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Abstract—Explainable Artificial Intelligence (XAI) is an emer-
gent research field which tries to cope with the lack of trans-
parency of AI systems, by providing human understandable
explanations for the underlying Machine Learning models. This
work presents a new explanation extraction method called
LEAFAGE. Explanations are provided both in terms of feature
importance and of similar classification examples. The latter
is a well known strategy for problem solving and justification
in social science. LEAFAGE leverages on the fact that the
reasoning behind a single decision/prediction for a single data
point is generally simpler to understand than the complete
model; it produces explanations by generating simpler yet lo-
cally accurate approximations of the original model. LEAFAGE
performs overall better than the current state of the art in
terms of fidelity of the model approximation, in particular when
Machine Learning models with non-linear decision boundaries
are analysed. LEAFAGE was also tested in terms of usefulness
for the user, an aspect still largely overlooked in the scientific
literature. Results show interesting and partly counter-intuitive
findings, such as the fact that providing no explanation is
sometimes better than providing certain kinds of explanation.

Index Terms—eXplainable Al, example-based reasoning, em-
pirical study

I. INTRODUCTION

In the context of Artificial Intelligence, Machine Learning
(ML) is a rapidly growing field. There has been a surge
of high-performance models for classification and prediction.
Still, the application of these models in high-risk domains is
more stagnant due to lack of transparency and trust: there is
a disconnect between the black-box character of these models
and the needs of the users. Explainable Artificial Intelligence
(XAI) has recently emerged to provide solutions to this issue
by attempting to create understandable explanations for the
reasoning of a black-box model.

Example-Based Reasoning (EBR), i.e., motivating a deci-
sion by providing examples of similar situations, is widely
recognized as an effective way to provide explanations [1],
as it bears a close resemblance to the way humans think. As
a result, it is commonly used e.g. in the health-care sector
for decision-support systems [2], [3] and in law for justifying
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arguments, positions and decisions [4]. However, the usage of
EBR to explain black-box ML models (i.e., models whose
inner mechanisms are either unknown by the user, or too
complex to be practically comprehensible by a human), has
been largely overlooked so far in the scientific literature.
This is partly because of the difficulty of finding examples
according to the inner reasoning of such a model. Notably,
most of the scientific literature focuses instead on evaluating
the relative importance of features (feature importance-based
explanations, see e.g. LIME [5]).

In this paper, we propose a new method for providing both
feature importance-based and EBR explanations of the local
reasoning of black-box models. Here, local refers to the ability
of tailoring the explanation to a single prediction taken by the
ML model, as opposed to providing a global explanation of
the whole model logic. We named the method LEAFAGE -
Local Example and Feature importance-based model AGnostic
Explanations. LEAFAGE approximates the local reasoning of
the black-box model by a (transparent) linear model. As a
byproduct, LEAFAGE is also able to provide the importance
of each feature for a prediction.

We evaluate LEAFAGE both in terms of fidelity, and of
usefulness to the user. Fidelity refers to whether the extracted
explanation reflects the true reasoning of the underlying black-
box ML model. The usefulness to the user is evaluated by
conducting a user-study in terms of perceived aid in decision-
making and objective transparency.

The remainder of this paper is structured as follows. In
Chapter II, we provide background information and related
work on XAI, and explore approaches to provide explana-
tions that leverage on social research. Chapter III describes
LEAFAGE, which is then evaluated in terms of fidelity and
usefulness to the user in Chapters IV and V. Finally, Chapter
VI draws conclusions and suggests future research directions.

II. BACKGROUND

This Section surveys current literature on XAl for ML
models, and on the user’s perspective on an explanation.



An explanation about a ML model can be of global or local
scope. A global explanation clarifies the inner workings of
the whole ML model, i.e., how the relationship between input
and output spaces is modeled [6]. Local explanations look
instead at the reasoning behind a decision/prediction over a
single input data point (fest sample), thus targeting a sub-
region of the input space. As the complexity of the ML model
grows, it becomes harder to generate an understandable global
explanation. However, it is likely that the logic of the ML
model in the neighbourhood of a single test sample will be
much simpler, thus allowing to generate understandable local
explanations.

