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Abstract
Plane-stress and shell macromodels are often preferred to analyze masonry
structures because of their numerical efficiency. However, they often mis-
estimate the hysteretic behavior of the structures. Additionally, due to the
nature of smeared cracks, the cracks may be diffused. This article proposes
a new orthotropic model, which focuses on the cyclic, nonlinear behavior of
brick masonry structures. The model adopts a total-strain based rotating crack
approach. It describes tensile and compressive failure in the rotating principal
directions, while including indirectly shear failure through an internal itera-
tive algorithm. Two distinctions are made regarding the tensile postpeak and
unloading/reloading behavior based on the crack orientation at crack initia-
tion: a steep softening branch and secant unloading are adopted when the crack
angle corresponds to in-plane flexural failure, and a softening branch and bilin-
ear unloading are adopted when the crack angle corresponds to diagonal shear
failure. Bilinear unloading/reloading is adopted in compression, resulting in a
cyclic behavior resembling shear. The constitutive model was implemented in a
finite element software and validated against experimental results. The numeri-
cal simulations reproduced well the experimental outcomes in terms of envelope
load-displacement curve and hysteretic behavior, while simultaneously they
resulted in localized damage, representative of the experimental crack patterns.

K E Y W O R D S

constitutive model, continuum fracture mechanics, damage localization, macromodeling, shear
failure, unreinforced masonry

1 INTRODUCTION

Masonry is one of the oldest building materials in the world. Due to its aesthetics, availability and ease of construction, it
is found in many structures around the world, from historic monuments to residential buildings. It consists of units, such
as bricks, stones or blocks, and joints, dry or mortar, arranged in a geometrical pattern. The different material properties
of these constituents as well as their geometric arrangement make masonry an inhomogeneous and orthotropic material.
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original work is properly cited.
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Thanks to the advances in the field of numerical methods, four different approaches have been developed for the
numerical modeling of masonry structures: macroelement based methods, like the lumped mass approach and the
equivalent frame method,1-3 discrete element methods (DEM),4-7 finite element methods (FEM), and most recently hybrid
methods, like the finite-discrete element methods (F-DEM)8,9 or the macro-distinct element (M-DEM).10 In FEM, which
currently is the most commonly used approach, masonry is modeled according to two methods: the micromodeling,
detailed or simplified, and the macromodeling approach. According to micromodeling every unit/brick (and every mor-
tar joint in the case of detailed micromodeling) is modeled individually with its real geometrical and material properties,
and it is connected to its surroundings through discontinuous interface elements.11-14 On the other hand, in the macro-
modeling (or continuum models) approach, masonry is considered to be a homogeneous material and the damage is
distributed over the continuum. Macromodels can be based either on direct approaches, where the constitutive equations
and material properties adopted should represent the behavior of masonry and should be obtained by tests performed on
sufficiently large specimens, or on homogenization approaches (e.g., References 15-17), where the constitutive laws are
derived through a homogenization process that relates the microscale material to the structural-scale. The micromod-
eling approach is more accurate and is better able to predict the hysteretic behavior and local failure mechanisms of a
structure. However, it is computationally very demanding and its use, up to now, is mostly limited to simulating single
structural elements, like walls. On the other hand, macromodels constitute a good compromise between accuracy and
computational effort, and are often preferred for modeling large structures, in order to reduce the required computational
time.

In order to increase the accuracy of direct macromodels, the orthotropy of the material needs to be included. Cur-
rently, a number of constitutive models are available for masonry, based on the frameworks of smeared cracking,18,19

damage mechanics,20-23 and plasticity.24,25 However, even though these models include orthotropy in the description
of the mechanical behavior, more challenges need to be overcome. Firstly, predicted crack patterns are sometimes
too diffuse: wide zones of smeared cracked Gauss points have been reported (e.g., References 18,20) rather than
the localized discrete cracks identified in the last stages of tests. This is in part expected, since macromodels do
not depict the exact geometry of a structure; however, a realistic damage localization is an important factor to con-
sider when the structure needs to be strengthened. Secondly, most of the existing models have been validated only
against experimental results of monotonic tests, whereas the few that have been validated against cyclic tests18,20,25

tend to underestimate the energy dissipation, especially in the case of shear walls. The cyclic hysteretic response may
be partially missed because of the unloading/reloading characteristics of the existing models: either fully secant for
damage/smeared cracking models or fully elastic for plasticity models. Damage-plasticity models tackle this issue,
but even though such models have been developed for concrete (e.g., References 26,27), and a few attempts have
been made for interface elements,11,14,28 only one is available for macromodeling of masonry.25 Thirdly, existing mod-
els may not always estimate the postpeak part of the load-displacement response correctly, and in general models
require the calibration of a large number of material input parameters to obtain accurate predictions. In summary,
constitutive models for masonry have progressed significantly over the years, but their accuracy still needs to be
improved.

This article presents a newly developed orthotropic, continuum constitutive model for macromodeling applica-
tions. The model belongs to the family of smeared crack/crush models and is based on a total-strain-rotating-crack
(TSRC) approach. The novelty of the model lies on two things: first, the way in which shear failure is incorporated
through an internal iterative algorithm; second, the unloading/reloading behavior that depends on the cracking angle
at the onset of cracking and on the corresponding type of failure. In that way, secant unloading/reloading is adopted
when cracking due to flexure occurs, and bilinear unloading/reloading when cracking/sliding due to shear or crush-
ing occur. Moreover, it focuses on the nonlinear cyclic behavior of masonry and on improving the crack localization
and hysteretic behavior of masonry structures. In order to validate its accuracy, the model is implemented in a FEM
software and is used to simulate four unreinforced brick masonry walls, tested under cyclic, in-plane conditions. Sub-
sequently, the numerical results are compared against the experimental results derived from the in-plane tests. The
accuracy of the model is evaluated in terms of the envelope force-displacement curve, hysteretic response and energy
dissipation, and in terms of crack patterns. It will be demonstrated that the developed model estimates well the base
shear capacity of the walls and their postpeak behavior, whereas it predicts the correct failure mechanism and damage
localization.

The newly developed model and its constitutive relations are presented in Section 2, whereas the validation of the
model against experimental results is presented in Section 3. Mesh-sensitivity and other aspects of the model are discussed
in Section 4. Finally, the concluding remarks are reported in Sections 5.
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F I G U R E 1 (A) Definition of principal directions and principal angles 𝛼1 and 𝛼2; (B) definition of threshold angle 𝜃fl and zones of
assumed flexural and diagonal shear failure

2 AN ORTHOTROPIC TOTAL-STRAIN BASED CRACK MODEL

The constitutive model presented in this paper is based on a TSRC concept29 and it incorporates a number of newly
implemented characteristics to make its application more suitable for masonry structures. The rotating crack concept
describes the constitutive behavior in terms of stress–strain relations in the rotating principal axes. Coaxiality between
principal stresses and strains is achieved through a shear stiffness term.19 A major advantage of rotating crack models over
fixed crack models is that they eliminate the difficulty of choosing an appropriate shear retention factor, which can lead to
unfavorable stress-locking in crack bands.30 Moreover, they are usually relatively robust and easily comprehensible from
an engineering point of view, since it is sufficient to describe the stress–strain relationships along the principal directions,
and it is not required to deal with complicated concepts, such as return-mapping algorithms and corners in yield surfaces.
The model is formulated in 2D plane stress, but extension to shell and 3D solid elements is possible.

As aforementioned, orthotropy is one of the main characteristics of masonry, being caused by the geometrical arrange-
ment and the different material properties of its constituents. The developed model incorporates the orthotropic behavior
through the different elastic and inelastic material properties, which are used to describe the constitutive relationships
along the two principal directions i. In order to define the principal directions i, first a distinction should be made
between isotropic and anisotropic materials; in isotropic materials, during the elastic phase, the principal direction of
the strains coincides with the principal direction of the stresses. On the contrary, for anisotropic materials the prin-
cipal directions of the stresses and strains are generally not aligned, but it rather depends on the particular elastic
properties.

