
DELFT UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering

Telecommunications and

Traffic-Control Systems Group.

Title : A NOVEL TECHNIQUE FOR HANDWRITTEN

CHARACTER RECOGNITION USING GENERALISED

FOURIER DESCRIPTORS

Author : L.P.W. Niemel.

Type : Graduation thesis

Number of pages : 62 + vii

Date : June 21, 1991.

Graduate Professor : Prof. dr. J.C. Arnbak

Mentors : Prof. dr. R. Prasad and ir. N.B.J. Weyland.

Assignment number

Period

: A - 389

: October 1990 - June 1991

In this graduation thesis, a new method is presented for recognition of handwritten characters.

Character recognition is done on the basis of Generalised Fourier Descriptors. The characters are

first fitted into straight line sections and arcs of circles, because expressions for the Generalised

Fourier descriptors of these basic curves are known. The Generalised Fourier Descriptors are

calculated for different Western-style characters. Also different handwritings are involved to

compare the effect of difference in writing styles.

Indexing terms Pattern recognition, character recognition.

SUMMARY

Character recognition is an important tool in communication and computer practice.

Handwritten characters are curves that can very efficiently be coded by considering the difference

of tangents along the curve. This coding technique was developed at Delft University of

Technology and is known as Differential Chain Coding (DCC). A character recognition method

which combines well with DCC codes is Generalised Fourier Descriptors (GFDs). Mathematical

expressions have been found when GFDs are applied on two important curves, namely straight

line pieces and arcs of circles.

In this report, these results have been applied on handwritten characters. Of course, man’s

handwriting generally does not consist of circles and straight lines. In order to apply the results

found for straight line pieces and arcs of circles on handwritten characters, the characters were

first split up into parts that are curve-fitted to the closest straight line or circle. Finally, calculation

of GFDs has been performed.

Some experiments have been done, including several distinct characters as well as several

different handwritings, in order to show the use of this method. From these experiments it can

be concluded that GFDs show good distinguishing properties for different characters of the

Western alphabet. When the GFDs are applied on different handwritings, they appear to be quite

similar.

LIST OF SYMBOLS AND ABBREVIATIONS

FDs : Fourier Descriptors.

GFDs : Generalised Fourier Descriptors.

DCC : Differential Chain Coding.

LS : Least Squares.

TLS : Total Least Squares.

SVD : Singular Value Decomposition.

7 : denotes a handwritten curve.
0(s) : absolute tangent of the curve 7 at a distance s from starting point.
s : nominal distance from starting point along the curve 7.
L : Total nominal length of the curve 7.
t : Normalised distance parameter, such that 0 < t < 1.
< £(s) : Relative tangent of the curve 7 at distance s from starting point.
< /(t) : Normalised relative tangent of the curve 7 at normalised distance t from starting

point.

£ : linear correcting constant, used to normalise <^(s) to ^*(t).

Z(l) : complex constant representing combined X-jY-coordinates at distance 1.

X(l) : real part of Z(l), representing X-coordinate at distance 1.

Y (l) : imaginary part of Z(l), representing Y-coordinate at distance 1.

V >(t) : Periodic expansion of the normalised function </(t).

: DC-component in the spectrum of V>(t).

ak, bk : Fourier Coefficients at sample frequency k, where k > 0.

Ak : Spectral amplitude.

ak : Spectral phase.

/c(s) : curvature of the curve 7 at distance s from starting point.
/c‘(t) : Normalised curvature at normalised distance t from starting point.

$(f) : Fourier Transform of the function 0(s).
$*(f) : Fourier Transform of the function ^’(t).

K(f) : Fourier Transform of function /c(s).
K’(f) : Fourier Transform of function «’(t).

W : Spectral bandwidth.

fs : sampling frequency in t-domain.

T : Sampling period in t-domain.

Nt : Number of samples in t-domain.

Nf : Number of samples in f-domain.

mx : X-coordinate of centre of a circle,

my : Y-coordinate of centre of a circle,

r : radius of a circle.

v

CONTENTS

SUMMARY.. Ui

LIST OF SYMBOLS AND ABBRVIATIONS..jv

1 Introduction... 1

2 The concept of Generalised Fourier descriptors.. 3
2.1 Introduction...3
2.2 Fourier Descriptors (FDs).. 3
2.3 Generalised Fourier descriptors GFDs)..................................... 6
2.3.1 Two definitions of GFDs.. 6
2.3.2 GFDs applied on two important curves.....................................8
2.3.3 Resolution requirements for GFDs in

time and frequency domains... 10

3 Curve-fitting using angular data.. 13
3.1 Introduction...13
3.2 Partitioning the set of angular data... 13
3.3 Curve-fitting techniques to approximate arbitrary curves by

straight lines and circles.. 14
3.4 Drawbacks when employing the angles as input data...............16

4 Curve-fitting in the X-Y-plane.. 18
4.1 Introduction...18
4.2 Fitting straight lines to an arbitrary set of x,y-points.................18
4.2.1 Error criterion for straight line fitting... 18
4.2.2 Solving the Total Least Squares problem.................................. 20
4.2.3 Some calculation examples to obtain

Total Least Squares solutions..............................21
4.3 Fitting arcs of circles to an arbitrary set of x,y-points............. 23
4.3.1 An error criterion for circle fitting...23
4.3.2 The SIMPLEX-method to solve the

non-linear Total Least Squares cproblem...........25
4.3.2.1 Motivating the use of SIMPLEX method.................................25
4.3.2.2 Initial estimates for (m*, niy, r)... 25

vi

4.3.2.S Converging to the minimal error...27
4.3.3 Calculation results for circle fitting...29

5 Application of X-Y-curve-fitting on
han dwritten characters.. 31
5.1 Introduction.. 31
5.2 Partitioning the character...31
5.2.1 Partitioning based on peak detection...31
5.2.2 A special peak detection algorithm...33
5.2.3 Removal of false peaks... 35
5.2.4 Insertion of connecting aereas..36
5.3 An algorithm for processing X-Y-coordinates...38

6 Character recognition results...40
6.1 Introduction...40
6.2 Calculation procedure worked out

for a sample character...40
6.3 Introducing a character recognition frame.................................. 44
6.4 GFDs for a set of alphabetic characters.................................... 46
6.5 Computation times...50

7 Conclusions and recommendations...53
7.1 Conclusions... 53
7.2 Recommendations..53

REFERENCES...55

APPENDIX A. Calculating the Singular Value Decomposition...............................57
APPENDIX B. Lising of PASCAL-programs...61

vii

CHAPTER 1. INTRODUCTION

Character recognition is becoming an important tool in communication practice. (An

overview of research in this field can be found in [15]). In typed character communication teletext,

for example, character recognition can be used to recover distorted characters, which have

suffered from transmission errors or datacompression [8]. Fixed-font communication however is

a rather inefficient way of transmitting information. Instead of transmitting the whole plane of

pixels such as in facsimile, it would be more efficient to transmit only the information of the

character itself. In telewriting (Prasad, Vieveen, Bons and Arnbak [5]), a writing tablet is used to

transmit curves of arbitrary shape, such as maps, drawings, handwritten messages and so on. At

Delft University of Technology, Differential Chain Coding (DCC) was developed for line­

drawings in order to achieve a better coding efficiency. It has been established that DCC is a

highly efficient code for line-drawings [5], [6] and graphics [3].

Character recognition methods which combine well with DCC-codes are Fourier Descriptors

(Zahn and Roskies[l], Freeman[2]) which are only applicable on simple, clockwise oriented

closed curves, and Generalised Fourier Descriptors (GFDs) [4], which can be applied on arbitrary

curves such as handwritten characters. Weyland and Prasad ([7],[16]) have given a more suitable

definition of GFDs. These are all deterministic methods, which make them convenient for

mathematical manipulation. Throughout this work, GFDs as defined in [7] and [16] will be used

for character recognition. Weyland and Prasad have also derived analytical expressions to obtain

GFDs for two basic types of curves, namely straight lines and circles.

Of course, man’s handwritten text seldom consists of arcs of circles and straight-line segments.

In this work we try to apply these results on real handwritten characters. This involves a decision

to make a suitable choice of data (namely, differential angles versus X-Y-coordinates), a correct

partitioning of the character into pieces that are approximated by either straight line-pieces or

arcs of circles, the approximation itself and finally calculating the GFDs. At this point we can

perform calculation on all characters of the alphabet and start character recognition.

Chapter 2 gives an introduction to Generalised Fourier Descriptors. In chapter 3, data-fitting

is discussed, using angular data. In chapter 4, curve-fitting techniques are discussed for use on X-

Y-coordinates, which will appear to be more profitable. Based on these X-Y-coordinates, curve­

fitting will be performed on handwritten characters in chapter 5. In chapter 6 we will calculate

1

Chapter 1. Introduction

the GFDs for the approximated curves for several characters and several handwritings. Also a

character recognition frame will be introduced. Finally, in chapter 7 conclusions are drawn from

these character recognition results. Appendix A gives a short introduction to calculation of the

Singular Value Decomposition, and appendix B gives the complete listings of the Pascal programs

written during the graduation work.

2

CHAPTER 2. THE CONCEPT OF GENERALISED FOURIER

DESCRIPTORS

2.1. INTRODUCTION

In this chapter the various existing Fourier Descriptors will be discussed. The key idea in all

types of Fourier Descriptors is to apply the Fourier transform on a written curve. The resulting

spectrum is then expected to possess certain characteristics for each letter from the alphabet.

First, the Fourier Descriptors as introduced by Zahn and Roskies [1] will be discussed. This

definition is only valid for simple, clockwise oriented, closed curves. In order to make the concept

of Fourier Descriptors also valid for the more common class of non-simple, non-clockwise, open

curves (such as handwritten patterns), Generalised Fourier descriptors were defined by Vieveen

and Prasad [4], This definition was later modified by Weyland and Prasad to overcome some

restrictions [7]. The latter definition will be used in succeeding chapters.

2.2. FOURIER DESCRIPTORS (FDs).

Let 7 denote a curve in the X-Y-plane. Figure 1 illustrates such a curve with the important

parameters. The idea is not to describe the curve in terms of X-Y-coordinates, but to use the

angle ö(s) of the curve at a distance s from the starting point. In this way, the curve 7 is uniquely
defined with the angle parameter 0 and the distance parameter s, the so-called natural parameters.

Figure 1 Arbitrary closed, simple curve with
important parameters

3

Chapter 2. The concept of GFDs

The total length of the curve is denoted as L. 0(s) denotes the absolute angle of the curve, at a
distance s from the starting point, s lies in the range 0 < s < L, where L denotes the total length
of the curve. It is more efficient to use the angular difference function ^(s) instead, which is
defined as :

^(s) △ 0(s) - 0(0) (2-!)

We observe here that all simple, clockwise oriented closed curves have XL)=-2?r. since the initial
angle coincides with the final angle. The distance parameter can be normalised to the interval

[0, 2n] by introducing t=2jrs/L. Also the phase function is modified in order to let initial angle
coincide with the final angle, by defining :

^(t) △ + t (2-2)

Zahn and Roskies [1] have proved that the X-Y-coordinates can be retrieved from the angular

function according to the so-called reconstruction theorem:

/

Z(l) = Z(0) + dx (2-3)

which is, since Z = X + jY, equivalent to :

x(Z) = x(0)

XO = X0)

i

+ [cos 0(A) dx

I
+ [sin 0(A) dx

(2-4)

We will now try to expand this function into a Fourier series. A Fourier series, however, can be

only obtained for periodic functions. Since <ƒ (t) is not periodic (it is only defined in for 0<t<2?r),

a periodic version will therefore be made of *(t) as follows :

co

k--«>
kT <t < (k+V)T (2-5)

where k= ...-3,-2,-1.0,1,2,3,... and T<2%. This periodic function can be expanded into a Fourier
series as follows :

4

Chapter 2. The concept of GFDs

i/>(t) = Mo +£ (a^cos kt + è^sin kt)
*=i (2-6)

oo

= M0 +£ ^COS(fo - ak)

k=l

where (Ak ,ak) are the polar coordinates of (ak ,bk). Ak represents the kth harmonic amplitude and

ak represents the kth harmonic phase of the spatial frequency spectrum. According to Zahn and

Roskies [1] Ak and ak are the Fourier Descriptors (FDs) of the curve 7. The following relations

hold between the FDs and the Fourier coefficients of the curve 7 :

Ak = » tan ak = biJak

In order to calculate the FDs, the values of the Fourier coefficients ak and bk must be calculated

first. The following relations hold for the Fourier coefficients :

2%
[rm*

27T
an = - r<^*(t) cos nt dt (2-8b)

TT J

27T
bn = - f <^*(t) sin nt dt (2-8c)

Tf J

At this point all the formulae are derived to calculate the FDs Ak and ak for the curve 7. In

practice, however, we do not have the actual function (t) at our disposal, but a sampled angular

function which comes from the writing tablet, on which characters are written for experiments.

Since the writing tablet has a certain resolution, the angular data can be considered as a sampled

version of the actual phase function. When the curve 7 is, by the sampling process, divided into
m sections, we have the m different straight line-pieces lk and corresponding angle sections A^j.

Vieveen and Prasad [4] have proven that the following relations hold :

1
Mo = - 7 X ^k

n k=l

5

Chapter 2. The concept of GFDs

1 m- — z ^<t>k sinan
2nnlk
~L~

(2-9b)

bn
1 m

= — Z cos
k=l

2-nnlk
~L~

(2-9c)

So far, the formulae of importance and as defined by Zahn and Roskies [1] are discussed. For

applications of these formulae in order to retrieve shape information and similarity functions, we

refer to the paper by Zahn and Roskies [1], In their article, also experiments are performed,

which demonstrate the usefulness of the FDs for recognition purposes.

23. GENERALISED FOURIER DESCRIPTORS (GFDs).

As mentioned earlier, FDs as discussed in the previous paragraph, are only applicable on

simple, closed, clockwise oriented curves. Of course, for character recognition purposes, this is a

severe restriction, since most alphabetic characters are often non-simple, open, non-clockwise

oriented curves, or combinations of these. Therefore, Generalised Fourier Descriptors (GFDs)

were defined by Vieveen and Prasad [4]. A better definition was later given by Weyland and

Prasad [7]. Both versions of GFDs are discussed here and some applications are given to straight

lines and circles, which are an important class of curves.

23.1. Two definitions of GFDs

In order to allow also non-clockwise oriented, non-simple, open curves, a parameter £ is
introduced. The first definition of GFDs starts with the following transformation of the phase
function <£(s) :

+ e = (2-10)
Zn Z -7T

It can be seen that this definition is compatible with non-simple, non-clockwise oriented open

curves. If < = 2, the definition for FDs is obtained. Since £ = ^(L)/-5r, it follows that ^(L) =
which is, in the = 2-case, equal to -2w, thus describing a closed curve, according to the

6

Chapter 2. The concept of GFDs

definition of FDs. If 2, the curve 7 is an open curve. The distance parameter t ranges from
0 to 2%. Thus, by introducing the parameter f, the Fourier Descriptors-concept is generalised for
more common use. The remaining transform considerations are the same as for the FDs, resulting

in the same expressions for the Fourier coefficients ak and bk. The expression for p0 is slightly

different with the introduction of the parameter £ :

e 1 m

2 Lk=l

Vieveen and Prasad [4] also give a perturbation analysis, that is, expressions for the Fourier

coefficients of perturbated curves.

A second definition of GFDs was introduced by Weyland and Prasad [7]. In this definition,

the same parameters are used as in the previous definition, but the ranges of the parameters are

modified. In this case the transform in s-domain is as follows :

^*(0 = ^Lt) + 2n^t (2-12)

The parameters t and < are defined as :

I 0 (2-13)

{ a (2-14)
2%

where 0 < t < 1, and £ = 1 for a simple, clockwise oriented, closed curve. The spectral
consideration remain the same as in the FDs-case, where this definition for </(t) should be filled

in. In this new definition, the distance parameter t is more naturally normalised to [0, 1] instead

of [0, 2?r]. Also < has a more natural normalisation : for £ = 1 we have a closed curve.

23.2. GFDs applied on two important curves

In this section we will discuss the application of GFDs according to Weyland and Prasad (eq.

(2-12 to (2-14)), to the special case of a linear function ^’(t). It is useful to point out here, that

this case covers two cases of the curve 7.

7

Chapter 2. The concept of GFDs

First, when <£(s) is constant, 7 is a straight line. When transforming the angular function <^(s)
to the normalised angular function ^*(t), the latter will also be a constant function, since £ = ^(L)

= 0. It is important to notice however, that when the curve 0 under consideration is part of a
curve with starting angle different from final angle (which implies that # 0), the constant part
will be increased by a linear part equal to So in this case (which is a common case) the
normalised phase function <ƒ (t) is not a constant, yet it represents a straight line section.

Secondly, when ^(s) is a linear function, 7 is a circle, since circles are the only figures that
possess constant differential angles, measured along the arc distance. In this case, the </(t)-

function will be the sum of two linear functions (one from the original linear <£(s)-function and
one linear addition from the fact that £ # 0), which is generally a linear function itself, or a
constant in exceptional cases.

Now that we have pointed out that a linear function <£*(t) is a powerful function to examine,

we will calculate the GFDs for this case.

Suppose that ^*(t) is a linear function which connects the points {tv and {t2, <f>2}, as

plotted in figure 2.

Figure 3 Derivative /c*(t)
of ƒ(!)

Figure 2 Linear
normalised phase
function <ƒ (t)

We have included also the derivative of At), **(9 in fig. 3, because it will appear to be easier

for calculations. As k is defined as :

8

Chapter 2. The concept of GFDs

dt
(2-15)

we have the following expression for zc*(t) :

«*(0 = - Uit-tj} + (2'16)

where U(t) denotes the unit step function and k*12 = (^2 - 0i)/(t2 - ti)- Because /c*(t) is the

derivative of ^’(t), the following relation holds in frequency-domain :

■ 4- K’O) -1
f2vf 2

(2-17)

We observe here that

co

K(0) = ƒ k*(0 dt = (^2 - Mi ~ <£2 =0
—oo

(2-18)

When working out these formulae we obtain the following results for the real and imaginary part

of the frequency spectrum $*(t) :

♦
a ^12

Re[* (/)! = (cos 2nft2 - cos 2^ftf)

+ — sin 2nft4 - — sm 2nft1
2nf 2nf

(2-19a)

and

^1?
(/)] = (sin 2nft2 - sin 2^)

4% ƒ
^2

+ — cos 2^^ - — cos 2irft.2*f J 2 2nf 71

(2-19b)

Furthermore, it can be shown that, if <£*(t) is a real function (which is the case), then the

Fourier coefficients are related to the frequency spectrum $ (f) as follows :

Mo = ^*(°) (2-20a)

9

Chapter 2. The concept of GFDs

ak = 2/0 Äe[$*(^0)] (2-20b)

bk = -2/0 Im [eWJ] (2-20c)

When filling in the expressions for the real and imaginary part of the spectrum, we obtain the

following expressions for the Fourier coefficients :

^2
= X ------- 7 (cos 2,r^2 - cos 2^1)

2^ ^To^-^r) (2-2la)
^2 .

+ sin Znkffa - — sin 2nkf(/1

bk =
^2 -<^1

2?r
(sin 2^^ - sin

(2-21b)

cos Inkf^ - cos Zitkf^
irk

The GFDs are obtained by substituting these results into eq. (2-7).

Summarising, we now have formulae for calculating the GFDs for the important class of

straight lines and circles. At this point, it is obvious that many handwritten characters either

consist of these two basic curves, or can be approximated by these. In succeeding chapters this

idea will be developed and the formulae obtained above, will be applied on actual handwritten
characters.

But first we have to take some resolution aspects into consideration, since they pose

constraints on the number of samples and the frequency resolution.

233. Resolution requirements for GFDs in time and frequency domains.

Since we use a writing tablet or digitizer for recording curve-data, a sampling process is

involved. It can intuitively be felt, that certain curves cannot be detected by the digitizer, if the

resolution is too small. In this respect, we will speak of the spatial bandwidth W of the curve 7.
This bandwidth has, analoguous to time signals, a relation with the curvature function /c’(t), as

10

Chapter 2. The concept of GFDs

follows :

2?r
(2-22)

where /c*(t) = d<^’(t)/dt. According to the Nyquist sampling theorem, fs = N/T > 2W.

Furthermore, T > 1, because t runs from 0 to 1. It follows then that

l**^) Lax nN
~T

(2-23)

or,with the definition of «’(t) :

N <
2f “

N
2

(2-24)

At this point, we can decide to assign optimal resolution. By definition, optimal resolution is

achieved, when the resolution in the t-(spatial) domain equals the resolution in the f-(frequency)

domain. To be more precise, equal resolution means that the number of nonzero samples are (

nearly) equal in both domains. Since 0 < t < 1, and ^*(t) does not contain frequency components

larger then W, the maximum number of nonzero t-samples is then

=
J_ = N
Ts T

(2-25)

with Ts = T/N the sampling time. The number of nonzero frequency-samples is :

Nf- = WT (2-26)

Optimal resolution is, by definition, obtained if Nt = Nf, leading to :

N
W

(2-27)

When we substitute this value into the resolution terms, the following maximum number of

nonzero samples will be :

11

Chapter 2. The concept of GFDs

Nt = Nf = J NW (2-28)

Thus, when we know the maximal curvature zc*(t) (and thus W), and the total number of

samples N, we have defined the maximum number of nonzero samples for both t- and f-domain,

which can be considered optimal scaling conditions for both domains.

