
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Global optimization
using a deflation-based
method for the design
of composite structures
MSc. Thesis
Sankalp Seetharama Bangera

This page was intentionally left blank.

Global optimization using
a deflation-based method

for the design of
composite structures

by

Sankalp Seetharama Bangera

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday, March 27, 2023 at 9:00 AM.

Student number: 5336244
Project duration: March 1, 2022 – March 27, 2023
Thesis committee: Dr. S.G.P. Castro, TU Delft, Supervisor and chair

Dr. D.M.J. Peeters, TU Delft, examiner
Dr. J.A. Pascoe, TU Delft, examiner
Dr. O.K. Bergsma, TU Delft, examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

This page was intentionally left blank.

Preface

“Climbing to the top demands strength, whether it is to the top of Mount Everest or to
the top of your career.”

A. P. J. Abdul Kalam.

This thesis is written to obtain my Master’s degree in Aerospace Engineering with a specialization in
aerospace structures at Delft University of Technology, Netherlands.

The fall of 2020, was when I came to the Netherlands. The timing back then seemed to be alright since
the Covid-19 pandemic numbers were set to drop towards the end of the year with the resumption of
normal lectures, however, this was not the case as I finished my compulsory course quarters by mid-2021.
Even though most of the education I obtained was not in a lecture hall, the knowledge and experience I
have gained are personal achievements I am proud of, and I am glad I decided to travel for my studies.

The phase of working on my thesis has had multiple lows and highs, much like the functions I have been
optimizing. And through all these lows and highs I have had the support and encouragement of some
people who have helped me grow stronger both, mentally and physically. These people I will forever
cherish.

I would like to extend my immense gratitude, to my thesis supervisor Prof. Saullo Castro from Tu
Delft, who has provided me invaluable academic guidance throughout my thesis project with all the
meetings and discussions we have had, and for being supportive throughout this journey. The role he
has played during my thesis project is actually analogous to the role of the optimizer I have proposed
in the project; nudging me step by step to follow a path leading to the optimal point.

My mother (Krapa Bangera), father (Seetharama Bangera), and brother (Sanket Bangera) have been
my pillars of support throughout my life, and the work I have put in through all these years be it
academics or life, in general, is dedicated to their belief in me. This journey would have been a lot
harder in the absence of their love and support and I am extremely grateful to them for providing me
with this life full of opportunities.

I have three of my close friends I would like to express my gratitude, for making me feel the comfort of
home despite being so far from it. Shikha Mahboobani is the person who has virtually graced most of
my days away from home by being my personal cheerleader and day-to-day logbook. Ahaan Bhosale, a
fellow batch-mate since 2016, has been like a brother to me, and being enrolled in the same course at
the same time helped both of us to cope with mental fatigue. He has been a motivator for my physical
strength too, thanks to all the nighttime gym sessions. Radha Dave is the person who provides me
with a good laugh from time to time and also shares a similar path to mine. They have supported me
invaluably through this journey and I am thankful to them for always being there for me.

All these people have contributed to my thesis in more ways than I can not express, and for that, I am
grateful to all of them.

Sankalp Seetharama Bangera
Delft, March 2023

iii

This page was intentionally left blank.

Abstract

Composite structures are rapidly transforming the aerospace industry, driven by continuous advance-
ments in manufacturing methods capable of producing optimized structures with variable stiffness that
enables the creation of increasingly complex and efficient structures. This project focuses on the devel-
opment of a global optimization method that applies the innovative concept of deflation to the design
of optimized composite structures.

This project aims at developing a method for global optimization by applying the concept of deflation
for the design of optimized composite structures. Gradient-based optimization is known for its accuracy
in identifying local optima, although heavily depends on initial starting points in non-convex design
spaces. By incorporating deflation, gradient-based optimizers can obtain multiple local optima even
when starting from the same point in the design space. This approach not only offers alternate minima
for assessing design feasibility but also highlights the importance of having a universally applicable
method for existing optimization schemes.

