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Summary
In recent years, computational fluid dynamics (CFD) has become an indispensable design tool across
various industries. It allows engineers to tackle complex fluid dynamics problems that would otherwise
require expensive and time-consuming real-life experiments. For Formula 1 teams, who must experi-
ment within very strict time limits in the wind tunnel and on track, the ability to simulate airflow around
their race cars under various conditions is crucial for maintaining competitiveness in the fast-paced world
of Formula 1 racing. While several simulation approaches have been developed throughout the last cen-
tury, Reynolds-Averaged Navier-Stokes (RANS) simulations remain the industry standard for simulating
turbulent flows as they allow engineers to conduct simulations more efficiently. However, this efficiency
comes at the expense of simulation accuracy, as RANS is not able to resolve all the different scales of
turbulence and is thus characterized by different levels of uncertainties.

Recent advances in data-driven RANS turbulence modeling have enabled the partial correction of these
uncertainties in RANS simulations. However, obtaining a correction that is generalizable under different
geometries and flow conditions remains a challenge. Furthermore, turbulence models are calibrated to
fit canonical flow regimes, and thus correcting these models in the entire domain leads to a disturbance
in these calibrations, worsening model performance. One solution is to divide the domain into separate
regions based on identifiable physical phenomena and apply local corrections without disturbing the
calibrated regions. For separated flow cases, which are commonly found in Formula 1 race car design,
the most important region is the shear layer as that is where RANS shows the largest discrepancies.

In this thesis, a classifier has been developed to distinguish the shear layer from the rest of the domain
based on the ratio between turbulent kinetic energy production and destruction, as well as turbulence
intensity. Within this classifier region, corrections to the k − ω SST turbulence model are made by ex-
tracting model form errors from high-fidelity data using a technique known as k-corrective-frozen RANS.
These corrections include a residual term R added to both the k and ω equations, and a residual term b∆ij
for the anisotropy of the Reynolds stress tensor. The Spars Regression of Turbulent Stress Anisotropy
(SpaRTA) framework based on elastic-net regularization is applied to regress symbolic expressions for
the corrections, enabling them to be applied to simulations of unseen test cases. To ensure that the
models accurately represent local turbulence behavior, new terms have been constructed from local
flow variables and included in the model expressions.

The models discovered with the SpaRTA framework for the shear layer demonstrate promising results,
notably improving the prediction of separation and reattachment positions. Additionally, the models
have been tested on various geometries and simulations at different Reynolds numbers, demonstrating
a certain level of generalizability. While there is room for further improvement, the thesis shows that
integrating targeted model corrections into RANS simulations, informed by isolated shear layer data,
can notably enhance the understanding and prediction of shear layer dynamics in 2D-separated flows.
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1
Introduction

Turbulent flows are encountered everywhere in nature and engineering but are notoriously hard to model
[1]. Accurate predictions of these flows are vital for many branches of industry and research, especially
for Formula 1 (F1) race car design. Turbulent flows are highly irregular and chaotic, characterized by
regions of intense vorticity [2]. Turbulence develops at high flow velocities when the instabilities which
naturally develop in the flow can no longer be damped out by viscous forces. As an F1 car races
around the track at speeds exceeding 350 km/h, it significantly disturbs the surrounding air, generating
a turbulent airflow as illustrated in Figure 1.1. This turbulence directly impacts the two primary forces that
automotive engineers focus on controlling in high-performance racing car design: drag and downforce.

Drag is the aerodynamic force that opposes the direction of motion of the car. Higher levels of drag are
equivalent to increased air resistance, which can significantly reduce the car’s speed on the straights.
This increase in drag is countered by an increase in thrust provided by the engine, however, this has a
direct effect on fuel efficiency and costs. Downforce, on the other hand, is the aerodynamic force that
pushes the car into the track, increasing tire grip and improving cornering speeds [3]. It is generated by
various aerodynamic elements on the car, such as front and rear wings, diffusers, and the car’s floor,
which exploit the airflow to create a pressure difference between the top and bottom surfaces of the car
[4].

There are two types of drag forces: friction drag, and pressure drag which is formally referred to as form
drag. Friction drag arises from viscous shear forces that act tangentially to the car’s surface. As the air
travels over the surface, a thin layer of fluid known as the boundary layer forms where these viscous
shear forces dominate, slowing down the air from its free-stream velocity to zero at the surface.

Figure 1.1: In this sketch, the simplified airflow distribution around an F1 car is depicted. Downforce arises as the pressure on
the car’s upper surface exceeds that on the lower surface. Friction drag occurs when airflow makes direct contact with the car’s
surface, while pressure drag results from flow separation, leading to the formation of turbulent wakes behind the car.
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These velocity changes create high-velocity gradients, leading to the development of viscous shear
forces. Figure 1.2a depicts a laminar boundary layer transitioning to turbulence. The turbulent boundary
layer is much thicker, and its near-surface velocity gradients are higher, resulting in increased shear
stress and overall friction drag compared to laminar flow.

Form drag arises from the pressure imbalance caused by flow separation from the car’s surface. Figure
1.2b illustrates the changes in a boundary layer following a downward surface curvature. This curvature
induces flow expansion, reducing flow velocity while increasing pressure. As depicted in this figure, the
pressure at the end of the domain P2 exceeds that at the beginning P1, resulting in an adverse pres-
sure gradient opposing the flow’s motion. Flow separation initiates at the point where the wall shear
forces diminish to zero, allowing for the development of reverse flow, as evidenced by the inverted ve-
locity profiles and streamlines. As previously discussed, the velocity gradients in a laminar boundary
layer are smaller than those in a turbulent boundary layer, enabling turbulent boundary layers to remain
attached for longer periods. The changes in pressure distribution during flow separation affect the lev-
els of downforce, potentially compromising the car’s stability. Therefore, a thorough understanding of
turbulent airflow behavior around an F1 car is crucial for designing a high-performance vehicle.

(a) Changes in mean flow velocity profiles during the transition of a
laminar boundary layer to a fully turbulent boundary layer.

(b) Changes in mean flow velocity profiles of a boundary layer
separating from a surface under an adverse pressure gradient.

Figure 1.2: Boundary layer behavior: transition to turbulence and separation under an adverse pressure gradient.

Analyzing the airflow around the car can be achieved through experimental methods in wind tunnels and
on the track, as depicted in Figure 1.3. However, the sport’s governing body, known as the FIA, has
implemented strict time constraints on wind tunnel usage and on-track testing in the last several years
[5], prompting teams to heavily rely on computational fluid dynamics (CFD) software to simulate flow
behavior around their cars. CFD simulations are based on numerically solving the Navier-Stokes and
continuity equations, a set of partial differential equations that describe momentum and mass conserva-
tion in a flow in 3D space and time. There are three main approaches available for simulating turbulent
flow based on these equations: Direct Numerical Simulations (DNS), Large Eddy Simulations (LES),
and Reynolds-Averaged Navier-Stokes (RANS) simulations.

(a) Flow-vis is a fluorescent powder mixed with oil, painted on F1 cars
to visualize airflow patterns during on-track testing [6]. (b)Wind tunnel testing on a miniature car model [7].

Figure 1.3: Experimental tools to investigate airflow behavior around an F1 car.

DNS simulations involve resolving all scales of turbulence, which requires the discretization of the Navier-
Stokes equations in 3D space and time using a very fine grid and simulating with a very small time
step. This makes DNS simulations extremely computationally intensive. For instance, it would take
approximately 1.3 years for a supercomputer to complete a full DNS simulation of a 4.6 m long Toyota
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Prius driving on the highway at 120 km/h, as detailed in [8]. Due to this high computational cost, DNS
simulations are not used in industry. Instead, they serve primarily as a research tool for validating other,
less computationally expensive, methods of simulating turbulence (LES and RANS).

LES simulations are slightly less accurate than DNS simulations because they use a pre-defined filter
to remove the smallest scales of turbulence from the simulation, focusing only on resolving the large
scales in 3D space and time. The smaller scales are instead modeled using statistical methods typically
defined in terms of the size of the numerical grid [2]. This makes LES simulations less computationally
intensive than DNS. However, LES still requires solving the filtered Navier-Stokes equations in both time
and 3D space, which results in a computational cost that is often considered too high for an F1 team.

RANS simulations represent the cheapest and fastest method for simulating turbulence. In RANS sim-
ulations, the Navier-Stokes equations are averaged, allowing for the analysis of flows in terms of their
mean flow characteristics. However, this averaging procedure introduces several approximations and
results in the loss of information regarding the different scales of turbulence [2]. Due to these approxi-
mations, RANS simulations are inherently less accurate than LES and DNS simulations. Despite these
challenges, RANS simulations remain the preferred method for F1 teams, and much of the current
research in turbulence modeling focuses on minimizing uncertainties inherent in these simulations to
achieve more accurate flow predictions.

The time-averaged, incompressible RANS equations are formulated as follows:

ρ
∂Ui

∂t
+ ρUj

∂Ui

∂xj
= − ∂p

∂xi
+

∂

∂xj
(2µSij − ρu′

ju
′
i) (1.1)

where U denotes the mean flow velocity, ρ the density, p the pressure, µ the dynamic viscosity, Sij the
mean strain rate, and u′

ju
′
i the fluctuating velocity tensor which is often referred to as the Reynolds-stress

tensor τij = ρu′
ju

′
i. The Reynolds-stress tensor quantifies the additional stress introduced by turbulent

fluctuations in the flow. Since the RANS equations lack equations to solve for these fluctuating velocity
components, closing the RANS equations requires additional approximations and model equations. Ac-
cording to Duraisamy et al.’s RANS uncertainty classification [9], this lack of closure and the associated
loss of information is classified as a level 1 (L1) uncertainty.

The subsequent level of uncertainty L2 arises from model-form errors in approximating the Reynolds-
stress tensor. This uncertainty can be understood by examining the most prevalent class of turbulence
models, commonly known as Linear Eddy Viscosity Models (LEVMs), which rely on the Boussinesq
hypothesis to approximate the Reynolds-stress tensor. This hypothesis expresses this tensor as being
linearly related to the mean strain rate through an eddy viscosity term:

τij = 2µtSij −
2

3
ρkδij (1.2)

where µt is the eddy viscosity and k is the turbulent kinetic energy. The formulation of the Reynolds-
stress tensor thus requires additional model equations to solve for µt and k. These model equations
typically vary depending on the type of turbulence models being used. In the F1 industry, as well as in
other branches of automotive and aerospace design, the most commonly used LEVM is the k − ω SST
model. This model equates the eddy viscosity to a ratio between k and ω (the specific rate of dissipation
of k) and solves two partial differential equations, one for each of these quantities. This introduces L3
uncertainties arising from model-form errors in these partial differential equations. The final level of
uncertainty, L4, pertains to uncertainties in the model coefficients used to close the k and ω equations.

In recent years, a new field of research known as Data-Driven Turbulence Modeling has developed as a
response to the efforts made in discovering new and improved RANSmodels or calibrating existing ones
to enhance their accuracy in predicting complex flows. This area of study focuses on applying Machine
Learning (ML) tools, which are effective at handling large datasets and revealing complex underlying
patterns, to help improve RANS predictions of turbulent flows [10][11].

The earliest data-driven RANS studies focused on addressing L2 uncertainties. Emory et al. approached
this by perturbing the Reynolds-stress tensor [12] . This method involves dividing the flow field into
regions where the RANS model performs well and regions where it does not. In the latter regions,
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a certain level of uncertainty is injected into the anisotropic component of the Reynolds-stress tensor,
after which the system is monitored for biases in the flow predictions.

Platteeuw et al. used a similar, though less intrusive, approach to address the L4 uncertainties [13].
Instead of directly perturbing the Reynolds-stress tensor, they treated the coefficients of the LEVM as
variables that could vary within specified ranges with certain probabilities. This introduced a proba-
bilistic element into the modeling process, allowing for the consideration of uncertainty in the model’s
predictions. Cheung et al. continued the efforts to address L4 uncertainties by introducing Bayesian
uncertainty quantification methods [14] . They demonstrated this method by re-calibrating the model
coefficients of the Spalart-Allmaras model for boundary layers under three different types of pressure
gradients: favorable, zero, and adverse. Using the same Bayesian framework, Edeling et al. proved
that there do not seem to be universal values for the closure coefficients of turbulence models [15]. In
their study, Edeling et al. re-calibrated the model coefficients of the k − ϵ turbulence model for 13 very
similar cases involving a flat-plate boundary layer under different pressure gradients. They found that
the optimal values for the model coefficients differed for each case.

The study by Duraisamy et al. introduced a novel method known as Field Inversion Machine Learning
(FIML) to address the L3 uncertainties in RANSmodeling [9]. FIML applies supervised machine learning
methods to infer information about the model-form error in LEVMs from high-fidelity simulation data
sources such as LES and DNS. ML techniques are then used to reconstruct this model-form error in
terms of flow variables that are available during RANS simulations.

Building upon the FIML framework, subsequent studies focused on advancing the ML methods used to
learn the inferred corrections from high-fidelity data. Ling and Templeton introduced a neural network
architecture known as the Tensor Basis Neural Network (TBNN) [16]. Their method involves modifying
the formulation of the Reynolds-stress anisotropy by applying the extended eddy viscosity hypothesis
proposed by Pope [17]. This modification leads to the derivation of Explicit Algebraic Reynolds Stress
Models (EARSM), which serve as nonlinear extensions of LEVMs. EARSMs are based on a minimal
integrity basis derived by projecting the Reynolds-stress anisotropy onto a set of tensorial polynomials
[10]. The TBNN architecture is designed to maintain Galilean and rotational invariance, ensuring that
the derived EARSM models can be effectively applied to different flow scenarios. This novel approach
represents a significant advancement in Data-Driven RANS modeling, offering improved accuracy and
robustness across different flow scenarios.

While ML methods like TBNNs offer flexibility in learning turbulence model corrections from high-fidelity
data, they are not based on physically interpretable expressions for these corrections [10]. Relating
them to physical observations thus becomes very difficult. Moreover, implementing these methods in
CFD solvers, typically written in languages like C++ or Fortran, can be challenging because ML is pre-
dominantly performed in Python. To overcome these challenges, several studies have concentrated on
developing approaches to infer model expressions for EARSMs that are straightforward to implement in
solvers and have physical interpretability, directly from high-fidelity LES or DNS data.

One such approach is non-deterministic Gene Expression Programming (GEP), as outlined inWeatheritt
and Sandberg’s study [18]. Another method, demonstrated by Schmelzer et al., is deterministic symbolic
regression [19]. This approach employs SpaRTA (Sparse Regression of Turbulent Stress Anisotropy),
a sparsity-promoting regression technique that directs the search for model equations towards sparse
algebraic expression. SpaRTA not only focuses on regressing model-form errors in the Reynolds-stress
anisotropy but also aims to derive algebraic expressions for the model-form errors in turbulence model
equations, thereby addressing both L2 and L3 uncertainties.

Kay Hoefnagel’s Master’s thesis at the TU Delft Aerodynamics Department focused on extending, val-
idating, and analyzing SpaRTA’s capability to discover universal model corrections for the k − ω SST
model [8]. His research highlighted a significant challenge in Data-Driven RANS modeling: the correc-
tions inferred can be non-local, meaning they may modify RANS turbulence models even in regions
where these models have been finely tuned to accurately predict flow behavior, such as the boundary
layer [10]. Moreover, these corrections, derived by regressing model equations on the full-field high-
fidelity data, often fail to generalize effectively across different flow cases, often leading to convergence
issues during simulations.

To address this issue, one approach is to derive and apply corrections selectively in regions where the
RANS model performs poorly. This method entails inferring corrections from high-fidelity data specific
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to the region of interest and activating these corrections only within that region during simulation. Im-
plementing this approach requires developing a classifier capable of identifying areas with significant
uncertainty, where corrections are necessary. By employing such a classifier, the amount of data used
for regression can be significantly reduced, as it avoids training on parts of the domain where corrections
are unnecessary, such as the boundary layer or the free stream. Ultimately, activating corrections only
in regions where they are needed helps preserve the integrity of the well-predicted areas of the RANS
model, thereby maintaining the accuracy of predictions in the full computation domain.

In F1 aerodynamic design, RANS often fails to accurately predict flow separation. As discussed earlier,
flow separation directly impacts the pressure distribution around the car, influencing both drag and down-
force. Therefore, accurately identifying the location of flow separation and subsequent reattachment is
crucial in CFD simulations of F1 race cars. The k − ω SST model, widely used by F1 aerodynamics
teams, tends to underestimate turbulent shear stress in the separated shear layer that forms when the
boundary layer detaches from the car’s surface. This underestimation leads to an exaggerated recir-
culation region and delayed reattachment location, which are essential for precise computation of drag
and downforce. Correcting these RANS simulations of flow separation presents a significant challenge
because any corrections must be applied without disturbing the boundary layer, where the RANS model
is already well-calibrated, to avoid introducing new inaccuracies.

Therefore, this study aims to develop a classifier capable of distinguishing the shear layer from the rest of
the flow domain and apply the SpaRTA methodology to infer symbolic model equations for the Reynolds-
stress tensor and model-form errors in the k−ω SST model. The overarching goal is to discover model
equations that can account for the missing shear layer physics that a classical RANS simulation fails
to predict. This means that the classifier and model equations should be generalizable for changes in
domain geometries and flow velocities. The SpaRTA training will concentrate solely on data obtained
from the shear layer, simplifying the complexity of the regression problem by reducing the volume of data
to be fitted. Based on this overarching aim, the research questions stated below have been formulated.

Thesis Research Questions

Main Question: Can the understanding and prediction of shear layer dynamics in 2D-separated
flows be improved by incorporating targeted model corrections based on isolated shear layer
data?

Sub-Questions:
1. Can a classifier be constructed for the shear layer and effectively used to activate model

corrections only where necessary?
2. Is the classification consistent across different domain geometries and flow Reynolds num-

bers?
3. Does applying corrections exclusively in the shear layer region result in improved flow pre-

dictions in separated-flow scenarios?
4. Can the SpaRTA framework derive symbolic model expressions that accurately represent

the Reynolds-stress tensor and k − ω SST model-form error in the shear layer?
5. Do the derived model equations yield consistent results for changes in domain geometries

or Reynolds numbers of the flow?
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Theoretical Background

2.1. The Physics of Turbulence
The simplest way to begin understanding turbulence is to observe what happens when water flows
through a pipe, as depicted in Figure 2.1. The leftmost sketch illustrates the smooth, laminar flow of
water in an ideal pipe with completely smooth surfaces.

Figure 2.1: Below the critical Reynolds number (Rec), the flow remains laminar despite natural instabilities that develop in the
flow. Above the critical Reynolds number, these instabilities lead to turbulent flow development within the pipe.

In such a system, even with infinitely high flow velocity, there will be no transition to turbulence. This
underscores a fundamental aspect of turbulence: the presence of natural disturbances or flow instabili-
ties is essential for its existence. In reality, ideal smooth pipes do not exist; instead, the surfaces of real
pipes have a certain degree of roughness and imperfections. As water flows over the surface of these
pipes, small instabilities develop in the flow, as depicted in the middle sketch of Figure 2.1. However,
these small instabilities do not lead to turbulence as long as the viscous forces in the flow — resulting
from friction between fluid layers — are sufficient to dampen their effects.

This introduces the second important aspect of turbulence: turbulence arises only when local viscous
forces, which typically suppress natural disturbances and flow instabilities, are overcome by other forces
acting on the flow, such as inertial forces [2]. The primary criterion for determining whether a flow is
turbulent is the Reynolds number Re:

Re =
ρUl

µ
(2.1)

which depends on the flow density ρ, the dynamic viscosity µ, the flow velocity U and the characteristic
length of the system l. Below a certain Reynolds number known as the critical Reynolds numberRec, the
flow remains laminar even if instabilities develop. The Reynolds number is not universal and therefore
varies from one flow scenario to another. It is usually determined on an empirical basis or derived from
stability theories [2].

6
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The rightmost sketch of Figure 2.1 depicts turbulence as highly irregular and chaotic. The instabilities
that develop act to deform the flow which results in flow regions characterized by high vorticity. The term
eddy, is often used to describe these regions. Eddies require a certain amount of energy to sustain
themselves and thus draw energy from the mean flow. The eddies undergo stretching and elongation
over time as they encounter velocity gradients which ultimately results in them breaking into smaller
eddies. The energy transfer from larger to smaller eddies is usually referred to as the energy cascade.
The energy of the smallest eddies eventually dissipates into heat due to viscous effects [2].

The chaotic nature of turbulence renders it extremely difficult to model. Despite this challenge, numer-
ous efforts over the last few decades have been dedicated to obtaining turbulence models capable of
accurately and consistently representing this natural phenomenon, a topic that will be further explored
in the upcoming sections.

2.2. RANS Turbulence Modelling
1The origins of RANS turbulence modeling can be traced back to the 19th century when Osborne
Reynolds published his famous 1895 work [21] on the Reynolds decomposition approach. This de-
composition can be used to express the instantaneous velocity ui(x, t) of a turbulent flow, as the sum
of a mean velocity component Ui(x) and a fluctuating component u′

i(x, t):

ui(x, t) = Ui(x) + u′
i(x, t) (2.2)

The difference between these two velocity components is visualized in Figure 2.2, which displays a
single axial instantaneous velocity profile across a pipe cross-section and its decomposition into its
mean and fluctuating component. For general engineering applications, the mean velocity holds enough
information to be able to compute quantities of interest such as drag and downforce. To obtain this mean
velocity, the instantaneous velocity profiles need to be averaged out.

Figure 2.2: Diagram depicting the Reynolds decomposition of an instantaneous velocity profile of a turbulent flow across a pipe
cross-section into a mean and fluctuating flow profile. This diagram has been adapted from [2].

Modeling the velocity of any type of flow, whether laminar or turbulent, is achieved by solving a set of
non-linear, second-order partial differential equations known as the Navier-Stokes equations. These
equations describe the conservation of momentum in the flow in 3D space and time. Their formulation
for an incompressible fluid, along with the continuity equation for mass conservation, are given below:

∂ui

∂xi
= 0 (2.3)

1The following explanations have been adapted from Wilcox’s book on Turbulence modeling for CFD [20].
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ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
+

∂tij
∂xj

(2.4)

where the ui is the instantaneous velocity, xi the position, t is the time, p is the pressure, ρ is the density
and tij is the viscous stress tensor.

To obtain only the mean velocity profiles, the Navier-Stokes equations can thus be subjected to Reynolds
decomposition. Reynolds proposed three different approaches to averaging: time, spatial, and ensem-
ble averaging. The turbulent flows generally modeled in engineering applications can be considered as
being statistically stationary. This means that the different statistical quantities that describe the flow,
such as the mean velocity, do not vary very significantly in time. For these types of flow, time averaging
is the preferred type of Reynolds decomposition [20]. The time average FT (x) of an instantaneous flow
variable f(x, t) in such a flow can thus be expressed as:

FT (x) = lim
T→∞

1

T

∫ t+T

t

f(x, t)dt (2.5)

Time averaging the Navier-Stokes equations results in the well-known Reynolds-Averaged Navier-
Stokes (RANS) equations:

ρ
∂Ui

∂t
+ ρUj

∂Ui

∂xj
= − ∂p

∂xi
+

∂

∂xj
(2µSij − ρu′

ju
′
i) (2.6)

Due to the averaging process, these equations have lost a significant amount of information regarding
the turbulent fluctuations present in the flow, leading to the L1 uncertainties often discussed in turbulence
modeling [9]. The term u′

ju
′
i in these equations is known as the Reynolds-stress tensor τij :

τij = u′
ju

′
i (2.7)

This tensor can be physically interpreted as additional stresses acting on the flow as a result of the
turbulent velocity fluctuations. It is symmetric, meaning that τij = τji, and thus has six independent
components. Time averaging the Navier-Stokes equations has therefore introduced six new unknown
quantities. With only 4 available equations, the system of equations lacks closure, and additional equa-
tions are required to solve for these unknowns [20]. This unresolved aspect is known as the Closure
problem, forming the central challenge around which most RANS turbulence modeling efforts revolve.

In 1877, Joseph Boussinesq proposed his famous eddy-viscosity hypothesis [22], which postulates that
the Reynolds-stress tensor can be related to the mean strain rate Sij , through an eddy viscosity term
νt:

τij = 2νtSij (2.8)

This hypothesis essentially assumes that turbulent stresses can be modeled similarly to molecular vis-
cosity [20]. The assumptions made in modeling the Reynolds-stress tensor are the source of the L2
uncertainties in RANS turbulence modeling.

Attempting to derive a functional expression for νt became the primary focus of the turbulence community
in the years following Boussinesq’s study. This pursuit has resulted in the development of several turbu-
lence models, which can be categorized into four main types: algebraic models, one-equation models,
two-equation models, and second-order closure models.

2.3. The Development of the k − ω SST Turbulence Model
The turbulence model used throughout this study is the k − ω SST model, a two-equation model first
introduced by Menter in 1994 [23]. The following sections will describe the development efforts behind
this model, its performance, and the approaches used in this study to address its inconsistencies.2

2A large part of the explanation in the following sections has been adapted from Wilcox’s book on Turbulence Modelling for
CFD [20] and Menter’s original paper presenting the k − ω SST model [23].
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2.3.1. The Turbulent Kinetic Energy Transport Equation
Two-equation models are all based on the following two main concepts: the Boussinesq approximation
of the Reynolds-stress tensor and the kinetic energy per unit mass of the turbulent fluctuations, referred
to as the turbulent kinetic energy k. These models use k to compute νt, as will be later shown in this
section. The transport of k in the flow is defined as follows:

k =
1

2
u′
iu

′
i =

1

2
(u′2 + v′2 + w′2) (2.9)

Based on the above formulation, it is very clear that k can be directly computed from the trace of the
Reynolds-stress tensor: τii = −ρu′

iu
′
i = −2ρk. Since the trace of the mean strain rate for an incom-

pressible flow is equal to zero (Sii = 0), the expression of the Reynolds-stress tensor given in equation
(2.8) needs to be modified so that when Sii = 0, τii = −2ρk. This leads to the standard formulation of
the Reynolds-stress tensor used by two-equation turbulence models:

τij = 2µtSij −
2

3
ρkδij (2.10)

The transport equation of k is formulated in the following way for an incompressible flow:

ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= τij

∂Ui

∂xj
− ρϵ+

∂

∂xj

[
µ
∂k

∂xj
− 1

2
ρu′

iu
′
iu

′
j − p′u′

j

]
(2.11)

The two terms on the left-hand side of this equation describe the rate of change of k over time and its
convection in the flow. The first term on the right-hand side of the equation is known as the production
of k which describes the rate at which the kinetic energy of the mean flow is transferred into turbulent
kinetic energy. The subsequent right-hand side term is known as the dissipation of k. This dissipation
accounts for the loss of turbulent kinetic energy as it converts into thermal internal energy [20]. The third
term is made up of three components. The first one is the molecular diffusion term, which describes
the diffusion of k due to natural molecular transport in the flow. The second term is a triple velocity
correlation known as the turbulent transport term, which describes the transport of k due to turbulent
fluctuations in the flow. The last term is the pressure diffusion term, which describes the transport of k
due to the correlation between pressure and velocity fluctuations in the flow [20]. The quantity ϵ, which
account for the dissipation of k, is defined as follows:

ϵ = ν
∂u′

i

∂xk

∂u′
i

∂xk
(2.12)

Closing the k transport equation is challenging as the dissipation, turbulent transport, and pressure dif-
fusion all depend upon fluctuating velocity components. Since finding an approximation for the pressure
diffusion term turns out to be very challenging, the solution found by the turbulence modeling community
is to group this term with the turbulent transport term, so that the sum of the two is assumed to behave
as a gradient-transport process [20]:

1

2
ρu′

iu
′
iu

′
j − p′u′

j = σkµt
∂k

∂xj
(2.13)

The final form of the transport equation for k for an incompressible flow is given below:

ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= τij

∂Ui

∂xj
− ρϵ+

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.14)

where σk is a closure coefficient which is assumed to be constant. The only quantity that remains unre-
solved is the dissipation term ϵ. The search for a functional expression for ϵ gave rise to the development
of various two-equation models, as will be further clarified in the subsequent sections. The modeling
assumptions made to determine this final formulation of the above k equation and the model equation
for ϵ are the source of the L3 uncertainties in RANS turbulence modeling.
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2.3.2. The k − ω Model
The k − ω model, proposed in 1942 by Kolmogorov, is the first two-equation model ever developed. He
postulated that to compute ϵ and close the k transport equation, one must solve a second transport equa-
tion for a quantity known as the specific dissipation rate, ω. It is not entirely clear how he derived this
quantity, however, in his book on Turbulence Modelling for CFD [20], Wilcox argues that he must have
done so through dimensional arguments. The equation that Kolmogorov derived for ω is the following:

ρ
∂ω

∂t
+ ρ

∂(Ujω)

∂xj
= βρω2 +

∂

∂xj

[
σµt

∂ω

∂xj

]
(2.15)

where β and σ are closure coefficients. One of the main flaws of this equation is that it lacks a production
term. It is assumed that Kolmogorov omitted this production term because he related ω with the smallest
scales of turbulence, assuming that it has no direct interaction with the mean flow. However, in the
years following the release of the model, it was discovered that it is the largest scales of turbulence that
determine its time scale and its rate of dissipation [20]. The second significant flaw is that the equation
does not account for molecular diffusion. This limitation implies that the equation can only describe high
Reynolds number flows and cannot be integrated through the viscous sub-layer. Therefore, subsequent
developments of the k − ω model focused on addressing these flaws leading to what is considered as
today’s standard version of the k − ω model. This model computes νt as the ratio between k and ω.

k − ω Model

Turbulent Kinetic Energy Equation:

ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= τij

∂Ui

∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.16)

Specific Dissipation Rate Equation:

ρ
∂ω

∂t
+ ρ

∂(Ujω)

∂xj
=

γω

k
τij

∂Ui

∂xj
− βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
(2.17)

Eddy Viscosity Definition:
νt =

k

ω
(2.18)

Model Coefficients:

γ =
5

9
, β =

3

40
, σk = 0.5, σω = 0.5, β∗ = 0.09 (2.19)

Auxiliary Equations:

ϵ = β∗ωk and l =
k1/2

ω
(2.20)

Two important aspects of this model formulation need to be addressed. First, a production term has
been added to the ω equation to account for the deficiency in Kolmogorov’s initial formulation. This term
is directly related to the production term of the k equation. Second, several new model coefficients have
been introduced. These coefficients have been determined based on a combination of dimensional
analysis and experimental observations. Since the methods used to obtain the values of these coeffi-
cients assume homogeneous turbulence and primarily focus on boundary layer physics, these model
coefficients cannot be assumed to be universal and accurately represent every type of turbulent flow.
Uncertainties in these coefficients are the cause of the L4 uncertainties in RANS turbulence modeling.
Finally, the standard formulation of this model can integrate through the viscous sub-layer and therefore
can be used to model both low- and high-Reynolds number flows.

The k − ω model is known to perform very well in describing boundary layers under both favorable and
adverse pressure gradients [24]. Furthermore, due to its simplicity, the k − ω model is superior to the
other two-equationmodels in terms of numerical stability during a simulation. However, this model shows
a strong sensitivity to the free-stream values specified for ω [23]. In terms of modeling boundary layers
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undergoing separation, this free-stream sensitivity has a negative effect on the predictions of separation
and reattachment locations.

2.3.3. The k − ϵ Model
The k − ϵ model is a two-equation model that directly solves a transport equation for ϵ. Therefore,
it has the advantage over the k − ω model of not being sensitive to the free-stream values of ω. The
standard form of the model is the one proposed by Jones and Launder in their 1972 paper [25]. However,
the model coefficients associated with this standard formulation are taken from the study performed by
Launder and Sharma in 1974 [26].

k − ϵ Model

Turbulent Kinetic Energy Equation:

ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= τij

∂Ui

∂xj
− ρϵ+

∂

∂xj

[
(µ+ µt/σk)

∂k

∂xj

]
(2.21)

Dissipation Rate Equation:

∂(ρϵ)

∂t
+

∂(ρUjϵ)

∂xj
= C1

ϵ

k
τij

∂Ui

∂xj
− C2ρ

ϵ2

k
+

∂

∂xj

[
(µ+ µt/σϵ)

∂ϵ

∂xj

]
(2.22)

Eddy Viscosity Definition:
νt = Cµk

2/ϵ (2.23)

Model Coefficients:

σk = 1.0, σϵ = 1.3, C1 = 1.44, C2 = 1.92, Cµ = 0.09 (2.24)

Auxiliary Equations:

ω = ϵ/(Cµk)and l = Cµk
3/2/ϵ (2.25)

The above model formulation is often referred to as the high-Reynolds number formulation as it does
not provide integration through to the viscous sub-layer. Therefore, a low-Reynolds number formulation
has been developed, which essentially dampens the C1, C2, and Cµ coefficients close to the wall. The
damping functions, as proposed by Launder and Sharma, are formulated as follows:

f1 = 1, f2 = 1− 0.3 exp(−Re2T ), fµ = exp

(
−3.4

(1 + (ReT /50)2

)
(2.26)

where ReT is the turbulence Reynolds number. ReT is small within the viscous sub-layer, where viscous
effects are predominant, and it increases away from the wall. Consequently, these damping functions
all approach one in the free stream, restoring the high-Reynolds number formulation. The damping
function f1 is equal to one, as Launder and Jones observed no significant improvement with a damping
function for C1, which is used to calculate the production term in the dissipation rate equation. The
damping function fµ decreases the turbulent viscosity µt, allowing the laminar viscosity µ to dominate
in the viscous sub-layer. Lastly, f2 decreases the dissipation of ϵ near the wall, thereby increasing the
dissipation of k in that region. The model coefficients of the k− ϵmodel and the damping functions were
determined using a combination of dimensional analysis and experimental investigations.

The k−ϵmodel offers the advantage of not having a free-stream sensitivity like the k−ωmodel. However,
it remains inaccurate for adverse pressure gradient flows as shown by the study of Wilcox [27] and that
of Rodi and Scheuerer [28]. Additionally, it relies on damping functions to integrate through the viscous
sub-layer, which introduces additional modeling uncertainties.

2.3.4. The k − ω SST Model
The k − ω SST model, where SST stands for Shear Stress Transport, was proposed by Menter in 1994
[23]. This model is a combination of the k − ϵ and k − ω models. It takes advantage of the free-stream
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insensitivity of the k − ϵ model and the superior performance of the k − ω model in describing the
behavior of boundary layers under adverse pressure gradients, as well as its ability to integrate through
the viscous sub-layer without relying on damping functions. The k − ω SST model differentiates itself
from the other two-equation turbulence models by accounting for the transport of turbulent shear stress,
the significance of which will be further clarified below.

The k − ω SST model has been designed to incorporate the k − ω model formulation, as described in
Section 2.3.2, within the viscous sub-layer and the log-layer. On the other hand, it relies on the standard
high-Reynolds number formulation of the k − ϵ model, as outlined in Section 2.3.3, in the outer wake
region of boundary layers and free shear layers [23]. It is important to note that the k − ϵ model is
re-expressed into a k − ω model formulation before it is used to obtain the final form of the k − ω SST
model. This ensures consistency and compatibility between the formulations. This transformation is
achieved by starting with the k − ω model formulation and defining ϵ = β ∗ ωk, leading to the following
re-expression of the k − ϵ model:

ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= τij

∂Ui

∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σk2µt)

∂k

∂xj

]
(2.27)

ρ
∂ω

∂t
+ ρ

∂(Ujω)

∂xj
=

γ2
νt

τij
∂Ui

∂xj
− β2ρω

2 +
∂

∂xj

[
(µ+ σω2µt)

∂ω

∂xj

]
+ 2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
(2.28)

This reformulation leads to an additional term on the right-hand side of the ω equation, referred to as the
cross-diffusion term. This term serves as the distinguishing factor between the free-stream sensitivity
of the k − ϵ and k − ω models. A study led by Menter in [29] found that introducing the cross-diffusion
term into the k − ω model can eliminate its free-stream sensitivity. However, it is important to note that
including this term renders the k − ω model formally identical to the k − ϵ model, thereby removing its
ability to accurately predict the behavior of boundary layers under adverse pressure gradients. This
highlights the advantage of the k−ω SST model, which preserves the k−ω formulation in the near-wall
region while exploiting the free-stream insensitivity of the k − ϵ model.

The formulation of the k − ω SST model provided below is based on the version presented in Menter’s
2003 paper [30]. Several features of this model need to be addressed. First, a limiter for the production
term of the k equations is used to prevent the build-up of turbulence in regions where flow is stagnant [30].
Second, there is an eddy viscosity limiter as seen in equation (2.31). Menter introduced this to better
capture the effects of turbulent shear stress transport. The eddy viscosity limiter is based on Bradshaw’s
observations that the turbulent shear stress is proportional to k in the wake region of boundary layers
[31].

The classical formulation of the eddy viscosity in two-equation models (νt = k/ω) does not take this
proportionality into account. Therefore, the standard k−ω model which can accurately predict the eddy
viscosity in the log-layer region of the boundary layer, ends up overestimating this quantity in the outer
wake of the boundary layer [23]. This overestimation leads to an overprediction of turbulent shear stress
and results in premature predictions of the flow reattachment locations.
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k − ω SST Model

Turbulent Kinetic Energy Equation:

ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= P̂k − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.29)

Specific Dissipation Rate Equation:

ρ
∂ω

∂t
+ ρ

∂(Ujω)

∂xj
=

γ

νt
P̂k − βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2ρ(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(2.30)

Eddy Viscosity Definition:
νt =

a1k

max (a1ω, SF2)
(2.31)

Model Coefficients:
Let Φ1 represent the coefficients in the k−ω model and Φ2 those in the transformed k− ϵ model.
The coefficients Φ in the k − ω SST model are found from : Φ = F1Φ1 + (1− F1)Φ2.

The Φ1 set of coefficients:

σk1 = 0.85, σω1 = 0.5, β1 = 0.0750, β∗ = 0.09, γ1 = 5/9 (2.32)

The Φ2 set of coefficients:

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828, β∗ = 0.09, γ2 = 0.44 (2.33)

Auxiliary Equations:

P̂k = min

(
τij

∂Ui

∂xj
, 10β∗kω

)
(2.34)

F1 = tanh (arg41) where arg1 = min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,
4ρσω2

k

CDkωy2

]
(2.35)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−20

)
(2.36)

F2 = tanh (arg22) where arg2 = max

(
2
√
k

β∗ωy
,
500ν

y2ω

)
(2.37)

To satisfy Bradshaw’s observations, the limiter introduced in the eddy viscosity formulation of the k − ω
SST model restricts the eddy viscosity, limiting the turbulent shear stress in the wake region. In this new
eddy viscosity formulation, as given in equation (2.31), F2 is a blending function which is zero for free
shear flows and one for boundary layer flows.

The F2 blending function shares a similar structure with the F1 blending function, which is used in tran-
sitioning between the k−ω and k− ϵ formulations within the k−ω SST model. The F1 function is equal
to one in the viscous sub-layer and log-layer, and zero in the wake region of the boundary layer. In
equation (2.35), as the wall distance y increases the terms tend toward zero which effectively makes F1

equal to zero far away from the wall.

Despite significant improvements over other two-equation models [30], the k − ω SST model is not in-
fallible and does not achieve 100% accuracy for every flow scenario. Specifically, in adverse pressure
gradient flows, it tends to underestimate the turbulent shear stress in the separated shear layer formed
after boundary layer detachment from the surface, leading to a delayed prediction of the flow reattach-
ment location [32].
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2.4. Extracting Model-Form Errors of RANS Equations
L1 uncertainties in RANS turbulence modeling are inherent in the derivation of the RANS equations, so
turbulence modeling efforts typically concentrate on addressing the other three levels of uncertainties.
As previously discussed, L4 uncertainties arise due to errors in the estimation of the turbulence model
closure coefficients. Since these coefficients are calibrated for specific flow regions, tuning them to fit
experimental results must be done only in certain regions of the flow domain. With each turbulence
model having multiple coefficients, tuning their values becomes challenging and highly case-specific.
Consequently, most data-driven turbulence modeling efforts have focused on addressing only L2 and
L3 uncertainties, which is also the focus of this study. The first step in correcting for these uncertainties is
to extract the model-form error in the Reynolds-stress tensor and the k−ω SST model from high-fidelity
data (LES or DNS simulation data). To achieve this, the methodology proposed by Schmelzer et al. is
applied [19].