12

CHAPTER 3. CURVE-FITTING USING ANGULAR
DATA

3.1. INTRODUCTION

The application of the formulae, discussed in chapter 2 requires curves that consist of straight

line pieces and arcs of circles exclusively. Naturally, man’s handwritten characters do seldom

possess this property. Therefore, in order to use the formulae, we first have to process the data

which comes from the writing tablet. Here we can make a choice whether to use the absolute

angles or the ordinary x-y-coordinates. In this chapter angular data will be discussed. Also some

drawbacks will be found when choosing for the angular data. These drawbacks will be discussed

in the last paragraph of this chapter.

3.2. PARTITIONING THE SET OF ANGULAR DATA

Assume that we have a set of N absolute angles {0[1]...<£[N]} at our disposal. These angles
come directly from the writing tablet. As an example fig.4 gives such a plot which consists of 16

samples.

Figure 4 <^-plot for a handwritten pattern.

As expected, the plot does not consist of large pieces of straight lines. We now want to make the

following partition :

{^[1]...^[N]} = {{^[l]..<^[k]}, {^[k+l]..^[m]},..,{^[p+l}..^[N]}}, where each subset consists of

13

Chapter 3 Curve-fitting using angular data

points of one straight line. This partition results in sections of straight lines, thus the

corresponding curve in the x-y-plane consists of straight line pieces (when <f> is constant) and arcs
of circles (when is a linear function).

Next, a rule must be found to make the partition. A suitable function to use is the first

derivative of <f>, that is (a^ =). When the absolute value of exceeds a given value

of (% - c), then the preceding points belong to the same subset and the following points belong
to the next subset. All values of A^ are checked likewise and finally we have the partitioning of
all N points of <£.

As an illustration, the first derivative function of the function from fig.4 is here plotted in fig.

5.

Figure 5 A./,-derivative plot of fig.4

We can indicate the two biggest peaks in fig. 5 at sample numbers 4 and 7. Therefore, we can

make the following partitioning: {^[1..N]} = {{<£[1]..^[4]}, {^[5]..^[7]}, {0[8]..^[16J}}.
The next step is to obtain the best straight line pieces for each sub set. This is will be

discussed in the next section.

33. CURVE-FITTING TECHNIQUES TO APPROXIMATE ARBITRARY CURVES WITH

STRAIGHT LINES AND CIRCLES

To obtain straight lines from a data set we use the least squares technique [9]. This well

known technique gives the best solution in the sense of least squares. This section will treat

calculation for one subset of angles <£ only, since the calculation is the same for all subsets.
Suppose that we have a subset {<£[k+ l]..^[k+n]}, consisting of n points. These n points have

to be fitted in the best linear function of the form <£ls[i] = C«i + D ,where i=k+l,..,k+n, and C

14

Chapter 3 Curve-fitting using angular data

and D unknown, real numbers. We can write this as Ax = b which is the following equation :

1 k+1

1 k+2

1 k^

^+1]

4^+3] (3-1)

1 k+n />[k+n]

This equation has no solution for [D C]T (if the columns are independent) since the system is

overdetermined. However, we can find the best solution in the sense of least squares, that is

minimizing the sum of errors :

n

1=1
(3-2)

The solution which minimizes this error sum is given in Strang [9] :

xls = (ATA)1ATb,which can in our case be filled in as :

1
n n 2

«E (*«)2-E (*«•)]

1=1 1=1

i=l

n
-E W

i=i

-E (k-i)
1=1

n

D

C

1 1 . . 1

jl+1 it+2 . . k+n

4>^+2]
(3-3)

4>[*+n]

Working out these equations result in expressions for C and D:

15

Chapter 3 Curve-fitting using angular data

n n n n
CL - CL)■ CL (*«■)•*[*«!)

D = _____________ ill________ _____________ (3-4a)
n n

n ■ L - (L 'I2

1=1 /=1

n n n

Q _ 1=1 1=1 /=1)
n n

n L - (L)2
/=1 1=1

These expressions can now be filled in the equation 0ls[i] = C»i + D, resulting in the best straight

line according to the least squares error.

We could now apply these results to all sections of the ^-plot and we would then have a 01S-

plot which would consist of straight line pieces only. However, we will not go further here because

this method has some drawbacks which will be discussed in the next section.

3.4. DRAWBACKS WHEN EMPLOYING THE ANGLES AS INPUT DATA

As mentioned, the method described in the previous section has some drawbacks, that is why

we will not use it in the course of the investigation.

First, the angles give only information about the successive angles in the drawn curve. Equal

sampling distance along the arc of the curve is assumed. However, when employing DCC-codes,

not all angles correspond with the same arc length. This can be seen from fig. 6 on the next page

: the distance from the origin to point 1 is J 2 times bigger than the distance to point 2.
Secondly, when applying the least squares technique to the ^-plot, we do not consider the

consequences in the x-y-domain. We will be ensured that there will be only straight lines and arcs

of circles in the new curve, but we do not know to what extend the curve has changed in the x-y-

plane.

When we use the x-y-coordinates of the curve instead, we have none of the disadvantages

mentioned before. We can then compute the best straight lines in the x-y-plane. But we must in

this case also compute the best circles in the x-y-plane. Fortunately, numerical methods exist to

obtain these. Employing x-y-coordinates has the advantage that we can clearly define an error

criterion in the x-y-plane which has to be minimized in order to approximate for the best curve

16

Chapter 3 Curve-fitting using angular data

1

* 2

Figure 6 DCC frame : fields 1 and 2 have
different distances to the centre.

that consists of straight line pieces and arcs of circles only. In the next chapter we will discuss this

method.

17

CHAPTER 4. CURVE-FITTING IN THE X-Y-PLANE

4.1. INTRODUCTION

In the previous chapter a method was developed for curve-fitting using angular data. However,

some drawbacks were found as well. In this chapter we will discuss curve-fitting techniques in the

X-Y-plane. The disadvantages as encountered in the previous chapter will vanish, and important

advantages will appear. We will try to find the best estimate in some sense for the written curve.

The best straight lines in the x-y-plane have to be found as well as the best circles. Also a suitable

rule must be found to decide whether to apply the straight line approximation or the circle

approximation. All these matters will be covered in this chapter.

First, straight-line approximation will be discussed and then circular approximation.

4.2. FITTING STRAIGHT LINES TO AN ARBITRARY SET OF X-Y-POINTS.

When we want to find the ’best’ straight lines, given a set of x-y-coordinate pairs, we first have

to define what is best. Therefore we will consider a suitable error criterion in the next subsection.

Once we have defined this criterion we can optimize the error with respect to this criterion.

4.2.1. Error criterion for straight line fitting.

At this point we clearly have to distinguish from chapter 3, in which we have defined the error

to be minimized as stated in formula (3-2). There, we assume uncertainty to occur in the <£-data
only, not in the i-values (sample numbers). Therefore, we have used the least squares technique.

When working with x-y-coordinates however, uncertainty occurs in the x-coordinate as well

as in the y-coordinate. We may no longer use the least squares technique. Instead, we will use the

so called total least squares technique (TLS).

To give a better understanding of the error criterion we have shown two plots in figures 7 and

8. In fig. 7 the least squares are applied, while in fig. 8 the total least squares are applied.

18

Chapter 4 Curve-fitting in the X-Y-plane

We can also formulate the error considered in the total least squares problem. We give some

equations of importance here. First we want a linear function

A x{ + By. (4-1)

This can be written as the following algebraic equation :

1

x2 1

Xn 1

yt

yz

yn

(4-2)

which has the form Cz = y, where z is the unknown vector [A B]T and uncertainties occurring

in the matrix C (which contains the x-coordinates) and the vector y. If we include the error terms

in the formula we have :(C + E)z = y + r, where E is the error matrix due to uncertainties

in the x-coordinates and r is the error vector due to uncertainties in the y-coordinates. Now the

total least error problem can be formulated ([11], [14]):

minimize ||[E|r]||F (4-3)

where [E | r] is the matrix obtained after putting the vector r behind the matrix E. Furthermore,

* J] denotes the Frobenius norm, e.g. ||P||F2 = SjSj | Py |2- (For a comparison, minimizing || (C +

E)z - (y + r) II2 would solve the least squares problem). When a minimizing matrix [E|r] is found,

then any vector z satisfying eq. (4-3) is said to solve the total least squares problem.

19

Chapter 4 Curve-fitting in the X-Y-plane

4.2.2. Solving the Total Least Squares problem.

When solving the total least squares problem (that is minimizing the total error matrix as

mentioned, we need the singular value decomposition of the matrix [C | y], that is the data matrix

which consists of the matrix C and the vector y.([11]). This gives a factorization of an mxn-matrix

P into P = UsVT , where S is an nxn- diagonal matrix which contains the singular values of the

matrix P, and U and V are orthogonal matrices. A discussion of this decomposition and its

computation is given in appendix A

Once we have obtained the singular value decomposition of the data-matrix [C | y], we have

to normalize the column of the matrix V corresponding with the smallest singular value. This

vector will be the solution z = [A B]T to the total least squares problem. Assume that we have

the singular value decomposition C = UsVT, with U = {up.-.Un+j} and V = the

column partitions of U and V. Note that there are n+1 columns because we consider the

decomposition of the n column matrix C extended with the vector y which makes the matrix [C | y]

(n+l)-columned. Let the singular values a be ordered as follows : <71>...>crk><7k+1=...=an+1. Let

Sc = span{vk+1,...,vn+1}. Suppose we can find a vector v in Sc having the form

then the solution is then given by

z = [A B]t = -y/a. (4-5)

If an+1 is a repeated singular value, then there is no unique solution. However, in this case we

can find a unique solution by applying a suitable Householder transformation :

[] • Q =
w Y { n-k

0 a 11
(4-6)

20

Chapter 4 Curve-fitting in the X-Y-plane

4.23. Some calculation examples to obtain Total Least Squares solutions.

Here we will bring the theory of the Singular Value Decomposition into practice. We will first

define a set of (x,y) points on which calculations will be performed. Suppose that we have the

following set of data points

Table I: Pairs of X-Y-coordinates to use for total least squares problem.

X i 2 2 2 3 4 4 4 5 6

y 0 0 1 2 2 2 3 4 4 4

These coordinates can be plotted out in graphics and are displayed in figure 9.

Figure 9 X-Y-coordinates for total least
problem

The problem now is to obtain the best straight line solutions in y = ax + b. This system can be

written as y = [x, [1 1.... 1]T] . [a b]T , for our set of data leading to :

21

Chapter 4 Curve-fitting in the X-Y-plane

a

b
(4-7)

For purpose of Least Squares Solutions, as described earlier, we have to rearrange this system in

the following way : [x, [1 1 1.... 1]T, y] = 0. The singular value decomposition for this matrix

is A’ = U S VT and it is as follows :

1.000 1.000 0.000
2.000 1.000 0.000
2.000 1.000 1.000
2.000 1.000 2.000
3.000 1.000 2.000
4.000 1.000 2.000
4.000 1.000 3.000
4.000 1.000 4.000
5.000 1.000 4.000

-0.069 0.436 0.389
6.000 1.000 4.000 (4-8)

-0.125 0.637 -0.024
-0.165 0.276 0.271
-0.205 -0.084 0.567
-0.260 0.117 0.154
-0.316 0.317 -0.259
-0.356 -0.043 0.036

•

14.334 0.000 0.000
0.000 2.105 0.000
0.000 0.000 1.053

•

-0.795 -0.199 -0.573
0.422 0.497 -0.758
-0.435 0.845 0.311

-0.396 -0.404 0.332
-0.451 -0.203 -0.081
-0.507 -0.003 -0.494

22

Chapter 4 Curve-fitting in the X-Y-plane

with the diagonal matrix containing the three different singular values. Note that the matrices U

and VT are orthogonal. Also note that the singular values are put in decreasing order. In general

the system is overdetermined, that is, the singular values are different. In this case the solution

for the vector [a b]T is given by [-v[3,l]/v[3,3], -v[3,2]/v[3,3]] = [0.435/0.311 , -0.845/0.311] =

[1.39 , -2.71]. This means that the equation is : y = 1.39x - 2.71. This function is plotted together

with the sample points in figure 10.

Figure 10 Total least squares solution yielding
a straight line

43. FITTING ARCS OF CIRCLES TO AN ARBITRARY SET OF X-Y-POINTS.

We will now try to find the best circles, given a set of x-y-coordinates. As in the previous

sections, we also have to define an error criterion which is to be minimized. In this case we will

have to cope with circles which are by nature non-linear. Therefore we cannot make use of the

algebraic convenience which we had in the previous sections. Instead, we now have to make use

of numerical methods to find the best arcs of circles. Fortunately, a suitable method is found and

will be discussed.

43.1. An error criterion for circle-fitting.

In figure 11 on the next page the errors are plotted as the dark lines. These errors are similar

as in the straight line case, but the formula for the error will be different since we are dealing

with circles now. Figure 11 gives an intuitive justification of the error criterion.

23

Chapter 4 Curve-fitting in the X-Y-plane

Figure 11 Errors in estimation of circle arc

In order to perform calculations we have to cast the error in a formula. We observe that

n
e-Y ^Xi-mx)2+(yi-my)2 - r2)2 (4'9)

1=1

with mx the x-coordinate of the centre of the circle, rriy the y-coordinate of the centre, and r the

radius of the circle. So we have three parameters, to which we will optimize. The error is just the

square of the difference between the Euclidian distances from the data points to the centre of

the circle, and the squared radius of the circle, summed over all the data points.

When we work out this formula we get :

n
r 4 4 3 A 3 r 2 2 4 4 A 3 A 3 ^22e =E [Xi ~4mSi -^i -^yyC^i^y *

/=1

4.22. 2 n 2 2 .2 o^yi mx -^y^y^^yr

+201^+2mpny -h2^ +4r2‘xjnx -

(4-10)

This error has to be minimized with respect to the three circle parameters m^ rriy and r. That

means that we have to take the first derivatives with respect to m^ rriy and r and set them equal

to 0. The resulting non-linear system is not easily solved. For this reason we have to solve this

24

Chapter 4 Curve-fitting in the X-Y-plane

problem numerically. Several methods exist for solving these non-linear problems [10]. First a

motivation for use of the simplex-method will be given.

43.2. THE SIMPLEX-METHOD TO SOLVE THE NON-LINEAR TOTAL LEAST SQUARES

PROBLEM

43.2.1. Motivating the use of SIMPLEX-method

We first want to give a motivation for choosing the simplex method, before starting to work

with it. It is clear that we are forced to use some numerical method, since the expression in eq.

(4-10) is too complex to obtain a direct analytical solution.

Various numerical methods for optimizing a function exist (see [10]), often using the

derivative of the function to be optimised (steepest descent methods, among others.). These

methods imply that the derivative must be calculated first. This calculation would in our case be

executed three times, since we have a three-parametered error function eCn^, niy, r). Considering

the complexity of eq. (4-10), it would be wise to use a method which does not need these

calculations, since they can easily introduce writing mistakes. The simplex-method does not require

these derivatives, it only requires first estimates of the parameters (m*, niy, r).

Furthermore, since the X-Y-coordinates of handwritten curves are generally not functions (

where one X-coordinate must correspond at the most to one Y-coordinate), but arbitrary curves.

It then seems preferable not to use gradient methods. Moreover, the simplex-method is not

difficult to understand graphically, in contrast with the analytical gradient methods. Given these

considerations, we will now discuss and apply the simplex-method. In order to avoid confusion,

we stress here that the simplex-method, used here, is not the more famous linear programming

simplex-method. The simplex-method which we will use, is a non-linear optimising algorithm.

43.2.2. Initial estimates for (m^ niy, r).

When we have N points under consideration, we can start the estimation by observing that

the centre of the circle roughly lies on the perpendicular bisector of the line connecting the first

point (xj, y!) and the last point (xN, yN). The situation is depicted in fig. 12 on the next page.

25

Chapter 4 Curve-fitting in the X-Y-plane

Figure 12 Some data points and perpendicular
bisector for estimation of centre
of the circle.

We can easily write the vector representation of this line. Since the direction of the line piece

between (xv yj) and (xN, yN) is given by

yN-yi
withXeR (4-11)

and the midpoint of the bisection is given by

^mp

Vmp

If A
2(xi+x^)

^ycy^
(4-12)

the vector representation of the perpendicular bisector is

mx

i/ /

+ A
' (y^i) '

(4-13)
my. \^yN)

Now we have to find a suitable value for A. This value has a certain relation with the radius of
the circle. If the estimation of the radius r^j^ is known, we can make the following choice for

A :

26

Chapter 4 Curve-fitting in the X-Y-plane

^estim
restim

(4-14)

which means that A has the value of the estimated radius, normalized to the length of the
direction vector.

Now we only have to make a proper estimation for the radius r. We base this estimation on

the knowledge that the curvature of a circle, k = dö/ds, where 0 is the angle along the arc length
s. We can then take the mean value of k :

Kmean
(^-2)

(4-15)

Note that the mean is taken over the (N-2) available angle difference-points, since N points

correspond with (N-2) difference angles. Now rg^ = 1/k and we have found an estimate for the

radius. This can now be filled into equation to obtain the corresponding centre (m*, niy).

This first estimate can now easily be used to obtain the other three vertices of the simplex.

We could for example take the following four points : {(n^>estim, niy r^), (m^^+5, niy,

estim’ restim+ 6), (m^ estim’ estim+ ^estim)’ (mx, estim’ my, estim’

restim+^ where 5 is a small number tat could for example be set equal to rg^/l0.

Now we have completed our task to find four starting points . These points will be submitted

to the simplex method, which is an iterative method, converging to the minimal error solution. It

will be discussed in the next section.

43.23. Converging to the minimal error

Starting with the first simplex, the coordinates are filled in the error function (eq. 4-10) for

each of the four vertices. The highest value is taken out and reflected, this reflection process is

illustrated in fig. 13 on the next page.

27

Chapter 4 Curve-fitting in the X-Y-plane

Figure 13 Reflection process in the simplex
method

As shown in fig. 13, the points a,b,c and d span the initial simplex. The coordinates of point a give

the largest value when filled in the error criterion. This point a is then reflected to point e and

the a new simplex {b,c,d,e} is formed, from this simplex, point c gives the largest error, so it is

reflected to point f, resulting in the new simplex {b,d,e,f}. This process is repeated until the error

differences in proceeding points are small enough. A suitable convergence criterion is [10] :

(4-16)

where the index i stands for the i-the vertex of the simplex, and the index 0 for the centroid of

the simplex, defined as :

mxfi

myfi

ro

1 "+1
n £ my/

(4-17)

where h stands for the index corresponding with the highest value of the error. The centroid is

the point in the mirror plane point through reflection is performed. Now the reflection point can

be found as :

where a is the reflection coefficient (can be set to 1), 0 means centroid and h means the highest
error of the simplex points.

In fig. 13 it may occur that the after reflection of a to e,e is the point which results in the

highest value of the error. This means that e is reflected to a and the process does not converge.

28

Chapter 4 Curve-fitting in the X-Y-plane

eflex mXfi

my reflex = (1**) myfi - a ^yh

freflex ro rh

(4-18)

We can overcome this problem by making a rule that no return can be made to previous points.

If, after reflection, this new point is found corresponding to the smallest error in the simplex,

we can assume that the minimum is in this direction. The process can be speeded up by

expansion, that is, moving this point further in the direction of the centroid. The new point is

then given by :

m
xy A x,0

= 7 myr * (1-7) ”yfi

re rr ro

(4-19)

where 7 is the expansion coefficient, r refers to the previously obtained reflection point, 0 to the
centroid. The subscript e refers to the expanded point and will replace the reflected point, thus

constructing a new simplex. After this operation a new reflection will be performed etc.

If, on the other hand, a point is found after reflection which corresponds to the largest value

in the new simplex, we must make the simplex smaller because the minimum is somewhere in the

simplex. This is accomplished by contraction :

(1-Z?) myfi (4-20)

0

Rao [10] has given a flow chart of the simplex method. Based on this flow chart a Pascal

program has been implemented, which is listed in appendix B. In the next section some illustrative

calculations are performed, with the aid of the Pascal program.

433. Calculation results of circular fitting.

Some calculation experiments have been performed on circular matching as well. As an

29

Chapter 4 Curve-fitting in the X-Y-plane

example, lets us consider the 10 pairs of x-y-coordinates listed in the following table.

Table II : Pairs of X-Y-coordinates to be used for solving the circular matching problem.

X 10 20 30 40 50 60 70 80 90 100

y 15 20 24 20 25 23 15 12 7 0

The plot that is represented by these coordinates is displayed in fig. 14. After computation

according to the SIMPLEX-method, we obtain the following values for the circle parameters : m*

= 43.960, rriy = -48.138 and radius r = 71.635. In the calculations we have set the error criterion

to smaller than IE-5. Also a plot can be made together with the calculated circle, which is

approximated according to the smallest error as defined in paragraph 3.3.1. The resulting plot is

displayed in figure 14.

Figure 14 Circle matching, resulting in an arc
of a circle

30

CHAPTER 5. APPLICATION OF X-Y-CURVE-FITTING ON
HANDWRITTEN CHARACTERS.

5.1. INTRODUCTION.

So far we were able to extract the best approximations in the (total) least squares sense, for

arbitrary sample data. We have applied the calculation methods on some ad hoc samples. In this

chapter we will switch over to real applications, that is on handwritten characters. The written

character first has to be divided into sections which can then be treated separately. First a

partitioning process will be discussed, in order to divide the character into separate pieces. Then,

some consideration will be given to the decision whether to assign circles or straight lines.