In the presented constitutive model, the principal directions i refer initially to the directions of the principal strains.
Coaxiality is ensured through the adopted constitutive relationships. Therefore, the general term principal direction is
used consistently both for stresses and strains. The angles 𝛼i are defined as the angles inscribed by the line parallel to the
bed joints and the line parallel to the principal strains 𝜀i, where i = 1, 2 is the index of the principal direction (Figure 1A).
Due to the symmetric geometrical arrangement of brick masonry, it is sufficient to describe these angles within −90◦ ≤
𝛼i ≤ 90◦, as follows:

𝛼1 =

{
𝜃1 if ||𝜃1 − 𝛼1,0|| ≤ 45◦or ||𝜃2 − 𝛼2,0|| ≤ 45◦

𝜃2 else
, (1)

𝛼2 =

{
𝜃1 if 𝛼1 = 𝜃2

𝜃2 if 𝛼1 = 𝜃1
(2)

with 𝜃1 = 0.5atan
(

𝛾xy

𝜀xx−𝜀yy

)
and 𝜃2 =

{
𝜃1 − 90◦ if 𝜃1 ≥ 0
𝜃1 + 90◦ if 𝜃1 < 0 .

In the above equation, 𝛼i,0 refers to the angle in the principal direction i in the previous iteration step. Note that the
angles 𝜃1, 𝜃2 relate to the directions of the principal strains too. However, since the model is orthotropic and focuses
on the cyclic behavior of the material, the angles 𝛼1 and 𝛼2 as defined in Equations (1) and (2) are used to calcu-
late the principal strains 𝜀1 and 𝜀2. The term |𝜃i − 𝛼i0| ≤ 45◦ ensures that there is a gradual rotation of the principal
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stresses/strains and that the correct material properties and cyclic behavior are assigned to each principal stress/strain
component.

2.1 Material properties and orthotropy

In order to define the orthotropic behavior of masonry, the material properties alongside its axes should be defined first.
To do so, experiments are carried out for the characterization of masonry in tension, compression, and shear. Most authors
(e.g., References 31-33) identify the compressive and tensile strengths and their corresponding fracture energies in the
directions parallel and/or perpendicular to the bed joints. Additionally, the cohesion and the friction angle for loading
parallel to the bed joints can be identified from shear tests.34 Nevertheless, most experiments are limited to testing parallel
to the mortar joints (especially to the head-joints) and there is a lack of mechanical data for loading in different directions.
Given this lack of experimental data for different angles, the mechanical properties (with the exception of the tensile
strength) are assumed to vary linearly with respect to the principal angles 𝛼i.

Fifteen independent material parameters are required for the definition of the constitutive laws; these are prop-
erties defined by experiments carried out parallel to the bed joints (x direction) and head joints (y direction) and
include: the Young’s moduli

(
E0,x,E0,y

)
, the shear modulus (G) the tensile strengths (ft,x, ft,y), the compressive strengths

and their corresponding strains (fc,x, fc,y, 𝜖pc,x, 𝜖pc,y), as well as the fracture energies in tension (Gft,x,Gft,y), the fracture
energies in compression

(
Gfc,x,Gfc,y

)
, and finally the cohesion (c0) and friction coefficient (tan𝜙) due to shear fric-

tion along the bed joint. The Young’s moduli and the compressive strengths, strains, and fracture energies can be
identified through compression tests, whereas the tensile strength and tensile fracture energy are typically identified
through bond wrench tests and/or four-point bending tests. Nevertheless, due to masonry’s brittle failure in tension,
it is not always easy to measure fracture energy in tension,35 in which case either representative values provided by
guidelines36 or derived by formulas,37 or finally values retrieved indirectly from bending tests (indirect tension) can
be used. The shear modulus can be calculated either through the Young’s modulus and Poisson’s ratios that are mea-
sured from compression tests, or it can be directly estimated as a fraction of the Young’s modulus (40% according to
Eurocode 6-part 138). Finally, the initial cohesion and friction coefficient are usually defined through shear tests on
triplets.

As aforementioned, the experimental data provides little information regarding the material properties of brick
masonry under different loading directions. Page33,39 has contributed on this by testing the biaxial tensile and com-
pressive strength properties of brick masonry under different angles. However, further information about the elastic
and other inelastic properties along different angles is still scarce. Therefore, it is assumed that the Young’s moduli (Ei)
(Figure 2A), the compressive strain (𝜀pc,i) corresponding to the compressive strength and the fracture energies in com-
pression

(
Gfc,i

)
along the direction i vary linearly. For simplicity, linear variation is also assumed for the compressive

stengths
(

fc,i
)
, although the information from the tests by Page suggests some nonlinear variation. Their definitions are

given in Equations (3) to (6).

Ei = E0,x +
(

E0,y − E0,x
) |𝛼i|

90◦
, (3)

fc,i = fc,x +
(

fc,y − fc,x
) |𝛼i|

90◦
, (4)

𝜀pc,i = 𝜀pc,x +
(
𝜀pc,y − 𝜀pc,x

) |𝛼i|
90◦

, (5)

Gfc,i = Gfc,x +
(

Gfc,y − Gfc,x
) |𝛼i|

90◦
. (6)

The tensile strength
(

ft,i
)

along the principal direction i is defined such that it fits the experimental results obtained from
Reference 33 for uniaxial tensile loading (Figure 2B). The corresponding formulation is described by

ft,i = ft,x −
(

ft,x − ft,y
) |𝛼i|

90◦
+

(
fmax − 0.5

(
ft,x + ft,y

))
sin (4 |𝛼i|) , (7)

where fmax =
√

f 2
t,x + f 2

t,y.
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F I G U R E 2 Variation of (A) Young’s modulus Ei and (B) tensile strength ft,i along different directions 𝛼i

Finally, once cracking occurs, the material properties are fixed. In essence, when cracking initiates in one of the two
principal directions i, a new set of angles 𝛼crack,i is defined and used in the following steps for the calculation of the material
parameters; these are the angles inscribed by the principal tensile strains 𝜀i in the direction i and the direction parallel
to the bed-joints at the onset of cracking. In the context of a TSRC model, the crack (and therefore also the crack plane)
can still rotate (𝛼i changes), but the material properties will no longer change with this rotation (they are now calculated
with 𝛼crack,i). This is a reasonable assumption, since a crack constitutes a weak plane, where future damage will probably
localize and no stiffness or stress recovery will be expected.

2.2 Tensile behavior

2.2.1 Envelope curve for tension

Masonry exhibits brittle failure in tension. Most researchers describe the tensile behavior with two branches: a linear
prepeak branch and a softening, postpeak branch, either linear or exponential. The softening rate is usually dependent
on the fracture energy in tension, resulting in a more or less brittle failure depending on the value of the fracture energy.