As previously discussed, the Reynolds-stress tensor τij based on the Boussinesq approximation is for-
mulated in the following way:

τij = 2k

(
bij +

1

3
δij

)
(2.38)

where bij = − νt

k Sij . This tensor can be decomposed into an anisotropic component aij = 2kbij and an
isotropic component 2

3kδij . Only aij is effective in capturing the momentum transport in different flow
directions, as the isotropic component is absorbed in a modified mean pressure and is thus responsible
for the pressure-like behavior of turbulence [19].

To identify the model-form errors, residuals are computed between the predictions of the original k − ω
SST turbulence model (referred to as the Baseline model) and the high-fidelity data (HF). This high-
fidelity data contains values for the mean velocity field UHF , the Reynolds-stress tensor τij,HF , and the
turbulent kinetic energy kHF . Since only the anisotropic part of the Reynolds-stress tensor is expected
to differ between τij,HF and the τij formulation under the Boussinesq approximation, one can compute a
b∆ij residual. To compute this residual, first aij,HF and aij,Boussinesq are computed given the high fidelity
data:

aij,HF = τij,HF − 2

3
δijkHF , aij,Boussinesq = 2kbij,Boussinesq = −2νtSij (2.39)

The residual between the two can be found from: a∆ij = aij,HF − aij,Boussinesq, so that b∆ij =
a∆
ij

2kHF
.

Therefore in the augmented model, bij now equals:

bij = −νt
k
Sij + b∆ij (2.40)

To calculate this augmented form of bij , the eddy viscosity νt needs to be computed. The k − ω SST
model computes the eddy viscosity according to equation (2.31), which requires both k and ω to be
known. While k is available from the high-fidelity data, ω is not. Therefore, to obtain ω, an approach
known as k-corrective frozen-RANS is used. This approach iteratively solves the ω turbulence model
equation while all the remaining variables are frozen. Since the production term of the ω equation is
based on the production term of the k equation, which is now altered due to the augmented bij equation,
and there still exists a model-form error in the k equation that is not addressed solely by correcting the
model-form error of the Reynolds-stress tensor, the residual of the k equation is also computed. This
residual is equivalent to an additive correction term defined as R in both the ω and k equations. This
leads to the Augmented k − ω SST model formulation stated below.

To ensure that the R and b∆ij correction fields obtained through the k-corrective frozen RANS approach
effectively address the L2 and L3 RANS uncertainties, they are implemented in a simulation where the
Augmented k − ω SST model is executed using these fields. This validation procedure is referred to as
a Propagation simulation. If these fields are valid, the simulation should be able to achieve an almost
perfect reconstruction of the high-fidelity data fields.
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Augumented k − ω SST Model

Turbulence Kinetic Energy Equation:

ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= P̂k + σR− β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.41)

Specific Dissipation Rate Equation:

ρ
∂ω

∂t
+ρ

∂(Ujω)

∂xj
=

γ

νt
(P̂k+σR)−βρω2+

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+2ρ(1−F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(2.42)

The production term in the above equations and the Reynolds-stress tensor are augmented by
b∆ij :

P̂k = min
(
−2k

(
bij,Boussinesq + σb∆ij

) ∂Ui

∂xj
, 10β∗ωk

)
(2.43)

τij = 2k

((
bij,Boussinesq + σb∆ij

)
+

1

3
δij

)
(2.44)

The other terms and model coefficients in the above equations are the same as the ones listed
for the k − ω SST Baseline model in Section 2.3.4.

The σ variable in front of the b∆ij and R corrections is used to enable or disable corrections in
different parts of the computational domain. The RITA/TI classifier developed in this study com-
putes values of 1 for σ in the shear layer that forms when flow separates from the surface and
values of 0 everywhere else in the domain. Therefore, this activates the b∆ij and R corrections
only in the shear layer cluster. The RITA/TI classifier is further discussed in Section 4.3.

2.5. Modeling Ansatz for b∆ij and R

The k-corrective frozen RANS approach discussed above provides two correction fields: one for b∆ij and
another for R. However, these correction fields are typically specific to the RANS simulations of the
case from which they were extracted. To make them applicable to other test cases, this study uses
a methodology that involves deriving symbolic model expressions from these correction fields using
deterministic symbolic regression. This process is further elaborated in Section 2.6. To infer these
symbolic model expressions, a modeling ansatz is required.

The modeling ansatz used in this study is a slightly modified version of the approach presented in the
study by Schmelzer et al. [19]. This ansatz is rooted in Pope’s effective-viscosity hypothesis, which
postulates that the anisotropy of the Reynolds-stress tensor is not solely determined by the mean strain
rate tensor, as suggested by Boussinesq, but also depends on the rotation rate tensorΩij [17]. According
to this hypothesis, the most general form of the anisotropic part of the Reynolds-stress tensor can be
expressed as:

bij =

N∑
n=1

T
(n)
ij αn(I1, ..., Im) (2.45)

where T
(n)
ij are nonlinear base tensors and Im are the corresponding invariants. For 2D cases, only the

first three tensors form a linear independent basis and only the first two invariants are nonzero [19]:

T
(1)
ij = Sij , T

(2)
ij = SikΩkj −ΩikSkj , T

(3)
ij = SikSkj −

1

3
δijSmnSnm, I1 = SmnSnm, I2 = ΩmnΩnm

(2.46)

This modeling ansatz is extended to b∆ij with a slight modification: the αn coefficients are not only func-
tions of the invariants but also functions of several input features computed from ratios between different
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flow variables. These features, detailed in Section 4.4, are used to account for the local turbulence char-
acteristics. This modification aims to ensure that the models align more closely with the underlying
physics. All input features, including scalar features, invariants and basis tensors, are computed from
the flow variables of the converged and validated propagated solution. The modified modeling ansatz
is thus formulated as:

b∆ij =

N∑
n=1

T
(n)
ij αn(I1, ..., Im;F1, ...F13) (2.47)

where F = F1, ..., F14 represent the additional scalar features. The aim of the symbolic regression
discussed in section 2.6, is to find functional expressions for the αn coefficients.

The modeling ansatz for R is based on the fact that this correction term acts to locally increase or
decrease the production of k. Therefore, it is modeled in a similar way to the P̂k term in the k model
equation of the Augmented k − ω SST model (see equation (2.43)):

R = 2kbRij
∂Ui

∂xj
(2.48)

which depends on bRij , modeled according to the ansatz proposed above for b∆ij in equation (2.47). Thus,
it takes the following form:

R =

N∑
n=1

G
(n)
ij αn(I1, ..., Im;F1, ...F13) (2.49)

where G
(n)
ij = 2k ∂Ui

∂xj
T

(n)
ij . It is important to note, that ϵ is also used as an extra basis function for the

R field, such that R =
∑N

n=1 αn(I1, ..., Im;F1, ...Fk)ϵ. This was introduced following promising results
obtained in the study of Steiner et al. [33].

2.6. Model Discovery Through SpaRTA
The modeling ansatz of the b∆ij and R correction fields requires a functional expression for the αn coeffi-
cients. The approach used in this study to find these expressions is a deterministic symbolic regression
method known as Sparse Regression of Turbulent Stress Anisotropy, SpaRTA for short. The following
listed methodology behind SpaRTA has been adapted from the study of Schmelzer et al. [19] and Kaj
Hoefnagel’s Master thesis [8].

As can be seen from equation (2.47), the αn coefficients depend on the scalar invariants I and scalar
features F . Therefore, the first step in SpaRTA is to build a library of candidate functions based on
different mathematical combinations of these features and invariants. This is achieved through different
mathematical transformations such as addition, multiplication, etc. The input vector of the library takes
the form of:

B =
[
1, I1, I2, I

2
1 , I

2
2 , ..., F1, F2, F12, F22, ...

]T (2.50)

The final step in constructing the library for regressing models for b∆ij is to multiply each entry in B with
the base tensors T

(n)
ij :

Cb∆
ij
=
[
T

(1)
ij , T

(2)
ij , ..., I22T

(1)
ij , ..., F22T

(1)
ij , ...

]T
(2.51)

The library for regressing models for R is constructed in a similar way:

CR =
[
G

(1)
ij , G

(2)
ij , ..., I22G

(1)
ij , ..., F 2

2G
(1)
ij , ...

]T
(2.52)
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To prevent the size of the library from making the regression very computationally expensive, a combi-
nation of three approaches is used. Firstly, each entry in B is limited to a maximum of two invariants
or input features per term, ensuring that the overall global degree of the library is 2. Secondly, input
features are selected by computing their mutual information (MI) scores with the target of the regression.
Features and invariants with high MI scores, indicating a strong dependency with the target, are retained
in the input feature set, while those with scores close to zero, indicating complete independence, are
discarded. Finally, a technique known as cliqueing is used to further decrease the size of the library.
This method calculates the correlation coefficient between various candidate functions and the target
data. Candidates with a correlation coefficient of at least 0.99 are grouped into cliques, and from each
clique, the simplest algebraic expression is chosen as the representative candidate function. Together,
these methods guarantee that the library maintains a manageable size and remains computationally
efficient [8].

The target data for the regression is obtained from the b∆ij and R correction fields. Since this study fo-
cuses on deriving model equations for these fields specifically in regions where RANS performs poorly—
the shear layer in boundary-layer flows undergoing separation due to adverse pressure gradients— only
data extracted from the shear layer cluster, identified following the method presented in Section 4.3, is
used for the regression. Consequently, the models obtained using this approach are calibrated to fit the
physics of the shear layer and are active only within the shear layer cluster during a simulation. This is
achieved by multiplying the b∆ij and R terms, as presented in the Augmented k−ω SST model in Section
2.4, by a variable σ. This variable takes values of one or zero, depending on whether a point in the
domain is identified by the classifier as being in the shear layer or outside of it, respectively. Multiplying
the model corrections by σ ensures that they are turned off outside of the shear layer cluster.

The linear model used to regress the b∆ij and R target data can be constructed from the linear combina-
tions of candidate functions in the reduced library: R = CRΘR and b∆ij = CbijΘbij , where Θ represents
the αn coefficient vector. A simple least-squares regression would regress very dense coefficient vec-
tors, leading to overly complex model formulations that would overfit the target data. Moreover, due
to a certain level of co-linearity between the candidate functions, the coefficient vector is likely to show
significant differences in magnitudes between its members. This renders the discovered models un-
suitable for CFD solver applications as they increase numerical stiffness and adversely affect solution
convergence [19].

In SpaRTA, the regression approach of choice is elastic-net regression, which effectively addresses the
challenges associated with constructing linear models for b∆ij andR. Elastic-net regression combines the
strengths of Lasso (based on the l1-norm) and Ridge (based on the l2-norm) regularization techniques.
The formulation of elastic-net regression involves two key parameters: the mixing parameter a and the
regularization weight λ. These parameters play crucial roles in promoting sparsity and reducing the
magnitude of coefficient values in the coefficient vector. The regression problem is formulated in the
following way:

Θ = arg min∥C∆Θ̂−∆∥22
Θ̂

+ λa∥Θ̂∥1 + 0.5λ(1− a)∥Θ̂∥22 (2.53)

Lasso regression encourages sparsity by allowing only a few nonzero coefficients and shrinking the rest
to zero. On the other hand, Ridge regression enforces small coefficients without setting them to zero,
thus identifying correlated candidate functions instead of selecting just one. By combining Lasso and
Ridge regularization in elastic-net regression, SpaRTA strikes a balance between sparsity and model
complexity. This approach ensures that the discovered models remain parsimonious while capturing
the essential relationships in the data. Consequently, the resulting models are well-suited for integration
into CFD solvers, as they do not introduce numerical stiffness issues and are less prone to overfitting,
thereby enhancing solution convergence and stability.

The mixing parameter a controls the balance between Lasso and Ridge regularization. A value of a = 1
corresponds to pure Lasso regression, while a = 0 corresponds to pure Ridge regression. Intermedi-
ate values of a allow for a combination of both regularization techniques, offering flexibility in handling
collinear features and promoting sparsity. The regularization weight λ controls the overall strength of
regularization applied to the model. A higher value of λ leads to more aggressive regularization, resulting
in simpler models with smaller coefficient values. Conversely, a lower value of λ relaxes the regulariza-
tion, allowing the model to capture more intricate relationships in the data. In this study, various λ and
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a values have been tested to ensure a comprehensive usage of different regularization types.

The regression process generates a series of models based on the candidate functions found in the
coefficient vector. To assess the significance of each candidate independently of its magnitude during
model selection, all candidates undergo standardization before elastic-net regression. However, an
additional step is required to ensure the models have appropriate units. This involves applying Ridge
regression using the original, unstandardized candidate functions. Ridge regression helps maintain
small refit coefficients, thereby improving stability in the CFD solver. This step, referred to as model
inference, is essential for preserving the physical interpretability of the models and ensuring they align
with the units of the variables in the CFD simulations [19].

The final models obtained for R and b∆ij are tested a-posteriori in the CFD solver to assess their true
performance. While some models may exhibit high R2 regression scores, their behavior in a flow sim-
ulation and their generalizability cannot be guaranteed solely based on regression metrics. Therefore,
subjecting the models to actual flow simulations provides crucial insights into their performance under
realistic conditions and their ability to generalize beyond the training data.

2.7. Comparison Tools Between Baseline and Augmented RANS
To compare the performance of the Baseline RANS with that of the high-fidelity data and the Augmented
RANS based on the R and b∆ij symbolic models identified using SpaRTA, various flow variables, and
derived quantities are examined:

1. Skin friction coefficient Cf : The skin friction coefficient is defined as the ratio of the shear stress
at the wall to the dynamic pressure of the free stream flow. It provides information about flow
separation and reattachment. A drop to zero in Cf indicates the onset of flow separation, while its
return to zero indicates flow reattachment. It is computed according to the following formula:

Cf =
τw

1
2ρ∞v2∞

(2.54)

where τw is the wall shear stress, ρ∞ is the density of the free stream and v∞ is the free stream
velocity.

2. Pressure coefficient Cp: This coefficient describes the pressure distribution over a surface, pro-
viding insights into areas of flow acceleration or deceleration. It is calculated using the following
formulation:

Cp =
p− p∞
1
2ρ∞v2∞

(2.55)

where p is the pressure at the surface and p∞ is the free stream pressure.
3. Profiles of the shear stress component of Reynolds-stress tensor, u′

iu
′
j : This component

quantifies the turbulent shear forces acting perpendicular to the mean flow direction. In practical
terms, u′

iU
′
j reflects the momentum exchange between fluid layers moving at different velocities,

contributing to the generation and maintenance of turbulence in the flow. It is typically underpre-
dicted by Baseline RANS, resulting in a delayed reattachment location prediction. It is computed
using the following expression:

u′
iu

′
j = −νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(2.56)

For the Augmented RANS, the b∆ij anisotropy corrections are also taken into account:

u′
iu

′
j = −νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
+ 2kb∆ij (2.57)

4. Profiles of turbulent kinetic energy k: These profiles are obtained at various locations along
the computational domain. They provide crucial insights into areas where k is overpredicted or
underpredicted compared to the high-fidelity data across different types of simulations.
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5. Profiles of axial velocity Ui: These profiles are obtained at various locations along the computa-
tional domain. They are insightful for identifying regions of reverse flow (i.e., a recirculation region)
and for pinpointing locations of flow separation and reattachment.



3
Computational Methods

3.1. Turbulence Modelling in OpenFOAM
The CFD solver used in this study is the free, open-source software OpenFOAM [34]. The simulations
performed with this software are all based on solving the incompressible RANS equations presented in
Section 2.2. OpenFOAM uses a finite volume approach to discretize and solve these equations.

3.1.1. Simulation Types
Baseline Simulations: Baseline simulation refers to a RANS simulation performed with the k− ω SST
turbulence model presented in Section 2.3.4 and the Boussinesq approximation of the Reynolds-stress
tensor. All baseline simulations are executed with the simpleFOAM solver within the OpenFOAM software
framework. This solver is specifically designed to simulate steady-state, incompressible turbulent flow
simulations based on the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm.

Frozen Simulations: Frozen simulations are used to extract the model-form error in the k-ω SST model
and the Reynolds-stress tensor from high-fidelity data. This is achieved through the k-corrective-frozen-
RANS approach detailed in Section 2.4. The outputs of these simulations are the R and b∆ij correction
fields.

Propagation Simulations: Propagation simulations serve to validate the R and b∆ij correction fields
identified by the Frozen simulations. They solve the augmented version of the Reynolds-stress tensor
and the k-ω SST turbulence model, as presented in Section 2.4. Consequently, the outputs of these sim-
ulations are expected to closely match the high-fidelity data if the correction fields have been accurately
extracted during the Frozen simulations.

Model Propagation Simulations: Similar to Propagation simulations, Model Propagation simulations
use the augmented version of the Reynolds-stress tensor and the k-ω SST turbulence model. However,
they use the symbolic model equations forR and b∆ij discovered by the SpaRTA regression, as described
in Section 2.6, instead of the correction fields identified by the Frozen simulations.

In both Propagation and Model Propagation simulations, corrections can be applied exclusively within
the shear layer cluster, identified using the RITA/TI classifier further discussed in Section 4.3. The
code infrastructure developed as a part of this study for performing these types of simulations is further
elaborated upon in Appendix Section C.

3.1.2. Monitoring Residuals and Convergence Probes
CFD simulations are based on an iterative approach to solving the discretized RANS and k-ω SSTmodel
equations. The most common method to assess the convergence of this iterative process is through
residuals. These are a measure of the local imbalance of a conserved variable within each mesh cell
[35], therefore each equation being solved will have its own residual. The individual residuals for each
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cell are added together and normalized so that each equation will have a single value for the residual
for the entire mesh domain at every iteration. OpenFOAM offers the possibility to monitor and plot these
residuals through time. Generally, a simulation in which the residuals of all monitored flow variables fall
below 1 X 10−5 is considered converged, however, this criterion varies depending on the complexity of
the simulation. In this study, the general aim is to have the residuals fall below 1 X 10−5.

As the residuals provide a global overview of the convergence, sometimes it is beneficial to add point
probes through the computational domain to monitor the conserved variables in certain locations over
time directly. For example, if oscillations appear in the velocity residual plot, one cannot directly know
which region of the domain is responsible for these oscillations. In this study, 3 point probes are used
per conserved variable and they are placed in different parts of the computational domain, depending
on the type of case being simulated. Table 3.1 provides an overview of the conserved variables whose
residuals or values are monitored in the different types of simulations.

Table 3.1: Overview of the monitored variables via residuals and probes in the different types of simulations. Variables between
brackets (...) are only monitored via probes.

Simulation Residual/ Probes
Baseline U, p, k, ω
Frozen ω, (R, b∆ij)

Propagation U, p, k, ω
Model Propagation U, p, k, ω, (R, b∆ij)

3.2. Setup of 2D-Separated Flow Cases
The cases selected for this study show similar physics - a boundary layer separating from a surface under
an adverse pressure gradient - but differ in their geometrical setup and the Reynolds number of the flow.
Various geometries and Reynolds numbers are chosen to ensure that the classifier of the shear layer
and the models discovered with SpaRTA are generalizable and can be applied to a variety of different
flow scenarios. These are all 2D cases previously configured either by researchers at the TU Delft
Aerodynamics department or other literature studies. Consequently, no mesh sensitivity studies have
been performed since the meshes have been previously validated. 2D cases are preferred over 3D
cases due to their significantly lower computational demands, which facilitate easier experimentation.
Additionally, all selected cases are incompressible, eliminating the added complexity associated with
density variations that can influence the pressure distribution and, consequently, separation behavior.
It is important to note that for all the cases listed below, the reference pressure is provided in units
of [m2 s−2], as the OpenFOAM simpleFOAM solver employed for the various simulations calculates a
normalized pressure by dividing the actual pressure by the flow density.

3.2.1. NASA-Hump
The NASA-Hump case is part of NASA’s 2D-separated flow validation cases, designed to assess the ca-
pabilities of turbulencemodels in simulating flow separation [36]. Modeled after theGlauert-Goldschmied
type body, the computational setup closely follows the real-life experimental setup outlined in Greenblatt
et al. [37]. The OpenFOAM case setup has been acquired from the study of Kaj Hoefnagel [8]. The
reference Mach number for this case is 0.1, therefore it is low enough to justify the assumption of incom-
pressibility. The case features a turbulent boundary layer developing over a flat plate, accelerating over
the hump geometry due to a favorable pressure gradient, then separating from the hump’s edge under
an adverse pressure gradient, before reattaching and recovering further downstream of the hump.

3.2.1.1 Geometry and Mesh Specifications

Figure 3.1 displays the geometry and mesh of the NASA-Hump case. The downstream domain length
of the hump is tailored to accommodate the incoming fully turbulent boundary layer. The hump’s chord
length c is 0.42 m. Notably, the upstream domain length is shorter than that used in the experimental
setup in [37], owing to the availability of high-fidelity data for Frozen simulations only with this shorter
configuration. Consequently, the upstream length does not allow for complete turbulent boundary layer
recovery. The upper boundary of the domain features a slight contour to address the blockage resulting
from the end plates used in experimental measurements. The mesh consists of 51,626 cells, with the
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y+ values listed in Table 3.2, indicating that the first mesh cells are situated in the viscous sub-layer and
the boundary layer is fully resolved.

Figure 3.1: NASA-Hump case geometry and mesh layout.

Table 3.2: y+ values of the NASA-Hump case mesh at the bottom wall boundary of the domain.

Wall Location y+ min y+ max y+ average
Bottom 0.06 2.11 1.45

3.2.1.2 Flow Parameters

An overview of the main flow parameters specified for the NASA-Hump case is given in Table 3.3. This
case has the highest Reynolds number equal to 936,000, computed based on the chord length of the
hump c and the free-stream reference velocity Uref .

Table 3.3: Overview of the flow parameters specified for the NASA-Hump case.

Transport Property Parameter Value
Reynolds number based on chord Length Rec 936,000

Kinetic viscosity ν 1.55 x 10−5 m2 s−1

Free-stream reference velocity Uref 34.6 m s−1

Reference kinetic energy kref 0.00107 m2 s−2

Reference specific dissipation rate ωref 0.118 s−1

Reference pressure pref 0 m2 s−2

3.2.1.3 Initial and Boundary Conditions

The boundary conditions specified for the NASA-Hump case in OpenFOAM are outlined in Table 3.4.
These remain consistent across all simulation types used in this study: Baseline, Frozen, Propagation,
and Model Propagation. The exact values used for the inlet and outlet fixedValue boundary conditions
vary depending on the type of simulation under consideration. The Frozen simulation uses LES data
fields obtained from the study of Uzun et al. [38].

For the bottom boundary of the domain, which represents the wall, a zero-gradient boundary condition
is specified for k via the kqRWallFunction. The boundary condition for ω has been derived by Menter
for the k − ω SST model [23]. It sets ω at the wall equal to ω = 6νw

β1y2 , where νw is the kinematic
viscosity of fluid near the wall, y is the wall-normal distance and β1 is one of the k − ω SST model
coefficients (see equations in (2.32)). This is implemented in OpenFOAM using the omegaWallFunction.
The nutUSpaldingWallFunction is used to specify the bottom boundary condition for νt. This function
calculates a continuous νt profile up to the wall based on Spalding’s law. It is typically used when the
y+ values of the mesh vary across the domain, as is the case here due to the hump geometry distorting
the contour of the bottom wall boundary. For the velocity field, a no-slip boundary condition is enforced
at the bottom wall. In the experimental setup, no specific surface wall boundary is present on top of the
hump. Therefore, the top boundary condition set in the OpenFOAM case setup is symmetry, applied to
all flow variables.
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Table 3.4: Boundary and initial conditions for the NASA-Hump case for different simulation types: Baseline, Frozen, Propagation
(Pr.) and Model Propagation (Model Pr.).

Boundary Conditions
Location U [m/s] p [m2/s2] k [m2/s2] ω [s−1] νt [m2/s]
Inlet fixedValue zeroGradient fixedValue fixedValue calculated
Outlet zeroGradient fixedValue zeroGradient zeroGradient calculated
Top symmetry

Bottom noSlip zeroGradient kqRWallFunction omegaWallFunction nutUSpaldingWallFunction
Initial Conditions

Baseline [Uref 0 0] 0 kref ωref 0.009
Frozen ULES,field 0 kLES,field ωref 0.009
Pr. Baseline simulation outputs.

Model Pr. Baseline simulation outputs.

The initial conditions employed for the various simulation types are also outlined in Table 3.4. In the
Baseline simulation, these initial conditions are determined from the flow parameters listed in Table 3.3.
For the Frozen simulation, the variables U and k are derived from the LES fields, while ω and νt remain
consistent with those of the Baseline simulation. Lastly, in both the Propagation and Model Propagation
simulations, the initial conditions are extracted from the results of the converged Baseline simulation.

3.2.2. Periodic-Hill
The Periodic-Hill case setup and the high-fidelity LES data have been obtained from the study of Breuer
et al., who extensively studied this geometry across various Reynolds numbers [39]. This configuration
consists of a series of repeating hills separated by a flat surface region. The spacing between the hills
is calculated to enable the flow to reattach to the flat surface post-separation before encountering the
next hill.

3.2.2.1 Geometry and Mesh Specifications

The geometry and mesh of the Periodic-Hill case are depicted in Figure 3.2. The dimensions of the
domain are Lx=9.0H and Ly=3.3H where H is the hill height non-dimensionalized to 1.

Figure 3.2: Periodic-Hill case geometry and mesh layout.

The mesh consists of 15,600 cells, with the y+ values listed in Table 3.5. The bottom wall has a slightly
higher maximum y+ value due to the contour of the hill. Nevertheless, the y+ values for both the top
and bottom walls indicate that the mesh is designed to fully resolve the boundary layer. Towards the top
boundary of the domain, the mesh is slightly less refined, as the primary physics of interest, namely flow
separation and reattachment, occur at the bottom boundary.

Table 3.5: y+ values of the Periodic-Hill case mesh at the top and bottom wall boundaries of the domain.

Wall Location y+ min y+ max y+ average
Bottom 0.18 2.10 1.03
Top 1.15 1.39 1.26
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3.2.2.2 Flow Parameters

An overview of the main flow parameters specified for the Periodic-Hill case is given in Table 3.6. This
case has a Reynolds number equal to 10,595, computed based on the hill height H and reference bulk
velocity Uref .

Table 3.6: Overview of the flow parameters specified for the Periodic-Hill case.

Transport Property Parameter Value
Reynolds number based on hill height ReH 10,595

Kinetic viscosity ν 9.44 x 10−5 m2 s−1

Free-stream reference velocity Uref 1 m s−1

Reference kinetic energy kref 0.00375 m2 s−2

Reference specific dissipation rate ωref 0.110 s−1

Reference pressure pref 0 m2 s−2

3.2.2.3 Initial and Boundary Conditions

The OpenFOAM boundary and initial conditions for this case are outlined in Table 3.7. To simulate
the series of hills, periodic boundary conditions are applied at the inflow and outflow of the domain.
The boundary conditions for k and νt differ from those specified for the NASA-Hump case. Here, k
is specified to be zero at the walls. The nutLowReWallFunction also sets νt to zero and provides an
access function to calculate y+ [40].

Table 3.7: Boundary and initial conditions for the Periodic-Hill case for different simulation types: Baseline, Frozen, Propagation
(Pr.) and Model Propagation (Model Pr.).

Boundary Conditions
Location U [m/s] p [m2/s2] k [m2/s2] ω [s−1] νt [m2/s]
Inlet cyclic cyclic cyclic cyclic cyclic
Outlet cyclic cyclic cyclic cyclic cyclic

Top Wall noSlip zeroGradient 1 x 10−15 omegaWallFunction nutLowReWallFunction
Bottom Wall noSlip zeroGradient 1 x 10−15 omegaWallFunction nutLowReWallFunction

Initial Conditions
Baseline [Uref 0 0] 0 kref ωref 0
Frozen ULES,field 0 kLES,field ωref 0
Pr. Baseline simulation outputs.

Model Pr. Baseline simulation outputs.

3.2.3. Curved Backward Facing Step
The Curved Backward Facing Step case, henceforth referred to as CBFS, closely resembles the NASA-
Hump and Periodic-Hill cases. It involves a turbulent boundary layer separating from a curved step
under an adverse pressure gradient. The key distinction lies in the contour of the step, which has a
much gentler curvature compared to the other two cases, thereby promoting the flow to remain attached
for longer. The case setup and the high-fidelity LES data have been obtained from the study of Bentaleb
et al. [41].

3.2.3.1 Geometry and Mesh Specifications

The geometry and mesh of the CBFS case are depicted in Figure 3.3. The step height H has been
non-dimensionalized to 1. At x/H = -7.34, the computational domain inlet, the boundary layer thickness
is prescribed to be 0.8H. The upstream domain length has been designed to allow the boundary layer
to recover post-separation fully.
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Figure 3.3: CBFS case geometry and mesh layout.

The mesh consists of 21,000 cells, with y+ values listed in Table 3.8. While this mesh has significantly
higher maximum y+ values compared to other cases, this discrepancy primarily stems from the mesh’s
lesser refinement towards the outlet of the domain. In the inlet region, around the step contour, and
through most of the downstream step area, y+ values remain below 5, thereby fully resolving the bound-
ary layer.

Table 3.8: y+ values of the CBFS case mesh at the top and bottom wall boundary of the domain.

Wall Location y+ min y+ max y+ average
Bottom 0.87 5.12 3.63
Top 4.04 6.47 4.46

3.2.3.2 Flow Parameters

An overview of the main flow parameters specified for the CBFS case is given in Table3.9. This case
has a Reynolds number equal to 13,700, computed based on the step height H and the free-stream
inlet reference velocity Uref .

Table 3.9: Overview of the flow parameters specified for the CBFS case.

Transport Property Parameter Value
Reynolds Number based on step height ReH 13,700

Kinetic viscosity ν 7.23 x 10−5 m2 s−1

Free-stream reference velocity Uref 1 m s−1

Reference kinetic energy kref 0.00668 m2 s−2

Reference specific dissipation rate ωref 0.110 s−1

Reference pressure pref 0 m2 s−2

3.2.3.3 Initial and Boundary Conditions

TheOpenFOAM boundary and initial conditions for this case are detailed in Table 3.10. These are similar
to the ones prescribed for the other 2D-separated flow cases.

3.2.4. APG Case
The APG case stands out among the other 2D-separated flow cases examined in this study due to its
unique geometry. It features an incoming fully turbulent boundary layer exposed to an adverse pressure
gradient, resulting from domain expansion caused by a modification in the contour of the top boundary of
the domain. Post-separation, reattachment of the boundary layer is facilitated by a favorable pressure
gradient before it returns to its zero-pressure gradient state. Unlike for the other cases, the adverse
pressure gradient is not induced by changes in the bottom wall contour but rather by changes in the top
wall contour. The high-fidelity DNS data has been acquired from Coleman et al.’s study [42] and the
case has been set up by Tyler Buchanan at the TU Delft Aerodynamics department.
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Table 3.10: Boundary and initial conditions for the CBFS case for different simulation types: Baseline, Frozen, Propagation (Pr.)
and Model Propagation (Model Pr.).

Boundary Conditions
Location U [m/s] p [m2/s2] k [m2/s2] ω [s−1] νt [m2/s]
Inlet fixedValue zeroGradient fixedValue fixedValue calculated
Outlet zeroGradient fixedValue zeroGradient zeroGradient calculated

Top Wall noSlip zeroGradient 1 x 10−15 omegaWallFunction nutLowReWallFunction
Bottom Wall noSlip zeroGradient 1 x 10−15 omegaWallFunction nutLowReWallFunction

Initial Conditions
Baseline [Uref 0 0] 0 kref ωref 0
Frozen ULES,field 0 kLES,field ωref 0
Pr. Baseline simulation outputs.

Model Pr. Baseline simulation outputs.

3.2.4.1 Geometry and Mesh Specifications

The geometry and mesh of the APG case are depicted in Figure 3.4. The characteristic reference height
H has been non-dimensionalized to 1. The upstream and downstream lengths have been designed to
allow the boundary layer to fully develop and recover pre- and post-separation. The mesh consists of
92,777 cells, with y+ values listed in Table 3.11. This mesh is the most refined among all the cases
investigated in this study, with y+ values well below one, effectively resolving the boundary layer.

Figure 3.4: APG case geometry and mesh layout.

Table 3.11: y+ values of the APG case mesh at the bottom wall boundary of the domain.

Wall Location y+ min y+ max y+ average
Bottom 6.614 x 10−6 4.01 x 10−5 1.71 x 10−5

3.2.4.2 Flow Parameters

An overview of the main flow parameters specified for the APG case is given in Table3.12. This case
has a Reynolds number equal to 80,000, computed based on the domain maximum height H and the
free-stream reference velocity Uref . The reference Mach number for this case is 0.1, similar to the
NASA-Hump case.

Table 3.12: Overview of the flow parameters specified for the APG case.

Transport Property Parameter Value
Reynolds number based on domain height ReH 80,00

Kinetic viscosity ν 4.29 x 10−4 m2 s−1

Free-stream reference velocity Uref 34.3 m s−1

Reference kinetic energy kref 4.347 m2 s−2

Reference specific dissipation rate ωref 250 s−1

Reference pressure pref 1.01 x 105 m2 s−2

3.2.4.3 Initial and Boundary Conditions

TheOpenFOAMboundary and initial conditions for this case are detailed in Table 3.13. The nutkWallFunction
sets νt to zero at the bottom wall boundary of the domain.
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Table 3.13: Boundary and initial conditions for the APG case for different simulation types: Baseline, Frozen, Propagation, and
Model Propagation.

Boundary Conditions
Location U [m/s] p [m2/s2] k [m2/s2] ω [s−1] νt [m2/s]
Inlet fixedProfile zeroGradient fixedProfile fixedProfile fixedProfile
Outlet zeroGradient pref zeroGradient zeroGradient zeroGradient

Top Boundary slip slip slip slip slip
Bottom Wall noSlip zeroGradient kqRWallFunction omegaWallFunction nutkWallFunction

Initial Conditions
Baseline [Uref 0 0] pref kref ωref 0.6
Frozen UDNS,field pref kDNS,field ωDNS,field νt,DNSfield

Pr. Baseline simulation outputs.
Model Pr. Baseline simulation outputs.



4
Clustering Approaches

The approach used in this study to apply local corrections to the k-ω SSTmodel and the Reynolds-stress
tensor involves partitioning the flow domain into distinct regions, known as clusters, characterized by
identifiable physical features such as shear layers, recirculation regions, and boundary layers. The cor-
rections are selectively applied to the regions where RANS shows the poorest performance. Therefore,
it is important to consider the desired clustering output. For separated flows, the primary discrepancy
between RANS and high-fidelity data arises from the underprediction of turbulent shear stress in the
separated shear layer. Consequently, a successful clustering algorithm should reliably identify this layer
across all cases outlined in Section 3.2. Moreover, if the algorithm can identify other regions, it would
greatly aid future studies. For instance, effective separation of the boundary layer from the rest of the
domain enables avoiding the activation of corrections in this region, potentially impacting the calibration
of the k-ω SST turbulence model.

Dividing the flow domain poses a significant challenge due to the continuous nature of the flow and the
chaotic nature of turbulence, compared to the discrete and organized nature inherent in most clustering
approaches. Establishing the boundaries between regions is particularly difficult. Nonetheless, Figure
4.1 provides a rough sketch of the desired clustering output for the NASA-Hump case.

Figure 4.1: Rough sketch of the desired clustering output for the NASA-Hump case.

4.1. K-Means Clustering
4.1.1. Algorithm Overview
K-Means is a popular unsupervised learning clustering algorithm that aims to identify underlying pat-
terns in datasets by grouping together similar data points. The algorithm for identifying these clusters
is iterative, attempting to partition the dataset into K (user pre-defined), distinct and non-overlapping
clusters of equal variance, where each data point belongs to one cluster only. Data points are assigned
to clusters in a way that minimizes the inertia, which is the sum of the squared distances between each
data point x and the cluster centroid c :
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∑
x∈X

min
c∈C

∥x− c∥2 (4.1)

The centroid c is the arithmetic mean of all the data points that belong to that cluster [43]. The algorithm
on which K-Means is based on is known as Lloyd’s algorithm, further detailed in Algorithm 1. The original
algorithm is initialized with K centroids, chosen uniformly at random from the dataset. Next, it assigns
each point in the dataset to the nearest centroid and recalculates the cluster centroids by computing
the mean value of all the data points assigned to each of the previous cluster centroids. The difference
between the new and old cluster centroids is computed, and the algorithm repeats until this difference
falls below a specified threshold, ϵ, indicating that the clusters are no longer changing [44], or until the
maximum number of iterations has been reached.

While the K-Means algorithm is guaranteed to converge, it may converge to a local minimum, which
can affect the clustering performance. This usually occurs if the randomly initialized cluster centroids
are too close to each other. To avoid this, one can recompute the algorithm several times with different
centroid initializations, which can be very time inefficient [44]. This issue can be addressed by using an
initialization method known as k-means++ [45]. This method ensures that the initialized centroids are
distant from each other, which leads to better clustering performance. The exact steps of this initialization
procedure are further detailed in Algorithm 1.

Algorithm 1 Lloyd’s K-Means Algorithm with k-means++ Initialization [45] [44]
Input:
Dataset X = [x1, . . . , xn] where X ∈ Rd, k number of clusters where K ∈ N
Initialization Based on k-means++ :
1. Random initialization of center c1 from X.
2. Choose the next center ci, where ci = x′ from X, selecting based on the probability D(x′)2∑

x∈X D(x)2

where D(x) is the shortest distance from a data point x to the closest center already chosen.
3. Iterate step 2 until a total of K centers have been chosen.
Repeat:
1. For each i ∈ {1, . . . ,K}, define the cluster Ci to be the set of data points in X that are closer to
center ci than they are to cj for all j ̸= i. This is based on solving the following optimization problem
φ =

∑
x∈X minc∈C ∥x− c∥2.

2. For each i ∈ {1, . . . ,K}, set ci to be the center of mass of all points in Ci: ci = 1
|Ci|

∑
x∈Ci

x.
Until:

Condition 1: Clusters no longer change compared to previous iteration: c(t) − c(t−1) < ϵ
Condition 2: The maximum number of iterations has been reached.

Output:
Cluster centers c1, .., cK , cluster label for each point in dataset.

For this study, the Python scikit-learn machine learning library is used, due to its reliable implementation
of the K-Means algorithm class, along with the option to use k-means++ initialization. The inputs to this
library’s K-Means class include the feature dataset, the number of clusters, and the initialization method.
Additionally, two key parameters are specified: the maximum number of iterations per single run and the
tolerance, which is the ϵ threshold mentioned above. The maximum number of iterations is set at 400
and the tolerance is set to 1 × 10−5. These values are chosen empirically to ensure both convergence
and computational efficiency.

Typically, when unsupervised learning algorithms are trained, the input feature dataset is divided into
separate training and testing sets. This division is crucial to prevent data leakage from occurring, which
happens when information from the training set unintentionally leaks into the testing set, potentially
leading to an overestimation of the model’s performance. However, when dealing with flow simulation
cases, the traditional approach of splitting the input dataset becomes challenging. When clustering
is applied to flow simulations, one of the primary evaluation metrics is based on visually inspecting
the clusters generated by the algorithm. This visual inspection is essential to ensure that the clusters
align well with the expected clustering output, as depicted in Figure 4.1. If the simulation dataset were
to be split into separate training and testing sets, the ability to visually inspect the clusters would be
removed. Therefore, in this study, the entire dataset from one flow simulation case is used as the
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training data for the algorithm. Then, the entirety of the data from another case as the testing dataset.
Using this approach ensures that the algorithm can be properly evaluated without compromising the
visual inspection process and without the risk of data leakage.

4.1.2. Algorithm Performance

The K-Means clustering algorithm offers two main advantages: efficiency and simplicity. Its time com-
plexity is linear, represented as O(N × K × i × d), where N denotes the number of data points, K
represents the number of clusters, i signifies the number of iterations, and d indicates the number of
dimensions for the dataset. This linear time complexity enables it to handle larger datasets with ease.

Nevertheless, the algorithm also has several disadvantages such as its reliance on a user-defined num-
ber of centroids. Opting for too few centroids can result in overly broad clusters, whereas selecting
too many can lead to overly specific clusters. To navigate this issue, various metrics, aside from visual
inspection of the obtained clusters, are available to assess clustering performance:

• Elbow Method: This approach involves plotting the inertia against the number of clusters and
identifying the ”elbow” point. This is where the rate of change in inertia sharply levels off, indicating
the optimal number of centroids. Determining the exact location of the elbow point can often be
subjective and unclear, therefore a more accurate metric such as the silhouette score is advised.