Three main strategies for extracting human-understandable
explanations from ML models can be found in the literature:
transparent-by-design, model-oriented and model-agnostic. In
the first strategy, the ML model is designed from the start
to be globally transparent and possibly simple enough to
be understandable by humans (e.g. a small decision tree).
The latter two strategies deal instead with an existing model
that has not been made transparent by design. In the model-
oriented strategy, certain parts of the model are used to extract
an explanation (e.g., see [7]). In case when the ML model is
too complex, or when internal workings of the model are not
accessible, a model-agnostic strategy is used. This strategy
views the ML model as a black-box, and queries it using a set
of instances from the input space in order to gain insights in
the behaviour of the model.

The proposed method, LEAFAGE, falls into the latter cate-
gory. One of the most recent methods on the same category is
LIME (Local Interpretable Model-agnostic Explanations) [5],
from which LEAFAGE borrows its main ideas. LIME provides
a local explanation by linearly approximating the decision
boundary of the ML model in the neighbourhood of the test
sample. Figure 1 shows an example of how LIME works in a
binary classification problem. The two classes are Red and
Blue, respectively represented by ’+° and full circles. The
decision boundary of the ML model is between yellow/blue
areas. The point marked with a bold °+’ is the test sample z.
In order to generate an explanation as for why the model ML
classified z as Red, other Red and Blue synthetic data points
are sampled from the input space.

A linear model is learned on the synthetic data points; higher
importance is given in correctly classifying the synthetic in-
stances that are close to z. In Figure 1 their size represents their
proximity to z. This proximity from an synthetic instance x to
z is defined by an exponential kernel 7(z, x) = ¢~ P(2)*/0%,
In [5], o is fixed to 0.75 * vV dimension.

The parameter o of the proximity kernel plays an important
role: a fixed o can lead to neighbourhoods that do not include a
decision boundary, or that include a too big part of the decision
boundary which cannot be approximated linearly. Laugel et
al. [8] spotted this problem and suggested to sample instances
close to the nearest decision boundary to z within a fixed
hyper-sphere. However, the fixed hyper-sphere can also lead
to too small or too big neighbourhoods.

XAI research has been criticized for overlooking the view-
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Figure 1: The dashed line approximates the blue/red decision
boundary in the neighbourhood of the bold ‘+’ point [5].

point of the end-user, i.e., if he/she is satisfied with provided
explanations [9]. To address this, the present work focuses
on providing explanations according to Example-Based Rea-
soning (EBR), a paradigm where explanations are related to
previous experience [4], [10]. This type of reasoning lies very
close to how humans think [1], [3].

EBR applications can be divided into two types: problem-
solving and decision-justification [4]. In problem-solving, pre-
vious similar situations are used as aid to decide how to
proceed with the current situation. In decision-justification,
previous similar situations are leveraged to support or dismiss
certain arguments and decisions. Worth noting, Common Law,
which is used in most English-speaking countries, is based on
the same principle (judicial decision are made on similar cases
from the past [10]).

The ultimate goal of an ML explanation system is to provide
valuable insights on an automated prediction/decision to the
user. Such aspect can be evaluated by conducting user-studies.
In recommendation systems, extensive research has been con-
ducted in designing user-studies which evaluate explanations
that clarify why a certain item is recommended, from the user’s
point of view [11]-[13]. Tintarev [11] defines seven goals
for an explanation system, namely transparency, scrutability,
trust, effectiveness, efficiency, persuasiveness and satisfaction.
All of them can be evaluated subjectively by asking questions
to the user [11]. However, while trust, satisfaction and effec-
tiveness are subjective by nature, transparency, efficiency and
persuasiveness can also be measured objectively. E.g., one can
test whether users have understood the reasoning behind the
recommendations [13], measure the interaction time [12] or
check whether the user agrees to buy a recommended item.