The methodology herein proposed establishes a gradient-based optimization framework that is used to
develop and test the developed deflation constraint. The novel deflation constraint can be integrated
into any optimization method supporting constrained optimization, either gradient-based or heuristics-
based. The developed deflation method is tested on various case studies related to composite structure
optimization, showcasing its promising applications in the aerospace industry and beyond.

v

This page was intentionally left blank.

Contents

Foreword iii

Abstract v

Acronyms xi

1 Introduction 1

1.1 Context and motivation . 1

1.2 Research questions . 2

1.3 Report layout . 3

I Literature Review 5

2 Optimization 7

2.1 Representations . 7

2.2 Convex and non-convex functions . 8

2.3 Gradient-based optimization . 9

2.4 Constrained gradient-based optimization . 15

2.5 Penalty methods . 17

2.6 Sequential Quadratic Programming . 18

2.7 Automatic Differentiation . 19

3 The Deflation method 25

3.1 Polynomial deflation . 25

3.2 Deflation applied to Nonlinear equations . 27

4 Variable Stiffness Laminates 29

4.1 Manufacturing of variable stiffness Laminates . 29

4.2 Modeling methods . 32

vii

viii Contents

II Methodology 39

5 Gradient-based Optimization Algorithm 41

5.1 Interior - Point Method . 41

5.2 Developing the Optimization Algorithm . 44

5.3 Testing the Optimization Algorithm . 48

5.4 Conclusion . 52

6 Deflation applied to optimization 53

6.1 Deflation for optimization of NLP . 54

6.2 Developing the deflation constraint . 54

6.3 Testing the deflation constraint in optimization . 57

6.4 Conclusion . 63

III Results 65

7 Case studies 67

7.1 Case study 1 . 67

7.2 Case study 2 . 70

7.3 Case study 3 . 72

7.4 Case study 4 . 75

7.5 Case study 5 . 79

7.6 Conclusion . 81

8 Research review and future recommendations 83

8.1 Gradient-based optimization algorithm . 83

8.2 Deflation method . 84

8.3 Optimization of composite structures . 85

9 Conclusion 89

References 91

A Literature study 95

A.1 Optimization . 95

A.2 Variable stiffness Laminates . 96

Contents ix

B Interior point optimizer 97

B.1 Finding the right parameters . 97

C Deflation constraint 99

C.1 KKT proof . 99

C.2 Effect of Parameters . 99

C.3 Test of deflation constraint . 101

D Case studies: Additional results and proofs 103

D.1 Case study 3 . 103

D.2 Case study 4 . 104

This page was intentionally left blank.

Acronyms

AD Automatic Differentiation

AFP Automated Fiber Placement

ATL Automated Tape Laying

CA Cellular Automation

CTS Continuous Tow Shearing

KKT Karush Kuhn Tucker

LP Lamination Parameters

NLP Non-Linear Programming

PDE Partial Differential Equation

QP Quadratic Programming

SQP Sequential Quadratic Programming

VS Variable Stiffness

xi

This page was intentionally left blank.

1
Introduction

1.1. Context and motivation
Structural optimization is a fairly vast subject in itself and is usually associated with lightweight struc-
tures. Composites have been a major advent in exploring these lightweight structures owing to their
superior specific material properties (ratio with respect to weight) as compared to metals. In the aircraft
industry, Boeing was the first to enter an aircraft with a composite fuselage and composite wings with
about 50% structure contributing to significant improvement in efficiency (increased range, decreased
operation costs, etc.) [1]. Although a significant improvement over metallic aircrafts has been achieved,
there still exists quite a bit of untapped potential in composites.

Composites structures/laminates are composed of layered fiber-reinforced material with each layer hav-
ing its fibers oriented in a particular direction. These layers could be composed of the same materials
or even different. The composites considered in this work have a consistent material. The mechanical
properties of composite laminates depend on the orientation of their layers. Hence the fiber orienta-
tions can be tailored to optimize the laminate for particular service conditions. This tailor-ability is a
powerful suite of composite structures.