In the current model, a linear ascending and a linear descending branch are used for the pre and postpeak behavior,
respectively. However, a distinction is made on the postpeak behavior (softening rate) based on the cracking angle 𝛼crack,i.
In the case of cracking angles in close proximity to 90◦, horizontal cracks along the bed-joints are expected; this would
correspond to bed-joint opening and in-plane flexural failure. Similarly, for 𝛼crack,i close to 0◦ head-joint failure is expected.
Finally, for angles around 45◦ diagonal cracking is expected, which is associated to diagonal shear cracking. The postpeak
behavior is therefore related to the type of in-plane failure expected: brittle/flexural failure of bed- or head-joints exhibits
higher softening rate, whereas diagonal shear failure exhibits a slower softening rate. To distinguish between the two
different behaviors a threshold angle

(
𝜃fl

)
is defined to mark the transition from flexural to shear failure (Figure 1B). It

should be noted that the definitions of the cracking and threshold angles are based on the assumption that the shear
failure shows a locally ductile frictional behavior, a condition that is typically obtained when the bricks are sufficiently
strong and the mortar is relatively weak, resulting in cracks forming alongside the mortar joints. By observations of the
crack patterns presented in Reference 40 for stretcher bond, reasonable values for the threshold angle could vary between
20 to 30◦. Moreover, the brick pattern can give an indication of the angle of the expected diagonal crack and by considering
a reasonable percentage of variation around it (in the case that some cracks might go through the bricks or skip a head
joint and pass through the next), a threshold angle can be chosen. The tensile behavior is depicted in Figure 3A and is
formulated as:

𝜎i =

⎧⎪⎪⎨⎪⎪⎩
Ei𝜀i for 𝜀cr,i ≥ 𝜀i ≥ 0

max
(

ft,i; 𝜎un
) [

1 − 𝜀i−𝜀cr,i

𝜀ult,i−𝜀cr,i

]
for 𝜀ult,i ≥ 𝜀i ≥ 𝜀cr,i,

Eres,i𝜀i for 𝜀i > 𝜀ult,i

(8)
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where

𝜀ult,i =

⎧⎪⎪⎨⎪⎪⎩
min

{
ft,i

𝛽i
+ 𝜀cr,i; 100𝜀ult,k

}
for 𝜃fl ≥ ||𝛼crack,i|| ≥ 0◦

100𝜀ult,k for 90◦ − 𝜃fl > ||𝛼crack,i|| > 𝜃fl

min
{

ft,i

𝛽i
+ 𝜀cr,i; 100𝜀ult,k

}
for 90◦ ≥ ||𝛼crack,i|| ≥ 90◦ − 𝜃fl

. (9)

In the above equations 𝜀cr,i are the cracking strains in direction i, given by 𝜀cr,i = ft,i∕Ei, whereas 𝜀ult,k correspond to the
ultimate strains along the global direction k = x, y, which are expressed as

𝜀ult,k =
2Gft,k

ft,kh
(10)

with k = x when i = 1 and k = y when i = 2, and h is the crack/crush bandwidth. The softening rate 𝛽i is given by:

𝛽i =
⎧⎪⎨⎪⎩

𝛽x(|𝛼crack,i|−𝜃fl)2

𝜃2
fl

for 𝜃fl ≥ ||𝛼crack,i|| ≥ 0◦

𝛽y sin (4.5
(||𝛼crack,i|| − (

90◦ − 𝜃fl
))

for 90◦ ≥ ||𝛼crack,i|| ≥ 90◦ − 𝜃fl

, (11)

where 𝛽x and 𝛽y are the softening rates for stresses parallel to the x and y directions and are given by:

𝛽k =
ft,k

𝜀ult,k −
ft,k

Ek

. (12)

Finally, 𝜎un is a stress value that resembles the shear capacity and it is given by Equation (13).

𝜎un =
⎧⎪⎨⎪⎩

max
{
𝜔c0 − tan𝜙

(
𝜎yy,0 + E0,y𝛿𝜀yy

)
;𝜔c0

}
for 90◦ − 𝜃fl ≥ ||𝛼crack,i|| ≥ 𝜃fl

𝜔c0 else
, (13)

where, 𝜎yy,0 is the stress normal to the bed joints at the beginning of the step, 𝛿𝜀yy is the incremental strain normal to
the bed joint, and 𝜔 is a damage factor ranging from 0 and 1, with 0 and 1 referring to a fully cracked and uncracked
integration point respectively. It is expressed as 𝜔 = max (𝜔1, 𝜔2), with

𝜔i = min
{

1;max
{

0;
𝜀ult,i − 𝜀i

𝜀ult,i − 𝜀cr,i

}}
. (14)

2.2.2 Unloading/reloading behavior for tension

Even though no experiments exist for the cyclic behavior of masonry subjected to direct tension, from tests on walls it has
been observed that the total dissipated energy is higher when the failure mode is governed by shear and smaller when it is
governed by flexure.41 Based on this observation, a distinction is made on the unloading/reloading behavior of masonry
subjected to tension, depending on the crack direction (flexural or shear crack). When diagonal shear failure is expected,
i.e. for 𝜃fl ≤ ||𝛼crack,i|| ≤ 90◦ − 𝜃fl, bilinear unloading/reloading is adopted with elastic stiffness Ei until the critical stress
limit −𝜎un (Equation (13)), which defines the second unloading/reloading branch (Figure 3A), is reached. This results in
permanent deformations, as often observed in step-wise diagonal cracks. On the other hand, for angles outside this range,
corresponding to in-plane flexural failure, secant unloading is adopted (Figure 3A).

2.3 Compressive behavior

2.3.1 Envelope curve for compression

The compressive behavior of masonry is described through three curves as formulated in Equation (15).
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F I G U R E 3 (A) Tensile behavior of masonry for the two different types of cracks: steep softening with secant unloading in case of
flexural cracking

(
𝜃fl > ||𝛼crack,i|| and 90◦ − 𝜃fl < ||𝛼crack,i||) and softening with elastic (linear) unloading in case of diagonal shear cracking(

𝜃fl ≤ ||𝛼crack,i|| ≤ 90◦ − 𝜃fl
)
; (B) compressive behavior of masonry

𝜎i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ei𝜀i

[
1 − 1

ni

(
𝜀i
𝜀pc,i

)ni−1
]

for 0 > 𝜀i ≥ 𝜀pc,i

min
{

fc,i

[
1 −

(
𝜀i−𝜀pc,i

𝜀ulc,i−𝜀pc,i

)2
]
; 0.1fc,i

}
for 𝜀pc,i > 𝜀i ≥ 𝜀ulc,i

0.1fc,i for 𝜀i < 𝜀ulc,i

, (15)

where 𝜎i and 𝜀i are the stress and strain along the principal direction i, respectively, and ni = Ei∕ (Ei − Esec), with Esec =
fc,i∕𝜀pc,i. Knowing that the area under the envelope is equal to gfc,i = Gfc,i∕h, where h is the crack/crush bandwidth that
depends on the particular finite element configuration (e.g., References 42-45), inserted to achieve mesh-size objectivity.
The ultimate strain in compression 𝜀ulc,i is calculated as

𝜀ulc,i = min
{
𝜀pc,i +

3
2fc,i

(
gfc,i − Ei

(
0.5 − 1

ni (ni + 1)

)
𝜀2

pc,i

)
; 1.2𝜀pc,i

}
. (16)

For the prepeak curve the model proposed by Reference 46 for concrete is used, whereas for the postpeak curve a parabolic
curve adopted from Reference 47 is selected. Finally, once the compressive fracture energy is consumed, a residual
strength of 0.1fc,i is adopted to avoid numerical instabilities. The envelope curve is depicted in Figure 3B.

2.3.2 Unloading/reloading behavior for compression

Experimental research on the behavior of masonry subjected to cyclic compression48-52 has shown that the material
behaves nonlinearly, with accumulation of nonreversible strains and stiffness degradation. The unloading and reloading
branches follow different paths and the reloading stiffness decreases with every new cycle during the postpeak response.
Nevertheless, in this model no distinction is made between the unloading and reloading branch. Similar to unloading
in tension for diagonal shear cracking, bilinear unloading is adopted with initial stiffness equal to the elastic Young’s
modulus Ei until the critical value 𝜎un is reached, which defines the upper limit of the second branch, as depicted in
Figures 3B and 6. In the case of reloading, first, linear elastic stiffness is assumed until the lower limit 𝜎fc,i (the stress that
corresponds to the minimum compressive strain ever reached during the loading history) is reached, where ideal plastic
behavior is adopted. This assumption differs from the cyclic behavior in pure compression. However, since the rotating
principal behavior aims to capture indirectly also the shear behavior, the elastic unloading/reloading branch turns out to
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better represent the overall cyclic behavior, which is of crucial importance in the global hysteretic behavior of masonry
walls. This will be explained further in Section 2.5 and in the description of the validation examples (Section 3).

