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Abstract: The present paper investigates the role of parent phase topology on a crystallographic
variant selection rule. This rule assumes that product phase nuclei appear at certain grain boundaries
in the parent structure, such that a specific crystallographic orientation relationship is observed with
both parent grains at either side of the grain boundary. The specific crystallographic orientation corre-
spondence considered here is the Young–Kurdjumow–Sachs (YKS) orientation relationship <112>90◦

(which exhibits 24 symmetrical equivalents). The aforementioned relationship is characteristic of
phase transformations in low-carbon steel grades. It is shown that, for different parent phase textures,
~20% of the grain boundaries comply with the double YKS condition allowing for a tolerance of 5◦,
ignoring the presence of topology in the parent phase microstructure. The presented model allows
for connecting the presence of a specific parent phase topology with the condition of the double YKS
variant selection rule in a number of practical cases: (i) for hot rolled Ti–Interstitial Free (IF) steel
with and without Mn addition, (ii) for cold rolled IF steel exhibiting very strong texture memory
after forward and reverse α
 γ phase transformation and (iii) for a martensitic transformation in
a Fe–8.5% Cr steel. It is shown that the double YKS variant selection criterion may explain several
specific features of the observed transformation textures, while assuming a non-correlated arbitrary
pair topology of the parent austenite structure (implying that for N parent orientations N/2 pairs are
selected in an arbitrary manner).

Keywords: crystallographic texture; low-carbon steel; phase transformation; Young–Kurdjumow–
Sachs orientation relations; texture memory

1. Introduction

The phase transformation in low-carbon steels from the high temperature austenite
phase to different potential product phases (ferrite, martensite or bainite) provides one
of the most powerful levers to control the mechanical properties of steel through thermo-
mechanical processing. This phase transformation also affects the crystallographic texture,
as it is well-known that product phase orientations bear a specific orientation relationship
with parent austenite crystal orientations [1]. For low-carbon steels, the YKS orientation
relationship (<211>90◦) [2,3] is often considered the prevailing orientation correspondence
between parent and product crystal orientations. It can be noticed that depending on the
cooling rate, the product microstructures may vary widely, from polygonal ferrite under
a slow cooling condition to lath type martensite after quenching. The product textures,
however, are far less dependent on the cooling rate and the texture of hot rolled steel
sheets is often characterized by a {112}<110> component if the parent austenite texture
exhibits the typical β-fiber FCC rolling texture, in first approximation irrespective of the
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cooling rate. Although the reason for this is not fully understood, it is probably related to
the fact that specific orientation relationships allow for a (semi-)coherent crystallographic
interface between parent and product crystals, which may drastically reduce the activation
energy [4].

Because of crystal symmetry, each parent austenite orientation will produce 24 sym-
metrically equivalent product orientations following the YKS orientation relationship in
the absence of variant selection. Variant selection occurs because of an external boundary
condition that breaks the crystal symmetry, e.g., an applied load may favor the nucleation
of one variant orientation at the expense of another one because of the local strain energy
balance [5]. One of the more peculiar instances of variant selection is observed in cold
rolled ultra-low-carbon or Interstitial Free (IF) steels that are recrystallization annealed
in the full austenite domain. As the structure undergoes a forward and reverse α
 γ

transformation, in the absence of variant selection, each initial crystal orientation would be
subdivided into 242 final orientations. This would not only give rise to significant grain
refinement in the final microstructure, but also to a final texture that is all but random, even
when the initial texture at the onset of the double phase transformation exhibits the typical
<111>//ND fiber recrystallization texture of an IF steel [1]. Experimental evidence, though,
shows nearly the opposite behavior: after the forward and reverse α
 γ phase transfor-
mation the final texture very much resembles the <111>//ND recrystallization texture
that appeared at the onset of phase transformation, or is even stronger in some cases. This
phenomenon is called texture memory and it is a typical example of variant selection [6–11].
It was shown by Hutchinson and Kestens [12] that texture memory can be explained by
the nucleation of ferrite grains at parent austenite grain boundaries, which allows for a
double YKS orientation relationship during cooling [13]. It implies that nucleation is highly
favored at special parent grain boundaries such that in the set of 24 × 24 potential product
orientations at both sides of the boundary, there is at least one common product orientation
for two adjacent parent crystals. A double YKS orientation relationship was experimentally
supported by direct observation of early ferrite nuclei appearing at parent austenite grain
boundaries in a Fe–Co alloy [14]. In the case of a double YKS orientation relationship, the
breaking of the perfect cubic symmetry between the variants is the consequence of the
nucleation at grain boundaries.