5.2. PARTITIONING THE CHARACTER.

5.2.1. Partitioning based on peak-detection.

For this purpose, the absolute difference of the relative, normalised angles, that is I △^*[i]l ,

will be used. It is felt, that whenever this function has a large value, partitioning must take place,

on the other hand, when the absolute value of the difference in succeeding angles is not too large,

these values will probably belong to a set of points that can be approximated either by a straight

line or a circle arc. In this investigation, we have decided to allow for a maximum of 5 peaks in

the character. Practice has shown that most characters of the alphabet can be split up into 3 to

5 sections. For example, the letter ’k’, is a rather peaky character and contains 4 to 5 peaks in the
absolute differential angle function I △0*[i]l , depending on the writing style. For use on other then

Greek alphabets, the number of sections may be chosen higher.

As an example, the character ’k’, was drawn on the writing tablet. The X-Y-coordinates were

registered, containing 54 samples. From this data-file, a plot was draw (fig. 15 on the next page

), displaying the character itself.

31

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

Figure 15 Example of a character, displayed
on the basis of X-Y-coordinates.

From the X-Y-coordinates of this plot, the absolute angles 0[i] can be achieved, being 0[i] =
arctan((yi+1 - yi)/(Xi+1 - Xj)). From these, the relative angles <£[i] can be obtained, from the relation

^[i] = 0[i] • ^[0]. These points are displayed in fig. 16.

Figure 16 Relative angles ^[i] for a
handwritten curve

For partitioning, we now wish to define large steps in the ^[i]-plot in fig. 16. It is not quite
obvious where these steps are from fig. 16. Therefore we will apply the difference operator on
these data. We will calculate I A<£[i] I = abs { <£[i+l] - <^[i] }. The resulting plot is displayed in
fig. 17 on the next page and it shows very clearly the peaks in difference at positions i = 21, 36,

45 an 51. From this plot, we can decide to make the partitioning {^[1]..0[54]} = {^[l]...^[20]},
<£[22]...^[35]}, {^[37]...^[44]}, {0[46]...<^[5O]}, {^[52],..<£[54]}. Note that in this partitioning, we
have not filled one sample between two successive subsets. In a following paragraph we will give

attention to the filling in of these sections. Now we will discuss a peak-detection algorithm.

32

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

Figure 17 Absolute difference phase function
to detect peaks.

5.2.2. A special peak-detection algorithm.

An algorithm has been implemented, which detects the five biggest peaks out of a set of N
samples [I V...J A^l N], Five peaks are enough, since characters have often only few peaks in

their I -function. Initially, the five first samples of the set I A<^l 1,...J A^l 5 are ordered and

stored in the variables peak[l]...peak[5], where peak[l] denotes the largest value and peak[5] the

lowest. Also the positions where these peaks occur, are registered. Therefore, we introduce the

variables peak_location[l],...,peak_location[5]. Peak_location[l] for example, denotes the position

i where peak[l] (the largest peak) occurs. In fig. 18 the situation is outlined.

When the five first samples are ordered as described, all other remaining samples are examined.
For example, if I A^l 6 < peak[5], that is, smaller than the lowest peak, then this value I A<^l 6 will

be neglected and the next sample (no.7) will be examined, etc. On the other hand, if I A^l 6 >

peak[5], several possibilities arise :

1) peak[4] > I A^l 6 > peak[5]

In this case, peak[5] at [peak_location[5] = 4, will be discarded and the new peak[5] will
have the value of I A<^l 6 and peak_location[5] will become 6. This procedure is illustrated in

fig. 19.

33

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

Ia4>I j'

peak[1]

peak[2]
peak[3]
peak[4]
peak[5]

Figure 18 five peaks withe their ordered
values and the positions where they
are situated.

peak[1]

peak[2]
peak[3]
peak[4]
peak[5]

loc[2] k>c[1] loc[4] k>c{5] loc[3] 6 I
--------->

Figure 19 removal of an old peak when a new
peak if found.

2) peak[3] > I A^l 6 > peak[4].

Here, peak[5] at peak_location[5] =4, will be discarded. The new value of peak[5] will become

the old value of peak[4] and peak_location[5] will become the old value of peak_location[4]

(=3 in our case). Fig. 20 on the next page gives an illustration of this situation.

3) peak[2] > I 6 > peak[3]. This situation will be treated likewise.

4) peak[l] > I A^l 6 > peak[2]. This situation will be treated likewise.

5) I A<^l 6 > peak[l]. This situation will be treated likewise.

34

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

Ia4>I j'

peak[1]

peak[2]
peak[3]
peak[4]
peak[5]

Figure 20 Another peak is found > peak[5J.

So far, only sample number i = 6 was examined. After this point is examined as described, point

number 7 will be examined in the same manner. This procedure continues until all N samples are
examined. The resulting ordering gives the 5 biggest peaks of the N samples of I A^l -data.

5.23. Removal of ’false’ peaks.

The peak-detection procedure has been explained in the previous paragraph, but the point
was to extract 5 peaks from the set of N values I . In normal characters, there are often less
than 5 peaks, which means that we have included too many peaks. In this section we will discuss

the removal of these ’false’ peaks. ’False’ peaks can occur due to two reasons.

First, suppose that we have a peak, which is smeared out over two samples, as illustrated in

fig- 21.

i

Figure 21 Two apparent peaks

Here, we would detect two peaks, at positions 4 and 5, while there is actual only one peak. This

35

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

problem can be overcome by introducing a variable called DIST (from distance). If a new peak

is found, (say, at location 5 in fig.18), it will only be considered a peak, if its location lies a

distance > DIST away from the latest peak so far (that is the peak at location 4 in fig. 21). If

distance > DIST, there is no danger that the peak is part of a bigger peak. When the distance

of the current peak is smaller than the latest peak found (and there is a possibility that the

current peak is part of a bigger peak), and this new peak is bigger than the latest peak found so

far, then the old peak is replaced by the new, bigger peak. In this way, we are ensured that we

pick the largest values of the plot.
Secondly, suppose that we examine the character ’o’. This character has a rather flat I A^l -

function as depicted in fig.22.

i

Figure 22 flat plot with no real peaks.

In this case, we can consider the largest values found as false peaks, since there are no peaks at

all. We can decide that the peaks are false in this case, when the values are larger than a factor

times the mean of all samples. This threshold will save us from detecting false peaks.

5.2.4. Insertion of connecting areas.
In fig. 17 we could make a partitioning of the N I A^l -samples, based on the sharp peaks in

the plot. We have made the following partition : {0[1]...<£[54]} = {{^[l]...^[20]},
{^[22]...<^[35]}, {<£[37]...^[44]}, {^[46]...0[5O]}, {<£[52]..0[54]}}. We have left open spaces of two
samples between positions 20-24, 35-37, 44-46 and 50-52. This is done for smoothing purposes.

We can explain the reasoning here by taking a look at fig. 23 on the next page.

36

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

Figure 23 without spacing, difficult matching of
two sections (upper), with some
space, smooth matching possible
(lower).

In the upper case, we have no spacing: the next section starts at the succeeding sample number.

Suppose, that the next section is approximated as a straight line, it is possible that the best

straight line may lie in a position in which it is hard to match this line with the earlier found best

circle (fig.23 upper). This problem can be overcome by taking some space between two

succeeding sections. As illustrated in fig. 23 lower, this time it is easy to insert a circle-piece

between the two sections. This insertion part must be calculated after all the sections are

approximated in the (total) least squares sense. The insertion sections can be easily found, since

they are generally arcs of circles. The starting angles of the insertion sections are the ending

angles of the previous sections and the final angles are the starting angles of the next section, in

order to provide smoothness. The radius can be kept small, which corresponds with a small

insertion section. In our procedure, we have chosen for a sample width of three samples. It is

important to realize the relations between the various ranges involved. For example, there are N

X-Y-samples [{X, ¥}1,...,{X, Y}N], This implies that there are N-l sample of the differential angle

Consequently, there are N-2 samples of the derivative of this function [I A^l 1,..J N J. It is

useful to realize here, that when a peak is found at position i, the insertion section starts at i and

ends two samples later. This is because we are interested in a partition of the X-Y-coordinates,

and the range of the differential angle functions are different then the range of X-Y-coordinates.

To make this all more clear, fig. 24 gives an illustration of the various parameters with their

subscripts.

37

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

previous fill next
Figure 24 partitioning of a curve into two

pieces, with empty space in between.

We can see from figure 24 that a peak occurs at the 4th sample of I . The «^-values involved

are and 05 and the X-Y-samples involved are (x4, y4), (x5, y5) and (x6, y6). The space between

these X-Y-coordinates are members of the insertion section. In the bar at the bottom of figure

24 this fill-space is drawn, referring to the X-Y-coordinates.

Next, the missing links have to be inserted. In most cases this can be easily done by drawing

a circle according to figure 25, since starting angle and final angle are known. The radius is half

of the distance between the final point of the first section and the starting point of the second

section. A parameter which is very dependent on the sort character is the difference between

starting angle and final angle of this insertion circle. For some characters this difference may be

larger than %, as shown in figure 26.

38

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

Figure 25 Possible turn for Figure 26 Another possible
insertion section turn for insertion.

The decision whether to choose between these two options, is made in choosing a maximum

difference between starting and final angle of the insertion circle, this parameter is adjusted by

hand, which costs extra time. We will see in chapter 6 that the total amount of time to process

a character correctly, can in this case increase up to 10 minutes. This problem could be solved by

first describing the peaks well, and then approximate the sections in between. This is a different

approach which reveals other problems, such as how to describe the peaks, especially, determining

starting and final angles of these peak circles.

53. An algorithm for processing X-Y-coordinates.

We were so far, able to design a suitable partitioning procedure for the inputed character

data. We are also in possession of formulae for calculating the GFDs for each of these sections.

(see chapter 2). Now we are in the position to combine these various formulae and procedures

to make one data-processing algorithm. First, the character is inputed, after which processing of

the data can take place, according to all the mathematics and algorithms discussed.

First, the data are input via the writing tablet. Angles and differential angles are derived from

the X-Y-coordinates, because they are required for the partitioning algorithm. Once the

partitioning is made, we can start to approximate, for each resulting section, the best circles or

straight lines. The decision whether to approximate for best circles or for best straight lines, can

be very easy. First, from all the X-Y-coordinates and angles of a particular section, the radius is

estimated, with the aid of formula (4-15). When we realize that radius r = 1/k, we have a first
estimation of the radius. It is clear that if this estimated radius has a large value, we can consider

the current section as a straight line and start applying the straight line-estimation procedure. If

39

Chapter 5 Application of X-Y-curve-fitting on handwritten characters.

the radius is smaller than some threshold value, the section is apparently a circle arc. Now the

insertion calculations can start, leading to a final split-up of the character. After this partitioning,

we know starting and ending angle, starting and ending sample-number of each section. Now we

can directly calculate the GFDs from this data, making use of the formulae of chapter 1.A PSD

(Program Structure Diagram) of the total data-processing is given in fig. 27. From this point, we

can apply this algorithm on each character of the alphabet, starting the character recognition

investigations. This part will be treated in the next chapter.

make ak>s angles

make rel. angles (J)

make diff, abs /\ (J)

for i;-l to num sections do

make partition

make estimation of radius

YES -----------------------

do SVD for do SIMPLEX
straight lines for circles

write results to file

caclulate fill_ups

calculate GFDs

write results to file

Figure 27 Program Structure Diagram for a
GFDs calculating program.

40

CHAPTER 6. CHARACTER RECOGNITION RESULTS

6.1. INTRODUCTION

In this chapter, we will perform some character recognition experiments. First, the techniques

discussed in the previous chapters will be carried out in full, ultimately revealing the GFDs. Next,

the obtained GFDs have to be compared. The environment in which all the experiments have

been performed is depicted in the figure 28 below. A person’s handwriting is written on a writing

tablet, which digitizes the written curve and sends absolute and relative angles to the personal

computer. All calculations are performed on an AT-286 personal computer .

□

Figure 28 Experimental set-up

Character recognition experiments are often presented on a somewhat ad hoc basis. In order

to achieve objective and more clear character recognition, we will develop a frame in which

experiments are to be performed. It is stated here that the presented frame is merely introduced

to make character recognition more systematic and interpretable. Once this frame is presented,

comparison can be made for a set of characters of the Western alphabet. First the whole

calculation procedure will be discussed and outcome will be shown.

6.2. CALCULATION PROCEDURE WORKED OUT FOR A SAMPLE CHARACTER

As an example to illustrate the use of the mathematical and numerical techniques, discussed

in the previous chapters, we will describe the calculation of the GFDs for a sample character. We

will choose the letter ’a’. Of course the procedure applies to all characters of the Western

41

Chapter 6 Character recognition results.

alphabet. The character ’a’ was first drawn on the writing tablet, yielding relative angles according

to DCC chain codes. Also X-Y-pairs can be obtained from the writing tablet. The X-Y-

coordinates of this character can be plotted out as shown in figure 29.

igure 29 Character as drawn on
the writing tablet

The next step will be to make a suitable partitioning of the character. As described before, this

partitioning is done using a peak-detection algorithm, which traces peaks in the differential angles.

The next figures display the phi-function (the absolute angles along the curve) and its derivative

function, both discrete functions.

Figure 30 Angular function for the
character ’a’

Figure 31 Derivative of the phi-
function

Peak-detection will be performed on the difference function (fig. 31). The peak-detection

algorithm will first discover 5 peaks at (see fig. 31) sample number 1, 8, 16, 29 and 39. These

peaks are sufficiently larger than the mean, otherwise they would be false peaks and be

removed). The peak at position 1 will be removed because parts must include at least 3 samples.

Next, each part is considered consecutively. For each part the curvature will be approximated as

42

Chapter 6 Character recognition results.

explained earlier. If the curvature is too small (or equivalently : if the estimated radius is too

large), then SVD will be used to match a straight line piece to the set of points. If the radius is

smaller than a certain value (say 400), then circular matching will be performed. In our example

all the parts appear to have relatively small radius, which is why circular matching will be

performed on all of them. This agrees with the general feeling that the character ’a’ does not

consist of straight line-sections. The matching result is shown in the next figure.

Figure 32 Matching result for the character
’a’.

Note that this character is split up into 5 pieces, because 4 peaks were found. Next, insertion of

the missing parts must take place. All insertion parts are small circle parts that have starting angle

equal to the preceding part and ending angle equal to the starting angle of the next part. The

result after insertion is shown in figure 33 on the next page. It is clear that the proposed method

of partitioning the character into sections that consist of circular shapes has no effect on the

human ability to recognise the right character. This gives us the feeling that we can proceed with

calculations. At this point we can already conclude that the GFDs of characters can be put in a

close mathematical form. This implies that the characters can be described in terms of

mathematical functions (circles). This is an important feature since we can now proceed to

determine GFDs, not in a numerical way, but in an analytical way. We will now start computing

the GFDs.

43

Chapter 6 Character recognition results.

Figure 33 Character after insertion of missing
parts.

Since the circle parameters for each section are known, we can calculate the starting and

ending distance. Together with the starting end ending angle, we have the straight line in the phi-

plane. This plot is drawn in fig. 35. For comparison, the original phi-plot is drawn in figure 34.

Next, according to eq. (2-12), a normalised phi-function has to be made, such that the starting

angle equals ending angle equals zero. Also the distances are to be normalised, running from 0

to 1. The thus obtained plot is shown in fig.36 on the next page.

44

Chapter 6 Character recognition results.

Figure 36 Normalised phi-function for the
matched character

The final step is to compute the GFDs for the matched curve, according to eq. (1-20). The

resulting spectra are shown in fig. 37 and 38.

Figure 38 Phase spectrum of the
matched character

63 Introducing character recognition frame.

At this point we are able to compare the GFDs. But first we have to specify what will be

compared. Suppose that a person makes use of the writing tablet and writes down all characters

of the alphabet. These characters are stored in computer memory and can later be used for

computations. Suppose the calculations are performed for all the characters and he wishes to

compare between all the characters. We will call this horizontal character recognition and the

process is, in an abstract form, drawn in fig. 39.

45

Chapter 6 Character recognition results.

abcdefghijklmnopqrstuvwxyz

Figure 39 Horizontal character recognition.

In this way we can tell if a certain method (e.g. spectral comparison with GFDs) distinguishes

characters well or not. Suppose now that another person with a different handwriting style writes

the characters, recognition might fail, due to big differences in writing styles of human beings.

Instead, this person has to store all his characters in memory, after which he can compare

characters belonging to his own set. However, for signature verification for example, we are

interested in the differences between several persons, when writing the same character. In our

character recognition model, we will indicate this by introducing a vertical axis, called the person

axis, as can be seen from fig.40.

person axis
A

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

character axis

Figure 40 Introducing second dimension in
character recognition

Along the axis we can introduce two measures. First, along the horizontal axis, we introduce the

distinguishability, that is a measure for the ability of distinguishing the letters of the alphabet,

written by one person. If this distinguishability is high, we can use the method for character

recognition purposes, because it each character appears to have its own specific feature. On the

other hand, if the distinguishability is low, then the method does not distinguish the characters

well, which makes it useless for character recognition. On the vertical axis we introduce the

community, which indicates to what extend two or more different persons write certain characters

46

Chapter 6 Character recognition results.

in the same way. If the community is low for some character, then the method is suitable for

identification purposes. In this case, certain handwriting styles appears to have their own special

features. On the other hand, if the community is high, then it means that each character has some

common feature which is independent of the writing style. If both community and

distinguishability are high, then we have solved a feature extraction problem. This is an interesting

area because it signifies that all characters are substantially different from each other, no matter

who writes it. The different areas are drawn in figure 41.

community

Figure 41 Different research areas placed in
the character recognition frame

In this figure, the characters written by one person should be projected along the horizontal axis,

while different handwriting styles are accounted for on the vertical axis. Note that the upper left

area (where distinguishability is low and community is high) is a region in which the method is

not useful : it can neither be used for character recognition, nor for identification.

6.4. GFDs for a set of alphabetic characters.

In this report characters will be compared both in horizontal as in vertical direction. First,

several differences will be shown between some characters of the alphabet, written by one person.

The whole alphabet is not considered here, because it takes a substantial computing time.

Moreover, if some similar looking characters are distinct in GFDs, the use of this method is, at

least for those characters, proven. We have chosen to compare the spectral amplitude, because

the spectral phase does not contain relevant shape information [1], The Fourier Coefficients

participate in the spectral amplitude, which is why the amplitude is chosen for comparison.

We will first compare the amplitude spectra of the characters ’b’, ’d’ and ’p’. The smoothed

47

Chapter 6 Character recognition results.

characters together with the amplitude spectra are shown in subsequent figures.

Figure 42 Smoothed character ’b’.

amspecjb

Figure 43 Amplitude spectrum for
’b’.

Figure 44 Smoothed character’d’.

amspec_d

spactral amplitude

£raq. number

Figure 45 Amplitude spectrum for
smoothed’d’.

amspec_jp

Figure 47 Amplitude spectrum for
smoothed ’p’.

Figure 46 Smoothed character ’p’.

48

Chapter 6 Character recognition results.

From these plots we can see that the characters clearly differ in amplitude. The character !>’

has larger values than the character ’p’ at the low frequency-region. The character’d’ appears to

be completely different. So we can see that the amplitude shows good distinguishability for these

characters.

Next, we will examine the influence of different handwriting styles. For example, we will

consider the characters ’h’ and ’k’. These characters were written by three persons. Each row of

figures will refer to one test person. Only the smoothed character and the amplitude spectrum

for each of the three persons is considered here. First, the letter ’h’ is examined.

Figure 48 Character written by
person 1.

amspec_h

f x»q. number

Figure 49 Amplitude spectrum for
letter h’ by person 1.

Figure 50 Same character written
by person 2.

amspeC-h

Figure 51 Amplitude spectrum for
letter ’h’ by person 2.

49

Chapter 6 Character recognition results.

Figure 52 Same character written
by person 3.

am8pac_h_Er

Figure 53 Amplitude spectrum for
person 3.

We can see that although the characters are written in a clearly different way, the amplitude

spectra are quite similar. This implies in the previously given framework, that the community (

at least for this character) is high. To illustrate this with one more example we consider the

character ’k’.

Figure 54 Character ’k’ written by
person 1.

amspec_k

Figure 55 Amplitude spectrum for
person 1.

50

Chapter 6 Character recognition results.

Figure 56 Same character written
by person 2.

amspec_k_Ca8p

Figure 57 Amplitude spectrum for
person 2.

Figure 58 Same character written
by person 3.

amspec_k_Er

£x»q. numb«i

Figure 59 Amplitude for person 3.

Again we can see that the amplitudes are quite common. We have at this point shown that

characters that have similar shapes (’d’, ’p’ and ’k’), possess more different amplitude spectra.

This implies that GFDs are suitable for character recognition: they have shown to distinguish

characters that have similar shapes. At the same time it appeared that although some characters

are written differently by different persons, the amplitude spectrum shows reasonable similarity.

This indicates that GFDs are not suitable for identification.

6.5. COMPUTATION TIMES.

At this point we have to spend a few words on the calculation times in the experiments. The

fastest numerical procedure is the partitioning algorithm: it only takes a few seconds. The next

fastest procedure is the singular value decomposition, which also takes a few (1 to 2) seconds,

51

Chapter 6 Character recognition results.

due to the cubic convergence of the method (see [11]). The SIMPLEX numerical method for

solving the non-linear total least squares problem costs a larger amount of computing time.

