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Abstract There are plenty of conflicting messages
in online social networks. This paper addresses the
competition of two conflicting messages. Based on a
novel individual-level competing spreading model (the
generic UABU model), three criteria for one or two
messages to terminate are presented. These criteria
manifest the influence of the two message-spreading
networks on the evolution of the two messages. Exten-
sive computer simulations show that when a message
terminates, the dynamics of a simplified UABU model
(the linear UABU model) fits well with the expected
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evolutionary process of the message. These findings
help in understanding the competing spreading process
of two conflicting messages.
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1 Introduction

The rapidly popularized online social networks (OSNs)
provide a global environment for us to spread and
acquire information quickly [1,2]. However, there are
lots of untrue messages in OSNs, and some of them
could induce huge economic losses or serious social
panic [3,4]. For example, Syrian hackers once broke
into the Twitter account of Associated Press (AP) and
dispersed the misinformation that explosions at White
House had injured Obama, leading to 10 billion USD
losses before the rumor was clarified [5]. Therefore,
falsemessageswith serious consequencesmust be clar-
ified timely. In such scenarios, there are often two con-
flicting messages: the fake message and the message
clarifying it. In order to assess the effectiveness of the
effort to suppress misinformation, one must first gain
insight into the competing spreading behavior of two
conflicting messages [6].

The spreading dynamics is devoted to modeling and
studying a variety of spreading phenomena by employ-
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ing the qualitative analysis methodology of differen-
tial dynamical systems. In many network-related sce-
narios, there often occur competing spreading phe-
nomena, such as competing viruses [7–10], compet-
ing ideas [11–13], conflicting messages [14–20], epi-
demics and alerts [21,22], malware and patches [23–
28] and cyber attacks and defenses [29], to name a few.
The competing spreading dynamics, which is a branch
of the spreading dynamics, is committed to modeling
and studying a variety of competing spreading phe-
nomena. As another branch of the spreading dynam-
ics, the individual-level spreading dynamics casts the
evolutionary process of the state of each individual
involved in a spreading phenomenon as a separate dif-
ferential equation, resulting in a higher-dimensional
differential dynamical system. One striking advantage
of the individual-level spreadingmodels lies in that they
accommodate the structure of the spreading networks
and hence help in understanding the influence of the
network structures on the spreadingprocesses. In recent
years, the individual-level spreading modeling tech-
nique has been successfully applied to virus spreading
[30–33], malware spreading [34–39] and cyber attack-
defense [40,41]. To the best of our knowledge, the com-
peting spreading dynamics of conflicting messages has
not yet been explored from the individual-level per-
spective.

Inspired by the above-mentioned efforts and the
works in Refs. [42–45], this paper addresses the com-
petition of two conflicting messages. An individual-
level competing spreading model (the generic UABU
model) is introduced. Then, three criteria for one or
two messages to terminate are presented. These crite-
riamanifest the influence of the twomessage-spreading
networks on the evolutionary process of the two mes-
sages. Extensive computer simulations show that when
a message terminates, the dynamics of a simplified
UABU model (the linear UABU model) fits well with
the expected evolutionary process of the message.
These findings contribute to the understanding of the
competing spreading process of two conflicting mes-
sages.

The subsequent materials are organized in this fash-
ion. Sections 2 and 3 describe and study the generic
UABU model, respectively. Section 4 experimentally
examines the validity of the linear UABU model. This
work is summarized by Sect. 5.

2 A generic individual-level competing spreading
model

This section is dedicated to establishing a generic
individual-level continuous-time dynamic model cap-
turing the competing spreading process of two conflict-
ing messages.

2.1 Notions, notations and hypotheses

Suppose there are two conflicting messages, A and
B, that emerge at time t = 0 and spread among
a population of N persons labeled 1, 2, . . . , N . Let
V = {1, 2, . . . , N }. Suppose message A propagates
through an OSN GA = (V, EA) known as the A-
spreading network, where (i, j) ∈ EA if and only if
person j can deliver message A directly to person i .
Likewise, suppose message B is circulated through an
OSN GB = (V, EB) known as the B-spreading net-
work. In what follows, it is always assumed that the
two networks are strongly connected.

Depending on personal judgment, every personmay
either believemessageA (A-believing), or believemes-
sage B (B-believing), or be uncertain. Let Xi (t) = 0, 1
and 2 denote that at time t , person i is uncertain, A-
believing and B-believing, respectively. Then, the state
of the population at time t is represented by the vector

X(t) = (X1(t), X2(t), . . . , XN (t))T . (1)

Next, let us introduce a set of hypotheses as follows.

(H1) Due to the influence of A-believer j , at any
time uncertain person i turns to believe mes-
sage A at rate βU A

i j ≥ 0. Here, βU A
i j > 0 if

and only if (i, j) ∈ EA. βU A
i j is proportional

to (a) the rate at which person j delivers mes-
sage A to person i , and (b) the probability of
person i believing message A when receiving it.

Let MU A =
(
βU A
i j

)
N×N

. This hypothesis cap-

tures the influence of the spread of message A
on uncertain persons.

(H2) Due to the influence of A-believer j , at any time
B-believer i turns to believe message A at rate
βBA
i j ≥ 0. Here, βBA

i j > 0 if and only if (i, j) ∈
EA. βBA

i j is proportional to (a) the rate at which
person j delivers message A to person i , and (b)
the probability of person i believing message A
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when receiving it. LetMBA =
(
βBA
i j

)
N×N

. This

hypothesis captures the influence of the spread
of message A on B-believers. Certainly, we have
βBA
i j ≤ βU A

i j .
(H3) Due to the influence of B-believer j , at any

time uncertain person i turns to believe mes-
sage B at rate βUB

i j ≥ 0, Here, βUB
i j > 0 if

and only if (i, j) ∈ EB . βUB
i j is proportional

to (a) the rate at which person j delivers mes-
sage B to person i and (b) the probability of
person i believing message B when receiving it.

Let MUB =
(
βUB
i j

)
N×N

. This hypothesis cap-

tures the influence of the spread of message B on
uncertain persons.

(H4) Due to the influence of B-believer j , at any time
A-believer i turns to believe message B at rate
β AB
i j ≥ 0, Here, β AB

i j > 0 if and only if (i, j) ∈
EB . β AB

i j is proportional to (a) the rate at which
person j delivers message B to person i , and (b)

the probability of person i believing message B

when receiving it. LetMAB =
(
β AB
i j

)
N×N

. This

hypothesis captures the influence of the spread
of message B on A-believers. Certainly, we have
β AB
i j ≤ βUB

i j .