2.3.3 Reduction of compressive strength with lateral cracking

Similar to concrete, it is assumed that tensile cracks parallel to a compressive strut reduce the compressive strength
capacity of that strut.19,53 The presented model adopts the reduction model proposed by Reference 54 for concrete. Hence,
the compressive strength is reduced after cracking as:

fc,i = min
{

1
1 + Kc,i

fc,i; 0.1fc,i

}
, (17)

where

Kc,i = min
{

0.27
(

𝛼t,j||𝜀pc,i|| − 0.37
)
; 1

}
≥ 0 (18)

with 𝛼t,j representing the maximum tensile strain reached during the loading history in the direction j perpendicular to
i. To simplify, for i = 1, j = 2 and for i = 2, j = 1. At the same time, no increase in the compressive strength due to biaxial
compression is considered, i.e., tension-compression behavior is accounted for but biaxial compression is not.

2.4 Indirect inclusion of shear behavior

Many authors have investigated the shear behavior of masonry and concluded that the shear capacity of brick masonry
subjected to confinement/compression can be described by Coulomb friction.34,40,55 Some have also highlighted the
importance of dilatancy.56,57 In damage mechanics and plasticity models, the shear capacity is introduced through the
damage or yield surfaces, respectively. However, in smeared crack models there are different ways to describe shear. In
fixed smeared crack models the shear capacity along the plane of the fixed crack is explicitly taken into account via a
shear retention factor (or function) along that crack plane. Although shear retention can describe aggregate interlock in
concrete, it may lead to stress-locking when the crack bands propagate through the mesh in a zig-zag manner58 . Rotating
smeared crack models describe the behavior in the continuously rotating principal direction and, hence, do not explic-
itly describe shear. However, an implicit shear term is required to guarantee coaxiality between principal stresses and
strains.19 For masonry, the shear behavior along the bed-joints is important and should be considered in the description
of the constitutive equations. Ignoring the shear behavior of masonry may lead to overestimation of the structure’s base
shear capacity (e.g. Reference 18).

This model introduces the shear capacity via an internal iterative process that ensures that the shear stress 𝜏xy does
not exceed the shear capacity 𝜏max

(|𝜏xy| ≤ 𝜏max
)
. This process is indirect: the shear stress 𝜏xy is not described through a

total stress–strain relationship. Instead, only the shear stress in the direction of the mortar-joints (which coincide with
the global x-y-directions) is limited based on a Coulomb-friction criterion. In order to do so, first the stresses in the global
x- and y-coordinates

(
𝜎xx, 𝜎yy, 𝜏xy

)
are calculated through Equation (19). Once the global stresses are known, the shear

capacity 𝜏max is derived according to Equation (21). If the absolute value of the shear stress
(||𝜏xy||) is lower than 𝜏max no

further action is required; the shear strength computed at the integration point is sufficient to withstand the shear stress
𝜏xy. However, if ∣𝜏xy∣ exceeds the shear capacity, shear sliding occurs and the shear stress needs to be limited to |||𝜏′xy

||| = 𝜏max.
The new global stress 𝜎′

xx is calculated via Equation (22), with the assumptions that the vertical confinement level
(
𝜎yy

)
does not change, and that coaxiality between principal stresses and strains is maintained. A graphical representation
through Mohr’s circle is given in Figure 4.

⎧⎪⎨⎪⎩
𝜎xx

𝜎yy

𝜏xy

⎫⎪⎬⎪⎭ = [T𝜎]−1

⎧⎪⎨⎪⎩
𝜎1

𝜎2

0

⎫⎪⎬⎪⎭ (19)
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F I G U R E 4 Representation of Mohr circle and recalculation of shear stress 𝜏′xy, normal stress
(
𝜎′

xx
)

and principal stresses
(
𝜎′

1, 𝜎
′
2
)

in the
case of shear failure ||𝜏xy|| > 𝜏max

with

[T𝜎]−1 =
⎡⎢⎢⎢⎣

cos2𝛼1 sin2
𝛼1 −2 cos 𝛼1 sin 𝛼1

sin2
𝛼1 cos2𝛼1 2 cos 𝛼1 sin 𝛼1

cos 𝛼1 sin 𝛼1 − cos 𝛼1 sin 𝛼1 cos2 𝛼1 − sin2
𝛼1

⎤⎥⎥⎥⎦ , (20)

𝜏max = max
{

c0 − 𝜎yy tan𝜙; c0
}
, (21)

tan 2𝛼1 =
2 ∣𝜏′xy∣

𝜎′
xx − 𝜎yy

. (22)

Consequently, due to the new set of global stresses
(
𝜎′

xx, 𝜎yy, 𝜏
′
xy
)
, the principal stresses

(
𝜎′

1, 𝜎
′
2
)

across the directions 𝛼i
need to be recalculated, with the inverse procedure of Equation (19). If the new principal stresses

(
𝜎′

1, 𝜎
′
2
)

are within the
limits set by the envelope for the corresponding principal strains, the shear calculation is completed. However, in the case
that one or both of them exceed their corresponding limit, they need to be further reduced. These limits are given by the
following equation:

− 𝜎un ≤ 𝜎′
i ≤ 𝜎ft,i if 𝜀i ≥ 0

𝜎fc,i ≤ 𝜎′
i ≤ 𝜎un if 𝜀i < 0 (23)

,where 𝜎ft,i and 𝜎fc,i are the stresses that correspond to the maximum and minimum strain 𝜀i ever reached during the load-
ing history of the integration point, whereas 𝜎un is the stress value defined in Equation (13). The calculation of the new
principal stresses is followed by the reevaluation of the global stresses and the check of the shear capacity anew. This pro-
cedure is repeated until either all the above mentioned conditions are met or, in the case the conditions cannot be satisfied
simultaneously, until a maximum number of 500 iterations is reached. In the latter case, priority is given in maintaining
coaxiality and satisfying the criteria of Equation (23), resulting therefore in a final shear stress 𝜏xy that may still exceed the
shear capacity. The number of maximum iterations was selected after performing a sensitivity study between 50, 100, and
500 iterations, as the latter resulted in the most satisfactory numerical results in terms of numerical stability and damage
localization without compromising significantly the computational time. For a graphical representation, one can refer to
the flowchart of Figure 5. Please note that x and y refer to the directions parallel to bed- and head-joint, respectively; so
the model, though it formulates the behavior in the rotating principal directions, assesses the shear capacity along the
predefined joint directions. In other words, the model does not check the shear stresses along the principal directions
(their value being null by definition) or in the direction corresponding to the crack initiation (as in existing fixed-crack
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F I G U R E 5 Flowchart of internal iterative loop for shear stress limitation
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F I G U R E 6 Cyclic behavior of masonry as adopted in the presented model. The dashed red lines refer to the unloading when shear
cracks are expected, whereas the dashed black lines refer to unloading when flexural cracks are expected. Here it is assumed that the 𝜎un is
constant (which means that the vertical compressive stress 𝜎yy remains constant)

models), but it rather limits the value of the shear stresses in the predefined x-y (bed joint/head-joint) directions, based
on a Coulomb friction formulation. This addresses the specific characteristics of masonry as compared to concrete.

2.5 Overall cyclic behavior

As mentioned before, linear unloading with elastic stiffness Ei is adopted in compression. In tension two unload-
ing/reloading possibilities are included in the model: when the cracking angle corresponds to a diagonal crack(
90◦ − 𝜃fl ≥ ||𝛼crack,i|| ≥ 𝜃fl

)
, the unloading/reloading behavior in tension is assumed to be elastic (linear); when the crack-

ing angle relates to a flexural crack, secant unloading/reloading is adopted. Moreover, an upper and lower limit are set
when unloading (or reloading) from compression (to tension) and from tension (to compression), respectively. This is the
limit 𝜎un which was defined already in Equation (13). In contrast to damage and fracture models, which generally adopt
secant unloading and reloading, and often underestimate the dissipated energy, this model allows to increase the dissi-
pated energy, especially when failure is governed by shear. A depiction of the integrated cyclic behavior for compression
and tension, including the two options for the types of tensile cracks, is presented in Figure 6.

