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ABSTRACT

Exploration in environments with sparse rewards remains a fundamental challenge
for reinforcement learning (RL). Existing approaches such as curriculum learn-
ing and Go-Explore often rely on hand-crafted heuristics, while curiosity-driven
methods risk converging to suboptimal policies. We propose Search-Inspired Ex-
ploration in Reinforcement Learning (SIERL), a novel method that actively guides
exploration by setting sub-goals based on the agent’s learning progress. At the be-
ginning of each episode, SIERL chooses a sub-goal from the frontier (the bound-
ary of the agent’s known state space) before the agent continues exploring toward
the main task objective. The key contribution of our method is the sub-goal selec-
tion mechanism, which provides state-action pairs that are neither overly famil-
iar nor completely novel. It assures that the frontier is expanded systematically
and that the agent is capable of reaching any state within it. Inspired by search,
sub-goals are prioritized from the frontier based on estimates of cost-to-come and
cost-to-go, effectively steering exploration towards the most informative regions.
In experiments on challenging sparse-reward environments, SIERL outperforms
dominant baselines in both achieving the main task goal and generalizing to reach
arbitrary states in the environment.

1 INTRODUCTION

Reinforcement learning (RL) holds the promise of enabling agents to master complex tasks by in-
teracting with their environments. Yet applying RL in realistic domains remains challenging due to
the combination of high-dimensional state—action spaces and sparse reward signals. In many envi-
ronments, meaningful feedback is obtained only after completing long sequences of actions, making
standard RL algorithms highly data-inefficient.

A central obstacle is the exploration—exploitation dilemma: agents must discover novel behaviors
while simultaneously leveraging what they already know to make progress. Existing methods often
overlook the problem of how an agent can actively direct its exploration to collect the most infor-
mative experiences (Amin et al.). Addressing this challenge is crucial for developing RL agents
that learn more stably and scale to environments with delayed or infrequent rewards. We argue that
progress requires shifting from agents that passively process environment feedback to those that
deliberately seek out information in a principled way.

Several approaches have been proposed to address the challenge of exploration in sparse-reward
reinforcement learning. Curriculum Learning (CL) introduces tasks of increasing difficulty to grad-
ually shape agent behavior, but it relies on carefully hand-crafted difficulty metrics and is prone
to negative transfer if the curriculum is poorly designed (Fang et al.; [Liu et al.). Intrinsic motiva-
tion methods reward novelty or curiosity, encouraging the agent to seek unexplored regions of the
state space. However, these methods are often a form of reward shaping, which can bias the learn-
ing process and lead to suboptimal policies. They are also susceptible to the “noisy-TV problem,”
where agents are distracted by stochastic but irrelevant features (Burda et al.; Ladosz et al.). Go-
Explore (Ecoffet et al.) explicitly remembers and returns to promising states, but depends heavily
on domain-specific heuristics and requires careful selection of interesting states.

Goal-Conditioned Reinforcement Learning (GCRL), particularly when combined with Hindsight
Experience Replay (HER), offers another principled framework for overcoming these limitations
by explicitly training agents to reach arbitrary states. We build on this paradigm to automatically
generate sub-goals that extend progressively farther from the start state. In doing so, our method
effectively constructs a curriculum without requiring manually designed tasks or environments of
varying difficulty.

In this work, we introduce Search-Inspired Exploration (SIERL), a novel approach that guides ex-
ploration by setting sub-goals informed by the agent’s learning progress. Our main contributions are:
1. We propose a principled sub-goal selection mechanism that systematically expands exploration
by defining a frontier of experience and prioritizing sub-goals using cost-to-come and cost-to-go



estimates. 2. We design a novel Hallway environment that enables fine-grained control over explo-
ration difficulty by varying the length of action sequences required to succeed. 3. We show that
SIERL leads to more efficient exploration in sparse-reward settings. 4. We present an empirical
study that disentangles the contributions of individual components and identifies which mechanisms
most effectively improve exploration for goal-conditioned agents.

The remainder of this paper is organized as follows: Section [2]reviews related literature; Section 3|
introduces the necessary preliminaries; Section 4| details our algorithm; Section [5| presents experi-
mental results; and Sections[6]and[7]discuss conclusions and future directions.