Laminates associated with layers that have straight and parallel fibers are known as constant stiffness
laminates as the stiffness properties across the laminate are constant. Having these fibers straight and
parallel but optimized for a particular application still hides quite a bit of its potential. This is where
Variable Stiffness (VS) laminates come in. VS is achieved by the spatial variation of the stiffness of
laminate [2]. Hence, if the varying spatial stress state in a laminate for a particular application is
known, the fiber orientation angles for each layer can be varied which results in more efficient usage of
directional properties. VS is no more a theoretical concept and is achievable with current composite
manufacturing technologies. However, the study of optimization of VS structures could still benefit
from the advent of new optimization methods to optimize these structures from a global perspective
because the design space associated with the spatial orientation of fiber angles can be highly non-convex
[3].

For global optimization, a method that can explore multiple local minima to find a global minimum
is desirable when dealing with a non-convex design space. Many of these optimizers rely on different
sampling or starting point approaches [4], [5], however, the methods do not guarantee not converging
onto a solution that has been found previously. This issue is remedied by a method known as deflation,
which guarantees the discovery of new distinct minima even while starting from the same starting point.
Hence this leads to the topic of the present thesis;

Global optimization using a deflation-based method for the design of composite structures.

1

2 Chapter 1. Introduction

Gradient-based optimization is known for its ability to recover local minima with high accuracy [6]. This
method coupled with deflation would help gradient-based optimizers become global optimizers as well.
The aim of this project involves the development of a methodology for a gradient-based optimization
algorithm, followed by the formulation of a method for deflation that can be applied to any optimization
algorithm that supports constrained optimization. The development of such a method for deflation will
be one of the major contributions of this work. The deflation method on its when applied to an
optimization algorithm involves significant changes that need to be made to the algorithm, but if it is
formulated as a constraint, deflation can be applied without altering the optimization algorithm and
by just adding a constraint to the optimization problem.

1.2. Research questions
Based on the requirements that this thesis needs to accomplish, the primary research question is framed
as,

Primary Research Question

How can a deflated gradient-based optimization method be created that can be used for global
optimization of the non-convex design spaces associated with composite structural design prob-
lems?

This primary research question can be further divided into multiple research sub-questions. Firstly,
emphasis is laid on the structure of the optimization algorithm and the following questions are framed:

Research Sub-Questions

How can a gradient-based optimization algorithm be created for constrained optimization?

1. How are constraints included in an optimization algorithm?

2. Which gradient-based optimization method is suitable for the selection of search (descent)
direction?

3. What is a line-search method and how can a line-search algorithm be created?

4. How can the gradients involved in gradient based-optimization be evaluated efficiently
without utilizing symbolic differentiation?

Secondly, emphasis is laid on the deflation method and the following questions are framed:

Research Sub-Questions

How can deflation be applied to optimization algorithms to obtain multiple minima?

1. What are the aspects and major parameters of the deflation method?

2. Can a method be devised to enable easy implementation of deflation to any constrained
optimization algorithm?

Lastly, emphasis is laid on how the optimization methodology can be implemented for the design of
composite structures, and the following questions are framed:

1.3. Report layout 3

Research Sub-Questions

Can the optimization of composite structures be achieved with the proposed method?

1. Can the stacking sequence of constant stiffness laminates be optimized with the proposed
method?

2. What are the different ways of parameterizing VS Laminates?

3. How can spatial fiber orientation angles be retrieved from optimized Lamination parame-
ters?

1.3. Report layout
The report is divided into three parts, with each part having certain chapters. The first part of the
report consists of the literature review. This is further divided into three chapters; chapter 2 covers
the basic literature required to understand gradient-based optimization and the proposed methodology,
chapter 3 covers the basic concept of the deflation method, and chapter 4 covers the concept of VS
laminates, along with aspects like manufacturing, defects and design parameterization. The second
part of the report consists of the methodology and is further divided into two chapters; chapter 5 covers
the development of the optimization algorithm for this project and chapter 6 covers the proposed method
of using a deflation constraint that can be implemented in any constrained optimization algorithm. The
last part of this report includes the results obtained with the proposed methodology; chapter 7 covers
the various case studies that the methodology is tested on, followed by chapter 8 where the research
questions are revisited and provide summaries to each question based on which future recommendations
are proposed and lastly chapter 9 which summarizes the key contributions this work.

This page was intentionally left blank.