Depending on the number of coordinate pairs, the accuracy of the initial estimates (eq.4-14 and

4-15) and the terminating accuracy e (eq. 4-16), it can take at about 30 seconds to obtain the
desired best circle for one section. In all experiments the numerical accuracy was set to e = IE-6.
If there are 6 segments which are (in the worst case) all circles, then the curve-fitting time will

be 6 times 30 seconds = 3 minutes. Next, insertion of the missing links takes place, as described

in section 5.2.4, which takes at about ten seconds. Then the GFDs have to be computed. Since

we have determined the formulae (eq. 2-7 and 2-21), these are also computed fast. Finally, we
want to make plots of the functions <f>*, I , Ak, and ak. These graphs are made in ’Charting

Gallery’, a plotting utility which is being installed on the personal computers at the laboratory.

This plotting costs minutes, because the data has first to be read from data files, the plot has to

be made graphically and especially print outs cost minutes of time per plot. We can state that the

total computing time, from a test person’s writing until the obtained plots of the GFDs can cost

at least 5 to 6 minutes.

It has to be mentioned here, that these procedures take as much ime as indicated above,

unless no parameters have to be adjused. As mentioned in section 5.2.4., the insertion circle may

have a more complex shape than the single curve (see fig. 25 and fig. 26). As mentioned, the

right choice is made by adjusting the maximum allowable difference in starting and final angle of

the insertion circle. In a majority of the cases the program this maximum different angle is

adjusted well. In some cases this maximum angle difference between starting and final angle of

the insertion circle, has to be adjused by hand, after which the program has to be executed again.

This costs extra time and also the GFDs have to be computed again. The total processing time

can in these cases increase up to 10 minutes for a character. This problem could be solved by first

describing the peaks well, and then approximate the sections in between. As mentioned earlier,

this is a different approach which reveals other problems, such as how to describe the peaks. This

approach has not been considered in this work.

52

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS.

7.1. CONCLUSIONS.

We can conclude that a new method for character description by Generalised Fourier

descriptors has been suggested. This method ’polishes’ the character first, before GFDs are

computed. Polishing here means that the characters are first fitted into the best straight lines and

circles, in the Total Least Squares sense. After this curve-fitting, GFDs are calculated, based on

the expressions that are known for straight line sections and arcs of circles. This method has been

applied on several characters to compare the corresponding amplitude spectra. Also handwritings

of different persons have been involved, to show the differences between several handwriting

styles. From these experiments it has been shown that the characters used in the experiments have

good distinguishing qualities in horizontal direction, that is, GFDs for different characters are also

clearly different. In vertical direction (that is with several test persons) the results found in the

previous chapter show great similarity in spectral amplitude for obviously different handwritings.

Therefore, GFDs can be used to distinguish several characters, which may even have similar

shapes. GFDs are not suitable for identification at this point, because the several different

handwritings appear to have similar spectral amplitudes.

7.2. RECOMMENDATIONS.

Of course, these conclusions are not checked for every single character of the alphabet. We

have chosen characters that have similar shapes to illustrate that these characters have quite

different spectral amplitudes. Also the number of test persons was restricted to 3, but from the

experiments it can be seen that the handwritings were quite different. Again the method has been

proven to be useful in this case, bacause the spectral amplitudes were fairly similar.

To investigate this method thoroughly, we have to include a dozen of test persons, where each

test person writes all characters of he alphabet. This would mean that, say, 10 times 26 = 260

characters have to be written. From section 6.5 we know that it takes at about 10 minutes to

process one character correctly, that is, computer processing time plus proper adjustments of

parameters and making plots. This implies that we would need more than 40 hours of processing

time, just for inputing the characters. Then we still have to compare the output.

53

Chapter 7 Conclusions and recommendations.

It is recommended here that this thorough study should be carried out, or at least some more

experiments should be added, to qualify the use of this method. Also comparison should be made

with the ’sampled line’ method, to see how the GFDs have changed after curve-fitting. Finally,

if much time is available, also other GFDs-parameters, such as ak and bk should be considered.

Finally, an other approach of the partitioning problem should be investigated. As mentioned

earlier, we can start the partitioning procedure by first describing the peaks well, after which the

other segments are to be inserted. In this description we do not have the problem of adjusting

the maximum allowable difference in starting and final angle at the peaks by hand. On the other

hand, the key problem here is how to describe the peaks. For example the starting and final angle

of the peak section must be specified.

54

REFERENCES

[1] ZAHN, C.T., and ROSKIES, R.Z., ’Fourier Descriptors for plane
closed curves ’, IEEE trans. Computers, Vol. C-21, pp.269-281,1972.

[2] FREEMAN, H., ’ On the encoding of arbitrary geometric figures’,
IRE Trans. Electron. Comput., Vol. EC-10, pp.260-268.

[3] ARNBAK, J.C., BONS, J.H. and VIEVEEN, J.W., ’ Graphical
correspondence in Electronic-Mail networks using Personal
Computers’, IEEE Sei. Areas Commun., 1989, SAC-7, pp.257-267.

[4] VIEVEEN, J.W. and PRASAD, R., ’ Generalised Fourier
Descriptors for use with line-drawings and other open curves’, Proc.
6th Scandinavian Conference on Image Analysis, Oulu, Finland, June
1989, pp. 820-827.

[5] PRASAD, R. VIEVEEN, J.W., BONS, J.H. and ARNBAK, J.C.,
’ Relative vector probabilities in differential chain coded line­
drawings’, Proc. IEEE Rim Conference on Communication,
Computers and Signal Processing, Victoria, Canada, June 1989,
pp.138-142.

[6] LIU, K. and PRASAD, R,’ On the quantisation distortion and coding
efficiency in line-drawing graphics transmission using differential
chain coding, ’ Proc. IEEE International Conference on
Communications (ICC’90), Atlanta, USA, April 1990, pp. 325A.2.1.-
325A.2.5.

[7] WEYLAND, N.B.J. and PRASAD, R.,’ Characterisation of line
drawings using generalised Fourier Descriptors’,Electronics Letters,
October 1990, Vol. 26, No. 21, pp. 1794-1795.

[8] BERNARD, F.,’ Datacompressie van facsimiledocumenten t.b.v.
transmissie via Electronic-Mail netwerken’,graduation report TU-
Delft, January 1991.

[9] STRANG, G., ’ Linear Algebra and its applications’, Academic Press,
2nd edition 1980, Ney York.

[10] RAO, S.S., ’ Optimization, theory and applications’, Wiley Eastern,
1978, New Delhi.

55

[11] GOLUB, G. and VAN LOAN,C.F.’ An analysis of the Total Least
Squares problem Siam Journ. Numer. Anal., Vol.17, No.6, pp. 883-
893, December 1980, pp.883-893.

[12] GOLUB, G.H. and REINSCH, C., ’ Singular Value Decomposition
and Least Squares solutions ’,Numer. Math. 14, pp.403-420, 1970.

[13] GOLUB, G. and KAHAN, W., ’ Calculating the Singular Values and
Pseudo-inverse of a matrix’, J. Siam Numer. Analys. Ser.B, Vol. 2,
No.2, pp. 205-223, 1965, pp.205-223.

[14] GOLUB, G. and VAN LOAN, C.F., ’ Matrix Computations ’John
Hopkins, Baltimore, 1983.

[15] TAPPERT, C.C., SUEN, C.Y. and WAKAHARA, T., The state of
the Art in On-line Handwriting Recognition’, IEEE Trans, on
Pattern Anlysis and Machine Intelligence, Vol. 12, No.8, August
1990, pp.787-808.

[16] WEYLAND, N.B.J. and PRASAD, R., ’Criterion for characterisation
of line-drawings using Generalised Fourier Descriptors’, accepted for
presentation at the 7th Scandinavian Conference on Image Analysis,
13-16 August 1991, Aalborg University. Denmark.

56

APPENDIX A : Computation of the singular value
decomposition

Let A be a real mxn matrix with m>n where m denotes the number of rows and n denotes
the number of columns. A can be factorized as :

A = U S VT (Al)

where

UTU=VTV=In and H=diag((J1...........an) (A2)

The matrix U consists of n orthonormalized eigenvectors associated with the n largest eigenvalues

of AAt, and the matrix V consists of the orthonormalized eigenvectors of ATA. The diagonal

elements of S are the non-negative square roots of the eigenvalues of ATA and are called the

singular values of A. We shall assume that

o1>a2>. . .>on>Q (A3)

If rank(A) = r then ar+1 = <7r+2 = ... = an = 0.

We want to point out here that it is easier to calculate the eigenvalues of ATA since they are

the squares of the singular values of A However, the computationn of ATA leads to less

numerical accuracy. For example, let

(A4)

a1(A)=/(2^_ > a2(A) = |^| (A5)

If ß2 < e0, the machine precision, we would get instead

1 1

1 1
ata = and a2=^ (A6)

Next, we will briefly discuss the steps to be taken to obtain the decompostion.

The first step is to bring the matrix A into a bidiagonal form . This is accomplished by using

57

Appendix A : Computation of the Singular Value Decomposition.

Householder transformation. We introduce the two Householder matrices as P and Q, which

have the following form :

= I - (k =1,2, .. .n)
= I - 2yik)ylk^ (k =1,2, . . .n-2)

(A7)

Householder matrices are essentially projection matrices, which can therefore be used to create

zeroes in a vector x or y. Premultiplying a matrix A n times (each for one column) with the

Householder matrix P, creates zeroes in the column under consideration. Postmultiplying the

matrix A with the Householder matrix Q n times creates zeroes in the rows, likewise. This will

eventually lead to a bidiagonal matrix of the following form :

91

0

e2

92

0 .

e3 0

0

0

. . PmAQm. =

• • 0

en

0 0 0 .

9„

0

0 0 0 . 0

(A8)

An essential property of the Householder projection is that the singular values remain the same.

This implies that the matrix has the same singular values as A We can therefore compute the

singular values of the bidiagonal matrix instead. Calculation of these singular values can noew

proceed with the aid of some QR-like algorithm. This is a numerical process, which iteratively

diagonalizes the bidiagonal matrix

j <o) j (i) _ s >

and where

J = S ‘J ‘T ‘ (A10)

and S® and T^ are orthogonal matrices. The matrices and T^ are chosen such that the

matrix :

58

Appendix A : Computation of the Singular Value Decomposition.

M = j (All)

converges to a a diagonal matrix, and all J® are bidiagonal. The transition from j® to j(1+1) is

achieved, using Given’s Rotations. A givens Rotation matrix has the form:

1 0

0 .

1

cos0k -sin0k

sindk cos0k

1

. 0

0 1

(A12)

To illustrate the effect of Givens Rotation, we will examine the following 2x2-case where we see

that the lower left element in the A-matrix becomes zero. :

cos0 -sin#

sin# cos#

aq,l aq,2 a<1.2 aq,N (
A13)

aq^.N^l.N 0

if

- arctan[— (A14)

If we now want to delete the right top element of the matrix, we will apply Givens Rotation

again, with proper choices for #. However, then the lower left element will become non-zero
again. Therefore we apply the Givens rotation again to make it zero again. Then the upper right

element will become nonzero. Again Givens Rotation will be applied etc. This process is called

"chasing". It can be shown that eventually, the non-diagonal elements will become smaller ans

smaller. This process has in most cases a cubic convergence, which means that after every chase

the non-diagonal elements will become a power -3 smaller. This process can be carried out until

the non-diagonal elements have reached some value «.
For a more detailed coverage of the singular value decomposition and its computation, we

59

Appendix A : Computation of the Singular Value Decomposition.

refer to [11]-[14]. Golub and Reinsch [12] have presented an Algol program is given which

computes the singular value decomposition. This source code is converted to a corresponding

Pascal code and it is printed out on the next pages. The Pascal code will be applied for curve

fitting on handwritten curves in chapter 3 and further.

60

APPENDIX B : LISTINGS OF PASCAL PROGRAMS

1 : The_end.pas.

This program was first originally written by Jan Vieveen. It was used by

Mr. Vieveen to do character recognition experiments. The program

was modified in order to obtain X-Y-coordinate pairs from the writing

tablet. These X-Y-coordinate-pairs will be used by the following Pascal­

programs Match2.pas and Calcspec.pas.

61

Page 1, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes

{Boolean complete evaluation on}
<$S+} {Stack checking on}
{$!-} {I/O checking on}

program SIGN_ON;
{$R+,V-,F-,B-}
{ M 64000,1,655360 }

{

* Turbo TOTAAL, T.U.Delft
* Copyright 1988
* Program "The end"

*
J.W.Vieveen *

*

* vivi *

}

Uses
Dos,
Printer,
Graph, BOX004, tgg, signbox, Crt;

const
maxdcc = 40;
maxdccshr = 20;
maxint = 10000;

type
mask = array[0..maxdcc] of integer;
fmask = array[0..maxdccshr,1..2] of real;

masks = record
maskarray : array[0..127] of mask;
maxarray : array[0..127] of integer;
fouriermask : arraylO..127] of fmask;
end;

charrec = record
dec : masks;
waittime : integer; { time to wait in milliseconds }
end;

var
memchars
memchar
memfour
mefi le
memtime, person
resst r,f resst r,dummystr
dum
to_file

: charrec;
: mask;
: fmask;
: file of charrec;
: integer;
: anystr;
: real;
: boolean;

tf, xy, ang, fd
chararr
totalen

: text;
: array[1..3] of char;
: array[1..10] of real;

farray : arrayll..3,1..7,0..maxdcc] of real;

label overnieuw;

procedure fourierlmemchar : mask;var memfour: fmask);
var i,j : integer;
sinus,cosinus : real;

begin
fi llchar(farray,sizeof(farray),0);
fillchar(totalen,sizeof(totalen),0) ;

for i:=0 to maxdcc do
begin
totalen[1] :=totalen[1]+memchar Ci] /maxint*pi;

Page 2, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

end;

if totalen[1]=0 then totalend] :=1;

for i:=0 to maxdcc do
begin
totalen[5] :=totalen[5]+memchar[i];
farray[1,1,i] :=totalen[5] ;
end;

for i:=0 to maxdcc do
begin
farrayd.l.i] :=(farrayd,1,i]/totalen[5] - i/maxdcc)*2*pi;
end;

fiIlchar(totalen,sizeof(totalen),0);
totalend] :=0;
assign(fd,'a:\chrdat\fd.dat');
rewrite(fd);

for i:=0 to maxdcc do
begin
for j:=0 to maxdcc do

begin
farray[1,2,i]:=farray [1,2,i]+farray[1,1,j]*sin(2*pi*i*j/succ(maxdcc));
farrayd,3,i] :=farray[1,3,i]+farray[1,1, j]*cos(2*pi*i*j/succ(maxdcc));
end;

<
if (i>0) then

begin
farray[1,2,i]:=farray[1,2,i]/pi/i;
farray[1,3,i]:=farray[1,3,i]/pi/i;
end;

farray[1,4, i] := farray[1,2, i];
farray[1,5, i] := farray[1,3,i];
end;

for i:=0 to maxdccshr do
begin
farrayd,6,i] :=sqrt(sqr(farray[1,4,i])+sqr(farray[1,5,i])); < AMPL }

<write(1st,#15,farray[1,6,i]:6:2);}

if farrayd,4,i]=0 then
begin
if farrayd,5,i]>0 then farray[1,7,i] :=pi/2
else farrayd ,7, i] :=3*pi/2;
end

else farrayd,7, i] :=arctan(farray[1,5,i]/farray [1,4, i]); < PHASE }
if farrayd,4, i]<0 then farray[1,7,i] :=farray[1,7,i]+pi;
if farrayd,7,i]<0 then farray[1,7,i]:=farray[1,7,i]+2*pi;
memfour [i,1] :=farray[1,6, i]; memfour [i,2]:=farray[1,7,i];
writeln(fd,memfour[i,1]:6:2,1 1,memfour[1,2]:6:2);
end;
close(fd);

end;

function calctime: integer;
var

recpack: registers; [assign record?
begin
recpack.ax := $2c00;
intr($21,Dos.Registers(recpack)>; (call interrupt?
calctime:= (recpack.dx shr 8)*100 + (recpack.dx and $ff);
end;

procedure resettime;
begin
memtime:=caIct i me;
end;

function notime: boolean;

Page 3, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

var g : anystr;
begin
notime := memchars.waittime<((calctime-memtime+6000) mod 6000);
end;

function readdatabuffer : byte;
begin
if writepointer=readpointer then

repeat until (writepointeroreadpointer)or notime;
if readpointerowritepointer then

begin
resettime;
readdatabuffer:=databuffer[readpointer] ;
readpo inter:=succ(readpointer);
if (readpointer>maxdatabuffer) then readpointer:=1;
if stopinterrupt then

begin
if (readpointer>writepointer) then

fulI:=(readpointer-writepointer<switchdatapointer){<•...WR>>
else <<R....W>>

fulI:=(readpoi nter+maxdatabuffer-wri tepoi nter<swi tchdatapoi nter);
if not full then

begin (CTS low}
port[RS232_1offset+modctrreg] :=$0A;
stopinterrupt:=faIse;

end;
end;

end;
end;

procedure isr; {interrupt service routine}
interrupt;
begin
inline($FB); { cli }
databuffer[writepointer]:=port [RS232_1offset+recdatreg]; { store data in buffer }
writepointer:=succ(writepointer);
if writepointer>maxdatabuffer then writepointer:=1;
if (writepointer mod samplepointer = 0) then (save time, sample!}

begin
if (readpointer>writepointer) then

fulI:=(readpointer-wri tepointer<switchdatapointer) {<....WR>}
else <<R....W>}

fulI:=(readpointer+maxdatabuffer-writepointer<switchdatapointer);
if full then

begin (CTS low}
port[RS232_1offset+modctrreg]:=$08;
stopinterrupt:=true;
end;

end;

port[piccmd]:=$20; (end of interrupt}
end;

procedure getvector; { get old vector number with DOS-interrupt }
begin
get i ntvec($0C,vect);
end;

procedure setvector_new; { set new vector number for user interrupt }
begin < with offset of isr }
setintvec($0C,ó)isr);
end;

procedure setvector_old; < set old vector number for old interrupt}
begin
set i nt vec($0C, vect);
end;

procedure setreg;
var portinit :byte;

begin

Page 4, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

port[picmask] :=(port[piemask] and $EF); { enable async-com interrupt /F7/}
inline(SFA);
getvector;
setvector_new;
inline(SFB);
port[RS232_1offset+modctrreg]:=$0A;
port[RS232_1offset* i ntenreg]:=$01;

end;

(cli }
{ get old vector number }
{ set new vector number }
{ sti
< DTR,OUT2 signals active
{ enable rec data available

>
}
int }

procedure restorevar; < restore old values }
begin
setvector_old;
port[piemask]:=(port[piemask] or $10);
port[RS232_1offset+modctrreg]:=$08; {CTS low}
end;

procedure readfromtablet;
begin
resettime;
ipbcounter:=1;
repeat

indl:=ipbcounter div recsize +1;
ind2:=ipbcounter mod recsize +1;
ipbcounter:=succ(ipbcounter);
inputbufferpointer" [ind1,ind2]:=readdatabuffer;

until notime or (ipbcounter=recsize*norec) or keypressed;
end;

procedure initialisation;
begin
if initcom(1,9600,0,1,8) then begin end;
writepointer:=1;
readpointer:=1;
fiIlchar(databuffer,sizeof(databuffer),0);
stopinterrupt:=false;
setreg;
filename:='1;
for i:=0 to 360 do

hoeken[i]:=0;
checkbreak:=t rue;
initialize; { graphics }
restoreertmode;
filesloaded:=0;
start; welkom;
ipbcounter:=0; str1counter:=0; str2counter:=0; str3counter:=0;
str4counter:=0; str5counter:=0;
fiIlchar(filenamesl,sizeof(filenames1),0);
fillchar(filename,sizeof(filename),0);
keuzepos:=1;
fiIlchar(memchars,sizeof(memchars),0);
fiIlchar(memfour,sizeof(memfour),0);
to_file:=FALSE;
end;

function free_mem : real;
begin
if maxavail<0 then free_mem:=maxavai1+65536.0
else free_mem:=maxavaiI;
end;

procedure checkfree_mem(bytes_necc : longint; outputtext : strSO);
var outputstr : strSO;
begin
if bytes_necc>free_mem then

begin
outputstr^'HALT: Computer has not enough memory!. Buffer: '+outputtext;
commandline(outputstr);
beep; halt;
end;

end;

procedure allocate_buffers;
begin

Page 5, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

checkfree_mem(recsize*norec,'Inputbuffer1);
new(inputbufferpointer);
checkfree_mem(recsize*norec,'Strl.buffer');
new(strlbufferpointer);
checkfree_mefn(recsize*norec, 'Str2.buffer');
new(str2bufferpointer);
end;

procedure init_buffers;
begin
commandlinel'Initialisation buffers...1);
for j:=1 to norec do

begin
if (j) mod 10=0 then

begin
gotoxy(30,wherey); write(j div 10);
end;

for i:=1 to recsize do
begin
inputbufferpointer'[j,i]:=0;

{ str1bufferpointer'[j,i]:=0;
str2bufferpointer"[j,i]:=0;
str3bufferpointer'[j,i]:=0;
str4bufferpointer*[j,i]:=0;
strSbufferpointer' [j,i]:=0;}
end;

end;
end;

function uppercasefinput : byte) : boolean;
begin
uppercase := (char(input) in ['A'.^Z1]);
end;

function printachar(input : byte) : char;
begin
if input>31 then printachar:=char(input) else
printachar:='
end;

function makenatparlibufferpointer : bufferpointer; counter: integer; var vulchar : mask)
var
factor,radius,npx,npy,angle,memangle: real;
i,j,filldcc,dx,dy,oldvec,xpos,ypos,
maximum : integer;
by : byte;
const maxi = 2;

begin
assignlxy, 'aAchrdatXxy.dat');
assigntang,'a:\chrdat\ang.dat');
rewrite(ang);
rewrite(xy);

factor:=(str1counter-6)/maxdcc;
radius:=10.5*factor;
maximum:=0;

for i :=1 to maxi do
begin •
j:=0; filldcc:=-1; oldvec:=0; angle:=0; memangle:=0;
xpos:=0; ypos:=0; npx:=0; npy:=0;
repeat

by :=ibufferpointer‘[j div recsize + 1,j mod recsize + 1];
case by of

pndnch: begin
inc(j,4);
end;

pnupch: ;
else begin

< writeint 1st,by:10,char(by),oldvec:10,dx:10,dy:10);}
tablevectortby,oldvec,dx,dy);