2 RELATED WORK

A wide range of exploration methods have been proposed for reinforcement learning (RL). These
methods can be broadly categorized along several axes: whether they rely on extrinsic rewards
or intrinsic exploration bonuses, employ memory or are memory-free, learn autonomously or
from demonstrations, act randomly or deliberately (goal-based), or adopt an optimism-driven strat-
egy (Amin et al.;|Ladosz et al.).

Novelty and optimism-based methods. Novelty-bonus and optimism-based approaches encour-
age exploration by augmenting rewards with bonuses for visiting new or uncertain states. These
methods are particularly useful in sparse-reward environments, where intrinsic signals provide more
consistent feedback than delayed extrinsic rewards. In the bandit setting, the well-known Upper
Confidence Bounds (UCB) algorithm balances exploration and exploitation by favoring actions with
high value uncertainty (Auer et al.). In reinforcement learning, count-based techniques extend this
principle by quantifying novelty through visitation counts over states or state—action pairs (Strehl &
Littman)). Practical implementations rely on approximations such as hashing (Tang et al.), pseudo-
counts (Ostrovski et al.), or elliptical episodic bonuses (Henaff et al.), all of which assign higher
exploration bonuses to rarely visited regions of the state space. Pseudo-count methods in particular
have demonstrated strong performance on hard-exploration benchmarks, notably achieving state-
of-the-art results on Montezuma’s Revenge (Bellemare et al.). To avoid the limitations of explicit
counting, Random Network Distillation (RND) (Burda et al.) introduces a scalable alternative: a
predictor network is trained to match the outputs of a fixed, randomly initialized target network,
and the prediction error serves as an intrinsic reward. Novel states typically yield higher prediction
errors, thus guiding exploration toward regions where the agent’s predictive model is least accurate.
Broader novelty-driven methods extend beyond counts: optimistic initialization assumes unseen
state—action pairs yield high returns, biasing agents toward exploration under the “Optimism in the
Face of Uncertainty” principle (Treven et al.).

Goal-based exploration methods. Goal-based methods frame exploration as a deliberate process
rather than relying on random or purely novelty-driven signals. By defining or generating explicit
goals within the environment, these methods encourage the agent to learn policies that reach strate-
gically important or unexplored states. This structured exploration typically involves three com-
ponents: a mechanism for goal generation (e.g., sub-goals), a policy for goal discovery, and an
overall strategy that coordinates exploration around these targets. Notable examples include Go-
Explore (Ecoffet et al.), which achieves strong performance by explicitly remembering and return-
ing to promising states before exploring further. Other approaches incorporate planning techniques,
either within model-based RL frameworks (Hayamizu et al.) or by substituting policy search com-
ponents with kinodynamic planners to better direct exploration (Hollenstein et al.). Planning Ex-
ploratory Goals (PEG) (Hu et al.) leverages learned world models to sample exploratory “goal
commands” predicted to unlock novel states, from which the agent then explores.

Frontier- and confidence-driven exploration. Several recent methods refine goal-based explo-
ration by explicitly reasoning about the frontier of reachable states or by incorporating measures of
confidence. Latent Exploration Along the Frontier (LEAF) (Bharadhwaj et al.) learns a dynamics-
aware latent manifold of states, deterministically navigates to its frontier, and then stochastically
explores beyond it to reach new goals. Temporal Distance-aware Representations (TLDR) (Bae
et al.) exploit temporal distance as a proxy for exploration potential, selecting faraway goals to en-
courage coverage and training policies to minimize or maximize temporal distance as needed. In
reset-free settings, Reset-Free RL with Intelligently Switching Controller (RISC) dynamically al-



ternates between forward and backward exploration goals based on confidence in achieving them,
effectively balancing task-oriented progress with revisiting initial states to diversify experience.

Summary. Together, these exploration strategies illustrate a steady evolution in RL: from sim-
ple count-based and novelty-driven approaches to increasingly structured methods that incorporate
goal-setting, planning, and confidence-aware strategies. Novelty-based techniques provide intrinsic
motivation to reduce uncertainty and expand coverage, but as a form of reward shaping, they can
bias behavior and lead to suboptimal policies, in addition to being vulnerable to distractions such
as the “noisy-TV problem.” Goal-based approaches make exploration more intentional by defining
explicit targets such as distant states, frontier boundaries, or strategically planned points. However,
they often rely on brittle heuristics, handcrafted difficulty metrics, or domain-specific knowledge
that limits generality. These drawbacks highlight an open gap: how to design exploration methods
that are both systematic and robust, capable of scaling beyond hand-tuned heuristics while ensuring
that chosen exploratory targets remain novel but still reachable.