ITII. LEAFAGE

This Section describes our proposed method, LEAFAGE
(Local Example and Feature importance-based model AG-
nostic Explanation). It provides explanations in the form of
examples drawn from the training set, that are similar to the
test sample according to the ML model logic, and shows the
importance of each feature for the prediction.

Let f : X — Y be a black-box ML model that solves a
binary classification problem with X = R? and )V = {¢;, ¢},
and z € X be the test sample, an instance of the input space
with f(z) =c,, ¢, € Y.



Furthermore, let X = [xy,..,X,] with the corresponding
true labels ytrue = [Y1, -, Yn) be the training set used to train
f. and Ypredictea = {f(xi)|x; € X} be the predicted labels
of the training set. Next, let {x € X |f(x) = ¢,} and {x €
X |f(x) # c.} be defined as the ally and the enemy instances
of z [14], respectively.

LEAFAGE uses X, Ypredicted, Z and c, to explain why z
was predicted as c,. It works as follows: *

o A subset of the training set in the neighbourhood of z is
used to build a local linear model. The coefficients of this
model provide a measure of importance of each feature
locally.

o These coefficients are used to define a local dissimilarity
measure between any instance x; € X and z. In turn, this
measure is used to retrieve examples similar to z from
the training set.

e The importance of each feature and the most similar
examples are given as explanation of the classification.

Section III-A and III-B illustrate respectively the adopted
dissimilarity measure, and the strategy to build the local
linear model. Next, Section III-C explains how LEAFAGE
explanations can be presented to the user.

A. Defining a local dissimilarity measure

Consider a binary classification problem where an ML
model predicts whether a house has a high or low value
according to two features, area and age, as shown in Figure 2a
(in green, the decision boundary of a simple linear classifier).
A test house z is predicted as value high. To find similar
houses in the training set, one could use the Euclidean distance
(Figure 2a). However, this choice does not reflect the reasoning
of the classifier, which only looks at the feature area; in fact,
according to the classifier, z is more similar to x» than x;
(Figure 2b)

A way to compute a dissimilarity measure that takes into
account the reasoning of the classifier is to use feature weights
derived from a local linear approximation f.(x) = w.x + ¢
with w, = (w,1,...,w.q)T of the decision boundary (the
blue line in Figure 2c). Then, w, will denote the most
discriminative direction for the classification of z.

In the simple example of Figure 2 the whole decision
boundary can be approximated accurately by a linear model.
ML models are usually much more complex, see e.g. Figure
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Figure 2: Illustration of different types of distances.
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Figure 3: A complex decision boundary that cannot be
accurately approximated by a linear model.

3. However, we assume that locally the closest fragment of the
global decision boundary to z is smooth enough to be linearly
approximated (see the blue line in Figure 3).

The following definitions describe the local behaviour of the
ML model around z. These definitions applied to the housing
example are illustrated in Figure 3.

Definition 1. Let the local decision boundary of z be defined
as the closest fragment (according to a distance measure
D(x1,x2), e.g. the Euclidean distance) of the global decision
boundary to z.

Definition 2. Let the local linear model of z be the model
that approximates the local decision boundary of z.

Definition 3. Given the local linear model f,(x) = w, -x+¢
of z let the the black-box dissimilarity measure between z and
an instance t € X be defined as the following:

b(t) = D(wlt,wlz)* D(t,z),

If D is the Euclidean distance, in the 2D case the black-
box dissimilarity has the form shown in Figure 4c. In the first
factor of the Definition 3, w is used as weights to reflect
features’ importance according to fz (Figure 4a). However,
fz is only valid in the neighbourhood N of z, and it is not
straightforward to define N. To cope with that, we propose
to leverage on the fact that closer instances to z (according
to the D distance measure on the input space) are more
likely to be within N: therefore, in Definition 3) a second

(b) Second factor (c) Whole formula

(a) First factor

Figure 4: Contour-line visualization of the black-box
dissimilarity measure.



factor is added, the distance on the input space (Figure 4b).
Please note that the dissimilarity measure defined as such, does
not always satisfy the condition of identity of indiscernibles
b(z') = 0 & z = z’: depending on w, the features that differ
between z and z’ could have no influence on b. Therefore this
dissimilarity measure cannot be properly considered a ‘metric’
in a mathematical sense (instead, it is a ‘pseudometric’).

