of
the MPC with the perfect prediction model (vfree = 102 km/h). This behaviour highlights the
preference of the MPC-RL model for maintaining higher free-flow speeds, prioritizing faster
traffic flow when safety and performance constraints are satisfied. Eventually, this learnable
parameter reaches a value of 120.38km/h on average. Note that the standard deviation for
this result is very high. This outcome is attributed to five simulations, where one simulation
converged to a value of 150, two simulations converged to 133.89, and the remaining two
settled at 92.81. This convergence already happened at the start of the learning episode.
This suggests that the learning process is dominated by initialization and early dynamics,
possibly resulting in suboptimal solutions. Addressing this issue would require further fine-
tuning the learning mechanisms to prevent premature convergence.

4-2-4 Parametrized Cost Weights

The result for θT is shown in Figure 4-8a. The parameter θT, which emphasizes the im-
portance of minimizing TTS in the objective function of the MPC function approximator,
converges to a value close to 1.25. This indicates that the RL framework has determined a
relatively balanced weight for TTS minimization in the objective. The convergence to a value
higher than the initial value reflects the increasing emphasis on TTS reduction as a critical
performance metric during learning, which can also be seen in Figure 4-3. The evolution of
the parameter θV,ramp and θV,speed plays a crucial role in influencing control variability, as
depicted in Figures 4-8b and 4-8c. For the parameter θV,ramp, which is associated with the
variability of the ramp metering control action, the RL agent adjusts its value rapidly during
the initial episodes. The parameter stabilizes early, indicating that the RL process effectively
fine-tunes the balance between reducing variability and maintaining control stability at an
early stage of learning. Similarly, the parameters θV,speed.1 and θV,speed,2, which influence
variability in equilibrium speed, exhibit quick convergence to stable values within the first
2 episodes. The control variability plot depicted in Figure 4-5 further corroborates these
observations, as the MPC-RL model demonstrates a significant reduction in control variab-
ility compared to the MPC with the imperfect prediction model at the start of the learning
episode due to rapid changes of θV,ramp and θV,speed. The convergence of θV,ramp and θV,speed
directly translates to smoother and more stable control actions, highlighting the effectiveness
of the learned parameters in mitigating unnecessary oscillations or abrupt changes in traffic
control measures. This behaviour is particularly evident in the reduced variability of both
ramp metering and speed adjustments under the MPC-RL framework. This means that a
proper initialization or a different learning rate is necessary to see if this learnable parameter
changes in value. As for θC , this value remained 5 and has not changed over the learning
episodes. While this could initially suggest that the parameter has found a global optimum
or is stuck at a local minimum, a closer analysis reveals a different explanation. Specifically,
if the Lagrangian formulation is examined, the sensitivity of θC is proportional to the optimal
values of the slack variables. However, since the MPC-RL agent never encounters constraint
violations, these slack variables remain zero throughout training. As a result, the gradient
of the Lagrangian with respect to θC is always zero, preventing any updates and causing the
parameter to remain fixed at its initial value. This indicates that θC is not necessarily at an
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optimum but is instead in a stationary state due to the structure of the optimization problem.
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Figure 4-8: Evolution of the parametrized cost weights
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The results for the other learnable parameters can be seen in the Appendix C.

4-2-5 TD error

The results for the TD error are shown in Figure 4-9. Initially, the TD error is high and exhib-
its significant oscillations, which is expected as the model begins with limited knowledge and
explores various actions to improve its policy. As the learning progresses, a clear downward
trend in the TD error can be observed, indicating that the model is gradually refining its
predictions and learning the learnable MPC parameters of the traffic environment. This is a
good indication that the MPC scheme (3-27) is able to provide a reliable approximation Qθ of
the true unknown action-value function. By the 40th episode, the TD error begins to stabilize,
showing a noticeable reduction in standard deviation, as reflected by the narrowing shaded
region. This reduction in standard deviation suggests that the learning process has become
more consistent, and the model is making more accurate predictions about the outcomes of
its actions over 5 simulations. Toward the end of the episodes, the TD error stabilizes at
a lower value, approximately around 40, signifying that the MPC-RL model has reached a
steady policy. Unfortunately, the TD error does not reach an absolute zero and this can
be due to factors such as the imperfect or insufficient parametrization of the model and the
inherent stochasticity of the environment. Variations in traffic demand introduce oscillations
that make predicting the value functions more complex and challenging, preventing the TD
error from reaching a perfect zero.
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Figure 4-9: Evolution of the TD error over the learning episode
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4-3 Discussion

From the results, it can be observed that the proposed methodology shows an ability in
learning to improve the traffic control performance while maintaining the prescribed safety
condition for given wrong model parameters and a poorly tuned initial controller. The MPC-
RL model exhibits promising results compared to the MPC with the perfect and imperfect
prediction models. The TTS has lowered significantly, demonstrating a clear decreasing trend
and has the potential to outperform over the MPC with the perfect prediction model if longer
learning episodes were considered. However, extending the learning process would require
adjusting the learning rate decay to ensure a sustainable and effective learning progression
over the extended time. As consequence, this can influence the results, as different learning
rates might lead to the discovery of new local minima due to the highly nonlinear nature of the
system dynamics. Such variations in the optimization could influence the overall performance.