3 BACKGROUND AND PROBLEM SETUP

Exploration in reinforcement learning is especially challenging in environments with sparse rewards,
where agents must solve long sequences of actions before receiving feedback. To formalize this
setting, we focus on sequential decision-making problems with explicit goals, expressed through
Goal Markov Decision Processes (GMDPs). This framework highlights the difficulty of discovering
goals when reward signals are rare and emphasizes the role of the exploration—exploitation dilemma
in guiding agent behavior.

3.1 THE HARD-EXPLORATION PROBLEM

Hard exploration problems are a direct consequence of sparse rewards, often exacerbated by large
state and/or action spaces. When rewards are sparse, learning can be extremely slow because the
agent wanders aimlessly for long periods without any signal to guide its behavior (Ladosz et al.). If
the path to a reward is long and specific, random exploration strategies (like e-greedy, with a small
¢) are unlikely to find it in a reasonable amount of time. The agent might get stuck in local optima
of familiar, non-rewarding behavior, or it might never encounter the critical states that lead to high
rewards. Therefore, in these problems, we need more sophisticated exploration strategies that can
intelligently seek out beneficial experiences for the agent to learn from.

3.2 GOAL MARKOV DECISION PROCESSES

We considered sequential decision-making problems that are formalized as Markov Decision Pro-
cesses (MDPs). An MDP is defined by a tuple (S, A, P,,r,v), where S is a finite set of possible
states, A is a finite set of actions available to the agent, P, (s’ | s, a) is afunction S x Ax S — [0, 1]
that returns the transition probability defining the likelihood of transitioning to state s’ after taking
action ¢ in state s; r(s, a, s') is the reward function S x A x § — [0, 00) specifying the immediate
reward received after a transition, and y € [0, 1] is a discount factor that balances the importance of
immediate versus future rewards. The primary objective of an agent in an MDP is to learn a policy
7 : S — A that maximizes the expected cumulative discounted reward (E,[Y />, v'r11]), often
referred to as the value function.

A significant group of problems, particularly relevant in planning and many reinforcement learning
applications, are goal-oriented tasks. Such tasks can be formalized using Goal-MDPs or Shortest-
path MDPs (Bertsekas). In this formulation, there can be one or more designated goal states in
the environment, and the agent’s primary task at each point in time is to reach the current goal.
sq C Sis the set of all possible (absorbing) goal states. The reward structure in Goal MDPs is often
adjusted to reflect this objective; a common setup involves a positive or zero reward upon reaching
a goal state and zero and small negative rewards (costs) for all other transitions. Thus, instead of the
reward function (s, a, s’), a cost function ¢(a, s), amap S x A — R, is used that specifies a cost
for each action. Goal states s € S can be absorbing, meaning P, (s¢ | a,s¢) = 1 forall a € A,
and cost free,meaning c(a, s¢) = 0 for all a € A. This transforms the problem into one of finding
an optimal path or policy for each goal, with the objective of achieving a desired terminal goal or



Algorithm 1: SIERL Algorithm (abridged - details in Appendix |A)
Input: agent, s¢

frontier + {} // Initialize frontier
while training do
Ss¢ = get_subgoal(frontier) // Get sub-goal

while not timeout do
s' + Execute(n(s, s¢))

frontier.update(s, a) // Insert (or not) in frontier
if should_switch(s’, s¢) then
| Sse  Sq // Sub-goal reached or early switching

condition. It has been shown that (partially observable) MDPs can be transformed into equivalent
(partially observable) Goal MDPs (Bertsekas)

3.3 EXPLORATION VS EXPLOITATION DILEMMA

In Goal-MDPs with sparse rewards, the exploration—exploitation dilemma is particularly acute. Ex-
ploitation leverages past knowledge but offers little benefit early on, when goal rewards remain
undiscovered. Exploration requires trying new actions and states without immediate payoff, often
at high cost, but is essential for locating rare reward signals. The central challenge is to balance ex-
tensive exploration with eventual convergence on an optimal policy: without sufficient exploration,
goals may never be found, but without exploitation, progress toward them cannot be consolidated.