B. Computation of the local linear model

The local linear model is computed from a neighborhood
of z sampled from the original training set. Let us denote it
as the local training set of z.

Methods to sample this local training set have been proposed
in LIME [5] and LS [8] (relevant details have been provided
in Section II). Both methods have shortcomings related to the
right choice of the size of the neighbourhood from which the
local training set was sampled.

Taking into account the issues of LIME and LS, we suggest
two desired characteristics that a local training set of z should
adhere to:

1) The convex hull of the local training set of z should
contain the local decision boundary of z.

2) There should be enough instances to represent all
classes.

We propose a novel sampling strategy that covers both
aspects. Its steps are:

1) The local training set of z is sampled around the local
decision boundary of z (similar to the idea of LS [8]).
This makes it possible to sample enough instances from
both classes. We assume that the closest enemy Xporder
of z from the training set lies close to the local decision
boundary of z and sample around Xporder-

2) dsmai - d samples of each class from the training set
are sampled, that lie the closest t0 Xporger according
to the distance measure D. d instances per class are
the minimum amount of examples needed for a good
linear approximation, assuming that these d instances
lie along the closest decision boundary of z. Since these
d instances might not lie exactly along the decision
boundary, the amount is increased with %g,,4;; Which is
a small integer greater than 1.

An example of this strategy applied on a 2D case with
ismail = 10 is shown on Figure 5. The green and red shapes
are instances sampled from the training set to build the local
linear model of z.

Given the local training set of z, a linear classification
algorithm can be used to build the local linear model of z.

C. Explanation extraction

Given the local linear model fz (x) = wo + w1 + waxo +
... + wqzq and an instance z = [z1, .., 24|, the importance of
each feature z; can be evaluated as abs(w; * z;), and can be
provided as an explanation to the user as for which features
the original model deems as relevant for its decision on z. We
refer to it as feature importance-based explanation.

Legend

The global
\ decision boundary

N The local linear
model of z

Z A new instance

A @ Instances from
the training-set

Figure 5: Sampling of the local training set of z.

As discussed in Section II, a way to provide explanations
that are closer to how humans think is to use Example-Based
Reasoning, i.e. to provide examples that (according to the logic
of the black-box model) are related to the test point z. As
the logic of the black-box model is locally represented by
the black-box dissimilarity measure, the latter can be used
to find training examples similar to z to motivate the deci-
sion. Furthermore, one can provide both examples belonging
to the predicted class c, and to the opposite class, which
provides insights on the differences between classes according
to the black-box model. We refer to them as example-based
explanations. Feature importance-based and example-based
explanations can be also combined to provide better insights.

An example of a test house predicted as high value by
a black-box model, and a LEAFAGE explanation for this
prediction, are shown in Figures 6a and 6b, respectively.
The left graph of Figure 6b shows the relative importance
of each feature. The two tables on the right show the top
5 similar (according to the black-box dissimilarity measure)
houses from the training set, belonging to the same class (high
value) and from the opposite class low value. From these
explanations, the user can spot insights on the classification
logic, e.g., similar low value houses have smaller living area
than similar high value houses.

IV. QUANTITATIVE EVALUATION

This Section evaluates the ability of LEAFAGE to reflect the
true local reasoning of a black-box ML model (faithfulness of
the local approximation).