(H5) Due to the forgetfulness or the loss of interest,
A-believer i turns to be uncertain at rate δAi > 0.
Let DA = diag

(
δAi

)
.

(H6) Due to the forgetfulness or the loss of interest,
B-believer i turns to be uncertain at rate δBi > 0.
Let DB = diag

(
δBi

)
.

All the forthcoming competitively spreadingmodels
are assumed to comply with these hypotheses.

2.2 The original UABU model

For fundamental knowledge on continuous-time
Markov chains, see Ref. [46].

Another way of representing the population state at
time t is by the decimal number a(t) = ∑N

k=1 Xk(t)
3k−1. In this context, there are totally 3N possible
population states: 0, 1, . . . , 3N − 1. According to the
previous hypotheses, the infinitesimal generator Q =
[qab]3N×3N for the competing spreading process is
given as

qab =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δAm, if a = b + 3m−1, m = 1, 2, . . . , N , xm = 1;
δBm , if a = b + 2 · 3m−1,m = 1, 2, . . . , N , xm = 2;
N∑

k=1

βU A
mk 1{xk=1}, if a = b − 3m−1, m = 1, 2, . . . , N , xm = 0;

N∑
k=1

βBA
mk 1{xk=1}, if a = b + 3m−1, m = 1, 2, . . . , N , xm = 2;

N∑
k=1

βUB
mk 1{xk=2}, if a = b − 2 · 3m−1,m = 1, 2, . . . , N , xm = 0;

N∑
k=1

β AB
mk 1{xk=2}, if a = b − 3m−1,m = 1, 2, . . . , N , xm = 1;

−
N−1∑

c=0,c �=a

qac, if a = b;

0, otherwise.

(2)

where a = ∑N
k=1 xk3

k−1, 1S stands for the indicator
function of set S. The continuous-time Markov chain
model with the infinitesimal generator Q is referred
to as the original Uncertain-A-B-Uncertain (UABU)
model. SeeFig. 1 for the state transition rates of a person
under the original UABU model.
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Fig. 1 State transition rates of person i under the original UABU
model

2.3 The exact UABU model

For 0 ≤ a ≤ 3N − 1, a = ∑N
k=1 xk3

k−1, let Sa(t)
denote the probability that the state of the population
at time t is (x1, . . . , xN ).

Sa(t) = Pr {X1(t) = x1, . . . , XN (t) = xN } . (3)

Let S(t) denote the probability distribution of the pop-
ulation state at time t .

S(t) = [S0(t), . . . , S3N−1(t)]T . (4)

Then, S(t) obeys

dST (t)

dt
= ST (t)Q. (5)

We refer to the continuous-time Markov chain as the
exact UABU model, because it accurately character-
izes the expected competing spreading process of the
two conflicting messages. The state transition rates of a
person under the exact UABUmodel cannot be clearly
shown as a diagram.

Although the exact UABU model is a linear differ-
ential system, with the solution sT (t) = sT (0)eQt , its
dimensionality grows exponentiallywith the increasing
population size, leading to mathematical intractability.

Let

Ai (t) = Pr{Xi (t) = 1}, (6)

Bi (t) = Pr{Xi (t) = 2}. (7)

Obviously, Ai (t) and Bi (t) together capture the expe-
cted state of person i at time t . The following lemma
gives an equivalent form of the exact UABU model.

Lemma 1 The exact UABU model is equivalent to the
model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAi (t)

dt
=

N∑
j=1

βU A
i j Pr{Xi (t) = 0, X j (t) = 1}

+
N∑
j=1

βBA
i j Pr{Xi (t) = 2, X j (t) = 1}

−
N∑
j=1

β AB
i j Pr{Xi (t) = 1, X j (t) = 2} − δAi Ai (t),

dBi (t)

dt
=

N∑
j=1

βUB
i j Pr{Xi (t) = 0, X j (t) = 2}

+
N∑
j=1

β AB
i j Pr{Xi (t) = 1, X j (t) = 2}

−
N∑
j=1

βBA
i j Pr{Xi (t) = 2, X j (t) = 1} − δBi Bi (t),

i = 1, 2, . . . , N .

(8)

The proof of this lemma is left to “AppendixA.” The
equivalentmodel is not closed. If one attempted to close
the equivalent model by adding some joint probability
terms, the resulting model would be of dimensionality
3N again, which is still mathematically intractable.

2.4 The linear UABU model

In order to simplify the exact UABU model, it is nec-
essary to reduce its dimensionality while keeping its
closedness. To this end, let us make an added set of
independence hypotheses as follows (1 ≤ i ≤ N ,
1 ≤ j ≤ N , i �= j).

(H7) Pr{Xi (t) = 0, X j (t) = 1} = (1 − Ai (t) −
Bi (t))A j (t).

(H8) Pr{Xi (t) = 0, X j (t) = 2} = (1 − Ai (t) −
Bi (t))Bj (t).

(H9) Pr{Xi (t) = 1, X j (t) = 2} = Ai (t)Bj (t).
(H10) Pr{Xi (t) = 2, X j (t) = 1} = Bi (t)A j (t).

Based on the independence hypotheses and the
equivalent model (7), we obtain the following approx-
imation model of the exact UABU model.
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Fig. 2 State transition rates of person i under the linear URTU
model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAi (t)

dt
= (1 − Ai (t) − Bi (t))

N∑
j=1

βU A
i j A j (t)

+ Bi (t)
N∑
j=1

βBA
i j A j (t)

− Ai (t)
N∑
j=1

β AB
i j B j (t) − δAi Ai (t),

dBi (t)

dt
= (1 − Ai (t) − Bi (t))

N∑
j=1

βUB
i j B j (t)

+ Ai (t)
N∑
j=1

β AB
i j B j (t)

− Bi (t)
N∑
j=1

βBA
i j A j (t) − δBi Bi (t),

i = 1, 2, . . . , N .

(9)

We refer to this model as the linear UABU model,
because the A-spreading rates,

∑N
j=1 βU A

i j A j (t) and∑N
j=1 βBA

i j A j (t), are linear in A1(t), . . . , AN (t), and

the B-spreading rates,
∑N

j=1 βUB
i j B j (t) and

∑N
j=1

β AB
i j B j (t), are linear in B1(t), . . . , BN (t). See Fig. 2

for the state transition rates of a person under the linear
UABU model.