• Silhouette score: This is based on computing a Silhouette coefficient using two distances for
each data point: the mean intra-cluster distance a and the mean nearest-cluster distance b. For a
particular clustering output, the Silhouette coefficient is obtained from the formula b−a

max(a,b) , which
takes values in the range of [-1, 1]. A score of 1 denotes ideal clustering, while -1 indicates the
poorest clustering scenario. Values approaching 0 imply overlapping clusters and negative values
suggest that samples are likely assigned incorrectly to clusters, indicating greater similarity with
other clusters [46].

Another drawback of K-Means is its reliance on the measure of inertia, which assumes clusters are
spherical. Consequently, when clusters are elongated or irregularly shaped, inertia may not accurately
capture this variation in shape. This limitation makes K-Means highly sensitive to outliers and datasets
with non-spherical or irregular shapes. To address outliers, the method outlined in Section 4.1.4 is
used. Additionally, Gaussian Mixture Models (GMM) will be investigated in this study as detailed in
Section 4.2, to explore whether they can surpass the performance of the K-Means algorithm. GMM
models assume Gaussian distributions, offering greater flexibility in capturing complex cluster shapes.
Furthermore, inertia is not a normalized metric, so as the dimensionality of the input dataset increases,
leading to increased sparsity of the data in Euclidean space, Euclidean distances become less effective
in measuring the distances between data points [44]. To counteract this issue, several dimensionality
reduction techniques can be used as detailed below.

4.1.3. Dimensionality Reduction Techniques
As previously discussed, the performance of the K-Means clustering algorithm can be negatively im-
pacted if high-dimensional datasets are used. In the field of machine learning, this issue is often referred
to as the Curse of Dimensionality. Four different methods have been used in this study to address
this issue:

• Filter Selection Techniques: This type of feature selection relies on statistical criteria. The spe-
cific filter selection technique used in this study is the Pearson Correlationmethod, whichmeasures
the linear correlation between two features. It is computed from the ratio between the covariance
of two features and the product of their standard deviations. It is essentially a normalized mea-
surement of the covariance [47]. The value of this measure is known as the Pearson correlation
coefficient (PCC) and it ranges between -1 for a perfect negative correlation and 1 for a perfect
positive correlation. When two features have a high correlation, it suggests that one feature can
be computed from the other, therefore keeping both features in the dataset becomes redundant.
Following the guidelines associated with this coefficient, a threshold magnitude of 0.65 has been
chosen for this filter technique [48]. Therefore, if two features show a PCC higher than 0.65, only
one is kept in the dataset for K-Means.

• Wrapper Selection Technique: This method is based on selecting subsets of features, passing
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them through the K-Means algorithm, and evaluating the clustering performance using a prede-
fined metric. The wrapper technique selected for this study is the Forward Sequential Feature
Selection (Forward-SFS). Implemented in the scikit-learn library, this method iteratively identifies
the best new feature to include in the input dataset. The algorithm starts with zero features and
selects the first feature that minimizes the inertia when the K-Means algorithm is trained on this
single feature. Subsequently, additional features are added, and the process repeats until adding
new features no longer increases the inertia [49].

• Inspection Selection Techniques: A subset of the selected features in this study fails to meet
certain criteria: they either lack invariance or are dependent on the Reynolds number. This is
further addressed in Section 4.4. Retaining these features in the dataset would compromise the
generalizability of the K-Means model to other types of flow cases. Moreover, some of these
features exhibit significant noise in specific areas of the domain due to their particular formulation. If
the outlier removal process fails to detect this noise, it may bias the K-Means algorithm to recognize
it as a distinct cluster. Therefore, the objective of using this dimensionality reduction technique is
to eliminate all features that are either noisy or do not satisfy the requirements of invariance and
independence from the Reynolds number.

• Principal Component Analysis: This technique is a linear method for reducing dimensionality,
which works by transforming the original d dimensional input feature set into n dimensional princi-
pal components. These principal components capture the directions of maximum variance present
in the data. Typically, these principal components are obtained by performing singular value de-
composition (SVD) on the covariance matrix of the input feature set. In PCA, terms that do not
have a significant contribution to explaining variance can be disregarded. This process efficiently
captures the most significant patterns in high-dimensional data, aiming to retain as much variance
as possible within the reduced-dimensional space [50]. This method is available in the scikit-learn
library and requires as input the number of principal components to keep in the reduced output
representation.

4.1.4. Outlier Removal
The K-Means algorithm is sensitive to outliers, which can significantly impact its clustering performance.
One way to detect these outliers is using box plots, as they are relatively robust to skewed distributions,
a common characteristic of flow feature datasets. To identify outliers using this method, any data point
lying outside the upper and lower fences of the inter-quartile (IQR) range of the box plot is labeled as an
outlier:

Upper Fence: Q3 + 1.5× IQR (4.2)

Lower Fence: Q1 − 1.5× IQR (4.3)

where Q3 is the upper quartile, Q1 is the lower quartile and the IQR is defined as Q3 − Q1. Once the
outliers are identified, they need to be removed. However, as discontinuities in the mesh are not allowed,
one cannot simply eliminate the outliers from the dataset. Instead, outliers are clipped by substituting
them with the value of either the upper or lower fence, depending on which threshold defines the outlier.
Although this method may seem crude, it can maintain the overall distribution of features in geometric
space.

4.2. Gaussian Mixture Models
4.2.1. Algorithm Overview
The Gaussian mixture model (GMM) is a probabilistic clustering method where observed data points
are assumed to arise from a mixture of K components, each modeled as a Gaussian distribution. In
this model, each data point is not assigned exclusively to a single Gaussian distribution but rather to
all of them with varying probabilities, which are referred to as weights [51]. This is known as a soft
clustering assignment and is much more flexible compared to the hard clustering assignment used in
K-Means, which assigns each data point to only one cluster. Each Gaussian distribution has its own set
of parameters θ (which include the mean µ and standard deviation σ), which can be mixed together by
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adjusting the weights π. Therefore, a GMMwithK univariate Gaussian distributionsN(x|µk, σk), having
the set of parameters θ = {µk, σk, πk}Kk=1, can be defined as:

N(µk, σk) =

K∑
k=1

πkN(x|µk, σk) where 0 ≤ πk ≤ 1,

K∑
k=1

πk = 1 (4.4)

To estimate the probability that a certain data point, xn, has been generated by the k-th component,
which is formally known as the responsibility, rnk, the following posterior distribution can be computed:

rnk =
πkN(x|µk, σk)∑K

j=1 πjN(xn|µj , σj)
(4.5)

The total responsibility of the k-th mixture component for the entire dataset is defined asNk =
∑N

n=1 rnk.
These responsibilities are in fact the soft cluster labels. To estimate the parameters of each Gaussian
distribution, the following procedure is used:

(i) The likelihood function is defined, representing the probability of observing a set of data points
given the parameters of the model:

p(X|θ) =
N∏

n=1

K∑
k=1

πk
1√
2πσk

exp

(
− (xn − µk)

2

2σ2
k

)
(4.6)

(ii) The log of the likelihood function is computed to simplify the mathematics:

L = log p(X|θ) =
N∑

n=1

log

[
K∑

k=1

πk
1√
2πσ2

k

exp

(
− (xn − µk)

2

2σ2
k

)]
(4.7)

(iii) The partial derivative of the log-likelihood function is computed with respect to µk:

∂L

∂µk
=

N∑
n=1

rnk
(xn − µk)

σ2
k

(4.8)

(iv) The above derivative is set to zero to find the value of µk and therefore also σk and πk:

µk =
1

Nk

N∑
n=1

rnkxn, σk =
1

Nk

N∑
n=1

rnk(xn − µk)
2, πk =

Nk

N
(4.9)

As can be seen from the above equations, to estimate the parameters, the responsibilities must be
known. However, in an unsupervised clustering approach, these responsibilities are also unknown.
Therefore, to estimate both the parameters and the responsibilities, an algorithm known as Expectation-
Maximization is used. The algorithm consists of two steps: the E-step, in which a function for the ex-
pectation of the log-likelihood is computed based on the current parameters, and an M-step, where the
parameters found in the first step are maximized. Every iteration increases the log-likelihood function
(or decreases the negative log-likelihood). The algorithm stops when the log-likelihood has reached a
certain threshold ϵ, or the maximum number of iterations has been reached. The threshold has been set
to 1× 10−5 for this study, and the maximum number of iterations fixed at 400, to ensure both conver-
gence and computational efficiency. An overview of this algorithm is available in Algorithm 3, assuming
univariate Gaussian distributions.
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Algorithm 3 GMM Clustering Algorithm
Input:
Dataset X = [x1, . . . , xn] where X ∈ Rd, k number of components where K ∈ N
Initialization:
Estimate initial parameter values θ = {µk, σk, πk}Kk=1 for each Gaussian distribution component in the
mixture model.
Repeat:
1. E-Step : Using current values of µk, πk, σk, evaluate the responsibilities rnk.
2. M-Step : Compute new set of parameters µk, πk, σk.
Until:
Condition 1: The negative log-likelihood falls below the threshold value ϵ :
−N

∑N
n=1

[
log
(

1√
2πσ2

)
− (xn−µ)2

2σ2

]
< ϵ

Condition 2: The maximum number of iterations has been reached.
Output:
The final parameter values θ = {µk, σk, πk}Kk=1 and the mixture component labels rnk for each point
in dataset.

4.2.2. Algorithm Performance
The scikit-learn implementation of GMM offers different covariance parameter options for handling fea-
ture datasets with varying degrees of correlation among features [52]. As the features used in this study
are primarily constructed from the same local flow variables used in different ratios, as further explained
in Section 4.4, the features are expected to be correlated to a certain extent. The two available options
which take this into account are known as ’full’ and ’tied’. The latter assumes each component has its
own covariance matrix, which can have different variances along different dimensions, as well as non-
zero covariances between dimensions. This method provides the most amount of modeling flexibility but
also has the highest computational cost. The ’tied’ option assumes that all components share the same
covariance matrix so that features are equally correlated across components. This makes this method
less computationally intensive but also less flexible. Both options will be investigated to determine which
one offers the best performance.

While GMMs can handle large feature datasets, their time complexity is linear and has an equivalent
formulation to the one of K-Means. Therefore having a high-dimensional dataset canmake computations
very expensive. As this study aims to investigate the advantages of the GMM models compared to that
of K-Means, the same feature subset identified using the dimensionality reduction techniques used for
the K-Means algorithm will also be used for GMM.

Similar to K-Means, this algorithm also has the disadvantage of relying on a user-defined number of K
components that define how many clusters the domain will be divided into. The most common metric
used to help with this selection, aside from visual inspection, is the Bayesian Information Criterion (BIC).
The BIC is computed as:

BIC = −2 log(L) + θ log(N) (4.10)

where L is the maximized value of the likelihood function of the model, θ is the number of free parameters
to be estimated and N is the number of data points. The BIC score can also be used to evaluate the
performance of the GMM model when using the two different options for the covariance matrices as
discussed above. The scikit-learn implementation of the BIC metric will be used in this study.

4.3. Relative Term Importance Analysis Clustering
The Relative Term Importance Analysis (RITA) technique was developed during this study as an attempt
to cluster the shear layer manually, rather than relying on unsupervised machine learning approaches.
It was developed based on observations made while analyzing the trends in the relative importance
between terms of the k equation of the k-ω SST model. For clarity, the terms of the k-equation have
been labeled and displayed below.
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∂k

∂t
+ U · ∇k︸ ︷︷ ︸

Convection - Ck

= min

(
τij

∂Ui

∂xj
, 10β∗kω

)
︸ ︷︷ ︸

Production - Pk

− β∗ρkω︸ ︷︷ ︸
Destruction - Dk

+
∂

∂xj

[
(ν + σk

ω

ωt
)
∂k

∂xj

]
︸ ︷︷ ︸

Diffusion - Df,k

(4.11)

These relative term importances can be computed for each computational mesh cell and are defined as:

RITAPk,imp
=

|Pk|
(|Pk|+ |Dk|+ |Ck|+ |Df,k|)

(4.12)

RITADk,imp
=

|Dk|
(|Pk|+ |Dk|+ |Ck|+ |Df,k|)

(4.13)

RITACk,imp
=

|Ck|
(|Pk|+ |Dk|+ |Ck|+ |Df,k|)

(4.14)

RITADf,k,imp
=

|Df,k|
(|Pk|+ |Dk|+ |Ck|+ |Df,k|)

(4.15)

The time derivative term is not accounted for as all simulations in this study are steady-state. The k equa-
tion directly addresses the transport of turbulent kinetic energy, providing insight into the distribution and
behavior of turbulence within the flow field. Therefore, the relative importance between the terms of this
equation should in theory indicate the local turbulent flow phenomena: the production should dominate
in the shear layer, the destruction should dominate in the re-circulation region, etc. Furthermore, be-
cause the same equations are used to model the same kind of physics in all separated flow scenarios,
the balances between the terms should behave the same among all the separated flow cases in this
study. This makes this method generalizable and independent of geometry changes and flow Reynolds
number.

The inspiration behind RITA emerged from attempting and failing to achieve promising results while
applying a method described in the paper of Brunton et al., focusing on learning dominant physical
processes through data-driven balance models [53]. This paper explored the dominant balance physics
of a laminar boundary layer transitioning to turbulence using data obtained from a DNS simulation. The
researchers used a GMM model trained on the terms of the RANS momentum equations to cluster the
computational domain. RITA was developed as an attempt to apply the same ideas used in this paper,
without relying on any unsupervised clustering approaches and focusing on the k equation which is
deemed to be more insightful regarding the physical behavior of turbulence.

In analyzing the relative importance of terms in the k equation for the separated flow cases, clear trends
emerged as depicted in Figure 4.2. This figure illustrates the variations in the RITAPk,imp

importance term
across the recirculation region of each 2D-separated flow case. Notably, the production term shows its
highest importance above the recirculation region, coinciding with the location of the shear layer. This
can be explained by the high values of the velocity gradients in this region which increase the value of
the production term in the k equation.

As evident from these results, these trends persist across all cases even when the geometry drastically
changes, such as in the APG case, or when the flow conditions are different, as seen in the very high
Reynolds number flow in the NASA-Hump case. Based on these trends, several attempts have been
made to define value bounds to create a classifier that can cluster the shear layer from the rest of the
domain.
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(a) CBFS case. (b) NASA-Hump case.

(c) Original Periodic-Hill case (d) APG case

Figure 4.2: Trends in the RITAPk,imp
for all separated flow-cases.

These attempts resulted in a slight modification of the relative term importance, giving the following three
RITA ratios:

RITAPk/Dk
=

|Dk|
(|Pk|+ |Dk|)

(4.16)

RITACk/Dk
=

|Dk|
(|Ck|+ |Dk|)

(4.17)

RITADf,k/Dk
=

|Dk|
(|Df,k|+ |Dk|)

(4.18)

These modifications were made to align the clustering analysis more closely with the physical insight
of the underlying turbulence. For instance, in the shear layer, focusing on convection and diffusion is
redundant, as the primary characteristic of this region is the dominance of the production of k over its
destruction. The final form of this classifier has been named RITA/TI classifier and its formulation is the
following:

RITAPk/Dk
=

|Dk|
(|Dk|+ |Pk|)

< 0.5 and TI =
k

k + 0.5∥U∥2
≥ 0.12 (4.19)

In this context, TI represents the turbulence intensity, which is a ratio between the mean flow kinetic
energy and turbulent kinetic energy. Mesh cells meeting these conditions are classified as part of the
shear layer. The use of the turbulence intensity, alongside the RITA ratio, was deemed necessary to
ensure complete separation of the shear layer from all other areas of the flow domain, particularly the
outer boundary layers where the physics closely resembles that of the outer shear layer region.

The classifier assigns a value of 0 or 1 to a variable named σ, which multiplies the b∆ij and R corrections
for each cell in the domain. If σ = 1, the cell is classified as being within the shear layer cluster, and
full corrections are applied. Conversely, if σ = 0, the cell is classified as being outside the shear layer
cluster, and no corrections are applied. Further details on this classifier can be found in Section 5.3.

4.4. Overview of Features
Features serve two purposes in this study: they make up the input dataset for the clustering algorithms,
and they are part of the model discovery within the SpaRTA framework. The majority of features used
in this study have been obtained from literature. Additionally, the RITA ratios discussed in Section 4.3
are also included in the feature dataset.
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4.4.1. Important Feature Characteristics
Ideally, the features should reflect the physical behavior of turbulent flows and highlight important areas
such as shear layers and turbulent boundary layers. Furthermore, they should be computable during
a RANS simulation so that corrections can be applied locally in each cluster during the simulation. Fi-
nally, the features should be normalized, Reynolds number independent and invariant, both in terms of
Galilean and rotational invariance:

• Normalization: This ensures that the features are non-dimensionalized and scaled to a specific
range, which is particularly important when features have different magnitudes. Without normaliza-
tion, the features with the largest magnitudes will dominate the clustering or SpaRTA regression
and diminish the contributions of the other features. The most common normalization approach
used in data-driven turbulence modeling literature is based on a scheme proposed by [54] which
uses local quantities to scale the features. Specifically, a feature F , is normalized by a correspond-
ing normalization factor β according to:

Fnorm =
F

|F |+ |β|
(4.20)

This will ensure that Fnorm will fall within a [-1,1] range. It is also important to note that this ensures
that Fnorm will also be non-dimensional as β is always chosen to have the same units as F . For
features that cannot be normalized using this approach, their normalization is achieved using Min-
Max scaling:

Fnorm =
F − Fmin

Fmax − Fmin
(4.21)

where Fmin is the minimum value of the feature and Fmax is the maximum value of the feature.
• Invariance: The principle of Galilean invariance states that the laws of physics remain the same
in all inertial reference frames that are moving at constant velocity to each other. Features that are
Galilean invariant remain the same regardless of the reference frame in which they are analyzed.
On the other hand, rotational invariance refers to features that remain unchanged under the rota-
tion of the coordinate system. This ensures that the algorithm can identify and characterize flow
structures regardless of the orientation of the coordinate axes. Therefore, when selecting features,
it is important to consider what types of variables are invariant:

1. Invariant: velocity gradients and quantities related to these gradients (strain rate, rotation
rate, vorticity), Reynolds-stress tensor, and transported scalar quantities (pressure, turbulent
kinetic energy, specific rate of dissipation).

2. Not invariant: velocity and its partial time derivative, gradients of pressure, gradients of
kinetic energy, gradients of specific rate of dissipation

• Reynolds Number Independence: Generally, a feature is Reynolds number independent if it
is not constructed based on molecular viscosity. As the flow Reynolds number increases, the
molecular viscosity becomes very small compared to other variables, often causing the features
to tend towards infinity, rendering the feature unusable.

4.4.2. List of Features
It is common for the same feature to be formulated slightly differently among various bodies of work or to
be normalized by different β parameters, as explained above. In this study, all the different formulations
have been investigated before selecting the list of features below. Several of the features mentioned in
this list do not meet the requirements of Galilean invariance and Reynolds number independence, as
discussed above. However, it is very difficult to find or create features that meet all these requirements
and demonstrate useful trends at the same time. This is one of the current major struggles in the
turbulence modeling community. Therefore, these features will still be used in the analysis of this study,
with attempts made to eliminate them from the SpaRTA regression and clustering analysis. Plots of all
the features for the NASA-Hump case are included in Appendix Section A:
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• F1 - Distance Based Reynolds Number: This feature is useful in distinguishing between shear
and boundary layer flows and to inform the clustering algorithm of the wall distance [55]. It has the
following formulation as presented in [16].

Red =

√
kd

ν
(4.22)

This feature requires further Min-Max scaling to constrain it to a [0,1] range. Furthermore, the
denominator of this feature is based on the molecular viscosity which makes this feature Reynolds
number dependent.

• F2 - Turbulence Intensity: This feature carries information regarding the length scale of turbu-
lence. It is based on the ratio between the mean flow kinetic energy and the turbulent kinetic
energy. The mean flow kinetic energy will dominate in areas such as the free stream, while the
turbulent kinetic energy will dominate in areas such as shear layers where the turbulence intensity
is higher. It is expressed by the following formulation [16]:

TI =
k

k + 0.5∥U∥2
(4.23)

This feature is already bounded within a [0,1] range, so it does not require any further normalization.
Since it depends on the velocity vector, it is not Galilean invariant.

• F3 - Time Scale Ratio: This feature, obtained from [54], is based on the ratio between the
turbulent time scale and the mean-strain time scale. It provides similar information to feature F2
and can therefore be used to differentiate regions of varying turbulence intensity. The formulation
is already bounded within a [0,1] range, so it does not require any further normalization:

TS =
k∥S∥

ϵ+ k∥S∥
(4.24)

• F4 - The Boundary LayerMarker: This feature was first introduced in [56] as a protection function
for Detached Eddy Simulations (DES). It was designed to be applicable to any eddy-viscosity model
and to maintain robustness in irrotational regions [56]. This function assigns values of 0 within the
boundary layer and 1 outside, making it a valuable feature in data-driven turbulence modeling [57],
[58], as it enables differentiation between boundary and shear layers. It is expressed as:

fd = 1− tanh
(
[8rd]

3
)

where rd =
ν + νt

κ2d2∥∇U∥
(4.25)

• F5 - Vorticity Based Reynolds Number: This feature provides information regarding a boundary
layer undergoing separation, resulting in a separated shear layer [59]. A separated shear layer
exhibits much higher vorticity values compared to a boundary layer due to the higher magnitude
of the velocity gradients. It is formulated as:

ReΩ =
d2∥Ω∥

ν
(4.26)

This feature requires Min-Max scaling to constrain it to a [0,1] range. Similar to feature F1, the
denominator is based on the molecular viscosity, which makes this feature Reynolds number de-
pendent.

• F6 - Turbulence Based Reynolds Number: This feature is based on the ratio of eddy viscosity
to molecular viscosity and represents the ratio between turbulent and mean flow quantities [60]. It
has the following formulation:

Rek =
νt
ν

(4.27)

This feature requires Min-Max scaling to constrain it to a [0,1] range. Similar to features F1 and F5,
the denominator is based on the molecular viscosity, which makes this feature Reynolds number
dependent.
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• F7 - Q-criterion: This feature is useful for identifying regions where the rotation rate is much
higher than the strain rate, such as vortices and recirculation regions [55]:

Qcriterion =
∥Ω∥2 − ∥S∥2

∥Ω∥2 + ∥S∥2
(4.28)

• F8 - Ratio of Pressure Normal Stresses to Shear Stresses: Pressure normal stresses result
from variations in pressure in the flow, while shear stresses result from velocity gradients. Both
stresses act as forces influencing the overall behavior of the flow. Therefore, the ratio between
the two contains information regarding the dominant force. The following formulation is already
normalized within a [0,1] range [55]:

PS =
∥∇P∥

∥∇P∥+ ∥U∇U∥
(4.29)

• F9 - Ratio of Total to Normal Reynolds Stresses: This ratio contains information regarding the
anisotropy of turbulence within a flow and provides insights into the relative importance of turbulent
momentum transport in different directions. The following formulation is already normalized within
a [0,1] range:

τij,ratio =
∥τij∥

10k + ∥τij∥
(4.30)

To extract valuable information from this feature, k is multiplied by a factor of 10 to bring it to a
comparable magnitude with the Reynolds-stress tensor.

• The Relative Term Importance (RITA) Features: The following set of normalized features were
constructed in this study based on the ratios of different terms of the k equation of the k − ω
SST model: production (Pk), destruction (Dk), convection (Ck), and diffusion (Df,k). These terms
are invariant and independent of the Reynolds number, making them very useful for constructing
features. The formulations for these RITA features are as follows:

F10 =
|Dk|

(|Dk|+ |Pk|)
(4.31)

F11 =
|Dk|

(|Dk|+ |Ck|)
(4.32)

F12 =
|Dk|

(|Dk|+ |Df,k|)
(4.33)

The following RITA feature is only used in the SpaRTA regression:

F13 =
|Ck|

(|Ck|+ |Df,k|)
(4.34)



5
Clustering Results

5.1. K-Means Clustering Results
The clustering analysis that has been carried out using the K-Means algorithm for this study is quite
extensive and contains dozens of results, which cannot all be included in this report. Therefore, the
results in this chapter have been selected to demonstrate the general performance that can be expected
from applying this algorithm to the 2D separated flow cases and to provide an overview of the kind of
difficulties that can be expected when clustering using unsupervised learning methods. These results
have been obtained by training the K-Means algorithm on the NASA-Hump Baseline simulation case
and subsequently testing the trained algorithm on the Periodic-Hill, CBFS, and APG Baseline simulation
cases. Several modeling notes have been added throughout the chapter to caution the reader about
the underlying difficulties related to clustering using unsupervised learning methods and to explain the
reasons behind certain modeling assumptions.

5.1.1. Establishing Baseline Performance
Before making any modifications or adjustments to the feature dataset or the K-Means algorithm, it
is crucial to establish a baseline performance. This baseline is obtained using a dataset constructed
from all the features listed in section 4.4. Features that are not normalized in their raw form have been
normalized using Min-Max scaling. The number of centroids is fixed to 4 to align with the clustering
expectations displayed in Figure 4.1. The resulting baseline clustering assignment is depicted in Figure
5.1, with a Silhouette coefficient score of 0.56.

Figure 5.1: Baseline clustering assignment for the NASA-Hump obtained using the K-Means algorithm, with a Silhouette score
of 0.56.

Cluster 1 groups together the boundary layer with part of the recirculation region, while cluster 2 captures

39
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the free-stream. Cluster 3 encloses part of the transition region between the developing boundary layer
and the free-stream with the shear layer. Cluster 4 is artificial and is a result of free-stream noise.
Overall, the clustering output compared to the clustering expectations in Figure 4.1 is relatively poor,
as also indicated by the Silhouette score, which suggests some level of overlap between clusters. It
should be noted that in subsequent results, the cluster labels will change as the K-Means algorithm is
always re-initialized when trained on a different set of features or with a different number of centroids.
Nevertheless, the color map in each plot is kept consistent for clarity.

5.1.2. Outlier Removal
Figure 5.2 displays the box-plot distribution of the normalized feature set for the NASA-Hump case, used
in establishing the above mentioned baseline performance.

Figure 5.2: Normalized feature distribution for the NASA-Hump case.

There are two important aspects to note from this figure. Firstly, features F4 (fd), F11 (RITACk/Dk
), and

F12 (RITADf,k/Dk
) have very large interquartile ranges (IQRs), suggesting that they follow bi-or-multi-

modal distributions. This is confirmed by the histogram plots in Figure 5.4. Since box plots rely on the
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IQR to detect outliers, they may fail to identify any outliers that lie between the modes. For feature F4
(fd), this is not a problem, as it is bimodal due to its classification of the majority of the domain into one
of two regions and does not have a significant amount of noise. However, this is a problem for features
F11 (RITACk/Dk

) and F12 (RITADf,k/Dk
), as the box plots are unable to identify the significant amount

of free-stream noise present in the distribution of these features as visualized in their respective plots in
the Appendix section A.1.

Modelling Note (1) on Outlier Removal

The IQR outlier removal method struggles to iden-
tify outliers in features with multi-modal distributions.
Therefore, one might consider using a different out-
lier removal approach for such features. While this
seems like a reasonable solution, it presents a chal-
lenge: the distribution of a feature can vary across dif-
ferent cases. For example, comparing the box plots
of feature F4 (fd) for the Periodic-Hill case (Figure
5.3) and the NASA-Hump case (Figure 5.2), the dis-
tribution of feature F4 (fd) is no longer multi-modal in
the Periodic-Hill case, and the majority of data points
are classified as outliers. This variability makes it dif-
ficult to determine apriori whether a feature in a par-
ticular case will show a multi-modal distribution and
what the best outlier removal method for it would be.

Figure 5.3: Feature F4 (fd) distribution for the
Periodic-Hill case.

Building on the above observation, if features show varying distributions across different cases
and outlier removal is only applied to features that benefit from it, then this process must be
conducted on a case-by-case basis. Consequently, the overall clustering method becomes less
generalizable, as future cases will require in-depth analysis of the feature distributions before any
clustering can be performed.

The second important aspect to notice from Figure 5.2 is that the majority of features have a large
number of outliers. As outlier removal is based on the upper and lower IQR fences, capping the outlier
data to the values of the fences can significantly influence the distribution of these features. Therefore,
the question now becomes whether such a change is positive or negative in terms of increasing the
performance of the K-Means algorithm.

Figure 5.4: Histogram plots of features F4 (fd), F11 (RITACk/Dk
), and F12 (RITADf,k/Dk

) showing that these features have
bimodal or multi-modal distributions.

For example, considering the distribution of F1 (Red) in Figure 5.2, the outliers are most likely data
points residing in the downstream hump area, as the values of this feature in that region are significantly
different from the rest of the domain. Capping the values of these data points during the outlier removal
process can lead to the region losing its physical significance. To verify whether this holds true, Figure
5.5 has been created, displaying how the feature appears after outlier removal for the NASA-Hump
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case. As observed, the values inside the shear layer and recirculation have been capped at the upper
value of 0.21. Consequently, the K-Means algorithm may face challenges in distinguishing between
these two regions. A similar analysis has been conducted for the other features, except for F4 (fd), F11
(RITACk/Dk

), and F12 (RITADf,k/Dk
), for which the box plot method did not identify any outliers.

Figure 5.5: Distribution of feature F1 (Red) for the NASA-Hump case, post IQR outlier removal.

This analysis showed that outlier removal has a similar negative effect on feature F2 (TI) and F6 (Rek) as
it did on feature F1 (Red), rendering the physics in the downstream region of the hump indistinguishable.
On the other hand, for feature F3 (TS), outlier removal had a positive influence by reducing noise in the
free-stream and revealing patterns that make the shear layer much more discernible from the rest of the
domain. For feature F5 (ReΩ), outlier removal had a negative impact, blending part of the recirculation
region with the shear layer and the outer boundary layer. For feature F7 (Qcriterion), some of the free-
stream noise was reduced. For features F8 (PS) and F9 (τij,ratio), areas have been grouped that should
not have been, similar to features F1 (Red) and F2 (TI). Outlier removal for F10 (RITAPk/Dk

) did not
seem to significantly affect the feature distribution, which aligns with the observation that this feature’s
box-plot distribution does not show many outliers. Overall, outlier removal has shown both positive and
negative impacts on feature distributions, as well as instances where it has no impact at all. Before
drawing any conclusion from these results, it is important to consider the observations stated in the
modeling note below.

Modelling Note (2) on Outlier Removal

The effects of outlier removal on clustering performance are not always immediately apparent. To
demonstrate this for the NASA-Hump case, two runs of the K-Means algorithm were performed.
In the first run, outlier removal was applied to all features, while in the second run, outlier removal
was only applied to features (F3 (TS), F7 (Qcriterion), and F10 (RITAPk/Dk

)) that it either positively
affected or had no effect on their distributions. The results of these two runs are depicted in
Figures 5.6 and 5.7, characterized by Silhouette scores of 0.62 and 0.57, respectively.

Figure 5.6: Clustering assignment obtained for the NASA-Hump case after applying outlier removal to all features. The
Silhouette score is 0.62.
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Figure 5.7: Clustering assignment obtained for the NASA-Hump case after applying outlier removal to a selected
subset of features (F3 (TS), F7 (Qcriterion), and F10 (RITAPk/Dk

)). The Silhouette score is 0.57.

Upon visual comparison of these clustering assignments, there does not appear to be a sig-
nificant discrepancy between the two. Furthermore, the difference in Silhouette scores is not
substantial. However, this discrepancy becomes apparent later when dimensionality reduction
techniques are applied and features are removed. This is because certain features tend to domi-
nate the clustering algorithm; when these features are removed, the importance of other features
increases, leading to a shift in the clustering assignment dominated by the remaining features.
In this case, it so happens that the features dominating the clustering assignment in both figures
did not undergo significant changes in their distributions when the outlier removal methods were
applied. Therefore, this makes the generalizability of K-Means even more challenging, as even
though outlier removal does not seem to affect the clustering algorithm initially, its effects can
become apparent when dimensionality reduction is applied.

Based on the above observations, it is clear that outlier removal applied to features constructed from
local flow variables is not necessarily beneficial to the performance or the generalizability of the clustering
algorithm. The remaining results in this chapter have therefore been obtained using a feature set from
which no outliers were removed.

5.1.3. Number of Centroids
To determine the optimum number of centroids to specify for the K-Means clustering analysis, Figure 5.9
has been created, in which the inertia and Silhouette score are plotted against the number of centroids
used for training the K-Means algorithm.

Figure 5.8: Clustering assignment obtained using 5 initial centroids for the NASA-Hump case.
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Figure 5.9: Inertia and Silhouette score plotted against the number of centroids used for the training of the K-Means algorithm
on the NASA-Hump case.

The ’elbow’ point in the inertia plot is found at 5 centroids, while the highest Silhouette score is obtained at
4 centroids. The results of clustering with 4 centroids are already available in the baseline performance
plot in Figure 5.1. On the other hand, the results of clustering with 5 centroids are displayed in Figure
5.8. The additional cluster is labeled as cluster 4. While this region is somewhat able to separate the
downstream area of the hump from the boundary layer, it remains a non-physical cluster, as it is larger
than the recirculation area and groups it together with a thin layer above the hump. Therefore, the
number of clusters is kept at 4 for the remaining result analysis.

5.1.4. Dimensionality Reduction
5.1.4.1 Dimensionality Reduction via Filtering

The first attempt at reducing the dimensionality of the feature dataset is to apply the filtering technique
based on the PCC coefficients between features. The resulting correlation matrix is displayed in Figure
5.10. As can be seen from this figure, several of the features show a correlation strength higher than
the 0.65 threshold. Feature F11 (RITACk/Dk

) has a strong correlation with F12 (RITADf,k/Dk
) (0.89) and

with feature F7 (Qcriterion) (0.66), therefore it can be removed from the feature dataset. F1 (Red) has a
strong correlation with F6 (Rek) (0.78) and F5 (ReΩ) (0.88), also justifying its removal from the dataset.

Removing these two features, results in the clustering assignment displayed in Figure 5.11 with a Sil-
houette coefficient score of 0.57. The artificial cluster created from the free-stream noise (cluster 2) is
still present, however, it now includes the near-wall area in the downstream region of the hump and a
thin layer above the hump. Cluster 4 which groups together the shear layer with the transitional region
between the boundary layer and the free-stream now also contains additional noise. Overall, the clus-
tering performance appears to be worse. However, at this point, it is difficult to conclude that removing
these features does indeed harm the clustering performance. This is a similar problem also explained in
section 5.1.2. Removing features leads to other features dominating the clustering performance, how-
ever, once these features are also removed, the clustering performance can drastically increase. The
only conclusion that can be made from these results is that dimensionality reduction via filtering, on its
own, does not ensure an improvement in the clustering performance.
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Figure 5.10: Feature correlation matrix obtained for the NASA-Hump feature dataset.

Figure 5.11: Clustering assignment obtained after removing feature F1 (Red) and F11 (RITACk/Dk
) from the dataset of the

NASA-Hump case. The Silhouette coefficient is 0.57.

5.1.4.2 Dimensionality Reduction via Wrappers

The Forward-SFS method begins with a single feature and incrementally adds more features to the
subset if doing so minimizes the inertia score of the K-Means clustering assignment. This process
results in a boolean array where ’True’ indicates that a feature should be kept, and ’False’ indicates that
it should be removed from the dataset. Table 5.1 provides a summary of this array.

Table 5.1: Feature selection table obtained from Forward-SFS dimensionality reduction method.

Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Included False True False False True True True True True False False False

The clustering assignment obtained using the subset of features selected by this method is displayed in
Figure 5.12. The Silhouette coefficient for this clustering is 0.60. When comparing this figure with the
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baseline, the removal of the five features appears to have negatively impacted the clustering assignment.
While the downstream hump area is now completely separated from the rest of the domain via cluster 2,
the other three clusters are all artificial. As stated in the previous section, it is difficult to draw a definitive
conclusion regarding the removal of the five features, except to say that the Forward-SFS method, on
its own, does not necessarily ensure an increase in clustering performance.

Figure 5.12: Clustering assignment obtained after removing features using the Forward-SFS method from the dataset of the
NASA-Hump case. Obtained Silhouette coefficient is 0.60.

5.1.4.3 Dimensionality Reduction via Inspection

The first step in this dimensionality reduction method is to remove the features that are not invariant
and Reynolds number dependent: features F1 (Red), F2 (TI), F5 (ReΩ), and F6 (Rek). As displayed in
Figure 5.13, removing these features results in a clustering assignment similar to the baseline. However,
the Silhouette score for this clustering is higher, equal to 0.63, and the noise in the free-stream has been
reduced.

Figure 5.13: Clustering assignment obtained after removing non-invariant and Reynolds number dependent features (F1 (Red),
F2 (TI), F5 (ReΩ) and F6 (Rek)) from the dataset of the NASA-Hump case. The Silhouette coefficient is 0.63.

The next dimensionality reduction step is to remove features whose distribution does not appear visually
insightful, this includes very noisy features or those which do not show any recognizable patterns. An
overview of all the features distribution is available in Appendix Section A.1. Features F11 (RITACk/Dk

)
and F12 (RITADf,k/Dk

) show a significant amount of noise in the free-stream, which warrants their re-
moval from the dataset. Similarly, feature F7 (Qcriterion) has substantial free-stream noise, and it groups
part of this noise with the region above the hump, similar to feature F10. The appearance of the thin
area cluster in Figure 5.13 after feature removal using filtering techniques, likely stems from the distri-
butions of these two features dominating the clustering analysis. Consequently, F7 (Qcriterion) and F10
(RITAPk/Dk

) are also removed from the dataset. As a result, the final feature set consists of features F3
(TS), F4 (fd), F8 (PS), and F9 (τij,ratio).

The clustering result on this feature subset is displayed in Figure 5.14 with a Silhouette coefficient of
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0.81. Comparing this figure to the baseline, there does not seem to be any improvement; if anything,
the clustering in the free-stream appears even more noisy.

Figure 5.14: Clustering assignment obtained with the feature subset F3 (TS),F4 (fd), F8 (PS) and F9 (τij,ratio) on the
NASA-Hump case. The Silhouette coefficient is 0.81.

Modelling Note on the Silhouette Score

The Silhouette score has been consistently used throughout this chapter as a metric to assess
the performance of the K-Means algorithm. However, in the final clustering result depicted in
Figure 5.14, despite achieving a Silhouette coefficient of 0.81, the clusters appear even noisier
and more overlapping compared to the baseline, where the Silhouette coefficient is 0.53. One
possible explanation for this discrepancy is that the Silhouette coefficient is computed based on
themean distances between a sample and all other points in the same cluster, as well as between
a sample and all points in the nearest cluster that the sample is not a part of. As the dimensionality
of the feature set increases, the volume of space also increases exponentially. Consequently,
points become increasingly sparse, and distances between points tend to become more uniform
or equidistant from each other. This can lead to lower Silhouette coefficient values, even if the
clusters do not appear to overlap each other as much. Therefore, relying solely on the Silhouette
score may not be reliable in determining whether a particular clustering assignment is good or
not, especially when reducing the dimensionality of feature sets.

5.1.4.4 Dimensionality Reduction via PCA

To determine the optimal number of dimensions for the PCA analysis, the dimensions of the input feature
dataset were varied within the range of 2 to 10. For each dimension, PCA was conducted, followed by
training the K-Means clustering algorithm using the PCA-transformed data. Subsequently, the Silhou-
ette score was computed for each clustering outcome and these scores were then plotted against the
respective dimensions used for PCA.

The resulting plot is displayed in Figure 5.15, indicating that the optimum number of dimensions is 3,
as the Silhouette score is closest to 1. However, it is important to keep in mind the previously stated
modeling note on the Silhouette coefficient, which explains why the Silhouette score may not be the
ideal metric to measure clustering performance. In light of this, the clustering results were also visually
inspected for each dimension in the range 2 to 10, which confirmed that 3 dimensions lead to the best
clustering results.

The clustering outcome obtained by reducing the feature dataset’s dimensionality to three dimensions
is presented in Figure 5.16. Upon comparing this result with the baseline, it is evident that they are quite
similar. However, the former shows slightly less free-stream noise, giving it a small advantage over the
baseline. At this stage, this result, along with the one obtained by removing non-invariant and Reynolds
number dependent features (F1 (Red), F2 (TI), F5 (ReΩ) and F6 (Rek)), show the best clustering results.
Therefore, it is worth exploring the application of PCA dimensionality reduction to a feature set excluding
these features, ensuring their absence from the principal components obtained with PCA.
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Figure 5.15: Silhouette scores of the K-Means clustering assignment plotted against the number of dimensions used in PCA for
dimensionality reduction of the feature set.

