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NEW HIGHER-ORDER MASS-LUMPED TETRAHEDRAL
ELEMENTS FOR WAVE PROPAGATION MODELLING\ast 

S. GEEVERS\dagger , W. A. MULDER\ddagger , AND J. J. W. VAN DER VEGT\dagger 

Abstract. We present a new accuracy condition for the construction of continuous mass-lumped
elements. This condition is less restrictive than the one currently used and enabled us to construct
new mass-lumped tetrahedral elements of degrees 2 to 4. The new degree-2 and degree-3 tetrahedral
elements require 15 and 32 nodes per element, respectively, while currently, these elements require
23 and 50 nodes, respectively. The new degree-4 elements require 60, 61, or 65 nodes per element.
Tetrahedral elements of this degree had not been found until now. We prove that our accuracy
condition results in a mass-lumped finite element method that converges with optimal order in
the L2-norm and energy-norm. A dispersion analysis and several numerical tests confirm that our
elements maintain the optimal order of accuracy and show that the new mass-lumped tetrahedral
elements are more efficient than the current ones.
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1. Introduction. Wave propagation modelling has many applications in the
fields of structural mechanics, electromagnetism, and geosciences. In many of these
applications, waves need to be modelled on a large and complex 3D geometry that
requires a fast and robust numerical algorithm.

The oldest and most popular algorithm is the finite difference method, which
approximates the wave field on a uniform grid. This method is relatively easy to
implement and is very efficient on simple geometries. However, its accuracy quickly
deteriorates if the grid points are not aligned with sharp material interfaces and
boundaries of the domain. A good alignment is often not possible with uniform grids.

Unstructured meshes, on the other hand, offer more geometric flexibility and can
be properly aligned with many complex geometries. Such meshes can be used with
finite element methods. While more difficult to implement and requiring more com-
putations, the finite element method can remain accurate on very complex geometries
when using a proper mesh. When applied with mass lumping, the finite element
method can in such cases become more efficient than the finite difference method [22].

Mass lumping is important for applying the finite element method to wave prop-
agation problems, since it allows for explicit time-stepping. When using an explicit
time integration scheme, the finite element method requires the solution of a linear
systemMx = b, withM the mass matrix, at every time step. When using the classical
finite element method, the mass matrix is large and sparse, but not (block)-diagonal.
This makes the numerical scheme very inefficient for large-scale simulations. Mass
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NEW HIGHER-ORDER MASS-LUMPED TETRAHEDRAL ELEMENTS A2831

lumping avoids this problem by lumping the mass matrix M into a diagonal matrix.
Usually, this is done with nodal basis functions and an inexact quadrature rule for M
with quadrature points that coincide with the basis functions' nodes.

For quadrilaterals and hexahedra, mass lumping is relatively straightforward and
is accomplished by using tensor product basis functions and Gauss--Lobatto quadra-
ture points. The resulting method is known as the spectral element method. Quadri-
laterals and hexahedra, however, offer less geometric flexibility than triangles and
tetrahedra.

For linear triangular and tetrahedral elements, mass lumping is done using stan-
dard Lagrangian basis functions and a Newton--Cotes integration rule. For higher-
degree triangular and tetrahedral elements, however, this approach results in instabil-
ities, a singular mass matrix, or a suboptimal convergence rate. The Newton--Cotes
rule for quadratic triangular elements, for example, has zero weights at the vertices,
resulting in a singular mass matrix. This can be resolved by enriching the quadratic
element space with a cubic bubble function that vanishes on all edges and by adding
an additional node at the center of the triangle [8]. By enriching the element space
with higher-degree bubble functions and combining it with a suitable quadrature rule,
mass-lumped triangular elements were also obtained for degrees 3 [4, 5], 4 [17], 5 [2],
6 [18], and 7 to 9 [15, 6]. For tetrahedra, mass lumping can be accomplished in a
similar way by adding higher-degree face and internal bubble functions to the element
space. So far, this has resulted in mass-lumped tetrahedral elements of degrees 2 [17]
and 3 [2].

In this paper we show that the accuracy condition that was imposed on the
quadrature rules of these higher-degree triangular and tetrahedral mass-lumped ele-
ments is too strong. This condition is that the quadrature rule of a degree-p element
should be exact for polynomials up to degree p+p\prime  - 2 [3], where p\prime > p is the highest
polynomial degree of the functions in the enriched element space. Instead, we show
that for p \geq 2 the quadrature rule only needs to be exact for functions in \~U \otimes \scrP p - 2,

with \~U the enriched element space and \scrP p - 2 the set of polynomials up to degree p - 2.
We prove that by satisfying this condition, the finite element method can maintain
an optimal order of convergence in the L2-norm and energy-norm.

This new accuracy condition enabled us to develop several new mass-lumped
tetrahedral elements of degrees 2 to 4. The new elements of degrees 2 and 3 require
15 and 32 nodes per element, respectively, while the current versions require 23 and
50 nodes, respectively. Our degree-4 elements require 60, 61, or 65 nodes. Mass-
lumped tetrahedral elements of this degree had not been found until now. A dispersion
analysis and various numerical tests confirm the optimal order of convergence of these
methods and show that the new mass-lumped tetrahedral elements are significantly
more efficient than the current ones.

Although this paper focuses on wave propagation problems, more generally, mass
lumping is useful for solving any type of evolution problem that requires explicit time-
stepping. It is also useful for efficiently computing higher-order derivatives, which
appear, for example, in the Korteweg--de Vries equation [16].

This paper is constructed as follows: In section 2, we present the scalar wave
equation and the classical finite element method. In section 3, we explain mass lump-
ing. The stability is analyzed in subsection 3.4. In section 4, we present our new
accuracy condition for the quadrature rule for the mass matrix and prove that, if this
condition is satisfied, the mass-lumped finite element method can maintain an optimal
order of convergence. This condition enabled us to derive several new mass-lumped
tetrahedral elements of degrees 2 to 4, presented in section 5. We analyze the disper-
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A2832 S. GEEVERS, W. MULDER, AND J. VAN DER VEGT

sion properties of these new methods in section 6 and test the methods numerically in
section 7. In both sections we compare the new methods with existing finite element
methods. Finally, we present our main conclusions in section 8.

2. The scalar wave equation and classical finite element method. In this
paper, we mainly focus on the scalar wave equation, which serves as a model problem
for more complex wave problems such as the elastic wave equations and Maxwell's
equations. Let \Omega \subset \BbbR 3 be a 3D open bounded domain, with Lipschitz boundary \partial \Omega ,
and let (0, T ) be the time domain. The scalar wave equation can be written as

\rho \partial 2
t u = \nabla \cdot c\nabla u+ f in \Omega \times (0, T ),(1a)

u = 0 on \partial \Omega ,(1b)

u| t=0 = u0 in \Omega ,(1c)

\partial tu| t=0 = v0 in \Omega ,(1d)

where u : \Omega \times (0, T ) \rightarrow \BbbR is the unknown scalar field, \nabla is the gradient operator,
\rho , c : \Omega \rightarrow \BbbR + are positive scalar fields, and f : \Omega \times (0, T ) \rightarrow \BbbR is the source term.
We assume that the parameters \rho and c are bounded by \rho 0 \leq \rho \leq \rho 1 and c0 \leq c \leq c1
for some positive scalars \rho 0, \rho 1, c0, c1 \in \BbbR +.

This equation can be solved with the finite element method, which is based on
the weak formulation of (1). Assume the initial conditions satisfy u0 \in H1

0 (\Omega ) and
v0 \in L2(\Omega ) and assume the source term satisfies f \in L2

\bigl( 
0, T ;L2(\Omega )

\bigr) 
. Here, L2(\Omega )

denotes the space of square integrable functions on \Omega , H1
0 denotes the Sobolev space

of functions on \Omega that are zero on \partial \Omega and have square integrable weak derivatives,
and L2(0, T ;U), with U a Banach space, denotes the Bochner space consisting of
functions f : (0, T ) \rightarrow U such that \| f(t)\| U is square integrable in (0, T ). The weak
formulation of (1) is finding u \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
, with \partial tu \in L2

\bigl( 
0, T ;L2(\Omega )

\bigr) 
and

\partial t(\rho \partial tu) \in L2
\bigl( 
0, T ;H - 1(\Omega )

\bigr) 
, such that u| t=0 = u0, \partial tu| t=0 = v0, and

\langle \partial t(\rho \partial tu), w\rangle + a(u,w) = (f, w) for all w \in H1
0 (\Omega ), a.e. t \in (0, T ).(2)

Here, \langle \cdot , \cdot \rangle denotes the pairing between H - 1(\Omega ) and H1
0 (\Omega ), (\cdot , \cdot ) denotes the L2(\Omega )

inner product, and a(\cdot , \cdot ) : H1
0 (\Omega )\times H1

0 (\Omega ) \rightarrow \BbbR is the elliptic operator given by

a(u,w) :=

\int 
\Omega 

c\nabla u \cdot \nabla w dx.

Because of the boundedness of \rho , it follows that the norm \| u\| 2\rho := (\rho u, u) is equivalent
to the standard L2(\Omega )-norm. It can then be proven, in a way analogous to [14, Chapter
3, Theorem 8.1], that (2) is well-posed and has a unique solution.

The solution of (2) can be approximated by the finite element method. Let \scrT h
be a tetrahedral tessellation of \Omega , with h the diameter of the smallest sphere that
can contain each element in \scrT h, and let Uh denote the finite element space consisting
of continuous functions that are polynomial of degree at most p when restricted to a
single element:

Uh = \{ u \in H1
0 (\Omega ) | u| e \in \scrP p(e) for all e \in \scrT h\} ,

where \scrP p denotes the set of all polynomials of degree p or less. The classical con-
forming finite element method is finding uh : [0, T ] \rightarrow Uh, such that uh| t=0 = \Pi hu0,
\partial tuh| t=0 = \Pi hv0, and

(\rho \partial 2
t uh, w) + a(uh, w) = (f, w) for all w \in Uh, a.e. t \in (0, T ),(3)
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where \Pi h : L2(\Omega ) \rightarrow Uh is the weighted L2 projection operator defined such that
(\rho \Pi hu,w) = (\rho u,w) for all w \in Uh.

This can be rewritten as a set of ODEs using a linear basis \{ wi\} ni=1 of Uh. For any
function u \in Uh we define u \in \BbbR n as the vector of coefficients such that u =

\sum n
i=1 uiwi.

The finite element method can then be formulated as solving uh : [0, T ] \rightarrow \BbbR n, such
that uh| t=0 = \Pi hu0, \partial tuh| t=0 = \Pi hv0, and

M\partial 2
t uh +Auh = f\ast for a.e. t \in (0, T ),(4)

where M,A \in \BbbR n\times n are the mass matrix and stiffness matrix, respectively, given by
Mij := (\rho wi, wj), Aij := a(wi, wj) for all i, j = 1, . . . , n, and f\ast \in L2(0, T ;\BbbR n) is the
source vector, given by f\ast 

i
:= (f, wi) for i = 1, . . . , n, a.e. t \in (0, T ).