The linearUABUmodel is a closed 2N -dimensional
dynamical system and hence is mathematically tract-
able. In reality, the dynamics of the model may deviate
from the expected competing spreading process of the

two conflicting messages, because the independence
hypotheses may fail.

2.5 The generic UABU model

For the purpose of approximating the exact UABU
model more accurately, let us consider a more general
competing spreading model as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAi (t)

dt
= (1 − Ai (t)

− Bi (t)) f
U A
i (A1(t), . . . , AN (t))

+ Bi (t) f
BA
i (A1(t), . . . , AN (t))

− Ai (t) f
AB
i (B1(t), . . . , BN (t))

− δAi Ai (t),

dBi (t)

dt
= (1 − Ai (t)

− Bi (t)) f
U B
i (B1(t), . . . , BN (t))

+ Ai (t) f
AB
i (B1(t), . . . , BN (t))

− Bi (t) f
BA
i (A1(t), . . . , AN (t))

− δBi Bi (t),

i = 1, 2, . . . , N .

(10)

Here, f U A
i stands for the rate at which the uncertain

person i turns to believe message A, f U B
i the rate at

which theuncertain person i turns to believemessageB,
f ABi the rate at which the A-believer i turns to believe
message B, and f BA

i the rate at which the B-believer i
turns to believe message A. These spreading rates are
assumed to satisfy the following generic conditions.

(C1) (Proximity) An uncertain person or a B-believer
can and can only be influenced by those A-
believers that can deliver message A to him
through the A-spreading network. That is, f U A

i
or f BA

i is dependent upon A j (t) if and only if
(i, j) ∈ EA. Likewise, an uncertain person or
a A-believer can and can only be influenced by
those B-believers that can deliver message B to
him through the B-spreading network. That is,
f U B
i or f ABi is dependent upon Bj (t) if and only

if (i, j) ∈ EB .
(C2) (Nullity) Message A cannot spread unless there

is a A-believer in the population. That is, f U A
i

(0, . . . , 0) = f BA
i (0, . . . , 0) = 0. Likewise,
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Fig. 3 State transition rates of person i under the generic UABU
model

message B cannot spread unless there is a B-
believer in thepopulation.That is, f U B

i (0, . . . , 0)
= f ABi (0, . . . , 0) = 0.

(C3) (Ordering) An uncertain person is easier to
believe message A than a B-believer, and an
uncertain person is easier to believe message B
than a A-believer. That is, f U A

i ≥ f BA
i , f U B

i ≥
f ABi .

(C4) (Smoothness) The spreading rates are sufficiently
smooth. Technically speaking, f U A

i , f U B
i , f ABi

and f BA
i are twice continuously differentiable.

(C5) (Monotonicity) The spreading rates are strictly
increasing with respect to every relevant argu-

ment. That is,
∂ f U A

i (x1,...,xN )

∂x j
> 0 if f U A

i is depen-

dent upon x j ,
∂ f U B

i (x1,...,xN )

∂x j
> 0 if f U B

i is depen-

dent upon x j ,
∂ f ABi (x1,...,xN )

∂x j
> 0 if f ABi is depen-

dent upon x j , and
∂ f BA

i (x1,...,xN )

∂x j
> 0 if f ABi is

dependent upon x j .
(C6) (Concavity) The spreading rates flatten out and

tend to saturation. That is,
∂2 f U A

i (x1,...,xN )

∂x j ∂xk
≤ 0,

∂2 f U B
i (x1,...,xN )

∂x j ∂xk
≤ 0,

∂2 f ABi (x1,...,xN )

∂x j ∂xk
≤ 0, and

∂2 f BA
i (x1,...,xN )

∂x j ∂xk
≤ 0.

We refer to the model (10) as the generic UABU
model. SeeFig. 3 for the state transition rates of a person
under the generic URTUmodel. Obviously, this model
subsumes the linearUABUmodel aswell asmanyother
UABU models with nonlinear spreading rates.

Let

� =
{
(x1, . . . , x2N ) ∈ R

2N+ | xi + xN+i

≤ 1, 1 ≤ i ≤ N
}

. (11)

Certainly, the initial state of the generic UABU model
lies in �. And it is easily shown that the state of the
model always stays within �.

Let us introduce the following vector and matrix
notations.

A(t) = (A1(t), . . . , AN (t))T ,

B(t) = (B1(t), . . . , BN (t))T ,

diagA(t) = diag (Ai (t)) ,

diagB(t) = diag (Bi (t)) ,

fU A(A(t)) =
(
f U A
1 (A(t)), . . . , f U A

N (A(t))
)T

,

fUB(B(t)) =
(
f U B
1 (B(t)), . . . , f U B

N (B(t))
)T

,

fAB(B(t)) =
(
f AB1 (B(t)), . . . , f ABN (B(t))

)T
,

fBA(A(t)) =
(
f BA
1 (A(t)), . . . , f BA

N (A(t))
)T

.

(12)

Then, the generic UABU model can be recast as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA(t)

dt
= (IN − diagA(t) − diagB(t))fU A(A(t))

+ diagB(t)fBA(A(t))

− diagA(t)fAB(B(t)) − DAA(t),

dB(t)

dt
= (IN − diagA(t) − diagB(t))fUB(B(t))

+ diagA(t)fAB(B(t))

− diagB(t)fBA(A(t)) − DBB(t),

(13)

where IN stands for the identity matrix of order N .

3 Dynamics of the generic UABU model

Consider the generic UABU model (10). Let A(t)
and B(t) denote the expected fraction at time t of A-
believers and B-believers, respectively.
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A(t) = 1

N

N∑
i=1

Ai (t), (14)

B(t) = 1

N

N∑
i=1

Bi (t). (15)

The main goal of this work is to determine the evolu-
tion tendency of A(t) and B(t) over time. For that pur-
pose, we need some preliminary knowledges, which
are listed below.

3.1 Preliminaries

For fundamental knowledge on matrix theory, see Ref.
[47]. In what follows, we consider only real square
matrices. Given a matrixM, let s(M) denote the maxi-
mum real part of an eigenvalue ofM, ρ(M) the spectral
radius of M, i.e., the maximum modulus of an eigen-
value ofM.M isMetzler if its off-diagonal entries are
all nonnegative.