Four different datasets with different number of features,
data points and complexity are used: wine [15], breast cancer
[15], banknote [15] and one artificial dataset. The latter is a
set of 2D data points from two highly non-separable classes.
Instances of each class are sampled from two bi-variate
normal distributions with different means ([0,0] and [0, 1],

respectively) and the same covariance matrix ( (2) g ). The

multi-class datasets are converted to binary datasets of one-vs-
rest fashion. A combination of a binary dataset and a classifier
is referred to as a setting in the following. Each dataset is



184 m? (1982 ft?) 1989

(a) A house predicted as value low by a black-box model.

Prediction: High

The importance of each feature for the prediction

0.4 P
Living Area

2 2
0.35 135 m* (1456 ft7)

137 m* (1479 ft?)

0.3 133 m? (1441 ft?)

135 m? (1456 ft?)
0.25
113 m* (1218 ft?)

0.2

Importance

Living Area
0.15
171 m? (1850 ft?)

04 194 m? (2093 ft?)

181 m? (1950 ft?)

0.05 194 m? (2097 ft%)

149 m? (1614 ft?)

Features

Most similar houses with value Low

Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount

1978 6 2

1976 6 2

1978 6 2

1976 6 2

2009 6 2

Most similar houses with value High

Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount

1994 7 2

1986 7 2

1997 7 2
1993

2005

(b) LEAFAGE explanation for the house above.

Figure 6: Example of a LEAFAGE explanation.

randomly split into train (70%) and test set. The train set is
used to train six classifiers, namely Logistic Regression (LR),
Support Vector Machine with linear kernel (SVM), Linear
Discriminant Analysis (LDA), Random Forest (RF), Decision
Tree (DT) and KNN with K = 1. In total 36 different settings
are tested.

A local linear model f% is built using LEAFAGE for each
instance of the test set. Laugel. et al [8] suggested to test
the performance of fz on the fest instances that fall into a
hyper-sphere with a fixed radius and z as center. Having a
fixed radius has a disadvantage that the sphere may include
only instances of the same class. Therefore, we propose to
use a custom radius by expanding it until the corresponding
hyper-sphere includes p percentage of instances that do not
have the same predicted label as c,. p should be smaller than,
and close to, one (p = 0.95 is used in the experiments), such
that the closest testing instances of the opposite class of z
are included and to make the evaluation local, respectively.
The scores given by fz are compared with the scores given
by the black-box classifier on all the test instances that fall
into this hyper-sphere, using the Area Under the ROC (AUC).
We define the average fidelity score as the average AUC score
over the whole test set.

We then compare the average fidelity scores of LEAFAGE

Lscikit-learn 0.19.2 (http://scikit-learn.org/stable/) was used to build these
models with their default parameters unless stated otherwise.

Wine BreastCa. BankNote ~ AD
Classifier Strategy Class 0 Class 1 Class 2 Benign vs 0vs 1 Ovs 1
Name Vs rest Vs rest Vs rest Malignant
LDA LIME 100 (0.0) 100 (0.0) 100 (0.0) 99.5 (1.0) 100 (0.0) 100 (0.0)
LEAFAGE | 100 (0.0) 96.0 (9.4) 100 (0.0) 99.9 (0.3) 99.9 (1.7) | 98.6 (4.0)
IR LIME 100 (0.0) 100 (0.0) 100 (0.0) 99.9 (0.6) 100 (0.0) 100 (0.0)
LEAFAGE | 100 (0.0) 97.1 (14.2) 100 (0.0) 98.6 (7.8) 99.8 (0.9) | 98.6 (4.0)
SVM LIME 100 (0.0) 100 (0.0) 100 (0.0) 99.9 (0.6) 100 (0.0) 100 (0.0)
LEAFAGE | 100 (0.0) 100 (0.0) 100 (0.0) 98.6 (7.8) 99.8 (0.9) | 99.4 (1.2)
bT LIME 91.9 (14.9)  87.9 (224) 919 (14.7) | 85.0 (162) | 99.0 (2.6) | 59.5 (32.7)
LEAFAGE | 92.9 (16.0) 85.8 (24.1) 100 (0.0) 86.5 (18.7) | 98.7 (4.2) | 65.0 (33.0)
RE LIME 100 (0.0) 99.9 (0.5) 100 (0.0) 99.9 (0.3) 99.1 (2.5) | 61.4 (36.2)
LEAFAGE | 100 (0.0) 99.2 3.7) 100 (0.0) 99.9 (0.8) 98.7 (3.8) | 67.4 (32.9)
KNN LIME 98.0 (13.6) 62.8 (37.1) 60.5 (35.7) | 958 (8.2) 100 (0.0) | 65.6 (34.3)
LEAFAGE | 91.3 (15.9) 629 (36.1)  60.3 (36.1) | 97.3 (6.0) 99.9 (0.5) | 65.5 (36.8)
Table I: Average local fidelity per setting (the standard de-