When using an explicit time integration scheme, a system of the form Mx = b
needs to be solved at every time step. Typically, the mass matrix M is large and
sparse, but not (block)-diagonal, resulting in a very inefficient numerical scheme. A
diagonal mass matrix can be obtained by a technique known as mass lumping. We
will discuss this in the next section.

3. Mass lumping. Mass lumping is usually done with nodal basis functions
and an inexact quadrature rule for the mass matrix. A diagonal matrix is obtained
when the integration points coincide with the nodes of the basis functions. However,
when using elements of degree p \geq 2, this technique does not result in a stable and
accurate finite element scheme. For example, for standard quadratic Lagrangian basis
functions combined with a Newton--Cotes quadrature rule, the weights at the vertices
of the quadratic tetrahedral element become negative, resulting in unstable modes.

To overcome such problems, the elements are enriched with higher-degree face
and interior bubble functions. These enriched elements are still affine-equivalent to a
reference element \~e. We can therefore write the discrete space in the form

Uh = H1
0 (\Omega ) \cap U(\scrT h, \~U),

where

U(\scrT h, \~U) := \{ u \in H1(\Omega ) | u \circ \phi e \in \~U for all e \in \scrT h\} ,

with \phi e : \~e \rightarrow e the reference-to-physical element mapping, and \~U the reference
space. If \~U = \scrP p(\~e), we obtain the standard elements of degree p. To obtain enriched

elements, we set \~U = \scrP p(\~e)\oplus \~U+ := \{ u | u = w + u+ for some w \in \scrP p(\~e), u
+ \in \~U+\} ,

with \~U+ a space of higher-degree face and interior bubble functions.
A nodal basis and quadrature rule for Uh can be constructed from a nodal basis

and quadrature rule for the reference space \~U . In the next two subsections we will
discuss this in more detail.

3.1. Nodes and nodal basis functions. A nodal basis for a space Uh con-
sists of a set of nodes \scrQ h and corresponding basis functions \{ w\bfx \} \bfx \in \scrQ h

, such that
span\{ w\bfx \} \bfx \in \scrQ h

= Uh and w\bfx (y) = \delta \bfx \bfy for all x,y \in \scrQ h, where \delta \bfx \bfy denotes the
Kronecker delta. This means that each basis function equals one at one particular
node and zero at all the other nodes.

A common way to construct such a nodal basis for the space U(\scrT h, \~U) is using
a nodal basis \{ \~w\~\bfx \} \~\bfx \in \~\scrQ for the reference space \~U . The element nodes \scrQ e are ob-
tained by mapping the reference nodes to the physical element: \scrQ e := \{ \phi e(\~x)\} \~\bfx \in \~\scrQ .
The nodal basis functions of this element, \{ we,\bfx \} \bfx \in \scrQ e

, are obtained by mapping the
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reference basis functions to the physical element. We can write these functions as
we,\bfx := \~w\phi  - 1

e (\bfx ) \circ \phi  - 1
e . The set of global nodes \scrQ h is the union of all element nodes,

and the corresponding global basis functions are obtained by concatenating the corre-
sponding element basis functions. Formally, we define the global nodal basis functions
\{ w\bfx \} \bfx \in \scrQ h

as follows:

w\bfx | e :=

\Biggl\{ 
\~w\phi  - 1

e (\bfx ) \circ \phi  - 1
e , e \in \scrT \bfx ,

0 otherwise
(5)

for all x \in \scrQ h, where \scrT \bfx denotes the set of elements containing or adjacent to x. To
ensure that these global basis functions are well defined and continuous, we need to
impose the following additional conditions on \~\scrQ and \{ \~w\~\bfx \} \~\bfx \in \~\scrQ :

\~w\~\bfx | \~f = 0 for all \~f \in \~\scrF , \~x \in \~\scrQ \setminus \~f,(6)

and

\~\scrQ = s( \~\scrQ ) for all s \in \scrS ,(7a)

\~w\~\bfx = \~ws(\~\bfx ) \circ s for all s \in \scrS ,(7b)

where \~\scrF is the set of reference faces and \scrS is the set of all affine mappings that map
\~e onto itself. Condition (6) implies that if a basis function is zero at the nodes on a
face, then it should be zero on the entire face, and condition (7) implies that the set
of element nodes and basis functions are symmetric and do not depend on the choice
of \phi e. A proof that \{ w\bfx \} \bfx \in \scrQ h

is indeed a set of well-defined and continuous nodal
basis functions is given in Lemma A.2 and Theorem A.3.

It remains to incorporate the Dirichlet boundary condition uh| \partial \Omega = 0. If uh \in 
U(\scrT h, \~U) = span\{ w\bfx \} \bfx \in \scrQ h

, then, because of (6), this condition is satisfied when
uh = 0 at all nodes on \partial \Omega . A nodal basis for Uh therefore consists of all interior nodes
\scrQ h \setminus \partial \Omega and corresponding basis functions \{ w\bfx \} \bfx \in \scrQ h\setminus \partial \Omega .

3.2. Quadrature rule. To obtain a diagonal mass matrix, we approximate the
integrals with an inexact quadrature rule with integration points that coincide with
the nodes of the nodal basis.

Let \scrQ e := \{ \phi e(\~x)\} \~\bfx \in \~\scrQ be the set of nodes on e, and let \{ \omega e,\bfx \} \bfx \in \scrQ e
be a set of

corresponding weights. Together, the weights and nodes form a quadrature rule for
the element. The quadrature rule is used to approximate the integrals of the mass
matrix at the element as follows:

(\rho u,w)e =

\int 
e

\rho uw dx \approx 
\sum 
\bfx \in \scrQ e

\omega e,\bfx \rho e(x)u(x)w(x) =: (\rho u,w)\scrQ e
,(8)

where \rho e := \rho | e denotes the scalar field \rho restricted to element e. We assume that \rho is
continuous within each element, which implies that the approximation above is well
defined. The global product (\rho u,w) is then approximated by

(\rho u,w) \approx (\rho u,w)\scrQ h
:=
\sum 
e\in \scrT h

(\rho u,w)\scrQ e
.(9)

Now let w\bfx , w\bfy , with x,y \in \scrQ h, be nodal basis functions as described in the
previous subsection. The corresponding mass matrix entry is given by

(\rho w\bfx , w\bfy )\scrQ h
= \delta \bfx \bfy 

\sum 
e\in \scrT \bfx 

\omega e,\bfx \rho e(x).(10)D
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This implies that the mass matrix is diagonal with entries of the form
\sum 

e\in \scrT \bfx 
\omega e,\bfx \rho e(x).

The quadrature rules can be constructed from a reference quadrature rule. This
rule consists of the reference nodes \~\scrQ and a set of weights \{ \~\omega \~\bfx \} \~\bfx \in \~\scrQ and approximates
integrals on the reference element as follows:\int 

\~e

\~\rho \~u \~w d\~x \approx 
\sum 
\~\bfx \in \~\scrQ 

\omega \~\bfx \~\rho (\~x)\~u(\~x)\~v(\~x) =: (\~\rho \~u, \~w) \~\scrQ .

We can use this to approximate the integral of the physical element by

(\rho u,w)e =
| e| 
| \~e| 

\int 
\~e

\~\rho \~u \~w d\~x \approx | e| 
| \~e| 

(\~\rho \~u, \~w) \~\scrQ ,

with | e| the volume of e, | \~e| the volume of \~e, and \~\rho := \rho \circ \phi e, \~u := u \circ \phi e, \~w := w \circ \phi e.
This approximation is the same as (8) when \omega e,\bfx = (| e| /| \~e| )\~\omega \phi  - 1

e (\bfx ).
Now that we have introduced the quadrature rules for the mass matrix, we can

present the mass-lumped finite element method.

3.3. Mass-lumped finite element method. Assume \rho \in \scrC 0(\scrT h), u0 \in H1
0 (\Omega )\cap 

\scrC 0
0(\Omega ), v0 \in \scrC 0

0(\Omega ), and f \in L2
\bigl( 
0, T ; \scrC 0(\Omega )

\bigr) 
. Here, \scrC 0(\scrT h) denotes the set of functions

that are in \scrC 0(e) when restricted to e. The mass-lumped finite element method is
finding uh : [0, T ] \rightarrow Uh, such that uh| t=0 = Ihu0, \partial tuh| t=0 = Ihv0, and

(\rho \partial 2
t uh, w)\scrQ h

+ a(uh, w) = (f, w)\scrQ h
for all w \in Uh, a.e. t \in (0, T ),(11)

where Ih : \scrC 0(\Omega ) \rightarrow U(\scrT h, \~U) denotes the interpolation of a continuous function by a
function in U(\scrT h, \~U) through the nodes of \scrQ h.

To write this as a set of ODEs, let \{ x(i)\} ni=1 = \scrQ h \setminus \partial \Omega be a numbering of
all interior nodes, and define wi := w\bfx (i) for all i = 1, 2, . . . , n. Then the mass-
lumped finite element method can be formulated as solving uh : [0, T ] \rightarrow \BbbR n such
that uh| t=0 = Ihu0, \partial tuh| t=0 = Ihv0, and

M\partial 2
t uh +Auh = f\ast for a.e. t \in (0, T ),(12)

where Mij := (\rho wi, wj)\scrQ h
, Aij := a(wi, wj) for all i, j = 1, . . . , n, and f\ast 

i
:= (f, wi)\scrQ h

for i = 1, . . . , n, a.e. t \in (0, T ). From (10) it follows that M is now a diagonal matrix
that can be written as

Mij = \delta ij
\sum 

e\in \scrT 
\bfx (i)

\omega e,\bfx (i)\rho e(x
(i)), i, j = 1, . . . , n.(13)

This set of ODEs can be efficiently solved using an explicit time integration scheme
such as the second-order leap-frog scheme or a higher-order Dablain scheme [7], which
is a type of Lax--Wendroff scheme [13] for second-order wave equations.

In the next sections we analyze the stability and accuracy of the mass-lumped
finite element method and derive conditions for the quadrature rules.

3.4. Stability of the mass-lumped finite element method. To analyze
the stability of the mass-lumped finite element method, we look at the behavior of
the discrete energy. Consider the mass-lumped method given in (11) and substitute
w = \partial tu to obtain

\partial tEh = (f, \partial tu)\scrQ h
for a.e. t \in (0, T ),
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A2836 S. GEEVERS, W. MULDER, AND J. VAN DER VEGT

where Eh := 1
2 (\rho \partial tu, \partial tu)\scrQ h

+ 1
2a(u, u) is the discrete energy. This implies that the

discrete energy remains bounded when the source term f is bounded and that the
discrete energy is conserved when there is no source term.