3 VALIDATION

In order to assess the applicability and validity of the developed constitutive model, the constitutive equations were
inserted in a FORTRAN subroutine and subsequently implemented in the finite element software DIANA FEA, version
10.4. Four walls, tested in the past under cyclic in-plane loading, are modeled; each one differs from the others either in
aspect ratio, axial load, boundary conditions or material properties. Two of the modeled walls were tested under cyclic
quasi-static conditions at the Joint Research Centre of the European Community in Ispra; these double-wythe walls com-
prised solid clay bricks and had an aspect ratio of 2 (high wall referred as HIGSTA here) and 1.35 (low wall referred
as LOWSTA here).59,60 The vertical precompression level was 0.6 MPa. The remaining two walls, named TUD-COMP-4
and TUD-COMP-6, were built and tested at Delft University of Technology in 201541; they were both single-wythe cal-
cium silicate (CS) brick walls with a low aspect ratio of 0.7, and a vertical precompression of 0.5 MPa. Also the boundary
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T A B L E 1 Geometrical properties and failure mechanisms of the in-plane wall experiments used for validation

Dimensions Vertical precompression

Specimen name lw ⋅ hw ⋅ tw [m] [MPa] Boundary condition Failure mechanism

LOWSTA 1.0 ⋅ 1.35 ⋅ 0.250 0.60 Double clamped Diagonal shear

HIGSTA 1.0 ⋅ 2.0 ⋅ 0.250 0.60 Double clamped Flexure/rocking

TUD-COMP-4 4.0 ⋅ 2.76 ⋅ 0.102 0.50 Double clamped Diagonal shear

TUD-COMP-6 4.0 ⋅ 2.76 ⋅ 0.102 0.50 Cantilever Diagonal shear + crushing

T A B L E 2 Masonry material properties adopted for the continuum numerical models (for the LOWSTA and HIGSTA walls, the
corrected values of joint cohesion and friction coefficient, as calculated in Reference 60, are used); unknown and thus assumed material
properties are represented in italics, while the other properties were based on the companion material tests

TUD-COMP-4 & TUD-COMP-6 LOWSTA & HIGSTA
Material properties used
in the numerical analyses

Horizontal
direction i = x

Vertical
direction i = y

Horizontal
direction i = x

Vertical
direction i = y

Modulus of elasticity Ei [MPa] 3583 5091 1491 1491

Shear modulus G [MPa] 1571 500

Threshold angle 𝜃fl [o] 20 20

Tensile strength ft,i [MPa] 0.21 0.14 0.1 0.04

Compressive strength fc,i [MPa] 7.55 5.93 6.20 6.20

Compressive strain at peak strength 𝜀pc,i [−] 0.01 0.01 0.01 0.01

Fracture energy tension Gft,i [N/mm] 0.02 0.012 0.01 0.005

Fracture energy in compression Gfc,i [N/mm] 43.4 31.3 40.0 40.0

Cohesion c0 [MPa] 0.14 0.17

Friction coefficient tan𝜙 [−] 0.43 0.43

conditions at the top varied amongst these benchmark tests; the two Ispra-walls and TUD-COMP-4 were clamped at top
and bottom (double clamped), while TUD-COMP-6 was clamped only at the bottom (cantilever). However, for all the walls
the top side was allowed to move vertically so that the precompression level would remain constant. The walls exhibited
different failure mechanisms: in-plane flexural failure (rocking), diagonal shear failure, and a combination of diagonal
shear failure and crushing/splitting. The geometrical properties and failure mechanisms of the walls are presented in
Table 1.

The material properties adopted are presented in Table 2. These properties were obtained by companion material
tests that were carried out at the same time period and from the same batch of materials as the large wall tests.41,61,62 For
some properties no data from companion tests was available. In that case, representative values were chosen based on
literature. Specifically, this related to the fracture energies in tension, where values between 0.005 and 0.02 N/mm were
chosen based on the formula Gft,i = 0.025

(
2ft,i

)0.7. Moreover, for walls LOWSTA and HIGSTA, the same Young’s modulus
and compressive strength were adopted in both directions, and a reduced tensile strength was applied perpendicular to
the bed joints. Finally, the threshold angle 𝜃fl was set to 20◦.

All of the presented numerical models adopted 3× 3 Gaussian integrated 8-noded quadratic, quadrilateral plane-stress
elements with average dimensions of 100 mm× 100 mm. The Quasi-Newton (Secant) method was selected as the
incremental-iterative solution procedure, and either the force or the displacement convergence norm needed to be satis-
fied, with a tolerance of 0.01. The analyses were permitted to continue in case the convergence criteria were not satisfied,
in which case the relevance of the numerical results was examined.

Table 3 gives a comparison between the experimental and numerical results in terms of base shear capacity and
corresponding displacement at peak, residual shear capacity and its corresponding displacement postpeak, that is,
softening degradation, and energy dissipation for the four walls. The comparison of these key characteristics is subse-
quently elaborated and discussed in Sections 3.1–3.4.
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T A B L E 3 Base shear capacity Fpeak and its corresponding displacement at peak 𝛿peak, residual base shear Fres at the ultimate
displacement and total dissipated energy U for the experimental and numerical results of the modeled walls

Experimental Numerical

Walls
Fpeak

[kN]
𝜹peak

[mm]
Fres

[kN]
U[
102 kN mm

] Fpeak

[kN]
𝜹peak

[mm]
Fres

[kN]
U[
102 kN mm

]

LOWSTA +81.0
−83.7

+2.8
−2.7

+48.4
−59.0

22.9 +78.2
−78.8

+2.9
−2.8

+67.6
−61.2

20.4

HIGSTA +71.7
−71.9

+12.5
−12.0

+67.8
−71.0

12.9 +77.3
−78.4

+8.2
−9.1

+75.0
−74.6

22.5

TUD-COMP-4 +119.1
−123.4

+2.6
−0.3

+97.6
−108.5

55.1 +118.6
−116.2

+0.9
−1.4

+70.0
−93.0

20.6

TUD-COMP-6 +109.8
−109.0

+4.3
−4.2

+68.1
−65.6

187.4 +101.5
−104.1

+1.6
−2.3

+53.5
−56.1

157.5

3.1 Low wall specimen LOWSTA

The low wall LOWSTA was a double clamped wall, with an aspect ratio of 1.35 and a precompression load of 0.6 MPa.
It exhibited brittle failure with diagonal shear cracking. The maximum experimental base shear was 81 kN, whereas the
minimum base shear was −83.7 kN. After diagonal cracking, the residual postpeak base shear was measured to be 48.4
kN (−40% reduction) and−59 kN (−57% reduction) for the positive and negative loading direction respectively.

The numerical strength capacity was estimated to be 78.2 kN (3.5% underestimation) and−78.8 kN (5.8% underesti-
mation). The residual postpeak strength of this wall was overestimated with the current numerical model: the remaining
strength capacity was 67.6 kN in the positive and−61.2 kN in the negative direction, overestimating the experimental
residual base shear by 39% and 3%, respectively. The hysteresis response obtained from the numerical analysis well repro-
duces the experimental curve (Figure 7A). Small dissipation is observed in the prepeak phase, for top displacements up to
1.5 mm, whereas the increased energy dissipation is clearly visible for the postpeak cycles. The agreement with the exper-
iment is attributed to the inclusion of energy dissipation in the material model through the bilinear unloading/reloading
for compression and tension (when shear cracks form). The dissipated energy (area inscribed by the force-displacement
hysteretic loops) of the numerical model was 10.7% smaller than the experimental one (Table 3), but this is within reason-
able accuracy. A model with fully secant unloading/reloading would miss this aspect. As already mentioned, the cyclic
behavior of masonry has not received much attention and many constitutive models for masonry have only been tested for

F I G U R E 7 Comparison of (A) experimental crack pattern, and (B) maximum tensile strain ever reached during the loading history,
depicted at the end of the numerical analysis, for the wall LOWSTA
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F I G U R E 8 Comparison of experimental (black) and numerical (red) results of (A) hysteretic response (base shear vs. displacement)
and (B) energy dissipation of shear wall LOWSTA

monotonic loading. The numerical curves show some small oscillatory irregularities, which are related to local temporary
loss of convergence, as will be explained in Section 4.1.