Page 6, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

inc(xpos,dx); inc(ypos.dy);
< writedst,' x,y,j,= '.xposiS.ypostS.jrS);}

if i=maxi then writeln(xy,xpos,' '.ypos);
if (sqr(xpos-npx)+sqr(ypos-npy) >= sqr(radius)) then

begin
if (xpos=npx) then

begin
if (ypos>npy) then angle:=pi/2
else angle:=-pi/2;
end

else
begin
angle:=arctan((ypos-npy)/(xpos-npx));
if (xpos<npx) then angle:=angle+pi;
npx:=npx+cos(angle)*radius;
npy:=npy+sin(angle)*radius;
end;

if (angle-memangle)> pi then
repeat

angle :=angle-2*pi;
until (angle-memangle<=pi) and (angle-memangle>=-pi);

if (angle-memangle)<-pi then
repeat

angle :=angle+2*pi;
until (angle-memangle<=pi) and (angle-memangle>=-pi);

if filldcc>=0 then
vulchar[fiI Idee]:=round((angle-memangle)/pi*maxint);

if (filldcc>=0) and (i=maxi) and (abs(vulchar[filldcc))>maximum) then
maximum:=abs(vulchar[fiI Idee]);

if i=maxi then writeln(ang,angle);
memangIe:=angle;
inc(filldcc,1);
end;

end;
end;

inc(j,1);
until (j>=counter) or (f i I Idcomaxdcc);
if (j<counter) then radius:=radius*counter/j;
if (fiIldcc<maxdcc) then radius:=radius*filldcc/maxdcc;
end;
close(xy);
close(ang);

end;

procedure showmaxtime;
var g : anystr;
begin
setfillstyle(1,0);
bar(round(maxx*3/4+1),round(maxy*3/4+20),maxx-1,round(maxy*3/4+30));
setcolor(7);
str(memchars.waittime*10,g);
g:=' Msec, to wait:'+g;
outtextxy(round(3/4*maxx), round(3/4*maxy)+20, g) ;
end;

procedure changetime;
var ch: char;
begin
setfillstyle(1,15);
bar(1,maxy-25,maxx-1,maxy-1);
outtextxy(22, maxy-13,

■CHANGE TIME: + = plus 10 msec, - = minus 10 msec, Q = quit time adjustment');
setfillstyle(1,0);
repeat

ch:=upcase(readkey);
case ch of

,+l :inc(memchars.waittime);
'-'Hf (memchars.waittime>1) then decCmemchars.waittime) else beep;
•Q': ;
else beep;
end;

showmaxtime;
until (chs'Q1);
end;

Page 1, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

procedure showcharf ipchar : mask; color : integer; wis : boolean);
var i : integer;
factor : real;
begin
factor:=((maxx-1)-(3/4*maxx+5))/maxdcc;
setcolor(color);
if (wis) then

begin
bar(round(3/4*maxx+1),11,maxx-1,round(3/8*maxy-1));
Ii ne(round(3/4*maxx+5),round(3/16*maxy), maxx-1,round(3/16*maxy));
end;

for i:=1 to maxdcc do
begin
Ii ne(round(3/4*maxx+5+factor*(i-1)),round(3/16*maxy+i pchar[i-1]/maxint*3/32*maxy),

round(3/4*maxx+5+factor*(i)),round(3/16*maxy+ i pchar[i] /max i nt*3/32*maxy));
end;

end;

procedure showfour(ipchar : fmask; color : integer; wis : boolean);
var i : integer;
factor : real;
begin
factor:=((maxx-1)-(3/4*maxx+5))/maxdccshr;
setcolor(color);
if (wis) then

begin
bar(round(3/4*maxx+1), round(3/8*maxy+11),maxx-1,round(3/4*maxy-1));
Ii ne(round(3/4*maxx+5),round((3/8+3/16)*maxy),maxx-1,round((3/8+3/16)*maxy));
end;

for i:=1 to maxdccshr do
begin
Ii ne(round(3/4*maxx+5+factor*(i-1)),round((3/8+3/16)*maxy-i pchar[i-1,1]*1/64*maxy),

round(3/4*maxx+5+factor*(i)),round((3/8+3/16)*maxy-ipchar[i ,1]*1/64*maxy));
end;

end;

procedure displaychar(ipchar : mask; color : integer; wis : boolean);
var i,xp,yp : integer;

angle : real;
const radi = 7;
begin
angle:=0;
if wis then

begin
setfillstyle(1,0);
ba r(1,1,round(maxx*3/4-1),round(maxy*3/4 -1)) ;
setfillstyle(1,15);
bar(1,1,round(maxx*3/8),10);
setfillstyle(1,0);
setcolor(4);
outtextxy(2, 2, 1 Drawn Character:');
end;

setcolor(color);
xp:=round(maxx/8*3); yp:=round(maxy*3/8);
for i:=0 to maxdcc do

begin
angle:=angle-ipchar[i]/maxint*pi;
line(xp,yp,xp+round(radi*cos(angle)),round(yp+radi*(sin(angle))));
xp:=xp+round(radi*cos(angle)); yp:=yp+round(radi*sin(angle));
end;

end;

function matchfour : integer;
var i,.j,memi : integer;
res,min: real;
begin
min:=9999; memi:=32;
assign(mcfile,1a:\chrdat\masks.dat1);
reset(mcfile);
read(mcfile,memchars);
for i:=32 to 127 do
begin

res:=0;
for j:=1 to maxdccshr do

begin

Page 8, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

res:=res+(me<nfour[j,1] -memchars.dcc.fouriermaskti, j,1])*(memfour[j, 1] -memchars.dec.f
end;
if res<min then
begin

memi:=i;
min:=res;
end; < end element number >

end; < end character }
closeCmcfile);
matchfour:=memi;

end; < end of function >

function matchcht maxim : integer) : integer;
var i,j,memi,offset,tel : integer;
maxok,ok,tussen,
totussen : real;
begin
memi:=0;maxok:=0;
assignCmcfile,'azXchrdatXmasks.dat');
reset(mcfile);
read(mcfile,memchars);
for i:=32 to 127 do
begin

if (maxim>0) and (memchars.dec.maxarray[i]/maxim < 3/2) and
(memchars.dec.maxarray[i]>0) and (maxim/memchars.dec.maxarray[i] > 2/3) then
begin

for offset:=-1 to 1 do
begin

ok:=0; totussen:=0;
for tel:=0 to maxdcc do
begin

tussen:=0;
j:=tel+offset * 2 ;
if (j>0) and (j<=maxdcc) then tussen:=tussen+memchars.dcc.maskarray[i,j-1];
if (j>=0) and (j<maxdcc) then tussen:=tussen+memchars.dec.maskarray[i,j+1];
if (j>=0) and (j<=maxdcc) then tussen:=tussen+memchars.dec.maskarray[i,j];
if (j>0) and (j<maxdcc) then tussen:=tussen/3 else

tussen:=tussen/2;
if (j>0) and (j<maxdcc) then
begin

totussen:=totussen+abs(tussen)*abs(memchar[j]);
ok:=ok+abs(sin((tussen-memchar[j])/maxint*pi/2));

(writeln(1st,j:10,ok:10:2,totussen: 10:2,(tussen-memchar[j]):10:2);)
end;

end;
if totussen>0 then

ok:=totussen/ok
else ok:=-1;
if maxok<ok then

begin
maxok:=ok;
memi:=i;
end;

end;
end;

end; < end character }
close(mcfile);

matchch:=memi;
end; < end function }

function getch: integer;
begin
readfromtablet;
if (ipbcounter>5) then { iets geschreven)

begin
makestring2(inputbufferpointer,ipbcounter,str1bufferpointer,str1counter);
no_updn2(str1bufferpointer,str1counter,str2bufferpointer,str2counter);
getch:=makenatpar(str2bufferpointer,str2counter,memchar);
fourier(memchar,memfour);
showchar(memchar,7,true);
showfour(memfour,7,true);
di splaychar(memchar,7,true);
end;

listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.Page 9,

end;

procedure main;
var i,max: integer;
begin
resstr:="; fresstr:*";
setgraphmode(getgraphmode);
drawborder; setfiIlstyle(solidfill.white);
line(0, round(3/4*maxy),maxx, round(3/4*maxy));
Ii ne(round(3/4*maxx),0, round(3/4*maxx),round(3/4*maxy));
Ii ne(round(3/4*maxx),round(3/8*maxy),maxx, round(3/8*maxy));
bar(0 ,0, round(3/8*maxx),10);
bar(round(3/4*maxx),0, maxx, 10);
bar(round(3/4*maxx),round(3/8*maxy),maxx, round(3/8*maxy+10));
bar(0, maxy-25, maxx, maxy);
bar(0, round(3/4*maxy),round(3/8*maxx),round(3/4*maxy+10));
bar(round(3/4*maxx),round(3/4*maxy),maxx, round(3/4*maxy+10));
setcolor(4);
outtextxy(round(maxx*3/4),2, 1 Nat.Parm.Spec. ');
outtextxy(round(maxx*3/4),round(maxy*3/8)+2,1 Fourier Descriptors');
outtextxy(round(maxx*3/4),round(maxy*3/4)+2,1 General parameters');
outtextxy(2, maxy-23, ' COMMANDS :');
outtextxy(2, round(maxy*3/4)+2,' Interpreted Characters:');
setcolor(S);
outtextxy(2, maxy-13,

• C = change character definitions, T = change wait time, Q = Quit');
showmaxtime;
setfillstyle(1,0);
repeat

ch:=#0;
max:=getch;

if (ipbcounter>5) then
begin
i:=matchch(max);
resstr:=resstr+char(i);
outtextxy(2,round(3/4*maxy+30),resstr);
memchar:=memchars.dec.maskarray Ci] ;
displaychar(memchar,9,false);
showchar(memchars.dec. maskarray Ci),9, fa Ise);
i:=matchfour;
fresstr:=fresstr+char(i);
out textxyf 2,round(3/4*maxy+40),f ress t r);
showfour(memchars.dec.fouriermask[i] ,9, false);
sound(3000); delay(IOO); nosound;
end;

if keypressed then
begin
ch:=upcase(readkey);
case ch of
'C':begin

setfiIIstyled,15); bar(0,maxy-15,maxx,maxy);
outtextxy(2,maxy-10,' Enter character to update: ');
ch:=readkey; outtextxy(maxx shr 1,maxy-10,ch);
setf i I Istyled ,0);
repeat

max:=getch;
until (ipbcounter>5) or keypressed;
if (ipbcounter>5) then

begin
memchars.dec. maskarray lord(ch)]:=memchar;
memchars.dec. maxarray[ord(ch)]:=max;
memchars.dcc.four i ermask[ord(ch)]:=memfour;
end;

ch:='1';
setfi IIstyled,white);
ba r(1,maxy-25,maxx-1,maxy-1);
outtextxy(22, maxy-13,

' C = change character definitions, T = change wait time, Q = Quit');
setfi llstyled ,0);
assign(mcfile,'a:\chrdat\masks.dat');
rewriteCmcfile);
writeCmcfile,memchars);
closeCmcfile);
end;

'T': begin

Page 10, listing of THE_END.PAS date is 15-07-91, file date is 27-02-91 size is 21618 bytes.

changetime;
setf i llstyled .white);
bar(1,maxy-25,maxx-1,maxy-1);
outtextxy(22, maxy-13,

1 C = change character definitions, T = change wait time,
setfillstyled.O);
end;

■Q': ;
ESC:begin

ch:=readkey;
assignCmcfile,'a:\chrdat\masks.dat');
resetCmcfile);
readCmcfile,memchars);
showchar(memchars.dec. maskarray[ord(ch)],10,true);
showfourCmemchars.dcc.fouriermask[ord(ch)] ,10,true);
displaycharCmemchars.dec. maskarray[ord(ch)],10,true);
delay(4000);
closeCmcfile);
end;

else beep;
end;

end;
until chs'Q';
end;

Q = Quit');

begin

overnieuw:

initialisation; < initiate variables >
allocate_buffers; < allocate dynamic buffers }
init_buffers; < clear buffers }

assignCmcfile,'a:\chrdat\masks.dat1);
<$!-> resetCmcfile);<$I+>
if ioresult=0 then readCmcfile,memchars)
else begin

rewriteCmcfile); beep; beep;
f i UcharCmemchars.sizeof Ccharrec),0);
writeCmcfile,memchars);
end;

closeCmcfile);
main;

restorevar; { restore interrupt vectors }

closegraph; < shut of graphic system J
clrscr;

end.

2 : MatchZ.pas.

This program performs several functions in character processing :

- calculate and t^-functions from the X-Y-coordinate pairs.
- make partitioning from l «^-function.
- perform straight line-matching, including Singular Value Decomposition.

- perform circle matching, using the SIMPLEX-optimizing numerical

procedure.

Page 1, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes

{$A-,B-,D+,E+,F+,I+,L+,N+,O+,R+,S+,V->
<$M 64000,0,655360}

program match?;

<$N+,I+,V+}

Uses Crt, Graph, printer;

Const x_screen = 300 ;
y_screen = 75 ;
peaklevel = 2.2 ;
bendlevel = 0.5 ;

Type matmn = array(1..150,1..3] of real;
matnn = array[1..3,1..3] of real;
vecn = array[1..3] of real;

simpmat = array[1..4,1..3] of double;
vector = array[1..3] of double;

curve_rec = record
curve_kind : char;
start_angle : real;
end_angle : real;
start_point_x : real;
start_point_y : real;
end_point_x : real;
end_point_y : real;
radius : real;
orientation : boolean;

end;

curve_array = array[1..11] of curve_rec; < 11= max. # of segments)

Var i, GraphDriver, GraphMode, ErrorCode, Color
Pattern, numpoints, nsections, file_number : integer;

withu, withv, sign : boolean;
c, f, 9, h, s, x, y,
help, z : real;
a, a_star, u : matmn;
q, e, house_v,
house_w, result_vector : vecn;
v , house : matnn;
j, k, I, 11, numdif,
m, n : integer;
data_file, record_file : text;

x4dat, x3dat, x2dat, xldat,
y4dat, y3dat, y2dat, yldat, x2y2dat, x1y2dat,
x2y1dat, xlyldat, estim_radius1, estim_radius2,
estim_radius3, estim_radius4, mx_init1, my_init1,
mx_init2, my_init2, mx_init3, my_init3,
mx_init4, my_init4, start_x,
end_x, start_y, end_y : double;
cir_array, total_array : array[1..100,1..2] of double;
start_arc, end_arc : real ;

image_size : word;
image_pointer : pointer;

curve_data : curve_array;

(**
************** END 0F GLOBAL parameter specifications ***************

*)

Page 2, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

procedure show_char;
var x, y : real;

begin
assign(data_file,1a:\chrdat\xy.dat1);
reset(data_file);
GraphDriver:=Detect;
DetectGraphfGraphdriver, GraphMode);
InitGraphCGraphDriver, GraphMode,1a:\werk');
ErrorCode:=GraphResult;
if ErrorCode <> grOK then
begin

Writeln('Graphics error ');
writeln(GraphErrorMsg(ErrorCode));
writeln('Program aborted ');
delay(5000);
Hal tCI);

end;
clrscr;
Color:=15;
SetColor(Color);
SetFiIlStyle(Pattern, Color);
Bar(0,0,619,399);
Color:=0;
SetColor(Color);
SetFiIlStyle(Pattern, Color);
i:=0;
while NOT (i=numpoints) do
begin

i:=i+1;
putpixel(round(x_screen + total_array[i,1]), y_screen - round(total_array[i,2]), 0);
repeat;
until readkey=' ';

end;
repeat;
until readkey^q1;
Closegraph;

end;

procedure make_angles;
var tf, tg, th : text;

i : integer;
x_i, y_i, theta, thetajarev : real;

begin
assignCtf,'azXchrdatXxy.dat');
assign(tg,'a:\chrdat\phi.dat1);
assign(th,'a:\chrdat\delphi.dat1);
reset(tf);
rewrite(tg);
rewrite(th);
i:=0;
repeat

i:=i+1;
readln(tf, x_i, y_i);
total_array[i,1]:=x_i;
total_array[i,2]:=y_i;
numpoints:=i; < not angles but # (x,y)-coordinates }

if i >= 2 then
begin

if total_array[i,1]= total_array[i-1,1] then
begin

if total_array[i,2] > total_array[i-1,2] then theta:=pi/2 else theta:=-pi/2;
end
else

Page 3, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

begin
theta:=arctan((total_array[i,2] - total_array[i-1,2J)/(total_array[i,1] - tota
if total_array[i,1] < total_array[i-1,1] then theta:=theta + pi;

end;

if (theta - theta_prev)>pi then
repeat

theta:=theta- 2*pi;
until (theta - theta_prev<=pi) and (theta - theta_prev>=-pi);

if (theta - theta_prev)<-pi then
repeat

theta:=theta + 2*pi;
until (theta - theta_prev<=pi) and (theta - theta_prev>=-pi);

writeln(tg,theta);
if i > 2 then writeln(th,abs(theta - theta_prev>);
theta_prev:=theta;

end;
until eof(tf);

close(tf);
close(tg);
close(th);

end; < of procedure make_angles }

procedure swap(var a , b : real);
var swap_help : real;
begin

swap_help:=a;
a: =b;
b:=swap_help;

end;

procedure swap_int(var c, d : integer);
var swap_help : integer;
begin

swap_help:=c;
c:=d;
d:=swap_help;

end;

procedure partitio(var nsections : integer);

var dat_phi, dat_xy, dat_out
i, j, numpoints, numsections,
last_assignment, distance
peak_location
peak
mean, variance, x_co, y_co
item

: text;

: integer;
: array[1..5] of integer;
: array[1..5] of real;
: real;
: array[1..100] of real;

begin
clrscr;
assign(dat_phi,'a:\chrdat\delphi.dat1);
reset(dat_phi);
last_assignment:=O;
distance:=3; < distance - 1 = minimal length of a section }
numpoints:=0;
numsect ions:=0;
for i:=1 to 5 do
begin

peakti]:=0;
peak_location[i]:=0;

Page 4, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end;
mean:=0;
variance:=0;
for i:=1 to 100 do item[i]:=0;
while NOT eof(dat_phi) do
begin

numpoints:=numpoi nts+1;
readln(dat_phi,item[numpoints]);
if numpoints=1 then
begin

peak[1]:=itern[numpoints];
peak_location[1]:=numpoints;
Iast_ass i gnment:=numpo ints;
mean:=mean + item[numpoints];

end;
if m«npoints=2 then
begin

peak[2]:=item[numpoints];
peak_location[2]:=numpoints;
last_assignment:=numpoints;
if peak[2] > peak[1] then
begin

swap(peak[1], peak [2]);
swap_int(peak_location[1], peak_location[2]);

end;
mean:=mean + item[numpoints] ;

end;
if numpoints=3 then
begin

peak[3]:=item[numpoints];
peak_location[3]:=numpoints;
Iast_ass i gnment:=numpoi nts;
if peak[3] > peak[2] then
begin

swap(peak[2], peak[3]);
swap_int(peak_location[3], peak_location[2]);

end;
if peak[2] > peak[1] then
begin

swap(peak[1], peak[2]);
swap_int(peak_location[1], peak_location[2]);

end;
mean:=mean + item[numpoints];

end;
if numpoints = 4 then
begin

peak [4] :=i teminunpoints];
peak_location[4]:=numpoints;
Iast_ass i gnment:=numpo i nts;
if peak[4] > peak[3] then
begin

swap(peak [4], peak [3]);
swap_int(peak_location[4], peak_location[3]);

end;
if peak[3] > peak[2] then
begin

swap(peak[3], peak[2]>;
swap_int(peak_location[3], peak_location[2]);

end;
if peak[2] > peak[1] then
begin

swap(peak[2], peak[1]);
swap_int(peak_location[2], peak_location[1]);

end;
mean:=mean + item[numpoints];

end;
if numpoints=5 then
begin

peak[5]:=item[numpoints];
peak_location[5]:=numpoints;
last_ass i gnment:=numpoints;
if peak[5] > peak[4] then
begin

swap(peak[5], peak[4]);
swap_int(peak_location[5], peak_location[4]);