4 METHOD

Our method, SIERL, introduces a principled way to perform deliberate exploration in reinforcement
learning through goal-conditioned sub-goal setting. The key premise is that state—action regions
become progressively less informative as they are explored more extensively: once the agent has
learned accurate value estimates locally, further exploration in the same region yields diminishing
returns. Instead, the agent should expand exploration toward novel but reachable states at the edge
of its current knowledge, thereby extending the frontier of explored regions.

To achieve this, we employ a two-phase exploration process. In the first phase, the agent follows
a goal-conditioned policy to reach selected frontier sub-goals, systematically expanding the bound-
ary of explored states. In the second phase, the agent uses the experience gained in Phase 1 to
explore efficiently toward the main task goal. This strategy combines systematic expansion with
goal-directed exploration, ensuring both stable learning of an optimal policy for the task goal and
improved generalization to alternative goals.

A short pseudo-code description of SIERL is provided in Algorithm |1} with full implementation
details in Appendix[A.

4.1 TwO-PHASE EXPLORATION STRATEGY

Formally, we assume a goal-conditioned policy 7(a | s, g) that selects actions conditioned on the
current state s € S and a goal g € S. At the start of each episode, our method alternates between
two phases: frontier-reaching exploration and main-goal exploration.

Phase 1: Frontier Reaching and Expansion. In the first phase, the agent is assigned a frontier
sub-goal sg € F, where F denotes the frontier set extracted from the replay buffer RB (see
Section . The agent then executes the goal-conditioned policy m(a | s, Ssc) to deliberately
reach sg. By incrementally selecting such frontier sub-goals, the agent systematically expands the
explored region of the state space in a curriculum-like fashion, while simultaneously improving its
estimates of local dynamics and value functions.

Phase 2: Main-Goal Exploration. After reaching the frontier sub-goal ss¢, the agent transitions
to the second phase and executes w(a | s, sc), where sg denotes the main task goal. Starting ex-



ploration from ss; makes reaching s more efficient, as the agent benefits from previously acquired
experience near the boundary of known states.

Phase Switching Strategy. The transition between phases is governed by a hybrid determinis-
tic—stochastic mechanism: 1. Predefined horizons: Each phase i € {1,2} is assigned a max-
imum number of steps H;, ensuring balanced allocation of exploration. 2. Probabilistic early
termination: If during Phase 1 the agent encounters a novel state s with a visitation count
of Nrg(s) < Ny (Nine = 1 in our experiments), it may switch immediately to Phase 2 with
probability pswiteh € (0, 1), even if Hy has not yet been exhausted.

4.2 FRONTIER EXTRACTION

A critical aspect of our method is the identification of the frontier F from which the sub-goal is
selected for the first phase. Those sub-goals are represented as state-action pairs (s, a), instead of
plain states. We initially filter the agent’s past experiences from the replay buffer to select the best
candidates. State-actions considered less novel or “very well known” are filtered out at this stage.
In practice, we first rank the visited state-actions based on a familiarity score F' and exclude the
familiar ones with a score above a threshold F"*. The motivation is to maintain the focus of the
exploration away from the increasingly more visited states, whose transitions will be occupying an
increasingly larger part of the experience replay buffer. Formally, this filter can be expressed as:

F ={(s,a) € RB: Fy(s) < Fi'"}

The potential sub-goals are obtained from the same state-actions being inserted in the replay buffer
R B, which are filtered to maintain a continuously updated frontier, in the same manner an Open list
and a Closed list is used in search. The frontier is populated with all state-actions that have been
visited at least once and have a familiarity score below a threshold F''*, as well as those actions
on the newly states that have not yet been tried. More specifically, when a new state s is visited for
the first time, we insert all possible state-action pairs (s, a;) for all available actions a; € A into the
frontier.

For each frontier state-action pair, the additional relevant information recorded is its visitation
counts, N (s, a), as well as its familiarity score, F(s).

Definition 1 (State Familiarity). Let RB denote the replay buffer containing all past experiences of
an agent, and let N (s, a) be the visitation count of a state—action pair (s,a) € S x A within RB.
The familiarity of s with respect to RB is defined as

1

F = — .

=s(50) 1+ Ngg(s,a)™!

Such definition ensures that Frz(s,a) — 1 as (s, a) becomes frequent in R, and Frz(s,a) — 0
when (s, a) is rare. Besides state familiarity, we also define trajectory familiarity.