viation in brackets). The strategy with the highest mean
along with other strategy that are statistically not significantly
different are denoted in bold.

(with 4gpmq = 10) with LIME, in the various experimental
settings as shown in Table 1.

Both LIME and LEAFAGE methods perform better than
a baseline model (which predicts the majority class), in all
settings. Further, both methods work better with linear ML
models (SVM, LDA, LR) as opposed as non-linear ones
(DT, RF, KNN), especially with the artificial dataset. This
was expected, as LEAFAGE and LIME are based on linear



approximations. On linear models, LIME scores significantly
better than LEAFAGE in 11 out of 18 settings, while on non-
linear models LEAFAGE performs better 5 out of 18 times.

The better performance of LIME on linear ML models could
be explained by taking into account that LIME uses a high
amount of samples over the whole input space to fit the local
linear model. LEAFAGE on the other hand, samples around
the closest decision boundary and limits the sampling amount
to a minimum (in a sense, it is more local). This also explains
the better performance of LEAFAGE over LIME on non-linear
models.

In conclusion, overall LIME performs better than
LEAFAGE on linear ML models, while LEAFAGE performs
better on non-linear models.

V. EMPIRICAL EVALUATION

In order to assess the usefulness of LEAFAGE from the
user perspective, we performed a user-study. The target group
for this study was the general public. 114 participants with
a well spread demographics in term of gender, age and
education (but mostly from the Americas) were recruited from
Amazon Mechanical Turk, and asked to imagine they were
looking for a house to buy, and that they could use an Al
application to estimate the value of a house as low or high.
The AI application could also provide an explanation for its
estimation.

The IOWA housing dataset [16] was used, from which 5
interpretable features (i.e., features whose meaning can be
directly and easily interpreted by humans) of a house were
chosen, as shown in Figure 6a. We investigated 4 types of
explanations for the prediction of a house, namely feature
importance-based (Figure 6b left), example-based (Figure 6b
right), a combination of example and feature importance-based
(Figure 6b) and no explanation, as a baseline.

The evaluation was split into a subjective and an objective
part: perceived aid in decision-making and objective trans-
parency. In the first part, the participants were asked to rate
how much they agree to the given explanation from 1 to
5 in terms of: transparency (I understand how LEAFAGE
made the prediction); information sufficiency (the explanation
provided has sufficient information to make an informed
decision), competence (the explanation corresponds to my
own decision making) and confidence (the explanation made
me more confident about my decision). Next, the objective
transparency was measured by testing participants as follows:
the participants were shown another house, similar to the test
one; he/she had to indicate what the system would predict as
the sale value of this new house.

Attention checks were implemented; Results were gathered
from the 86 participants that passed the checks.

An SVM model with a RBF kernel was trained on the a
training set from the IOWA dataset (70%) to predict the binary
class (low or high value). All participants saw forty houses
randomly chosen from the test set (30% of the IOWA dataset),
with the corresponding predicted value, and one of the four
explanation types. All participants saw the same explanations

Transparency Info. Suff. Competence Confidence Objec. Trans.