The damage localization of the numerical model and the experiment were in agreement, with both of them showing
initially horizontal cracks at the corners, and diagonal cracks extending from the corners towards the center of the wall,
where they intersected. Subsequently, the two sets of diagonal cracks were connected by a vertical crack (or a slightly
inclined crack in the case of the numerical model) (Figure 8). A difference was observed regarding the angle of cracks
between the experiment and the numerical model. However, this is to be expected in a macromodel, where the brick
pattern is not described and where the mesh size and orientation can influence the results. In this research a fixed size
(100 mm× 100 mm) and order (3× 3) of mesh was chosen for all examined walls, which may be considered rather coarse
for this particular wall. A small study on mesh sensitivity regarding the order and size of mesh will be discussed in
Section 4.3.

3.2 High wall specimen HIGSTA

The high wall HIGSTA had an aspect ratio of 2 and a precompression load of 0.6 MPa. It exhibited flexural behavior with
rocking and minimal strength degradation. The maximum and minimum experimental base shear were 71.7 and−71.9
kN, respectively. The residual postpeak base shear was only 3.4% and 0.9% smaller than the maximum base shear in the
positive and negative direction, respectively.

The numerical model overestimated the base shear capacity, with a maximum capacity of 77.3 kN (7.6% overesti-
mation) and a minimum of −78.4 kN (9% overestimation). This is the only numerical model that overestimated the
corresponding experimental capacity. Similarly to the experiment, minimal softening was observed with residual values
of 75 and−76.4 kN. Again, the model appears to be able to reproduce properly the cyclic behavior, as compared to other
models that either start from secant or elastic unloading/reloading curves (e.g., Reference 18). The energy dissipation
in the early cycles is close to that of the experiment, while for the last two repetitions an overestimation was observed.
The total energy dissipation (Table 3 and Figure 9B) was overestimated, with the majority of the energy (61%) being
released during the last two repetitions. However, the overestimation of the capacity and energy dissipation can be con-
sidered within acceptable limits. The overestimation of the energy dissipation was likely caused by the small diagonal
shear cracks that developed during the last two loading cycles and their corresponding state of compressive and tensile
stresses.
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F I G U R E 9 Comparison of (A) experimental crack pattern, and (B) maximum tensile strain ever reached during the loading history,
depicted at the end of the numerical analysis, for the wall HIGSTA

The failure mechanism was rocking, with flexural cracks forming at the top and bottom layers of the wall, both for
the experiment and the numerical model (Figure 10). In the case of the numerical model, it seems that some diago-
nal cracks also started forming at the top and bottom towards the center of the wall. This was not reported after the
particular quasi-static experiment. Nevertheless, when the wall was tested again for a higher precompression load of
0.8 MPa, diagonal cracks also formed in the experiment, extending from the corners towards the center of the wall.59

This indicates that the occurrence of the diagonal cracking mode is close to the occurrence of crack/crush rocking mode,
especially when the precompression load increases. In that case softening and higher energy dissipation is observed post-
peak as the energy consumption for local constitutive shear and compression cycles is much higher than for tension
cycles.

3.3 Squat wall TUD-COMP-4

Specimen TUD-COMP-4 was a double-clamped squat calcium-silicate brick wall (aspect ratio of 0.7) with a vertical pre-
compression load of 0.5 MPa. Brittle shear failure was observed, with diagonal cracks running through the mortar joints
approximately along the diagonal of the wall, initially formed at the center of the wall and then expanding towards the
corners. In the positive direction the maximum shear force was 119.1 kN; in the negative direction the minimum shear
force is slightly higher and equal to −123.4 kN. The wall reached an ultimate displacement of 5.39 mm (0.2% drift) in the
positive and−5.35 mm (−0.19% drift) in the negative loading direction at the corresponding shear capacities of 97.6 kN
(−18% postpeak reduction) and−108.5 kN (−12% postpeak reduction), respectively. Due to the pure shear failure a large
amount of energy was dissipated.

The numerical model estimated the force capacity of the wall with good accuracy, predicting a maximum of 118.6
kN (−0.36% with respect to experimental) and a minimum of −116.2 kN (−5.8% with respect to the experimental value)
(Figure 11A and Table 3). The numerical softening rate was higher than the experimental and more softening occurred in
the positive loading direction, with a lowest value of 70 kN (41% reduction of capacity and 28.2% underestimation of exper-
imental value) and−93 kN (19.9% reduction of numerical capacity and 14.2% underestimation of experimental value).
This asymmetry in the softening rate could be due to the accumulation of damage and the reduction of the compressive
capacity due to lateral cracking, and also due to the indirect shear limitation. The numerical model underestimates sig-
nificantly (−63.7%) the dissipated energy. (Figure 11B). This may be due to the fact that in the experiment pure shear
failure occurred with an almost fully elastic unloading/reloading behavior, while in the numerical model a combination
of shear-compression failure occurred, affecting the energy consumption in the final cycles.

Regarding the damage localization, the crack pattern of Figure 12 is compared to the maximum tensile strain ever
reached during the loading history of the wall in Figure 13. The similarities in the pattern are apparent: diagonal cracks
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F I G U R E 10 Comparison of experimental (black) and numerical (red) results of (A) hysteretic response (base shear vs. displacement)
and (B) energy dissipation of slender wall HIGSTA

F I G U R E 11 Comparison of experimental (black) and numerical (red) results of (A) hysteretic response (base shear vs. displacement)
and (B) energy dissipation of squat wall TUD-COMP-4

running from the corners of the walls towards the center were observed in both cases. In the case of the numerical analysis,
the orientation of the cracks in the center was smaller than in the corners but not zero, whereas in the experiment a
horizontal crack was present instead. The two main numerical cracks are asymmetric. This is partially due to the different
material properties for the involved integration points (depending on the angle of strains at the onset of cracking), but
also due to the recalculation and limitation of the stresses because of the indirect shear limitation. Nevertheless, the very
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F I G U R E 12 Wall component TUD-COMP-4 (A) accumulated damage and crack at the end of the experiment, (B) crack pattern
observed at the end of the experiment

F I G U R E 13 Maximum tensile strain ever reached during the loading history of wall TUD-COMP-4, depicted at the end of the
numerical analysis

localized damage well replicates the experimental outcome. This ability of the model to predict localized patterns, while
predicting the correct base shear capacity, is an improvement compared to other existing continuum models that may
show too distributed crack patterns (e.g., References 18, 24).

3.4 Squat wall TUD-COMP-6

Wall TUD-COMP-6 was a cantilever squat calcium-silicate brick wall (aspect ratio 0.7, same as TUD-COMP-4), with a
precompression load of 0.5 MPa. The maximum and minimum experimental force capacities were 109.8 kN and−109
kN respectively. The wall exhibited brittle shear failure, with cracks running through the wall diagonally. Two to three
parallel step-wise cracks can be observed in Figure 14 for each loading direction. Moreover, brick splitting prevailed at the
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F I G U R E 14 Wall component TUD-COMP-6 (A) accumulated damage and crack at the end of the experiment, (B) crack pattern
observed at the end of the experiment

F I G U R E 15 Comparison of experimental (black) and numerical (red) results of (A) hysteretic response (base shear vs. displacement)
and (B) energy dissipation of squat wall TUD-COMP-6

center and at the toes of the wall. The force capacity gradually reduced with every new cycle, with a final value of 68.1 kN
for an ultimate displacement of 15.4 mm in the positive direction, and a value of −65.6 kN at a displacement of −15.6 mm.