Part I

Literature Review

5

2
Optimization

This chapter covers the basic concepts of optimization that are the basis of this thesis. The chapter
discusses the main types of optimization problems, gradient-based optimization, line search, the inclu-
sion of constraints based on Lagrange multipliers, penalty methods, and automatic differentiation (also
known as algorithmic differentiation). In this thesis the Optimization algorithm is designed to handle
continuous objectives and the literature covered in this chapter supports the same. Martins and Ning
provide extensive Literature for Optimization in their book [6] and is one of the primary references for
this chapter.

2.1. Representations
The mathematical representation of an optimization problem is as follows [6],

minimize f(x)
by varying xi ≤ xi ≤ xi i = 1, . . . , nx

subject to gj(x) ≤ 0 j = 1, . . . , ng

hi(x) = 0 l = 1, . . . , nh.

(2.1)

where f(x) is the scalar objective function in terms of the design variable x, nx is the number of design
variables, xi is the lower limit of x, xi is the upper limit of x, gj(x) is the inequality constraint in
an implicit form with ng being the number of inequality constraints, and lastly hl(x) is the implicit
equality constraint with nh being the number of equality constraints. This mathematical representation
is a common format encountered in literature and is herein adopted, being interpreted (Equation 2.1)
as follows: ”minimize the objective function by varying the design variables within their bounds subject
to the constraints” [6].

The mathematical models used in certain optimization algorithms can scale up in complexity and
representing them with explicit relations becomes difficult. However these mathematical models can be
expressed in an implicit state i.e. the residual formation given as [6],

ri(u1, ..., un) = 0, i = 1, .., n, (2.2)

where r is a vector of residual with the size being the same as the state variables u. The equations in
any mathematical model can be represented as a set of equations in this form which is more compactly
written as r(u) = 0. Figure 2.1 depicts how the optimization algorithm functions. First, the optimizer

7

8 Chapter 2. Optimization

Figure 2.1: Computation of objective function and constraints with new state variables obtained from residuals [6]

sends the initial design variables x to the solver to generate new state variables after which the design
variables and state variables are used to obtain the values of the objective function and constraints.
Earlier in Equation 2.1 the governing equations were assumed to be part of the computation, and hence
the objective function and constraints were written only in terms of the design variables. With these
evaluated values, sent to the optimizer, a new point in the design space is found and the cycle continues
until the optimizer converges on a minimum.

2.2. Convex and non-convex functions
The modality of a function is a quality that helps in determining if the function is convex or non-convex.
Unimodal functions have a single minimum while multimodal functions contain multiple minima [6]. A
minimum can be labeled as a global minimum only if the function is known to be unimodal. To prove
that the function is unimodal would require evaluating the function through all points in the domain
and this can be computationally expensive. A way to prove unimodality is by optimizing the problem
multiple times from different starting points. With increasing iterations, if the optimization converges
to the same minimum the confidence of the function being unimodal increases. For instance, He et al.
[7] and Lyu et al. [8] in their respective works on an aerodynamic shape optimization problem shows
how the optimizer converges to the same optimum despite choosing different starting points. If two
or more distinct minima are found from different starting points, then the function is multimodal. In
Figure 2.2a, three minima are distinguished. When observed in narrow ranges, each of these minima
can be evaluated as local minimums but when viewed over the entire range, the minimum that lies lower
than the others is the global minimum, while the others are local minima. There is also a third type
there, which is a weak local minimum and is called so because it is a minimum that is located above
the rest of the minima.

(a) Types of minima. (b) Unimodal and multimodal functions.

Figure 2.2: Modality of functions [6].

2.3. Gradient-based optimization 9

Convexity requires that in a function, all line segments connecting any two points in the function are
above the function and do not intersect it. Hence not all unimodal functions are convex as can be seen
in Figure 2.2b, but all multimodal functions are non-convex. When convex functions are dealt with,
the optimization of such functions is straightforward and methods like gradient descent [9], [10] can be
used to evaluate the global minimum with high accuracy. As the design space becomes increasingly
multimodal or non-convex, evaluating a global minimum becomes more difficult and would require
special techniques to evaluate multiple points in the design space to find the point that best minimizes
the function. However, this may not be the global minimum. This thesis project aims at creating
an optimization method that can facilitate locating a global minimum through deflation, and further
chapters explain the same.