The occurrence of a double YKS orientation relationship was already modeled by
Tomida [8–10] and it was shown that better correspondence with experimental results
could be obtained by combining the double YKS variant selection rule with the elastic
accommodation of transformation stresses at grain boundaries in case of a displacive
transformation. However, the model of Tomida does not include the consideration of a
specific topology of the parent structure. It is the aim of the present work to model the
effect of double YKS variant selection (neglecting other sources of variant selection) by
statistically representing a texture as a set of N crystal orientations. It intends to investigate
the effect of topological aspects of the parent microstructure by considering a specific subset
of pairs of parent grains from the set of all possible N(N − 1)/2 pairs.

2. Results
2.1. Fraction of Double YKS Orientation Relations

The requirement to preserve a fully coherent interface of a new nucleus appearing
at a grain boundary of the parent structure can only be fulfilled (i) for a subset of special
austenite grain boundaries and (ii) for a subset of specific product orientations that exhibit
a YKS orientation relationship at either side of the boundary.

Figure 1 shows the fraction of parent austenite grain boundaries that fulfill the special
condition to allow for a double YKS orientation relationship as a function of the allowed
tolerance within the YKS correspondence. These data were obtained by considering all pos-
sible non-identical misorientation pairs in a set of N discrete orientations (i.e., (N/2)(N − 1)
orientation pairs) distributed over triclinic Euler Space (0 ≤ ϕ1 ≤ 2π; 0 ≤ Φ, ϕ2 ≤ π/2),
with N = 1000. For the random texture, the discrete orientations were uniformly distributed
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over Euler Space, whereas the β-fiber and the Cube fiber textures were obtained by dis-
cretizing a Gaussian ODF of width 10◦ in N = 1000 discrete orientations. For all parent
orientation pairs, the 24 × 2 product variants were calculated, producing 242 misorienta-
tions. If at least one of these misorientations was smaller than the set tolerance, then the
parent pair was considered to comply with the double YKS condition.
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It can be observed that, for a random parent austenite texture, approximately 60% of
the austenite GBs allow for a double YKS orientation relationship observing a tolerance
of 10◦, which corresponds to the report of Tomida et al. [11]. The data in Figure 1 show
that the largest fraction of double YKS GBs can be observed for the single component Cube
texture, which can be understood by the fact that for a single component texture, with
increasing misorientation tolerance, an increasing fraction of parent misorientation pairs
will be considered low angle misoriented pairs for which all possible product variants are
common variants. The FCC cube and β-fiber textures were considered because it is well-
known that these are the typical austenite textures before the onset of phase transformation
in hot rolled low-carbon steel sheets after the final rolling pass.

2.2. Transformation Textures of the IF Hot Rolled Steel Sheet

Yoshinaga et al. [15,16] published a very extensive study on the role of thermo-
mechanical processing during hot rolling on texture development in Ti–IF steels with
and without Mn addition. In Figure 2 the hot rolling textures from a Ti–IF steel (Figure 2a)
and a Mn-added Ti–IF steel (Figure 2b) are compared. Figure 2a shows the typical transfor-
mation texture obtained after hot rolling in the austenite domain with the finishing pass
below the Tnr temperature (Tnr = the temperature below which interpass recrystallization
is no longer complete). This steel exhibits a weak maximum (3 mrd) in the vicinity of the
{114}<110> component and the typical morphology of a transformed FCC β fiber texture,
corresponding to the fact that the hot rolling was partially carried out below the Tnr tem-
perature. The texture that was observed in the Mn-added IF steel, cf. Figure 2b, exhibits a
strong maximum (10 mrd) in the {112}<110> component and virtually no intensity on the γ
fiber (<111>//ND).