Page 5, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end;
if peak[4] > peak[3] then
begin

swap(peak[4], peak [3]);
swap_int(peak_location[4], peak_location[3]);

end;
if peak[3] > peak[2] then
begin

swap(peak[3], peak[2]);
swap_int(peak_location[3], peak_location[2]);

end;
if peak[2] > peakti] then
begin

swap(peak[2], peakti]);
swap_int(peak_locationt2], peak_locationt1]);

end;
mean:=mean + item[numpoints] ;

end;
if numpoints > 5 then
begin

if (itemtnumpoints] > peakti]) then
begin

if abs(last_assignment-numpoints) < distance then
begin

if last_assignment=peak_locationt1] then
begin

last_assignment:=numpoints;
peakti] : = itemtnumpoints];
peak_locationt1J:=numpoints;

end
else
begin

if last_assignment=peak_locationt2] then
begin

peak 12] :=peakt1];
peak_location[2]:=peak_locationI1];
peak 11]:=itemtnumpoints];
peak_location[1]:=numpoints;
Iast_assignment:=numpoints;

end
else
begin

if last_assignment=peak_locationt3] then
begin

peak 13] :=peakt2];
peak_locationt3]:=peak_locationt2];
peak^] :=peak[1];
peak_locationt2]:=peak_locationt1];
peakfl]:=itemtnumpoints];
peak_locationt1]:=numpoints;
Iast_assignment:=numpoints;

end
else
begin

if last_assignment=peak_locationt4] then
begin

peak 14] :=peak[3];
peak_location[4] :=peak_locationt3];
peak [3] :=peak[2];
peak_location[3] :=peak_locationt2];
peak [2] :=peakt1];
peak_location[2] :=peak_locationt1];
peakti] :=item[numpoints];
peak_location[1] :=numpoints;
Iast_assignment:=numpoints;

end
else
begin

if last_assignment=peak_location[5] then
begin

peak [5] :=peakt4] ;
peak_location[5] :=peak_location[4];
peak [4] :=peak[3];
peak_location[4]:=peak_location[3];
peak [3] :=peak[2];

Page 6, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

peak_location[3] :=peak_location[2];
peakÏ2] :=peak[1];
peak_location[2] :=peak_location[1];
peakti]:=itemtnumpoints];
peak_location[1] :=numpoints;
Iast_ass i gnment:=numpo i nt s;

end;
end;

end;
end;

end;
end
else
begin

peak 15] :=peakl4];
peak_location[5]:=peak_locationt4];
peak t4]: =peak 13];
peak_location[4] :=peak_locationt3];
peakÏ3]:=peak12];
peak_locationt3]:=peak_locationf2];
peak 12] :=peak tl];
peak_locationt2]:=peak_locationt1];
peakti] :=itemtnumpoints];
peak_locationt1]:=numpoints;
last_assi gnment:=numpoi nts;

end;
end
else
begin

if itemtnumpoints]>peakt2] then
begin

if abs(last_assignment-numpoints)<distance then
begin

if last_assignment=peak_locationt2] then
begin

peakt2] : = i temtnumpoints] ;
peak_location[2]:=numpoints;
last_assignment:=numpoints;

end
else
begin

if last_assignment=peak_locationt3] then
begin

peak 13] :=peakt2];
peak_locationt3]:=peak_locationt2];
peak 12] : = itemtnumpoints];
peak_locationt2] :=nunpoints;
last_assignment:=numpoints;

end
else
begin

if last_assignment=peak_locationt4] then
begin

peak 14] :=peakt3];
peak_locationt4] :=peak_location[3] ;
peak 13] :=peakl2];
peak_locationt3] :=peak_locationt2];
peak[2] :=itemtnumpoints];
peak_locationt2]:=numpoints;
I ast_assignment:=numpoints;

end
else
begin

if last_assignment=peak_locationt5] then
begin

peak [5] :=peakt4] ;
peak_locationt5]:=peak_locationt4];
peak [4] :=peakt3] ;
peak_locationt4]:=peak_locationt3];
peak 13] :=peakt2];
peak_locationt3]:=peak_locationt2];
peak 12] : = itemtnumpoints] ;
peak_locationt2]:=numpoints;
Iast_ass i gnment:=numpo i nts;

end;

Page 7, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end;
end;

end;
end
else
begin

peak [5] :=peak[4];
peak_location[5] :=peak_location[4];
peak [4] : =peak [3];
peak_location[4]:=peak_location[3];
peak [3] :=peak[2];
peak_location[3]:=peak_location[2];
peak [2] : = item[numpoints];
peak_location[2]:=numpoints;
Iast_assignment:=numpoints;

end;
end
else
begin

if item[numpoints]>peak[3] then
begin

if abs(last_assignment-numpoints)<distance then
begin

if last_assignment=peak_location[3] then
begin

peak [3] : = i temtnumpoints] ;
peak_location[3]:=numpoints;
Iast_ass i gnment:=numpo i nts;

end
else
begin

if last_assignment=peak_location[4] then
begin

peak [4] :=peak[3] ;
peak_location[4] :=peak_location[3];
peak[3]:=item[numpoints];
peak_location[3] :=numpoints;
last_assi gnment:=numpoi nts;

end
else
begin

if last_assignment=peak_location[5] then
begin

peak[5]:=peak[4];
peak_location[5] :=peak_location[4];
peak [4] :=peak [3] ;
peak_location[4] :=peak_location[3];
peak[3]: = item [numpoints];
peak_location[3]:=numpoints;
last_assignment:=numpoints;

end;
end;

end;
end
else
begin

peak [5] :=peak[4];
peak_location[5] :=peak_location[4] ;
peak [4] :=peak[3];
peak_location[4] :=peak_location[3] ;
peak[3]:=item[numpoints] ;
peak_location[3]:=numpoints;
last_assignment:=numpoints;

end;
end
else
begin

if item[numpoints]>peak_location[4] then
begin

if abs(last_assignment-numpoints)<distance then
begin

if last_assignment=peak_location[4] then
begin

peak[4] : = itemtnumpoints];
peak_location[4] :=numpoints;

Page 8, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

Iast_ass i gnment:=numpoi nts;
end
else
begin

if last_assignment=peak_location[5] then
begin

peak[5]:=peak[4];
peak_location[5] :=peak_location[4];
peak [4] :=item[numpoints];
peak_location[4] :=numpoints;
Iast_assignment:=numpoints;

end;
end;

end
else
begin

peak [5] :=peak[4];
peak_location[5] :=peak_location[4] ;
peak [4]:=item[numpoints];
peak_location[4]:=numpoints;
last_ass i gnment:=numpoi nts;

end;
end
else
begin

if item[numpoints]>peak_location[5] then
begin

if abs(last_assignment-numpoints)<distance then
begin

if last_assignment=peak_location[5] then
begin

peak[5]:=item[numpoints];
peak_location[5]:=numpoints;
Iast_assignment:=numpoints;

end;
end
else
begin

peak[5]:=item[numpoints];
peak_location[5]:=numpoints;
Iast_ass i gnment:=numpo i nt s;

end;
end;

end;
end;

end;
end;
mean:=mean + item[numpoints];

end;
end;
close(dat_phi);
mean:=mean/numpoints;
for i:=1 to numpoints do variance:=sqr(item[i] - mean);
var i ance:=va r i ance/(numpo i nt s-1);

repeat;
until Keypressed ;

writeln('mean = '.mean);
writeln('variance
writein;
writein;

'.variance);

writelnC'peakl = ' ,peak[1],' ',peak_location[1]);
writelnl'peak2 s ' .peak[2],' 1,peak_location[2]);
writelnl'peak3 = ' .peak [3],' ',peak_location[3]);
writeln('peak4 = ' .peak [4],' ' ,peak_location[4]);
writeln('peaks = '.peak [5],' ' ,peak_location[5]);

numsect ions:=6;
if ((peak[1]/mean < peaklevel) OR (peak_location[1] < 4)) then
begin

numsect ions:=1;
peak_location[1]:=-1;
peak_location[2]:=-1;
peak_location[3]:=-1;
peak_location[4] :=-1;
peak_location[5]:=-1;

Page 9, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end
else
begin

if ((peak[2]/mean < peaklevel) OR (peak_location[2] < 4)) then
begin

numsections:=2;
peak_location[2]:=-1;
peak_location[3]:=-1;
peak_location[4]:=-1;
peak_location[5]:=-1;

end
else
begin

if ((peak[3]/mean < peaklevel) OR <peak_location[3] < 4)) then
begin

numsections:=3;
peak_location[3] :=-1;
peak_location[4]:=-1;
peak_location[5] :=-1;

end
else
begin

if ((peak[4]/mean < peaklevel) OR <peak_location[4] < 4)) then
begin

numsections:=4;
peak_location[4]:=-1;
peak_location[5]:=-1;

end
else
begin

if ((peak[5]/mean < peaklevel) OR (peak_location[5) < 4)) then
begin

numsect ions:=5;
peak_location[5]:=-1;

end;
end;

end;
end;

end;

nsections:=numsections;

writein;
writelnC'After deleting small peaks : •);
writelnC'Number of real peaks = ',Cnumsections-1));
writein;
writelnC'peakl = '.peakll],' ',peak_locationC1]);
writelnC'peak2 = ',peak[2],' ',peak_location[2]);
writelnC'peak3 = '.peakß],' ',peak_location[3]);
writelnC'peak4 = '.peak[4],' ',peak_location[4]);
writelnC'peaks = ',peak[5],' ',peak_location[5]);
repeat;
until Keypressed ;

C*
Now partition into files, first deleting possible
existing files parti..part6.dat.
♦)

for i:=1 to 6 do
begin

assignCdat_out,'a:\chrdat\part'+chrC48+i)+'.dat');
<$!->
resetCdat_out);
<$!+>
if lOResult = 0 then
begin

closeCdat_out);
eraseCdat_out);

end;
end;

assignCdat_xy,'a:\chrdat\xy.dat');

Page 10, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

reset(dat_xy);
assign(dat_out,'a:\chrdat\part1.dat1);
rewr ite(dat_out);
i:=0; < item number }
j:=1; < sectionnumber >
while NOT eof(dat_xy) do
begin

i:=i+1;
readIn(dat_xy,x_co,y_co);
if NOT <(i=peak_location[1]+1) or (i=peak_location[2]+1) or
(i=peak_location[3]+1) or (i=peak_location[4]+1) or
(i=peak_location[5]+1>) then
begin

writeln(dat_out,x_co,1 1 ,y_co);
end
else
begin

close(dat_out);
if j < nsections then
begin

j:=j+1;
assign(dat_out,,a:\chrdat\part,+chr(48+j)+l.dat1);
{$!-> reset(dat_out); <$!+} if lOResult = 0 then
begin

close(dat_out);
erase(dat_out);

end
else rewrite(dat_out);

end;
end;

end;
close(dat_xy);
close(dat_out);

end; < of procedure part it io }

(*

************ Qf PARTITION procedures ****************

*)

procedure test_f_conv;
begin

z:=q[k];
if I = k then
begin

if z<0 then
begin

<
qlk] is made non-negative
>
qtk]:=-z;
if withv then
begin

for j:=1 to n do v[j,k] :=-v[j,k] ;
end;

end; { z >
I :=0;

end < l=k } else
begin

<
Shift from bottom 2x2 minor
J
x:=q[l];
y:=q[k-1J;
g:=e[k-1];
h:=e[k];

Page 11, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end;

f:=((y-z)*(y+z) + (g-h)*(g+h))/(2*h*y);
g:=sqrt(f*f+1);
if f<0 then f:=((x-z)*(x+z) + h*(y/(f-g) + h))/x else

f:=((x-z)*(x+z) + h*(y/(f+g) + h))/x;
<
Next OR transformations
>
s:=1;
c:=1;
for i:=l+1 to k do
begin

g:=e[i] ;
y:=q[iJ;
h:=s*g;
g:=c*g;
e[i-1]:=sqrt(f*f + h*h);
z:=eti-1J;
c:=f/z;
s:-h/z;
f:=x*c + g*s;
g:=-x*s + g*c;
h:=y*s;
y:=y*c;
if withv then
begin

for j:=1 to n do
begin

x:=vtj,i-1];
z:=v[j,i];
vtj,i-1]:=x*c + z*s;
vtj, i] := -x*s + z*c;

end; < j }
end; { withv }
q[i-1]:=sqrt(f*f + h*h);
z:=q[i-1];
c:=f/z;
s:=h/z;
f:=c*g + s*y;
x:=-s*g + c*y;
if withu then
begin

for j:=1 to m do
begin

y:=u[j,i-1J;
z:=u[j,ij;
u[j,i-1] :=y*c + z*s;
uCj,i]:=-y*s + z*c;

end; < j >
end; { withu }

end; { i }
ell] :=0;
e(k]:=f;
q(k]:=x;
l:=k+1;

end; < l=k-else }
{ of procedure test_f_conv }

procedure householder;
var lengthv, lengthw : real;

begin
numdif:=1;
for i:=n downto 2 do
begin

if q[i-1] < qli] then
begin

help:=q[i-1];
qli-1] :=qti];
qli] :=help;

< help is here a help variable }

Page 12, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

for j:=1 to n do
begin

help:=v[j, i];
v[j,i] :=v[j,i-1];
v[j,i-1]:=help;

end;
end;
if q[i-1] = qtil then numdif:=numdif + 1;

end;
numdif:=n - numdif;

<
Now the sing, vals are in order and so is the matrix V

if numdif <> (n-1) then
begin

lengthv:=0;
lengthw:=0;
for i:=(numdif+1) to n do
begin

lengthv:=lengthv + sqr(v[n,i]);
if i <> n then lengthw:=lengthw;
house_w[i-numdif] :=v[n,i];
if i = n then
begin

house_w[i]:=house_w[i] + sqrt(lengthv);
Iengthw:=sqrt(lengthw + sqr(house_w[i]));

end;
for j:=(numdif+1) to n do
begin

houseli-numdif, j-numdif] :=v[n,i]*v[n, j];
end;

end;
for i:= 1 to (n-numdif) do
begin

for j:=1 to (n-numdif) do
begin

house[i, j] :=-2*house[i, j]/lengthw;
if j=i then houseli, j] :=house[i, j]+1;

end;
end;
for i:=1 to n do
begin

for j:=(numdif+1) to n do
begin

result_vector[i]:=v[i,j]*house[(j-numdif), (n-numdif)];
end;

end;
for i:=1 to (n-1) do result_vector[i] :=result_vector[i]/result_vector[n];

end;
end;

procedure layout_svd;
var line_start_x, line_start_y,

line_end_x, line_end_y : real;

begin

(*
This part first calculates the number of different
singular values, and at the same time puts the
singular values in decreasing order. So also the
rows of V(transpose) must be put in the same order.
*)

clrscr;
for i:=1 to m do
begin

for j:=1 to n do
begin

Page 13, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

write(u[i,j]:8:3);
end;
writein;

end;
writeln;writeln;
for i:=1 to n do writelnfqti]:8:3);
writeln;writeln;
for i:=1 to n do
begin

for j:=1 to n do
begin

write(v[j,i]:8:3); < warning : this is V(transpose) and not V III >
end;
writein;

end;
writeln;writeln;
for i:=1 to m do
begin

for j:=1 to n do
begin

a_star[i, j] :=0;
for k:=1 to n do
begin

a_star[i,jj:=a_star[i,j] + (q[k]*v[j,k]*u[i,kj);
end;
write(a_star[i,j]:8:3);

end;
writein;
if where¥>=23 then
begin

writelnl'page (p)...1);
repeat;
until readkey=1p1;
clrscr;

end;
end;
writeln;writeIn;
writeln(numdif);
repeat;
until readkey=lq‘;
if numdif=(n-1) then
begin

clrscr;
writein;
writelnC numdif = ',numdif);
writelnCIf numdif = 2 then no repeated singular values. ');
writelnCIn this case computations can proceed. 1);
writein;
writein;
writelnC results for section 1 ,f i le_number,1 : ');
writein;
for i:=1 to (n-1) do
begin

result_vector[i] :=-v[i,n)/v[n,n);
writeln(result_vector[i]);

end;
end;
writein;
writelnCDisplay graphics (g) or quit (q) ? 1);
if readkey='glthen
begin

GraphDriver:=Detect;
DetectGraph(Graphdriver, GraphMode);
InitGraph(GraphDriver, GraphMode, 'aAwerk');
ErrorCode:=GraphResult;
if ErrorCode <> grOK then
begin

writelnC'Graphics error ');
writelnCGrapherrorMsgCErrorCode));
WritelnC'Program aborted');
delay(5000);
Halt(1);

end;
clrscr;
Color:=15;

Page 14, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

SetColor(Color);
SetFiIIStyleCPattern, Color);
Bar(0,0,619,399);
Color:=0;
SetColor(Color);
SetFiIlStyle(Pattern, Color);

if file_number <> 1 then
begin

PutImage(70,0,image_pointer‘,NormalPut);
repeat;
until readkey=' •;

end
else
begin

Image_size:=ImageSize(70,0,500,300);
GetMe<n(image_pointer, image_size);
GetImageC70,0,500,300,image_pointer‘);

end;

SettineStyle(0,0,Normwidth);
for i:=1 to m do
begin

putpixel(round(x_screen + a[i,1J), y_screen - round(a[i,3]),0);
repeat;
unt iI readkey=1 1;

end;
if result_vector[1] <> 0 then
begin

Iine_start_x:=(a[1,n] + (1/result_vector[1])*a[1,1] - result_vector[2])/
<result_vector[1] + (1/result_vector[1]));

Iine_start_y:=result_vector[1]*1ine_start_x + result_vector [2];
line_end_x:=(a[m,n] + (1/result_vector[1))*a[m,1] - result_vector[2])/

<result_vector[1] + (1/result_vector[1]));
line_end_y:=result_vector[1]*line_end_x + result_vector[2];

end
else
begin

Iine_start_x:=a [1,13;
line_start_y:=result_vector[2];
line_end_x :=a[m, 1];
line_end_y :=result_vector[2];

end;
curve_data[file_number].start_angle:=arctan((line_end_y-line_start_y)/

(Ii ne_end_x-1i ne_start_x));
if ((line_start_x > line_end_x) OR <(line_end_y-line_start_y < 0) AND

(line_end_x-line_start_x < 0))) then
curve_datatfile_number],start_angle:=curve_data[file_number],start_angle + pi;

curve_data[file_number].end_angle:=curve_data[file_number].start_angle;
curve_data[file_number].radius:=sqrt(sqr(Iine_end_x-Iine_start_x) + sqr(Iine_end_y-I
curve_data[f ile_number].start_poi nt_x: = Ii ne_start_x;
curve_data[f ile_number].start_point_y: = Ii ne_start_Y;
curve_data[f i le_number] .end_point_x:=l ine_end_x;
curve_data[f i le_number] .end_point_y: = line_end_y;
curve_data[file_number],orientation:=FALSE;

line(round(x_screen + line_start_x), y_screen - round(Iine_start_y),
x_screen + round(Iine_end_x), round(y_screen - line_end_y));

repeat;
unt iI readkey=1q1;

image_size:=imagesize(70,0,500,300);
GetImage(70,0,500,300,image_pointer‘);

CloseGraph;
end;

end; < of procedure layout }

Page 15, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes,

procedure svd;

« *
* This procedure calculates the singular value decompostion *
* of a matrix A(mxn) with m the number of rows and n the number *
* of columns. m>=n is assumed. The method used is a transcription of *
* the program of G.H. Golub and C. Reinsch in their article *
* "Singular Value Decomposition and Least Squares Solutons" in *
* Humer. Math. 14, pp.403-420 (1970). *
* *

Var eps, tol : real;

begin
curve_data[f iIe_number].curve_k i nd: =111 ;
assign(data_file,'a:\chrdat\part'+chr(48+filejiumber)*1.dat1);
reset(data file);
n:=3;
m:=0;
repeat

m:=m+1;
readln(data file,a[m,1],a[m,3]);
alm,2] :=1;

until eof(data_file);
close(data_file);
clrscr;
wi thu:=true;
wi thv:=true;
eps:=1E-9;
tol:=1E-10;
g:=0;
x:=0;
for i:=1 to m do
begin

for j:=1 to n do uli, j] :=a[i, j];
end;
<
Householder reduction to bidiagonal form
)
g:=0;
x:=0;
for i:=1 to n do
begin

e[i] :=g;
s:=0;
l:=i + 1;
for J:=i to m do s:=s + sqr(u[j,i]);
if s<tol then g:=0 else
begin

f:=u[i,i];
if f<0 then g:=sqrt(s) else g:=-sqrt(s);
h:=f*g-s;
u[i,i]:=f - g;
for j:=l to n do
begin

if j<=n then
begin

s:=0;
for k:=i to m do s:=s + u[k,i]*utk,j);
f:=s/h;
for k:=i to m do ulk, j] :=u[k, j] + f*u[k,ij;

end;
end; < j }

end; < s }
qli] :=g;
s:=0;
for j:=l to n do
begin

Page 16, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

if j <=n then s:=s + sqr(u[i,j]);
end;
if s<tol then g:=0 else
begin

f:=u[i,i+1];
if f<0 then g:=sqrt(s) else g:=-sqrt(s);
h:=f*g-s;
u[i,i+1]:=f - g;
for j:=l to n do
begin

if j <=n then elj] :=u[i, j]/h;
end;
for j:=l to m do
begin

s:=0;
for k:=l to n do
begin

if k <=n then s:=s + u[j,k]*u[i,k];
end;
for k:=l to n do
begin

if k <=n then u[j,k] :=u[j,k] + s*e[k];
end;

end; < j >
end; { s }
y:=abs(q[i]) + absleli]);
if y > x then x:=y;

end; < i }
<
Accumulation of right hand transformation

if withv then
begin

for i:=n downto 1 do
begin

if g <> 0 then
begin

h:=u[i, i+1]*g;
for j:=l to n do
begin

if j <=n then vlj,i] :=u[i, j]/h;
end;
for j:=l to n do
begin

if j <=n then
begin

s:=0;
for k:=l to n do
begin

if k <=n then s:=s + u[i,k]*v[k,j];
end;
for k:=l to n do
begin

if k <=n then vlk,j]:=v[k,j]+ s*v[k,i];
end;

end;
end; < j }

end; < g >
for j:=l to n do
begin

if j <=n then
begin

v[i,j]:=0;
v[j,i]:=0;

end;
end;
vti.i] :=1;
g:=e[i];
l:=i;

end; { i }
end; C withv }
<
Accumulation of left hand transformations

if withu then

Page 17, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

begin
for i:=n downto 1 do
begin

l:=i ♦ 1;
g:=qti];
for j:=l to n do
begin

if j <=n then u[i,j]:-0;
end;
if go 0 then
begin

h:=u[i,i]*g;
for j:=l to n do
begin

if j<=n then
begin

s:=0;
for k:=l to m do s:=s + u[k,i]*u[k, jj;
f:=s/h;
for k:=i to m do u[k, j] :=u[k, j] + f*u[k,i];

end;
end; { j >
for j:=i to m do u[j,i] :=u[j,i]/g;

end < g } else
begin

for j:=i to m do u[j,i]:=0;
end;
uti.il :=u[i,i]+1;

end; < i >
end; < withu }
<
Diagonalization of the bidiagonal form

eps:=eps*x;
k:=n;
while k>=1 do
begin

l:=k;
while l>=1 do
begin

if abs(e[l])<=eps then
begin

test_f_conv;
end else
begin

if abs(q[l-1]) <= eps then
begin

<
Cancellation of ell] only if I >1 !