Figure 5.16: Clustering assignment obtained using K-Means on a feature set reduced by PCA using 3 dimensions.

The result of this is displayed in Figure 5.17, accompanied by a Silhouette coefficient of 0.68. From
this figure, it is clear that the clustering assignment closely resembles the previous one, apart from a
slight increase in the free-stream noise. Considering that eliminating these features greatly enhances
the generalizability of the K-Means algorithm, and the increase in free-stream noise is only marginal, it
is deemed advantageous to discard these features before applying PCA to the dataset.

Figure 5.17: Clustering assignment obtained for the NASA-Hump case on a feature set reduced by PCA using 3 dimensions
and excluding features F1 (Red), F2 (TI), F5 (ReΩ), and F6 (Rek). The Silhouette score is 0.68.

Overall, reducing the dataset’s dimensionality has not yielded significant benefits across any of the four
methods considered (filtering, wrappers, inspection, and PCA). This means that dimensionality reduc-
tion did not necessarily aid in aligning the clustering output with the expected patterns depicted in Figure
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4.1. However, excluding non-invariant and Reynolds number dependent features, and applying PCA
to the remaining features in the dataset, proved to be the best approach. The clustering performance
did not deteriorate compared to the baseline, and the removal of these features enhances the K-Means
algorithm’s generalizability to other cases. As the PCA dimensionality reduction did not show any im-
provement over simply removing the non-invariant and Reynolds number dependent features, it is not
beneficial to apply it to the feature set. This is because it adds a layer of time complexity without any
significant added benefits. Therefore the most promising approach to training a K-Means clustering
algorithm on the NASA-Hump case is to remove the non-invariant and Reynolds number dependent
features from the dataset and to use four cluster centroids.

5.1.5. Generalizibility to Other Cases
The following results have been obtained by training the K-Means algorithm with four clusters on the
NASA-Hump case, using a feature set from which the non-invariant (F2 (TI)) and Reynolds number
dependent (F1 (Red), F5 (ReΩ), F6 (Rek)) features have been removed and from which no outliers
were removed. The clustering output on this training case can be found in Figure 5.13, but has been
re-displayed in this section as Figure 5.18 for clarity, where streamlines are used to help identify the
location of the recirculation bubble.

Figure 5.18: Clustering assignment obtained for the NASA-Hump case after the training the K-Means algorithm on a feature set
excluding features F1 (Red), F2 (TI), F5 (ReΩ) and F6 (Rek).

The K-Means algorithm trained on this case has been used to predict the clusters for the other 2D-
separated flow cases. The results of this are displayed in Figures 5.19, 5.20, and 5.21 respectively.
The purple cluster, present in all three cases and the training case, is an artificial cluster created from
the free-stream noise, particularly prominent in the CBFS case. The free-stream blue cluster remains
consistent across all cases. The green cluster, which groups together the shear layer with part of the
outer boundary layer, is present in all cases. However, for the CBFS case, the shear layer is not included
in the green but in the free-stream blue cluster. Furthermore, this cluster shows considerable noise, and
its location relative to the recirculation bubble varies. In the Periodic-Hill case, it sits directly atop the
bubble, while in the APG case, it is at a significant distance from it.

Figure 5.19: Clustering assignment obtained for the Periodic-Hill case after training the K-Means algorithm on the NASA-Hump
case, using a feature set excluding features F1 (Red), F2 (TI), F5 (ReΩ), and F6 (Rek).
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Figure 5.20: Clustering assignment obtained for the CBFS case after training the K-Means algorithm on the NASA-Hump case,
using a feature set excluding features F1 (Red), F2 (TI), F5 (ReΩ), and F6 (Rek).

Figure 5.21: Clustering assignment obtained for the APG case after training the K-Means algorithm on the NASA-Hump case,
using a feature set excluding features F1 (Red), F2 (TI), F5 (ReΩ), and F6 (Rek).

Overall, the clustering performance of K-Means is poor. In all cases except for Periodic-Hill, where no
distinct boundary layer was identified, the boundary layer is consistently grouped with the recirculation
region. Additionally, the shear layer is indistinguishable from the free stream or the outer region of the
boundary layer. Lastly, an artificial cluster of free-stream noise persists across all cases. Consequently,
the K-Means algorithm is not deemed suitable for the goal of applying local corrections to RANS simu-
lations.

5.2. GMM Results
In this study, the GMM clustering algorithm is explored as a potential improvement over the K-Means
clustering algorithm. For comparison purposes, it is trained on the same NASA-Hump feature set as
K-Means, which has not undergone any outlier removal and from which the non-invariant and Reynolds
number dependent features (F1 (Red), F2 (TI), F5 (ReΩ), and F6 (Rek)) have been removed. The
K-Means clustering output, depicted in Figure 5.18, will serve as the reference clustering performance
against which GMM will be evaluated.

5.2.1. Number of Components
To determine the optimal number of components for the GMM model, the number of components was
varied from 1 to 10, and the BIC score was plotted for each clustering attempt. The covariance option was
set to ’full’. The result of this analysis is displayed in Figure 5.22, showing that the minimum BIC score is
obtained for 10 components. However, considering the expected clustering output shown in Figure 4.1,
which identifies four main regions, adding an additional 6 components may not be justified. Therefore,
apart from evaluating the clustering performance using the BIC score, the clustering assignments were
visually inspected for different numbers of components used. The optimum number of components was
found to be 4, consistent with the number of centroids used for the K-Means analysis.
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Figure 5.22: BIC score obtained for GMM clustering output against number of components used for the GMM model training.

The clustering result obtained by training the GMM model with 4 components is displayed in Figure
5.23. Comparing this clustering output with the reference K-Means clustering assignment in Figure 5.18
reveals that the GMM model performs even worse in clustering the flow domain. In this case, the free-
stream noise cluster (labeled 3) appears even more elongated. Furthermore, cluster 2 groups together
the outer boundary layer region and the shear layer with part of the free-stream.

Figure 5.23: GMM clustering output obtained for the NASA-Hump case using a GMM model trained with 4 components and with
the ’full’ covariance option.

5.2.2. Covariance Options
The final attempt to enhance the clustering performance involves investigating whether the ’tied’ co-
variance option offers any advantages over the ’full’ covariance option used in the previous results.
The clustering assignment obtained using this option and keeping the number of clusters fixed to 4 is
displayed in Figure 5.24. While the free-stream noise cluster (labeled 3) is now less elongated, the
overall free-stream noise has increased compared to Figure 5.23. Therefore, this clustering assignment
is considered worse than the one obtained using the ’full’ covariance option. This outcome is expected
because the ’tied’ covariance option is less flexible, as it assumes that all components share the same
covariance matrix, thereby treating features as equally correlated across components.
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Figure 5.24: GMM clustering output obtained for the NASA-Hump case using a GMM model trained with 4 components and with
the ’tied’ covariance option.

Overall, GMM shows even poorer clustering performance than K-Means. Thus, testing its generaliz-
ability to other flow cases is redundant. Neither of these algorithms has been able to achieve the main
clustering objective, which is to separate the shear layer from the rest of the domain. The final attempt to
cluster the domain is to create a classifier manually, rather than rely on unsupervised learning algorithms
like K-Means and GMM. The results obtained using this approach are described in the section below.

5.3. RITA Classifier Design
The initial approach used in this study to design a physics-based classifier, relied on defining a threshold
for the RITA ratio of production to destruction of k, to match with the expectation that the production
should be higher than the destruction in the shear layer:

RITAPk/Dk
=

|Dk|
(|Dk|+ |Pk|)

< 0.5 (5.1)

However, regions outside of the shear layer also show values below 0.5 for this ratio. In the NASA-Hump
case, this occurs in the upstream region of the hump, at the intersection between the boundary layer and
the hump wall, and in portions of the developing boundary layer and the free stream. Similar trends are
observed for the other separated flow cases. Although excluding the free stream from the shear layer
cluster is possible, by setting the lower threshold value of the ratio to 0.3, such that 0.3 < RITAPk/Dk

<
0.5, the other regions continue to be grouped with the shear layer, as illustrated in Figure 5.25 for the
NASA-Hump case.

Figure 5.25: Clustering assignment based on 0.3 < RITAPk/Dk
< 0.5 classifier for the NASA-Hump case.

The next attempts at designing the shear layer classifier focused on identifying a second RITA ratio
or another feature, that could be used in conjunction with RITAPk/Dk

to eliminate these additional re-
gions from the clustering assignment. However, attempts to use other RITA ratios did not lead to any
improvements; they encountered the same challenges as RITAPk/Dk

, resulting in the shear layer be-
ing grouped with regions outside of it. Nevertheless, one feature included in the K-Means and GMM
clustering dataset showed promising results: the turbulence intensity (TI).
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5.3.1. RITA and Turbulence Intensity
The distribution of the turbulence intensity (TI), whose formal definition is given in equation 4.23, is
displayed in Figure 5.26. This feature shows a clear distinction between the downstream area of the
hump where the shear layer is located and the rest of the domain.

Figure 5.26: The distribution of the turbulence intensity (TI) for the NASA-Hump case.

Setting a threshold on this ratio so that:

TI =
k

k + 0.5∥U∥2
≥ 0.12 (5.2)

and keeping RITAPk/Dk
< 0.5, ensures that only the shear layer region of the domain meets these

conditions, while all other regions are excluded. The way the classifier is constructed based on these
thresholds is further explained in the modeling note below.

Modelling Note - RITA/TI Classifier

The classifier, here denoted as σ, is based on the thresholds set on the RITAPk/Dk
ratio and the

turbulence intensity (TI). It assigns a value of 0 or 1 to every mesh cell in the domain, according
to:
If: RITAPk/Dk

< 0.5 and TI ≥ 0.12 : σ = 1 Else: σ = 0.
The mesh cells where σ = 1 indicate the location of the shear layer. The mesh cells where σ = 0
represent the rest of the domain.

Applying this classifier to all separated flow cases results in the clustering assignments depicted in Fig-
ures 5.27, 5.28, 5.29, and 5.30 for the NASA-Hump, CBFS, Periodic-Hill, and APG cases, respectively.
Streamlines have been added to each figure to clarify the position of the shear layer cluster relative to
the recirculation region. As can be seen from these figures, the cluster representing the shear layer
predominantly resides above the recirculation region in all cases, extending slightly beyond the point
where the flow reattaches to the wall. Visually, this clustering aligns well with the expected location of
the shear layer, as depicted in Figure 4.1. Furthermore, its consistency across different cases indicates
its generalizability to various flow conditions and geometries.

However, it is important to note the gap between the shear layer cluster identified in the APG case and
the recirculation bubble. For the other flow cases, the shear layer cluster is directly in contact with the
recirculation region. In the APG case, the area above the recirculation region has a RITAPk/Dk

ratio
higher than 0.5, indicating that the destruction of k is higher than its production. This is an unusual
result, which does not match the expectations regarding the physics of the shear layer.
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Figure 5.27: σ classifier based on RITA/TI thresholding for the NASA-Hump case.

Figure 5.28: σ classifier based on RITA/TI thresholding for the CBFS case.

Figure 5.29: σ classifier based on RITA/TI thresholding for the Periodic-Hill case.

Figure 5.30: σ classifier based on RITA/TI thresholding for the APG case.

To investigate this further, the F1 blending function which is used by the k−ω SST model to switch from
its k − ϵ formulation in the free-stream and its k − ω formulation in the near-wall region, is plotted for
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both the APG case and the NASA-Hump in Figure 5.31. For clarity, when F1 equals 0, the k − ϵ model
is fully active, while a value of 1 indicates full activation of the k − ω model. Values between 0 and 1
represent a blend of the two models. Additionally, the F2 blending function, used by the k − ω SST
model to limit the eddy viscosity to align with Bradshaw’s observations regarding the level of turbulent
energy production in the outer wake of the boundary layer, is depicted for both the APG case and the
NASA-Hump in Figure 5.32

In both the NASA-Hump and APG cases, the k−ω model is fully active in the near-wall and recirculation
regions. However, at the point of separation, there is a sudden switch to the k − ϵ model for the NASA-
Hump, a transition not evident in the APG case. Here, near the separation region and throughout much
of the shear layer’s initial stretch, the k−ω model remains active. The k−ϵmodel is known to sometimes
overpredict the production of k in the shear layer, leading to higher shear stresses and consequently to
earlier reattachment location predictions. The other 2D-separated flow cases show similar trends as the
NASA-Hump. For these cases, likely, the rapid switch to the k−ϵmodel in the shear layer helps increase
the production of k over its destruction, resulting in a correct prediction of the shear layer cluster. For
the APG case, where this switch does not occur abruptly and the k − ϵ model is never fully activated in
the shear layer, it also does not result in enough turbulent production of k in the shear layer. The shear
layer therefore resides higher up above the recirculation bubble, near the region where the switch to the
k − ϵ model begins to occur.

(a) F1 blending function contour for the NASA-Hump case.

(b) F1 blending function contour for the APG case.

Figure 5.31: Overview of the F1 blending function used to switch between the k-ω and k − ϵ variants within the k-ω SST model
framework.

On the other hand, it is also possible that discrepancies observed for the APG case are caused by the F2

blending function. As shown in Figure 5.32, there is a noticeable difference in how the eddy viscosity is
limited between the APG and NASA-Hump cases. When F2 equals 1, the eddy viscosity is fully limited,
whereas when F2 equals 0, the eddy viscosity is not limited and is computed directly from the ratio of k to
ω. For the APG case, the eddy viscosity is limited in the majority of the domain, while in the NASA-Hump
case, the limiter decreases to below half of its strength in the shear layer region. Not fully limiting the
eddy viscosity in the shear layer allows for higher production of turbulent kinetic energy, which helps the
classifier to easily distinguish between these regions and the rest of the domain. In the APG case, the
region with slightly less limitation on the eddy viscosity is located higher above the recirculation region,
which could explain why the RITA/TI classifier identifies a region higher than where the shear layer is
expected to reside for this case.
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(a) F2 blending function contour for the NASA-Hump case.

(b) F2 blending function contour for the APG case.

Figure 5.32: Overview of the F2 blending function of the k − ω SST model, used to determine in which region of the flow the
eddy viscosity should be limited.

Overall, the clustering results obtained using the RITA/TI classifier represent the most promising out-
comes thus far in the analysis, significantly surpassing the performance of unsupervised clustering
methods like K-Means and GMM. One final remark is that the RITA/TI classifier relies on turbulence
intensity, which is known to be Galilean invariant, potentially limiting its applicability in cases with mov-
ing reference frames. Nevertheless, as the majority of industrial CFD simulations do not involve moving
reference frames, this classifier remains applicable in most scenarios. Nonetheless, attempts have been
made in this study to identify an invariant alternative, discussed further in Appendix Chapter B.

5.4. Final Conclusions
Throughout this chapter, various methods have been investigated to obtain a generalizable classifier
capable of identifying the shear layer region from the rest of the flow domain. Unsupervised clustering
methods such as K-Means and GMM yielded poor results. Not only were the trained classifiers not
generalizable, but they also failed to identify the shear layer. These methods are highly sensitive to the
input feature dataset, and noise can significantly bias the clustering output. Feature datasets constructed
from flow variables are notoriously difficult to pre-process; outlier removal often either negatively impacts
the distribution of the features or fails to identify outliers. The RITA/TI classifier, designed to match the
physical expectations of the turbulence characteristics of the shear layer, demonstrated the best overall
performance in identifying the shear layer from the rest of the domain. Consequently, this is the classifier
that is used in this study for applying local corrections to the k-ω SST model.

The results of this chapter provide answers to the first two research questions formulated for this study. It
is indeed possible to construct a classifier for the shear layer so that model corrections obtained through
SpaRTA, as discussed in Chapter 7, can be activated only where necessary. While this classification
appears to be relatively consistent across different domain geometries and flow Reynolds numbers, it
shows a slight underperformance for the APG case, where it predicts the shear layer to be slightly higher
above the recirculation region than expected. This discrepancy seems to be correlated with the trends
observed in the F1 and F2 blending functions of the k − ωSST model, which differ as the geometry of
the case changes drastically.
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Comparison of Baseline and

Propagation Results
This chapter covers the differences observed in the flow behavior predicted by Baseline RANS simu-
lations and Propagation Simulations. While the residual and convergence probe plots have not been
added for each simulation, they have been checked to ensure every simulation has converged success-
fully. The analysis begins with a comprehensive overview of the NASA-Hump, outlining the method-
ologies used to compare and interpret the results. Detailed explanations of any additional simulations
conducted are presented here. Subsequent sections on the Periodic-Hill, CBFS and APG cases are
more concise, highlighting only the most important observations gathered from the results. The chapter
concludes with key findings drawn from the presented results and important considerations for SpaRTA
model training and evaluation in Chapter 7.

6.1. NASA-Hump
6.1.1. Discrepancies Observed in Baseline RANS
Figure 6.1 illustrates the profiles of axial velocity Ux, turbulent kinetic energy k, and the shear stress com-
ponent u′w′ of the Reynolds-stress tensor, downstream of the hump at various x/c locations, obtained
from the Baseline simulation and LES data. Scaling factors are applied to these profiles to prevent over-
lap while ensuring significant deviation from zero for clear visualization. For clarity, the grey vertical lines
represent the ’zero’ lines, indicating zero values when a profile intersects or aligns with them. Profiles
to the left of these lines denote negative values, while those on the right denote positive values.

These profiles are supported by the skin friction coefficient Cf and pressure coefficient Cp plots along
the full length of the bottom wall boundary of the domain, displayed in Figure 6.2. Note that the y-axis of
the Cp plot has been inverted to match displays of this plot found in other literature studies [38]. As the
fully developed boundary layer advances toward the hump, it begins to decelerate, as evidenced by the
sudden drop in the Cf values and the increase in the Cp values. The match between the Baseline and
LES predictions of the profiles in this region is relatively good. However, slightly before x/c = 0, which
marks the onset of the hump geometry, the Baseline Cf profile drops slightly below 0, indicating a very
small incipient separation region, which is not predicted by LES.

The subsequent sudden increase in the Cf coefficient, accompanied by a sudden decrease in the Cp

coefficient, marks the onset of flow acceleration over the hump wall due to a favorable pressure gradient
developed as the domain constricts. While the Baseline simulation displays a singular plateau atop
the hump geometry between 0.1 < x/c < 0.6, the LES data reveals two plateaus, the first occurring
between 0.1 < x/c < 0.2. This additional plateau is attributed to relaminarization, as described in [38],
which is thought to arise due to a strong favorable pressure gradient in this region. However, as any
small instability leads to turbulent effects taking charge, the Cf values increase and reach the second

57
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plateau. The Baseline simulation fails to capture this relaminarization as the k-ω SST model cannot
predict such behavior.
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Figure 6.1: Comparison of LES and Baseline Ux, k and u′w′ profiles at various x/c locations downstream of the hump.

The subsequent sudden decrease in the Cf values and increase in the Cp values marks the onset
of flow deceleration as the domain expands again after the hump, leading to the development of an
adverse pressure gradient, which eventually leads to flow separation. The separation point is predicted
very accurately by the Baseline simulation at x/c = 0.65, compared to x/c = 0.66 by the LES data.
The kinks in the Cf profile in the separated region are due to the changes in the contour shape of the
hump geometry. The flow is predicted to reattach at x/c = 1.25 by the Baseline simulation, which is
much delayed compared to the reattachment location predicted by LES at x/c = 1.06. This indicates
that the recirculation region predicted by the Baseline simulation is much too large, which aligns with
expectations regarding the performance of RANS in predicting the flow behavior in 2D-separated flow
cases [61][62]. This is also clearly observed when comparing the relative positioning of the Ux profiles
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predicted by Baseline and LES relative to each other and to the gray ’zero’ lines.

The reason behind the delayed reattachment location in the Baseline simulation can be understood from
the k and u′w′ profiles. The Baseline simulation underpredicts turbulence production and shear stress in
the shear layer region above the recirculation region. There are two primary reasons for this: the model-
form error in the Reynolds-stress tensor (L2 uncertainty) and the model-form error in the k−ω SSTmodel
formulation (L3 uncertainty). An investigation into which of these model-form errors is more critical to
the accuracy of the Baseline RANS simulation for the NASA-Hump case is carried out in Section 6.1.3.
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Figure 6.2: Comparison of LES and Baseline Cp and Cf coefficients along the bottom wall boundary of the domain.

6.1.2. b∆ij and R Correction Fields
The correction fields for the magnitude of the b∆ij normalized turbulence anisotropy and the R residual
term of the k-ω SST model equations, obtained using the Frozen simulation approach, are depicted
in Figure 6.3. The free stream corrections observed in the b∆ij field result from dividing by very small
numbers during its computation from a∆ij and kLES , which both approach zero in this region. However,
these corrections are not expected to influence the Propagation simulations, as the b∆ij field is always
multiplied by k in the Reynolds-stress tensor equation, effectively setting the correction values to zero
in the free stream.

The correction fields show that the most significant discrepancies in the RANS simulations are concen-
trated in the shear layer region, with the highest magnitude corrections occurring precisely at the edge of
the hump where boundary layer separation initiates and in the initial stretch of the shear layer. However,
it is important to acknowledge that discrepancies are also evident in other regions of the domain, as
can be observed in the b∆ij correction field at the junction between the incoming boundary layer and the
back-side of the hump. This discrepancy is likely attributed to the observed difference in the formation
of a small separation region in the Baseline simulation, as seen in section 6.1.1 in the Baseline-LES
comparison plots for Cf . Furthermore, the high corrections right on top of this junction region can likely
be attributed to the relaminarization captured by LES but not by Baseline RANS.

R can act both as a production term and a destruction term, locally increasing and decreasing the
values of turbulent energy production. It is crucial to note that the high positive values observed in the R
correction field within the shear layer region indicate that the corrected anisotropy tensor alone cannot
accurately predict the actual production of k. This suggests that model-form error in the k−ω SSTmodel
also plays a significant role in predicting the underlying physics correctly. TheR correction field shows no
significant corrections for the boundary layer upstream of the hump, which aligns with expectations, as
the k−ω SST model was calibrated to accurately predict a developing turbulent boundary layer on a flat
plate. The high R corrections in the downstream near-wall area of the domain are more challenging to
explain. Comparing the predicted turbulent production rate in this region, the LES data shows negative
values for the production of turbulent kinetic energy. This occurs because while most sub-grid-scale
(SGS) models used in LES simulations are dissipative, implying that they predict energy to be dissipated
from the large scales to the smaller ones, the SGS stresses can still transfer energy back to the large
scales through a process known as backscatter. In contrast, RANS Baseline simulations do not account
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for backscatter [63]. They predict the dissipation and production of k in this region to be in balance
while considering that ω at the wall should be computed according to the boundary condition imposed
by Menter and implemented by the omegaWallFunction in OpenFOAM. Therefore, the corrections in
this region result from the k − ω SST equations adjusting the balances between their production and
dissipation terms to account for the LES behavior.

(a) b∆ij magnitude correction field. The color bar has been limited to an upper value of 0.5 to bring out the distribution of the corrections.

(b) R magnitude correction field. The color bar has been limited to an upper value of 60000 m2s−3 to bring out the distribution of the corrections.

Figure 6.3: NASA-Hump correction fields obtained from Frozen simulations.

6.1.3. Propagation Results
Propagation simulations are always initiated from the converged Baseline simulation to eliminate incon-
sistencies that can be caused by differences in initial conditions. Furthermore, these simulations apply
the b∆ij and R correction fields in the entire computational domain.
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Figure 6.4: Comparison of Cf and Cp coefficients along the bottom wall boundary of the NASA-Hump domain, obtained from
Baseline, Propagation and LES simulations.
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Figure 6.4 compares the Cf and Cp plots obtained from Baseline, Propagation and LES, while Figure
6.5 displays the profile comparisons of Ux, k, and u′w′ downstream of the hump. Both figures show a
near-perfect alignment between the Propagation results and the LES predictions, which validates the
correction fields obtained from the Frozen simulation. Nevertheless, near the domain outlet, there is
a slight discrepancy visible between Propagation and LES in the Cf and Cp plots. As explained in [8],
this is thought to originate from the fact that the RANS domain is too short and does not allow for full
boundary layer recovery.
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Figure 6.5: Comparison of Baseline, Propagation and LES profiles of Ux, k and u′w′ at various x/c location downstream of the
hump.

To assess the relative importance of each correction field, two additional Propagation simulations have
been conducted: one based solely on the b∆ij correction field, and another based only on the R field.
The resulting profiles are displayed in Figure 6.6. It is evident from the Ux profiles that the Propagation
simulation based on the R correction field significantly outperforms the one based solely on the b∆ij
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corrections. As seen from the k profiles, almost all the error between the Baseline RANS and the
LES data stems from the model-form error in the k − ω SST model, so when this is corrected for, an
almost perfect prediction of k is obtained. However, even with this near-perfect prediction of k, the
Ux profiles still do not fully match the LES ones. This discrepancy is caused by the fact that the R
corrections still result in an underprediction of the shear stress, as evidenced by the u′w′ profiles. The
model-form error in the Reynolds-stress tensor is primarily caused by the inaccuracy in the prediction
of the turbulence anisotropy, as can be observed from the fact that the b∆ij correction field leads to a
more accurate prediction of the shear stress. Nevertheless, both correction fields are needed for the
Propagation simulation to match the LES data.
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Figure 6.6: Comparison of Ux, k, and u′w′ profiles at various x/c locations downstream of the hump, obtained from
Propagation simulation with only b∆ij corrections active and Propagation simulation with only R corrections active.

Thus far, the b∆ij andR correction fields have been applied across the entire computational domain. How-
ever, the main goal of this study is to apply corrections selectively, only within regions where the RANS
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model is known to under-perform, i.e., the shear layer in the case of 2D-separated flows. Therefore, it
is crucial to assess the impact of limiting corrections solely to the shear layer, which is identified by the
RITA/TI classifier discussed in Chapter 5. Furthermore, since the SpaRTA model discovery relies only
on the simulation and corrective field data obtained from the shear layer cluster, it is important to have a
reliable reference point for comparing the models’ performances. This investigation is further elaborated
in the section below.

6.1.4. Propagation Restricted To Classifier Region
Before evaluating the effects of applying corrections exclusively in the shear layer cluster obtained
through the RITA/TI classifier, an essential aspect of the classification process must be addressed:
whether the shear layer cluster should remain static throughout the simulation (i.e., read from a file)
or be calculated dynamically (updated at each iteration based on changes in flow variables as correc-
tions are applied). A compelling argument in favor of dynamic clustering arises from the differences
observed in the size and location of the recirculation bubble between the Baseline simulations and the
Propagation simulations/LES predictions. Both LES and Propagation simulations display a smaller re-
circulation bubble. Additionally, as demonstrated in Figure 6.5, the peaks in the shear component of the
Reynolds-stress tensor, which are indicative of the shear layer’s location, differ between the Propaga-
tion/LES and the Baseline simulations. Therefore, since the shear layer location is expected to change,
the clustering should also be updated to account for the changing physics. The approach used to update
the cluster dynamically is documented in the modeling note below.

Dynamic Clustering with RITA/TI classifier

As a reminder, the RITA/TI classifier, here denoted as σ, is based on the thresholds set on the
RITAPk/Dk

ratio and the turbulence intensity and assigns a value of 0 or 1 for every mesh cell in
the domain, according to:
If: RITAPk/Dk

< 0.5 and TI ≥ 0.12 : σ = 1 Else: σ = 0.
The mesh cells where σ = 1 indicate the location of the shear layer. The mesh cells where σ = 0
represent the rest of the domain.

Both b∆ij and R correction fields alter Pk. However, since R can take both positive and negative
values, it can act as both a production and a destruction term. Therefore, the RITAPk/Dk

ratio is
reformulated to take this into account:
If: R < 0, then RITAPk/Dk

= Dk+R
Dk+Pk+R Else: R > 0, then RITAPk/Dk

= Dk

Dk+Pk+R

Two Propagation simulations have been conducted to compare the effectiveness of dynamic versus
static clustering in capturing the evolving physics of the shear layer region. In the first simulation, correc-
tions are applied in the static shear layer. This type of simulation is referred to as a Propagation-Classifier
simulation or PC for short. In the second simulation, the shear layer is dynamically updated, and the
simulation is referred to as a Propagation-Classifier-Dynamic simulation, or PCD for short.
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Figure 6.7: Comparison of Cf and Cp coefficients along the bottom wall boundary of the domain obtained from Baseline,
Propagation, PC and PCD simulations.
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The Ux, k and u′w′ profiles obtained from these two different types of simulations are displayed in Figure
6.8. The Cf and Cp coefficients are shown in Figure 6.7 and the exact separation and reattachment
locations are displayed in Table 6.1.
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Figure 6.8: Comparison of Baseline, Propagation, PC and PCD profiles of Ux, k and u′w′ at various x/c locations downstream
of the hump.

Both PC and PCD simulations show that applying corrections only in the shear layer results in a fairly
improved prediction over the Baseline RANS, especially in the shear layer and recirculation region. Nev-
ertheless, in the region directly above the shear layer, the discrepancies start to becomemore significant
as this region is not included in the shear layer cluster. It is important to notice that there are no dis-
continuities in the profiles, even though the RITA/TI classifier performs a hard classification, so that in
the shear layer cluster, full corrections are applied, and directly outside of its boundaries, no corrections
are applied. As no convergence problems have been encountered during the simulations, there is no
immediate need for a blending function to be applied at the boundaries of the cluster region so that the
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corrections are gradually eliminated.

Table 6.1: Overview of the separation and reattachment locations obtained from LES, Propagation, Baseline, PC and PCD
simulations for the NASA-Hump case.

Simulation Type Separation Location x/c [-] Reattachment Location x/c [-]
LES 0.66 1.06

Propagation 0.66 1.05
Baseline 0.65 1.25

PC 0.66 1.10
PCD 0.66 1.09

In the near-wall region downstream of the hump, there is a significant difference in the k profile prediction
by both PC and PCD simulations. As seen in the correction fields of R and b∆ij in Figure 6.3, high
corrective values are present for both fields in this near-wall region. Since the classifier simulations do
not apply any corrections in this region, discrepancies in the profiles are not unexpected.

The PCD simulation shows only a marginal improvement over the PC simulation, which slightly under-
predicts k in the shear layer. Overall, both simulations demonstrate a significant improvement over the
Baseline simulation. However, they still overpredict the size of the recirculation region as evidenced by
the reattachment locations listed in Table 6.1. To observe the physical changes in the shear layer cluster
in the PCD simulation, Figure 6.9 has been created. The size of the shear layer cluster grows and curves
around the shrinking recirculation region. The boundaries of the cluster also become less well-defined,
which might be due to the interrupted patterns seen in the R correction field shown in Figure 6.3b. Since
R is used to compute the RITA classifier dynamically, as documented in the above modeling note, its
overall distribution effects are also present in the final classification.

(a) Propagation-Classifier (b) Propagation-Classifier-Dynamic

Figure 6.9: Comparison of static and dynamic RITA/TI classification. R and b∆ij correction are only applied where σ=1.

6.2. Periodic-Hill
6.2.1. b∆ij and R Correction Fields
In the Periodic-Hill case, similar to the NASA-Hump, flow separation occurs due to an adverse pressure
gradient created by a change in the shape of the bottom wall contour. However, the top wall boundary
is now a wall, which introduces additional effects on the outer-flow pressure field acting on the boundary
layer undergoing separation. As stated in [41], the actual ability of RANS models to predict separa-
tion for this case is difficult to interpret because even small modeling errors can translate to significant
differences in predictive performance due to the periodic boundary conditions that can amplify these
errors.

The b∆ij and R correction fields for this case are displayed in Figure 6.10. To enhance the visualization
of the corrections, the color bar for R has been constrained to an upper value of 0.15 m2s−3. Analogous
to the NASA-Hump case, significant corrections are observed at the point of separation, in the shear
layer and the near-wall region. To assess the relative importance of each correction field, two distinct
Propagation simulations were conducted: one based solely on the b∆ij correction field, and another only
based on the R field. Figure 6.11 presents a comparison of the simulation results with the available LES
data for this case.
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(a) b∆ij magnitude correction field. (b) R magnitude correction field.

Figure 6.10: Periodic-Hill correction fields obtained from Frozen simulations.
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Figure 6.11: Comparison of Ux, k, and u′v′ profiles at different x/H locations along the Periodic-Hill domain, obtained from
Propagation simulations with only b∆ij corrections active and Propagation simulation with only R corrections active.

The Propagation simulation based on theR correction field shows the best overall performance in predict-
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ing the Ux velocity profile. As can be inferred from the k and u′v′ profiles, while the turbulence anisotropy
correction plays a more significant role in predicting the correct magnitude of the Reynolds-stress tensor,
it still does not lead to an accurate prediction of the production of k, and therefore k remains underesti-
mated. On the other hand, correcting for the model-form error in the k-ω SST model results in a better
prediction of k, which in turn leads to a better prediction of the Ux velocity profile. It is important to note,
that these trends align with the ones obtained for the NASA-Hump case.

6.2.2. Comparison of Full Propagation vs Classifier Propagation Simulations
Conducting a full Propagation simulation, incorporating both b∆ij and R fields, along with the two types of
classifier Propagation simulations (PC and PCD), yields the Cf and Cp plots showcased in Figure 6.12,
alongside the flow profiles depicted in Figure 6.13. To facilitate the comparison of flow separation and
reattachment locations across different simulations, Table 6.2 is provided.

0 2 4 6 8
x/H [-]

0.005

0.000

0.005

0.010

0.015

0.020

0.025

C f
 [-

]

Baseline
Propagation-Classifier
Propagation-Classifier-Dynamic
Propagation
LES

(a) Cf vs x/H

0 2 4 6 8
x/H [-]

1.4

1.6

1.8

2.0

2.2

2.4

2.6

C p
 [-

]

Baseline
Propagation-Classifier
Propagation-Classifier-Dynamic
Propagation
LES

(b) Cp vs x/H

Figure 6.12: Comparison of Cf and Cp coefficients across the bottom wall boundary of the Periodic-Hill domain, obtained from
LES, Baseline, Propagation, PC and PCD simulations.

Table 6.2: Overview of the separation and reattachment locations obtained for the Periodic-Hill case from LES, Baseline,
Propagation, PC and PCD simulations.

Simulation Type First
Separation

Location x/H
[-]

First
Reattachment
Location x/H

[-]

Second
Separation

Location x/H
[-]

Second
Reattachment
Location x/H

[-]
LES 0.22 4.69 7.01 7.22

Propagation 0.25 4.64 7.06 7.62
Baseline 0.26 7.64 - -

PC 0.29 5.43 7.04 7.38
PCD 0.30 5.15 7.03 7.48

The Cp plot shows a steep rise immediately after the first hill crest, indicating flow separation, before
remaining relatively constant across the downstream half of the recirculation zone. The Cf plot predicts
the separation point at around x/H = 0.22, with a minimum in skin friction near x/H = 0.28 where the
region of maximum reverse flow is located. Cf returns to zero at x/H = 4.69 as the flow decelerates,
consistent with a positive pressure gradient associated with the narrowing of the recirculation zone. Post-
reattachment, influenced by a moderately adverse pressure gradient, the developing boundary layer
decelerates as it approaches the subsequent hill, leading to a secondary incipient separation around
x/H = 7.22. A local skin friction minimum at this point coincides with an increase in the Cp plot. Finally,
the flow accelerates over the second hill crest as evidenced by a sharp rise in Cf and a sharp decrease
in Cp.

Table 6.2 highlights that the Baseline RANS simulation fails to predict this secondary incipient separation,
and places the reattachment of the first separation at a location further downstream compared to the
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LES prediction. Additionally, Figure 6.13 illustrates that k and u′v′ are heavily underestimated in the
shear layer of the Baseline simulation, leading to an overly large recirculation region. This aligns with
the trends observed for the NASA-Hump case.

The Propagation simulation profiles align perfectly with the LES profiles, with only minor discrepancies
observed in the Cf and Cp plots. These differences likely stem from the fact that the Cf and Cp data
were obtained from the original LES mesh, whereas the Ux, k, and u′v′ LES profiles were obtained by
interpolating LES data to the RANS mesh. Consequently, slight variations can arise due to information
loss during interpolation.
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Figure 6.13: Comparison of Ux, k and u′v′ profiles obtained at different x/H locations along the Periodic-Hill domain from LES,
Baseline, Propagation, PC and PCD simulations.

Although the Propagation simulation successfully captures both the primary separation and the sec-
ondary incipient separation, it notably overestimates the secondary reattachment location in comparison
to LES. Conversely, both PC and PCD simulations demonstrate superior performance in overall separa-
tion and reattachment point prediction for this secondary separation region. The underlying reasons for
this discrepancy are not discernible from the profiles presented in Figure 6.13, primarily due to the rela-
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tively small size of the secondary separation region compared to the primary one, making it challenging
to capture the physics accurately. Nevertheless, given that the primary separation is deemed the most
critical, the models’ performance is primarily assessed based on their predictions in this region. The
PC and PCD simulations tend to overpredict the first reattachment location compared to the standard
Propagation simulation and LES data. This discrepancy can be explained by the underprediction of the
k and u′v′ profiles by these simulations.

In general, the PCD simulation shows improvement over the PC simulation in predicting the reattachment
location. However, it performs even worse than the Baseline simulation in predicting the separation
location. This discrepancy can be attributed to the u′v′ profiles, which show an overestimation at the top
of the hill crest. The PCD simulation’s overestimation of shear stress at this location leads to the flow
remaining attached for longer, delaying separation. Similar behavior is observed in the PC simulation.

This can be traced back to the cluster of the shear layer obtained for these simulations, as depicted
in Figure 6.19. The cluster initiates at the edge of the first hill crest and terminates at the onset of the
second hill crest. Notably, no corrections are applied right above the hill crest, despite the correction field
plots indicating high corrective values in this region (as illustrated in Figure 6.10). Since no corrections
are applied in these regions due to their exclusion from the shear layer cluster, this omission is likely the
source of the overstress observed in this area.

(a) Propagation-Classifier simulation. (b) Propagation-Classifier-Dynamic simulation

Figure 6.14: Comparison of static and dynamic RITA/TI classification for the Periodic-Hill case. R and b∆ij correction are only
applied where σ=1.

6.3. Curved Backward Facing Step
6.3.1. b∆ij and R Correction Fields
In the CBFS case, similar to the NASA-Hump and Periodic-Hill, flow separation initiates due to an ad-
verse pressure gradient caused by a change in the contour shape of the bottom wall. This case stands
out due to the challenges involved in simulating flows separating from a gently curved surface, in contrast
to the sharper geometries of Periodic-Hill or NASA-Hump [41]. The gradual shift in surface curvature
allows the flow to smoothly adapt and trace the surface contour, leading to a slight delay in separation
and the formation of a small recirculation region. No abnormalities were encountered in obtaining the
correction fields for this case or in the convergence and probe studies. The correction fields for b∆ij and
R are illustrated in Figure 6.10.

(a) b∆ij magnitude correction field. The color bar is limited to an upper
value of 0.7 to bring out the distribution of the corrections.

(b) R magnitude correction field. The color bar is limited to an upper
value of 0.04 m2s−3 to bring out the distribution of the corrections.

Figure 6.15: CBFS correction fields obtained from Frozen simulations.

Similar to the NASA-Hump and Periodic-Hill cases, there are significant corrections at the point of sepa-
ration, in the initial stretch of the shear layer and the near-wall region. To assess the relative importance
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of each correction field, two distinct Propagation simulations were conducted: one based solely on the
b∆ij correction field, and another based only on the R field. Figure 6.16 presents a comparison of the
resulting flow profiles.
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(a) Ux profiles.
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(b) k profiles.
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(c) u′v′ profiles.

Figure 6.16: Comparison of Ux, k, and u′v′ profiles at different x/H locations along the CBFS domain for Propagation
simulation with only b∆ij corrections active and Propagation simulation with only R corrections active.

Similar to the NASA-Hump and Periodic-Hill cases, the Propagation simulation based on the R correc-
tion fields outperforms the one based solely on the b∆ij corrections, as deduced from the prediction of
the Ux profiles. The u′v′ profiles indicate that applying only R corrections is sufficient to obtain the cor-
rect estimation of the shear stress in the post-reattachment region. However, the shear stress in the
shear layer remains largely underpredicted. Further downstream, the u′v′ profile begins to be overes-
timated, leading to the overestimation observed in the Ux profiles in this region. The R corrections are
also adequate to achieve very good predictions of k in this region, including the near-wall region in the
recirculation bubble. However, k also remains slightly underpredicted in the shear layer. On the other
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hand, applying only b∆ij corrections leads to an overprediction of both k and u′v′ in the shear layer and
fails to predict the correct maximum peak location in the u′v′ profiles.