Figure 3a shows the presumed β fiber austenite parent texture prior to phase transfor-
mation. This texture was obtained by applying a simulation of plane strain compression
with true strain = 2 with the full constraint Taylor model (FCT) and with octahedral slip
systems {111}<110> on 3744 random orientations. The rolling texture exhibits maxima at
the Cu {112}<111>, the S {123}<634> and the Bs {110}<112> components. If this texture
is rotated around the 24 symmetrical equivalents of the <112>90◦ axis angle pair, which
corresponds to the YKS orientation relationship without variant selection, the texture in
Figure 3b is obtained. This is a much weaker texture than the parent texture in Figure 3a,
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as each parent orientation gave rise to 24 product orientations according to the 24-fold
symmetry of the cubic lattice. If, however, the double YKS model is applied to the parent
texture in Figure 3a, the product texture in Figure 3c is produced. This texture was obtained
by dividing the parent β fiber texture of the deformed austenite, represented by 3744
discrete orientations in 1872 pairs of two randomly selected orientations. Among these
pairs, the ones that allow for a double YKS orientation relationship were identified, and
for these pairs the product orientations were calculated that are common between the two
parent grains.
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2.3. Texture Memory during Forward and Reverse α 
 γ Transformation

Figure 4a shows a typical γ fiber texture (<111>//ND) of an IF steel after recrystal-
lization annealing in the ferrite domain. It can be reasonably assumed that this is the
starting texture at the onset of a forward and reverse α
 γ phase transformation such
as the one studied by Yoshinaga et al. [17]. If it is additionally assumed that the forward
α ⇀ γ transformation occurs without variant selection, then the texture in Figure 4b is
obtained. The hypothesis of absence of variant selection during the forward transformation
is based on the consideration that this transformation occurs during heating, and hence
the role of activation energy, and the corresponding importance of a coherent interface
of transformation nuclei, is probably less important than for a transformation occurring
during cooling. The ODF in Figure 4b logically exhibits a <110>//ND fiber because of the
{111}γ//{110}α parallelism of the YKS orientation relationship. The texture in Figure 4b
was derived by discretizing the initial texture from Figure 4a in 2000 individual orientations
and applying the <211>90◦ YKS orientation operators on these orientations, resulting in
a set of 24 × 2000 = 48,000 produced austenite orientations. It is important to emphasize
that in this list of 48,000 orientations the grains appear in groups of 24 crystal orientations
that have one single ferrite crystal as common parent. Hence, in the sequence of austenite
orientation, the subset gi

γ, gi+1
γ, . . . gi+24

γ, with (i − 1) mod 24 = 0, has a common ferrite
parent crystal orientation.

When the double YKS model is applied for the reverse α ↽ γ transformation, the
mathematically identical texture is obtained as the one shown in Figure 4a, which demon-
strates that in this case we obtain ideal texture memory. This was obtained by pairing the
grains of the 48,000 parent austenite orientations and calculating the common product orien-
tations for these pairs that comply with the double YKS condition. Unlike the simulation in
Figure 3c, in this case the pairs were not selected randomly, but the ordering sequence of the
list of austenite parent grains was preserved, thus mimicking the microstructural proximity
of high temperature austenite grains originating from one single low temperature ferrite.

However, when the set of 48,000 orientations of the high temperature austenite texture
was randomly scrambled (hereby destroying the topology of the microstructure obtained
after forward α⇀ γ transformation) and then the double YKS variant selection was applied
to this set of 48,000 randomly sequenced austenite parent grains, this resulted in the ferrite
texture in Figure 4c after reverse α↽ γ transformation.
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2.4. Martensitic High Strength Steel