For stability it then remains to show that the discrete energy is a well-defined
energy. This means that (\rho v, v)\scrQ h

+ a(u, u) > 0 for all u, v \in Uh, (u, v) \not = 0, which is
the case when (\rho u, u)\scrQ h

> 0 for any u \in Uh, u \not = 0. Since we can write (\rho u, u)\scrQ h
=

utMu, this is satisfied when M is positive definite. From (13) it follows that this is
the case when all weights of the quadrature rules are strictly positive, which is the
case when the weights of the reference quadrature rule are strictly positive.

4. Accuracy of the mass-lumped finite element method.

4.1. A less restrictive condition on the accuracy of the quadrature rule.
Let Uh = U(\scrT h, \~U), with \~U = \scrP p(\~e) \oplus \~U+, be the finite element space constructed
as in section 3, where p \geq 2 denotes the degree of the finite element method and
\~U+ \subset \scrP p\prime (\~e) is the space of higher-degree face and interior bubble functions. Also, let
the quadrature rule for the mass matrix be based on a reference element quadrature
rule as described in subsection 3.2. We will prove that an optimal convergence rate of
the mass-lumped finite element method is obtained when all weights of the reference
quadrature rule, \{ \~\omega \~\bfx \} \~\bfx \in \~\scrQ , are strictly positive and\int 

\~e

\~f d\~x =
\sum 
\~\bfx \in \~\scrQ 

\~\omega \~\bfx 
\~f(x) for all \~f \in \scrP p - 2(\~e)\otimes \~U,(14)

where \scrP p - 2(\~e) \otimes \~U := \{ f | f = wu for some w \in \scrP p - 2(\~e), u \in \~U\} . This means
that the quadrature rule of the reference element should be exact for products of the
reference basis functions and polynomials of degree p  - 2. Until now, the condition
used for the accuracy of the quadrature rule was\int 

\~e

\~f d\~x =
\sum 
\~\bfx \in \~\scrQ 

\~\omega \~\bfx 
\~f(x) for all \~f \in \scrP p+p\prime  - 2(\~e)(15)

(see, for example, [4, 17, 2]), so it was imposed that the reference quadrature rule
should be exact for functions in \scrP p+p\prime  - 2(\~e), with p\prime the highest polynomial degree of
the enriched space, which turns out to be significantly more restrictive for tetrahedral
elements. By using (14) instead of (15) we are able to develop new mass-lumped
elements that require significantly fewer nodes.

In the next subsections we will prove that the convergence rate of the mass-lumped
finite element method remains optimal under the less severe condition (14). The novel
part of the proofs is the bounds on the integration error, derived in subsection 4.3.
This is the only part where we explicitly use condition (14). Using these bounds, we
can prove optimal convergence in a rather standard way.

4.2. Some norms and interpolation properties. For the convergence analy-
sis, we use multiple interpolation properties, which we will present in this subsection.
Also, to make the analysis more readable, we will use C to denote some positive
constant that may depend on the regularity of the mesh, the reference space \~U , the
reference quadrature rule, the domain \Omega , and the parameters \rho , c, but does not de-
pend on the mesh resolution h, the time interval (0, T ), or the choice of the functions
that appear in the inequality.
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NEW HIGHER-ORDER MASS-LUMPED TETRAHEDRAL ELEMENTS A2837

Let Hk(\Omega ), with k \geq 1, denote the Sobolev space, consisting of functions with
square integrable order-k weak derivatives equipped with norm

\| u\| 2k :=
\sum 

| \bfitalpha | \leq k

\| D\bfitalpha u\| 20, k \geq 1,

where \| \cdot \| 0 denotes the standard L2(\Omega )-norm, andD\bfitalpha := \partial \alpha 1
1 \partial \alpha 2

2 \partial \alpha 3
3 denotes a higher-

order partial derivative of order | \bfitalpha | := \alpha 1 + \alpha 2 + \alpha 3. Also let Hk(\scrT h), with k \geq 1,
denote the broken Sobolev space, consisting of functions that belong to Hk(e) when
restricted to element e for all e \in \scrT h. We equip this space with the norm

\| u\| 2\scrT h,k
:=
\sum 
e\in \scrT h

\| u\| 2e,k :=
\sum 
e\in \scrT h

\left(  \sum 
| \bfitalpha | \leq k

\| D\bfitalpha u\| 2e

\right)  , k \geq 1.

Now let Ih : \scrC 0(\Omega ) \rightarrow U(\scrT h, \~U) denote the interpolation by a function in U(\scrT h, \~U)
through the nodes of \scrQ h. This interpolation operator is well defined for functions
in H2(\scrT h) \cap H1(\Omega ), since H2(e) \subset \scrC 0(e) when e is a 3D element, and therefore
H2(\scrT h)\cap H1(\Omega ) \subset \scrC 0(\Omega ). For this interpolation operator, we can present the following
approximation properties.

Lemma 4.1. Let p \geq 2 be the degree of the finite element space, and let u \in 
H1(\Omega ) \cap Hk(\scrT h) with k \geq 2. Then

\| u - Ihu\| \scrT h,l \leq Chmin(p+1,k) - l\| u\| \scrT h,min(p+1,k), l \leq min(p+ 1, k).

Proof. This result follows from [3, Theorem 3.1.6].

Now assume that the weights for the reference quadrature rule are all strictly
positive. For any function in H1(\Omega ) \cap H2(\scrT h), we can then define the following
discrete L2-seminorm:

| u| 2\scrQ h
:= (u, u)\scrQ h

.

This discrete seminorm is well defined, since H1(\Omega ) \cap H2(\scrT h) \subset \scrC 0(\Omega ) as mentioned
before. This becomes a full norm, \| \cdot \| \scrQ h

, that is equivalent to the L2-norm, for
functions in Uh.

Lemma 4.2. If all the weights of the reference quadrature rule are strictly positive,
then

C - 1\| u\| 0 \leq \| u\| \scrQ h
\leq C\| u\| 0 for all u \in Uh.(16)

Proof. Since the function space of the reference element \~U := span\{ \~w\~\bfx \} \~\bfx \in \~\scrQ is
finite-dimensional, and since all weights of the reference quadrature rule \{ \~\omega \~\bfx \} \~\bfx \in \~\scrQ are
positive, there exists a constant C > 0 depending on the reference quadrature rule
and function space \~U , such that

C - 1\| \~u\| \~e \leq \| \~u\| \~\scrQ \leq C\| \~u\| \~e for all \~u \in \~U,

where \| \~u\| 2\~\scrQ := (\~u, \~u) \~\scrQ . Then (16) follows from the relations

\| u\| 20 =
\sum 
e\in \scrT h

| e| 
| \~e| 

\| \~ue\| 2\~e, \| u\| 2\scrQ h
=
\sum 
e\in \scrT h

| e| 
| \~e| 

\| \~ue\| 2\~\scrQ ,

where \~ue := u \circ \phi e.
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Now let \Pi h,q : L2(\Omega ) \rightarrow \scrP q(\scrT h) denote the L2-projection onto the space of piece-
wise nonconforming polynomials of at most degree q:

\scrP q(\scrT h) := \{ u \in L2(\Omega ) | u| e \in \scrP q(e) for all e \in \scrT h\} .

We then present the following interpolation properties.

Lemma 4.3. Let u \in Hk(\scrT h) with k \geq 2, and let q \geq 0. Then

\| u - \Pi h,qu\| 0 \leq Chmin(q+1,k)\| u\| \scrT h,min(q+1,k).(17)

Furthermore, if also u \in H1(\Omega ), if p \geq max(q, 2) is the degree of the finite element
space, and if all the weights of the reference quadrature rule are strictly positive, then

| u - \Pi h,qu| \scrQ h
\leq Chmin(q+1,k)\| u\| \scrT h,min(q+1,k).(18)

Proof. The first inequality, (17), follows from [3, Theorem 3.1.6]. The second
inequality can be derived as follows:

| u - \Pi h,qu| \scrQ h
= | Ihu - \Pi h,qu| \scrQ h

\leq C\| Ihu - \Pi h,qu\| 0
\leq C(\| Ihu - u\| 0 + \| u - \Pi h,qu\| 0)
\leq Chmin(q+1,k)\| u\| \scrT h,min(q+1,k),

where we used Lemma 4.2 in the second line, the triangle inequality in the third line,
and Lemma 4.1 and (17) in the last line.

4.3. Bounds on the integration error. In this section we will derive some
useful bounds on the error of the quadrature rules for the mass matrix. The proofs
of these bounds will be the only cases where we explicitly use the accuracy condition
of the quadrature rule, given in (14). Using these results, we can prove optimal order
of convergence of the mass-lumped finite element method in a rather standard way.

Let u,w \in H2(\scrT h), and let rh(u,w) := (u,w) - (u,w)\scrQ h
be the integration error

of the mass matrix. We can derive the following bounds on rh.

Lemma 4.4. Let p \geq 2 be the degree of the finite element space, u \in Hk(\Omega ) with
k \geq 2, and w \in Uh. If the reference quadrature rule satisfies (14) and if all its weights
are strictly positive, then

| rh(u,w)| \leq Chmin(p,k)\| u\| min(p,k)\| w\| 1(19)

and

| rh(u,w)| \leq Chmin(p+1,k)\| u\| min(p+1,k)\| w\| \scrT h,2.(20)

Proof. Using (14) and the fact that \scrP p - 2(\~e)\otimes \~U \supset \scrP p(\~e) for p \geq 2, we can write

rh(u,w) = rh
\bigl( 
(u - \Pi h,p - 1u) + (\Pi h,p - 1u - \Pi h,p - 2u) + \Pi h,p - 2u,

(w  - \Pi h,0w) + \Pi h,0w
\bigr) 

= rh(u - \Pi h,p - 1u,w) + rh(\Pi h,p - 1u - \Pi h,p - 2u,w  - \Pi h,0w).

From this, the Cauchy--Schwarz inequality, and Lemma 4.3, we can then obtain (19).
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Using (14), we can also write

rh(u,w) = rh

\Bigl( \bigl[ 
(u - \Pi h,pu) + (\Pi h,pu - \Pi h,p - 1u) + (\Pi h,p - 1u - \Pi h,p - 2u)

+ \Pi h,p - 2u
\bigr] 
,
\bigl[ 
(w  - \Pi h,1w) + (\Pi h,1w  - \Pi h,0w) + \Pi h,0w

\bigr] \Bigr) 
= rh(u - \Pi h,pu,w) + rh(\Pi h,pu - \Pi h,p - 1u,w  - \Pi h,0w)

+ rh(\Pi h,p - 1u - \Pi h,p - 2u,w  - \Pi h,1w).