It is interesting to observe that despite the overpredictions in u′v′ and k in the b∆ij Propagation simula-
tion, the resulting Ux profile does not show any significant overprediction, and the solution appears quite
similar to the Baseline simulation. This discrepancy can be understood by examining the u′v′ and k
profiles at x/H = 1, which is just after the point of separation. While the R corrective simulation yields
predictions at these locations similar to the LES data, the b∆ij simulation resembles the Baseline predic-
tion. Referring back to the correction field plots in Figure 6.15, it is evident that the corrections are most
significant in this region so predicting the correct amount of turbulence production here, is crucial for
capturing the correct physics in the shear layer and recirculation region. Therefore, because b∆ij correc-
tions fail to predict the correct turbulence energy production in this region, it has a cascading effect on
the predictions of the rest of the flow behavior. Overall, while both b∆ij and R corrections are vital for the
accurate prediction of this simulation, the model-form error in the k − ω SST model appears to play a
more significant role than the error in the anisotropy of the Reynolds-stress tensor. This aligns with the
results obtained for the Periodic-Hill and NASA-Hump cases.

6.3.2. Comparison of Full Propagation vs Classifier Propagation Simulations
Conducting a full Propagation simulation, incorporating both b∆ij and R fields, along with the two types
of classifier Propagation simulations (PC and PCD), yields the Cf and Cp plots showcased in Figure
6.17b, alongside the flow profiles depicted in Figure 6.18. To facilitate the comparison of flow separation
and reattachment locations across different simulations, Table 6.3 is provided. The incoming boundary
layer undergoes a certain level of acceleration upstream of the curved step, as evidenced by the sharp
increase and subsequent decrease in the Cf and Cp plots respectively. As mentioned in [41], this
acceleration is attributed to distortions in the velocity field in the downstream curved section, where the
attached near-wall flow maintains near-constant vorticity as it curves downward over the step. The flow
experiences deceleration after x/H = 0, leading to a rise in pressure over the surface and eventual
separation estimated at x/H = 0.83 by the LES data. In the recirculation region, fluctuations in the Cf

plot are attributed to curvature discontinuities in the contour of the step. Surface pressure rises close
to the reattachment point, beyond which the boundary layer begins to recover towards an equilibrium
channel condition past x/H = 10.
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Figure 6.17: Comparison of Cf and Cp coefficients across the bottom wall boundary of the CBFS domain, obtained from LES
data, Baseline, Propagation, PC and PCD simulations.

Overall, a slight mismatch between the Propagation and LES data is evident in both the flow profiles
and the pressure and the Cf and Cp plots, which is more pronounced compared to the Periodic-Hill
and NASA-Hump cases. It is important to note that the computational domain for this case employs a
much coarser mesh than the other cases in this study, with an average y+ value of 3.63 for the bottom
wall. As observed from the correction fields and the trends in the Propagation simulations where only
one of two correction fields was applied per simulation, accurate predictions near the separation region,
especially in the near-wall region, are crucial for correctly predicting the overall flow behavior. Therefore,
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it is possible that because the mesh is coarser, the boundary layer is not as well-resolved, leading to a
slight mismatch between the Propagation simulation and LES data. This is further supported by the fact
that the Propagation simulation predicts the separation location earlier than the LES data.

Table 6.3: Overview of the separation and reattachment locations obtained for the CBFS case from LES, Baseline, Propagation,
PC and PCD simulations.

Simulation Type Separation Location x/H [-] Reattachment Location x/H [-]
LES 0.82 4.32

Propagation 0.75 4.35
Baseline 0.74 5.85

PC 0.89 4.59
PCD 0.89 4.58
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(a) Ux profiles.
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(b) k profiles.
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(c) u′v′ profiles.

Figure 6.18: Comparison of the profiles of Ux, k and u′v′ obtained at different x/H locations along the CBFS domain from LES
data, Baseline, Propagation, PC and PCD simulations.
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Nevertheless, the Propagation simulation still manages to obtain a relatively accurate prediction of the
reattachment location and, therefore, of the overall size of the recirculation bubble. The slight mismatch
observed in the Cf and Cp plots towards the outlet of the domain between LES and Propagation is very
likely due to the same reason as the one given for the mismatch observed in the outlet region of the
NASA-Hump case, which is that the RANS domain is not long enough to fully capture the boundary
layer recovery.

The discrepancies between the PC and PCD simulations are negligible, they both predict the same
separation location, with only a slight 0.01 difference in the reattachment location. The most significant
difference lies in the fact that the PC simulation slightly underpredicts k in the initial stretch of the shear
layer. As depicted in Figure 6.19, similar to the NASA-Hump and Periodic-Hill cases, the shear layer
cluster grows and curves over the shrinking recirculation region. Overall, applying corrections solely in
the shear layer cluster results in a significant improvement over the Baseline simulation, nearly achieving
an exact match with the LES.

(a) Propagation-Classifier simulation. (b) Propagation-Classifier-Dynamic simulation

Figure 6.19: Comparison of static and dynamic RITA/TI classification for the CBFS case. R and b∆ij correction are only applied
where σ = 1.

6.4. APG Case
6.4.1. b∆ij and R Correction Fields
The APG case is slightly different compared to the other 2D-separated flow cases since the adverse
pressure gradient is no longer created by a contour change in the bottom boundary of the domain and
there is no flow acceleration prior to separation. In the APG case, separation is induced by imposing
an adverse pressure gradient on a fully turbulent zero-pressure gradient boundary layer. This pressure
gradient arises from a modification to the top boundary of the domain, resulting in flow expansion. Fol-
lowing the separation region, a favorable pressure gradient is followed by a zero pressure gradient of
long enough duration to allow the boundary layer to fully recover [42]. The recirculation bubble that
develops in the APG case is extremely small compared to the other 2D-separated flow cases.

To obtain the R and b∆ij correction fields for the APG case, the R term had to be removed from the
ω equation. If this term is not removed, the Propagation does not converge as can be seen from the
residuals in Figure 6.20. The intuition behind removing R from the ω equation comes from previous
experience of researchers at the TU Delft aerodynamic group who realized that keeping R in the ω
equation when dealing with 3D cases is very unstable.
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(a) Residuals vs the number of iterations for Propagation
simulation with R term removed from the ω equation.
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(b) Residuals vs the number of iterations for Propagation
simulation with R term not removed from the ω equation.

Figure 6.20: Residual plots obtained during the APG Propagation simulation run.
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(a) b∆ij magnitude correction field. The color bar has been limited to an upper value of 0.5 to bring out the distribution of the corrections

(b) R magnitude correction field. The color bar has been limited to upper and lower values of 200 and -200 m2s−3 respectively to bring out the
distribution of the corrections.

Figure 6.21: APG correction fields obtained from Frozen simulations.

Figure 6.21 displays the b∆ij and R fields. Similar to the correction fields obtained for the other 2D-
separated flow cases, there are high corrections at the wall and near the separation point at around
x/H = −1.47. Corrections in the shear layer are present in both fields however they are not as rec-
ognizable as in the other cases. To assess the relative importance of each correction field, two distinct
Propagation simulations were conducted: one based solely on the b∆ij correction field, and another based
only on the R field. Figure 6.22 presents a comparison of the resulting flow profiles.

Both types of simulations result in very poor estimations of the Ux profiles. The corrections applied
with b∆ij lead to severe underestimations, while those with R corrections result in overpredictions. Since
these corrections have opposite effects, it helps explain why using both in a Propagation simulation
yields near-perfect predictions of the flow, closely resembling the DNS results, as depicted in Figure
6.23 in the section below.

The R corrections lead to overpredictions of turbulence production, as indicated by the k profiles. The
cause of this can be related to approaches used to derive the correction fields in the Frozen simulation.
The R residual term in the ω equation acts to locally increase or decrease dissipation. However, this
term was eliminated from the ω equation during the Frozen simulation. This is problematic because
the production term of the ω equation is based on the production term of the k equation as shown in
equation 2.42. Therefore, in this case, if the R residual term locally increases the production in the k
equation, this is not accounted for in the ω equation, which leads to an underprediction in the amount
of dissipation in the system. This ultimately results in an overprediction in k, as the balance between
turbulent energy production and dissipation is no longer accounted for correctly.

On the other hand, the b∆ij corrections severely underpredict both k and u′v′ profiles, resulting in a poorer
performance compared to the Baseline simulation. Once again, this can be attributed to the methods
used to derive the correction fields. To correct for turbulence anisotropy, the eddy viscosity needs to be
computed since it is not provided by the DNS data. Computing the eddy viscosity requires ω to be known,
as indicated in equation 2.31. However, as discussed earlier, the ω field is not correctly computed as
there is no term to account for the additional local dissipation. Consequently, the overall turbulence
anisotropy correction does not entirely represent the true model-form error as it is biased due to the
absence of corrections to the ω field.

These observations are very important for the SpaRTA model discovery procedure. Since the R and
b∆ij correction fields, in this case, do not fully capture the true model-form errors, integrating these fields
into the SpaRTA regression could potentially yield adverse effects on the quality of the models derived
through this approach. Consequently, multiple regression runs of SpaRTA were performed without in-
cluding the APG case alongside the other 2D-separated flow cases. This was done to ascertain whether
its inclusion introduces biases into the model predictions. This is further documented in Chapter 7.
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(a) Ux profiles.
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(b) k profiles.
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(c) u′v′ profiles.

Figure 6.22: Comparison of Ux, k, and u′v′ profiles at different x/H locations along the APG domain for Propagation simulation
with only b∆ij corrections active and Propagation simulation with only R corrections active.

6.4.2. Comparison of Full Propagation vs Classifier Propagation Simulations
Conducting a full Propagation simulation, incorporating both R and b∆ij corrections, along with the two
types of classifier Propagation simulations (PC and PCD), yields the Cf and Cp plots showcased in
Figure 6.24, alongside the flow profiles depicted in Figure 6.23. It is important to take note of the y-axis
range of the flow profiles, which is set betweeny/H = 0 and 0.04, meaning that these figures show the
profiles in a very small region close to the wall. This was done because the recirculation region is very
small and the computational domain is very large. To facilitate the comparison of flow separation and
reattachment locations across different simulations, Table 6.4 is provided.
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(a) Ux profiles.
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(b) k profiles.
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(c) u′v′ profiles.

Figure 6.23: Comparison of Ux, k and u′v′ at different x/H locations along the APG domain, obtained from DNS, Baseline,
Propagation, PC and PCD simulations.

The Cf and Cp plots reveal that the flow decelerates under an adverse pressure gradient as the sur-
face pressure rises towards the middle of the computational domain. Unlike the other 2D-separated
flow cases, there is no flow acceleration prior to separation. As can be seen from Table 6.4, the DNS
simulation predicts two separation regions that lie near each other, which is not accounted for by any of
the other types of simulations. Therefore, while the Propagation simulation provides a very good match
with the DNS flow profile as can be seen from Figure 6.23 and Cf and Cp plots in Figure 6.23, it is still
unable to distinguish between the two separation regions.

An interesting observation lies in the difference between the Baseline simulation and DNS data regarding
the location of the separation point. The Baseline simulation can predict the reattachment location much
more accurately than the separation location. This represents a complete reversal of the trends observed
in other 2D-separated flow cases. The Baseline simulation predicts an earlier separation because it
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underpredicts the shear stresses near the separation location compared to DNS, which allows the flow
to separate earlier. Post-separation, the shear stresses start to become overpredicted in the shear layer,
which leads to an overall better prediction of the reattachment location compared to the other cases that
underpredict the shear stress in the shear layer. These observations can be traced back to the fact that
while the other flow cases have some level of flow acceleration prior to separation, this case does not.
Flow acceleration decreases the thickness of the boundary layer which increases the size of the shear
stress, keeping the flow attached for longer.
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Figure 6.24: Comparison of Cf and Cp coefficients across the bottom wall boundary of the APG domain, obtained from DNS,
Baseline, Propagation, PC and PCD simulations.

Table 6.4: Overview of the separation and reattachment locations obtained for the APG case from DNS, Baseline, Propagation,
PC and PCD simulations.

Simulation Type First
Separation

Location x/H
[-]

First
Reattachment
Location x/H

[-]

Second
Separation

Location x/H
[-]

Second
Reattachment
Location x/H

[-]
DNS -1.47 -1.25 -1.14 0.40

Propagation -1.47 0.48 - -
Baseline -2.51 0.48 - -

PC -1.95 0.48 - -
PCD -1.64 0.28 - -

The Ux profiles reveal that in the pre-separation region, applying corrections only in the shear layer
cluster results in an improved prediction over the Baseline simulation, with the PCD simulation showing
the highest accuracy in predicting the separation location. On the other hand, while the PC simulation
predicts an identical reattachment location as the Propagation simulation, the PCD predicts a much
earlier position, thus excessively shrinking the recirculation bubble. This difference is easily observed
in Figure 6.25, which illustrates the changes in the shear layer cluster due to the R and b∆ij corrections
applied in the shear layer. The recirculation bubble for the PCD simulation is barely visible in this figure.

The cluster in the PCD simulation elongates towards the inlet direction of the domain, bringing it closer to
the wall. This helps explain why the separation point is more accurately predicted by the PCD simulation.
Another important aspect to note from this figure is that the shear layer cluster is not computed to lie
directly on top of the recirculation region, unlike in other 2D-separated flow cases. This observation may
help explain the discrepancies observed between the PC and PCD simulations and the DNS data for this
case. Overall, the PC simulation leads to a better prediction of the velocity profile in the reattachment
and post-reattachment regions compared to the PCD simulation, and both types of simulations show an
improvement over the Baseline.
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(a) Propagation-Classifier (b) Propagation-Classifier-Dynamic

Figure 6.25: Comparison of static and dynamic RITA/TI classification for the APG case. R and b∆ij correction are only applied
where σ=1.

6.5. Final Conclusions
The Baseline simulations for all 2D-separated flow cases confirm the well-known weakness of RANS in
predicting the correct behavior of a boundary layer subjected to an adverse pressure gradient. RANS
fails to predict the turbulent shear stress above the recirculation region which overpredicts the size and
location of the recirculation bubble. For the Periodic-Hill, NASA-Hump, and CBFS cases, where the
adverse pressure gradient is created by a change in the contour shape of the bottom boundary of the
domain and there is flow acceleration prior to separation, RANS primarily fails to predict the correct
flow reattachment location. In the APG case, where the adverse pressure gradient is created by a
change in the contour shape of the top boundary of the domain and there is no flow acceleration prior
to separation, RANS primarily fails to predict the correct separation location. In all cases, this results in
an overprediction of the size of the recirculation bubble.

The b∆ij and R correction fields have been successfully obtained and validated for all cases. The Prop-
agation simulations have shown a near-perfect match with the high-fidelity data in all cases. Slightly
larger mismatches were observed for the CBFS and APG cases than for the Periodic-Hill and NASA-
Hump cases. The model-form error in the k − ω SST model, accounted for by the R residual term, has
been identified as the primary cause of failure in RANS simulations of 2D-separated flows. However,
the correction for turbulence anisotropy, accounted for by b∆ij , is also crucial in obtaining an accurate
flow prediction.

The correction fields for the APG case could only be obtained by removing the R residual term from
the ω equation. This holds significant implications for the SpaRTA model discovery. While the b∆ij and
R correction fields derived for the other 2D-separated flow cases represent the true model-form error
in the k-ω SST model and the turbulence anisotropy computed under the Boussinesq approximation,
the correction fields for the APG case do not. Consequently, attempting to derive a model for b∆ij and
R by fitting it to data obtained from all cases is unlikely to yield promising results, or at least, may not
accurately represent the true model-form error. For this reason, SpaRTA regression runs have been
performed excluding the data from this case in the analysis, as further discussed in Chapter 7.

Finally, it has been shown that applying corrections to a dynamically updated shear layer cluster through-
out the simulation yields slightly improved flow predictions compared to applying these corrections to a
static shear layer computed from the converged Baseline result. Therefore, when testing the models
obtained through SpaRTA in Chapter 7, the shear layer cluster will be dynamically computed throughout
the simulations. Furthermore, these results also answer the third research question formulated for this
study, demonstrating that exclusively applying corrections in the shear layer region results in improved
flow predictions in separated-flow scenarios compared to Baseline RANS.



7
Modelling Results

Regressing models using SpaRTA typically results in the identification of at least five models for both
b∆ij and R per training session. Only the most promising models are selected for further investigation,
based on a compromise between the R2 value of the fitted model and the number of terms. The min-
imum acceptable R2 value is set to 0.9 for R models and 0.7 for b∆ij models. This criterion is based
on the fact that regressing models for R is much easier since it involves a scalar field. Conversely, b∆ij
represents a symmetric tensor field with six components, making regression a more complex task. The
maximum number of terms is limited to four for each model, as having a large number of terms can lead
to convergence issues when applied in a simulation. The models are validated in Model Propagation
simulations, where the model equations are only activated in the shear layer cluster. The shear layer
cluster is updated dynamically throughout the simulation to account for the effects introduced by the cor-
rections, similar to the Propagation-Classifier-Dynamic (PCD) simulations introduced in Chapter 6.1.4.
The models listed in this chapter have been selected across various SpaRTA training runs, all performed
using different input conditions: using all available features and invariants, using a subset of features
selected based on the outcome of a Mutual Information analysis and the removal of non-invariant and
Reynolds number-dependent features, training only on the NASA-Hump case and excluding the APG
case from the training set. This latter condition was used following the recommendations derived from
the result analysis of the APG case Propagation results in Chapter 6 Section 6.4.1.

This chapter is structured as follows: Section 7.1 provides an overview of the models discovered for b∆ij .
These models have been chosen to provide a general overview of the ability of SpaRTA to regress model
equations, as well as to provide an understanding of why some model equations, although showing the
sameR2 coefficient value, perform very differently when applied in a simulation. Each b∆ij model is tested
in isolation (meaning that R field is read from its respective file obtained from the Frozen simulation).
Section 7.2 provides a similar analysis of the identified R model equations. Finally, in section 7.4, the
models for b∆ij and R, which showed the highest performance in isolation testing, are combined in the
same Model Propagation simulation and compared to similar models obtained from literature.

7.1. b∆ij Models
7.1.1. Overview of Discovered Model Forms
In total, four b∆ij models have been selected for further analysis. Table 7.1 provides an overview of theR2

values of these models, the number of terms they consist of, and the SpaRTA training conditions used
to obtain them. There is a clear relationship between the R2 value of a model and the SpaRTA training
conditions. For example, the R2 value of Model1-Bij is the highest, as it was trained solely on data from
the NASA-Hump case. The second highest R2 value belongs to Model3-Bij, which was obtained by
training on a dataset excluding the APG case. The number of terms appears to have a negligible effect
on the R2 value, as demonstrated by Model2-Bij and Model4-Bij, which exhibit the same R2 despite
having 1 and 2 terms respectively.
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Table 7.1: General information regarding the obtained b∆ij models.

Model I.D. R2 Value Nr. of Terms SpaRTA Training Conditions
Model1-Bij 0.93 3 NASA-Hump case: selected features and invariants.
Model2-Bij 0.7 1 All cases: selected features and invariants.
Model3-Bij 0.77 2 All cases excluding APG: selected features and invariants.
Model4-Bij 0.7 2 All cases: all features and invariants.

The formulations of the four b∆ij models are given below, together with Table 7.2 which provides further
insights into the different features and functions that appear in the model equations.

b∆ij Model Formulations

Model1-Bij: b∆ij = 17.43rdiv
(

I1
0.0087

)
T

(2)
ij︸ ︷︷ ︸

Term 1

+36.73rdiv
(

I1
0.0087

)
T

(3)
ij︸ ︷︷ ︸

Term 2

+4.223
√
τij,ratioT

(2)
ij︸ ︷︷ ︸

Term 3

Model2-Bij: b∆ij = 6.767rdiv
(

I1
0.0257

)
T

(2)
ij

Model3-Bij: b∆ij = 2.539RITAPk/Dk
T

(2)
ij︸ ︷︷ ︸

Term 1

− 5.092rdiv
(

I2
0.0125

)
T

(2)
ij︸ ︷︷ ︸

Term 2

Model4-Bij: b∆ij = 5.243rdiv
(

I1
0.0257

)
T

(2)
ij︸ ︷︷ ︸

Term 1

+1.280rlog
(

Rek
0.2405

)
T

(2)
ij︸ ︷︷ ︸

Term 2

Table 7.2: Overview of the different features and functions used in the b∆ij model formulations.

Symbol Meaning Additional Notes
I1 Invariant: I1 = SijSij Sij is the mean strain rate.
I2 Invariant: I2 = ΩijΩij Ωij is the mean rotation rate.

τij,ratio Ratio of total to normal Reynolds stresses Feature F9 - equation 4.30
T

(2)
ij , T

(3)
ij Pope Tensor Basis

RITAPk/Dk
RITA ratio of production to destruction of k Feature F10 - equation 4.31

Rek Turbulence based Reynolds number Feature F6 - equation 4.27
rdiv(x) Function of the form: rdiv(x) = x

(1+x2)
Plot in Figure 7.1

rlog(x) Function of the form: rlog(x) = log(|x|+ 1) Plot in Figure 7.1

The regression appears to have identified the T
(2)
ij tensor basis as the most important for reconstructing

the b∆ij corrections. This is evident from the fact that almost all terms among all models use this basis,
except for term 2 of Model1-Bij. Furthermore, many of the models rely on applying the rdiv() function
to the invariant I1. This invariant is computed from the mean strain rate (see Table 7.2). In the shear
layer, the mean strain rate is expected to be quite high due to the large velocity gradients. At least one
of the features listed in Section 4.4 is used in every model, except for Model2-Bij. This demonstrates
the utility of using these types of features, which were specifically chosen to reflect the local turbulence
characteristics in the regression.

The general shapes of the rdiv() and rlog() functions are displayed in Figure 7.1. The rdiv() function
ensures that its output remains small even if its input is very large. In the models, rdiv() is used in terms
where the I1 and I2 invariants are present. These invariants have small values in the range of [-1,1], so
the rdiv() function will have a maximum and minimum value of 0.5 or -0.5 respectively. Therefore, even
when terms have large coefficient values multiplied in front of the rdiv() functions, such as 17.43 and
36.73 for terms 1 and 2 of Model1-Bij respectively, they will be halved at minimum.The rdiv() function
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also allows for negative outputs, unlike the rlog() function. This is important when considering term 2
of Model3-Bij. The I2 invariant, based on the rotation rate tensors (see Table 7.2), has negative values,
resulting in negative values for rdiv(I2). Consequently, this makes the term positive due to the negative
sign multiplying the coefficient in front of rdiv(I2). Therefore, although it might seem that term 2 subtracts
from the Model3-Bij corrections, it actually adds to them.

The rlog() function can output slightly higher values than rdiv(), depending on the input provided. How-
ever, the rlog() function is only used in term 2 of Model4-Bij, which depends on the turbulence based
Reynolds number Rek. As shown in Figure A.6 in Appendix Section A, which displays this feature’s raw
distribution1, Rek never exceeds a value of 0.6 in the shear layer. Thus, the rlog() function outputs fall
within a comparable range to that of rdiv() function outputs based on the invariants. It is important to note
that Rek is a Reynolds number-dependent feature, which puts Model4-Bij at a disadvantage compared
to the other models regarding its overall generalizability.

Figure 7.1: General shape of rdiv(x) and rlog(x) functions.

Term 3 of Model1-Bij and term 1 of Model3-Bij are the only two terms that do not have an rdiv() or rlog()
function in front of the tensor basis. The features used for these terms, namely RITAPk/Dk and τij,ratio,
have values in the range of [0,1]. Therefore, multiplying these features by the coefficients in front of the
terms does not result in large values. An important note regarding the models is that because SpaRTA
can only perform linear regression, it can only regress coefficients outside the rdiv() and rlog() functions.
Therefore, the approach used in SpaRTA is to divide all the features and invariants used in rdiv() and
rlog() by their standard deviation. This is why, for example, in Model1-Bij term 1 and term 2 have the
same factor in the denominator inside their rdiv() functions.

7.1.2. Modelling Results
This section presents the results obtained from hybrid Model Propagation simulations, where b∆ij was
modeled following the formulations discussed in the previous section, and R was read from its Frozen
correction field. This setup allows for the analysis of b∆ij models in isolation. All corrections are applied
only in the shear layer cluster identified by the RITA/TI classifier, which is dynamically updated during the
simulation. For comparison purposes, the results of the Baseline k−ω SST, the Propagation-Classifier-
Dynamic (PCD) simulation, and the high-fidelity data (HF) (LES or DNS depending on the case) are
also displayed. Profiles of the axial velocity Ux, the turbulent kinetic energy k, and the shear stress
component of the Reynolds-stress tensor u′v′ are displayed in Figures 7.2, 7.3, and 7.4 respectively.
The separation and reattachment locations predicted by each Model Propagation simulation are listed
in Table 7.3. As discussed in Chapter 6, some cases show both primary and secondary recirculation
regions, where one region is more significant in terms of size and physical significance than the other.
Therefore, only the separation and reattachment locations of the most relevant separation regions are
listed in this table. Finally, Figure 7.5 presents a comparison of the eddy viscosity νt profiles.

1Features like Rek are used in SpaRTA regression after normalization to a [0,1] range. However, the plots of these features in
the Appendix are presented in their unnormalized form.
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(d) APG case.

Figure 7.2: Comparison of Ux profiles obtained from the hybrid Model Propagation simulations based on the b∆ij models run in
isolation.
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(a) NASA-Hump case.
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(b) Periodic-Hill case.
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(d) APG case.

Figure 7.3: Comparison of k profiles obtained from the hybrid Model Propagation simulations based on the b∆ij models run in
isolation.
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(d) APG case.

Figure 7.4: Comparison of the u′v′ (u′w′ in the NASA-Hump case because the domain is designed in the x-z plane rather than
the x-y plane) profiles obtained from the hybrid Model Propagation simulations based on the b∆ij models run in isolation.
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Table 7.3: Comparison of the separation and reattachment location predictions obtained from the hybrid Model Propagation
simulations based on the b∆ij models run in isolation.

Cases NASA-Hump Periodic-Hill APG CBFS
Separate Reattach Separate Reattach Separate Reattach Separate Reattach
x/c [-] x/c [-] x/H [-] x/H [-] x/H [-] x/H [-] x/H [-] x/H [-]

Model1-Bij 0.66 1.12 0.30 5.44 -2.27 0.33 0.93 4.72
Model2-Bij 0.66 1.11 0.29 5.35 -2.22 0.29 0.95 4.69
Model3-Bij 0.66 1.11 0.29 5.33 -2.22 0.29 0.95 4.66
Model4-Bij 0.66 1.11 0.29 5.30 -2.17 0.22 0.95 4.70

PCD 0.66 1.09 0.30 5.15 -1.64 0.28 0.89 4.58
HF 0.66 1.06 0.22 4.69 -1.47 0.40 0.82 4.32

Baseline 0.65 1.25 0.26 7.64 -2.51 0.48 0.74 5.85
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(a) νt profiles at x/c = 1.0 for NASA-Hump case.
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(b) νt profiles at x/H = 4 for Periodic-Hill case.
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(c) νt profiles at x/H = 4 for CBFS case.

0.0 0.2 0.4 0.6 0.8 1.0
10 t

0.00

0.05

0.10

0.15

0.20

0.25

y/
H 

[-]

(d) νt profiles at x/H = -0.3 for APG case.

Figure 7.5: Comparison of νt profiles at locations near the reattachment region, obtained from the hybrid Model Propagation
simulations based on the b∆ij models run in isolation.

7.1.3. Model Performance Analysis
The results presented in the previous section reveal that the four b∆ij models show very similar flow
prediction performance, despite the different formulations these models have and the different SpaRTA
training conditions used to discover them. While these models are not able to entirely reproduce the
true b∆ij corrections, they still demonstrate much better performance compared to the Baseline RANS,
as can be seen from the Ux profiles in Figure 7.2. The reason why these models perform better is that
they help reduce the underprediction of k and u′v′ as can be seen from Figures 7.3 and 7.4 respectively.
Given that SpaRTA can only perform linear regression and the majority of the models have an R2 value
below 0.8, the obtained results are very satisfactory, generally providing a close prediction to the PCD
simulation and the high-fidelity data. It is also important to note that the models perform well even for
higher Reynolds number cases like the NASA-Hump case and seem to provide good results even for a
change in geometry.
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The best match between the models and the PCD and the high-fidelity data profiles occurs near the
separation location and the initial stretches of the shear layer. Post-reattachment, the discrepancies
become larger, and in the APG case, the models start showing worse predictions than the Baseline
RANS. This is very much related to the shear layer cluster where the corrections are being applied.
Figures of this cluster for the different cases are available throughout Chapter 6 for the PCD simulations
and have not been reshown here, as there are no real differences between those and the shear layer
clusters for the hybrid Model Propagation simulations. For the APG case, the shear layer cluster resides
too high above the recirculation region and extends too far downstream, so that overcorrections start to
occur in the post-reattachment region. For the other cases, this region becomes progressively thinner
downstream of the blunt body geometries so that corrections are only being applied in a very small
region.

Model1-Bij performs the worst in predicting the reattachment location for all cases except APG. This
finding is particularly intriguing because the model was specifically trained on the NASA-Hump case,
leading to the expectation that it would outperform all other models for this case. However, this demon-
strates that while a model may be trained on a single test case and achieve a high R2 value, it does
not guarantee its a-posteriori performance in a CFD solver. Although this model performs better at cap-
turing the reattachment location for the APG case, it also predicts the separation location much earlier
than the other models. Overall, Model1-Bij shows the poorest performance. Therefore, it is important to
understand the reasons behind this outcome.

The Ux velocity profiles predicted by this model reveal that the flow velocity, particularly in the shear
layer region, is slightly lower compared to the other models. For the APG case, this lower velocity is
advantageous as it leads to an earlier flow reattachment location, closer to the high-fidelity data and PCD
predictions. On the other hand, the k profiles for this model appear much closer to the high-fidelity data
and PCD predictions than those of the other models in the initial stretch of the shear layer. However, in
the later stretches of the shear layer, the model tends to overpredict k, which leads in the NASA-Hump
case to overpredictions in νt, as can be seen from Figure 7.5a. This overprediction is also reflected in
the u′v′ profiles, where the model overestimates the shear stresses in this region. For the APG case, this
results in a better prediction of the reattachment location because the additional shear stress shortens
the length of the recirculation region. Despite the overpredictions in both k and u′v′, the other models
still show a delayed reattachment location, indicating a longer recirculation region.

To investigate this further, the normal stress components of the Reynolds-stress tensor u′u′ and v′v′

for the Periodic-Hill case have been plotted in Figure 7.6. The Periodic-Hill case was chosen because
Model1-Bij shows the poorest performance for it. These plots reveal that the simulation based onModel1-
Bij overpredicts the streamwise stresses u′u′ in the mean-flow region and in the later stretches of the
shear layer, while underpredicting the transverse stresses v′v′ in the initial stretch of the shear layer
and the recirculation region. This indicates that Model1-Bij primarily fails compared to the others due
to its inability to accurately predict the stress distribution among shear, streamwise, and transverse
components. The overprediction in streamwise stress decelerates the flow, which is reflected in the Ux

velocity profiles, consequently affecting the pressure distribution and resulting in a delayed reattachment
location.

To understand the difference in stress predictions, one can consider the structural form of Model1-Bij.
Term 2 of this model is based on the basis tensor T (3)

ij , which, unlike the basis tensor T (2)
ij , has only non-

zero diagonal components, meaning it only contributes to the normal stresses of the Reynolds-stress
tensor. Additionally, this term has the highest coefficient value (36.73) multiplying its rdiv() function,
which explains the overprediction in the streamwise normal stresses. Due to its poor performance, this
model is excluded from further analysis.

The next two models to consider are Model2-Bij and Model4-Bij. Their formulations show that their first
terms are almost identical. However, Model4-Bij includes an additional term based on the rlog() function
of the turbulence based Reynolds number Rek. As discussed earlier, Rek does not exceed 0.6 in the
shear layer region, making the contribution of this additional term small. Nevertheless, the contribution
is significant enough to help the model predict slightly better separation and reattachment locations for
the APG case and Periodic-Hill case, respectively. Since the difference between these two models is
not substantial, the first term based on the rdiv() function of the I1 invariant is considered to be the more
significant term in the model formulations.
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(a) u′u′ profiles.
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(b) v′v′ profiles.

Figure 7.6: Comparison of the normal Reynolds-stress tensor components profiles obtained from the hybrid Model Propagation
simulations based on the b∆ij models run in isolation for the Periodic-Hill case.

The largest discrepancy between the models can be traced back to the normal Reynolds-stress com-
ponents u′u′ and v′v′, which are displayed for the Periodic Hill case in Figure 7.6. From the other
flow profiles (Ux, k, and u′v′), it is almost impossible to differentiate the two models from each other.
Model4-Bij is better at predicting the streamwise u′u′ stresses, while Model2-Bij is better at predicting
the transverse v′v′ stresses. This explains why Model4-Bij shows an improvement over Model2-Bij in
terms of predicting an earlier reattachment location. However, since this model depends on the Rek
feature which is Reynolds number dependent due to its reliance on molecular viscosity, and the slight
improvements that Model4-Bij shows over Model2-Bij are not significant enough, Model4-Bij is avoided.
It is better to have a Reynolds number independent model that slightly underperforms than one that only
performs marginally better but is Reynolds number dependent.

The final model to consider is Model3-Bij, which was obtained after removing the APG case from the
regression run. With Model1-Bij and Model4-Bij excluded from the final model selection, Model3-Bij is
compared to Model2-Bij. From the separation and reattachment locations listed in Table 7.3, Model3-Bij
shows the best overall performance. This is also reflected in the k, Ux, and u′v′ plots, which show a
very slight improvement over Model2-Bij when examined closely. Similar to the other models, it also
overpredicts the shear stress after the initial stretch of the shear layer. In terms of the normal stress
components, it underpredicts both the streamwise and transverse stresses. Nevertheless, it is consid-
ered the best-performing model and is selected for further analysis in Section 7.4, where the best R and
b∆ij models are combined in a simulation.

Now that the best-performing model for b∆ij has been identified, it is interesting to consider how this model
is correcting for the missing physics that the Boussinesq approximation of the Reynolds-stress tensor is
not able to reproduce. Model3-Bij has two terms, one based on the RITAPk/Dk

ratio and the other based
on the rdiv() function of the I2 invariant. A plot of these two quantities is displayed in Figure 7.7 for the
NASA-Hump case.
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(a) Term 1: 2.539RITAPk/Dk

(b) Term 2: -5.092rdiv
(

I2
0.0125

)
Figure 7.7: Distribution of the features and invariants multiplying the basis tensor T (2)

ij in Model3-Bij for the NASA-Hump case.

A clear outline of the shear layer cluster in the distribution of the RITAPk/Dk
term is visible in Figure

7.7a. The values in this region are close to 1, which indicates that RITAPk/Dk
has values below 0.5 in

this region. This makes sense as the production of k dominates its destruction in the shear layer. The
corrections provided by the I2 invariant-based term are much higher in this region (generally above 1.5).
The I2 invariant is computed from the rotation rate tensor, which has higher values in this region and the
recirculation region compared to the rest of the flow domain. Since both terms are based on the T

(2)
ij

tensor basis, this indicates that the majority of the corrections to the turbulence anisotropy are coming
from term 2 based on the I2 invariant.

Both terms show a relatively uneven corrective pattern, characterized by fluctuations in corrections from
one domain cell to the next, resulting in distributions that appear almost cloudy. Unlike the Boussinesq
approximation, which fails to fully capture the turbulence anisotropy, these corrections are designed to
account for more of the underlying physics, addressing the missing anisotropic effects and capturing the
complex interactions within the turbulent flow. This ability to capture the missing physics is achieved by
modeling b∆ij with the observed uneven, yet more accurate, distributions of the corrective terms.

7.2. R Models
7.2.1. Overview of Discovered Model Forms
In total, four R models have been selected for further analysis. Table 7.4 provides an overview of their
R2 values, the number of terms they consist of, and the SpaRTA training conditions used to obtain them.
All models have very high R2 values, which are much higher than the R2 values obtained for the b∆ij
models. This difference is because regressing models for the R scalar field is a much simpler problem
than fitting the b∆ij 6 component tensor field.

For the b∆ij models, Model4-Bij was selected from a SpaRTA regression session that involved training on
all cases with all features and invariants available. In contrast, for the R models, these same conditions
resulted in a model dependent on the non-invariant turbulence intensity feature, which did not show



7.2. R Models 89

superior performance compared to the other models. Consequently, this model has not been included
for further analysis. Instead, a different regression condition was used to obtain Model4-R listed below.

An interesting observation can be made by comparing the formulations of the first three R models in
the color box below: they all depend on the feature representing the ratio of total to normal Reynolds
stresses, τij,ratio. This feature tends to dominate over the other features when included in the regression.
A Mutual Information analysis also identified this feature to be one of the most relevant for the regression
ofR. However, in terms of model performance, it is informative to compare models based on this feature
to those which are not. Therefore, to obtain Model4-R, the regression was run excluding this feature
from the dataset. As expected, a completely different model emerged, one with a slightly lower R2 value
and an extra term. The exact model formulation will be further clarified below.

Table 7.4: General information regarding the obtained R models.

Model I.D R2 Value Nr. of Terms SpaRTA Training Conditions
Model1-R 0.96 2 NASA-Hump case: selected features and invariants.
Model2-R 0.96 3 All cases: selected features and invariants.
Model3-R 0.96 3 All cases excluding APG: selected features and invariants.
Model4-R 0.95 4 All cases excluding APG: τij,ratio feature removed.

The formulations of the R models is given below, together with Table 7.5 which provides further insights
into the different features and functions that appear in the model equations.

R Model Formulations

Model1-R: R = 0.033ϵ︸ ︷︷ ︸
Term 1

+1.074τij,ratioG3︸ ︷︷ ︸
Term 2

Model2-R: R = 0.020ϵ︸ ︷︷ ︸
Term 1

+0.047τij,ratioϵ︸ ︷︷ ︸
Term 2

+0.589
√
τij,ratioG1︸ ︷︷ ︸
Term 3

Model3-R: R = 0.002ϵ︸ ︷︷ ︸
Term 1

+0.807
√
τij,ratioG1︸ ︷︷ ︸
Term 2

+0.038 tanh

(
PS

0.0007

)
ϵ︸ ︷︷ ︸

Term 3

Model4-R:R = 0.008ϵ︸ ︷︷ ︸
Term 1

− 32290rdiv
(

I3
2.580× 10−5

)
G9︸ ︷︷ ︸

Term 2

− 0.089rdiv
(

I2
0.011

)
ϵ︸ ︷︷ ︸

Term 3

+0.006RITA0.5
Ck/Df,k

ϵ︸ ︷︷ ︸
Term 4

The regression appears to have identified the ϵ scalar basis as the most important one for reconstructing
the R corrections, which matches the results obtained by Steiner et al. in their study [33]. The tendency
of the regression to find models that rely on this basis is quite important because it shows that the
modeling uncertainties in the k − ω SST model equations are different in nature than the ones for the
turbulence anisotropy, which are accounted for by the b∆ij models. The R models mainly rely on the
features identified in Chapter 4 Section 4.4. Therefore, the selected list of features for the regression
must match the physics that R is trying to account for, for the regressed R models to be able to properly
correct for the model-form errors.

As discussed previously, the first 3 models are based on the τij,ratio feature, which is computed from
the ratio of total to normal Reynolds stresses. In the shear layer, this feature takes values of 0.5 and
below, as can be seen from its distribution in Figure A.12 in Appendix Section A.1. Other features, such
as the ratio of pressure normal stresses to shear stresses (PS) and the RITA ratio of convection to
diffusion (RITACk/Df,k

) also appear in these models. This demonstrates the utility of using features
specifically chosen to reflect the local turbulence characteristics in the regression. The R models use
similar functions to the b∆ij models for their features, with only Model3-R based on an additional tanh()
function. As shown in Figure 7.8, tanh(x) asymptotically approaches 1 even for large x, so the coefficient
in front of ϵ for this term will not exceed 0.038.
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Table 7.5: Overview of the different variables used in the R model formulations.

Symbol Meaning Additional Notes
ϵ Dissipation rate of k Additional basis for R models.