if I >1 then
begin

c:=0;
s:=1;
I1:=l - 1;
i :=l;
while i <=k do
begin

f :=s*e[i];
eli] :=c*e[i];
if abs(f) > eps then
begin

qli]:=sqrt(f*f + g*g);
h:=qli];
c:=g/h;
s:=-f/h;
if withu then
begin

for j:=1 to m do
begin

y:=utj,H];
z:=utj,ij;
utj, 11] :=y*c + z*s;
utj,i]:=-y*s + z*c;

Page 18, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end; < j }
end; { withu }

end; { abs(f) >
i:=i+1;

end; { i=k downto 1-while }
test_f_conv;

end; < if I > 1-condition)
end; { abs(q[l-1])-if }

end; < abs(e[l])-else }
I:=l-1;

end; { l:=k downto 1-while }
k:=k-1;

end; { k:=n downto 1-while }
<
End of the SVD calculation part
}

householder;

layout_svd;

end; of procedure svd }

(*
**
****************** end of all the svd procedures ********************
**
*)

procedure init_simp(filnum : integer; var num_points:integer;
var start_x, start_y, end_x, end_y : double);

var tf : text;
N : integer;
x_N, y_N, x_Nmin1,
x_Nmin2, y_Nmin1, y_Nmin2,
teller, noemer,
lambda, delta, thetal, theta2,theta_prev : double;

begin
assign(tf,'a:\chrdat\part'+chr(48+fiInum)*1.dat');
<$!-> reset(tf); {$!+} if lOResult <> 0 then rewrite(tf);
clrscr;
N:=0;
num_points:=0;
x4dat:=0; x3dat:=0; x2dat:=0; x1dat:=0;
y4dat:=0; y3dat:=0; y2dat:=0; y1dat:=0;
x1y1dat:=0; x1y2dat:=0; x2y1dat:=0; x2y2dat:=0; estim_radius1:=0;
estim_radius2:=0; estim_radius3:=0; estim_radius4:=0;
writelnC x-coordinate y-coordinate ');
wr i te I n(1__ 1);
writein;
repeat

N:=N+1;

readln(tf,x_N, y_N); < first read x-coordinate }
cir_array[N,1]:=x_N;
ci r_array[N,2] :=y_N;
writeln(x_N:7:3,1 ', y_N:7:3);
if whereY>=23 then
begin

writelnC'page (p)...1);
repeat;
until readkey=1p1;

Page 19, listing of MATCHZ.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

clrscr;
end;
x4dat:=x4dat + (x N*x_N*x N*x N);
x3dat:=x3dat + (x-N*x_N*x-N>;
x2dat:=x2dat + <x_N*x_N);-
x1dat:=x1dat + x_N;

< and then y-coordinate }
y4dat:=y4dat + (y_N*y_N*y_N*y_N);
y3dat:=y3dat + (y_N*y_N*y_N);
y2dat:=y2dat + (y_N*y_N);
y1dat:=y1dat + y_N;

x2y2dat:=x2y2dat + (x_N*x_N*y_N*y_N); { cross terms }
x2y1dat:=x2y1dat + (x N*x_N*y_N);
Xly2dat:=x1y2dat + (x_N*y_N*y_N);
x1y1dat:=x1y1dat + (x_N*y_N);

if N = 1 then
begin

x_Nmin2:=x_N;
start_x:=x_N;
y_Nmin2:=y_N;
start_y:=y_N;

end;

if N = 2 then
begin

x_Nmin1:=x_N;
y_Nmin1:=y_N;
if x_Nmin1 = x_Nmin2 then
begin

if y_Nmin1 > y_Nmin2 then theta2:=pi/1 else theta2:=-pi/2;
end
else
begin

theta2:=arctan((y_Nmin1 - y_Nmin2)/(x_Nmin1 - x_Nmin2));
if x_Nmin1 < x_Nmin2 then theta2:=theta2 + pi;

end;
theta_prev:=theta2;

end;

if N>2 then
begin

if x_N= x_Nmin1 then
begin

if y_N>y_Nmin1 then theta2:=pi/2 else theta2:=-pi/2;
end
else
begin

theta2:=arctan((y_N - y_Nmin1)/(x_N- x_Nmin1));
if x_N<x_Nmin1 then theta2:=theta2 + pi;

end;
theta_prev:=theta2;

if x_Nmin1 = x_Nmin2 then
begin

if y_Nmin1 > y_Nmin2 then thetal:=pi/2 else thetal:=-pi/2;
end
else
begin

thetal:=arctan((y_Nmin1 - y_Nmin2)/(x_Nmin1 - x_Nmin2));
if x_Nmin1 < x_Nmin2 then thetal:=theta1 + pi;

end;
teller:=theta2 - thetal;

noemer:=sqrt(((x_N - x_Nmin1)*(x_N - x_Nmin1)) + (<y_N - y_Nmin1)*(y_N - y_Nmin1
if noemer <> 0 then
begin

estim_radius1:=estim_radius1 + (teller/noemer);
end;
x_Nmi n2:=x_Nmi nl;
y_Nmi n2:=y_Nmi nl;
x Nmin1:=x N;

Page 20, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

y_Nmin1:=y_M;
end;
end_x:=x_N;
end_y:=y_N;

until eof(tf);
closeftf);
sign:=FALSE;
if estim_radius1<0 then sign:=TRUE;
if estim_radius1 <> 0 then estim_radius1:=(N-2)/abs(estim_radius1) else
estim_radius1:=500;
if estim_radius1 = 0 then estim_radius1:=1/10;
delta:=estim_radius1/50;
estim_radius2:=estim_radius1 + delta;
est i m_radi us3:=esti m_radi usl;
estim_radius4:=estim_radius1 + delta;
if (estim_radius1 >= ((y_N-start_y)*(y_N-start_y) + (x_N-start_x)*(x_N-start_x))/2) t
begin

lambda:=(estim_radius1*estim_radius1)-(((y_N - start_y)*(y_N - start_y) + (x_N - sta
Iamtxia:=sqrt(abs(lambda/((y_N - start_y)*(y_N - start_y) + (x_N - start_x)*(x_N - st
if sign=FALSE then lambda:=-lambda;

end
else lambda:=0;

mx_init1:=((start_x + X_N)/2) + (lambda*(y_N - start_y));
my_init1:=((start_y + y_N)/2) - (lambda*(x_N - start_x));
mx_init2:=mx_init1 + delta;
my_i ni t2:=my_initl;
mx_i ni t3:=mx_initl;
my_init3:=my_init1 + delta;
mx_i ni t4:=mx_ini11;
my_i n i t4:=my_i ni11;

num_points:=N;
writeln('busy optimizing...1);

end; < end of procedure init_simp }

function error(mx,my,ra :double):double;
Var x4, x3, x2, xl,

y4, y3, y2, yl,
xlyl, x2y1, x1y2, x2y2, term : double;

begin

x4:=(mx*mx*mx*mx);
x3:=(mx*mx*mx);
x2:=(mx*mx);
x1:=(mx);

y4:=(my*my*my*my);
y3:=(my*my*my);
y2:=(my*my);
yl:=(my);

xlyl:=(mx*my);
xl y2: =(mx*iny*my) ;
x2y1:=(mx*mx*my);
x2y2:=(mx*mx*my*my);

term:=0;
term:=term + (numpoints*x4) + x3*(-4*x1dat) +

x2*(6*x2dat + 2*y2dat - 2*numpoints*ra*ra) + x1*((-4*x3dat) - (4*x1y2dat) + (
term:=term + (numpoints*y4) + y3*(-4*y1dat) +

y2*((6*y2dat) + (2*x2dat) - (2*numpoints*ra*ra)) + y1*((-4*y3dat) - (4*x2y1da

Page 21, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

term:=term + (x2y2*2*numpoints) + x2y1*(-4*y1dat) + x1y2*(-4*x1dat) + x1y1*(8*x1y1dat);
term:=term + x4dat + y4dat + 2*x2y2dat - 2*ra*ra*x2dat - 2*ra*ra*y2dat + ra*ra*ra*ra*n
error:=tenn;

end; { end of function }

procedure simpcalc(var mxl, myl, ri, mx2, my2, r2, mx3, my3, r3, mx4, my4, r4 : double);

(* **
* *
* For a treatment of the theory behind this method I *
* refer to "optimization, theory and applications", by *
* S.S.Rao. *
* *
* copyright L.N.90 *
* *
**
*)

var alpha, beta, gamma, Q ,
fmin, fmax, f_reflex,
f_expand, f_contract, eps, hulp,scale : double;
simp, datvec
centroid, M_r, M_e, M_c

quant
contract_requi rement

: simpmat;
: vector;
: integer;
: array[1..4] of double;
: boolean;

begin
alpha:=1;
beta:=0.5;
gamma:=2;
eps:=1E-4;
simp[1,1]:=mx1;
simp[1,2] :=my1;
simp[1,3]:=r1;
simp[2,1]:=mx2;
simp[2,2]:=my2;
simp[2,3]:=r2;
simp[3,1]:=mx3;
simp[3,2]:=my3;
simp[3,3]:=r3;
simp[4,1]:=mx4;
simp[4,2] :=my4;
simp[4,3] :=r4;

repeat

quant[1]:=error(simp[1,1],
quant [2]:=error(simp[2,1],
quant[3]:=error(simp[3,1],
quant[4]:=error(simp[4,1],

simp[1,2],
simp[2,2],
simp[3,2],
simp[4,2],

simp[1,3]);
simp[2,3]);
simp[3,3]);
simp[4,3]);

for i:=1 to 3 do
begin

if quant[i+1]<quant[i] then
begin

hulp:=quant[i+1];
quant[i+1]:=quant[i];
quant[i]:=hulp;
hulp:=simp[i+1,1];
simp[i+1,1] :=simp[i,1];
simp[i,1]:=hulp;

Page 22, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

hulp:=simp[i+1,2];
simp[i+1,2] :=simp[i ,2] ;
simpti ,2] :=hulp;
hulp:=simp[i+1,3];
simp[i+1,3] :=simp[i ,3] ;
simpli ,3] :-hulp;

end;
end;
fmax:=quant[4];
scale:=fmax;

for i:=4 downto 2 do
begin

if quantti] < quant[i-1] then
begin

hulp:=quant[i];
quant[i]:=quant[i-1J;
quant[i-1]:-hulp;
hulp:=simp[i,1];
simp[i,1] :=simp[i-1,1] ;
simpli-1,1]:=hulp;
hulp:=simp[i ,2];
simp[i ,2] :=simp[i-1,2];
simp[i-1,2] :=hulp;
hulp:=simp[i,3];
simpti,3] :=simp[i-1,3];
simp[i-1,3]:=hulp;

end;
end;
fmin:=quant[1];

<
Now the matrix is sorted
}

centroidll] :=0;
centroid[2]:=0;
centroid[3]:=0;
for i:=1 to 4 do
begin

if i <> 4 then < max (i=4) is excluded }
begin

centroidll] :=centroid[1] + (simpli, 13/3);
centroid[2] :=centroid[2] + (simpli,2]/3);
centroidl3] :=centroidt3] + (simpli,33/3);

end;
end;

M_rt1]:=((1 + alpha)*centroidl1]) - (alpha*(simpl4,1J));
M_rC2] :=((1 + alpha)*centroidl2]) - (alpha*(simpl4,2J));
M_rt3]:=((1 + alpha)*centroidl3]) - (alpha*(simpl4,3]));

f_reflex :=error(M_rt1], M_rt2], M_rl3]);

contract_requi rement:=TRUE;
if (f_reflex < fmin) then
begin

M_el1] :=((gamma*M_rf1]) + ((1 - gamma)*centroidt1]));
M_e(2] :=((ganma*M_rl2]) + ((1 - gamma)*centroidt2]));
M_el3] :=((gamma*M_rl3]) + ((1 - gamma)*centroidt3]));
f_expand:=error(M_el1], M_el2], M_el3]);
if (f_expand < fmin) then
begin

simpt4,1] :=M_el1];
simpl4,2] :=M_el2];
simpt4,3] :=M_el3];

end
else
begin

simpl4,1] :=M_rl13;
simp 14,2] :=M_r 12];
s i mp 14,3]: =M_r 13];

end;

Page 23, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end
else
begin

for i:=1 to 3 do <4 not included because the highest is excluded }
begin

if (f_reflex <= quantti]) then contract_requirement:=FALSE;
end;
if contract_requirement= FALSE then
begin

simp[4,1] :=M r[1];
simp[4,2] :=M_r[21;
simp[4,3] :=M_r[3];

end
else
begin

if (N0T(f_reflex > fmax)) then
begin

simp[4,1] :=M_r[1];
simp[4,2] :=M_r[2];
s i mp [4,3]: =M_r [3] ;
fmax:=error(M_r[1] ,M_r[2] ,M_r [3]);

end;
M_c[1] :=beta*simp[4,1] + ((1 - beta)*centroid[1]);
M_c[2] :=beta*simp[4,2] + ((1 - beta)*centroid[2]);
M_c[3] :=beta*simp[4,3] + (<1 - beta)*centroid[3]);
f_contract:=error(M_c[1], M_c[2], M_c[3]>;

if (NOT(f_contract > fmax)) then
begin

simp[4,1] :=M_c[1];
simp[4,2] :=M_c[2);
simp[4,3] :=M_c[3];

end
else
begin

for i:=1 to 4 do
begin

simpti, 1] :=((simp[i,1] + simpti,1])/2);
simpti,2] :=((simpti,2] + simpti,2])/2);
simpti ,3] :=((simpti ,3] + simpti ,3])/2);

end;
end;

end;
end;
Q:=0;
for i:=1 to 4 do
begin

hulp:=error(simpti,1], simpti,2], simpti,3]);
hulp:=hulp - errortcentroidtl], centroidt2], centroidt3]);
hulp:=hulp*hulp;
hulp:=hulp/4;
Q:=Q+hulp;

end;
Q:=sqrt(Q)/scale;

until (abs(Q) <=eps);

mx1:=simp[1,1]; {centroidll];? { these will be the export variables }
myl:=simp[1,2]; {centroid 12];) { of the procedure simpcalc }
ri :=simp[1,3]; {centroidt3];}
r2 :=Q;
r3 :=eps;

end; { end of procedure simpcalc }

(**t**********************************
******************** end OF SIMPLEX PROCEDURES *********************
**
*)

Page 24, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

procedure matchjnain;
begin

new(i mage_poi nter);
mark(i mage_poi nter);
Color:=0;
Pattern:=1;
nsections:=0;
file_number:=1;
for i:=1 to 100 do
begin

cir_array[i,1]:=0;
cir_array[i,2]:=0;
total_array[i,1]:=0;
total_array[i,2]:=0;

end;
for i:=1 to 11 do
begin

curve_data[i] .curve_kind ^'e1; { empty record }
curve_data[i].start_angle :=0;
curve_data[i].end_angle :=0;
curve_data[i].start_point_x :=0;
curve_data[i].start_point_y :=0;
curve_data(i].end_point_x :=0;
curve_data[i].end_point_y :=0;
curve_data[i].radius :=-maxint;

end;

make_angles;
show_char;
part i t i o(nsect i ons);
for file_number:=1 to nsections do
begin

numpoints:=0;
start_x:=0;
end_x:=0;
start_y:=0;
end_y:=0;
sign:“FALSE;

init_simp(file_number, numpoints, start_x, start_y, end_x, end_y);
if estim_radius1 < 300 then
begin

curve_data[file_number].curve_kind: = 'cl;
simpcalc(mx_init1, my_init1, estim_radius1,

mx_init2, my_init2, estim_radius2,
mx_init3, my_init3, estim_radius3,
mx_init4, my_init4, estim_radius4);

curve_data[file_number].radius:=estim_radius1;

sound(440);deIay(100);nosound;
writeln('Display results in graphics (g) or in text (t)? 1);
writeln;writeln;
repeat;
until keypressed;
repeat;

i f readkey=111 then
begin

writein;
wri teln(1 1);
writein;
writelni1 Calculation results of section 1 ,fi le_number,1: ');
wr i te I n(1___ ');
writein;
writelnl'Mx = 1,mx_init1:7:3,' My = 1,my_init1:7:3,1 r = ',es
writelnl'Q = 1,estim_radius2);
writelnl'eps = 1,estim_radius3);

end
else
begin

(*
Now the circle and the data points will be displayed.
*)

Page 25, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

GraphDriver:=Detect;
DetectGraph(GraphDriver,GraphMode);
InitGraphCGraphDriver, GraphMode,'azXwerk');
Errorcode:=GraphResult;
if ErrorCode <> grOK then
begin

Writeln('Graphics error ');
Writeln(GraphErrorMsg(ErrorCode));
WritelnCProgram aborted ');
delay(5000);
HaltCD;

end;
clrscr;
Color:=15;
SetColor(Color);
SetFiIIStylelPattern, Color);
Bar(0,0,619, 399);
Color:=0;
SetColor(Color);
SetFiIlStyle(Pattern, Color);

if file_number <> 1 then
begin

PutImage(70,0,image_pointer‘.Normal Put);
repeat;
unt iI readkey=1 1;

end
else
begin

Image_size:=ImageSi ze(70,0,500,300);
GetMemCimage_pointer, image_size);
GetImage(70,0,500,300,image_pointer‘);

end;

SetLineStyIe(0,0,Normwidth);
for i:=1 to numpoints do
begin

putpixel(round(x_screen + cir_array[i,1]*1),y_screen - round(cir_array[i
repeat;
until readkey=' ';

end;

(*
Now calculating starting and ending angle of arc
*)

if cir_array[1,1] = mx_init1 then
begin

if cir_array[1,2]>my_init1 then start_arc:=pi/2 else start_arc:=-pi/2;
end
else
begin

start_arc:=arctan(abs((ci r_array[1,2] -my_ini tl)/(ci r_array[1,1]-mx_ini t1
if cir_array[1,1]>mx_init1 then
begin

if cir_array[1,2]<my_init1 then start_arc:=-start_arc;
end
else
begin

if cir_array[1,2]<my_init1 then start_arc:=start_arc-pi
else start_arc:=(-start_arc+pi);

end;
end;
curve_data[file_number].start_angle:=start_arc;

start_arc:=(start_arc/pi)*180; < degrees }

if cir_array[numpoints,1] = mx_init1 then
begin

if cir_array[numpoints,2]>my_init1 then end_arc:=pi/2 else end_arc:=-pi/
end

Page 26, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

else
begin

end_arc:=arctan(abs((cir_array [numpoints,2] -my_init1)/(cir_array[numpoin
if cir_array[numpoints,1]>mx_init1 then
begin

if cir_array[numpoints,2]<my_init1 then end_arc:=-end_arc;
end
else
begin

if cir_array[numpoints,2]<my_init1 then end_arc:=end_arc-pi
else end_arc:=(-end_arc+pi);

end;
end;

curve_data[file_number].end_angle:=end_arc;

if (curve_data[file_number] .end_angle - curve_data[file_number].start_angl
curve_data[file_number] .end_angle:=curve_data[file_number].end_angle

if (curve_data[file_number] .start_angle - curve_data[file_number].end_angl
curve_data[f iIe_number].end_angIe:=curve_data[f iIe_number].end_angIe

curve_data[file_number].start_point_x:=(estim_radius1*cos(
curve_data[file_number] .start_angle)) + (mx_init1);

curve_data[file_number].start_point_y:=(estim_radius1*sin(
curve_data[file_number] ,start_angle)) + (my_init1);

curve_data[file_number].end_point_x:=(estim_radius1*cos(
curve_data[file_number] .end_angle)) + (mx_init1);

curve_data[file_number].end_point_y:=(estim_radius1*sin(
curve_data[file_number] ,end_angle)) + (my_init1);

curve_data[file_number].oriental ion:=sign;

if curve_data[file_number].start_angle > curve_data[file_number].end_angle
begin

curve dataCfile_number].orientation:=TRUE;
sign:=TRUE;

end
else
begin

curve dataCfile_number].orientation:=FALSE;
sign:=FALSE;

end;

end_arc :=(end_arc/pi)*180;

if NOT (start_arc>=0) then
begin

repeat
start_arc:=start_arc+360;

until (start_arc>=0);
end;

if NOT (end_arc>=0) then
begin

repeat
end_arc:=end_arc+360;

until (end_arc>=0);
end;

if NOT (end_arc<=360) then
begin

repeat
end_arc:=end_a re-360;

until (end_arc<=360);
end;

if NOT (start_arc<=360) then
begin

repeat
start_arc:=start_arc-360;

until (start_arc<=360);

< degrees }

Page 27, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

end;

if sign=TRUE then
begin

if start_arc > end_arc then
begin

swap(start_arc, end_arc);

Arc(round(x_screen+mx_initl), y_screen-round(my_initl),
round(start_arc), round(end_arc), round(estim_radius1));

end
else
begin

Arc(round(x_screen+mx_ini 11), y_screen-round(my_ini 11),
0, round(start_arc), round(estim_radius1));

Arc(round(x_screen+mx_ini 11), y_screen-round(my_ini11),
round(end_arc), 360, round(estim_radius1));

end;
end
else
begin

if start_arc > end_arc then
begin

Arc(round(x_screen+mx_initl), y_screen-round(my_initl),
round(start_arc), 360, round(estim_radius1));

Arc(round(x_screen+mx_initl), y_screen-round(my_initl),
0, round(end_arc), round(estim_radius1));

end
else
begin

Arc(round(x_screen+mx_init1), y_screen - round(my_init1),
round(start_arc), round(end_arc7, round(estim_radius1));

end;
end;
if sign=TRUE then
begin

curve_data[file_number],start_angle:=
curve_data[file_number].start_angle - (pi/2);

curve_data[file_number].end_angle:=
curve_data[file_number].end_angle - (pi/2);

end
else
begin

curve_data[file_number].start_angle:=
curve_data[file_number].start_angle + (pi/2);

curve_data[file_number].end_angle:=
curve_data[file_number] .end_angle + (pi/2);

end;

i mage_s ize: = imagesize(70,0,500,300);
get I mage(70,0,500,300,1' mage_pointer');

repeat;
unt iI readkey=1e1;

CloseGraph;
end;

unt iI readkey=1q';
end
else
begin

clrscr;
writeln('estimated radius > 300 so line approximation is better ');
repeat;
until KeyPressed;
svd;

end;
end;
ass i gn(record_f iIe,1 a:\chrdat\curvrec.dat');
rewrite(record_file);

Page 28, listing of MATCH2.PAS date is 15-07-91, file date is 28-06-91 size is 64199 bytes.

for i:=1 to 11 do
begin

writeln(record_file,curve_data[i].curve_kind);
writeln(record_file,curve_data[i].start_angle);
writeln(record_file,curve_data[i].end_angle);
wr i teIn(record_f iIe,curve_data[i].start_point_x);
wri teln(record_f ile,curve_data[i].start_poi nt_y);
wr i teIn(record_f iIe,curve_data[i].end_poi nt_x);
writeln(record_file,curve_data[i].end_point_y);
writeln(record_file,curve_data[i].radius); { or length in case of a straight line }
writeln(record_file,curve_data[i].orientation);

end;
c I ose (record_f i I e);

end;

<

END OF FUNCTIONS AND PROCEDURES, MAIN PROGRAM STARTS HERE

begin

end.
matchjnain;

3 : Cakspec.pas.