From this, the Cauchy--Schwarz inequality, and Lemma 4.3, we can then obtain (20).

4.4. Optimal convergence for a related elliptic problem. To prove opti-
mal convergence of the mass-lumped finite element method, we first prove optimal
convergence for a related elliptic problem.

Let v \in H2(\scrT h). The elliptic problem related to (2) is finding u \in H1
0 (\Omega ) such

that

a(u,w) = (v, w) for all w \in H1
0 (\Omega ).(21)

This problem is well defined since a is coercive and bounded with respect to the
H1(\Omega )-norm, which follows from the boundedness of c and Poincar\'e's inequality.

The related mass-lumped method for solving this problem is finding uh \in Uh such
that

a(uh, w) = (v, w)\scrQ h
for all w \in Uh.(22)

In the next theorems we prove optimal convergence of this method in theH1-norm
and L2-norm.

Theorem 4.5 (optimal convergence in the H1-norm). Let u be the solution of
(21) and uh the solution of (22), with p \geq 2 the degree of the finite element space.
Also, let ku, kv \geq 2, u \in Hku(\Omega ), and v \in Hkv (\Omega ). If the reference quadrature rule
satisfies (14) and if all its weights are strictly positive, then

\| u - uh\| 1 \leq Chmin(p,ku - 1,kv)(\| u\| min(p+1,ku) + \| v\| min(p,kv)).(23)

Proof. By definition of u and uh, we have

a(u - uh, w) = rh(v, w) for all w \in Uh.

By choosing w = Ihu - uh we can then obtain

a(Ihu - uh, Ihu - uh) =  - a(u - Ihu, Ihu - uh) + rh(v, Ihu - uh).(24)

From the coercivity of a it follows that

\| Ihu - uh\| 21 \leq Ca(Ihu - uh, Ihu - uh).(25)

From the boundedness of a and Lemma 4.1 it follows that

| a(u - Ihu, Ihu - uh)| \leq Chmin(p,ku - 1)\| u\| min(p+1,ku)\| Ihu - uh\| 1.(26)

Using Lemma 4.4, we obtain

| rh(v, Ihu - uh)| \leq Chmin(p,kv)\| v\| min(p,kv)\| Ihu - uh\| 1.(27)
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Combining (24), (25), (26), and (27) then gives

\| Ihu - uh\| 1 \leq Chmin(p,ku - 1,kv)(\| u\| min(p+1,ku) + \| v\| min(p,kv)).(28)

From Lemma 4.1 it also follows that

\| u - Ihu\| 1 \leq Chmin(p,ku - 1)\| u\| min(p+1,ku).(29)

Combining (28) and (29) then results in (23).

To prove optimal convergence in the L2-norm, we make the following regularity
assumption: for any v \in L2(\Omega ), the solution u of (21) is in H2(\Omega ) and satisfies

\| u\| 2 \leq C\| v\| 0.(30)

This is certainly true if \partial \Omega is \scrC 2 and c \in \scrC 1(\Omega ).

Theorem 4.6 (optimal convergence in the L2-norm). Let u be the solution of
(21) and uh the solution of (22), with p \geq 2 the degree of the finite element space.
Also, let ku, kv \geq 2, u \in Hku(\Omega ), v \in Hkv (\Omega ), and assume that the regularity con-
dition (30) holds. If the reference quadrature rule satisfies (14) and if all its weights
are strictly positive, then

\| u - uh\| 0 \leq Chmin(p+1,ku,kv)(\| u\| min(p+1,ku) + \| v\| min(p+1,kv))(31)

and

| u - uh| \scrQ h
\leq Chmin(p+1,ku,kv)(\| u\| min(p+1,ku) + \| v\| min(p+1,kv)).(32)

Proof. Let z \in H1
0 (\Omega ) be the solution of

a(z, w) = (u - uh, w) for all w \in H1
0 (\Omega ).

From the regularity assumption it follows that z \in H2(\Omega ) and \| z\| 2 \leq C\| u  - uh\| 0.
Using the definition of z, u, and uh, we can also write

\| u - uh\| 20 = a(u - uh, z)

= a(u - uh, z  - Ihz) + a(u - uh, Ihz)

= a(u - uh, z  - Ihz) + rh(v, Ihz).(33)

Using the boundedness of a, Theorem 4.5, Lemma 4.1, and the regularity assumption,
we obtain

| a(u - uh, z  - Ihz)| \leq C\| u - uh\| 1\| z  - Ihz\| 1
\leq Chmin(p+1,ku,kv+1)(\| u\| min(p+1,ku) + \| v\| min(p,kv))\| u - uh\| 0.(34)

From Lemma 4.4, Lemma 4.1, and the regularity assumption, it also follows that

| rh(v, Ihz)| \leq Chmin(p+1,kv)\| v\| min(p+1,kv)\| u - uh\| 0.(35)

Combining (33), (34), and (35) results in (31).
To derive (32), we use Lemma 4.2 to obtain

| u - uh| \scrQ h
= \| Ihu - uh\| \scrQ h

\leq C\| Ihu - uh\| 0.

Combining this inequality with (31) and Lemma 4.1 results in (32).
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4.5. Some additional norms and interpolation properties. In order to
analyze the convergence for the time dependent problem, we need to introduce an
additional projection operator and some additional function spaces.

Let L denote the spatial operator L :=  - \nabla \cdot c\nabla , and let u \in H1
0 (\Omega ) with Lu \in 

\scrC 0(\Omega ). We define the projection \pi hu \in Uh to be the solution of

a(\pi hu,w) = (Lu,w)\scrQ h
for all w \in Uh.

We can derive the following interpolation property of this projection operator.

Lemma 4.7. Let p \geq 2 be the degree of the finite element space, and let c \in 
\scrC k+1(\Omega ) and u \in H1

0 (\Omega ) \cap Hk+2(\Omega ), with k \geq 2. If the reference quadrature rule
satisfies (14) and if all its weights are strictly positive, then

\| u - \pi hu\| 1 \leq Chmin(p,k)\| u\| min(p+2,k+2).

Moreover, if regularity condition (30) also holds, then

\| u - \pi hu\| 0 \leq Chmin(p+1,k)\| u\| min(p+3,k+2),

| u - \pi hu| \scrQ h
\leq Chmin(p+1,k)\| u\| min(p+3,k+2).

Proof. From partial integration it follows that a(u,w) = (Lu,w) for all w \in 
H1

0 (\Omega ). Also, by definition of the projection we have a(\pi hu,w) = (Lu,w)\scrQ h
for all

w \in Uh. The inequalities then follow from Theorem 4.5 and Theorem 4.6 by taking
v = Lu, ku = k + 2, kv = k, and using the bounds \| Lu\| q \leq C\| u\| q+2 for q \leq k.

We also extend the Sobolev spaces Hk(\Omega ) to Bochner spaces L\infty (0, T ;Hk(\Omega )),
equipped with norm

\| u\| \infty ,k := ess sup
t\in (0,T )

\| u\| k.

4.6. Optimal convergence of the mass-lumped finite element method.
In this section we prove the optimal convergence of the mass-lumped finite element
method for the wave equation. We first derive an equation for the behavior of the
numerical error and then prove optimal convergence in the energy-norm and L2-norm.

Lemma 4.8 (error equation). Let u be the solution of (2) and let uh be the
solution of (11). If \rho \in \scrC 0(\Omega ), \partial 2

t u \in L2(0, T ; \scrC 0
0(\Omega )), and f \in L2(0, T ; \scrC 0(\Omega )), then

Lu \in L2(0, T ; \scrC 0(\Omega )), and

(\rho \partial 2
t eh, w)\scrQ h

+ a(eh, w) =  - (\rho \partial 2
t \epsilon h, w)\scrQ h

(36)

for all w \in Uh and almost every t \in (0, T ), where eh := \pi hu - uh and \epsilon h := u - \pi hu.

Proof. Since \rho is bounded and continuous, it follows that \rho \partial 2
t u \in L2(0, T ; \scrC 0

0(\Omega )).
Since also f \in L2(0, T ; \scrC 0(\Omega )), it follows that Lu \in L2(0, T ; \scrC 0(\Omega )) and \rho \partial 2

t u+Lu = f .
This implies

(\rho \partial 2
t u,w)\scrQ h

+ (Lu,w)\scrQ h
= (f, w)\scrQ h

for all w \in Uh and almost every t \in (0, T ). Using the definition of \pi hu we can then
obtain

(\rho \partial 2
t u,w)\scrQ h

+ a(\pi hu,w) = (f, w)\scrQ h
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for all w \in Uh and almost every t \in (0, T ). By definition of uh we have

(\rho \partial 2
t uh, w)\scrQ h

+ a(uh, w) = (f, w)\scrQ h

for all w \in Uh and almost every t \in (0, T ). Subtracting this from the previous equality
and reordering the terms results in (36).

Theorem 4.9 (optimal convergence in the energy-norm). Let u be the solution
of (2) and let uh be the solution of (11), with p \geq 2 the degree of the finite ele-
ment space. Let \rho \in \scrC (\Omega ), f \in L2(0, T ; \scrC 0(\Omega )), and let c \in \scrC k+1(\Omega ), u, \partial tu, \partial 

2
t u \in 

L\infty (0, T ;Hk+2(\Omega )) for some k \geq 2. Also, assume that regularity condition (30) holds.
If the reference quadrature rule satisfies (14) and if all its weights are strictly positive,
then

\| u - uh\| \infty ,1 + \| \partial tu - \partial tuh\| \infty ,0

(37)

\leq Chmin(p,k)
\bigl( 
\| u\| \infty ,min(p+3,k+2) + \| \partial tu\| \infty ,min(p+3,k+2) + T\| \partial 2

t u\| \infty ,min(p+3,k+2)

\bigr) 
.