Lemma 2 (Corollary 8.1.30 in [47]) Let M be a non-
negative matrix. IfM has a positive eigenvector x, then
ρ(M) is an eigenvalue of M, and x belongs to ρ(M).

Lemma 3 (Lemma 2.3 in [48]) Let M be an irre-
ducible Metzler matrix. Then, s(M) is a simple eigen-
value ofM, and, up to scalar multiple,M has a unique
positive eigenvector x belonging to s(M).

AmatrixM isHurwitz stable or simplyHurwitz if its
eigenvalues all have negative real parts, i.e., s(M) < 0.

Lemma 4 (Chapter 2 in [49]) A matrix A is Hurwitz
if and only if there is a positive definite matrix P such
that ATP + PA is negative definite.

AmatrixM is diagonally stable if there is a positive
definite diagonal matrix D such that MTD + DM is
negative definite. Obviously, a diagonally stable matrix
is Hurwitz.

Lemma 5 (Section 2 in [50])AMetzler matrix is diag-
onally stable if it is Hurwitz.

Lemma 6 (Lemma A.1 in [51]) Let M be an irre-
ducibleMetzlermatrix. If s(M) = 0, then there is a pos-
itive definite diagonal matrix D such thatMTD+DM
is negative semi-definite.

For fundamental theory on differential dynamical
systems, see Ref. [52].

Lemma 7 (Chaplygin Lemma, see Theorem 31.4 in
[53]) Consider a smooth n-dimensional system of dif-
ferential equations

dx(t)
dt

= f((x(t)), t ≥ 0 (16)

and the corresponding system of differential inequali-
ties

dy(t)
dt

≤ f((y(t)), t ≥ 0 (17)

with x(0) = y(0). Suppose that for any a1, . . . , an ≥ 0,
there hold

fi (x1 + a1, . . . , xi−1 + ai−1, xi , xi+1

+ ai+1, . . . , xn + an)

≥ fi (x1, . . . , xn), i = 1, . . . , n. (18)

Then, y(t) ≤ x(t), t ≥ 0.

Lemma 8 (Strauss-Yorke theorem, see Corollary 3.3
in [54]) Consider a differential dynamical system

dx(t)
dt

= f((x(t)) + g(t, x(t)), t ≥ 0, (19)

with g(t, x(t)) → 0 when t → ∞. Let

dy(t)
dt

= f((y(t)), t ≥ 0 (20)

denote the limit system of this system. If the origin is a
global attractor for the limit system, and every solution
to the original system is bounded on [0,∞), then the
origin is also a global attractor for the original system.

For fundamental knowledge on fixed-point theory,
see Ref. [55].

Lemma 9 (Brouwer fixed-point theorem, see Theo-
rem 4.10 in [55]) Let C ⊂ R

n be nonempty, bounded,
closed and convex. Let f : C → C be a continuous
function. Then, f has a fixed point.

3.2 The equilibria

The first step to understand the dynamics of a differen-
tial dynamical system is to examine all of its equilibria.
The generic UABU model might admit four different
types of equilibria, which are defined as follows.
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1860 L.-X. Yang et al.

Definition 1 LetE = (AT ,BT )T be an equilibrium of
the generic UABU model (10).

(a) E is uncertain if A = B = 0, which stands for the
steady population state in which all persons are
uncertain almost surely.

(b) E isA-dominant ifA �= 0 andB = 0, which stands
for a steadypopulation state inwhich somepersons
believe message A with positive probability and,
meanwhile, no person believes message B almost
surely.

(c) E isB-dominant ifA = 0 andB �= 0, which stands
for a steadypopulation state inwhich somepersons
believe message B with positive probability and,
meanwhile, no person believes message A almost
surely.

(d) E is coexistent if A �= 0 and B �= 0, which stands
for a steadypopulation state inwhich somepersons
believe message A with positive probability and,
meanwhile, some persons believe message B with
positive probability.

Obviously, the generic UABUmodel always admits
the uncertain equilibrium EU = (0, . . . , 0)T . Due to
the complexity of the model, we are unable to figure
out its any other equilibria. For our purpose, define a
pair of Metzler matrices as follows.

CA = ∂fU A(0)
∂x

− DA, CB = ∂fUB(0)
∂x

− DB, (21)

where ∂fU A(0)
∂x and ∂fUB (0)

∂x stand for the Jacobianmatrix
of fU A and fUB evaluated at the origin, respectively. As
the two spreading networks, GA and GB , are strongly
connected, the two matrices are both irreducible.

We are ready to present the following fundamental
result about the equilibria of the generic UABUmodel.

Theorem 1 Consider the model (10). The following
claims hold.

(a) If s(CA) > 0, then the model admits a unique
A-dominant equilibrium. Let EA = (A∗T , 0T )T

denote the equilibrium, A∗ = (A∗
1, . . . , A

∗
N )T .

Then, 0 < A∗ < 1.
(b) If s(CB) > 0, then the model admits a unique

B-dominant equilibrium. Let EB = (0T ,B∗T )T

denote the equilibrium, B∗ = (B∗
1 , . . . , B∗

N )T .
Then, 0 < B∗ < 1.

The proof of the theorem is left to “Appendix B.”
This theorem implies that the existence and location of

a dominant equilibriumof the genericUABUmodel are
dependent in a complex way upon the basic parameters
as well as the network structures. Henceforth, let

A∗ = 1

N

N∑
i=1

A∗
i , B∗ = 1

N

N∑
i=1

B∗
i . (22)

Then, A∗ > 0, B∗ > 0.

3.3 Attractivity analysis

Now, let us examine the attractivity of the equilibria of
the generic URTU model. First, we have the following
criterion for the attractivity of the uncertain equilib-
rium.

Theorem 2 Consider the model (10). Suppose s(CA)

≤ 0 and s(CB) ≤ 0. Then, the uncertain equilibrium
EU attracts �. Hence, A(t) → 0 and B(t) → 0 as
t → ∞.

The proof of the theorem is left to “Appendix C.”
This theorem has the following useful corollary.

Corollary 1 The uncertain equilibrium EU of the
model (10) attracts� if one of the following conditions
is satisfied.

(a) ρ(CAD
−1
A + IN ) < 1, ρ(CBD

−1
B + IN ) < 1.