No Explanation
Feature importance
Example-based

Ex. and Feat.

3.66 (1.03)
3.92 (0.85)
4.07 (0.76)
4.13 (0.8)

3.43 (1.17)
3.76 (0.97)
4.02 (0.84)
4.10 (0.83)

3.70 (0.96)
3.78 (0.91)
3.96 (0.86)
3.93 (0.93)

352 (1.1)
3.68 (1.04)
3.98 (0.86)
3.98 (0.9)

8.40 (1.48)
7.20 (1.66)
8.83 (1.40)
8.56 (1.68)

Table II: Results of perceived aid in decision
objective transparency per explanation type.

making and

in a randomized order. Finally, the perceived aid in decision
making and objective transparency was measured.

Table II shows the results per explanation type and de-
pendent variable. The median score of the explanation types
differ significantly over all dependent variables according to
Kruskal-Wallis H-tests [17] with p < 0.001 and H statistic
equal to 124, 202, 55, 125 and 52 (in the left to right order
of table II, respectively). The participants perceived getting
explanation as more helpful than providing no explanation.
Dunn’s post-hoc test with Bonferroni correction [18] revealed
that in terms of transparency, information sufficiency, com-
petence and confidence both example-based and combination
explanation perform significantly better than no explanation
and feature importance-based explanation, while no significant
differences were found between example-based and combi-
nation explanations. Moreover, feature importance-based ex-
planation performed significantly better than no explanation
regarding transparency, information sufficiency and confidence
but not in terms of competence. However, in terms of objective
transparency, feature importance-based explanation performed
significantly worse than the rest of the explanation types
including no explanation. Example-based explanation has the
highest average objective transparency score, however no sta-
tistically significant difference was measured between pairs of
no explanation, example-based and combination explanation.

Finally, the participants provided general remarks for each
explanation type. When no explanation was provided, they in-
dicated that they could still understand the prediction, but that
they needed “complete trust in the system to find it helpful”.
The participants liked the simplicity and visual aspect of the
feature importance-based explanation, but they did not find it
detailed enough to perform well on the objective transparency
part. Moreover, they found it hard to estimate what value of a
certain feature changes the prediction, and how the importance
really relates to the prediction of a house. Regarding example-
based explanation, participants appreciated that they could
compare similar houses with different sale values. However,
some participants disliked this explanation type because of
the amount of information present in the tables. Finally, the
combination of example-based and feature importance-based
explanation received a mixed reaction: some participants liked
to get a detailed explanation while others were overwhelmed
and focused on one chart and ignored the other.

VI. CONCLUSION

In this paper, we presented LEAFAGE, a novel method to
provide local explanations for the predictions of a black-box
ML model. LEAFAGE explanations performed overall better



than the state of the art on non-linear models in terms of local
fidelity. We also evaluated LEAFAGE empirically, by engaging
people in a user study. This aspect has been largely overlooked
by the scientific literature on XAl

The empirical evaluation showed that overall the partici-
pants perceived having explanations behind a prediction as
more helpful than having no explanation for the goal of
decision making. Interestingly, when participants were tested
about their gained knowledge after seeing an explanation, no
significant advantage was found compared to providing no
explanation. We suspect that this is due to the simplicity of
the test, in future work a more comprehensive test could be
used to measure the actual transparency. The user study also
showed that, with regards to objective transparency, feature
importance-based explanations are less effective than provid-
ing no explanation at all. This is an important result, which
suggests that feature importance-based explanation confuses
users more about the prediction than providing no explanation.

Further, example-based explanations performed signifi-
cantly better than feature-importance based explanation in
terms of perceived aid in decision making. Showing both
example-based and feature-importance-based explanation did
not increase the perceived aid in decision making significantly.
This could be due to the overload of information as the par-
ticipants described. Interestingly, some participants indicated
that a tabular view of the example-based explanation was hard
to read. In our future work, we will focus on designing them
in a more readable and intuitive manner.
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