Proof. Define eh := \pi hu - uh and \epsilon h := u - \pi hu. From Lemma 4.8, it follows that

(\rho \partial 2
t eh, w)\scrQ h

+ a(eh, w) =  - (\rho \partial 2
t \epsilon h, w)\scrQ h

(38)

for all w \in Uh and almost every t \in (0, T ). By substituting w = \partial teh we can obtain

\partial tEh =  - (\rho \partial 2
t \epsilon h, \partial teh)\scrQ h

(39)

for almost every t \in (0, T ), where Eh := 1
2 (\rho \partial teh, \partial teh)\scrQ h

+ 1
2a(eh, eh) is the discrete

energy. Fix T \prime \in (0, T ) and integrate (39) over (0, T \prime ) to obtain

Eh| t=T \prime = Eh| t=0  - 
\int T \prime 

0

(\rho \partial 2
t \epsilon h, \partial teh)\scrQ h

dt.(40)

Using the coercivity of a, the boundedness of \rho , and Lemma 4.2, we can derive

\| eh\| 1 + \| \partial teh\| 0 \leq CE
1/2
h , a.e. t \in (0, T ).(41)

From the Cauchy--Schwarz inequality, the bounds of \rho , Lemma 4.7, and Lemma 4.2,
we can also obtain

| (\rho \partial 2
t \epsilon h, \partial teh)\scrQ h

| \leq Chmin(p+1,k)\| \partial 2
t u\| min(p+3,k+2)\| \partial teh\| 0(42)

for almost every t \in (0, T ). Finally, we can use Lemma 4.1, Lemma 4.7, and the
boundedness of \rho and a to obtain

E
1/2
h | t=0 \leq Chmin(p,k)

\bigl( 
\| u\| \infty ,min(p+3,k+2) + \| \partial tu\| \infty ,min(p+3,k+2)

\bigr) 
.(43)

By taking the supremum of (40) for all T \prime \in (0, T ) and using (41), (42), and (43), we
can obtain

\| eh\| \infty ,1 + \| \partial teh\| \infty ,0

(44)

\leq Chmin(p,k)
\bigl( 
\| u\| \infty ,min(p+3,k+2) + \| \partial tu\| \infty ,min(p+3,k+2) + T\| \partial 2

t u\| \infty ,min(p+3,k+2)

\bigr) 
.

Using (44) and Lemma 4.7, we obtain (37).
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NEW HIGHER-ORDER MASS-LUMPED TETRAHEDRAL ELEMENTS A2843

Theorem 4.10 (optimal convergence in the L2-norm). Let u be the solution of
(2), and let uh be the solution of (11), with p \geq 2 the degree of the finite element
space. Let \rho \in \scrC (\Omega ), f \in L2(0, T ; \scrC 0(\Omega )), \partial 2

t u \in L2(0, T ; \scrC 0
0(\Omega )), and let c \in \scrC k+1(\Omega ),

u, \partial tu,\in L\infty (0, T ;Hk+2(\Omega )) for some k \geq 2. Also, assume that regularity condition
(30) holds. If the reference quadrature rule satisfies (14) and if all its weights are
strictly positive, then

\| u - uh\| \infty ,0 \leq Chmin(p+1,k)
\bigl( 
\| u\| \infty ,min(p+3,k+2) + T\| \partial tu\| \infty ,min(p+3,k+2)

\bigr) 
.(45)

Proof. Define eh := \pi hu - uh and \epsilon h := u - \pi hu. From Lemma 4.8, it follows that

(\rho \partial 2
t eh, w)\scrQ h

+ a(eh, w) =  - (\rho \partial 2
t \epsilon h, w)\scrQ h

(46)

for all w \in Uh and almost every t \in (0, T ). Fix T \prime \in (0, T ) and choose w as

w| t=t\prime :=

\int T \prime 

t\prime 
eh dt.

This implies that w| t=T \prime = 0 and \partial tw =  - eh. Using the relations

(\rho \partial 2
t eh, w)\scrQ h

= \partial t(\rho \partial teh, w)\scrQ h
+

1

2
\partial t(\rho eh, eh)\scrQ h

,

a(eh, w) =  - 1

2
\partial ta(w,w),

 - (\rho \partial 2
t \epsilon h, w)\scrQ h

=  - \partial t(\rho \partial t\epsilon h, w)\scrQ h
 - (\rho \partial t\epsilon h, eh)\scrQ h

,

we can rewrite (46) as

1

2
\partial t(\rho eh, eh)\scrQ h

=
1

2
\partial ta(w,w) - \partial t

\bigl( 
\rho \partial t(u - uh), w

\bigr) 
\scrQ h

 - (\rho \partial t\epsilon h, eh)\scrQ h
(47)

for almost every t \in (0, T ). Integrating (47) over (0, T \prime ) and using the fact that
w| t=T \prime = 0 and \partial t(u - uh)| t=0,x\in \scrQ h

= 0 results in

1

2
(\rho eh, eh)\scrQ h

| t=T \prime =
1

2
(\rho eh, eh)\scrQ h

| t=0  - 
1

2
a(w,w)| t=0  - 

\int T \prime 

0

(\rho \partial t\epsilon h, eh)\scrQ h
dt.(48)

From the boundedness of \rho and Lemma 4.2 it follows that

\| eh\| 0 \leq C\| \rho 1/2eh\| \scrQ h
, a.e. t \in (0, T ).(49)

Because of the coercivity of a we have

 - 1

2
a(w,w)| t=0 < 0.(50)

From the Cauchy--Schwarz inequality, the bounds of \rho , Lemma 4.7, and Lemma 4.2,
we can also obtain

| (\rho \partial t\epsilon h, eh)\scrQ h
| \leq Chmin(p+1,k)\| \partial tu\| min(p+3,k+2)\| eh\| 0(51)

for almost every t \in (0, T ). Finally, we can use Lemma 4.1, Lemma 4.7, and the
boundedness of \rho to obtain

\| \rho 1/2eh| t=0\| \scrQ h
\leq Chmin(p+1,k)\| u\| \infty ,min(p+3,k+2).(52)

By taking the supremum of (48) for all T \prime \in (0, T ) and using (49), (50), (51), and
(52), we can obtain

\| eh\| \infty ,0 \leq Chmin(p+1,k)
\bigl( 
\| u\| \infty ,min(p+3,k+2) + T\| \partial tu\| \infty ,min(p+3,k+2)

\bigr) 
.(53)

Using (53) and Lemma 4.7, we obtain (45).
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5. Several new mass-lumped tetrahedral elements of degrees 2 to 4.
In this section, we present several novel mass-lumped tetrahedral elements for degree
p = 2, 3, 4. The new degree-2 and degree-3 elements use 15 and 32 nodes per element,
respectively, while the current elements for these degrees require 23 and 50 nodes,
respectively [17, 2] (see Tables 1 and 2). We also introduce several degree-4 elements,
requiring 60, 61, and 65 nodes. Mass-lumped tetrahedral elements of degree 4 had
not been found until now.

Table 1
Degree-2 mass-lumped tetrahedral element with 15 nodes.

Nodes n \omega Parameters

\{ (0, 0, 0)\} 4 17
5040

-

\{ ( 1
2
, 1
2
, 0)\} 6 2

315
-

\{ ( 1
3
, 1
3
, 0)\} 4 9

560
-

\{ ( 1
4
, 1
4
, 1
4
)\} 1 16

315
-

U = \scrP 2 \oplus \scrB f \oplus \scrB e = \{ x1, x1x2, \beta f , \beta e\} 

Table 2
Degree-3 mass-lumped tetrahedral element with 32 nodes.

Nodes n \omega Parameters

\{ (0, 0, 0)\} 4 41 - 9
\surd 

2
41160

-

\{ (a, 0, 0)\} 12 8+9
\surd 
2

13720
3 - 

\surd 
3(

\surd 
2 - 1)

6

\{ (b, b, 0)\} 12 10 - 
\surd 
2

1715
4 - 

\surd 
2

12

\{ (c, c, c)\} 4 3
140

1
6

U = \scrP 3 \oplus \scrB f\scrP 1 \oplus \scrB e\scrP 1 = \{ x1, x2
1x2, \beta fx1, \beta ex1\} 

U \otimes \scrP 1 = \{ x1, x2
1x2, x2

1x
2
2, \beta fx1, \beta fx1x2, \beta ex1, \beta ex1x2\} 

We present the mass-lumped tetrahedral elements using the reference tetrahedron
with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). In previous sections we used a
tilde to denote coordinates and sets in the reference space, but since we only consider
the reference space in this section, we will drop the tilde for readability.

The nodes on the reference element are described using the notation \{ x\} , which
denotes the node x and all equivalent nodes s(x), with s \in \scrS . As shown in Lemma A.1,
any s \in \scrS can be represented by a permutation of the barycentric coordinates. In this
case, the barycentric coordinates are given by the three Cartesian coordinates x1, x2,
x3 and the additional coordinate x4 := 1 - x1  - x2  - x3, so any s \in \scrS can be written
as s(x1, x2, x3) = (xj , xj , xk), with i, j, k \in \{ 1, 2, 3, 4\} , i \not = j, i \not = k, j \not = k. The
barycentric coordinates of the node x = ( 15 ,

1
5 ,

1
5 ), for example, are therefore given

by ( 15 ,
1
5 ,

1
5 ,

2
5 ), and the set of equivalent nodes \{ x\} consists of ( 15 ,

1
5 ,

1
5 ), ( 25 ,

1
5 ,

1
5 ),

( 15 ,
2
5 ,

1
5 ), and (15 ,

1
5 ,

2
5 ).

The reference function space, denoted by U , is the span of all nodal basis functions
and is described in terms of \{ w\} , which denotes the span of function w and all its
equivalent functions w \circ s, with s \in \scrS . For example, all equivalent functions of
w = x1x2 are x1x2, x1x3, x1x4, x2x3, x2x4, and x3x4, so \{ w\} is the span of these six
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Table 3
Degree-4 mass-lumped tetrahedral element with 65 nodes.

Nodes n \omega Parameters

\{ (0, 0, 0)\} 4 0.0001216042545112321 -

\{ (a, 0, 0)\} 12 0.0004704124198744411 0.1724919407749086

\{ ( 1
2
, 0, 0)\} 6 0.0001767065925083475 -

\{ (b1, b1, 0)\} 12 0.001974748586596177 0.1474177969013686

\{ (b2, b2, 0)\} 12 0.001192465311769701 0.4540395272271067

\{ ( 1
3
, 1
3
, 0)\} 4 0.001044697597634123 -

\{ (c1, c1, c1)\} 4 0.008841425190569096 0.1282209316290979

\{ (d, d, 1
2
 - d)\} 6 0.006891012924401557 0.08742182088664353

\{ (c2, c2, c2)\} 4 0.007499563520517103 0.3124061452070811

\{ ( 1
4
, 1
4
, 1
4
)\} 1 0.01057967149339721 -

U = \scrP 4 \oplus \scrB f (\scrP 2 \oplus \scrB f )\oplus \scrB e(\scrP 2 \oplus \scrB f \oplus \scrB e)

= \{ x1, x2
1x2, x2

1x
2
2, \beta fx1, \beta fx1x2, \beta 2

f , \beta ex1, \beta ex1x2, \beta e\beta f , \beta 
2
e\} 

U \otimes \scrP 2 = \{ x1, x2
1x2, x3

1x
2
2, x

3
1x

3
2, \beta fx1, \beta fx

2
1x2, \beta fx

2
1x

2
2, \beta 

2
fx1, \beta 2

fx1x2, . . .

. . . , \beta ex1, \beta ex2
1x2, \beta ex2

1x
2
2, \beta e\beta fx1, \beta e\beta fx1x2, \beta 2

ex1, \beta 2
ex1x2\} 

functions.
We assign the same weight to each equivalent node, so \omega \bfx = \omega s(\bfx ) for all s \in \scrS .