Definition 2 (Trajectory Familiarity). For a trajectory T = (s1, Sa, . . ., Sk) resulting from running
goal-conditioned policy w for a goal sy, the familiarity of the terminal state sy, is defined recursively

as
k

Fﬂ(sk):H !

i=1 1+ Ngp(si)~t

Assuming that we learn consistently and that policy 7 conditioned on state s;_; results in trajec-
tory (s1, S2,...,Sk—1), we can calculate trajectory familiarity for state sy, using the current state’s
visitation counts and trajectory novelty the previous one: Fy(si) = WF,F(S k—1)-

Motivation for such a definition is that when reaching a sub-goal, if the current policy succeeds
in reaching it through familiar states, that should indicate that the agent has mastered reaching
that state and can focus on further states. Using products in the calculation ensures the balance
of the influence of trajectory length and the effect of familiarity of individual states. This strategy,
particularly when combined with the probabilistic early switching mechanism, ensures that while the
frontier is gradually populated with states near the expanding boundary of the familiar region, the
agent concurrently gains experiences in states that are adjacent and relevant to each chosen sub-goal.
This promotes a more consistent and thorough exploration.



4.3 SUB-GOAL SELECTION

The remaining state-action pairs that form the frontier F after the filtering are then ranked and
prioritized. This prioritization is determined by minimizing a combination of the following cost
factors:

Novelty Cost c,, This cost penalizes more novel states, thereby favoring those familiar states that are
more visited while still not overly familiar (since they have passed the initial filtering stage). This is
based on the idea that the agent should first focus on mastering sub-goals it already practices before
continuing further. Additionally, states visited extremely infrequently might be outliers or part of
highly stochastic regions not yet suitable for directed exploration.

Cost-to-Come c. (from the initial state to the sub-goal): This is estimated directly using the learned
Q-values, representing the expected cumulative reward (or cost, in our negative reward setting) to
reach the potential sub-goal from the episode’s starting state, calculated as max,e 4 Q(si, Ssc)-

Cost-to-Go c; (from sub-goal to main goal): This is the estimated cost from the potential sub-goal
to the ultimate task goal, again derived from the learned Q-values as max,e4 Q(Ssc, Sc)-

Thus, the prioritization of the filtered goals can be formalized as the sum of each one’s cost-to-come
¢ and cost-to-go ¢g, weighted by w, multiplied by the novelty cost, which is also weighted with a
weight-exponent wy,:

softmin (c,(s,a)"wTc(s)).

s,a

Where:

(s, a) = o(2(=N(s,a))),
wh = [wC wg]7

ofs) = ec(s) cx(s)]T,
_z-EB[X]
20 = )

Thus, the state with the optimal combined score is selected as the next sub-goal for the agent in
Phase 1.

5 EXPERIMENTS

For our experiments we aimed to set up situations which require deliberate exploration and a more
thorough coverage of the state space to be solved. We strove to answer the following: (a) Does
SIERL enable consistently succeeding in environments where goal discovery is non-trivial? (b)
In which cases and in which aspects SIERL is more promising than its competitors? (c) Which
components enable SIERL to perform well?

5.1 SETUP

Our experiments are designed to evaluate the performance of SIERL in scenarios that demand de-
liberate exploration and a comprehensive understanding of the state space. We use discrete state and
action environments, where goal discovery is non-trivial due to sparse rewards and deceptive rewards
from “trap” obstacles. We adjusted the rewards such that a signal of -1 is given for each step, and a
reward of 0 upon reaching the goal, effectively turning the task into a shortest path problem. During
evaluation, we run 10 main-goal reaching episodes as well as 10 random-goal reaching episodes for
each method, reporting the mean success rate and standard error, in order to capture the methods’ ca-
pacity to generalize while learning with a specific goal. All methods are run with 5 seeds to account
for variance. The environments used are a subset of the MiniGrid framework (Chevalier-Boisvert
et al.) and the experiments were set up using RLHive (Patil et al.).

These MiniGrid environments are minimalistic 2D grid worlds set up with a discrete action space
representing moving left, right, up, or down. The state space is fully observable, with the agent’s goal
being to reach a specific static goal state. The agent’s observation is a grid containing information



Figure 1: The MiniGrid Hallway room variants. From left to right: 2-, 4-, and 6- steps-long hallways,
FourRooms, and BugTrap

about its location, the walls/obstacles, and the goal location. We specifically used several custom-
made variants of a Hallway room, the FourRooms room, and a typical BugTrap room.