(b) ρ(MU AD
−1
A ) < 1, ρ(MUBD

−1
B ) < 1.

(c)
∑N

i=1 βU A
i j < δAj ,

∑N
i=1 βUB

i j < δBj , j =
1, 2 . . . , N.

(d)
∑N

j=1
βU A
i j

δAj
< 1,

∑N
j=1

βUB
i j

δBj
< 1, i = 1, 2, . . . , N.

The proof of this corollary is left to “Appendix D.”
The following theorem offers a criterion for the global
attractivity of the A-dominant equilibrium.

Theorem 3 Consider the model (10). Suppose s(CA)

> 0 and s(CB) ≤ 0. Then, the A-dominant equilibrium
EA attracts {(A,B) ∈ � : A �= 0}. Hence, if A(0) �= 0,
then A(t) → A∗ and B(t) → 0 as t → ∞.

The proof of the theorem is left to “Appendix E.” In
parallel, we have the following criterion for the attrac-
tivity of the B-dominant equilibrium.

Theorem 4 Consider the model (10). Suppose s(CA)

≤ 0 and s(CB) > 0. Then, the B-dominant equilibrium
EB attracts {(A,B) ∈ � : B �= 0}. Hence, if B(0) �= 0,
then A(t) → 0 and B(t) → B∗ as t → ∞.
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The argument for the theorem is analogous to that
for Theorem 3 and hence is omitted.

Theorems 2 and 4 demonstrate that when (a)
s(CA) ≤ 0 and s(CB) ≤ 0, or (b) s(CA) ≤ 0,
s(CB) > 0 and B(0) �= 0, nobody would believe
message A in a long run. Similarly, Theorems 2 and
3 imply that when (a) s(CA) ≤ 0 and s(CB) ≤ 0, or
(b) s(CA) > 0, s(CB) ≤ 0 and A(0) �= 0, nobody
would believe message B in a long run.

In practice, if a message A is undesirable, the fol-
lowing measures are recommended.

(a) Release a message B that refutes message A.
(b) Enhance the B-spreading rates by providing more

evidences that support message B.
(c) Reduce the A-spreading rates by providing more

evidences that refute message A.
(d) Expand channels of spreading message B such as

mass media and official announcement.
(e) Lessen channels of spreading message A by

improving the quality of people.

4 The accuracy of the linear UABU model

As was mentioned in Sect. 2, the exact UABU model
accurately describes the expected competing spread-
ing process of two conflicting messages, and the linear
UABU model is an approximation of the exact UABU
model. We wonder under what conditions the linear
UABUmodel is satisfactory. This section is committed
to answer the question through computer simulations.

For the comparison purpose, we need to numeri-
cally solve the exact UABUmodel, because its closed-
form solution is far beyond our reach. Based on the
standard Gillespie algorithm for numerically solv-
ing continuous-time Markov chain models [56], we
develop a numerical algorithm for solving the exact
UABU model. The basic idea of the algorithm is to
take the average of M = 104 sample paths of the origi-
nal UABUmodel as an approximation to the solution to
the exact UABU model. In the following experiments,
a randomly chosen person is initialized as being A-
believing, a randomly chosen person is initialized as
being B-believing, and all the remaining persons in the
population are initialized as being uncertain.

Example 1 Scale-free networks are a large class of net-
works havingwidespread applications [57]. Take a ran-
domly generated scale-free network with 100 nodes

as both the A-spreading network and the B-spreading
network. By taking random combinations of the basic
parameters, we get 4096 linear UABU models, which
are divided into the following four collections.

(a) 94 linear UABU models for which both A(t) and
B(t) approach zero. By observations, we find that
for each of the models, its dynamics fits with the
expected competing spreading process. See Fig. 4a
for a pair of examples.

(b) 1764 linear UABU models for which A(t)
approaches a nonzero value, but B(t) approaches
zero. By observations, we find that for each of the
models, its dynamics aboutmessageB accordswith
the expected spreadingprocess ofmessageB, but its
dynamics about message A deviates significantly
from the expected spreading process of message
A. See Fig. 4b for a pair of examples.

(c) 1770 linear UABU models for which A(t)
approaches zero, but B(t) approaches a nonzero
value. By observations, we find that for each of the
models, its dynamics about message A conforms
to the expected spreading process of message A,
but its dynamics about message B disagrees with
the expected spreading process of message B. See
Fig. 4c for a pair of examples.

(d) 468 linear UABU models for which both A(t) and
B(t) approach nonzero values. By observations,
we find that for each of the models, its dynamics
obviously deviates from the expected competing
spreading process. See Fig. 4d for a pair of exam-
ples.

Example 2 Small-world networks are another large
class of networks having widespread applications [59].
Take a randomly generated small-world network with
100 nodes as both the A-spreading network and the B-
spreading network. By taking random combinations of
the parameters, we get 4096 pairs of linear and exact
UABU models, which are divided into the following
four collections.

(a) 151 linear UABUmodels for which both A(t) and
B(t) approach zero. By observations, we find that
for each of the models, its dynamics fits with the
expected competing spreading process. See Fig. 5a
for a pair of examples.

(b) 1657 linear UABU models for which A(t)
approaches a nonzero value, but B(t) approaches
zero. By observations, we find that for each of the
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(c) Two instances in the third collection. (d) Two instances in the fourth collection.

Fig. 4 Comparison between the linear UABU models in Example 1 and the corresponding exact UABU models
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Fig. 5 Comparison between the linear UABU models in Example 2 and the corresponding exact UABU models
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models, its dynamics about message B accords
with the expected spreading process of message
B, but its dynamics about message A deviates sig-
nificantly from the expected spreading process of
message A. See Fig. 5b for a pair of examples.

(c) 1639 linear UABU models for which A(t)
approaches zero, but B(t) approaches a nonzero
value. By observations, we find that for each of the
models, its dynamics about message A conforms
to the expected spreading process of message A,
but its dynamics about message B disagrees with
the expected spreading process of message B. See
Fig. 5c for a pair of examples.

(d) 649 linear UABUmodels for which both A(t) and
B(t) approach nonzero values. By observations,
we find that for each of the models, its dynamics
obviously deviates from the expected competing
spreading process. See Fig. 5d for a pair of exam-
ples.

The following conclusions are drawn from the pre-
vious examples and many similar examples.