From this and properties (6) and (7) it follows that if the quadrature rule is exact for
a function w, then it is exact for all equivalent functions in \{ w\} . If we can describe
a function space in the form of \{ w1, w2, . . . , wN\} , by which we mean the span of
w1, w2, . . . , wN and all their equivalent versions, this means the quadrature rule is
exact when it is exact for the N functions w1, w2, . . . , wN .

To give an example, the degree-3 element, given in Table 2, consists of the nodes
(0, 0, 0), (a, 0, 0), (b, b, 0), (c, c, c), and all equivalent nodes, and the function space
for this element is given by U = \scrP 3 \oplus \scrB f\scrP 1 \oplus \scrB e\scrP 1, where \scrB f := \{ \beta f\} := \{ x1x2x3\} 
are the face bubble functions and \scrB e := \{ \beta e\} := \{ x1x2x3x4\} is the internal bubble
function and where we used the notation \scrB f\scrP k := \scrB f \otimes \scrP k, \scrB e\scrP k := \scrB e \otimes \scrP k. The
quadrature rule should be exact for all functions in U \otimes \scrP 1, which can be written as

U \otimes \scrP 1 = \{ x1, x
2
1x2, x

2
1x

2
2, \beta fx1, \beta fx1x2, \beta ex1, \beta ex1x2\} ,

so as the span of 7 independent functions and all their equivalents. This means the
quadrature rule should be exact for these 7 functions. Since this quadrature rule also
has 7 parameters, namely 4 weights and 3 position parameters a, b, c, this results in a
system of 7 equations with 7 unknowns. Solving this system results in the parameters
given in Table 2.

This approach has also been used to obtain the other elements presented in this
paper. We have not yet found a systematic way to determine a suitable function space
U \supset \scrP p with a suitable configuration of the nodes. Instead, we just tried multiple
configurations and checked if the resulting weights were all positive and the resulting
nodes all lay on the reference triangle.

The degree-2 element with 15 nodes, the degree-3 element with 32 nodes, and
the degree-4 element with 65 nodes are given in Tables 1 to 3, respectively. In these
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A2846 S. GEEVERS, W. MULDER, AND J. VAN DER VEGT

tables, n denotes the number of nodes in the given equivalence class. Variants of the
degree-4 element, requiring only 60 and 61 nodes, are given in Appendix B in Tables 8
and 9.

In the next sections we test these new mass-lumped elements and compare them
with the current mass-lumped elements and several discontinuous Galerkin approxi-
mations.

6. Dispersion analysis. In this section we analyze the dispersion properties of
the mass-lumped elements. The dispersion error is measured by the difference between
the propagation speed of physical and numerical waves and is one of the main criteria
for judging the quality of the finite elements for wave propagation modelling. We will
use it to obtain an indication of the required mesh resolution for a given accuracy,
and to compare different finite element methods in terms of accuracy and numerical
cost.

For the analysis we will follow the same procedure as in [9]. We consider a
homogeneous medium with \rho , c = 1 and consider physical plane waves of the form

u = e\^\imath (\bfitkappa \cdot \bfx  - \omega t),

where \^\imath :=
\surd 
 - 1 is the imaginary number, \bfitkappa is the wave vector, and \omega is the angular

velocity. Since \rho , c = 1 we have a wave propagation speed cP = 1. For a given wave
vector \bfitkappa we compute all corresponding numerical plane waves and determine the
numerical wave with a propagation speed cP,h = \omega h/| \bfitkappa | closest to the physical wave
velocity. The dispersion error is defined as the relative difference (cP  - cP,h)/cP . We
then find the worst case among all possible wave directions for a fixed wavelength \lambda =
2\pi /| \bfitkappa | . We determine the dispersion error for different wavelengths and extrapolate
the results to obtain a relation between the dispersion error and number of elements
per wavelength.

Fig. 1. Single parallelepiped cell packed with tetrahedra (left), and a repeated pattern of these
cells (right).

To obtain the numerical plane waves we construct a periodic tetrahedral mesh by
packing a single parallelepiped cell with tetrahedra and then repeating this pattern
to fill the entire 3D space. An illustration of such a mesh is given in Figure 1. Such a
periodic mesh enables us to compute the numerical plane waves using Fourier modes
and by solving an eigenvalue problem related to a single cell.

To do this, let \Omega 0 be the parallelepiped cell at the origin. We can write \Omega 0 :=
T \cdot [0, 1)3 = \{ y | y = T \cdot x for some x \in [0, 1)3\} , with T \in \BbbR 3\times 3 the second-order
tensor whose columns are the vectors of the edges of \Omega 0 connected to the origin. Let
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\{ x(\Omega 0,i)\} n0
i=1 be the set of nodes on \Omega 0. For each k \in \BbbZ 3, we define the translated cell

\Omega \bfk := T \cdot k + \Omega 0 and let \{ x(\Omega \bfk ,i)\} n0
i=1 be the corresponding translated nodes. Then,

for each node x(\Omega \bfk ,i), we define w(\Omega \bfk ,i) to be the corresponding nodal basis function.
We can then define the following submatrices:

M
(\Omega 0)
ij :=

\Bigl( 
\rho w(\Omega \bfzero ,i), w(\Omega \bfzero ,j)

\Bigr) 
\scrQ h

, i, j = 1, . . . , n0,

A
(\Omega 0,\Omega \bfk )
ij := a

\Bigl( 
w(\Omega \bfzero ,i), w(\Omega \bfk ,j)

\Bigr) 
, k \in \{  - 1, 0, 1\} 3, i, j = 1, . . . , n0.

For each wave vector \bfitkappa we then define the matrix

S(\bfitkappa ) := M
(\Omega 0)
inv

\left(  \sum 
\bfk \in \{  - 1,0,1\} 3

e\^\imath (\bfitkappa \cdot \bfT \cdot \bfk )A(\Omega 0,\Omega \bfk )

\right)  ,

where M
(\Omega 0)
inv denotes the inverse of M (\Omega 0). For an order-2K Dablain scheme, with

time step size \Delta t, the angular frequencies of the numerical plane waves \{ \omega (\bfitkappa ,i)
h \} n0

i=1

are given by

\omega 
(\bfitkappa ,i)
h = \pm 1

\Delta t
arccos

\Biggl( 
K\sum 

k=0

1

(2k)!
( - \Delta t2s

(\bfitkappa ,i)
h )k

\Biggr) 
,

where \{ s(\bfitkappa ,i)
h \} n0

i=1 are the eigenvalues of \sigma (S(\bfitkappa )) [9]. The numerical wave propagation

speed is given by c
(\bfitkappa ,i)
P,h = | \omega (\bfitkappa ,i)

h | /| \bfitkappa | . The dispersion error, for a given wavelength \lambda ,
is then given by

edisp(\lambda ) := sup
\bfitkappa \in \BbbR 3,| \bfitkappa | =2\pi /\lambda 

\Biggl( 
inf

i=1,...,n0

| c(\bfitkappa ,i)
P,h  - cP | 

cP

\Biggr) 
.

For our dispersion analysis, we will consider a congruent, nearly regular, equifacial
mesh, known as the tetragonal disphenoid honeycomb. This mesh can be obtained
by a repeated pattern of cells, where a single cell can be obtained by slicing the unit
cube into six tetrahedra with the planes x1 = x2, x1 = x3, and x2 = x3, and then
applying the transformation x \rightarrow T \cdot x, with

T :=

\left[  1  - 1/3  - 1/3

0
\sqrt{} 
8/9  - 

\sqrt{} 
2/9

0 0
\sqrt{} 
2/3

\right]  .

We will analyze the relation between the dispersion error and the number of
elements per wavelength NE := (\lambda 3/| e| av)1/3, where | e| av = 2

\surd 
3/27 denotes the

average element volume. We will also look at the following quantities:

\bullet nvec = n0
\lambda 3

| \Omega 0| : the number of degrees of freedom per \lambda 3-volume. Here | \Omega 0| =
4
\surd 
3/9 denotes the volume of \Omega 0.

\bullet nmat = \lambda 3

| \Omega 0| 
\sum 

q\in \scrQ \Omega 0
| \scrN (q)| : the number of nonzero entries of the stiffness

matrix per \lambda 3-volume. Here, \scrQ \Omega 0 denotes the nodes on \Omega 0 and | \scrN (q)| denotes
the number of nodes connected with q through an element.

\bullet N\Delta t = T0/\Delta t: the number of time steps during one oscillation in time. Here
T0 = \lambda /cP denotes the duration of one oscillation and \Delta t =

\sqrt{} 
cK/sh,max
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is the largest allowed time step size for the order-2K Dablain scheme, with
cK a constant depending on the order of the time integration scheme (cK =
4, 12, 7.57, 21.48 for K = 1, 2, 3, 4, respectively) and

sh,max := sup
\bfk \in \scrK 0

max
i=1,...,n0

s
(\bfitkappa ,i)
h

the largest possible eigenvalue sh, with \scrK 0 = T - t \cdot [0, 2\pi ) the space of distinct
wave vectors.

\bullet ncomp = nmatKN\Delta t: the estimated number of computations per \lambda 3-volume
during one time oscillation, with K the number of stages of the order-2K
Dablain scheme.

Details on the dispersion analysis and how the quantities listed above are computed
can be found in [9].

We will refer to the standard linear mass-lumped finite element method as ML1.
The higher-order mass-lumped methods will be referred to as ML[p]n[n], where p is
the degree and n the number of nodes per element. In particular, the degree-2 method
of [17] will be referred to as ML2n23 and the two versions of the degree-3 method in [2]
will be referred to as ML3n50a and ML3n50b. The mass-lumped methods introduced
in this paper will be referred to as ML2n15, ML3n32, ML4n60, ML4n61, and ML4n65.

We will also compare the mass-lumped methods with the symmetric interior
penalty discontinuous Galerkin (SIPDG) method, introduced and analyzed in [11].
For the penalty term, we use the lower bound derived in [10], since it was shown
in [9] that this penalty term results in a significantly more efficient scheme than the
penalty terms based on the more commonly used trace inequality of [21]. The quanti-
ties for the computational cost are computed in the same way as for the mass-lumped
method, but now n0 denotes the number of basis functions in \Omega 0 and nmat is com-

puted as nmat =
\lambda 3

| \Omega 0| 
\sum 

e\in \scrT \Omega 0
| Ue| 2| \scrN (e)| , where \scrT \Omega 0

are the elements in \Omega 0, | Ue| are
the number of basis functions per element, and | \scrN (e)| = 5 are the number of ele-
ments connected with e through a face, including e itself. We will refer to the SIPDG
methods of degrees 1, 2, 3, and 4 as DG1, DG2, DG3, and DG4, respectively.