2.3. Gradient-based optimization
In this section, the basics of gradient-based optimization are covered and should provide sufficient
information to interpret the content of chapter 5.

As the name implies, gradient-based methods rely on the gradient information of the objective function
and the respective constraints for minimization, by effectively moving in the direction of function
decrease.

2.3.1. Fundamentals

To understand the basics of this method it is important to have the fundamentals in order. It is seen
previously in Equation 2.1, a scalar objective function f(x) is considered, in which x = [x1, ..., xn] is
the vector of design variables. The gradient of the objective function is given as [6],

∇f(x) =

[
∂f

∂x1
,,

∂f

∂xn

]
(2.3)

where the gradient of the objective function contains components that quantify the function’s rate of
change with respect to a particular design variable which is the slope of the function given in the
direction of each design variable. The gradient depicts a vector that points in the direction of the
steepest function increase from a particular point.

Figure 2.3: Components of gradient vector in a two-dimensional case [6]

Figure 2.3 depict the gradient vector ∇f along with the components corresponding to x1 and x2 direc-
tions. In this 2D case, the gradient vectors taken at any point are always perpendicular to the function’s
contour lines. In an n-dimensional space (isosurfaces), the gradient vectors are normal to the surfaces

10 Chapter 2. Optimization

of constant f [6].

Usually, in optimization algorithms, it is required to have the gradient information described in a
particular direction and is given by a directional derivative. Hence this derivative can be obtained by
projecting the gradient vector onto the desired direction p as follows,

∇pf(x) = ∇f⊤p = ∥∇f∥∥p∥cosθ (2.4)

Figure 2.4: Directional derivative in the direction p is given ∇f⊤p [6]

The Figure 2.4 shows the direction vector p along which the directional derivative ∇pf(x) lies. The
angle between the gradient vector ∇f and the direction vector p is denoted as θ. When θ is in the
interval (−90, 90)◦, the directional derivative is positive and is therefore pointed in the direction of
function increase. If θ is between (90, 270)◦ the directional derivative is negative and is hence directed
in the direction of function decrease. Lastly, if θ = ±90, the function value does not change significantly
for small steps in this direction as it is locally flat. Hence, when ∇f and p are orthogonal this condition
takes place. and it can be inferred that the gradient is orthogonal to the function isosurfaces [6].

The curvature of a function provides useful information by describing the rate of change of the gradient
of the function. So, positive curvature means the slope of the function is increasing, negative curvature
means the slope is decreasing, and zero curvature which is stationary. Considering a function with
n-variables, the derivatives of all gradient components with respect to all gradient directions yield a
second-order square-tensor known as the Hessian and is given as [6],

Hf (x) =



∂2f

∂x2
1

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2∂xn
...

...
∂2f

∂xn∂x1

∂2f

∂xn∂x2
· · · ∂2f

∂x2
n


, (2.5)

The Hessian can also be expressed with index notation as,

Hfij =
∂2f

∂xi∂xj
(2.6)

In the Hessian, each row i is a vector that gives the rate of change of all the j components with respect
to the ith direction. While each column j corresponds to the rate of change of component j with respect

2.3. Gradient-based optimization 11

to all coordinate directions i. Due to the property of symmetry of second derivatives, the Hessian is
a symmetric matrix with n(n + 1)/2 independent entries. Now, when a direction p is considered, the
rate of change of gradient along that direction is obtained by the product Hp, The curvature of the
one-dimensional function along the arbitrary direction p is then given as [6],

∇p(∇pf(x)) = p⊤Hp (2.7)

An n-dimensional Hessian can also be formulated into an eigenvalue problem given as [6],

Hν = κν (2.8)

where the eigenvectors ν represents the principal curvature directions, and the eigenvalues κ quantify
the curvatures. To further visualize and understand gradients and curvatures, the reader can find a
two-variable example in Appendix A.