(a) When A(t) approaches zero, the dynamics of the
linear UABU model fits well with the expected
spreading process of message A. However, when
A(t) approaches a nonzero value, there is a signifi-
cant difference between the dynamics of the linear
UABU model and the expected spreading process
of message A.

(b) When B(t) approaches zero, the dynamics of
the linear UABU model fits perfectly with the
expected spreading process of message B. How-
ever, when B(t) approaches a nonzero value, there
is a remarkable difference between the dynam-
ics of the linear UABU model and the expected
spreading process of message B.

In the case where the linear UABU model works
well, it can be employed to quickly predict the expected
evolutionary process of message A or/and message B.

In the case where the linear UABU model does not
work well, we have to resort to a generic UABUmodel
with proper nonlinear spreading rates to achieve the
goal of accurate prediction. In this context, the deep
learning methodology may be employed to accurately
estimate the spreading rates [60].

5 Concluding remarks

This paper has investigated the competing spread-
ing dynamics of two conflicting messages. Based on
a novel individual-level competing spreading model
(the generic UABU model), three criteria for one or
two messages to terminate have been presented. These
criteria manifest the influence of the two message-
spreading networks on the evolution of the two mes-
sages. Extensive simulation experiments have shown
that when a message terminates, the dynamics of a
simplified UABU model fits well with the expected
evolutionary process of the message.

Toward the direction, lots of problems have yet to
be resolved. Under the generic UABU model, a crite-
rion for the existence/attractivity of a coexistent equi-
librium should be figured out, and the cost paid for
restraining an undesirable message must be minimized
[61–63]. It is known that quarantining the influential
persons who are spreading an undesirable message is
an effectivemeasure of containing the prevalence of the
message [16]. Hence, it is valuable to develop a com-
peting spreadingmodel that accommodates the quaran-
tine effect. In the context of individual-level competing
spreadingmodels, it is of practical importance to under-
stand the influence of a variety of real-world factors on
the spread of conflictingmessages. Last, it is rewarding
to investigate the formation of the dynamic pattern of
the population state [64–68].
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Appendix A: Proof of Lemma 1

Given a sufficiently small time interval �t > 0, it fol-
lows from the total probability formula that

Ai (t + �t)

= (1 − Ai (t) − Bi (t))Pr{Xi (t + �t) = 1 | Xi (t) = 0}
+ Ai (t)Pr{Xi (t + �t) = 1 | Xi (t) = 1}
+ Bi (t)Pr{Xi (t + �t) = 1 | Xi (t) = 2}, 1 ≤ i ≤ N .

(A.1)
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By the conditional total probability formula and in view
of the model (2), we get that

Pr{Xi (t + �t) = 1 | Xi (t) = 0}
=

∑

x∈{0,1,2}N ,xi=0

Pr{Xi (t + �t) = 1 | Xi (t) = 0,

X(t) = x} · Pr{X(t) = x | Xi (t) = 0}

= �t

1 − Ai (t) − Bi (t)
·

∑

x∈{0,1,2}N ,xi=0

N∑
j=1

βU A
i j 1{x j=1}

·Pr{X(t) = x} + o(�t)

= �t

1 − Ai (t) − Bi (t)
·

N∑
j=1

βU A
i j

∑

x∈{0,1,2}N
1{xi=0,x j=1}

·Pr{X(t) = x} + o(�t)

= �t

1 − Ai (t) − Bi (t)

N∑
j=1

βU A
i j Pr{Xi (t) = 0,

X j (t) = 1} + o(�t), 1 ≤ i ≤ N . (A.2)

Similarly, we can derive that

Pr{Xi (t + �t) = 2 | Xi (t) = 1}

= �t

Ai (t)
·

N∑
j=1

β AB
i j Pr{Xi (t) = 1, X j (t) = 2}

+ o(�t), 1 ≤ i ≤ N (A.3)

and that

Pr{Xi (t + �t) = 0 | Xi (t) = 1} = δAi �t + o(�t),

1 ≤ i ≤ N . (A.4)

It follows that

Pr{Xi (t + �t) = 1 | Xi (t) = 1}

= 1 − �t

Ai (t)
·

N∑
j=1

β AB
i j Pr{Xi (t) = 1, X j (t) = 2}

− δAi �t + o(�t), 1 ≤ i ≤ N . (A.5)

Besides, we have

Pr{Xi (t + �t) = 1 | Xi (t) = 2}

= �t

Bi (t)
·

N∑
j=1

βBA
i j Pr{Xi (t) = 2, X j (t) = 1}

+ o(�t), 1 ≤ i ≤ N . (A.6)

Substituting these equations into Eq. (A.1), rearranging
the terms, dividing both sides by �t and letting �t →
0, we get that

dAi (t)

dt
=

N∑
j=1

βU A
i j Pr{Xi (t) = 0, X j (t) = 1}

+
N∑
j=1

βBA
i j Pr{Xi (t) = 2, X j (t) = 1}

−
N∑
j=1

β AB
i j Pr{Xi (t) = 1, X j (t) = 2}

−δAi Ai (t), 1 ≤ i ≤ N . (A.7)

The last N equations in Lemma 1 can be derived in
an analogous way. The proof is complete.

Appendix B: Proof of Theorem 1

(a) Suppose the model (10) admits a A-dominant
equilibrium E = (A1, . . . , AN , 0, . . . , 0)T . Let A =
(A1, . . . , AN )T . We show that 0 < A < 1. It follows
from the model that

Ai = f U A
i (A)

δAi + f U A
i (A)

< 1, 1 ≤ i ≤ N . (B.1)

Hence, A < 1. On the contrary, suppose that some
Ak = 0. It follows from the model (10) that f U A

k (A) =
0. As GA is strongly connected, we get that some
βU A
kl > 0, implying that Al = 0. Repeating this argu-

ment, we finally get that A = 0, contradicting the
assumption thatE is a A-dominant equilibrium. Hence,
A > 0.

Define a continuousmappingH = (H1, . . . , HN )T :
(0, 1]N → (0, 1]N by

Hi (x) = f U A
i (x)

δAi + f U A
i (x)

, x = (x1, . . . , xN )T∈(0, 1]N .