For the time integration, we combine each degree-p finite element method with an
order-2p Dablain time integration scheme, since this results in order-2p convergence
of the dispersion error.

Figure 2 illustrates the relation between the dispersion error and number of ele-
ments per wavelength. The dispersion error of the finite element methods converges
with order 2p, which is typical for symmetric finite element methods for eigenvalue
approximations; see, for example, [1] and the references therein. Using extrapolation,
we obtain formulas for the dispersion error, given in Table 4. These formulas can
be used to determine the required resolution of the mesh given the wavelength and
desired accuracy. From the leading constants we can see that the new mass-lumped
methods of degrees 2 and 3 are more accurate for the same mesh resolution than
the SIPDG and existing mass-lumped methods of these orders. The degree-4 mass-
lumped method with 65 nodes is slightly more accurate than the versions using 60
and 61 nodes but is slightly less accurate than the degree-4 discontinuous Galerkin
method.

While some methods are more accurate for the same mesh resolution, this does
not necessarily mean that these methods are more efficient, since the computational
cost per element can greatly differ per method. To get an idea of which method is
most efficient for a given accuracy, we also look at the relation between the dispersion
error and the estimated computational cost. This relation is illustrated in Figure 3.
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Fig. 2. Relation between the dispersion error and the number of elements per wavelength for
different mass-lumped finite element methods. The graphs of ML3n50a and ML3n50b, and the
graphs of the degree-four methods, are almost identical.

Table 4
Approximation of the dispersion error. The new mass-lumped methods are marked in bold.

Method edisp Method edisp

DG1 1.45(nE) - 2 DG2 3.00(nE) - 4

ML1 2.87(nE) - 2 ML2n23 4.82(nE) - 4

ML2n15 1.89(nE) - 4

DG3 1.77(nE) - 6 DG4 0.739(nE) - 8

ML3n50a 2.25(nE) - 6 ML4n60 0.865(nE) - 8

ML3n50b 2.15(nE) - 6 ML4n61 0.854(nE) - 8

ML3n32 1.19(nE) - 6 ML4n65 0.825(nE) - 8
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Fig. 3. Relation between the dispersion error and estimated computational cost for different
finite element methods. The new mass-lumped methods are illustrated with dotted lines. The graphs
of DG4 and ML4n60 are almost identical.
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Table 5
Number of elements per wavelength NE , number of degrees of freedom nvec, size of the global

matrix nmat, number of time steps N\Delta t, and computational cost ncomp for a dispersion error
of 0.001 for different finite element methods for the scalar wave equation. The new mass-lumped
methods are marked in bold. The numbers are accurate up to two decimal places.

edisp = 0.001
Method NE nvec nmat N\Delta t ncomp

DG1 38.0 220000 4400\times 103 120 540.00\times 106

ML1 54.0 26000 390\times 103 47 18.00\times 106

DG2 7.4 4100 200\times 103 22 8.80\times 106

ML2n23 8.3 4800 220\times 103 52 23.00\times 106

ML2n15 6.6 1200 39\times 103 11 0.90\times 106

DG3 3.5 840 84\times 103 21 5.30\times 106

ML3n50a 3.6 1200 98\times 103 52 15.00\times 106

ML3n50b 3.6 1100 96\times 103 27 7.70\times 106

ML3n32 3.2 430 26\times 103 13 1.00\times 106

DG4 2.3 420 73\times 103 12 3.50\times 106

ML4n60 2.3 370 38\times 103 23 3.50\times 106

ML4n61 2.3 390 39\times 103 16 2.50\times 106

ML4n65 2.3 410 44\times 103 13 2.20\times 106

The required computational cost of each method for a dispersion error of 0.001 is also
illustrated in Table 5.

These results show that the new degree-2 mass-lumped method significantly out-
performs the other degree-2 finite element methods, reducing the required computa-
tional cost for a given accuracy by one order of magnitude. The new degree-3 method
is also significantly more efficient than the other degree-3 methods, reducing the re-
quired computational cost by more than a factor 5. These reductions in computational
cost can be explained by the improved accuracy for the same mesh resolution, a re-
duction in the number of degrees of freedom, and therefore a reduction of the size of
the stiffness matrix, and by a smaller number of time steps due to a larger allowed
time step size.

Among the degree-4 finite element methods, the mass-lumped method using 65
nodes performs best, mainly due to a smaller number of required time steps, although
these differences are relatively small.

Figure 3 also indicates that for a dispersion error between 1\% and 0.1\%, the new
degree-2 mass lumped method performs best, while for smaller dispersion errors, the
new degree-3 mass lumped method is most efficient. When we extrapolate the graphs,
we find that the degree-4 mass-lumped method using 65 nodes will only outperform
the degree-3 method for a dispersion error below 10 - 5.

While the dispersion analysis provides useful information on the efficiency of the
numerical methods, it does not include the effect of interpolation errors or inaccurate
higher-frequency modes that may contaminate the numerical solution. Furthermore,
the estimated computational cost is no perfect measure for the computation time, since
the real computation time heavily depends on the implementation of the algorithm
and the hardware that is used. In the next section we therefore also show the results
of several numerical tests for the mass-lumped methods.

7. Numerical tests.

7.1. Homogeneous domain. We first tested and compared the old and new
mass-lumped tetrahedral element methods on a homogeneous acoustic model using
unstructured tetrahedral meshes. The domain is [ - 2, 2]\times [ - 1, 1]\times [0, 2] km3 and the
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acoustic wave propagation speed is cP := 2 km/s. A 3.5-Hz Ricker wavelet, starting
from the peak, was placed at xsrc := (0, 0, 1000)m, and 56 receivers were placed on
a line between xr =  - 1375 and xr = +1375m with a 50-m interval at yr = 0m and
zr = 800m. Data were recorded for 0.6 s, counting from the time at which the wavelet
peaked, but the computations already started at the negative time -0.6 s, when the
wavelet is approximately zero.
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Fig. 4. RMS errors as a function of the cube root of the number of degrees of freedom (left)
and as a function of the wall clock time (right). In the legend, p,K n refers to the element of degree
p with n nodes, combined with a K-order time-stepping scheme. The older elements, apart from the
one with degree 1, have degree 2 with 23 nodes and degree 3 with 50 nodes and two variants called
a and b.

Table 6
Linear fits of the left graph of Figure 4.

Method RMS error Method RMS error

1,2 4 (4.9\times 102)N( - 1/3\times 2.0) 2,4 15 (4.4\times 103)N( - 1/3\times 3.0)

2,4 23 (4.9\times 104)N( - 1/3\times 3.3)

3,4 32 (9.2\times 105)N( - 1/3\times 4.4) 4,4 60 (8.6\times 106)N( - 1/3\times 5.1)

3,4 50a (2.9\times 106)N( - 1/3\times 4.6) 4,4 61 (1.3\times 107)N( - 1/3\times 5.2)

3,4 50b (2.6\times 106)N( - 1/3\times 4.6) 4,4 65 (1.2\times 107)N( - 1/3\times 5.2)

The exact solution, in case of an unbounded domain, is given by

u(x, t) =
w(t - r/cP )

4\pi r
,

where r := | x - xsrc| is the distance to the source and w(t) := (1 - 2\pi 2f2t2)e - \pi 2f2t2

the Ricker-wavelet of peak frequency f = 3.5Hz. This wavelet is zero up to machine
precision for t \leq  - 0.6 s. For the bounded domain, on which we imposed zero Neumann
boundary conditions, we add mirror sources to handle the reflections caused by the
boundary conditions.

For the implementation of the mass-lumped methods we used the algorithm de-
scribed in [19]. The time step size is based on the estimates of [20] multiplied by a
factor 0.9. The simulations were carried out with OpenMP on 24 cores of two Intel
Xeon E5-2680 v3 CPUs running at 2.50GHz. Figure 4 shows the observed root mean
square (RMS) errors of the receiver data for the various schemes against the number
of degrees of freedom N and against wall clock time. The latter should not be taken
too literally because it depends on code implementation, compiler, and hardware,
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and even varies between runs. It can be further reduced by going to single precision,
but then it becomes more difficult to measure the errors when they become small.
Therefore, we ran a double-precision version of the code when preparing these figures.

Fourth-order time-stepping was used for degrees higher than 1 [7]. For degree 4,
we also considered sixth-order time-stepping, but the errors were nearly the same as
with fourth-order time-stepping for the current example.

Power-law fits, given in Table 6, show that the RMS errors converge with approx-
imately order p+ 1 and confirm that the new elements maintain an optimal order of
convergence. Figure 4 also shows that the new mass-lumped methods require fewer
degrees of freedom and less computation time for the same accuracy. For the degree-2
methods, the difference in wall clock time is up to one order of magnitude, while for
the degree-3 methods this difference is up to a factor 2. The degree-4 methods become
more efficient for errors below 10 - 3.

7.2. Elastic salt model. We also tested the methods on the more realistic salt
model from [12], made elastic by replacing the water layer at the top by rock. A 3-Hz
Ricker wavelet vertical force source was placed on the surface at (2000,2200,0)m and
25 receivers were placed on a line between xr =  - 1012.5 and xr = 7887.5m with a 25-
m interval at yr = 2200m and zr = 0m. An illustration of this salt model is given in
Figure 5. Figure 6 displays vertical cross sections through the 3D vertical displacement
wavefield of the 65-node degree-4 method, clipped at 25\% of its maximum amplitude
with red for positive and blue for negative values. Small amplitudes were replaced by
the P-velocity to give an impression of the model. Figure 7 also shows seismograms
of this method for the displacement in the x- and z-directions clipped at 2\% of the
maximum amplitude.

Fig. 5. Interfaces of the salt model taken from [12].

Simulations were carried out with the same implementation and in the same
environment as for the homogeneous test case. The RMS errors are estimated by
taking the traces for the 65-node degree-4 method as the ``exact"" solution. For the
RMS error we use the data of receivers between x =2.1 and x =4km in the time
interval [0, 1.8] s. We selected this subset to exclude errors caused by the absorbing
boundary layers. To compute the relative RMS error, we divide by the RMS of the
data.
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Fig. 6. Vertical cross section at y =2.2 km of the P-velocity with a superimposed snapshot of
the vertical displacement of the 65-node degree-4 method after 0.5 s (a), 1.0 s (b), 1.5 s (c), and
2 s (d).
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Fig. 7. Seismogram of the displacement in the x-direction (left) and z-direction (right) for the
65-node degree-4 method.