2.3.2. Optimality conditions

For a certain point x∗ to be the minimum of a function (in this case a local minimum, because global
optimization of a non-convex function is not possible with just gradient-based methods), it should be
such that f(x∗) ≤ f(x) for all the values of x that lie around x∗. A second-order Taylor series expansion
can be used to calculate the function value across any direction p and is given as [6],

f(x∗ + p) = f(x∗) +∇f(x∗)⊺p+
1

2
p⊺H(x∗)p+ (2.9)

For x∗ to be a minimum, it must satisfy that f(x∗ + p) ≥ f(x∗) for all p. Thus, it can be implied that
the first and the second order terms in Equation 2.9 should be greater than 0 and is,

∇f(x∗)Tp+
1

2
pTH(x∗)p ≥ 0 for all p. (2.10)

Observing the first term in this equation (Equation 2.10), p can be in any arbitrary direction and the
only way to satisfy the inequality is that all elements of the gradient vector need to be zero (refer
Figure 2.4) and is given as,

∇f(x∗) = 0 (2.11)

This is the first-order necessary optimality condition in an unconstrained problem. In a constrained
problem, this condition would have to be satisfied by the Lagrangian of the function, but more on that
is covered in the later sections. Now because the gradient term in Equation 2.10 needs to be zero,
the other term involving the Hessian can be considered in the inequality. This term represents the
curvature term as seen previously in Equation 2.7 which means that the curvature of the function must
be positive or zero in any projected direction p. Hence the inequality now resembles the requirement of
a positive-semidefinite matrix and is given as [6],

pTH(x∗)p ≥ 0 for all p. (2.12)

This requires the Hessian H(x∗) to be positive semidefinite, which implies that the eigenvalues of the
Hessian must be greater than or equal to zero. However the conditions for gradient and curvature may
be insufficient if the curvature is zero in some direction p, and the only way to know if x∗ is a minimum

12 Chapter 2. Optimization

Figure 2.5: Quadratic functions with different types of Hessians [6].

is to check the third order term in the Taylor series (Equation 2.9) hence resulting in a weak minimum.
The different optimum points resulting from Hessians of different quadratic functions are depicted in
Figure 2.5.

2.3.3. Line Search

Figure 2.6: Optimization using a line search process flow [6].

When the gradient information regarding function is known, and the direction of decrease is identified
(using methods like steepest descent, conjugate gradient, Newton’s method, etc. [6]), a line search
determines the sufficient step that needs to be taken in that direction to get closer to the minimum,
without overshooting it. The Figure 2.6 shows the three main steps in an algorithm involving line
search. After an appropriate step is selected, the variables are updated and if the minimum has not
been reached, the process is repeated [6].

As seen in Figure 2.6, the two main sub-problems are, choosing the direction of search, and determining
how far to step in that direction. The former usually determines the name of the optimization process,
and the one used for this thesis is covered in chapter 5, but here the step that is covered is selection of
how far to step in a particular search direction. After stepping a certain distance in direction descent
direction pk (which guarantees decrease in function value f) for iteration k, the design variable is
updated as,

xk+1 = xk + αpk (2.13)

where α is always positive and represents the step in the direction pk. It should be noted that in this
case, the goal is to not minimize f(xk + αpk) but to step enough that results in a good decrease in
function value. This is because finding the exact minimum would require many computations and is
considered wasteful [6]. Some new notation is introduced to simplify the expressions that lie ahead.

2.3. Gradient-based optimization 13

ϕ(α) = f(xk + αpk)
ϕ′(α) = ∇f(xk + αpk)

⊤pk
(2.14)

phi′(α) represents the directional derivative along the search direction. ϕ′(0) represents the slope at the
beginning of the line search and must always be negative since pk is a descent direction. Hence the line
search method used in an optimization method contributes to the efficiency of the method. Martins
and Ning [6] cover two line search algorithms which are based on the following conditions,

Sufficient decrease condition:

The sufficient decrease condition (also known as Armijo condition), is mathematically given as [6],

ϕ(α) ≤ ϕ(0) + µ1αϕ
′(0), (2.15)

where µ1 is a constant that varies between (0, 1). In Equation 2.15, αϕ′(0) indicates the expected
decrease in function value by assuming that the function continues along the same slope. While the
constant µ1 is multiplied to αϕ′(0) and indicates that Equation 2.15 is satisfied even if a fraction of the
expected decrease is achieved as shown in Figure 2.7a.