Hallway variants: These are challenging environments, containing a hallway flanked with “slip-
pery” unidirectional tiles along the sides, as shown in Figure|I} The goal lies at the end of each
corridor and the agent is required to perform a precise (albeit repetitive) sequence of actions to reach
its end.

BugTrap: In this room, the agent has to navigate around a concave enclosure to reach the goal
on the other side. Being more open requires the agent to progressively explore a larger region of
state-action space until reaching the goal.

FourRooms: The agent is required to navigate from one corner of a square space comprised of
4 rooms to the diagonally opposite corner, through doors between the rooms. Reaching arbitrary
locations in this more segregated space is a harder task than in the other cases.

5.2 RESULTS

Main goal success rates: The evaluation performance in the success rate for reaching the main
goal is shown in the upper part of Figure[2] In all three Hallway variants SIERL performed on par
with the most competitive baselines, such as Novelty bonuses, while outperforming HER, and Q-
Learning. Specifically, on the small enough 2- and 4-step long Hallways, Random-goals Q-learning
performs similarly as well; however, its performance is hampered on the larger 6-step long variant,
following closely behind that of Novelty bonuses, whose performance is also impacted, albeit to a
smaller degree. Nonetheless, SIERL is always able to discover and learn the main goal for all seeds.

In FourRooms, SIERL performs comparably well to HER but less so compared to Novelty bonuses.
It is notable that succeeding in such an environment requires systematic coverage of the state-action
space, which is accomplished via intrinsic rewards but not by relying solely on random exploration.
This indicates SIERL is able to learn on the less accessible parts of the state space and, contrary
to Novelty bonuses, it accomplishes that without tampering with the reward signal, but rather by
guiding the agent’s exploration and thus adjusting the experience distribution to improve learning.

Random goal success rates: The success rate during evaluation for reaching uniformly sampled
random goals is shown in the lower part of Figure[2] In all cases, the only methods capable of solving
for arbitrarily set goals are SIERL and Random-goals Q-learning. In the smallest 2-step Hallway
variant SIERL outperforms Random-goals, while this is less pronounced in the harder variants,
where the latter continues improving at a slower pace. Notably, on the two larger environments of
BugTrap and FourRooms, SIERL clearly outperforms every baseline. Arguably, the capacity of the
Q-value network’s architecture imposes a limit on the simultaneous learning of both a wide range
of goals and a specific main goal. Both SIERL, and a random-goal focused method leverage this
capacity better than the other methods, while each trading off main-goal and random-goal focus in
different degrees.

This behavior can possibly be attributed to having a more diverse goal distribution in the experi-
ences’ transitions. It is also notable that SIERL is able to reach, learn on, and set sub-goals from a
larger portion of the state space than HER, without relying on augmenting its experiences. The more
systematic training with goals in a gradually expanding subset of the state space might prove bene-
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Figure 2: Main-goal (top row) and random-goal (bottom row) performance for the Hallway variant
in columns. SIERL achieves a remarkable performance for both criteria at the same time, matched
by no other method.

ficial to such generalization, provided those sub-goals are feasible, while at the same time managing
to consistently learn to reach a main goal.

5.3 ABLATION STUDIES

To identify the crucial components enabling SIERL’s success, we performed a series of ablation
studies on the most challenging environment variant, to observe performance differences in several
aspects. The main-goal, random-goal, and sub-goal (during training) performance of all variants
was examined. The core ideas of SIERL are: guiding the exploration by gradually expanding the
state space’s well-learned region, while pursuing sub-goals towards the most promising direction of
expansion of the region’s frontier.

The first aspect we ablated was the early switching mechanism of the first phase of exploration. This
way, the agent’s experience gathering when pursuing sub-goals will extend without constraints fur-
ther past the frontier of the familiar region, which contains the prospective sub-goals. Subsequently,
focused on the contribution of the frontier extraction from experience filtering using the familiarity
measure. By removing the extraction, the state-actions of which will be prioritized (the frontier)
consist now of the complete set of experiences the agent has gathered, including all frequently tried
state-actions. Lastly, we ablated the prioritization strategy of SIERL. In this case, the filtered states
are not subjected to any scoring, and the sub-goal is picked at random with uniform probability. The
aim is to evaluate the effectiveness of the prioritization strategy.