An overview of the RMS errors and the wall clock time is given in Table 7. The
differences in the traces of the different degree-4 methods is of order 10 - 5 and is much
smaller than the estimated errors of the lower-degree elements. This indicates that
the RMS errors of the degree-4 methods are of order 10 - 5 and supports the idea
that the degree-4 method can be used to estimate the accuracy of the lower-degree
methods in this case. The table illustrates again that the new degree-2 and degree-
3 mass-lumped tetrahedral elements are more efficient than the current ones. The
differences in computation time between the degree-4 methods is mainly due to the
difference in the number of time steps. The ML4n65 allows for a larger time step size
than the other variants, which makes it slightly more efficient.
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Table 7
Estimated relative RMS error of the displacement in the x- and z-directions and measured

wall clock time. The error is estimated by computing the difference with the ML4n65T4 data.
ML[p]n[n]T[K] refers to an element of degree p, with n nodes per element, combined with a time-
stepping scheme of order K. There are two versions of the ML3n50 element. ML1T2 is also tested
on two refined meshes. New mass-lumped methods are marked in bold.

Method RMS-x RMS-z Time (s)

ML1T2 0.50 0.42 324
0.36 0.39 4230
0.12 0.11 47962

ML2n15T2 0.044 0.048 7358
ML2n23T2 0.058 0.064 28950
ML3n32T4 0.0014 0.0015 41946
ML3n50aT4 0.0016 0.0017 312149
ML3n50bT4 0.0016 0.0017 177312
ML4n60T4 0.000017 0.000019 613945
ML4n61T4 0.000013 0.000014 336362
ML4n65T4 0 0 275933

8. Conclusion. We developed a less restrictive accuracy condition for the con-
struction of continuous mass-lumped elements, which enabled us to construct several
new tetrahedral elements. The new degree-2 and degree-3 tetrahedral elements re-
quire 15 and 32 nodes, while the current versions require 23 and 50 nodes per element,
respectively. These new elements require fewer degrees of freedom and allow larger
time steps than the current versions. We also developed degree-4 tetrahedral ele-
ments with 60, 61, and 65 nodes per element. Mass-lumped tetrahedral elements of
this degree had not been found until now.

A dispersion analysis and numerical examples confirm that the new mass-lumped
methods maintain an optimal order of accuracy and show that the new elements are
significantly more efficient than the existing ones. In particular, the new degree-2
method is shown to be up to one order of magnitude faster than the current method,
while the new degree-3 tetrahedral element results in a speed-up of up to a factor
2 for the same accuracy. The new degree-4 elements outperform the lower-degree
elements for an accuracy below 10 - 3. Among these degree-4 elements, the one with
65 nodes is the most efficient, which is mainly due to a larger allowed time step size.
The dispersion analysis also shows that the new degree-2 and degree-3 mass-lumped
methods require significantly fewer degrees of freedom and a smaller number of time
steps than the symmetric interior penalty discontinuous Galerkin methods of the same
degree.

We have only considered tetrahedral elements in this paper, but the accuracy
condition might also lead to more efficient triangular or higher-dimensional simplicial
elements. Furthermore, although we focused only on linear wave propagation prob-
lems, mass lumping is useful for solving any type of evolution problem that requires
explicit time-stepping.

Appendix A. Nodal basis functions.

Lemma A.1. Let e be a d-simplex in \BbbR d, with d \geq 0, and let s : \BbbR d \rightarrow \BbbR d be an
affine mapping that maps e onto itself. Then s can be represented by a permutation
of the barycentric coordinates of e. In particular, there exists a permutation function
P : \BbbR d+1 \rightarrow \BbbR d+1 such that

s(x)\ast = P (x\ast ) for all x \in \BbbR d,(54)
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where x\ast , s(x)\ast \in \BbbR d+1 denote the barycentric coordinates of x and s(x), respectively.

Proof. Note that both x \rightarrow s(x)\ast and x \rightarrow P (x\ast ) are affine mappings from \BbbR d to
\BbbR d+1. It therefore suffices to show that (54) holds for all vertices of e. To do this, let
vi \in \BbbR d, for i = 1, . . . , d + 1, denote the vertices of e, and let p be the permutation
of (1, . . . , d+ 1) such that s(vi) = vp(i). If we define P such that P (ei) = ep(i), with

ei \in \BbbR d+1 the unit vector in direction i, then

s(vi)
\ast = v\ast 

p(i)

= ep(i)

= P (ei)

= P (v\ast 
i )

for all i = 1, . . . , d+ 1.

Lemma A.2. Let \scrQ h be defined as in subsection 3.1, and let x \in e, for some
x \in \scrQ h, e \in \scrT h. If (7a) is satisfied, then \phi  - 1

e (x) \in \~\scrQ .

Proof. By definition of \scrQ h, there exists an element e\ast \in \scrT h and node \~x\ast \in \~\scrQ 
such that x = \phi e\ast (\~x

\ast ), so \phi  - 1
e\ast (x) = \~x\ast \in \~\scrQ . Now construct a reference-to-reference

element mapping s \in \scrS such that s| \phi  - 1
e\ast (e\ast \cap e) = \phi  - 1

e \circ \phi e\ast | \phi  - 1
e\ast (e\ast \cap e). Then, using (7a),

we can obtain \phi  - 1
e (x) = s \circ \phi  - 1

e\ast (x) = s(x\ast ) \in \~\scrQ .

Theorem A.3. Let \scrQ h be defined as in subsection 3.1, and let x \in \scrQ h. If the
conditions in (6) and (7) are satisfied, then the basis function w\bfx , given in (5), is
well defined and continuous and satisfies

w\bfx (y) = \delta \bfx \bfy for all y \in \scrQ h,(55)

where \delta \bfx \bfy denotes the Kronecker delta function.

Proof. The fact that w\bfx is well defined follows immediately from Lemma A.2.
To prove that w\bfx is continuous, let f = \partial e - \cap \partial e+ be any face adjacent to the

elements e - , e+ \in \scrQ h. It is sufficient to show that w\bfx | \partial e+\cap f = w\bfx | \partial e - \cap f , where w| \partial e\cap f

denotes the trace of function w restricted to e on face f . Suppose that x /\in e - \cup e+.
Then w\bfx | \partial e - \cap f = 0 = w\bfx | \partial e+\cap f .

Now suppose that x \in e+\setminus f . Then x /\in e - and \~x+ /\in \~f+, where \~x+ := \phi  - 1
e+ (x) and

\~f+ := \phi  - 1
e+ (f). From (6) it then follows that w\bfx | \partial e+\cap f = \~w\~\bfx + \circ \phi  - 1

e+ | f = 0 = w\bfx | \partial e - \cap f .
Finally, suppose that x \in f . Let s \in \scrS be a reference-to-reference element

mapping such that s| \~f+ = \phi  - 1
e - \circ \phi e+ | \~f+ . We can then derive

w\bfx | \partial e+\cap f = \~w\~\bfx + \circ \phi  - 1
e+ | f

= \~ws(\~\bfx +) \circ s \circ \phi  - 1
e+ | f

= \~w\phi  - 1

e - 
(\bfx ) \circ \phi 

 - 1
e - | f

= w\bfx | \partial e - \cap f ,

where the second line follows from (7b).
Since w\bfx is continuous, w\bfx (y) is well defined for any y \in \Omega . To prove property

(55), suppose there is an element e \in \scrT h such that x,y \in e. Define \~x := \phi  - 1
e (x) and

\~y := \phi  - 1
e (y). Then w\bfx (y) = \~w\~\bfx (\~y) = \delta \~\bfx \~\bfy = \delta \bfx \bfy .

Now suppose that there is no element e such that x,y \in e. Then x \not = y and there
exists an element e such that y \in e and x /\in e. By definition of w\bfx it then follows
that w\bfx (y) = 0 = \delta \bfx \bfy .
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Appendix B. Variants of the degree-4 mass-lumped tetrahedral ele-
ment.

Table 8
Degree-4 mass-lumped tetrahedral element with 60 nodes.

Nodes n \omega Parameters

\{ (0, 0, 0)\} 4 0.00009319146955767176 -

\{ (a, 0, 0)\} 12 0.0004829332376473431 0.1614865833496676

\{ ( 1
2
, 0, 0)\} 6 0.0002005503792135920 -

\{ (b1, b1, 0)\} 12 0.002003104085841525 0.1490219288469598

\{ (b2, b2, 0)\} 12 0.001126849366800016 0.3944591972171783

\{ (c1, c1, c1)\} 4 0.009159244489996298 0.1302058846372564

\{ (d, d, 1
2
 - d)\} 6 0.006725322654059780 0.06386116838612691

\{ (c2, c2, c2)\} 4 0.01118676108633598 0.3012179234079087

U = \scrP 4 \oplus \scrB f\scrP 2 \oplus \scrB e(\scrP 2 \oplus \scrB f )

= \{ x1, x2
1x2, x2

1x
2
2, \beta fx1, \beta fx1x2, \beta ex1, \beta ex1x2, \beta e\beta f\} 

U \otimes \scrP 2 = \{ x1, x2
1x2, x3

1x
2
2, x

3
1x

3
2, \beta fx1, \beta fx

2
1x2, \beta fx

2
1x

2
2, \beta 

2
fx1, . . .

. . . , \beta ex1, \beta ex2
1x2, \beta ex2

1x
2
2, \beta e\beta fx1, \beta e\beta fx1x2, \beta 2

ex1\} 

Table 9
Degree-4 mass-lumped tetrahedral element with 61 nodes.

Nodes n \omega Parameters

\{ (0, 0, 0)\} 4 0.0001593069370906064 -

\{ (a, 0, 0)\} 12 0.0004461325181676239 0.2001628104707848

\{ ( 1
2
, 0, 0)\} 6 0.0003715829945705960 -

\{ (b1, b1, 0)\} 12 0.001884294964657102 0.1397350972238366

\{ (b2, b2, 0)\} 12 0.001545425606069384 0.4319436235177682

\{ (c1, c1, c1)\} 4 0.008841425190569096 0.1282209316290979

\{ (d, d, 1
2
 - d)\} 6 0.006891012924401557 0.08742182088664353

\{ (c2, c2, c2)\} 4 0.007499563520517103 0.3124061452070811

\{ ( 1
4
, 1
4
, 1
4
)\} 1 0.01057967149339721 -

U = \scrP 4 \oplus \scrB f\scrP 2 \oplus \scrB e(\scrP 2 \oplus \scrB f \oplus \scrB e)

= \{ x1, x2
1x2, x2

1x
2
2, \beta fx1, \beta fx1x2, \beta ex1, \beta ex1x2, \beta e\beta f , \beta 

2
e\} 

U \otimes \scrP 2 = \{ x1, x2
1x2, x3

1x
2
2, x

3
1x

3
2, \beta fx1, \beta fx

2
1x2, \beta fx

2
1x

2
2, \beta 

2
fx1, . . .

. . . , \beta ex1, \beta ex2
1x2, \beta ex2

1x
2
2, \beta e\beta fx1, \beta e\beta fx1x2, \beta 2

ex1, \beta 2
ex1x2\} 
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