G1 G3 = 2kT
(3)
ij

∂Ui
∂xj

Based on Pope Tensor Basis

G3 G1 = 2kT
(1)
ij

∂Ui
∂xj

Based on Pope Tensor Basis

G9 G9 = 2kT
(9)
ij

∂Ui
∂xj

Based on Pope Tensor Basis

τij,ratio Ratio of total to normal Reynolds stresses Feature F9 - equation 4.30

PS Ratio of pressure normal stresses to shear stresses Feature F8 - equation 4.29

RITACk/Dfk RITA ratio of convection to diffusion of k Feature F13 - equation 4.34

I2 Invariant: I2 = ΩijΩij Ωij is the mean rotation rate.

I3 Invariant: I3 = SijSijSij Sij is the mean strain rate.

rdiv(x) Function of the form: rdiv(x) = x
(1+x2)

Plot in Figure 7.1

tanh(x) Hyperbolic tangent of x Plot in Figure 7.8

Terms 2 and 3 of Model4-R are based on the rdiv() functions of the invariants I2 and I3. Despite the
minus signs before both of these terms, they still add to the R corrections. This is because computing
these invariants leads to negative values that cancel out the negative signs in front of the terms. It is
important to note the very large coefficient in front of term 2, meaning that this term essentially dominates
the corrections. Consequently, this model provides the largest corrections for R out of all four models.
The effect this has on the flow behavior will be further clarified in the upcoming section.

Figure 7.8: General shape of the tanh(x) function.
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7.2.2. Modelling Results
This section presents several figures and data obtained from hybrid Model Propagation simulations,
where R was modeled following the formulations discussed in the previous section, and b∆ij was read
from its Frozen correction field. This setup allows for the analysis of R models in isolation. All cor-
rections are applied only in the shear layer cluster identified by the RITA/TI classifier, which is dynam-
ically updated during the simulation. For comparison purposes, the results of the Baseline RANS, the
Propagation-Classifier-Dynamic (PCD) simulation, and the high-fidelity data (HF) (LES or DNS depend-
ing on the case) are also displayed. Profiles of the axial velocity Ux, the turbulent kinetic energy k, and
the shear stress component of the Reynolds-stress tensor u′v′ are displayed in Figures 7.10, 7.11, and
7.12 respectively.

The separation and reattachment locations predicted by each Model Propagation simulation are listed in
Table 7.6. As previously discussed, some cases show both primary and secondary recirculation regions,
where one region is more significant in terms of size and physical significance than the other. Therefore,
only the separation and reattachment locations of the most relevant separation regions are listed in this
table. Finally, Figure 7.9 presents a comparison of the eddy viscosity νt profiles.
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(a) νt profiles at x/c = 1.0 for NASA-Hump case.
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(b) νt profiles at x/H = 4 for Periodic-Hill case.
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(c) νt profiles at x/H = 4 for CBFS case.
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(d) νt profiles at x/H = -0.3 for APG case.

Figure 7.9: Comparison of νt profiles at locations near the reattachment region, obtained from the hybrid Model Propagation
simulations based on the R models run in isolation.
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(a) NASA-Hump case.
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(b) Periodic-Hill case.

0 2 4 6 8 10
2Ux/Uref + x/H [-]

0.0

0.5

1.0

1.5

2.0

y/
H 

[-]

(c) CBFS case.
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(d) APG case.

Figure 7.10: Comparison of Ux profiles obtained from the hybrid Model Propagation simulations based on the R models run in
isolation.
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(a) NASA-Hump case.
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(b) Periodic-Hill case.
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(c) CBFS case.
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(d) k profiles APG.

Figure 7.11: Comparison of k profiles obtained from the hybrid Model Propagation simulations based on the R models run in
isolation.
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(a) NASA-Hump case.
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(b) Periodic-Hill case.
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(c) CBFS case.
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(d) APG case.

Figure 7.12: Comparison of u′v′ (u′w′ in the NASA-Hump case because the domain is designed in the x-z plane rather than the
x-y plane) profiles obtained from the hybrid Model Propagation simulations based on the R models run in isolation.
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Table 7.6: Comparison of the separation and reattachment location predictions obtained from the hybrid Model Propagation
simulations based on the R models run in isolation.

Cases NASA-Hump Periodic-Hill APG CBFS
Separate Reattach Separate Reattach Separate Reattach Separate Reattach
x/c [-] x/c [-] x/H [-] x/H [-] x/H [-] x/H [-] x/H [-] x/H [-]

Model1-R 0.66 1.14 0.27 4.83 -1.84 -0.003 0.82 4.64
Model2-R 0.66 1.15 0.27 4.93 -1.87 0.05 0.82 4.70
Model3-R 0.66 1.17 0.28 4.69 -2.12 0.30 0.82 4.60
Model4-R 0.66 1.09 0.28 4.64 -1.87 0.11 0.88 4.29
PCD 0.66 1.09 0.30 5.15 -1.64 0.28 0.89 4.58
HF 0.66 1.06 0.22 4.69 -1.47 0.40 0.82 4.32

Baseline 0.65 1.25 0.26 7.64 -2.51 0.48 0.74 5.85

7.2.3. Model Performance Analysis
The results presented in the previous section reveal that although the four R models do not completely
reproduce the R corrections, they still perform significantly better compared to the Baseline k − ω SST
simulation. This improvement can be observed from the Ux profiles shown in Figure 7.10 and the predic-
tions of separation and reattachment locations in Table 7.6. The models enhance the flow predictions
by reducing the underprediction of k and u′v′, as shown in Figures 7.11 and 7.12, respectively.

Model4-R is by far the best-performing model in terms of predicting the flow velocity profiles and the
reattachment locations. Its superior performance can be understood from the plots of k and u′v′. Unlike
the other three models, Model4-R can almost exactly predict the profiles of these two quantities in the
initial stretch of the shear layer. However, this accuracy comes at the cost of overpredicting these profiles
in the later stretches of the shear layer. These results are intriguing as they highlight the importance of
predicting the correct amount of turbulent kinetic energy and shear stress near the separation region to
obtain accurate reattachment locations.

The later overestimations in these quantities, although quite large, do not significantly impact the flow
reattachment location. Only in the CBFS case does this result in a slightly earlier reattachment location.
The reason for Model4-R’s overprediction compared to the other models is the large coefficient in front of
its term 2, as discussed in Section 7.2.1. It is important to note that the predictions of separation locations
are similar to those obtained from the other R models. Near the separation location, corrections are
applied in only a very thin region for all models due to the shape of the RITA/TI classifier. Therefore, the
differences in separation predictions among the different models are not substantial. Furthermore, the
exact separation location is also influenced by the incoming boundary layer upstream.

The otherRmodels have significantly worse predictions of velocity and reattachment locations compared
to Model4-R, as these models still underpredict k and u′v′ quite significantly in the initial stretches of the
shear layer. In the later stretches of the shear layer, these models also begin to overpredict these
two quantities, but not nearly as much as Model4-R. Overall, these observations reveal that using the
SpaRTA regression method with the given list of features and invariants, along with the modeling ansatz
created for R and the shear layer cluster, it does not seem possible to obtain a model that accurately
predicts the production of k and the Reynolds-stress tensor in both the initial and subsequent stretches
of the shear layer. For industrial applications, such as Formula 1 car design, this might not necessarily be
a problem since the most critical factor is the ability to predict the correct drag and downforce. However,
from the perspective of the turbulence modeling community, which aims to find model corrections that
represent the true missing physics from turbulence models, having a model that achieves good results
while severely overpredicting the model quantities in certain regions of the domain is not ideal. In any
case, Model4-R is selected for further analysis in Section 7.4 where the b∆ij and R models are coupled
together.

A model from the first three R Models is also selected to gauge the overall achievable improvements
when using an R model that has the advantage of not overpredicting k and u′v′ in the later stretches of
the shear layer, albeit at the cost of underpredicting these quantities in the initial stretches of the shear
layer. Among these first three R Models, Model3-R shows the best performance and is thus chosen
for further analysis. It is noteworthy that, similar to the b∆ij models, the best performing R models were
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also identified when the APG case was excluded from the training dataset. It is therefore interesting
to further investigate the formulations of the two selected models — Model3-R and Model4-R. Figures
7.14 and 7.15 display the computed values of each term in the equations of these two models. Term
1 of Model4-R, equal to 0.008ϵ, has been omitted as its distribution is essentially identical to Term 1 of
Model3-R, which is equal to 0.002ϵ. To serve as a reference, the plot of the production term of the k
equation (Pk), which incorporates the b∆ij frozen corrections in the shear layer, is also shown in Figure
7.13.

Figure 7.13: Distribution of the production of turbulent kinetic energy across the NASA-Hump domain.

Comparing the relative magnitudes of the terms in Model3-R to those of Model4-R and the Pk plot in
Figure 7.13, it becomes evident why Model3-R underpredicts the production of k in the initial stretches of
the shear layer compared to Model4-R, and why Model4-R starts to significantly overpredict the produc-
tion of k in the later stretches of the shear layer. The corrections contributed by each term in Model3-R
are quite small in magnitude and are all positive, which helps to slightly increase the production of k in
the shear layer (thereby adding to the Pk term). It appears that the contribution of Term 3 in Model3-R is
essentially insignificant, as its values range from 30 to 50, while Pk has a magnitude of around 45,000
to 50,000 in the shear layer.

It is interesting to note that term 2 of Model3-R, based on the τij,ratio and the T
(1)
ij Pope tensor basis,

also does not contribute much to the overall corrections apart from near the separation location, where
it shows very high values. However, these corrections at this point are crucial as they significantly boost
the overall production of k right in the initial stretch of the shear layer, leading to better reattachment
predictions. Term 1 of Model3-R reveals why the ϵ scalar basis is important during R SpaRTA model
regression. Since there is always a balance between the production and dissipation of k, the magnitude
of ϵ is comparable to that of Pk. In the shear layer, ϵ shows higher values than in the rest of the domain,
as the production of k is most significant in this region. Tuning the coefficient in front of ϵ is therefore
beneficial in locally adjusting the amount of corrections required to obtain accurate predictions of the
production of k. Overall, the distributions of the terms discovered by the regression for this Rmodel sug-
gest that the missing physics this model aims to account for is primarily the initial burst in the production
of k right at the point of separation and in the initial stretches of the shear layer. This becomes even
clearer when comparing the terms of Model4-R, which all show very high values in this specific region
and generally tend towards smaller values in the later stretches of the shear layer. As mentioned above,
the magnitude of the corrections of these terms is much higher than those of Model3-R. Furthermore, the
distribution of these terms is also quite different, appearing much more uneven and dispersed, similar
to the distribution of the terms in the b∆ij models discussed in Section 7.1.3.

This is not unexpected; as seen in Chapter 6, theR corrections obtained from the Frozen simulations are
also very dispersed and uneven. Therefore, during the regression, since these frozen corrections are
used as the target data, the regression also tries to find model terms that can capture this unevenness in
the R corrections, which is created by local uncertainties in the model equations of the k−ω SST model.
While the uneven distributions of the b∆ij model terms aimed to address missing turbulence anisotropy
effects, the unevenness observed in theRmodel terms does not address the same fundamental missing
physics. Instead, it is more likely that this unevenness results from the models attempting to correct for
uncertainties arising from the calibration of the k − ω SST model’s F1 and F2 blending functions, along
with the underlying assumptions used to model the ω and k equations. Nevertheless, the R models
demonstrate that the primary missing physics that the k−ω SST turbulence model fails to account for is
the production of turbulent kinetic energy near the separation location and in the initial stretches of the
shear layer.



7.2. R Models 97

(a) Term 1: 0.002ϵ

(b) Term 2: 0.807√τij,ratioG1

(c) Term 3: 0.038 tanh
(
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)
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Figure 7.14: Distribution of the terms of Model3-R.
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Figure 7.15: Distribution of the terms of Model4-R.
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7.3. Comparison with Literature
Before combining and testing the b∆ij and R models discussed above, it is beneficial to compare them
with models from other studies that employed similar modeling approaches. Selecting a couple of these
models to plot for comparison in Section 7.4 can help determine whether the models obtained in this
study, specifically tailored to shear layer physics, offer any advantage in predicting the behavior of 2D-
separated flows. Several studies have been chosen for this comparison.

First, it is essential to address the models listed in the original study by Schmelzer et al. [19], which
established the SpaRTA methodology. This study identified three models, two of which exclusively
modeled R while setting b∆ij to zero. The R models are one-term models of the form C0T

(1)
ij , where C0 is

a constant coefficient. The single discovered model for b∆ij has the following formulation: C0T
(1)
ij +C1T

(2)
ij ,

where C0 and C1 are constant coefficients.

Unlike the models discovered in this study, the models from Schmelzer et al. use only constant coeffi-
cient values in front of the tensor basis. Introducing non-constant coefficient values, as achieved in this
study by incorporating functions of features and invariants, adds an extra layer of flexibility to the mod-
eling approach, making it easier to capture changes in turbulence behavior. Additionally, the R models
discovered in this study primarily depend on the ϵ scalar basis rather than the Pope tensor basis. This
suggests that the physics the R models are accounting for is different from that of the b∆ij models. In
contrast, the models discovered by Schmelzer et al. rely exclusively on the Pope tensor basis, making
this distinction in accounted physics less apparent.

In this study, discovering models for b∆ij posed no significant challenges during the SpaRTA regression.
However, in the study by Schmelzer et al., only one b∆ij model was discovered. The key difference
lies in the data used for regression: their study employed full-field data, whereas this study only uses
data from the shear layer cluster. Restricting the regression to this subset of data significantly reduces
the complexity of the regression problem, making it much easier to find models. This claim is further
supported by findings in Kaj Hoefnagel’s Master thesis [8], where similar difficulties were encountered
in regressing models for b∆ij , further supporting the effectiveness of restricting the regression to classifier
region data for helping the model discovery process for b∆ij .

When the models obtained from Schmelzer et al. were tested together with the models obtained in this
study, the models that corrected solely for R successfully converged for all simulations. However, their
model, which also included a correction for b∆ij , did not converge for the NASA-Hump and APG cases.
This aligns with the findings of Kaj Hoefnagel’s study, who failed to identify any b∆ij model that allowed the
simulations to converge for the NASA-Hump case. The NASA-Hump and APG cases have much higher
Reynolds numbers than the Periodic-Hill and CBFS cases and provide a long region for full turbulent
boundary layer development. It is likely that applying corrections in the full field, as done in these two
studies, affects the boundary layer development and causes the simulations to diverge. The fact that
none of the models discovered in this study caused any convergence issues demonstrates the utility
of applying corrections only in areas where the RANS model struggles, specifically the shear layer in
2D-separated flow cases.

The Rmodel which showed the biggest promise in Kaj Hoefnagel’s study is selected for comparison pur-
poses in Section 7.4. This model (from here on referred to as Model-Kaj) has the following formulation:

R = 0.043ϵ (7.1)

The next important study to consider is that of Saidi et al. [64], which advances the SpaRTA method-
ology presented in Schmelzer et al. by developing a CFD-driven deterministic symbolic identification
algorithm. This new approach involves solving a high-dimensional black-box optimization problem us-
ing sensitivity analysis and a Constrained Optimization using Response Surface (CORS) algorithm to
reduce associated computational expenses. The models discovered in Saidi et al.’s study were tested
alongside those from Schmelzer et al. for the same 2D-separated flow cases and demonstrated im-
proved accuracy and flexibility. For this reason, one of the models from Saidi et al.’s study is chosen
for comparison with the models in this study in Section 7.4. The best-performing model in Saidi et al.’s
study appears to be Model 2 (referred to as Model-Saidi from now on) and has the following formulation:
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b∆ij = −2.8356× 10−1T
(1)
ij − 1.4738× 10−1I22T

(2)
ij (7.2)

R =
(
1.0375× 10−1I2 − 2.8833× 10−1I1I2

)
G3 (7.3)

These model equations are relatively similar to the ones discovered in this study, except that they do
not include additional functions based on features. It is important to note that, similar to the models from
Schmelzer et al., Model-Saidi also did not allow the APG and NASA-Hump simulations to converge
initially. However, by restricting this model to the shear layer cluster, both simulations were able to con-
verge. This further supports the claim that applying corrections only in regions where RANS turbulence
models are known to struggle is highly beneficial. This is further discussed in Section 7.4.

Finally, it is important to mention the PhD thesis of Ali Amarloo [65], which combined CFD-driven op-
timization and progressive augmentation techniques to develop a Progressive data-augmented k − ω
SST model. This model provides a correction for R, which, unlike the other studies mentioned above,
applies the correction only in a region similar to the shear layer cluster used in this study. Ali Amarloo
achieves this by using an activation function similar to the RITA/TI classifier, developed based on the
ratio of production to dissipation of k. The models discovered for R take the following form:

R = 1 + Fsep = 1 + αΨ (7.4)

α = C0 + C1B1 + C2B2 (7.5)

Ψ =

(
1−

(
νt
ω

k

)λ1
)λ2

(7.6)

Ψ is the activation function, which depends on the λ1,2 optimization coefficients. α is the model correc-
tion, which depends on the normalized versions of the invariants I1 and I2, as well as the optimization
coefficients C0, C1, and C2. This model appears to perform very well for the same test cases used in
this study (NASA-Hump, Periodic-Hill, and CBFS). Since this model was discovered in the final stages
of this thesis project, there was not enough time to test it alongside the models obtained here. However,
his study helps confirm the claims regarding the benefits of regressing and applying corrections only in
the shear layer cluster, where RANS models fail to accurately predict the underlying physics. His ap-
proach of optimizing coefficients to create a shear layer activation function should be explored in future
developments of the RITA/TI classifier, aiming to remove its dependence on the non-invariant TI feature
and helping the classifier achieve better clustering results for the APG case.

7.4. Combining b∆ij and R Models
As discussed in the previous section, Model-Kaj obtained from the study of Kaj Hoefnagel [8] and Model-
Saidi obtained from the study of Saidi et al. are tested alongside the combined b∆ij and R Models dis-
covered in this study. These combined models are based on Model3-Bij with Model4-R (referred to as
Model1-Full) and Model3-Bij with Model3-R (referred to as Model2-Full). Model1-Full and Model2-Full
are applied only in the shear layer cluster identified by the RITA/TI classifier, which is dynamically up-
dated during the simulation. Model-Kaj is applied across the entire computational domain for all cases.
Model-Saidi is applied in the entire domain for the Periodic-Hill and CBFS cases, while for the NASA-
Hump and APG cases, it is restricted to the classifier region as the simulations failed to converge when
it was applied across the entire domain for these cases.

For comparison purposes, the results of the Baseline RANS, the Propagation-Classifier-Dynamic (PCD)
simulation, and the high-fidelity data (HF) (LES or DNS depending on the case) are also displayed.
Profiles of the axial velocity Ux, the turbulent kinetic energy k, and the shear stress component of the
Reynolds-stress tensor u′v′ are shown in Figures 7.16, 7.17, and 7.18 respectively. The separation and
reattachment locations predicted by each Model Propagation simulation are listed in Table 7.7. Finally,
the skin friction coefficient Cf plots obtained for each case are displayed in Figure 7.19.
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(a) Ux profiles NASA-Hump.
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(b) Ux profiles Periodic-Hill.
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(c) Ux profiles CBFS.
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(d) Ux profiles APG.

Figure 7.16: Comparison of Ux profiles obtained from the Model Propagation simulations.
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(a) k profiles NASA-Hump.
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(b) k profiles Periodic-Hill.
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(c) k profiles CBFS.

2 1 0 1 2
100k/U2

ref + x/H [-]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

y/
H 

[-]

(d) k profiles APG.

Figure 7.17: Comparison of k profiles obtained from the Model Propagation simulations.
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(a) u′w′ profiles NASA-Hump.
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(b) u′v′ profiles Periodic-Hill.
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(c) u′v′ profiles CBFS.
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(d) u′v′ profiles APG.

Figure 7.18: Comparison of u′v′ (u′w′ in the NASA-Hump case because the domain is designed in the x-z plane rather than the
x-y plane) profiles obtained from the Model Propagation simulations.



7.4. Combining b∆ij and R Models 103

Table 7.7: Comparison of the separation and reattachment location predictions obtained from the Model Propagation
simulations and literature models.

Cases NASA-Hump Periodic-Hill APG CBFS
Separate Reattach Separate Reattach Separate Reattach Separate Reattach
x/c [-] x/c [-] x/H [-] x/H [-] x/H [-] x/H [-] x/H [-] x/H [-]

Model1-Full 0.66 1.12 0.28 4.83 -1.79 -0.47 0.95 4.46
Model2-Full 0.66 1.20 0.30 4.76 -1.66 -0.47 0.88 4.60
Model-Saidi 0.66 1.14 0.27 4.76 -2.35 0.03 1.08 4.19
Model-Kaj 0.66 1.07 0.28 4.52 - - 1.27 4.23

PCD 0.66 1.09 0.30 5.15 -1.64 0.28 0.89 4.58
HF 0.66 1.06 0.22 4.69 -1.47 0.40 0.82 4.32

Baseline 0.65 1.25 0.26 7.64 -2.51 0.48 0.74 5.85
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domain.
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Figure 7.19: Comparison of Cf distributions obtained from the Model Propagation simulations.

Both Model1-Full and Model2-Full show improvements over the Baseline RANS in terms of predicting
the separation and reattachment locations and the axial velocity profiles Ux, for all cases apart from the
APG case. They achieve this by reducing the underpredictions of k and u′v′ in the initial stretches of the
shear layer, thereby shrinking the recirculation bubble that forms as the flow separates from the surface.

For the NASA-Hump case, Model2-Full shows only a very marginal improvement over the Baseline
RANS, while Model1-Full almost recovers the PCD simulation and high-fidelity predictions. This is ex-
pected because Model2-Full is composed of Model3-Bij and Model3-R, both of which, when tested in
isolation, underpredict k and u′v′, especially in the initial stretches of the shear layer. Combining these
models amplifies their inability to accurately predict the production of turbulent kinetic energy in this
location and hence the correct amounts of shear stress.

However, Model1-Full relies on Model3-Bij and Model4-R. While Model4-R significantly overpredicts k
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and u′v′ in the later stretches of the shear layer, it closely predicts the PCD and high-fidelity data in
the initial stretches of the shear layer, which helps the model to achieve accurate flow reattachment
predictions. When coupled with Model3-Bij, Model4-R effectively compensates for the underprediction
of Model3-Bij in the initial stretches of the shear layer. Furthermore, it improves the predictions of k and
u′v′ in the later stretches of the shear layer.

Interestingly, Model2-Full appears to outperform Model1-Full for the APG and Periodic-Hill cases. For
the APG case, Model1-Full overpredicts k and u′v′ in the majority of the flow profile. The corrections
applied by Model2-Full are less strong as evidenced by the underprediction observed in k and u′v′ for
the other cases. This gives Model2-Full an advantage in the APG case, as the corrections are applied
in a cluster region slightly above the shear layer, which should not necessitate very strong corrections.

For the Periodic-Hill case, Model2-Full ends up overpredicting k and u′v′ even more strongly than
Model1-Full towards the end of the shear layer. Since this case has periodic boundary conditions, it
means that the inlet to the domain where the shear layer starts forming receives a boost in the pro-
duction of k, resulting in a higher shear stress. This effect leads to a more significant reduction in the
recirculation region compared to Model1-Full, which is why Model2-Full achieves better reattachment
predictions for this case.

Overall, Model1-Full appears to have a relatively constant prediction for changes in the Reynolds number
of the flow. However, it becomes sensitive to steep geometrical changes, as evidenced by the Periodic-
Hill case. Model2-Full, on the other hand, appears to be sensitive to both changes in Reynolds number
and geometry, as evidenced by the NASA-Hump and CBFS cases. This outcome is not unexpected, as
the SpaRTA training to discover these models relied on regressing using a very limited amount of data
from only three cases (as the APG case data was not included in the regression). A less sensitive model
could likely be discovered if new test cases with new geometries and Reynolds numbers are added to
the training dataset. Nevertheless, even with this limited training data, the discovered models show very
good performance.

It is therefore important to quantify this performance against the models obtained from the literature. As
a reminder, Model-Saidi, which was designed to be applied in the full field, did not converge for the
NASA-Hump case or the APG case and has therefore been restricted to the shear layer cluster. This
reveals the advantage of only correcting the RANS simulations in regions where RANS struggles, rather
than overcorrecting in regions where the RANS turbulence models have been calibrated to work well.
This advantage is further evidenced by the performance of Model-Kaj, which was also applied in the
full field for all cases. While this model achieves very good reattachment predictions for the majority
of cases, it predicts no separation for the APG case and significantly affects the skin friction coefficient
distribution for all cases, as can be observed in Figure 7.19.

Compared to Model-Saidi, the models discovered in this study show similar performance, which is not
unexpected given the relatively similar formulation of the model equations. Comparing the results of the
different cases, themodels identified in this study slightly outperformModel-Saidi in predicting separation
and reattachment locations. This indicates that by restricting the regression to the shear layer cluster,
it is possible to discover models that specifically address the missing physics that the Baseline RANS
fails to account for.

7.5. Final Conclusions
In this chapter, the symbolic model expressions discovered for the b∆ij and R models, using the SpaRTA
regression methodology on data from the shear layer cluster identified by the RITA/TI classifier, were dis-
cussed and compared. Each expression was tested in isolation to accurately evaluate its performance.
Additionally, the best-performing expressions were combined in a Model Propagation simulations and
compared to other similar models from the literature, the Baseline RANS, the PCD simulation results,
and the high-fidelity data.

The best b∆ij model was found to be Model3-Bij. This model was able to account for the missing
anisotropy effects that Baseline RANS cannot reproduce, thereby reducing the underprediction of the
turbulent kinetic energy and shear stress in the shear layer. This model, although not able to fully repro-
duce the high-fidelity data, still showed a good performance, also providing generalizability for different
geometries and Reynolds numbers of the flows.
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The two best R models were identified as Model3-R and Model4-R. Model4-R excelled at capturing
the significant increase in the production of turbulent kinetic energy near the point of flow separation
and in the initial stretches of the shear layer, a critical aspect that the Baseline RANS fails to address.
However, Model4-R overpredicted the turbulent kinetic energy and shear stresses in the later stretches
of the shear layer. Conversely, Model3-R, while less adept at predicting this initial burst in turbulent
kinetic energy production, better reproduced the profiles of turbulent kinetic energy and shear stress in
the later stretches of the shear layer.

While the underperformance of the models in the APG case can be attributed to classification errors, it is
also important to note that the APG case’s geometry is substantially different from the other test cases.
The recirculation bubble that forms is much smaller, and since the Baseline RANS already provides a
good prediction of the flow, applying these models in the correct region might still lead to overpredictions.
This suggests that finding universal corrections for turbulence models is very difficult, if not impossible.
However, this remains open for debate as the results of this study are not conclusive enough to support
or disprove this claim. This is an important consideration for future studies.

When the b∆ij and R models were combined in simulations, they demonstrated promising results, some-
times outperforming those obtained in other studies. It appears that limiting the regression to the clas-
sifier region enables models to better account for the missing shear layer physics that Baseline RANS
fails to capture. Furthermore, by restricting corrections to this region, the portions of the flow domain,
particularly those regions where Baseline RANS is well-calibrated such as the boundary layer, remain
unaffected. This ensures that simulations converge more reliably and yield improved results across the
entire computational domain.

These findings address the final two research sub-questions set for this study. To a significant extent,
the SpaRTA framework can derive symbolic model expressions that accurately represent the Reynolds-
stress tensor and the k − ω SST model-form error. Although these models do not fully recover the
high-fidelity data, they provide a substantial improvement over the Baseline RANS.

Regarding changes in geometry and Reynolds number of the flow, the models showed varying perfor-
mance, especially for the APG case as previously discussed. Overall, Model1-Full (comprising Model3-
Bij and Model4-R) demonstrates relatively consistent predictions for changes in Reynolds number but
becomes sensitive to steep geometrical changes, as evidenced by the Periodic-Hill case. Conversely,
Model2-Full (comprising Model3-Bij and Model3-R) is sensitive to both changes in Reynolds number
and geometry, as seen in the NASA-Hump and CBFS cases.

While both models show some sensitivity to changing conditions, they remain generalizable to a cer-
tain extent, meaning they provide a notable improvement over the Baseline RANS. This suggests that
even with their limitations, these models represent a meaningful step forward in turbulence modeling,
enhancing predictive capabilities across various 2D-separated flow scenarios.



8
Conclusion and Future

Recommendations
This study focused on addressing the ongoing challenges of classical RANS simulations in predicting
flow separation for changing geometries and Reynolds numbers of the flow, to support F1 aerodynamic
design. Flow separation directly impacts the pressure distribution around an F1 car, consequently in-
fluencing both drag and downforce. Thus, accurately determining the location of flow separation and
subsequent reattachment is crucial in CFD simulations of F1 race cars. The k−ω SSTmodel, commonly
used by F1 aerodynamics teams, is known to underpredict turbulent shear stress in the separated shear
layer that forms when the boundary layer detaches from the car’s surface. This underprediction results
in an overestimation of the recirculation region and a delayed reattachment location. Consequently, it
leads to inaccurate predictions of pressure distribution and skin friction, making it challenging to compute
drag and downforce accurately.

Correcting these RANS flow separation simulations presents a significant challenge, as corrections must
be made without affecting regions of the flow where the k − ω SST model has been calibrated as this
can lead to faulty predictions and convergence issues during a simulation. In recent years, a new field of
research known as Data-Driven turbulence modeling has developed as a response to the efforts made
in discovering new and improved RANS models or calibrating existing ones to enhance their accuracy
in predicting complex flows. This area of study focuses on applying machine learning tools, which are
effective at handling extensive datasets and revealing complex underlying patterns, to help improve
RANS predictions of turbulent flows. While various approaches have been developed in this field, this
study focuses on SpaRTA, which uses a sparsity-promoting regression technique to derive algebraic
models capable of addressing uncertainties in Reynolds-stress anisotropy and model-form errors in the
k−ω SST model equation. The challenges encountered thus far with SpaRTA, which are also prevalent
in themajority of other approaches used in the data-driven turbulencemodeling field, have been to obtain
models that are generalizable to different geometries and Reynolds numbers and that apply corrections
only in areas of the flow where the RANS simulation shows the worst performance - the shear layer for
separated flow cases.

This study aimed to address these challenges by developing a classifier capable of distinguishing the
shear layer from the rest of the flow domain and applying the SpaRTA methodology to infer symbolic
model equations for the Reynolds-stress tensor and model-form errors in the k − ω SST model, specifi-
cally targeting this region. The primary objective is to ensure the generalizability of these classifications
and model corrective equations across various domain geometries and Reynolds numbers of the flow.
By focusing the SpaRTA training exclusively on data obtained from the shear layer, the complexity of
the regression problem can be simplified, reducing the volume of data to be fitted.

While each of the results chapters in this study has its own conclusion sections where the answers to
the research questions defined for this study are presented, these conclusions will be restated here for
clarity.
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Thesis Research Questions

Sub-Questions:
1. Can a classifier be constructed for the shear layer and effectively used to activate model
corrections only where necessary?

In this study, various methods have been investigated to obtain a generalizable classifier capable
of identifying the shear layer region from the rest of the flow domain. The first set of methods relied
on unsupervised clustering methods such as K-Means and GMM, which yielded poor results. Not
only were the trained classifiers not generalizable, but they also failed to identify the shear layer.
These methods are highly sensitive to the input feature dataset, and noise can significantly bias
the clustering output. Feature datasets constructed from flow variables are notoriously difficult
to preprocess: outlier removal often either negatively impacts the distribution of the features or
fails to identify outliers.
The second method was based on designing a physics-inspired classifier from observations re-
garding the levels of turbulence production in the shear layer. This led to the development of the
RITA/TI classifier, which demonstrated the best overall performance in identifying the shear layer
from the rest of the domain. Because of the simple form of this classifier, which is based on the
threshold of the production to destruction of turbulent kinetic energy and the turbulence intensity,
the classifier assigns a value of 1 to domain cells situated inside the shear layer cluster and val-
ues of 0 to the rest of the domain, efficiently activating model corrections only where necessary.

2. Is the classification consistent across different domain geometries and flow Reynolds num-
bers?

The shear layer classification achieved by the RITA/TI classifier is relatively consistent across
different domain geometries and flow Reynolds numbers. Furthermore, this classifier can be
computed dynamically during a simulation and its predictions adjust according to the changing
physics imposed by the corrections for example during Propagation and Model Propagation sim-
ulations. Nevertheless, the classification does appear to be sensitive to the predictions of the F1

and F2 blending functions of the k−ω SST model. This dependency reduces predictive power in
some cases, such as in the APG case, where it predicts the shear layer cluster slightly too high
above the recirculation region. Furthermore, since this classifier is based on turbulence intensity,
which is not Galilean invariant, it is likely to fail for flows with several different moving reference
frames.

3. Does applying corrections exclusively in the shear layer region result in improved flow predic-
tions in separated-flow scenarios?

Indeed, applying corrections exclusively in the shear layer region results in improved flow predic-
tions in separated-flow scenarios. This was proven by implementing the true b∆ij andR corrections
obtained from the Frozen simulation only within the shear layer cluster identified by the RITA/TI
classifier. While this approach does not fully replicate the high-fidelity results, as flow predictions
in other regions of the domain also influence the outcome, applying corrections in the shear layer
removes a significant portion of uncertainty in Baseline RANS.

4. Can the SpaRTA framework derive symbolic model expressions that accurately represent the
Reynolds-stress tensor and k − ω SST model-form error in the shear layer?

The SpaRTA framework can indeed derive symbolic model expressions that accurately represent
the Reynolds-stress tensor and the k − ω SST model form error. Although these models do not
fully recover the high-fidelity data, they provide a substantial improvement over the Baseline
RANS.
The best b∆ij model was found to be Model3-Bij. This model was able to account for the missing
anisotropy effects that Baseline RANS cannot reproduce, thereby reducing the underprediction
of the turbulent kinetic energy and shear stress in the shear layer. This model, although not
able to fully reproduce the high-fidelity data, still showed a good performance, also providing
generalizability for different geometries and Reynolds numbers of the flows.
The two best R models were identified as Model3-R and Model4-R. Model4-R excelled at cap-
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turing the significant increase in the production of turbulent kinetic energy near the point of flow
separation and in the initial stretches of the shear layer, a critical aspect that the Baseline RANS
fails to address. However, Model4-R overpredicted turbulent kinetic energy and shear stresses
in the later stretches of the shear layer. Conversely, Model3-R, while less adept at predicting
this initial burst in turbulent kinetic energy production, better reproduced the profiles of turbulent
kinetic energy and shear stress in the later stretches of the shear layer.
These models showed the worst performance for the APG case. While this can be attributed
to classification errors, it is also important to note that the APG case’s geometry is substantially
different from the other flow cases. The recirculation bubble that forms is much smaller, and since
the Baseline RANS already provides a good prediction of the flow, applying these models in the
correct region might still lead to overpredictions. This suggests that finding universal corrections
for turbulence models is very difficult, if not impossible. However, this remains open for debate
as the results of this study are not conclusive enough to support or disprove this claim. This is
an important consideration for future studies.
When the b∆ij and R models were combined in simulations, they demonstrated promising results,
sometimes outperforming those obtained in other studies. It appears that limiting the regression
to the classifier region enables models to better account for the missing shear layer physics that
Baseline RANS fails to capture. Furthermore, the key distinction between thesemodels and those
found in the literature is their application exclusively within the shear layer cluster. By restricting
corrections to this region, the portions of the flow domain, particularly those regions where Base-
line RANS is well-calibrated, remain unaffected. This ensures that simulations converge more
reliably and yield improved results across the entire computational domain.

5. Do the derived model equations yield consistent results for changes in domain geometries or
Reynolds numbers of the flow?

Regarding changes in geometry and Reynolds number of the flow, the models showed varying
performance, especially for the APG case. While the models show some sensitivity to changing
conditions, they remain generalizable to a certain extent, meaning they provide a notable im-
provement over the Baseline RANS. This suggests that even with their limitations, these models
represent a meaningful step forward in turbulence modeling, enhancing predictive capabilities
across various 2D-separated flow scenarios.

Main Question: Can the understanding and prediction of shear layer dynamics in 2D-separated
flows be improved by incorporating targeted model corrections based on isolated shear layer
data?

This study indeed demonstrates that incorporating targeted model corrections based on iso-
lated shear layer data improves the understanding and prediction of shear layer dynamics in
2D-separated flows. Baseline RANS primarily fails to account for the initial rise in the production
of turbulent kinetic energy in the initial stretches of the shear layer, which increases the levels
of shear stress and further fails to accurately predict the anisotropy effects of turbulence in this
layer. By limiting the regression to isolated shear layer data, models accounting for the physics
that Baseline RANS is not able to account for were discovered. Despite slight performance
variations across different geometries and Reynolds numbers, the derived models contribute to
enhancing the predictive capabilities of the shear layer dynamics in 2D-separated flows, which,
as stated at the beginning of this chapter, is essential for F1 race car design.

Based on the results and conclusions obtained in this study, several future recommendations have been
formulated:

1. Classifier Development:

(a) The RITA/TI classifier developed in this study remains sensitive to changes in geometry and
does not assure Galilean invariance. Therefore, future efforts should focus on addressing
these two primary concerns. One approach to this would be to investigate the methodology
developed by Ali Amarloo in his PhD thesis [65]. Instead of designing a separate classifier,
he created an activation function for the shear layer, which he regressed together with the
model corrective equation for R to obtain a model that activates only in the shear layer. This
approach of regressing a function that activates in the shear layer region should be further
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explored in the context of designing a shear layer classifier.
(b) If it is possible to improve upon the RITA/TI classifier, it would be interesting to re-analyze the

performance of the b∆ij and R models discovered in this study for the APG case. This could
provide a definitive conclusion on whether the classifier is completely at fault for the poorer
performance that these models show for this case, or whether it is very difficult or impossible
to obtain corrective equations that are universally applicable.

(c) It would also be interesting to explore how theRITA/TI classifier would perform in 3D-separated
flow cases, which can help demonstrate whether it can indeed be useful in F1 aerodynamic
design.

2. Regression Methods: The SpaRTA methodology used to derive the b∆ij and R models in this
study is based on linear regression. It is likely that employing non-linear regression techniques,
such as the CuRTA regression methods developed by Kaj Hoejnagel in his Master’s thesis [8],
or multi-ojective regression could lead to the discovery of models capable of capturing a greater
portion of the underlying shear layer physics. Thus, it is recommended that future studies prioritize
the use of more advanced regression methods to investigate the potential for obtaining improved
models that better represent the underlying shear layer physics.

3. Case Specifics:

(a) This study focused on only four flow cases. Better corrective models can probably be re-
gressed if the initial dataset includes numerous other cases with varying geometries and
Reynolds numbers. Therefore, to enhance generalizability, it is recommended to expand the
portfolio of 2D-separated flow cases. Furthermore, the levels of grid refinement varied among
the separated flow cases. Future studies should aim to refine the mesh uniformly across all
cases and to a very fine level, ensuring full resolution of the boundary layer and eliminating
any secondary effects that may influence simulation results.

(b) To obtain the R and b∆ij corrections for the APG case, the R correction had to be removed
from the ω equation during the Frozen simulation run to allow for convergence of the correc-
tion fields in the Propagation simulations. This was discovered to be very problematic for the
Propagation simulations, which were run only with R corrections active or only with b∆ij correc-
tions active. The results showed that, in this case, the correction fields do not represent the
true model-form error. This is likely the reason why the best-performing models identified with
SpaRTA were all found once the APG case was removed from the regression input. There-
fore, future studies should either select cases where the same model-form error extraction
can be used or perform a deeper analysis to understand why some cases show this particular
convergence issue.

(c) The cases used in this study had various levels of refinement, which can influence the flow
separation predictions, as the boundary layer is better resolved in some cases than in others.
For consistency, future studies should strive to achieve the same level of refinement among
all cases and aim for a y+ value below 1, thereby ensuring that all mesh resolution effects
are completely eliminated.

4. Features: The features used throughout this study serve two primary purposes: they constitute
the input dataset for the clustering algorithms and form the dataset used for model discovery within
the SpaRTA framework. The performance of theRmodels was found to be particularly sensitive to
the types of features used during regression. Thus, it is crucial to construct features that accurately
represent the local turbulence characteristics, thereby offering greater flexibility to the regression
problem. However, several features employed in this study lacked invariance and independence
from Reynolds number variations. This limitation diminished their usefulness for both the model
regression procedure and shear layer classification. Therefore, it is highly recommended to ex-
plore the development of new features that satisfy the criteria of being both Reynolds number-
independent and invariant. Such features should be capable of effectively distinguishing between
the shear layer and the remainder of the flow domain.