As for the variability, this is stable and lead to less oscillations in comparison with the MPC
with the imperfect prediction model. This stability directly contributes to improved safety
conditions. However, it can be observed that the standard deviation is very high for the
second control action of the equilibrium speed, in comparison with other control actions.
Furthermore, as observed in Figure 4-6, there are slight oscillations occurring around the 120
minutes. While these oscillations are minor, they could potentially lead to slightly unsafe
behaviour. In order to lower the standard deviation and to have a more smoother control
action with even less oscillations, one could consider to adjust the weight for this particular
control action. By fine-tuning the weighting, the standard deviation can be reduced, leading
to more stable and safer system behaviour over time.

In general, exploring alternative initial values for the learnable parameters may significantly
influence the results, as it provides the RL agent with a new region to explore, increasing the
likelihood of discovering new local minima or global minimum. During the simulations, it
was observed that many learnable parameters converged too quickly, either becoming stuck
in local minima. To address this, assigning distinct initial values to each learnable para-
meter and fine-tuning them systematically could help ensure the RL agent more effectively
identify the global minimum. Similarly, one could consider to assign different learning rates
and learning rate decays for each learnable parameters to escape from local minima. Another
idea is to consider multi-starting the Nonlinear Programming solver for the MPC problems,
as it solves the optimization problem multiple times form different initial guesses and select-
ing the best solution [52]. This also helps to counter infeasibilities for a particular time-step.
These approaches are particularly relevant for learning ṽfree, as the results revealed the highest
standard deviation for this parameter, with varying convergence values across different sim-
ulations. This also holds for learning ã, as the standard deviation is also high at the end of
the learning episode. However, the disadvantage of these approaches lies in its computational
intensity. Fine-tuning multiple parameters requires testing numerous combinations, and the
process becomes even more time-consuming and complex as the parametrization grows.

Lastly, it is worth noting that the RL algorithm can only process a finite amount of data
during training. This is an additional factor that influence the suboptimality of the MPC-
based RL solution. As the amount grows infinite, the theoretical optimality will be achieved
[33].
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Chapter 5

Conclusion

5-1 Summary

This thesis project explored the combination of MPC and RL for optimizing highway traffic
control, specifically through RM and VSLs. The goal was to investigate how these frameworks
can be effectively integrated to improve traffic flow and overall system performance. Recall
that the research question posed in this thesis was:

How can the frameworks of MPC and RL be effectively combined to optimize high-
way traffic control and increase performance?

The study demonstrated that the MPC-RL approach successfully enhances traffic control
performance by leveraging the predictive capabilities of MPC and the adaptability of RL.
Simulation results indicated that this combination leads to significant reduction in TTS in
traffic compared to the initial value from the imperfect model, demonstrating the effectiveness
of the RL component in optimizing control strategies over time. Additionally, the MPC-RL
framework exhibited a smoother and more stable traffic flow with fewer oscillations in control
variables compared to an MPC with an imperfect prediction model. While the RL frame-
work initially showed high control variability due to exploration, it successfully converged
toward stable control actions, ensuring improved highway safety and efficiency. The model
also avoided significant constraint violations. Furthermore, the MPC-RL model showed the
potential to outperform the MPC with a perfect prediction model if more learning episodes
were considered, highlighting the benefits of adaptive learning. This requires to increase the
learning decay rate value in order to still have learning at the nearly end of the episodes. Note
that this can lead to different suboptimality solutions, and this could influence the overall per-
formance. Meaning that the whole initial values for the hyperparameters and parametrization
should be reconsidered.

The learnable MPC parameters that influence the prediction model differ from the values
given by the MPC with the perfect prediction model. The critical density parameter ρ̃crit
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gradually increases from its initial value but does not reach that of the MPC with the perfect
prediction model, leading to a conservative congestion estimation that limits control actions.
The parameter ã follows a steady learning trajectory, converging slightly above the true a
value, suggesting that the model predicts higher speeds at lower densities and lower speeds
at higher densities. The free-flow speed ṽfree remains relatively unchanged, stabilizing at
a higher value than the MPC with the perfect prediction model, indicating a preference
for maintaining higher speeds when safety constraints allow. However, the high standard
deviation in ṽfree across simulations suggests that early-stage learning heavily influences final
parameter values, potentially leading to suboptimal solutions. Addressing this issue through
improved learning mechanisms could enhance the consistency of the model and reliability in
traffic management. Exploring alternative initial values for learnable parameters appears to
be a promising avenue for improving model performance. Assigning distinct initial values to
each parameter and fine-tuning them systematically could help the RL agent identify global
minimum more effectively. Additionally, employing different learning rates and learning rate
decays for each parameter might enhance the ability of the system to escape local minima.
Another promising approach is the use of multi-start optimization, which solves the MPC
problem multiple times from different initial guesses, thereby improving feasibility across
time steps. However, these approaches come at a computational cost, as fine-tuning multiple
parameters significantly increases processing time and complexity.