Here, computations of GFDs takes place. Since starting and final angles

are known for each section, we can compute the GFDs, making use of eq.

2-7, 2-21a and 2-21b. The results are written to data-files

A:\FOURIER\AMSPEC.DAT (amplitude spectrum) and

A:\FOURIER\PHSPEC.DAT (phase spectrum).

Page 1, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

<$A-,B-,D+,E+,F+,I+,L+,N+,O+,R-,S-,V-}
<$H 16384,0,655360}
program calcspec;

Uses Crt, graph;

Const max_pieces = 20; < max number of curve segments }
max_freq =20;

x_screen = 300;
y_screen =50;

bendfactor = 1.3 ;

Type spectrum = array[1..max_pieces] of real;

Type curv_dat = record
curve_kind • char
start_angle real
end_angle • real
start_point_x real
start_point_y • real
end_point_x real
end_point_y real
radius • real
orientation string

end;

final_dat = record
start_angle : real
end_angle : real
start_dist : real
end_dist : real
radius : real
orientation : boolean

end;

curv_array
final_array

= array[1..11] of curv_dat ; { max. 11 # of segments }
= array[0..20] of final_dat ;

var k, i, nsections,
final_number

9» h
ch, antw
curv_rec
finaï_rec, final_rec_star

: integer ;
: text ;
: char ;
: curv_array ;
: final_array ;

ampl, phase
a, b, fO
amdat, phdat

: spectrum;
: real;
: text;

function tan(alpha : real) : real;
begin

if cos(alpha) <> 0 then tan:=sin(alpha)/cos(alpha) else
begin

if sin(alpha) = 0 then tan:=0 else
begin

if sin(alpha) > 0 then tan:=1E6;
if sin(alpha) < 0 then tan:=-1E6;

end;
end;

end;

Page 2, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

procedure swap(var a , b : real);
var swap_help : real;
begin

swap_help:=a;
a:=b;
b:=swap_help;

end;

procedure swap_int(var a , b : integer);
var swap_help : integer;
begin

swap_help:=a;
a: =b;
b:=swap_help;

end;

function delta_distance(x1, yl, thetal, x2, y2, theta2 : real): real;

begin
if (thetal <> theta2) then delta_distance:=((sqrt(sqr(x2-x1) + sqr(y2-y1)))/2)*

abs(theta2 - thetal)
else delta_distance:=sqrt(sqr(x2-x1) + sqr(y2-yD);

end;

procedure make_fills;
var k : integer;

begin
ass i gn(f,1 a:\ch rdat\curvrec.dat1);
assign(g,'a:\chrdat\final.dat1);
reset(f);
rewrite(g);
nsections:=0; { number of sections of curv_rec (without insertions) }
final_number:=0; { number of sections of finaï_rec (with insertions) }

for i:=0 to 20 do
begin

final_rec[i].start_angle:=0;
f inal_rec[i].end_angIe:=0;
final_rec[i].start_dist:=0;
final_rec[i].end_dist:=0;
final_rec[i].radius:=0;
final_rec[i].orientation:=FALSE;

end;
i:=0;

while NOT eof(f) do
begin

i:=i+1;
readingf,curv_rec[i].curve_kind) ;
readln(f,curv_rec[i].start_angle) ;
readln(f,curv_rec[i].end_angle) ;
readln(f,curv_rec[i].start_point_x);
readIn(f,curv_rec[i].start_point_y);
readln(f,curv_rec[i].end_point_x) ;
readln(f,curv_rec[i].end_point_y) ;
readln(f,curv_rec[i].radius) ; < radius for circle , length for line }
readln(f,curv_rec[i].orientation) ;
if curv_rec[i].curve_kind <> 'e' then nsections:=i;

end;

Page 3, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

for i:=1 to (nsections) do
begin

final_number:=final_number +1;
final_rec[final_number].start_angle:=curv_rec[i] .start_angle;
final_rec[final_number].end_angle:=curv_rec[i].end_angle;

if (final_rec[final_number].end_angle - final_rec[final_number].start_angle > (bendf
begin

repeat
curv_rec[i].end_angle:=curv_rec[i] .end_angle - (2*pi);
final_rec[final_number].end_angle:=final_rec[final_number].end_angle-(2*pi);
for k:=(i+1) to nsections do
begin

curv_rec£k].start_angle:=curv_rec[k].start_angle - (2*pi);
curv_rec[k].end_angle:=curv_rec[k].end_angle - (2*pi);

end;
until (final_rec[final_number].end_angle - final_rec[final_number].start_angle <

end;

if (final_rec[final_number].start_angle - final_rec[final_number].end_angle > (bendf
begin

repeat
curv_rec[i].end_angIe:=curv_rec[i].end_angIe + (2*pi);
f i nal_rec[f i nal_number].end_angIe:=f inal_rec[f i nal_number].end_angIe+(2*pi);
for k:=(i+1) to nsections do
begin

curv_rec[k].start_angle:=curv_rec[k].start_angle + (2*pi);
curv_rec[k].end_angle:=curv_rec[k] .end_angle + (2*pi);

end;
until (final_rec[final_number].start_angle - final_rec[final_number].end_angle <

end;

final_rec[final_number].start_dist:=final_rec[final_number-1].end_dist ;
final_rec[final_number],end_dist:=final_rec[final_number] .start_dist +

delta_distance(curv_rec[i],end_point_x, curv_rec[i].end_point_y,
curv_rec[i].end_angle, curv_rec[i].start_point_x,
curv_rec[i].start_point_y, curv_rec[i].start_angle);

f inal_rec[final_number].radius:=curv_rec[i].radius;
if curv_rec[i].orientation = 'FALSE1 then

final_rec[final_number].orientation:=FALSE else
f i nal_rec[f i nal_number].or i entat i on:=TRUE;

if (N0T((curv_rec[i+11.start_point_x = curv_rec[i].end_point_x) AND
(curv_rec[i+1].start_point_y = curv_rec[i].end_point_y)) AND

(i <> nsections)) then
begin

final_number:=final_number + 1;
final_rec[final_number].start_angle:=curv_rec[i].end_angle;
final_rec[final_number].end_angle:=curv_rec[i+1].start_angle;

if (final_rec[final_number].end_angle - final_rec[final_number].start_angle > (5*
begin

repeat
final_rec(final_number].end_angle:=final_rec[final_number].end_angle-(2*pi)
for k:=(i+1) to nsections do
begin

curv_rec[k].start_angle:=curv_rec[k].start_angle - (2*pi);
curv_rec[k].end_angle:=curv_rec[k].end_angle - (2*pi);

end;
until (final_rec[final_number] .end_angle - final_rec[final_number].start_angle

end;

if (final_rec[final_number].start_angle - final_rec[final_number],end_angle > (5*
begin

repeat
f i nal_recIf i nal_number].end_angle:=f i nal_rec[final_number].end_angIe+(2*pi)
for k:=(i+1) to nsections do
begin

curv_rec[k].start_angle:=curv_rec[k].start_angle + (2*pi);
curv_rec[k].end_angle:=curv_rec[k].end_angle + (2*pi);

end;
until (final_rec[final_number].start_angle - final_rec[final_number].end_angle

end;

Page 4, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

final_rec[final_number],start_dist:=final_rec[final_number-1].end_dist;
f inal_rec[f inal_number] ,end_dist:=f inal_rec[f inal_nunt>er] ,start_dist +

delta_distance(curv_rec[i].end_point_x, curv_rec[i].end_point_y,
curv_rec[i].end_angle, curv_rec[i+1] ,start_point_x,
curv_rec[i+1J.start_point_y, curv_rec(i+1].start_angle);

final_rec[final_number].radius:=(sqrt(sqr(curv_rec[i],end_point_x -
curv_rec[i+1].start_point_x) +

sqr(curv_rec[i] .end_point_y -
curv_rec[i+1].start_point_y)))/2;

if final_rec[final_number].end_angle < final_rec[final_number].start_angle then
final_reclfinal_number].orientation:=TRUE else
final_rec[final_number].orientation:=FALSE ;

end;
end;
for i:=1 to final_number do
begin

writeln(g,final_rec[i].start_angle);
writeln(g,final_rec[i].end_angle>;
writeln(g,final_rec[i].start_dist);
writeln(g,final_recli].end_dist); { .radius not written because not >
writeln(g,final_rec[i].radius);
wri teln(g, f inal_rec [i].orientation);

end; { necessary for calculating spectrum }
close(f);
close(g);

end;

*★★★**★*★★***★★★*★***★**★*★★*******★*********★★****★★**★*****★★***★***★*★

procedure make_phi_star;
var i : integer;

ksi, total_length, offset : real;

begin
ass i gn(h,1 a:\ch rdat\dr_star.dat1);
rewrite(h);

ksi:=(final_rec[final_number].end_angle-final_rec[1] .start_angle)/(-2*pi);
total_length:=final_rectfinal_number],end_dist;

for i:=1 to final_number do
begin

final_rec_star [i].start_dist:=final_rec[i].start_dist/total_length;
f inal_rec_star[i].end_dist:=final_rec[i] .end_dist/total_length;
final_rec_star[i].start_angle:=final_rec[i] .start_angle + (2*pi*ksi*

final_rec_starCi] .start_dist);
final_rec_star[i].end_angle:=final_rec[i] .end_angle + (2*pi*ksi*

final_rec_star[i].end_dist);
end;

offset:=final_rec_star[1],start_angle;

for i:=1 to final_number do
begin

final_rec_star[i].start_angle:=final_rec_star[i] ,start_angle - offset;
final_rec_star[i].end_angle:=final_rec_star[i] ,end_angle - offset;

end;

for i:=1 to final_number do
begin

Page 5, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

writeln(h,final_rec_star[i].start_dist,1 1,final_rec_star[i],start_angle);
if i=final_nunber then writeln(h,final_rec_star[i].end_dist,1

final_rec_star[i].end_angle);
end;

close(h);
end;

function four_coef_a_star(I: integer):real;

var i : integer;
B, C, beta, gamma, previous : real;

begin
previous:=0;
for i:=1 to final_number do
begin

B:=final_rec_star [i].start_angle/(l*pi);
C:=f i nal_rec_star[i].end_angIe/(l*pi);
beta:=final_rec_star[i].start_dist*2*pi*l*f0;
gamma:=final_rec_star[i].end_dist*2*pi*l*f0;
previous:=previous + ((B-C)/(beta-gamma))*(cos(gamma)-cos(beta)) - B*sin(beta) + C*s

end;
four_coef_a_star:=previous;

end;

function four_coef_b_star(I: integer): real;
var i : integer;

B, C, beta, gamma, previous : real;
begin

previous:=0;
for i:=1 to final_number do
begin

B:=final_rec_star[i].start_angle/(l*pi);
C:=final_rec_star[i],end_angle/(l*pi);
beta:=final_rec_star[i].start_dist*2*pi*l*f0;
gamma:=final_rec_star[i].end_dist*2*pi*l*f0;
previous:=previous + ((B-C)/(beta-gamma))*(sin(beta)-sin(gamma)) - B*cos(beta) + C*c

end;
f our_coef_b_s t a r:=prev i ous;

end;

procedure Draw_Arc(star, ein : integer ; var xprev, yprev : real; radius : real; k: integ
var mx, my : real;

start, eind : integer;

begin
start:=star;
eind:=ein;
if final_rec[k-1].start_angle=final_rec[k-1].end_angle then
begin

if final_rec[k-1].end_angle < final_rec[k+1].start_angle then
begin

mx:=xprev - radius*cos(final_rec[k] .start_angle - (pi/2));
my:=yprev - radius*sin(final_rec[k] ,start_angle - <pi/2));

end
else
begin

mx:=xprev + radius*cos(final_rec[k] ,start_angle - Cpi/2));
my:=yprev + radius*sin(final_rec[k] .start_angle - (pi/2));

end;
end

else

Page 6, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

begin
if final_rec[k].orientation=FALSE then
begin

mx:=xprev - radius*cos(final_rec[k] .start_angle - (pi/2));
my:=yprev - radius*sin(final_rec(k] .start_angle - (pi/2));

end
else
begin

mx:=xprev + radius*cos(final_rec[k] .start_angle - (pi/2));
my:=yprev + radius*sin(final_rec[k] .start_angle - (pi/2));

end;
end;

if eind > 360 then
begin

repeat
eind:=eind - 360;

until eind <=360;
end;

if start > 360 then
begin

repeat
start:=start - 360;

until start <=360;
end;

if eind < 0 then
begin

repeat
eind:=eind + 360;

until eind >=0;
end;

if start < 0 then
begin

repeat
start:=start + 360;

until start >= 0;
end;

if start < eind then
begin

if final_rec[k].orientation=FALSE then Arc(x_screen + round(mx), y_screen-round(my),
else
begin

Arc(x_screen + round(mx), y_screen-round(my), 0, start, round(radius));
Arc(x_screen + round(mx), y_screen-round(my), eind, 360, round(radius));

end;
end
else
begin

if final_rec[k].orientation=FALSE then
begin

Arc(x_screen + round(mx), y_screen-round(my), start, 360, round(radius));
Arc(x_screen + round(mx), y_screen-round(my), 0, eind, round(radius));

end
else
begin

Arc(x_screen + round(mx), y_screen-round(my), eind, start, round(radius));
end;

end;
{ deIay(2000); }
if final_rec[k].orientation=FALSE then
begin

xprev:=(mx + final_rec[k],radius*cos(final_rec[k] ,end_angle - (pi/2)));
yprev:=(my + final_rec[k].radius*sin(final_rec[k].end_angle - (pi/2)));

end
else
begin

xprev:=(mx + final_rec[k].radius*cos(final_rec[k] .end_angle + (pi/2)));
yprev:=(my + final_rec[k].radius*sin(final_rec[k].end_angle + (pi/2)));

Page 7, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

end;
end;

procedure make_drawings;
Var GraphDriver, GraphMode, ErrorCode, Color,

Pattern, k, i, j, XI, Yl, X2, Y2 : integer;
xprev, yprev, mx, my, start_arc, end_arc : real;
character : char;

begin
GraphDriver:=Detect;
DetectGraph(GraphDriver,GraphMode);
InitGraphCGraphDriver, GraphMode,1a:\werk');
Errorcode:=GraphResult;
if ErrorCode <> grOK then
begin

Writelnf'Graphics error ');
Uriteln(GraphErrorMsg(ErrorCode));
Uriteln('Program aborted ');
deIay(5000);
Halt(1);

end;
clrscr;
Color:=15;
SetColor(Color);
SetFiIIStyleCPattern, Color);
Bar(0,0,619, 399);
Color:=0;
SetColor(Color);
SetFiIIStyleCPattern, Color);

**
* *
* First the natural parameters will be *
* displayed (phi and phi_star plot *
* respectively) and then the Fourier *
* Descriptors (the amplitude) . *★ ★

(here starts the display of the circles and straight lines >

xprev:=0;
yprev:=0;
for i:=1 to final_number do
begin

if final_rec[i].start_angle=final_rec[i].end_angle then
begin

X1:=round(xprev);
Y1:=round(yprev);
X2:=round(xprev + final_rec[i].radius*cos(final_rec[i].start_angle));
Y2:=round(yprev + final_rec[i].radius*sin(final_rec[i],start_angle));
Line(x_screen + XI, y_screen - Yl, x_screen + X2, y_screen - Y2);
{ delay(2000); }
xprev:=xprev + final_rec[i],radius*cos(final_rec[i].start_angle);
yprev:=yprev + final_rec[i].radius*sin(final_rec[i] .start_angle);

end
else
begin

if final_rec[i].orientalion=FALSE then
begin

start_arc:=(final_rec[i].start_angle - (pi/2))*180/pi;
end_arc:=(final_rec[i].end_angle - (pi/2))*180/pi;

Page 8, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

end
else
begin

start_arc:=(final_rec[i].start_angle + (pi/2))*180/pi;
end_arc:=(final_rec[i].end_angle + (pi/2))*180/pi;

end;

Draw_Arc(round(start_arc), round(end_arc), xprev, yprev, final_rec[i].radius, i);
end;

end;
repeat;
unt iI readkey = 1q1;
Closegraph;

end; < of procedure make_drawings >

procedure analyt;

<

This procedure inputs a curve interactively
section by section. A section may be either
a straight line or a piece of a circle. In
both cases the starting angle, ending angle,
starting distance and ending distance are
interactively inputed piece by piece, after
which Fourier coefficients are calculated and
written to a data-file.

* L.N.'90 *
★ *
* *
**

begin
assign(amdat,'a:\chrdat\fourier\amspec.dat1);
assign(phdat,'a:\chrdat\fourier\phspec.dat1);
assignfg,'a:\chrdat\final.dat1);
reset(g);
rewrite(amdat);
rewritelphdat);
make_phi_star;
repeat

clrscr;
write('basefrequency fO : ');
read(fO);

until f0>0;
for k:=1 to max_freq do { for k=0 division by zero 0, so this limit has to be calculat
begin

a:=four_coef_a_star(k);
b:=four_coef_b_star(k);
ampl[k]:=sqrt(a*a + b*b);
if a = 0 then
begin

phase[k]:=-pi/2;
if C(a<0) and (b>0) or (a>0) and (b<0)) then phase[k]:=-phase[k];

end
else phaselk]:=-arctan(b/a);

end;
for k:=1 to max_freq do writeln(amdat,ampl[k]);
for k:=1 to max_freq do writelnlphdat,phaselk]);

Page 9, listing of CALCSPEC.PAS date is 15-07-91, file date is 28-06-91 size is 19876 bytes.

clrscr;
make_drawings;
writelnCprogram succesfully completed : results are found in the ');
writeln('A-drive under A:\chrdat\fourier\amspec.dat and under ');
wri teln('A:\chrdat\fourier\phspec.dat 1);
close(g);
close(amdat);
close(phdat);

end;

procedure make_draw_file;
var xl, yl, x2, y2, dist, hoekl, hoek2 : real ; < x=distance, y=angle }

first_time : boolean;

begin
ass i gn(f,1 a:\chrdat\f inal.dat');
assign(g,'a:\chrdat\draw.dat1);
reset(f);
rewrite(g);
x1:=0;
y1:=0;
x2:=0;
y2:=0;
first_time:=TRUE;
while NOT eof(f) do
begin

if first_time=TRUE then
begin

readln(f,y1);
readlnlf,y2);
readlnff,x1);
readlnlf,x2);
writelnlg.xl,1 1,y1);
writeln(g,x2,1 ',y2);
readlnlf);
readlnlf);

end
else
begin

readlnlf);
readlnlf,y1);
readlnlf);
readlnlf,x1);
writelnlg.xl,' 1 «yD;
readlnlf);
readlnlf);

end;
fi rst_time:=FALSE;

end;
cloself);
closelg);

end;

begin < MAIN PROGRAM STARTS HERE }
make_fiI Is;
analyt;
make_draw_file;

end.