Figure 5a shows the orientation contrast map of a martensitic high strength Fe–8.5%Cr
alloy. The orientation map was acquired with the EDAX-TSL-Data Collection software v7.3
(EDAX/TSL Inc., Draper, UT, USA) attached to a Quanta 450 FEG–SEM (ThermoFisher
Scientific, Eindhoven, Netherlands) operating at 20 kV with a probe current of 2.4 nA.
The sample was prepared according to the standard steel sample preparation routes with
a final polishing step with colloidal silica (OPS) for 25 min and a force of 15 N, cleaned
in an ultrasound bath, flushed with pure ethanol and dried with hot air. The parent
austenite structure was reconstructed with OIMv8.6® software (EDAX/TSL Inc., Draper,
UT, USA) based on the YKS orientation relationship, cf. Figure 5b. The OIM maps contained
~1.4 × 106 pixels and were recorded with a step size of 0.4 µm. Figure 6a exhibits the texture
of the martensite product phase. This texture was calculated by imposing a Gaussian ODF
with a spread of 5◦ on each of the ~1.4 × 106 pixels of the OIM in Figure 5a. When the same
procedure was applied to the reconstructed parent phase scan in Figure 5b the texture in
Figure 6b was obtained, which exhibits the typical β fiber texture of a rolled metal sheet
with an FCC crystal structure. Subsequently, the ODF of the reconstructed parent phase was
discretized in a sample set of 2000 orientations, each with the same weight factor. When the
YKS orientation operator was applied to these 2000 orientations without variant selection,
a new set of 48,000 (=24 × 2000) orientations was produced that gave rise to the ODF in
Figure 6c. When the YKS operator was applied to the same set but with the double YKS
variant selection rule, according to the same procedure as described in Section 2.2, the ODF
in Figure 6d was obtained. It needs to be emphasized that all calculations were carried out
in the triclinic Euler space (0◦ < ϕ1 < 360◦, 0◦ < Φ, ϕ2 < 90◦) without considering sample
symmetry. However, for the final result of simulated and measured textures, orthorhombic
sample symmetry was applied in order to improve data statistics, and thus the ODFs in
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Figure 6 are represented in the [0◦, 90◦] restricted zone of Euler space. For calculation of
the continuous ODFs of the textures in Figure 6a, a Gaussian spread of 5◦ was assumed.
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3. Discussion

It can obviously be observed that the model without variant selection (Figure 3b)
best resembled the product texture of the Ti–IF steel (Figure 2a) whereas the model with
double YKS variant selection (Figure 3c) more resembles the product texture of the Mn-
added IF steel (Figure 3b). It should be mentioned that the Ti–IF steel in Figure 2a was hot
rolled with the last pass at 913 ◦C, after which it was subjected to a coiling simulation at
700 ◦C. This produced an equiaxed polygonal ferrite hot band structure with an average
grain size of 23 µm [15]. Conversely, the Mn-added Ti–IF steel in Figure 2b was finish
rolled at 865 ◦C followed by a coiling simulation at 450 ◦C, which gave rise to a bainitic
hot band structure [15]. It was already observed by Hutchinson and Kestens [12] that
displacive transformations enhance the conditions for texture memory in IF steel, which
they associate with the double YKS variant selection mechanism. The reason is that a
displacive transformation occurs at a lower temperature and thus with a lower activation
energy. Hence, the double YKS orientation relationship, ensuring a (semi-)coherent interface
to a larger degree than the single YKS orientation, would be of more critical importance
for the displacive than for the diffusive transformation. Therefore, the double YKS type
variant selection was more pronounced in the Mn-added IF steel.

Perfect texture memory is observed if the topology after the forward α⇀ γ transfor-
mation is preserved in the high temperature austenite phase, i.e., if the austenite grains
nucleating from one single parent ferrite grain remain clustered at high temperatures.
However, a different texture arises if the topology of the high temperature austenite phase
is not preserved and the austenite grains are randomly scrambled after forward transfor-
mation. In this case, it can be observed that the modeled texture in Figure 4c after forward
α⇀ γ (without variant selection) and reverse α↽ γ transformation (with double YKS
variant selection) exhibits texture memory only to a certain degree. The final texture in
Figure 4c still reproduces the initial γ fiber texture prior to transformation, albeit with a
reduced intensity of 5 mrd (compare figure Figure 4a with Figure 4c). Surprisingly, a θ
fiber texture (<001>//ND) is also observed in the final product texture with a maximum
of ~3.2 mrd at the rotated cube component. The result presented here demonstrates the
influence of local topology on the double YKS variant selection. For example, it can be
imagined that the local topology of the austenite phase is (partially) destroyed by grain
growth at elevated temperatures. It is shown here that such a phenomenon would mitigate
the appearance of texture memory. As it is impossible to assess the true topology of the
high-temperature austenite structure, only two limiting cases were considered here: one
with perfect preservation and one with complete removal of the local topology.

Alternatively, it needs to be mentioned that Yoshinaga observed an increased incidence
of the θ fiber components after α
 γ phase transformation in IF steel [1,17]. This was
particularly true for the surface texture [15,18]. It was argued by Yoshinaga that either the
crystallographic dependence of the surface energy and/or the release of normal transforma-
tion stresses at the surface might be responsible for the selection of {001} crystal orientations
in the vicinity of the surface. Gautam et al. [19,20] convincingly reported that surface energy
dependence can indeed enhance the selection of {001} oriented surface crystal orientations.
The fact, however, that the double YKS variant selection mechanism might also contribute
to enhancing θ fiber {001} components was not previously considered.