(B.2)

It suffices to show that H has a unique fixed point. Let
B(t) ≡ 0 and rewrite the model (10) as

dA(t)

dt
= CAA(t) + G(A(t)), (B.3)

where G(A(t)) = o(‖A(t)‖). By Lemma 3, CA has a
positive eigenvector v = (v1, . . . , vN )T belonging to
the eigenvalue s(CA). As s(CA) > 0, we have CAv =
s(CA)v > 0. Hence, there is a small ε > 0 such that
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CA · (εv) + G(εv) = εs(CA)v + G(εv) ≥ 0, (B.4)

which is equivalent toH(εv) ≥ εv. On the other hand,
it is easily verified that H is monotonically increasing,
i.e., u ≥ w implies H(u) ≥ H(w). Define a compact
convex set as K = ∏N

i=1[εvi , 1]. Then, H|K maps K
into K . It follows fromLemma9 thatH has afixedpoint
in K . Denote this fixed point byA∗ = (A∗

1, . . . , A
∗
N )T .

SupposeH has afixedpointA∗∗ = (A∗∗
1 , . . . , A∗∗

N )T

other than A∗. Let

θ = max
1≤i≤N

A∗
i

A∗∗
i

, i0 = arg max
1≤i≤N

A∗
i

A∗∗
i

. (B.5)

Without loss of generality, assume θ > 1. It follows
that

A∗
i0 = Hi0(A

∗) ≤ Hi0(θA
∗∗)

f U A
i0

(θA∗∗)
δAi0 + f U A

i0
(θA∗∗)

<
f U A
i0

(θA∗∗)
δAi0 + f U A

i0
(A∗∗)

≤ θ f U A
i0

(A∗∗)
δAi0 + f U A

i0
(A∗∗)

= θHi0(A
∗∗) = θ A∗∗

i0 ,

(B.6)

where f U A
i0

(θA∗∗) ≤ θ f U A
i0

(A∗∗) follows from the

concavity of f U A
i0

. This contradicts the assumption that
A∗
i0

= θ A∗∗
i0
. Hence, A∗ is the unique fixed point ofH.

The proof is complete.
(b) The argument is analogous to that for Claim (a)

and hence is omitted.

Appendix C: Proof of Theorem 2

Let (A(t)T ,B(t)T )T be a solution to the model (10). It
follows from the first N equations of the model (13),
which is an equivalent form of the model (10), that

dA(t)

dt
≤ (IN −diagA(t))fU A(A(t))−DAA(t). (C.1)

Consider the comparison system

du(t)

dt
= (IN − diagu(t))fU A(u(t)) − DAu(t) (C.2)

with u(0) = A(0). This system admits the trivial equi-
librium 0. Moreover, it follows from Lemma 7 that

u(t) ≥ A(t) ≥ 0. We proceed by distinguishing two
possibilities.

Case 1 s(CA) < 0. By Lemma 5, there is a positive
definite diagonal matrix P1 such that CT

AP1 + P1CA is
negative definite. Let u = (u1, . . . , uN )T , and define a
positive definite function as

V1(u) = uTP1u. (C.3)

By calculations, we get that

dV1(u(t))

dt
|(C.2)= 2u(t)TP1

du(t)

dt
≤ 2u(t)TP1 [fU A(u(t)) − DRu(t)]

≤ 2u(t)TP1CAu(t)

= u(t)T [CT
AP1 + P1CA]u(t) ≤ 0.

(C.4)

Here, the second inequality follows from the concavity
of fU A(x) − DAx. Furthermore, dV1(u(t))

dt |(C.2)= 0 if
and only if u(t) = 0. According to the LaSalle invari-
ance principle (Corollary 4.1 in [52]), the trivial equi-
librium 0 of the system (C.2) is asymptotically stable
for [0, 1]N .
Case 2: s(CA) = 0. By Lemma 6, there is a positive
definite diagonal matrix P2 such that CT

AP2 + P2CA is
negative semi-definite. Define a positive definite func-
tion as

V2(u) = uTP2u. (C.5)

Similarly, we have

dV2(u(t))

dt
|(C.2)≤ u(t)T [CT

AP2 + P2CA]u(t) ≤ 0.

(C.6)

If CT
AP2 + P2CA is negative definite, the subsequent

argument is analogous to that for Case 1. Now, assume
CT

AP2 + P2CA is not negative definite, which implies

s(CT
AP2 + P2CA) = 0. (C.7)

As CT
AP2 + P2CA is Metzler and irreducible, it fol-

lows from Lemma 3 that (a) 0 is a simple eigen-
value of CT

AP2 + P2CA, and (b) up to scalar multi-
ple, CT

AP2 + P2CA has a positive eigenvector belong-

ing to eigenvalue 0. Obviously, dV2(u(t))
dt |(C.2)= 0 if
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u(t) = 0. On the contrary, suppose dV2(u(t))
dt |(C.2)= 0

for some u(t) ≥ 0. If u(t) > 0, then fU A(u(t)) > 0,
implying dV2(u(t))

dt |(C.2)< 0, a contradiction. If u(t)
has a zero component, then u(t) is not an eigenvector
of CT

AP2 +P2CA belonging to eigenvalue 0. It follows
from the Rayleigh formula (Theorem 4.2.2 in [47]) that

u(t)T [CT
AP2 + P2CA]u(t) < 0, (C.8)

implying dV2(u(t))
dt |(C.2)< 0, again a contradiction.

Hence, u(t) = 0 if dV2(u(t))
dt |(C.2)= 0. It follows from

the LaSalle invariance principle that the trivial equilib-
rium 0 of the system (C.2) is asymptotically stable with
respect to [0, 1]N .

Combining Cases 1 and 2, we get u(t) → 0 as t →
∞. According to Lemma 7, we getA(t) ≤ u(t), which
implies R(t) → 0 as t → ∞.

Similarly, we can derive that B(t) → 0 as t → ∞.
The proof is complete.

Appendix D: Proof of Corollary 1

(a) We first show s(CA) < 0. As CAD
−1
A is Metzler

and irreducible, and it follows from Lemma 3 that
CAD

−1
A has a positive eigenvector x belonging to

eigenvalue s(CAD
−1
A ). So,

(
CAD

−1
A + IN

)
x =

[
s(CAD

−1
A ) + 1

]
x. (D.1)

That is, x is an eigenvector ofCAD
−1
A +IN belong-

ing to eigenvalue s(CAD
−1
A ) + 1. It follows from

Lemma 2 that

s(CAD
−1
A ) = ρ(CAD

−1
A + IN ) − 1 < 0. (D.2)

By Lemma 5, there is a positive definite diagonal
matrix D such that the matrix

P = (CAD
−1
A )TD + D(CAD

−1
A ) (D.3)

is negative definite. Direct calculations give

[
D

1
2
ACAD

− 1
2

A

]T

D + D
[
D

1
2
ACAD

− 1
2

A

]
= D

1
2
APD

1
2
A.