The numerical model slightly underestimated the force capacity, with a maximum of 101.5 kN (−7.6% with respect
to the experimental) and a minimum of −104.1 kN (−4.5%). Similar to component TUD-COMP-4, the peak force capac-
ity was reached in earlier loading cycles and more strength degradation was observed for the numerical model than the
experimental (Figure 15A and Table 3). The maximum and minimum numerical force capacities corresponding to the
maximum and minimum drifts were 53.5 kN (−21.5% underestimation) and−56.1 kN (−14.4% underestimation), while
the total dissipated energy was 17.4% lower than the experimental. In this case, the simultaneous occurrence of diag-
onal shear cracks with crushing/splitting of the bricks, both in the experimental and numerical results, resulted in a
bigger degradation of the unloading/reloading stiffness during the last three loading cycles. This is well-depicted in the
numerical results both in terms of stiffness and strength degradation and energy dissipation, as seen in Figure 15.

Comparing Figures 14 and 16, one can see the similarities in the damage localization. In both cases diagonal cracks
were prevailing, a few were parallel to each other and some wider than others. Even though the maximum tensile strains of
the numerical model (Figure 16) did not follow exactly the same direction as in the experiment, the general crack pattern
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F I G U R E 16 Maximum tensile strain ever reached during the loading history of wall TUD-COMP-6, depicted at the end of the
numerical analysis

was well depicted; even the horizontal sliding along the two horizontal cracks at the top left and right of the wall was
represented in the numerical results (red localization zone in Figure 16). Similar to wall TUD-COMP-4, some asymmetry
is observed in the crack pattern. Apart from the reasons already mentioned for wall TUD-COMP-4, an additional factor
that contributed to the asymmetry observed in this wall is the asymmetrically applied external displacement, which was
slightly higher when loading in the negative direction.

4 DISCUSSION

The comparison between the experimental results and the corresponding numerical predictions shows that the
developed constitutive model estimates with good accuracy the base shear capacity of in-plane loaded masonry walls.
Additionally, it predicts the correct failure mode and leads to very localized cracks, representative of those observed
in the experiments (although the cracks do not perfectly match and their orientation can slightly differ). Compared to
other existing macromodels that use implicit solution procedures the damage localization has improved, since it con-
centrates along few “lines” of elements and is not distributed over many elements, as has been observed in the past
(e.g., References 16, 20, 63). Also in terms of cyclicity, the model seems to perform better than models that assume fully
secant or fully elastic unloading/reloading. The dissipated energy is best estimated in the cases that a combination of
failure mechanisms occurs. Specifically, for walls LOWSTA and TUD-COMP-6 underestimation of 10%–17% is observed,
which could be considered within acceptable limits for macromodels, but for wall TUD-COMP-4 the underestimation is
much bigger. On the other hand, the model overestimated the dissipated energy of HIGSTA. It appears that the numer-
ical estimation is closer to the experimental results when a combination of different failure mechanisms is observed
(flexure and shear for LOWSTA, and shear and crushing for TUD-COMP-6), whereas when only one mechanism is
observed during the experiment (flexure for HIGSTA and pure shear for TUD-COMP-4) the model still predicts some
hybrid mechanism and then is incapable of predicting the precise value. In the case of HIGSTA, the shear cracks that
started developing in the numerical model dissipated more energy than the pure rocking cracks of the experiment. As
for walls TUD-COMP-4 and TUD-COMP-6, during the experiment a major part of the energy was dissipated due to the
shear sliding behavior. Even though the developed model incorporates the ductile energy-absorbing unloading/reloading
behavior in shear, this is limited for cracks with initial orientation between 20–70◦; if a crack forms originally due to flex-
ure, it will always have a brittle behavior with secant unloading and small energy dissipation when unloading/reloading
in tension.
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F I G U R E 17 Location of unconverged steps on the force-displacement curve and the range of their convergence norm for the modeled
walls HIGSTA, LOWSTA, TUD-COMP-4, and TUD-COMP-6

4.1 Numerical stability and convergence

Figure 17 presents the force-displacement curve and the steps that did not converge for each numerical analysis.
The maximum number of iterations was set to 100 with a convergence tolerance of 0.01 for both displacement and
force norms, and, in the case that convergence was not satisfied, the analysis was permitted to continue to the next
step (it is reminded that for convergence either the force or the displacement norm need to be satisfied). The range
of the convergence norm is depicted in different colors. Figure 17 shows therefore not only the number and loca-
tion of the unconverged steps, but also the error in the tolerance, to allow for an easier assessment of the accuracy
of the numerical results. Some of the spikes and oscillations observed in the force-displacement curve coincide with
steps where convergence was not reached, whereas other spikes did not relate with stability issues. Moreover, there
are even some points that would not rise suspicion of instability, but did not converge momentarily. For three out
of the four walls many steps did not reach convergence, but convergence was reached in the following steps. This
was not the case for wall TUD-COMP-4, for which none of the steps on the softening branch converged during the
loading in the positive direction of the last cycle. For most of these steps the norm was lower than 0.03, and the
force-displacement curve does not show evident signs of such numerical instabilities (such as spikes or sudden drops of
capacity).
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F I G U R E 18 (A) detail of crushing (split bricks and mortar joints) at the center of wall TUD-COMP-6, (B) minimum compressive strain
ever reached during the loading history of TUD-COMP-6, depicted at the end of the numerical analysis (scale factor 1)

In general, between 1.5% (TUD-COMP-6) to 7.8% (LOWSTA) of the total number of steps for each analysis had a con-
vergence norm higher than 0.02. These numerical instabilities are probably caused by the internal iterative algorithm
defined to limit the shear strength. As a matter of fact, the recalculation of the principal stresses when the shear stress
exceeds the shear strength can lead to significant changes in the stiffness matrix of the integration point, which conse-
quently creates numerical instabilities in the Newton–Raphson procedure. This issue will be further investigated in future
research.

4.2 Compression nonlinearity of squat wall TUD-COMP-6

During the test performed on specimen TUD-COMP-6, reduction of the force capacity and high energy dissipation were
observed due to compression nonlinearity. This compression nonlinearity physically emerged in the form of crush-
ing of the mortar joints and splitting of the calcium-silicate bricks. This is illustrated in Figures 14B and 18A, where
splitting of the bricks and crumbling of the mortar joints is observed both at the center of the wall (where the com-
pressive struts meet) and alongside the compressive struts towards the bottom corners, with most of the crushing and
splitting observed at the bottom right corner. To examine if the developed model captures adequately this compression



22 SOUSAMLI et al.

F I G U R E 19 Evolution of strains
(
𝜀xx, 𝜀yy, 𝛾xy

)
in global directions (x,y) and principal strains (𝜀1, 𝜀2) at the top right corner of wall

TUD-COMP-6 through its loading history

nonlinearity (cracking and crushing) of masonry, a user status
(
𝛼c,i

)
is defined and set equal to the minimum compres-

sive strain ever reached during the loading history. If the value is smaller than the compressive strain corresponding to
the peak strength, crushing/splitting has occurred.

In the numerical model, as seen in Figure 18B, crushing occurred in the elements along the compressive-shear strut,
but most of it was concentrated at the top of the wall, with only six elements being crushed at the bottom two corners.
The crushing of the top elements would not normally be expected in a cantilever wall and it wasn’t observed in the
experiment either. Lower compressive normal stresses are expected at the bottom of the wall and one would expect that
crushing would first appear there. The top side of the wall was free to rotate and move vertically, but the strong bond
to the steel beam (modeled as infinitely rigid in the numerical model) forced the top face of the wall to have the same
horizontal displacements. In the case of the numerical model, the crushing observed at the top of the wall is due to the
combination of two different factors. First, the lower (in absolute terms) normal compressive stresses 𝜎yy at the top of the
wall led to a lower shear capacity 𝜏max. Due to the assumption of coaxiality and maintenance of 𝜎yy, the values of 𝜎1 and
𝜎2 are recalculated and there is the chance that the compressive principal stress reduces (in absolute value/increases in
relative value) before reaching the peak strength. Lower strength resistance leads then to higher deformations. Secondly,
even though the minimum ever reached compressive strain is smaller than the compressive strain related to crushing, a
major part of the strain is attributed to the shear deformation (𝛾xy) and not only to the normal deformations (𝜀xx, 𝜀yy), as
seen in Figure 19.