The ablation experiments’ results are shown in Figure [3| While random-goal performance seems
unaffected for all variants, barring one, all of them exhibit a negative impact on either the ramp-up
time or stability in reaching the main goal. Specifically, removing frontier prioritization for selecting
sub-goals results in notably worse stability on learning for the main goal. Likewise, ablating early
switching impacts main-goal discovery and learning. The seemingly better case of ablating the fron-
tier filtering shows better random-goal performance, which is expected as the agent is consistently
provided with a wider range of goal-conditioned experiences; however, it struggles to consistently
learn on the main-goal. These observations further reinforce our understanding that SIERL demon-
strates the capacity to stably balance learning on both types of goals with the same sample-efficiency
as other competitive single-goal focused methods.

6 CONCLUSION

In this work, we presented SIERL, a method for Search Inspired Exploration in RL. This method
is based on the principle that by gradually expanding the frontier of the explored region of the state
space using sub-goal setting, the agent is able to efficiently cover the state space while learning a
robust goal-conditioned behavior. SIERL exhibits competitive performance in reaching the main
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Figure 3: Success rate for reaching: the main goal (left), random goals (center), and “lateral” sub-
goals (right). Most notably, removing early switching hampers SIERL’s ramp-up time and stability,

while removing frontier prioritization reduces main-goal stability.

goal, while simultaneously learns to reach any other state within range of its familiar region; a
property all of the baselines lack.

We demonstrated that this method is particularly suitable for hard exploration environments where
getting from start to goal requires strictly executing a sequence of actions. Through ablation stud-
ies, we have shown that keeping the exploration’s first phase within the familiar region (with early
switching) and by selecting its sub-goals by prioritizing states in a frontier, which is extracted by
filtering the agent’s experiences, are all crucial components for SIERL’s success.

7 LIMITATIONS

In its present implementation SIERL is limited to discrete-state action spaces as it relies on visita-
tion counts to define the notions of novelty. A measure that can provide a more generic notion of
novelty on any location in the state-action space, usable in continuous state-action spaces as well,
can enable SIERL to be used on a wider range of problems. This could be done by adopting one
of the approximate methods for pseudo-counts. We believe that regardless of the way in which the
visitation counting and novelty is replaced, the familiarity notion is preserved. The current imple-
mentation is also limited by the capacity of the replay buffer, depending on the state-action space
size, dimensionality, and discretization scheme.

Although they are intuitive, several hyper-parameters are pre-determined and environment-
dependent, providing opportunities for exploring more environment-agnostic definitions and adap-
tations. Determining the familiarity threshold is dependent on the size of the state-action space and
the distance between start and goal. A broader concept of familiarity would be linked more directly
to the degree the agent has learned about parts of the state-action space, rather than assuming this to
be so based on experience counting.

Similarly, there is room for improving the phase lengths and phase-switch timing. While also
presently environment-dependent and fixed, these parameters can benefit from an implementation
more reliant on the agent’s learning at each point during training. Ideally, selecting a new goal
and determining the right time to do so should be done, aiming to balance pursuing novelty and
providing “practicing” for a goal-conditioned agent.
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A SIERL IMPLEMENTATION

SIERL, presented in Algorithm [2] implements the two-phase exploration strategy detailed previ-
ously. The core of the algorithm operates in a continuous loop. Each iteration begins with the
goal-setting and switching logic, including initialization of the environment, yielding an initial state
s; and the main task goal s;. After a reset, the agent’s state is set to s; and its current sub-goal,
agent.goal, is set to sq, while the trajectory step counter ¢ is initialized to zero at the start of each
phase.

At the start of each iteration is the decision to switch sub-goals, determined based on the following
conditions: First, if the agent’s current state s’ matches the main goal s, then a reset is performed
and a sub-goal is generated, thus starting Phase 1. The sub-goal is selected. Otherwise, if the current
state s’ matches the state component of the current agent.goal, then the Phase 1 sub-goal was just
reached and it is time to move to Phase 2 by directing the exploration towards s¢. If that is not the
case either, then if it is time for an early switch from Phase 1, or if the current trajectory length ¢ has
reached a predefined maximum M, then the transition from Phase 1 to 2 takes place likewise.