When comparing the modeled product textures (Figure 6c,d) derived from the recon-
structed parent ODF in Figure 6b, it is not immediately obvious which of the modeled tex-
tures (without variant selection, Figure 6c, or with double YKS variant selection, Figure 6d)
best corresponds to the measured product texture in Figure 6a. In terms of intensity, the
double YKS modeled ODF in Figure 6d best corresponds to the experimental counterpart.
Moreover, the experimental texture exhibits a local maximum in the {332}<113> component,
which is absent in the ODF that was modeled without variant selection (Figure 6c), but
which is approximately present in the ODF modeled with double YKS variant selection
(Figure 6d).
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For higher alloyed steels, it is often claimed that the preferred orientation correspondence
is the Nishiyama–Wasserman orientation (NW) relationship ({111}γ//{110}α <112>γ//<111>α)
rather than the YKS correspondence ({111}γ//{110}α <110>γ//<111>α) [2,3]. If the parent
texture is reconstructed on the basis of the NW relationship, then the texture in Figure 7a is
obtained. This ODF, similarly to the texture in Figure 6b, exhibits a β fiber, but in addition
features a maximum of 4 mrd at the cube component. When this NW reconstructed austenite
texture is employed as the parent texture to which the double NW operator is applied, then
the texture in Figure 7b is derived, which exhibits an even more pronounced maximum at the
{332}<113> component. However, it also features a maximum at the rotated cube component,
which is not observed in the experimental product texture in Figure 6a. It is well-known that
the rotated cube component of the product texture is strongly enhanced by the presence of a
cube component in the parent texture. Apparently the cube component of the parent texture is
overestimated by the reconstruction algorithm in OIMvs.8.6®.
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Figure 7. (a) Reconstructed austenite texture corresponding to the map in Figure 5b applying the NW
orientation relationship (ϕ2 = 45◦, 65◦ and 90◦ sections) and (b) ϕ2 = 45◦ product texture derived
from (a) by applying the double NW variant selection rule.

In applying the double YKS orientation relationship, there is an implicit topological
hypothesis assuming that the product orientations nucleate at the parent structure grain
boundaries. In the examples considered here, the double YKS condition was applied
to a set of N parent orientations. It was deliberately chosen not to consider all possible
(N2 − N)/2 pairs of two dissimilar orientations in order to avoid statistically diluting the
variant selection to the point that the result would be indistinguishable from the no-variant
selection case. Moreover, pairing each crystal to any other crystal in the set would not
represent the relevant topology of a real microstructure. As an alternative, the set of N
orientations was scrambled in a random sequence and N/2 pairs were considered, to which
the double YKS condition was applied (with the exception of the texture memory case in
Section 2.2, where groups of 24 austenite variants produced during the forward α⇀ γ

transformation were kept together, reflecting the particular topology of the case). It needs
to be assessed whether or not the proposed manner of considering the parent structure
topology is appropriate for the present purpose of texture modeling.
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4. Conclusions

A simple model was presented to assess the consequences of variant selection based
on a specific mechanism that applies to special austenite grain boundaries that allow for a
YKS orientation relationship for a product nucleus at both sides of the boundary, i.e., the
so-called double YKS orientation relationship. The model presents a mean-field approach
whereby the basic building blocks consist of the individual crystallographic orientations
that represent a specific texture. The model was applied to three specific examples: (i)
the hot band texture of Ti–IF steel with and without Mn, (ii) forward and reverse α
 γ

phase transformation in an IF steel and (iii) the austenite to martensite transformation in a
Fe–8.5%Cr alloy. In all these cases the double YKS variant selection mechanism was able to
explain some particular features of the transformation texture, including the dominance
of the {112}<110> component in the hot band texture of the Mn-alloyed Ti–IF steel, the
strong texture memory effect after the forward and reverse α
 γ phase transformation
in cold rolled IF steel and the presence of the {332}<113> component in the martensite
transformation texture of a Fe–8.5%Cr alloy. The model also revealed the importance of
the topology of the parent microstructure. Better simulation could be obtained not by
considering all possible orientation pairs of a set of N parent orientations, but by sampling
a subset of N/2 pairs among all possible pairs.
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