Overall, the study confirms the potential of the MPC-RL framework for improving highway
traffic control, balancing efficiency and stability. While challenges remain in fine-tuning learn-
ing processes and managing computational complexity, these findings pave the way for further
enhancements in adaptive traffic management systems.

5-2 Future outlook

The findings of this study highlight several promising directions for future research and im-
provements in the integration of RL with MPC for highway traffic management. While the
current methodology has demonstrated effectiveness, various aspects can be further explored
and refined to enhance its performance.

• Enhancing learning optimality: One of the primary challenges observed in the study
is the rapid convergence of learnable parameters, sometimes leading to local minima.
Future research should focus on refining learning rates, parameter initialization, and in-
troducing multi-start optimization techniques to ensure that the model identifies global
optimum rather than suboptimal solutions.

• Incorporating safety and environmental considerations: While the primary fo-
cus of this study was optimizing traffic efficiency, future research should incorporate
additional performance metrics, such as accident risk reduction, emissions control, and
fuel efficiency. Integrating these factors into the reward function could lead to a more
sustainable and safety-conscious traffic control strategy.

• Exploring complex parametrization: A key avenue for future research is the devel-
opment of more complex parametrizations of the MPC scheme, such as incorporating
neural networks. Given the nonlinear nature of the METANET framework, neural
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networks have the potential to better capture the system’s dynamics and improve pre-
diction accuracy. By leveraging deep learning for action-value function approximation,
the MPC-RL framework could achieve more precise and adaptive control policies. This
approach would enable the system to handle higher-dimensional traffic conditions while
improving optimization performance. Another idea is to the extend the framework to
include multiple RL agents that cooperatively manage different highway sections.

• Validation in real-world application: While simulation-based results provide valu-
able insights, real-world testing is necessary to validate the effectiveness of MPC-RL
model. Future research should focus on deploying the framework in actual highway
environments, collecting empirical data, and refining the approach based on real-world
constraints and uncertainties.

• Exploring alternative solvers for finding the optimal policy: Another prom-
ising direction for future research is investigating alternative solvers for finding the
optimal policy within the MPC-RL framework. While MPC acts as a policy function
approximator, different optimization techniques could enhance efficiency and conver-
gence. Methods such as Bayesian Optimization and gradient-based approaches, includ-
ing policy gradient methods, could refine the learning process by enabling iterative
updates to the policy parameters.
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Appendix A

Huber Loss Functions

In this appendix, the formulation of the left-sided and right-sided Huber loss penalties is
described, providing their mathematical definitions as mentioned in Section 3-3-2.

A-1 Left-sided Huber Loss Penalty

Let ρ ∈ Rn be a vector of densities in n links at a given time step (e.g., stage or terminal) as
an example. Define the following objective:

J(ρ) =
n∑

i=1
wiϕℓ

(
ρi − si

M
, δi

)
, (A-1)

where ϕℓ is the left-sided Huber loss function:

ϕℓ(r; p) =
{
−p(2r + p), if r ≤ −p,

r2, if r > −p,
(A-2)

and w ∈ Rn, s ∈ Rn, and δ ∈ Rn are the weights, the setpoints, and the knee-points of each
penalty term, respectively. M ∈ R is a scalar value used for normalization.

Note: For J(ρ) to be convex and meaningful, we need wi ≥ 0, δi ≥ 0, i = 1, . . . , n, and
M > 0.

A-2 Right-sided Huber Loss Penalty

Let v ∈ Rn be a vector of velocities in n links at a given time step (e.g., stage or terminal).
Define the following objective:
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J(v) =
n∑

i=1
wiϕr

(
vi − si

M
, δi

)
, (A-3)

where ϕr is the right-sided Huber loss function:

ϕr(r; p) =
{

p(2r − p), if r ≥ p,

r2, if r < p,
(A-4)

and w ∈ Rn, s ∈ Rn, and δ ∈ Rn are the weights, the setpoints, and the knee-points of each
penalty term, respectively. M ∈ R is a scalar value used for normalization.

Note: For J(v) to be convex and meaningful, we need wi ≥ 0, δi ≥ 0, i = 1, . . . , n, and
M > 0.
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Appendix B

Parameter Evolution in MPC-RL for
Coordinated Highway Traffic Control

In this appendix, the evolution of all learnable parameters in the MPC-RL model for coordin-
ated highway traffic control is presented, as detailed in Section 3-2-2.

B-1 Parametrised Cost weights

B-1-1 Initial cost
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B-1-2 Stage cost
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B-1-3 Terminal cost
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B-2 Linear Slope Parameters
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Appendix C

States Evolution in MPC-RL for
Coordinated Highway Traffic Control

In this appendix, the evolution of key traffic state variables in MPC-RL for coordinated high-
way traffic control is presented. The analysis focuses on differences in traffic density and speed
across six network segments, comparing the first and last episodes of the learning process.
The presented figures illustrate the averaged results from 5 simulation runs, highlighting the
adaptation of the system and performance improvements over time.

C-1 Density

Figure C-1: Average density of the first learning episode
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Figure C-2: Average density of the last learning episode

C-2 Speed

Figure C-3: Average speed of the first learning episode
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Figure C-4: Average speed of the last learning episode
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