It is therefore recommended to check the stress and strain components both in the principal and global directions, to
be able to distinguish if crushing is triggered by the internal shear limitation (and should be therefore ignored) or if it is
due to compressive failure. For failure due to flexure or shear, no additional check is required.

4.3 Mesh sensitivity

Another problem often encountered in standard strain-softening continua is their potential in objectivity with respect to
the mesh size, mesh order and/or mesh direction. Many researchers tackle this sensitivity by including a mesh-adjusted
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F I G U R E 20 Base shear versus horizontal displacement at top for different mesh element size (100, 200, 300 mm) and order (quad for
quadratic vs. linear)

softening modulus: the crack bandwidth or characteristic length.42-44,58,64 In this work, the crack bandwidth is estimated
based on the element area A as: hcrack =

√
A for quadratic elements and hcrack =

√
2A for linear elements.58 In order to

test the sensitivity of the developed model on the mesh size and order, wall TUD-COMP-4 was modeled with elements
of different order (quadratic 3× 3 vs. linear 2× 2) and different size (100, 200, 300 mm). Note that all the analyses were
carried out using the same material properties, solution procedure and convergence criteria as for the model described in
Section 3. However, only one repetition per cycle was applied.

The force-displacement curve and the damage localization (in terms of 𝛼t,1) are presented for the different models
in Figures 20 and 21, respectively. All the models estimated the base shear capacity with good accuracy, with a maxi-
mum deviation of 5.2% between numerical and experimental capacity, and 9% between the maximum and minimum
numerical capacity. Bigger deviations were observed in the postpeak behavior, where the models with quadratic ele-
ments exhibited more softening than those with linear elements. Overall, a maximum difference of 28.7% was observed
in the residual strength between the numerical models, with the linear-300 element and quadratic-200 element exhibit-
ing the minimum and maximum softening, respectively. In terms of crack pattern, all models predicted shear failure
with diagonal cracks, but the crack angle and the point of intersection between the two diagonal cracks differed. Increas-
ing the element size and/or order (quad-200, linear-200, linear-300) resulted in steeper crack angles. This could be
attributed to the coarser mesh that offers less options for the direction of a diagonal crack. Note that a difference is
observed in the crack localization of the wall for the reference elements (quad-100) from the analysis of Section 3,
probably due to the fewer repetitions during the loading procedure and therefore smaller accumulation of permanent
deformations.

4.4 Threshold angle sensitivity

Finally, a small variation of the model was made to investigate how the threshold angle 𝜃fl, which defines the transition
between flexural and shear behavior, influences the global behavior of the walls. Two threshold angles were selected:
𝜃fl = 20◦ which leads to shear behavior for cracking angles between 20–70◦ (original model), and an angle 𝜃fl = 25◦ for
which shear behavior is adopted for cracking angles between 25–65◦. Wall TUD-COMP-4 was modeled with the two dif-
ferent variations and the results are presented in Figures 22 and 23. Both models predicted the base shear capacity with
good accuracy (less than 5% difference) and only minor differences are observed in the postpeak behavior during the last



24 SOUSAMLI et al.

F I G U R E 21 Comparison of maximum tensile strains ever reached during the loading history of wall TUD-COMP-4 in the case of (A)
quadratic elements of 100 mm, (B) quadratic elements of 200 mm, (C) quadratic elements of 300 mm, (D) linear elements of 100 mm, (E)
linear elements of 200 mm, and (F) linear elements of 300 mm

F I G U R E 22 Influence of range of cracking angles associated with shear behavior and failure

cycle. On the other hand, the two analyses return different final crack patterns; although both models present diagonal
shear cracks, a wider range of “shear angles” (20–70◦) leads to steeper angles, more representative of the experiment.
Therefore, the choice of a threshold value of 20◦ (and an angle range of 20–70◦) is considered more appropriate for mod-
eling long shear walls. For walls LOWSTA and HIGSTA, no difference in the numerical results (force-displacement and
crack localization) was observed. This proves that these walls, with smaller aspect ratio, were not influenced by a differ-
ence of ±5◦ since flexure was predominant (for HIGSTA) and/or shear cracks were steeper (LOWSTA). Finally, for wall
TUD-COMP-6 observations similar to those for TUD-COMP-4 were made.
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F I G U R E 23 Comparison of maximum tensile strains ever reached during the loading history of wall TUD-COMP-4 when shear
behavior is adopted for cracking angles between (A) 25–65◦ and (B) 20–70◦

The values of the threshold angle in these examples (between 20 and 30◦) are selected based on observations
on the patterns and crack directions from tests performed by Page39 and on the brick pattern of the modeled
walls. For walls LOWSTA and HIGSTA the angle of perfect step-wise diagonal cracks would be 46.12◦, while for
walls TUD-COMP-4 and TUD-COMP-6 it would be 37.6◦. The adopted threshold angles ensured that shear behav-
ior would be considered for the angle following from the geometrical brick pattern. Whether the proposed values of
the threshold angle are appropriate in the case of bond types other than the stretcher bond considered in the exam-
ples herein should be further investigated, because for such bond patterns different angles of the shear cracks may be
observed.

5 CONCLUSIONS

A new plane-stress orthotropic continuum constitutive model for in-plane behavior of masonry structures was devel-
oped and presented in this article. The model is based on a total-strain formulation, assuming coaxiality of stresses
and strains (rotating crack model). It includes failures in tension, compression, and, indirectly, shear. The postpeak
and the unloading/reloading behaviors for tension depend on the principal strain orientation at the onset of cracking.
Brittle failure with steep softening is assumed for angles that correspond to in-plane flexural failure, whereas ductile
behavior with softening is assumed for angles that correspond to diagonal shear failure. Reduction of the compressive
strength due to lateral cracking is adopted, but the increase of the compressive strength due to lateral compression is
not accounted for. Additionally, the shear failure is included through a shear-limitation algorithm that limits the stresses
based on a Coulomb friction criterion, while maintaining coaxiality between principal stresses and strains and assum-
ing that the confining vertical stress, normal to the bed-joints, remains unchanged. Fifteen input material parameters
are required to define the constitutive equations, derived from standard tests performed perpendicularly and in-parallel
to the bed joints. In future research, the sensitivity of the model to the number of input parameters will be examined
further, and the current plane-stress implementation will be extended to shell elements in order to include out-of-plane
failure.

The model was validated against cyclic experimental tests performed on walls with different aspect ratios, bound-
ary conditions and precompression levels. Good agreement was found between the numerical and experimental results,
especially in terms of base shear capacity (2%–8%) and sharpness of the crack localization. The model was demon-
strated to be able to capture the cyclic hysteretic response in an adequate manner, compared to the performance of
fully secant-driven smeared crack or damage based models, or fully elastic unloading/reloading driven plasticity based
models, as presented in previous works (e.g., References 18,20,22). The energy dissipation was estimated satisfactorily
for walls where a combination of failure modes was observed (flexure and shear cracks, shear and crushing), while
the dissipation was underestimated when only pure shear failure was observed, and overestimated when rocking was
observed. Results were demonstrated to be sufficiently mesh-insensitive. Only small differences were observed in the
prediction of the base shear capacity and crack pattern, while some larger differences occurred in the postpeak regime,
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especially between quadratic and linear elements. Nevertheless, there are aspects of the model that still need to be
improved, such as the numerical stability, which is heavily influenced by the internal iterative shear loop, as well as
the underestimation of the dissipated energy under pure shear. One more aspect that will be investigated further in
the future is the limitation of the compressive capacity due to the internal shear loop that might lead to premature
crushing.

Overall, the proposed cyclic constitutive model predicts the correct failure mechanism and accurately computes the
load-displacement behavior and presenting realistic localized crack patterns for both slender and squat walls. This makes
the model an attractive option for the modeling of in-plane unreinforced masonry walls.
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