(a) The slope of sufficient decrease line is a fraction
of the slope ϕ′(0).

(b) Acceptable ranges for α.

Figure 2.7: The sufficient decrease condition [6].

In a line search, the slope at the starting point (α = 0) is known, but how the function varies is unknown
until it is evaluated. Hence the first point that is encountered in a line search that is below the sufficient
decrease line is selected as α as shown in Figure 2.7b. Based on this condition an algorithm known
as backtracking (Algorithm 1) is proposed. The algorithm starts with a maximum step (αinit = 1, if
slack variables are not involved) in the direction of descent and is reduced in successive iterations by a
constant ratio ρ (typically 0.5) until the sufficient decrease condition is satisfied. The algorithm is as
follows [6],

The backtracking line search is quite a straightforward method but there are a few scenarios where this
performs poorly which are stated as follows,

1. Firstly, in a certain scenario, the initial guess is far too large, and in attempts to satisfy the
sufficient decrease, the step length becomes smaller than the initial one by several orders of
magnitude. Hence if ρ is not chosen carefully, it can result in many backtracking evaluations.

2. Secondly, if the initial guess were to immediately satisfy the sufficient decrease condition, that
value is chosen. Whereas if it had to step further, it could reduce the function value more.

14 Chapter 2. Optimization

Algorithm 1 Backtracking line search
Inputs:
αinit > 0 ▷ Initial step length
0 < µ1 < 1 ▷ Sufficient decrease factor, typically 10−4

0 < ρ < 1 ▷ Backtrack factor, (eg. ρ = 0.5)

Output:
α∗ ▷ Step size satisfying sufficient decrease condition

α = αinit

while ϕ(α) > ϕ(0) + µ1αϕ
′(0) do ▷ Function value is above sufficient decrease line

α = ρα ▷ Backtrack
Evaluate ϕ(α)

end while

3. The constant reduction factor ρ provides no flexibility and could be adjusted to be a dynamic
factor based on the function values and gradients to make more intelligent evaluations.

Despite these shortcomings, the simple method of backtracking provides a quick line search and for
this thesis proved to be the method of choice. The reason is that it is a robust method that makes the
optimizer run quicker as compared to another algorithm that was tested. The difference in speed grew
as the size of the design space increased.

Strong Wolfe Conditions

(a) The sufficient curvature condition implies
the slope of the function to be a fraction of the

initial ϕ′(0).

(b) Acceptable ranges for α.

Figure 2.8: The strong Wolfe conditions [6].

The Strong Wolfe conditions are meant to fill the gaps left in the sufficient decrease condition. A weak-
ness of the sufficient decrease condition alone is that it accepts a small step that satisfies the condition
for a marginal decrease in function value. This can be improved by increasing µ1 in Equation 2.15 to
result in a greater decrease with a larger step size, but it still avoids a larger step size that would result
in a further reasonable decrease. Therefore in addition to the sufficient decrease condition, another
condition can be added, with which, how much of a function decrease can be expected is known. Hence
comparing the slopes at the start of the line search and the candidate point, it can be figured if the
function is flattening or not i.e. comparing the rate of change of the function as shown in Figure 2.8a.
This is given by the sufficient curvature condition [6]:

|ϕ′(α)| ≤ µ2|ϕ′(0)|. (2.16)

2.4. Constrained gradient-based optimization 15

µ2 values usually range in (0.1, 0.9) and the best value is quite problem dependent. As µ2 → 0, the
sufficient curvature condition would enforce an exact line search where ϕ′(α) = 0. The sufficient decrease
and the sufficient curvature condition together form the strong Wolfe conditions. The acceptable range
of α given by the strong Wolfe conditions is shown in Figure 2.8b and is more restrictive than in the
case of the sufficient decrease condition (Figure 2.7b).