5. Modelling Ansatz: The modeling approach used in this study to represent the model-form error
in the Reynolds-Averaged Navier-Stokes (RANS) prediction of turbulence anisotropy is based on
Pope’s eddy viscosity hypothesis [17]. Additionally, the modeling technique employed to represent
R in this study assimilates this term with the production term of the k equation of the k − ω SST
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model. Both of these modeling approaches rely solely on simplifications and assumptions inher-
ent to their respective derivations. Therefore, future studies should explore alternative modeling
strategies that could potentially offer a more comprehensive and accurate representation of the
uncertainties in RANS simulations. This may involve incorporating more sophisticated turbulence
closure models.
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A
Feature Plots for NASA-Hump Case

A.1. Raw Feature Distributions

Figure A.1: The distribution of feature F1 (Red) for the NASA-hump test case.

Figure A.2: The distribution of feature F2 (TI) for the NASA-hump test case.
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Figure A.3: The distribution of feature F3 (TS) for the NASA-hump test case.

Figure A.4: The distribution of feature F4 (fd) for the NASA-hump test case.

Figure A.5: The distribution of feature F5 (ReΩ) for the NASA-hump test case.
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Figure A.6: The distribution of feature F6 (Rek) for the NASA-hump test case.

Figure A.7: The distribution of feature F7 (Qcriterion) for the NASA-hump test case.

Figure A.8: The distribution of feature F8 (PS) for the NASA-hump test case.
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Figure A.9: The distribution of F9 (τij,ratio) for the NASA-hump test case.

Figure A.10: The distribution of F10 (RITAPk/Dk
) for the NASA-hump test case.

Figure A.11: The distribution of F11 (RITACk/Dk
) for the NASA-hump test case.
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Figure A.12: The distribution of F12 (RITADf,k/Dk
) for the NASA-hump test case.

A.2. Feature Distributions Post Outlier Removal

Figure A.13: Distribution of feature F2 (TI) for the NASA-Hump test case after outliers have been removed from this feature.

Figure A.14: Distribution of feature F3 (TS) for the NASA-Hump test case after outliers have been removed from this feature.
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Figure A.15: Distribution of feature F5 (ReΩ) for the NASA-Hump test case after outliers have been removed from this feature.

Figure A.16: Distribution of feature F6 (Rek) for the NASA-Hump test case after outliers have been removed from this feature.

Figure A.17: Distribution of feature F7 (Qcriterion) for the NASA-Hump test case after outliers have been removed from this
feature.
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Figure A.18: Distribution of feature F8 (PS) for the NASA-Hump test case after outliers have been removed from this feature.

Figure A.19: Distribution of feature F9 (τij,ratio) for the NASA-Hump test case after outliers have been removed from this
feature.

Figure A.20: Distribution of feature F10 (RITAPk/Dk
) for the NASA-Hump test case after outliers have been removed from this

feature.
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Figure A.21: Distribution of feature F11 (RITACk/Dk
) for the NASA-Hump test case after outliers have been removed from this

feature.

Figure A.22: Distribution of feature F12 (RITADf,k/Dk
) for the NASA-Hump test case after outliers have been removed from

this feature.



B
Invariant RITA Classifier Development

The efforts towards developing an invariant version of the RITA/TI classifier described in this section
focus on feature F9 (τij,ratio) in section 4.4. This feature is based on the ratio of total to normal Reynolds
stresses. Unlike the turbulence intensity used in the RITA/TI classifier, this feature is Galilean invariant.
As it is not normalized in its raw form, it is here constrained to a [0,1] range using Min-Max scaling, before
it is used to construct the classifier. The normalized version of this feature (τij,ratio,norm) is shown in
Figure B.1 for the NASA-Hump case. Similar to the turbulence intensity, the distribution of this feature
shows a clear distinction between the downstream area of the hump, where the shear layer is located,
and the rest of the domain.

Figure B.1: The distribution of τij,ratio,norm for the NASA-Hump case.

Setting a threshold on this ratio so that τij,ratio,norm ≤ 0.70 and lowering the threshold on the RITA ratio
to RITAPk/Dk

< 0.456, ensures that only the shear layer region of the domain meets these conditions,
while all other regions are excluded. The RITA ratio had to be lowered to ensure that the outer boundary
layer region is not included in the classifier, as the τij,ratio,norm is less accurate in terms of differentiating
the shear layer region from the outer boundary layer compared to the turbulence intensity. The way the
classifier is constructed based on these thresholds is further explained in the modeling note below.
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Modelling Note - RITA/τij,ratio,norm Classifier

The classifier, here denoted as σ, is based on the thresholds set on the RITAPk/Dk
ratio and the

normalized ratio of total to normal Reynolds stresses (τij,ratio,norm). It assigns a value of 0 or 1
to every mesh cell in the domain, according to:
If: RITAPk/Dk

< 0.456 and τij,ratio,norm ≤ 0.70 : σ = 1 Else: σ = 0.
The mesh cells where σ = 1 indicate the location of the shear layer. The mesh cells where σ = 0
represent the rest of the domain.

Applying this classifier to all the separated flow cases leads to the clustering assignments displayed in
Figures B.2, B.3, B.4 and B.5 for the NASA-Hump, CBFS, Periodic Hill and APG case respectively.

Figure B.2: σ classifier based on RITA/τij,ratio,norm classifer for the NASA-Hump case.

Figure B.3: σ classifier based on RITA/τij,ratio,norm thresholding for the CBFS case.
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Figure B.4: σ classifier based on RITA/τij,ratio,norm thresholding for the Periodic-Hill case.

Figure B.5: σ classifier based on RITA/τij,ratio,norm thresholding for the APG case.

As can be seen from comparing the above figures with the ones obtained using the RITA/TI classifier
in Section 4.3, the shear layer cluster has maintained the same overall shape however it is now slightly
wider, encompassing a larger area downstream of the recirculation region. Like the RITA/TI classifier,
this alternative remains to a large extent generalizable across different geometries and flow conditions
while also being fully invariant. Nevertheless, it still fails to accurately predict the location of the shear
layer region for the APG case. This is likely due to the differences in the F1 and F2 blending functions
of this case, as also discussed for the RITA/TI classifier



C
Simulation Infrastructure

C.1. AugmentedkOmegaSST Turbulence Model in OpenFOAM
The essence of this study lies in research; thus, the code infrastructure for conducting the various sim-
ulations necessary for testing and analyzing different correction fields and model equations should be
flexible, efficient, and automated. This will enable it to be easily adapted for different types of simulations.

The OpenFOAM CFD solver used throughout this study is been written in C++, a compiled language.
Therefore, if the models discovered through SpaRTA are implemented directly in this source code, the
code must be recompiled each time a new model is investigated. This makes the overall process difficult
to automate and time-consuming. Additionally, one must consider that C++ is a challenging language
to program in, making the task of building all the necessary functions to compute the tensors, invariants,
and features that constitute the different models (see Section 2.6) both complex and time-consuming.
Furthermore, the SpaRTA code base, which will simply be referred to as SpaRTA from now on, has
already been developed in Python, an interpreted language that does not need to be pre-compiled and
is much more user-friendly. SpaRTA also already has all the functions defined for evaluating the tensors,
invariants, and features that make up the models. Therefore, evaluating the models through SpaRTA is
much more efficient and quick to implement. Testing different models requires no changes to the SpaRTA
source code.

Taking into account the above considerations, Kaj Hoefnagel built a code infrastructure that couples the
OpenFOAM source code to SpaRTA via a Python interpreter [8]. With his code, it is possible to perform
both Propagation and Model Propagation simulations. In this study, several additional functionalities
have been added to this code infrastructure to allow for more user input flexibility regarding the simu-
lations being performed and to provide a more efficient approach to transferring data between SpaRTA
and OpenFOAM. The new infrastructure consists of a turbulence model called AugmentedkOmegaSST,
which is defined via a header file (AugmentedkOmegaSST.H) and a source file (AugmentedkOmegaSST.C),
as well as a Python script called python_model.py that acts as an intermediary platform connecting
AugmentedkOmegaSST and SpaRTA. The source code for all these files can be found in Section C.2 below.

C.1.1. Inputs to AugmentedkOmegaSST
The AugmentedkOmegaSST turbulence model enables users to carry out Baseline, Propagation, and
Model Propagation simulations, with or without classifiers for the latter two, based on a series of in-
puts. An overview of these inputs is provided in Table C.1. The first input, when set to True, performs a
standard Baseline simulation. The next three inputs, starting with the word ’use’, specify whether to use
the R correction field, the b∆ij correction field, and the σ classifier.

If the following three inputs, which all start with the word ’model’, are set to False and the previous three
(with the word ’use’) are set to True, a Propagation simulation is performed. In this case, the R and b∆ij
corrections are read from their respective fields obtained from the Frozen simulation and applied only in
the shear layer cluster identified using the σ field. This field is derived by applying the RITA/TI classifier
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to the converged Baseline simulation. If the user wants to perform a full Propagation simulation without
the classifier, the useSigma input can be set to False. If the inputs that start with the word ’model’ are set
to True, alongside the ’use’ inputs, a Model Propagation simulation is performed. If modelSigma input is
set to True, then the σ classifier is updated at every solver iteration via the python_model.py file. The
inputs offer full flexibility, allowing for scenarios such as performing a simulation where the R field is read
from a file and the b∆ij field is modeled using its respective model equation.

The inputs starting with the word ’ramp’ specify the times to start applying corrections to the Baseline
model using a ramp function and the end time at which full corrections are applied. This function, there-
fore, has a value of 0 at rampStartTime which then grows linearly to a value of 1 by rampEndTime. The
R and b∆ij correction terms are multiplied by the ramp function, ensuring that corrections are applied
gradually rather than all at once, which can lead to stability issues in the simulation. The final two inputs
specify whether additional factors should be used to reduce the strength of the R and b∆ij corrections
being applied. This can often help alleviate convergence and stability issues. For example, if this factor
is set to 0.5, the corrections will be halved.

Based on these inputs, several if else statements have been used throughout the AugmentedkOmegaSST
to allow for the correct simulation type to be performed.

Table C.1: Input specifications for theAugmentedkOmegaSST turbulence model.

Input Value (Default) Functionality
baseline False Switch to activate Baseline simulation.

usekDeficit False Switch to activate R corrections.
usebijDelta False Switch to activate b∆ij corrections.

useSigma False Switch to activate σ classifier.
modelkDeficit False Switch to activate R model corrections.
modelbijDelta False Switch to activate b∆ij model corrections.
modelSigma False Switch to update σ classifier at each solver iteration.

rampStartTime 10 Time at which corrections start being applied.
rampEndTime 100 Time at which full corrections are applied.

bijDeltastabilizer 1 Controls the intensity of b∆ij corrections.
kDeficitstabilizer 1 Controls the intensity of R corrections.

C.1.2. Implementation Details of python_model.py Python Script
The python_model.py script serves two main purposes:

1. It computes the b∆ij and R model corrections via the equations discovered using the SpaRTA
methodology.

2. It dynamically updates the RITA/TI classifier during the simulation. The reason behind implement-
ing this option of dynamic classification is further elaborated upon in Chapter 6.

An overview of the Python script algorithm is available in Algorithm 4 below. The initialization of the
script is achieved using the Application Programmers Interface to Python, which allows a C++ program to
access the Python interpreter (Python/C API). This interpreter is initialized in the AugmentedkOmegaSST.C
source file at the start of the simulation and remains active throughout. During this initialization phase,
the python_model.py script is loaded and executed. This ensures that all its global variables are defined
and its libraries, including the SpaRTA code base, are loaded. Consequently, there is no need to reload
these at every iteration, reducing the overhead of the simulation. Baseline and Propagation simulations
do not require to be connected to the Python interpreter as they do not require any information from
SpaRTA. Therefore, only for Model Propagation simulations, the python_model.py and its interpreter is
employed.

The global variables of python_model.py include the paths to the files where the model equations are
defined (bijDeltaEq for the b∆ij model and kDeficitEq for theRmodel). Additionally, a dictionary named
funcDict is created which defines the functions used by the model equation files. Using separate model
equation files instead of hardcoding them in the Python script offers more flexibility. This approach allows
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for the same Python script to be used for all Model Propagation simulations while enabling adjustments
to the structure of the models via the model equation files.

Algorithm 4 Python script python_model.py algorithm.
Initialization:
1. Load libraries: SpaRTA, numpy, copy, os ,etc.
2. Load global variables: paths to bijDeltaEq and kDeficitEq files, funcDict.

Iterative Procedure (repeats at every solver iteration):
Input to model function:
Import inputDict from AugmentedkOmegaSST.

model Function:
Make a deep copy of inputDict.
Send deep copy of inputDict to SpaRTA.
Extract featureDict from SpaRTA output.
Evaluate bijDeltaEq and kDeficitEq equation files given featureDict.
Evaluate dynamic σ classifier output.
Build ReturnDict and send to AugmentedkOmegaSST.

Finalize:
Delete copy of inputDict from memory along with other locally defined variables.

To compute the tensors, invariants, and features that constitute the model equations, all necessary flow
variables are sent from AugmentedkOmegaSST to the Python script via a dictionary at each solver iteration.
This input dictionary, called inputDict, contains essential fields such as U , k, ω, etc., and is passed
to the main function in the Python script, named model(). Within the model() function, inputDict is
first deep-copied before being sent to the SpaRTA library, which computes all the input features, tensors,
and invariants. This deep copy ensures that no information is lost during data manipulation in SpaRTA.
Deleting the deep copy from memory at the end of the Python script protects against memory leaks.

Once all necessary parameters are computed using SpaRTA, the model equations are evaluated, and
the outputs are stored in a new dictionary called featureDict. Additionally, if the ’modelSigma’ input is
set to True for AugmentedkOmegaSST, the σ classifier is updated based on the input fields provided by
AugmentedkOmegaSST. Finally, a dictionary containing the outputs of the model equations (i.e. b∆ij and R
correction values for each point in the domain) and the classification (σ values of 0 or 1 for each point in
the domain) is created. This dictionary, named ReturnDict, is then sent back to AugmentedkOmegaSST.

C.1.2.1 Main Code Structure of AugmentedkOmegaSST

As discussed in the section above, for Model Propagation simulations, the Python interpreter needs to be
initialized and the AugmentedkOmegaSST turbulencemodel needs to be connected to the python_model.py
script. The Python interpreter is started by calling Py_Initialize() from the Python/C API at the be-
ginning of the AugmentedkOmegaSST.C source file. Next, the python_model.py script is loaded using the
PyImport_Import() function. Additionally, the model function from python_model.py is loaded, mak-
ing it available for subsequent calls from AugmentedkOmegaSST.C file. This initialization procedure only
needs to be performed once at the beginning of the simulation, which saves a lot of computational time
by avoiding the need to reload these parameters at every solver iteration.

Algorithm 5 provides an overview of the algorithm used by AugmentedkOmegaSST, specifically for Model
Propagation simulations that require the initialization procedure described above. As previously dis-
cussed, Baseline and Propagation simulations do not use the python_model.py script and therefore do
not need to connect to the Python interpreter.

The flow field data that needs to be sent from AugmentedkOmegaSST to python_model.py to evaluate
the model equations for b∆ij and R is transferred via a dictionary. Dictionaries offer a very efficient, clear,
and organized approach to transferring large datasets between two programming languages, especially
since they can handle storing different data types. The dictionary created is called fieldDict, and it is
updated at every solver iteration using a void function called update_fieldDict(), defined at the top of
the AugmentedkOmegaSST.C source file. The model() function, defined in the python_model.py script,
takes this dictionary as an input argument and stores the output in a pReturn object, which contains all
the model corrections. These corrections, once extracted from this return object, are used to correct the
k − ω SST model equations and the Reynolds-stress tensor at every solver iteration.
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Algorithm 5 AugmentedkOmegaSST turbulence model algorithm (specifically for Model Propagation
simulations)
Input:
Input parameters specified in Table C.1.
Initial conditions of flow fields: U , k, ω, νt, p.
Initialization:
1. Start Python interpreter.
2. Load the python_model.py file.
3. Load the model() function inside python_model.py.
Itterative Procedure:
Build fieldDict dictionary to pass field data to Python : U , k, ω, τij , ∇U , etc (see code in Section
C.2).
Update fieldDict with update_fieldDict() function.
Call Python model() function with fieldDict as input.
Extract Python model() outputs: R, b∆ij , σ.
Solve k and ω equations given R, b∆ij , σ.

C.2. Source Code
1 /*-------------------------------------------------------------------------
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https://openfoam.org
5 \\ / A nd | Copyright (C) 2016-2018 OpenFOAM Foundation
6 \\/ M anipulation |
7 -------------------------------------------------------------------------*/
8 /*-------------------------------------------------------------------------
9 License
10 This file is part of OpenFOAM.
11

12 OpenFOAM is free software: you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by
14 the Free Software Foundation , either version 3 of the License, or
15 (at your option) any later version.
16

17 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 for more details.
21

22 You should have received a copy of the GNU General Public License
23 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
24

25 ------------------------------------------------------------------------*/
26

27 /*-------------------------------------------------------------------------
28 This turbulence model file provides explanations and settings for

different
29 simulations using the Augumented k-Omega SST turbulence model.
30

31 Simulation Types:
32

33 1. Baseline k-Omega SST:
34

35 - Simulation without corrections from high-fidelity data, equivalent
to

36 the OpenFOAM kOmegaSST turbulence model.
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37

38 - To run simulations with this setting, modify the following lines in
39 your turbulenceProperties file in the constant case directory:
40 RASModel AugmentedkOmegaSST;
41 baseline true;
42

43 2. Propagation k-Omega SST:
44

45 - k-Omega SST simulation with correction fields obtained from high-
fidelity

46 data.
47

48 - Corrective fields (bijDelta and kDeficit) should be obtained from a
49 frozen simulation and added to the 0 folder of the case directory.
50

51 - To run a propagation simulation , modify/add the following lines:
52 RASModel AugmentedkOmegaSST;
53 usebijDelta true; // Enable bijDelta corrections.
54 usekDeficit true; // Enable kDeficit corrections.
55

56 ---- Optional Settings ----
57 rampStartTime 10; // Time to start applying corrections.
58 rampEndTime 100; // Time at which full corrections are

applied.
59 useSigma true; // Use corrections only in classifier

region.
60 modelSigma true; // Compute the 'sigma' classifier field

during simulation.
61 bijDeltastabilizer 1; // Factor to stabilize bijDelta

corrections.
62 kDeficitstabilizer 1; // Factor to stabilize kDeficit

corrections.
63

64 3. Model k-Omega SST:
65

66 - k-Omega SST simulation with correction fields obtained from model
equation

67 files.
68

69 - Model equation fields ('kDeficit' and 'bijDeltaEq') should be text
files

70 present in your case directory.
71

72 - To run a model simulation , modify/add the following lines:
73 RASModel AugmentedkOmegaSST;
74 usebijDelta true; // Enable bijDelta corrections.
75 usekDeficit true; // Enable kDeficit corrections.
76 modelbijDelta true; // Enable modeling of bijDelta equation

from model equation file.
77 modelkDeficit true; // Enable modeling of kDeficit equation

from model equation file.
78

79 ---- Optional Settings ----
80 rampStartTime 10; // Time to start applying corrections.
81 rampEndTime 100; // Time at which full corrections are

applied.
82 useSigma true; // Use corrections only in classifier

region.
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83 modelSigma true; // Compute the 'sigma' classifier field
during simulation.

84 bijDeltastabilizer 1; // Factor to stabilize bijDelta
corrections.

85 kDeficitstabilizer 1; // Factor to stabilize kDeficit
corrections.

86

87

88 Author : Monica Lacatus.
89 Adapated from: Kaj Hoefnagel , Richard Dwight.
90

91 ------------------------------------------------------------------------*/
92

93 #include "error.H"
94

95 // Check for a Python exception - use after every PyAPI call that could
96 // possibly raise an exception.
97 #define PyErr() if(PyErr_Occurred()) { \
98 PyErr_PrintEx(0); \
99 FatalError << "Python exception" << exit(FatalError); \
100 }
101

102 /*----------------------------------------------------------------------*/
103

104 namespace Foam
105 {
106 namespace RASModels
107 {
108

109

110 template <class BasicMomentumTransportModel >
111 void AugmentedkOmegaSST <BasicMomentumTransportModel >::update_fieldDict()
112 {
113 // Create a numpy array wrapper around data pointed to by the given

pointer. The array flags
114 // will have a default that the data area is well-behaved and C-style

contiguous.
115

116 tmp<volScalarField > p_ = this->U_.db().objectRegistry::lookupObject <
volScalarField >("p");

117 tmp<volTensorField > tgradU = fvc::grad(this->U_);
118 tmp<volVectorField > tgradp = fvc::grad(p_);
119 tmp<volVectorField > tgradk = fvc::grad(this->k_);
120 tmp<volVectorField > tcurlU = fvc::curl(this->U_);
121

122 {
123 npy_intp dim[] = {num_cells , 3};
124 PyObject *array = PyArray_SimpleNewFromData(2, dim, NPY_DOUBLE , (void

*)&(this->U_[0]));
125 PyDict_SetItemString(fieldDict , "U", array);
126 }{
127 npy_intp dim[] = {num_cells , 3, 3};
128 PyObject *array = PyArray_SimpleNewFromData(3, dim, NPY_DOUBLE , (void

*)&(tgradU()[0]));
129 PyDict_SetItemString(fieldDict , "gradU", array);
130 }{
131 npy_intp dim[] = {num_cells , 3};
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132 PyObject *array = PyArray_SimpleNewFromData(2, dim, NPY_DOUBLE , (void
*)&(tgradk()[0]));

133 PyDict_SetItemString(fieldDict , "gradk", array);
134 }{
135 npy_intp dim[] = {num_cells , 3};
136 PyObject *array = PyArray_SimpleNewFromData(2, dim, NPY_DOUBLE , (void

*)&(tgradp()[0]));
137 PyDict_SetItemString(fieldDict , "gradp", array);
138 }{
139 npy_intp dim[] = {num_cells};
140 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->k_[0]));
141 PyDict_SetItemString(fieldDict , "k", array);
142 }{
143 npy_intp dim[] = {num_cells};
144 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->omega_[0]));
145 PyDict_SetItemString(fieldDict , "omega", array);
146 }{
147 npy_intp dim[] = {num_cells};
148 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->nut_()[0]));
149 PyDict_SetItemString(fieldDict , "nut", array);
150 }{
151 npy_intp dim[] = {num_cells};
152 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->y_[0]));
153 PyDict_SetItemString(fieldDict , "walldist", array);
154 }{
155 npy_intp dim[] = {num_cells};
156 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE ,(void *)

&(this->nu()().internalField()[0]));
157 PyDict_SetItemString(fieldDict , "nu", array);
158 }{
159 npy_intp dim[] = {num_cells , 3};
160 PyObject *array = PyArray_SimpleNewFromData(2, dim, NPY_DOUBLE , (void

*)&(tcurlU()[0]));
161 PyDict_SetItemString(fieldDict , "curlU", array);
162 }{
163 npy_intp dim[] = {num_cells , 3};
164 PyObject *array = PyArray_SimpleNewFromData(2, dim, NPY_DOUBLE , (void

*)&(this->mesh_.C()[0]));
165 PyDict_SetItemString(fieldDict , "C", array);
166 }{
167 npy_intp dim[] = {num_cells};
168 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->Pk_()[0]));
169 PyDict_SetItemString(fieldDict , "Pk", array);
170 }{
171 npy_intp dim[] = {num_cells};
172 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->Pk_prop_()[0]));
173 PyDict_SetItemString(fieldDict , "Pk_prop", array);
174 }{
175 npy_intp dim[] = {num_cells};
176 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->Dk_()[0]));
177 PyDict_SetItemString(fieldDict , "Dk", array);
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178 }{
179 npy_intp dim[] = {num_cells};
180 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->k_conv_()[0]));
181 PyDict_SetItemString(fieldDict , "k_conv", array);
182 }{
183 npy_intp dim[] = {num_cells};
184 PyObject *array = PyArray_SimpleNewFromData(1, dim, NPY_DOUBLE , (void

*)&(this->k_diff_()[0]));
185 PyDict_SetItemString(fieldDict , "k_diff", array);
186 }{
187 npy_intp dim[] = {num_cells , 3, 3};
188 PyObject *array = PyArray_SimpleNewFromData(3, dim, NPY_DOUBLE , (void

*)&(this->tauij_B_()[0]));
189 PyDict_SetItemString(fieldDict , "tauij_B", array);
190 };
191

192 p_.clear();
193 tgradU.clear();
194 tgradp.clear();
195 tgradk.clear();
196 tcurlU.clear();
197 }
198

199 /*---------- Protected Member Functions ---------*/
200

201 template <class BasicTurbulenceModel >
202 tmp<volScalarField >
203 AugmentedkOmegaSST <BasicTurbulenceModel >::F1
204 (
205 const volScalarField& CDkOmega
206 ) const
207 {
208 tmp<volScalarField > CDkOmegaPlus = max
209 (
210 CDkOmega,
211 dimensionedScalar(dimless/sqr(dimTime), 1.0e-10)
212 );
213

214 tmp<volScalarField > arg1 = min
215 (
216 min
217 (
218 max
219 (
220 (scalar(1)/betaStar_)*sqrt(k_)/(omega_*y_),
221 scalar(500)*(this->mu()/this->rho_)/(sqr(y_)*omega_)
222 ),
223 (4*alphaOmega2_)*k_/(CDkOmegaPlus*sqr(y_))
224 ),
225 scalar(10)
226 );
227

228 return tanh(pow4(arg1));
229 }
230

231 template <class BasicTurbulenceModel >
232 tmp<volScalarField >
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233 AugmentedkOmegaSST <BasicTurbulenceModel >::F2() const
234 {
235 tmp<volScalarField > arg2 = min
236 (
237 max
238 (
239 (scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_),
240 scalar(500)*(this->mu()/this->rho_)/(sqr(y_)*omega_)
241 ),
242 scalar(100)
243 );
244

245 return tanh(sqr(arg2));
246 }
247

248 template <class BasicTurbulenceModel >
249 tmp<volScalarField >
250 AugmentedkOmegaSST <BasicTurbulenceModel >::F3() const
251 {
252 tmp<volScalarField > arg3 = min
253 (
254 150*(this->mu()/this->rho_)/(omega_*sqr(y_)),
255 scalar(10)
256 );
257

258 return 1 - tanh(pow4(arg3));
259 }
260

261 template <class BasicTurbulenceModel >
262 tmp<volScalarField >
263 AugmentedkOmegaSST <BasicTurbulenceModel >::F23() const
264 {
265 tmp<volScalarField > f23(F2());
266

267 if (F3_)
268 {
269 f23.ref() *= F3();
270 }
271

272 return f23;
273 }
274

275

276 template <class BasicTurbulenceModel >
277 void AugmentedkOmegaSST <BasicTurbulenceModel >::correctNut
278 (
279 const volScalarField& S2,
280 const volScalarField& F2
281 )
282 {
283 this->nut_ = a1_*k_/max(a1_*omega_, b1_*F2*sqrt(S2));
284 this->nut_.correctBoundaryConditions();
285 fv::options::New(this->mesh_).correct(this->nut_);
286

287 BasicTurbulenceModel::correctNut();
288 }
289

290 template <class BasicTurbulenceModel >
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291 void AugmentedkOmegaSST <BasicTurbulenceModel >::correctNut()
292 {
293 correctNut(2*magSqr(symm(fvc::grad(this->U_))), F23());
294 }
295

296

297 template <class BasicTurbulenceModel >
298 tmp<volScalarField::Internal>
299 AugmentedkOmegaSST <BasicTurbulenceModel >::Pk
300 (
301 const volScalarField::Internal& G
302 ) const
303 {
304 return min(G, (c1_*betaStar_)*this->k_()*this->omega_());
305 }
306

307

308 template <class BasicTurbulenceModel >
309 tmp<volScalarField::Internal>
310 AugmentedkOmegaSST <BasicTurbulenceModel >::epsilonByk
311 (
312 const volScalarField::Internal& F1,
313 const volScalarField::Internal& F2
314 ) const
315 {
316 return betaStar_*omega_();
317 }
318

319

320 template <class BasicTurbulenceModel >
321 tmp<fvScalarMatrix >
322 AugmentedkOmegaSST <BasicTurbulenceModel >::kSource() const
323 {
324 return tmp<fvScalarMatrix >
325 (
326 new fvScalarMatrix
327 (
328 k_,
329 dimVolume*this->rho_.dimensions()*k_.dimensions()/dimTime
330 )
331 );
332 }
333

334

335 template <class BasicTurbulenceModel >
336 tmp<fvScalarMatrix >
337 AugmentedkOmegaSST <BasicTurbulenceModel >::omegaSource() const
338 {
339 return tmp<fvScalarMatrix >
340 (
341 new fvScalarMatrix
342 (
343 omega_,
344 dimVolume*this->rho_.dimensions()*omega_.dimensions()/dimTime
345 )
346 );
347 }
348
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349 template <class BasicTurbulenceModel >
350 tmp<fvScalarMatrix > AugmentedkOmegaSST <BasicTurbulenceModel >::Qsas
351 (
352 const volScalarField::Internal& S2,
353 const volScalarField::Internal& gamma,
354 const volScalarField::Internal& beta
355 ) const
356 {
357 return tmp<fvScalarMatrix >
358 (
359 new fvScalarMatrix
360 (
361 omega_,
362 dimVolume*this->rho_.dimensions()*omega_.dimensions()/dimTime
363 )
364 );
365 }
366

367

368 /*----Updating Reynolds -Stress Source Term For Momentum Equation ----*/
369

370 // divDevReff function
371 template <class BasicTurbulenceModel >
372 tmp<fvVectorMatrix > AugmentedkOmegaSST <BasicTurbulenceModel >::divDevReff
373 (
374 volVectorField& U
375 ) const
376 {
377 Info << "In: AugmentedkOmegaSST::divDevReff()" << endl;
378 return
379 (
380 // Boussinesq part
381 - fvc::div((this->alpha_*this->rho_*this->nuEff())*dev2(T(fvc::grad(U

))))
382 - fvm::laplacian(this->alpha_*this->rho_*this->nuEff(), U)
383

384 // Nonlinear correction part
385 + this->sigma_ * fvc::div(dev(2.*this->k_*this->bijDelta_) *
386 bijDeltastabilizer_ * xi_)
387 );
388 }
389

390

391 // devRhoReff function
392 template <class BasicTurbulenceModel >
393 Foam::tmp<Foam::volSymmTensorField >
394 AugmentedkOmegaSST <BasicTurbulenceModel >::devRhoReff() const
395 {
396 Info << "In: AugmentedkOmegaSST::devRhoReff()" << endl;
397 return volSymmTensorField::New
398 (
399 // Boussinesq part
400 IOobject::groupName("devRhoReff", this->alphaRhoPhi_.group()),
401 (-(this->alpha_*this->rho_*this->nuEff()))
402 *dev(twoSymm(fvc::grad(this->U_)))
403

404 // Nonlinear correction part
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405 + this->sigma_ * dev(2.*this->k_*this->bijDelta_) *
bijDeltastabilizer_ * xi_

406 );
407 }
408

409 // divDevRhoReff function
410 template <class BasicTurbulenceModel >
411 Foam::tmp<Foam::fvVectorMatrix >
412 AugmentedkOmegaSST <BasicTurbulenceModel >::divDevRhoReff
413 (
414 volVectorField& U
415 ) const
416 {
417 Info << "In: AugmentedkOmegaSST::divDevRhoReff()" << endl;
418 return
419 (
420 // Boussinesq part
421 - fvc::div((this->alpha_*this->rho_*this->nuEff())*dev2(T(fvc::grad(U

))))
422 - fvm::laplacian(this->alpha_*this->rho_*this->nuEff(), U)
423

424 // Nonlinear correction part
425 + this->sigma_ * fvc::div(dev(2.*this->k_*this->bijDelta_) *
426 bijDeltastabilizer_ * xi_)
427 );
428 }
429

430 // divDevRhoReff function (different input template)
431 template <class BasicTurbulenceModel >
432 Foam::tmp<Foam::fvVectorMatrix >
433 AugmentedkOmegaSST <BasicTurbulenceModel >::divDevRhoReff
434 (
435 const volScalarField& rho,
436 volVectorField& U
437 ) const
438 {
439 Info << "In: AugmentedkOmegaSST::divDevRhoReff()" << endl;
440 return
441 (
442 // Boussinesq part
443 - fvc::div((this->alpha_*rho*this->nuEff())*dev2(T(fvc::grad(U))))
444 - fvm::laplacian(this->alpha_*rho*this->nuEff(), U)
445

446 // Nonlinear correction part
447 + this->sigma_ * fvc::div(dev(2.*this->k_*this->bijDelta_) *
448 bijDeltastabilizer_ * xi_)
449 );
450 }
451

452 /*-----------------Constructors -----------------*/
453

454 template <class BasicTurbulenceModel >
455 AugmentedkOmegaSST <BasicTurbulenceModel >::AugmentedkOmegaSST
456 (
457 const alphaField& alpha,
458 const rhoField& rho,
459 const volVectorField& U,
460 const surfaceScalarField& alphaRhoPhi ,
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461 const surfaceScalarField& phi,
462 const transportModel& transport ,
463 const word& propertiesName ,
464 const word& type
465 )
466 :
467 eddyViscosity <RASModel<BasicTurbulenceModel >>
468 (
469 type,
470 alpha,
471 rho,
472 U,
473 alphaRhoPhi ,
474 phi,
475 transport ,
476 propertiesName
477 ),
478

479

480 /*------k-Omega SST Model Coefficients ------*/
481

482 alphaK1_
483 (
484 dimensioned <scalar >::lookupOrAddToDict
485 (
486 "alphaK1",
487 this->coeffDict_ ,
488 0.85
489 )
490 ),
491 alphaK2_
492 (
493 dimensioned <scalar >::lookupOrAddToDict
494 (
495 "alphaK2",
496 this->coeffDict_ ,
497 1.0
498 )
499 ),
500 alphaOmega1_
501 (
502 dimensioned <scalar >::lookupOrAddToDict
503 (
504 "alphaOmega1",
505 this->coeffDict_ ,
506 0.5
507 )
508 ),
509 alphaOmega2_
510 (
511 dimensioned <scalar >::lookupOrAddToDict
512 (
513 "alphaOmega2",
514 this->coeffDict_ ,
515 0.856
516 )
517 ),
518 gamma1_
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519 (
520 dimensioned <scalar >::lookupOrAddToDict
521 (
522 "gamma1",
523 this->coeffDict_ ,
524 5.0/9.0
525 )
526 ),
527 gamma2_
528 (
529 dimensioned <scalar >::lookupOrAddToDict
530 (
531 "gamma2",
532 this->coeffDict_ ,
533 0.44
534 )
535 ),
536 beta1_
537 (
538 dimensioned <scalar >::lookupOrAddToDict
539 (
540 "beta1",
541 this->coeffDict_ ,
542 0.075
543 )
544 ),
545 beta2_
546 (
547 dimensioned <scalar >::lookupOrAddToDict
548 (
549 "beta2",
550 this->coeffDict_ ,
551 0.0828
552 )
553 ),
554 betaStar_
555 (
556 dimensioned <scalar >::lookupOrAddToDict
557 (
558 "betaStar",
559 this->coeffDict_ ,
560 0.09
561 )
562 ),
563 a1_
564 (
565 dimensioned <scalar >::lookupOrAddToDict
566 (
567 "a1",
568 this->coeffDict_ ,
569 0.31
570 )
571 ),
572 b1_
573 (
574 dimensioned <scalar >::lookupOrAddToDict
575 (
576 "b1",
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577 this->coeffDict_ ,
578 1.0
579 )
580 ),
581 c1_
582 (
583 dimensioned <scalar >::lookupOrAddToDict
584 (
585 "c1",
586 this->coeffDict_ ,
587 10.0
588 )
589 ),
590 F3_
591 (
592 Switch::lookupOrAddToDict
593 (
594 "F3",
595 this->coeffDict_ ,
596 false
597 )
598 ),
599

600

601 /********************** General Flow Features *********************/
602

603 y_(
604 IOobject
605 (
606 "walldist",
607 this->runTime_.timeName(),
608 this->mesh_,
609 IOobject::NO_READ,
610 IOobject::AUTO_WRITE
611 ),
612 wallDist::New(this->mesh_).y()
613 ),
614

615

616 k_
617 (
618 IOobject
619 (
620 IOobject::groupName("k", alphaRhoPhi.group()),
621 this->runTime_.timeName(),
622 this->mesh_,
623 IOobject::MUST_READ ,
624 IOobject::AUTO_WRITE
625 ),
626 this->mesh_
627 ),
628

629 omega_
630 (
631 IOobject
632 (
633 IOobject::groupName("omega", alphaRhoPhi.group()),
634 this->runTime_.timeName(),
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635 this->mesh_,
636 IOobject::MUST_READ ,
637 IOobject::AUTO_WRITE
638 ),
639 this->mesh_
640 ),
641

642 gradU_
643 (
644 IOobject
645 (
646 "gradU",
647 this->runTime_.timeName(),
648 this->mesh_,
649 IOobject::NO_READ,
650 IOobject::AUTO_WRITE
651 ),
652 fvc::grad(this->U_)
653 ),
654

655 tauij_B_
656 (
657 IOobject
658 (
659 "tauij_B",
660 this->runTime_.timeName(),
661 this->mesh_,
662 IOobject::NO_READ,
663 IOobject::AUTO_WRITE
664 ),
665 -this->nut_ * twoSymm(fvc::grad(this->U_)) + ((2.0/3.0)*I)*this->k_
666 ),
667

668 Pk_
669 (
670 IOobject
671 (
672 "Pk",
673 this->runTime_.timeName(),
674 this->mesh_,
675 IOobject::NO_READ,
676 IOobject::AUTO_WRITE
677 ),
678 this->mesh_,
679 dimensionedScalar("Pk", dimensionSet(0,2,-3,0,0,0,0), 0.0)
680 ),
681

682

683 Pk_prop_
684 (
685 IOobject
686 (
687 "Pk_prop",
688 this->runTime_.timeName(),
689 this->mesh_,
690 IOobject::NO_READ,
691 IOobject::AUTO_WRITE
692 ),
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693 this->mesh_,
694 dimensionedScalar("Pk_prop", dimensionSet(0,2,-3,0,0,0,0), 0.0)
695 ),
696

697 Dk_
698 (
699 IOobject
700 (
701 "Dk",
702 this->runTime_.timeName(),
703 this->mesh_,
704 IOobject::NO_READ,
705 IOobject::AUTO_WRITE
706 ),
707 this->mesh_,
708 dimensionedScalar("Dk", dimensionSet(0,2,-3,0,0,0,0), 0.0)
709 ),
710

711 k_conv_
712 (
713 IOobject
714 (
715 "k_conv",
716 this->runTime_.timeName(),
717 this->mesh_,
718 IOobject::NO_READ,
719 IOobject::AUTO_WRITE
720 ),
721 this->mesh_,
722 dimensionedScalar("k_conv", dimensionSet(0,2,-3,0,0,0,0), 0.0)
723 ),
724

725 k_diff_
726 (
727 IOobject
728 (
729 "k_diff",
730 this->runTime_.timeName(),
731 this->mesh_,
732 IOobject::NO_READ,
733 IOobject::AUTO_WRITE
734 ),
735 this->mesh_,
736 dimensionedScalar("k_diff", dimensionSet(0,2,-3,0,0,0,0), 0.0)
737 ),
738

739

740 /*---------------Simulation Options---------------*/
741

742 // Boolean to decide whether to perform a baseline kOmegaSST
simualation.