Early switching from Phase 1 is performed by calling early switch() (Algorithm [4)) which sam-
ples a random variable to determine whether to switch based on a predefined switching probability as
follows: if the agent encounters a state s’ it has never visited before (i.e., agent.visitations[s'| ==
0), a switch occurs with a probability Pisyitcn (state_is_novel = true). Otherwise, if the agent’s
state is not novel, the probability to switch to the next phase is Pasywiteh (state-is_novel = false)
(typically lower or zero).

The sub-goal for Phase 1 is obtained by calling get_subgoal() (Algorithm , which filters and pri-
oritizes states from the replay buffer. This is achieved by first calling the get_frontier() method
(Algorithm3)) to obtain a list of candidate frontier state-action pairs. By iterating through the agent’s
replay buffer, the pairs (s, a) whose familiarity agent. familiarity[s, a] is higher than the maxi-
mum threshold Ffrhr, and those whose counts are above the minimum allowed percentile threshold
Pyo(N). Subsequently, for each candidate frontier (s, ag) pair from this list, a cost is calculated as
was described in Subsection #.2] The new sub-goal is then sampled, biased towards the state-action
pair with the minimum calculated cost (e.g., by using a softmin distribution over the costs).

Subsequently, the agent selects an action a based on its current state s and the active agent.goal
using its goal-conditioned policy (e.g., e-greedy). Upon executing the action, the environment tran-
sitions to a new state s’ and provides a reward r. The agent then updates its internal model, its
Q-values or policy, using the experience (s, a,r, s, agent.goal), as well as its familiarity for the
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last state-action with update_familiarity(), and the step counter ¢ for the current phase is incre-
mented. In this update step the batch of randomly sampled experiences can contain transitions with
either the main goal or any other previous frontier sub-goal.

Finally, the agent’s current state s is replaced by s, and the loop continues. This interplay between
pursuing generated sub-goals (Phase 1) and the main task goal (Phase 2), guided by the frontier
extraction and prioritization logic, allows SIERL to systematically expand the familiar region, while
moving towards the main goal.

Algorithm 2: SIERL Algorithm
Input: Agent agent; Environment env

while true do
if s = nullV s = s then
S,8¢ + env.reset(); t+ 0; f« 0 // episode reset
agent.goal = agent.get_subgoal(s)
else if s = agent.goal.s then
| agent.goal < sq; t <0 // sub-goal reached, switch
else if (agent.early switch(s) A agent.goal # s¢) V (t > M) then
\ agent.goal <— sq; t <0 // unwanted exploration or timeout
else
a < agent.7w(s, agent.goal)
s',r + env.step(s,a)
agent.m.update(s,a,r, s', agent.goal)
agent. familiarity[s, a] + update familiarity(s,a, f)
f + agent. familiarity[s, a]
foreach o’ € Ado // add all possible (¢,a)
| agent.frontier.insert(s’,a’)
end
if f < F!'" then // exclude too familiar (s,a)
| agent. frontier < agent.frontier U {(s,a)}
end
t+t+1
s«

end

end

Algorithm 3: get_subgoal() method

Input: Current state: s

costs + {}
foreach (s¢, af) € agent.get _frontier() do

¢ + o(—z(agent.visitations|ss, ag]))"™" // novelty cost
-o(z(wragent.Q(s, sf)+ // cost-to-reach
weagent.Q(sy, sf)+ // cost-to-come
wgagent.Q(sg, sg))) // cost-to-go
costs < costs U {c}
end
subgoal <+ sample(softmin(costs)) // sample based on minimum cost

return subgoal
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Algorithm 4: early switch() method

Input: Current state: s
Switching probabilities: Piwitch

state_is_novel < agent.visitations[s] ==
early_switch < random() < Pswitcn (state_is_novel)
return early_switch

Algorithm 5: get_frontier() method

Input: Familiarity threshold: Fh*

frontier < agent.open_list
foreach (s, a) € frontier do
if agent. familiarity(s,a] > F' then
| frontier < frontier \ {(s,a)} ~// exclude too familiar (s,a) pairs
end
end

foreach (s,a) € frontier do
if agent.visitations[s,a] < P1o(N) then
| frontier < frontier \ {(s,a)} // exclude too novel (s,a) pairs
end

end
return frontier
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