(D.4)

AsD
1
2
APD

1
2
A is negative definite,D

1
2
ACAD

− 1
2

A is diag-
onally stable and hence Hurwitz. It follows that

s(CA) = s(D
1
2
ACAD

− 1
2

A ) < 0. (D.5)

Similarly, we have s(CB) < 0. The declared result
follows from Theorem 2.

(b) By the concavity of f U A
i (x), we have

∂ f U A
i (0)
∂x j

≤
βU A
i j . That is, CA + DA ≤ MU A. Hence,

ρ(CAD
−1
A + IN ) ≤ ρ(MU AD

−1
A ) < 1. (D.6)

Similarly, we have ρ(CBD
−1
B +IN ) < 1. The claim

follows from Claim (a) of this corollary.
(c) The claim follows from Claim (b) of this corollary

and the well-known inequality ρ(M) ≤ ||M||1.
(d) The claim follows from Claim (b) of this corollary

and the well-known inequality ρ(M) ≤ ||M||∞.

Appendix E: Proof of Theorem 3

Let (A(t)T ,B(t)T )T be a solution to the model (10)
with A(0) �= 0. It follows from the last N equations of
the model (9) that

dB(t)

dt
≤ (IN − diag(B(t)))fUB(B(t)) − DBB(t).

(E.1)

By an argument analogous to that for Theorem 2, we
get B(t) → 0. Consider the following limit system of
model (5).

du(t)

dt
= (IN − diagu(t))fU A(u(t)) − DAu(t) (E.2)

with u(0) = A(0). Theorem 1 confirms that the
system admits a unique nonzero equilibrium A∗ =
(A∗

1, . . . , A
∗
N ). By Lemma 8, it suffices to show that

A∗ is asymptotically stable for (0, 1]N . Given a solu-
tion u(t) = (u1(t), . . . , uN (t))T to the system (E.2)
with u(0) > 0. First, let us show the following claim.

Claim 1 u(t) > 0 for all t > 0.

Proof of Claim 1 On the contrary, suppose there is
t0 > 0 such that (a) u(t) > 0, 0 < t < t0, and (b)
ui (t0) = 0 for some i . According to the smoothness of
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u(t), we get dui (t0)
dt = 0, implying that f U A

i (u(t0)) =
0. As GA is strongly connected, there is j such that
βU A
i j > 0, which implies u j (t0) = 0. Working induc-

tively, we conclude that u(t0) = 0. This contradicts
the uniqueness of the solution to the system (E.2) with
given initial condition. Claim 1 is proven. �

For t > 0, let

Z(u(t)) = max
1≤k≤N

uk(t)

A∗
k

, z(u(t)) = min
1≤k≤N

uk(t)

A∗
k

.

(E.3)

Define a function V3 as

V3(u(t)) = max{Z(u(t))−1, 0}+max{1−z(u(t)), 0}.
(E.4)

It is easily verified that V3 is positive definite with
respect toA∗, i.e., (a) V3(u(t)) ≥ 0, and (b) V3(u(t)) =
0 if and only if u(t) = A∗. Next, let us show that
D+V3(u(t)) ≤ 0, where D+ stands for the upper right
Dini derivative. To this end, we need to show the fol-
lowing two claims for t > 0.

Claim 2 D+Z(u(t)) ≤ 0 if Z(u(t)) ≥ 1. Moreover,
D+Z(u(t)) < 0 if Z(u(t)) > 1.

Claim 3 D+z(u(t)) ≥ 0 if z(u(t)) ≤ 1. Moreover,
D+z(u(t)) > 0 if z(u(t)) < 1. Here, D+ stands for
the lower right Dini derivative.

Proof of Claim 2 Choose k0 such that

Z(u(t)) = uk0(t)

A∗
k0

, D+Z(u(t)) = u
′
k0

(t)

A∗
k0

. (E.5)

Then,

A∗
k0

uk0(t)
u

′
k0(t)=

(
1−uk0(t)

) A∗
k0

uk0(t)
f U A
k0 (u(t))−δAk0 A

∗
k0 .

(E.6)

If f U A
k0

(u(t)) = 0, then
A∗
k0

uk0 (t)u
′
k0

(t) < 0, which

implies D+Z(u(t)) < 0.Nowassume f U A
k0

(u(t)) > 0,
then

A∗
k0

uk0(t)
u

′
k0(t) ≤ (1 − A∗

k0)
A∗
k0

uk0(t)
f U A
k0 (u(t)) − δAk0 A

∗
k0

≤ (1 − A∗
k0) f

U A
k0

(
A∗
k0

uk0(t)
u(t)

)
− δAk0 A

∗
k0

≤ (1 − A∗
k0) f

U A
k0

(
A∗) − δAk0 A

∗
k0 = 0,

(E.7)

where the second inequality follows from the concav-
ity of f U A

k0
, and the third inequality follows from the

monotonicity of f U A
k0

. This implies D+Z(u(t)) ≤ 0.
Noting that the first inequality is strict if Z(u(t)) > 1,
we get that D+Z(u(t)) < 0 if Z(u(t)) > 1. Claim 2 is
proven. �

The argument for Claim 3 is analogous to that for
Claim 2 and hence is omitted. Next, consider three pos-
sibilities.

Case 1: Z(u(t)) < 1. Then, z(u(t)) < 1 and
V3(u(t)) = 1 − z(u(t)). Hence, D+V3(u(t)) =
−D+z(u(t)) < 0.
Case 2: z(u(t)) > 1. Then, Z(u(t)) > 1 and
V3(u(t)) = Z(u(t)) − 1. Hence, D+V3(u(t)) =
D+Z(u(t)) < 0.
Case 3 If Z(u(t)) ≥ 1, z(u(t)) ≤ 1. Then,
V3(u(t)) = Z(u(t)) − z(u(t)) and D+V3(u(t)) =
D+Z(u(t))−D+z(u(t)) ≤ 0.Moreover, the equal-
ity holds if and only if u(t) = A∗.

The declared result follows from the LaSalle invari-
ance principle.
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