743 // Deafault is false.
744

745 baseline_
746 (
747 Switch::lookupOrAddToDict
748 (
749 "baseline",
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750 this->coeffDict_ ,
751 false
752 )
753 ),
754

755 // Boolean to decide whether to use kDeifict correction or not.
756 // Default is false such that no corrections are used.
757

758 usekDeficit_
759 (
760 Switch::lookupOrAddToDict
761 (
762 "usekDeficit",
763 this->coeffDict_ ,
764 false
765 )
766 ),
767

768 // Boolean to decide whether to use bijDelta correction or not.
769 // Default is false such that no corrections are used.
770

771 usebijDelta_
772 (
773 Switch::lookupOrAddToDict
774 (
775 "usebijDelta",
776 this->coeffDict_ ,
777 false
778 )
779 ),
780

781 // Boolean to decide whether to use a classifier or not.
782 // Default is false such that no classifier is used.
783 useSigma_
784 (
785 Switch::lookupOrAddToDict
786 (
787 "useSigma",
788 this->coeffDict_ ,
789 false
790 )
791 ),
792

793 // Switches to decide whether to use a model for a correction or frozen
794 // fields in the 0 directory. If the model switch is true, a model is

used
795 // and the {var}Eq file (e.g. bijDeltaEq) should be present in the case
796 // directory with the model equation to use. If the model switch is

false,
797 // the frozen field should be present in the zero directory. Default is

to
798 // use fields for all corrections/classifier.
799

800 modelbijDelta_
801 (
802 Switch::lookupOrAddToDict
803 (
804 "modelbijDelta",
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805 this->coeffDict_ ,
806 false
807 )
808 ),
809

810 modelkDeficit_
811 (
812 Switch::lookupOrAddToDict
813 (
814 "modelkDeficit",
815 this->coeffDict_ ,
816 false
817 )
818 ),
819

820

821 modelSigma_
822 (
823 Switch::lookupOrAddToDict
824 (
825 "modelSigma",
826 this->coeffDict_ ,
827 false
828 )
829 ),
830

831

832 // Scalar by which the exact/modeled bijDelta correction is multiplied ,
833 // typically in the [0,1] range, mostly used for stabilization.
834

835 bijDeltastabilizer_
836 (
837 dimensioned <scalar >::lookupOrAddToDict
838 (
839 "bijDeltastabilizer",
840 this->coeffDict_ ,
841 1.0
842 )
843 ),
844

845 // Scalar by which the exact/modeled kDeficit correction is multiplied ,
846 // typically in the [0,1] range, mostly used for stabilization.
847

848 kDeficitstabilizer_
849 (
850 dimensioned <scalar >::lookupOrAddToDict
851 (
852 "kDeficitstabilizer",
853 this->coeffDict_ ,
854 1.0
855 )
856 ),
857

858 // Ramping gradually introduce corrections (both kDeficit and bijDelta)
859 // to aid solver stability. Before `rampStartTime ` corrections are

zero,
860 // after `rampEndTime ` they are 1.0. Linear in between.
861
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862 rampStartTime_
863 (
864 dimensioned <scalar >::lookupOrAddToDict
865 (
866 "rampStartTime",
867 this->coeffDict_ ,
868 dimTime,
869 0
870 )
871 ),
872 rampEndTime_
873 (
874 dimensioned <scalar >::lookupOrAddToDict
875 (
876 "rampEndTime",
877 this->coeffDict_ ,
878 dimTime,
879 100
880 )
881 ),
882

883 // Corrections are multiplied by xi_ to apply ramping; xi_ is 0 before
884 // rampStartTime , it linearly goes to 1 between rampStartTime and
885 // rampEndTime and it stays 1 after rampEndTime. At each iteration ,
886 // xi_ is calculated based on the specified rampStartTime and

rampEndTime.
887 xi_
888 (
889 dimensioned <scalar >::lookupOrAddToDict
890 (
891 "xi_ramp",
892 this->coeffDict_ ,
893 dimless,
894 1
895 )
896 ),
897

898 /*---Correction/Classifier Fields to be Read/Modelled ---*/
899

900 // The correction/classifier fields are initialized at a bit-specific
small

901 // value. The READ_IF_PRESENT directive is used to overwrite this value
902 // with whatever is read in from the zero directory. If model{var}_ is
903 // true, it is later checked whether the field was successfully read in

by
904 // checking whether the field still has the specific initialized value.
905 // If model{var} is false, the initialized value is overwritten by
906 // whatever is calculated based on the model equation.
907

908 kDeficit_
909 (
910 IOobject(
911 "kDeficit",
912 this->runTime_.timeName(),
913 this->mesh_,
914 IOobject::READ_IF_PRESENT ,
915 IOobject::AUTO_WRITE
916 ),
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917 this->mesh_,
918 dimensionedScalar
919 (
920 "kDeficit",
921 dimensionSet(0,2,-3,0,0,0,0),
922 1.20813608515e-37
923 )
924 ),
925

926 bijDelta_
927 (
928 IOobject
929 (
930 "bijDelta",
931 this->runTime_.timeName(),
932 this->mesh_,
933 IOobject::READ_IF_PRESENT ,
934 IOobject::AUTO_WRITE
935 ),
936 this->mesh_,
937 dimensionedSymmTensor
938 (
939 "bijDelta",
940 dimensionSet(0,0,0,0,0,0,0),
941 symmTensor(1.20813608515e-37,0,0,0,0,0)
942 )
943 ),
944

945 sigma_
946 (
947 IOobject(
948 "sigma",
949 this->runTime_.timeName(),
950 this->mesh_,
951 IOobject::READ_IF_PRESENT ,
952 IOobject::AUTO_WRITE
953 ),
954 this->mesh_,
955 dimensionedScalar
956 (
957 "sigma",
958 dimensionSet(0,0,0,0,0,0,0),
959 1.20813608515e-37
960 )
961 )
962

963 {
964 if (type == typeName)
965 {
966 this->printCoeffs(type);
967 }
968 bound(k_, this->kMin_);
969 bound(omega_, this->omegaMin_);
970

971 // Only when Propagation or Model Propagation simulations with modeled
sigma is enabled, the python interpreter is initialized.

972 if ((modelSigma_ || modelbijDelta_ || modelkDeficit_) && !baseline_){
973
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974 // Start up the Python interpreter
975 Py_Initialize();
976 PyErr();
977

978 // Add the run directory to the python path
979 PyRun_SimpleString("import sys");
980 PyErr();
981 PyRun_SimpleString("sys.path.append(\".\")");
982 PyErr();
983

984 // Initializes numpy array library, allowing the C++ code to
interact with NumPy arrays.

985 import_array1();
986 PyErr();
987

988 // Load the file python_model.py which should be in the case
directory

989 PyObject *pName = PyUnicode_DecodeFSDefault("python_model");
990 PyErr();
991 PyObject *pModule = PyImport_Import(pName);
992 PyErr();
993

994 // Load the model function inside python_model.py
995 model = PyObject_GetAttrString(pModule, "model");
996 PyErr();}
997

998 }
999

1000

1001 /*----------------Member Functions ----------------*/
1002

1003

1004 template <class BasicTurbulenceModel >
1005 bool AugmentedkOmegaSST <BasicTurbulenceModel >::read()
1006 {
1007 if (eddyViscosity <RASModel <BasicTurbulenceModel >>::read())
1008 {
1009 alphaK1_.readIfPresent(this->coeffDict());
1010 alphaK2_.readIfPresent(this->coeffDict());
1011 alphaOmega1_.readIfPresent(this->coeffDict());
1012 alphaOmega2_.readIfPresent(this->coeffDict());
1013 gamma1_.readIfPresent(this->coeffDict());
1014 gamma2_.readIfPresent(this->coeffDict());
1015 beta1_.readIfPresent(this->coeffDict());
1016 beta2_.readIfPresent(this->coeffDict());
1017 betaStar_.readIfPresent(this->coeffDict());
1018 a1_.readIfPresent(this->coeffDict());
1019 b1_.readIfPresent(this->coeffDict());
1020 c1_.readIfPresent(this->coeffDict());
1021 F3_.readIfPresent("F3", this->coeffDict());
1022

1023 return true;
1024 }
1025 else
1026 {
1027 return false;
1028 }
1029 }
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1030

1031

1032 template <class BasicTurbulenceModel >
1033 void AugmentedkOmegaSST <BasicTurbulenceModel >::correct()
1034 {
1035 if (!this->turbulence_)
1036 {
1037 return;
1038 }
1039

1040 // Local references
1041 const alphaField& alpha = this->alpha_;
1042 const rhoField& rho = this->rho_;
1043 const surfaceScalarField& alphaRhoPhi = this->alphaRhoPhi_;
1044 const volVectorField& U = this->U_;
1045 const volScalarField& nut = this->nut_;
1046 fv::options& fvOptions(fv::options::New(this->mesh_));
1047

1048 BasicTurbulenceModel::correct();
1049

1050 volScalarField::Internal divU
1051 (
1052 fvc::div(fvc::absolute(this->phi(), U))()()
1053 );
1054

1055 tmp<volTensorField > tgradU = fvc::grad(U);
1056 volScalarField S2(2*magSqr(symm(tgradU())));
1057 volScalarField GbyNu(dev(twoSymm(tgradU())) && tgradU());
1058 volScalarField::Internal G(this->GName(), nut()*GbyNu);
1059

1060 volScalarField CDkOmega
1061 (
1062 (2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_
1063 );
1064

1065 volScalarField F1(this->F1(CDkOmega));
1066 volScalarField F23(this->F23());
1067

1068 volScalarField G2_new
1069 (
1070 "G2_new",
1071 nut*GbyNu - xi_ * bijDeltastabilizer_ * sigma_ * (2*(this->k_)*

bijDelta_ && tgradU())
1072 );
1073

1074 // Reynolds stress tensor (computed under Boussinesq)
1075 tauij_B_.ref() = -this->nut_ * twoSymm(tgradU()) + ((2.0/3.0)*I)*this

->k_ + 2*this->k_* xi_*bijDeltastabilizer_ *sigma_*bijDelta_;
1076

1077 // Production term for k equation (bijDelta correction)
1078 Pk_.ref() = alpha()*rho()*this->Pk(G2_new) -(2.0/3.0)*alpha()*rho()*divU

*k_();
1079

1080 // Production term for k equation (kdeficit corection)
1081 Pk_prop_.ref()= alpha()*rho()*sigma_*kDeficit_()*(xi_ *

kDeficitstabilizer_);
1082

1083 // Destruction term of k equation
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1084 Dk_.ref() = (alpha()*rho()*this->epsilonByk(F1, F23)*k_())/rho();
1085

1086 // Convection term of k equation
1087 k_conv_.ref() = (fvc::div(alphaRhoPhi , k_)()())/rho();
1088

1089 // Diffusion term of k equation
1090 k_diff_.ref() = (fvc::laplacian(alpha*rho*this->DkEff(F1), k_)()())/rho

();
1091

1092

1093 // Turning corrections off if baseline model is used, by setting all
correction fields to 0.

1094 if (baseline_){
1095

1096 Info << " Running kOmegaSST Baseline Simulation! " << endl;
1097

1098 forAll(sigma_.internalField(), id)
1099 {
1100 sigma_[id] = 0.0;
1101 }
1102

1103 forAll(bijDelta_.internalField(), id)
1104 {
1105 bijDelta_[id][0] = 0.0;
1106 bijDelta_[id][1] = 0.0;
1107 bijDelta_[id][2] = 0.0;
1108 bijDelta_[id][3] = 0.0;
1109 bijDelta_[id][4] = 0.0;
1110 bijDelta_[id][5] = 0.0;
1111 }
1112

1113 forAll(kDeficit_.internalField(), id)
1114 {
1115 kDeficit_[id] = 0.0;
1116 }
1117

1118 } else {
1119

1120 // Computing correction factor from rampTime option.
1121 const dimensionedScalar time = this->runTime_;
1122 xi_ = (time < rampStartTime_)? 0.0:
1123 (time > rampEndTime_)? 1.0:
1124 (time - rampStartTime_) / (rampEndTime_ - rampStartTime_);
1125 Info << "Corrections: xi = " << xi_.value() <<
1126 ", kDeficit factor = " << (xi_*kDeficitstabilizer_).value() <<
1127 ", bijDelta factor = " << (xi_*bijDeltastabilizer_).value() <<

endl;
1128

1129 // Setting up fields for propagation simulations.
1130 if (!modelkDeficit_ && !modelbijDelta_){
1131

1132 Info << "Running Propagation Simulation: " << endl;
1133

1134 if (usekDeficit_){
1135

1136 if (kDeficit_[0] == 1.20813608515e-37){
1137
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1138 FatalError << "modelkDeficit set to false, but no
kDeficit file found in 0 folder."

1139 << nl << exit(FatalError);
1140

1141 } else {
1142

1143 Info << "kDeficit corrections are being read from file.
" << endl;

1144 }
1145

1146 } else {
1147

1148 Info << "kDeifict corrections are not being used. " << endl
;

1149

1150 forAll(kDeficit_.internalField(), id){
1151

1152 kDeficit_[id] = 0.0;
1153

1154 }
1155 }
1156

1157 if (usebijDelta_){
1158

1159 if (bijDelta_[0][0] == 1.20813608515e-37){
1160

1161 FatalError << "modelbijDelta set to false, but no
bijDelta file found in the 0 folder."

1162 << nl << exit(FatalError);
1163

1164 } else {
1165

1166 Info << "bijDelta corrections are being read from file.
" << endl;

1167 }
1168

1169 } else {
1170

1171 Info << "bijDelta corrections are not being used. " << endl
;

1172

1173 forAll(bijDelta_.internalField(), id){
1174

1175 bijDelta_[id][0] = 0.0;
1176 bijDelta_[id][1] = 0.0;
1177 bijDelta_[id][2] = 0.0;
1178 bijDelta_[id][3] = 0.0;
1179 bijDelta_[id][4] = 0.0;
1180 bijDelta_[id][5] = 0.0;
1181 }
1182

1183 }
1184

1185 if (useSigma_){
1186

1187 if (modelSigma_){
1188
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1189 Info << "Sigma Classifier is being updated dynamically.
" << endl;

1190

1191 // Set num_cells equal to the number of cells in the
mesh

1192 num_cells = this->mesh_.cells().size();
1193

1194 // Build dictionary to pass field-data to Python
1195 fieldDict = PyDict_New();
1196 PyErr();
1197

1198 // Update dictionary with field data.
1199 update_fieldDict();
1200

1201 // Call the user-defined Python function - giving
fields and arguments ,

1202 // which should return model corrections.
1203 PyObject* pReturn = PyObject_CallObject(model,

PyTuple_Pack(1, fieldDict));
1204 PyErr();
1205

1206 // Extract the sigma result from the python model
return object.

1207 PyArrayObject* sigma_return = (PyArrayObject *)
PyDict_GetItemString(pReturn, "sigma");

1208 PyErr();
1209

1210 // Check if the sigma result is actually returned by
python and is not NULL

1211 if(sigma_return == NULL) FatalError << "'sigma' not in
return value of python model()"<< exit(FatalError);

1212

1213 // Check if the returned array has the expected
dimensions.

1214 if (PyArray_DIM(sigma_return , 0) != num_cells)
1215 FatalError << "Dimension of python model sigma

corrections are wrong != " << num_cells << exit(
FatalError);

1216

1217 // Extract sigma return values from python model return
object.

1218 forAll(sigma_.internalField(), id){
1219

1220 sigma_[id] = *((double*)PyArray_GETPTR2(
sigma_return , id,0));

1221 PyErr();
1222 }
1223

1224 // Delete references to created objects to free up
memory.

1225 Py_XDECREF(fieldDict);
1226 PyErr();
1227 Py_DECREF(pReturn);
1228 PyErr();
1229

1230 } else if (sigma_[0] == 1.20813608515e-37){
1231
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1232 FatalError << "modelSigma set to false, but no sigma
file found in the 0 folder."

1233 << nl << exit(FatalError);
1234

1235 } else {
1236

1237 Info << "Sigma classifier is being read from file." <<
endl;

1238 }
1239 } else {
1240

1241 Info << "Sigma classifier is not being used. " << endl;
1242

1243 forAll(sigma_.internalField(), id){
1244

1245 sigma_[id] = 1.;
1246 }
1247 }
1248

1249 } else {
1250

1251 Info << "Running Model Propagation Simulation: " << endl;
1252

1253 // Set num_cells equal to the number of cells in the mesh.
1254 num_cells = this->mesh_.cells().size();
1255

1256 // Build dictionary to pass field-data to Python.
1257 fieldDict = PyDict_New();
1258 PyErr();
1259

1260 // Update dictionary with field data.
1261 update_fieldDict();
1262

1263 // Call the user-defined Python function - giving fields and
arguments ,

1264 // which should return model corrections.
1265 PyObject* pReturn = PyObject_CallObject(model, PyTuple_Pack(1,

fieldDict));
1266 PyErr();
1267

1268 if (usekDeficit_) {
1269

1270 if (modelkDeficit_){
1271

1272 Info << "kDeficit corrrections ar being modeled from
kDeficitEq. " << endl;

1273

1274 // Extract the kDeificit result from the python model
return object.

1275 PyArrayObject* kDeficit_return = (PyArrayObject *)
PyDict_GetItemString(pReturn, "kDeficit");

1276 PyErr();
1277

1278 // Check if the kDeificit result is actually returned
by python and is not NULL.

1279 if(kDeficit_return == NULL) FatalError << "'kDeficit'
not in return value of python model()"<< exit(
FatalError);
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1280

1281 // Check if the returned array has the expected
dimensions.

1282 if (PyArray_DIM(kDeficit_return , 0) != num_cells)
1283 FatalError << "Dimension of python model kDeifict

corrections are wrong != " << num_cells << exit(
FatalError);

1284

1285 forAll(kDeficit_.internalField(), id){
1286

1287 // Extract kdeficit return values from python model
return object.

1288 kDeficit_[id] = *((double*)PyArray_GETPTR2(
kDeficit_return , id, 0));

1289 PyErr();
1290

1291 }
1292

1293 } else if (kDeficit_[0] == 1.20813608515e-37) {
1294

1295 FatalError << "modelkDeficit set to false, but no
kDeficit file found in 0 folder."

1296 << nl << exit(FatalError);
1297

1298 } else {
1299

1300 Info << "kDeficit corrections are being read from file.
" << endl;

1301 }
1302

1303 } else {
1304

1305 Info << "kDeficit corrections are not being used." << endl;
1306

1307 forAll(kDeficit_.internalField(), id){
1308

1309 kDeficit_[id] = 0.0;
1310 }
1311 }
1312

1313 if (usebijDelta_) {
1314

1315 if (modelbijDelta_){
1316

1317 Info << "bijDelta corrections are being modeled from
bijDeltaEq. " << endl;

1318

1319 // Extract the bijDelta result from the python model
return object.

1320 PyArrayObject* bijDelta_return = (PyArrayObject *)
PyDict_GetItemString(pReturn, "bijDelta");

1321 PyErr();
1322

1323 // Check if the bijDelta result is actually returned by
python and is not NULL.

1324 if(bijDelta_return == NULL) FatalError << "'bijDelta'
not in return value of python model()"<< exit(
FatalError);
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1325

1326 // Check if the returned array has the expected
dimensions.

1327 if (PyArray_DIM(bijDelta_return , 0) != num_cells)
1328 FatalError << "Dimension of python model bijDelta

corrections are wrong != " << num_cells << exit(
FatalError);

1329

1330 // Extract bijDelta return values from python model
return object.

1331 forAll(bijDelta_.internalField(), id){
1332

1333 bijDelta_[id][0] = *((double*)PyArray_GETPTR2(
bijDelta_return , id, 0));

1334 bijDelta_[id][1] = *((double*)PyArray_GETPTR2(
bijDelta_return , id, 1));

1335 bijDelta_[id][2] = *((double*)PyArray_GETPTR2(
bijDelta_return , id, 2));

1336 bijDelta_[id][3] = *((double*)PyArray_GETPTR2(
bijDelta_return , id, 3));

1337 bijDelta_[id][4] = *((double*)PyArray_GETPTR2(
bijDelta_return , id, 4));

1338 bijDelta_[id][5] = *((double*)PyArray_GETPTR2(
bijDelta_return , id, 5));

1339 PyErr();
1340

1341 }
1342

1343 } else if (bijDelta_[0][0] == 1.20813608515e-37){
1344

1345 FatalError << "modelbijDelta set to false, but no
bijDelta file found in the 0 folder."

1346 << nl << exit(FatalError);
1347

1348 } else {
1349

1350 Info << "bijDelta corrections are being read from file.
" << endl;

1351 }
1352

1353 } else {
1354

1355 Info << "bijDelta corrections are not being used." << endl;
1356

1357 forAll(bijDelta_.internalField(), id){
1358

1359 bijDelta_[id][0] = 0.;
1360 bijDelta_[id][1] = 0.;
1361 bijDelta_[id][2] = 0.;
1362 bijDelta_[id][3] = 0.;
1363 bijDelta_[id][4] = 0.;
1364 bijDelta_[id][5] = 0.;
1365 }
1366 }
1367

1368 if (useSigma_){
1369

1370 if (modelSigma_){
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1371

1372 Info << "Sigma classifier is being dynamically updated.
" << endl;

1373

1374 // Extract the sigma result from the python model
return object.

1375 PyArrayObject* sigma_return = (PyArrayObject *)
PyDict_GetItemString(pReturn, "sigma");

1376 PyErr();
1377

1378 // Check if the sigma result is actually returned by
python and is not NULL.

1379 if(sigma_return == NULL) FatalError << "'sigma' not in
return value of python model()"<< exit(FatalError);

1380

1381 // Check if the returned array has the expected
dimensions.

1382 if (PyArray_DIM(sigma_return , 0) != num_cells)
1383 FatalError << "Dimension of python model sigma

corrections are wrong != " << num_cells << exit(
FatalError);

1384

1385 // Extract sigma return values from python model return
object.

1386 forAll(sigma_.internalField(), id){
1387

1388 sigma_[id] = *((double*)PyArray_GETPTR2(
sigma_return , id,0));

1389 PyErr();
1390 }
1391

1392 } else if (sigma_[0] == 1.20813608515e-37){
1393

1394 FatalError << "modelSigma set to false, but no sigma
file found in the 0 folder!"

1395 << nl << exit(FatalError);
1396

1397 } else {
1398

1399 Info << "Sigma classifier is being read from file. " <<
endl;

1400 }
1401 } else {
1402

1403 Info << "Sigma classifier is not being used! " << endl;
1404

1405 forAll(sigma_.internalField(), id){
1406

1407 sigma_[id] = 1.;
1408 }
1409 }
1410

1411 // Delete references to created objects to free up memory.
1412 Py_XDECREF(fieldDict);
1413 PyErr();
1414 Py_DECREF(pReturn);
1415 PyErr();
1416
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1417 }
1418 }
1419

1420

1421 volScalarField G2
1422 (
1423 "G2",
1424 nut*GbyNu - xi_ * bijDeltastabilizer_ * sigma_ * (2*(this->k_)*

bijDelta_ && tgradU())
1425 );
1426

1427

1428 tgradU.clear();
1429

1430

1431 /*--------------------Omega Equation --------------------*/
1432

1433 {
1434 volScalarField::Internal gamma(this->gamma(F1));
1435 volScalarField::Internal beta(this->beta(F1));
1436

1437 tmp<fvScalarMatrix > omegaEqn
1438 (
1439 fvm::ddt(alpha, rho, omega_)
1440 + fvm::div(alphaRhoPhi , omega_)
1441 - fvm::laplacian(alpha*rho*this->DomegaEff(F1), omega_)
1442 ==
1443 alpha()*rho()*gamma
1444 *min
1445 (
1446 // Production modified due to bijDelta correction.
1447 G2 / nut(),
1448 (this->c1_/this->a1_)*this->betaStar_*omega_()
1449 *max(this->a1_*omega_(), this->b1_*F23()*sqrt(S2()))
1450 )
1451 // Residual term due to the kDeficit correction.
1452 + alpha()*rho()*gamma*sigma_*kDeficit_/nut()*(xi_ *

kDeficitstabilizer_)
1453 - fvm::SuSp((2.0/3.0)*alpha()*rho()*gamma*divU, omega_)
1454 - fvm::Sp(alpha()*rho()*beta*omega_(), omega_)
1455 - fvm::SuSp
1456 (
1457 alpha()*rho()*(F1() - scalar(1))*CDkOmega()/omega_(),
1458 omega_
1459 )
1460 + this->Qsas(S2(), gamma, beta)
1461 + this->omegaSource()
1462 + fvOptions(alpha, rho, omega_)
1463 );
1464

1465 // Update omega and G at the wall
1466 omega_.boundaryFieldRef().updateCoeffs();
1467 omegaEqn.ref().relax();
1468 fvOptions.constrain(omegaEqn.ref());
1469 omegaEqn.ref().boundaryManipulate(omega_.boundaryFieldRef());
1470 solve(omegaEqn);
1471 fvOptions.correct(omega_);
1472 bound(omega_, this->omegaMin_);
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1473 }
1474

1475 /*-----------------------k Equation -----------------------*/
1476

1477 tmp<fvScalarMatrix > kEqn
1478 (
1479 fvm::ddt(alpha, rho, k_)
1480 + fvm::div(alphaRhoPhi , k_)
1481 - fvm::laplacian(alpha*rho*this->DkEff(F1), k_)
1482 ==
1483 // Production modified due to bijDelta correction.
1484 alpha()*rho()*this->Pk(G2)
1485 // Residual term due to the kDeficit correction.
1486 + alpha()*rho()*sigma_*kDeficit_()*(xi_ * kDeficitstabilizer_)
1487 - fvm::SuSp((2.0/3.0)*alpha()*rho()*divU, k_)
1488 - fvm::Sp(alpha()*rho()*this->epsilonByk(F1, F23), k_)
1489 + this->kSource()
1490 + fvOptions(alpha, rho, k_)
1491 );
1492

1493 kEqn.ref().relax();
1494 fvOptions.constrain(kEqn.ref());
1495 solve(kEqn);
1496 fvOptions.correct(k_);
1497 bound(k_, this->kMin_);
1498

1499 this->correctNut(S2, F23);
1500

1501

1502 }
1503

1504 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
1505

1506 } // End namespace RASModels
1507 } // End namespace Foam
1508

1509 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.1: AugmentedkOmegaSST.C source code

1

2 /*-------------------------------------------------------------------------
3 ========= |
4 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
5 \\ / O peration | Website: https://openfoam.org
6 \\ / A nd | Copyright (C) 2016-2018 OpenFOAM Foundation
7 \\/ M anipulation |
8 -------------------------------------------------------------------------*/
9

10 /*-------------------------------------------------------------------------
11 License
12 This file is part of OpenFOAM.
13

14 OpenFOAM is free software: you can redistribute it and/or modify it
15 under the terms of the GNU General Public License as published by
16 the Free Software Foundation , either version 3 of the License, or
17 (at your option) any later version.
18

19 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
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20 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 for more details.
23

24 You should have received a copy of the GNU General Public License
25 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26

27 SourceFiles
28 AugmentedkOmegaSST.C
29

30 -------------------------------------------------------------------------*/
31

32 #ifndef AugmentedkOmegaSST_H
33 #define AugmentedkOmegaSST_H
34

35 #include "RASModel.H"
36 #include "eddyViscosity.H"
37

38 #include "eddyViscosity.H"
39

40 // The following is for Python interoperability.
41 #include <Python.h>
42 #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
43 #include <numpy/arrayobject.h>
44

45 /*-----------------------------------------------------------------------*/
46

47 namespace Foam
48 {
49 namespace RASModels
50 {
51

52 template <class BasicTurbulenceModel >
53 class AugmentedkOmegaSST
54 :
55 public eddyViscosity <RASModel<BasicTurbulenceModel >>
56 {
57 protected:
58

59 // Model coefficients:
60 dimensionedScalar alphaK1_;
61 dimensionedScalar alphaK2_;
62 dimensionedScalar alphaOmega1_;
63 dimensionedScalar alphaOmega2_;
64 dimensionedScalar gamma1_;
65 dimensionedScalar gamma2_;
66 dimensionedScalar beta1_;
67 dimensionedScalar beta2_;
68 dimensionedScalar betaStar_;
69 dimensionedScalar a1_;
70 dimensionedScalar b1_;
71 dimensionedScalar c1_;
72 Switch F3_;
73

74 // Outputting fields of interest:
75 volScalarField y_;
76 volScalarField k_;
77 volScalarField omega_;
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78 volTensorField gradU_;
79 volSymmTensorField tauij_B_;
80 volSymmTensorField tauij_no_bij;
81

82 // k Equation Terms:
83 volScalarField Pk_;
84 volScalarField Pk_prop_;
85 volScalarField Dk_;
86 volScalarField k_conv_;
87 volScalarField k_diff_;
88

89 // Simulation options:
90 Switch baseline_;
91 Switch usekDeficit_;
92 Switch usebijDelta_;
93 Switch useSigma_;
94 Switch modelbijDelta_;
95 Switch modelkDeficit_;
96 Switch modelSigma_;
97

98 // Custom model variables:
99

100 // Scalars
101 dimensionedScalar bijDeltastabilizer_;
102 dimensionedScalar kDeficitstabilizer_;
103 dimensionedScalar rampStartTime_;
104 dimensionedScalar rampEndTime_;
105 dimensionedScalar xi_;
106

107 // Modeled Fields
108 volScalarField kDeficit_;
109 volSymmTensorField bijDelta_;
110 volScalarField sigma_;
111

112 // Python interaction variables
113 PyObject *pName; // name of python file
114 PyObject *pModule; // name of module inside python file
115 PyObject *model; // Model function
116 PyObject *fieldDict; // Dict-of-arrays contain field data
117

118

119 // Define number of mesh cells variable (set in constructor).
120 int num_cells;
121

122

123 // Protected Member Functions
124

125

126 // Setup field pointers
127 void update_fieldDict();
128

129 virtual tmp<volScalarField > F1(const volScalarField& CDkOmega)
const;

130 virtual tmp<volScalarField > F2() const;
131 virtual tmp<volScalarField > F3() const;
132 virtual tmp<volScalarField > F23() const;
133

134 // Boundary cells included
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135 tmp<volScalarField > blend
136 (
137 const volScalarField& F1,
138 const dimensionedScalar& psi1,
139 const dimensionedScalar& psi2
140 ) const
141 {
142 return F1*(psi1 - psi2) + psi2;
143 }
144

145 // Only internal mesh cells
146 tmp<volScalarField::Internal> blend
147 (
148 const volScalarField::Internal& F1,
149 const dimensionedScalar& psi1,
150 const dimensionedScalar& psi2
151 ) const
152 {
153 return F1*(psi1 - psi2) + psi2;
154 }
155

156 tmp<volScalarField > alphaK(const volScalarField& F1) const
157 {
158 return blend(F1, alphaK1_ , alphaK2_);
159 }
160

161 tmp<volScalarField > alphaOmega(const volScalarField& F1) const
162 {
163 return blend(F1, alphaOmega1_ , alphaOmega2_);
164 }
165

166 tmp<volScalarField::Internal> beta
167 (
168 const volScalarField::Internal& F1
169 ) const
170 {
171 return blend(F1, beta1_, beta2_);
172 }
173

174 tmp<volScalarField::Internal> gamma
175 (
176 const volScalarField::Internal& F1
177 ) const
178 {
179 return blend(F1, gamma1_, gamma2_);
180 }
181

182 virtual void correctNut
183 (
184 const volScalarField& S2,
185 const volScalarField& F2
186 );
187

188 virtual void correctNut();
189

190 //- Return k production rate
191 virtual tmp<volScalarField::Internal> Pk
192 (
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193 const volScalarField::Internal& G
194 ) const;
195

196 //- Return epsilon/k which for standard RAS is betaStar*omega
197 virtual tmp<volScalarField::Internal> epsilonByk
198 (
199 const volScalarField::Internal& F1,
200 const volScalarField::Internal& F2
201 ) const;
202

203 virtual tmp<fvScalarMatrix > kSource() const;
204

205 virtual tmp<fvScalarMatrix > omegaSource() const;
206

207

208 virtual tmp<fvScalarMatrix > Qsas
209 (
210 const volScalarField::Internal& S2,
211 const volScalarField::Internal& gamma,
212 const volScalarField::Internal& beta
213 ) const;
214

215

216 public:
217

218 typedef typename BasicTurbulenceModel::alphaField alphaField;
219 typedef typename BasicTurbulenceModel::rhoField rhoField;
220 typedef typename BasicTurbulenceModel::transportModel transportModel;
221

222 //- Runtime type information
223 TypeName("AugmentedkOmegaSST");
224

225 // Constructors
226

227 //- Construct from components
228 AugmentedkOmegaSST
229 (
230 const alphaField& alpha,
231 const rhoField& rho,
232 const volVectorField& U,
233 const surfaceScalarField& alphaRhoPhi ,
234 const surfaceScalarField& phi,
235 const transportModel& transport ,
236 const word& propertiesName = turbulenceModel::propertiesName ,
237 const word& type = typeName
238 );
239

240 //- Disallow default bitwise copy construction
241 AugmentedkOmegaSST(const AugmentedkOmegaSST&) = delete;
242

243

244 //- Destructor
245 virtual ~AugmentedkOmegaSST()
246 {}
247

248

249 // Member Functions
250
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251 //- Re-read model coefficients if they have changed
252 virtual bool read();
253

254 //- Return the effective diffusivity for k
255 tmp<volScalarField > DkEff(const volScalarField& F1) const
256 {
257 return volScalarField::New
258 (
259 "DkEff",
260 alphaK(F1)*this->nut_ + this->nu()
261 );
262 }
263

264 //- Return the effective diffusivity for omega
265 tmp<volScalarField > DomegaEff(const volScalarField& F1) const
266 {
267 return volScalarField::New
268 (
269 "DomegaEff",
270 alphaOmega(F1)*this->nut_ + this->nu()
271 );
272 }
273

274 //- Return the turbulence kinetic energy
275 virtual tmp<volScalarField > k() const
276 {
277 return k_;
278 }
279

280 //- Return the turbulence kinetic energy dissipation rate
281 virtual tmp<volScalarField > epsilon() const
282 {
283 return volScalarField::New
284 (
285 "epsilon",
286 betaStar_*k_*omega_,
287 omega_.boundaryField().types()
288 );
289 }
290

291 //- Return the turbulence kinetic energy dissipation rate
292 virtual tmp<volScalarField > omega() const
293 {
294 return omega_;
295 }
296

297 //- Solve the turbulence equations and correct the turbulence
viscosity

298 virtual void correct();
299

300

301 // Member Operators
302

303 //- Disallow default bitwise assignment
304 void operator=(const AugmentedkOmegaSST&) = delete;
305

306 //Probably not used, but left in just in case -Kaj
307 tmp<Foam::fvVectorMatrix > divDevReff(volVectorField& U) const;
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308

309 //- Return the modified effective stress tensor
310 virtual tmp<volSymmTensorField > devRhoReff() const;
311

312 //- Return the modified source term for the momentum equation
313 virtual tmp<fvVectorMatrix > divDevRhoReff(volVectorField& U) const;
314

315 //- Return the modified source term for the momentum equation
316 virtual tmp<fvVectorMatrix > divDevRhoReff
317 (
318 const volScalarField& rho,
319 volVectorField& U
320 ) const;
321

322 };
323

324 /*-----------------------------------------------------------------------*/
325

326 } // End namespace RASModels
327 } // End namespace Foam
328

329 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
330 #ifdef NoRepository
331 #include "AugmentedkOmegaSST.C"
332 #endif
333

334 #endif
335

336 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.2: AugmentedkOmegaSST.H source code

1

2 """
3

4 Template for the Python file used by AugumentedkOmegaSST.
5

6 This file should be in the main case directory. With the current setup,
7 this file looks for two other files: kDeficitEq and bijDeltaEq , defining
8 the equation for kDeficit , bijDelta. The equation files for kDeficit and
9 bijDelta only need to be present if modelkDeficit and modelbijDelta
10 are set to true.
11

12 If modelSigma is set to true, sigma will be modeled based on the
13 Pk_Dk_ratio and turbulence intensity.
14

15 Author: Monica Lacatus
16 Adapated from: Kaj Hoefnagel
17

18 """
19

20 # ************************ Importing Libraries ************************ #
21

22 import numpy as np
23 import os
24 from sparta.readOFInternalField import readOFInternalField
25 from sparta.features import FlowFeatures
26 from sparta.util import rdiv, rlog, sqrt_abs
27 import contextlib
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28 import warnings
29 import gc
30 import copy
31

32 # ****************** Reading Model Equation Files ********************* #
33

34 """
35 Read the contents of the kDeficitEq , bijDeltaEq and sigmaEq files,
36 removing enters. If the file is not present, the content
37 variable (kDeficitEq/bijDeltaEq/sigmaEq) is set to False and the user
38 receives a warning.
39

40 """
41

42 if os.path.isfile('./kDeficitEq'):
43 with open('./kDeficitEq') as fkDeficit:
44 kDeficitEq = fkDeficit.read().replace('\n','')
45

46 if os.path.isfile('./bijDeltaEq'):
47 with open('./bijDeltaEq') as fbijDelta:
48 bijDeltaEq = fbijDelta.read().replace('\n','')
49

50 if os.path.isfile('./sigmaEq'):
51 with open('./sigmaEq') as fSigma:
52 sigmaEq = fSigma.read().replace('\n','')
53

54

55 # ****************** Creating Function Dictionary ********************* #
56

57 #Dictionary of functions which may appear in the equation strings
58 funcDict = {'exp' : np.exp, 'abs' : np.abs, 'tanh' : np.tanh,
59 'sqrt' : np.sqrt, 'np' : np,
60 'rdiv' : rdiv, 'rlog' : rlog, 'sqrt_abs' : sqrt_abs}
61

62

63 # ****** Defining model Function Called by AugumentedkOmegaSST ********* #
64

65 def model(inputDict):
66

67

68 # Make a deep copy of inputDict to use for further calculation.
69 # This ensures that the contents of inputDict do not get affected
70 # during the creating and usage of the lazy dict featureDcit.
71

72 inputDict = copy.deepcopy(inputDict)
73

74 # Get the number of grid cells
75 NCells = inputDict['k'].shape[0]
76

77 # Setup a FlowFeatures object from inputDict , this does not have the
features

78 # set up yet.
79 flow = FlowFeatures.from_inputarray(inputDict)
80

81 # Set up the features for the FlowFeatures object. If the program is
not run

82 # directly (but presumably by OpenFOAM), suppress the print output for
better
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83 # performance.Use mean flow time scale to non-dimensionalize.
84 if __name__ != "__main__":
85 with contextlib.redirect_stdout(None):
86 flow.setup_features(meanFlowTimeScale=False)
87 else:
88 flow.setup_features(meanFlowTimeScale=False)
89

90 # Extract the lazy feature dictionary from the FlowFeatures object.
91 featureDict = flow.vv
92

93 # Add "const" to the featureDict as a variable; this was used in some
old

94 # equations , it is simply 1 everywhere.
95 featureDict['const'] = lambda : np.ones(NCells)
96

97 # Computation of bijDelta
98 if not os.path.isfile('./bijDeltaEq'):
99 featureDict['bijDelta'] = np.ones((6, NCells))
100 else:
101

102 featureDict['bijDelta'] = eval(bijDeltaEq , funcDict , featureDict)
103

104 # Computation of kDeficit
105 if not os.path.isfile('./kDeficitEq'):
106 featureDict['kDeficit'] = np.ones(NCells)
107 else:
108 featureDict['kDeficit'] = eval(kDeficitEq , funcDict , featureDict)
109

110 # Computation of sigma
111 Pk = featureDict['Pk']
112 Pk_prop = featureDict['Pk_prop']
113 Dk = featureDict['Dk']
114 U = featureDict['U']
115 k = featureDict['k']
116

117 magSqrU = np.sum(U**2, axis=1)
118 turb_intensity = k/(0.5*magSqrU+k);
119 Pk_Dk_ratio = np.zeros(NCells)
120

121 for i in range(NCells):
122 if Pk_prop[i] >= 0:
123 Pk_Dk_ratio[i] = np.abs(Dk[i])/(np.abs(Dk[i]) + np.abs(Pk[i]) +

np.abs(Pk_prop[i]))
124 else:
125 Pk_Dk_ratio[i] = (np.abs(Dk[i])+np.abs(Pk_prop[i]))/(np.abs(Dk[

i]) + np.abs(Pk[i]) +np.abs(Pk_prop[i]))
126

127 featureDict['sigma'] = np.zeros(NCells)
128 for i in range(NCells):
129 if Pk_Dk_ratio[i]<=0.55 and turb_intensity[i]>=0.12:
130 featureDict['sigma'][i] = 1
131

132 #Create the return dict with kDeficit , bijDelta and sigma
133 ReturnDict = {'kDeficit': featureDict['kDeficit'].reshape((-1,1)),
134 'bijDelta': featureDict['bijDelta'].T,
135 'sigma': featureDict['sigma'].reshape((-1,1))}
136

137
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138 #Cleanup to prevent memory leak
139 del inputDict , flow, featureDict , NCells, Pk, Dk, U, k, Pk_prop,

Pk_Dk_ratio , magSqrU, turb_intensity
140

141 gc.collect()
142

143 return ReturnDict

Listing C.3: python_model.py source code
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