It must be noted that the sufficient curvature slope must be deeper than the sufficient decrease slope,
i.e. 0 < µ1 < µ2 < 1. If this is not followed, the line search could result in points where the strong Wolfe
conditions are not satisfied and would look like the case shown in Figure 2.9. Martins and Ning propose
an algorithm in their book to perform line search while satisfying the strong Wolfe conditions, however,
it was not implemented in this project, and interested readers can refer to it in[6]. After testing both,
the backtracking algorithm and algorithm satisfying the strong Wolfe conditions, it was found that the
new algorithm did not provide significant improvement in the results obtained, however, the number of
iterations required to find search directions by the optimizer was reduced. Although this decrease in
iterations did not result in any computational time savings and was slower than the run utilizing the
backtracking line search.

Figure 2.9: If µ2 < µ1 [6].

The slower computational time can be attributed to the fact that the Algorithm required the calculation
of the slope at the new candidate points in addition to the function values, and also there were many
conditional statements to be evaluated. Hence the simple structure of the backtracking algorithm gives
it a significant advantage in computational speed.

2.4. Constrained gradient-based optimization
In the previous section, the basics involved in a gradient-based optimization algorithm were covered.
In This section, the inclusion of constraints into gradient-based optimization is covered. Martins and
Ning [6] provides a nice way to visualize the vector spaces of the involved gradient vectors of the
objective along with the constraints and derive proofs for the modified optimality conditions (modified
as compared to the ones seen in Equation 2.11 and Equation 2.12). The formulation of the optimization
problem is shown in Equation 2.1. But before proceeding further it is important to know another
terminology, i.e. the Jacobian or Jacobian matrix. The Jacobian is a matrix that gives the gradient
information about certain residuals used in optimization. for instance, the first row of the Jacobian
contains the gradients of the first residual with respect to all the design variables, the second row
contains gradients for the second residual, and so on. It is given as,

Jij =
∂ri
∂xj

(2.17)

where ri are the residuals and xj the design variables. Considering an optimization problem as shown in
Equation 2.1, the Lagrangian function can be used to convert a constrained problem to an unconstrained

16 Chapter 2. Optimization

problem by introducing new variables known as Lagrange multipliers. The Lagrangian is given as [6],

L(x, λ, σ, s) = f(x) + λTh(x) + σT (g(x) + s⊙ s) (2.18)

In this equation, a few new terms can be observed in addition to the objective function and constraints.
λ is the vector of Lagrange multipliers that corresponds to the equality constraint vector, σ is the
Lagrange multiplier vector that is associated with the inequality constraint vector and s is a vector
of slack variables with ⊙ symbol representing element-wise multiplication. The slack variables are
associated with the inequality constraints, such that the inequality constraints are converted to equality
constraints given by,

gj + s2j = 0, j = 1, . . . , ng, (2.19)

In an optimization problem, if both, equality and inequality constraints are present, the conditions
associated with the inequality constraint apply only in the subspace of directions feasible with reference
to the equality constraints and it is not known which inequality constraint may be active. Hence the
significance of the slack variable is that when sj = 0, the corresponding inequality constraint is active
(gj = 0), and when sj ̸= 0, the inequality constraint would be inactive. In Equation 2.19 the slack
variable is squared to ensure non-negative values since Equation 2.19 can be satisfied only when the
inequality constraint, gj ≤ 0 [6].

The optimality conditions can be derived by seeking a stationary (zero curvature) point in the design
domain by differentiating the Lagrangian (Equation 2.18) with respect to all the variables and is done
as follows. First, it is differentiated with respect to the design variables x [6],

∇xL = 0 ⇒ ∂L
∂xi

=
∂f

∂xi
+

nh∑
l=1

λl
∂hl

∂xi
+

ns∑
j=1

σj
∂gj
∂xi

= 0, i = 1, ..., nx (2.20)

Secondly, taking the derivative of the Lagrangian with respect to the equality Lagrange multipliers [6],

∇λL = 0 ⇒ ∂L
∂λl

= hl = 0, l = 1, . . . , nh, (2.21)

Thirdly, taking the derivative with respect to the inequality Lagrange Multipliers [6],

∇σL = 0 ⇒ ∂L
∂σj

= gj + s2j = 0 j = 1, . . . , ng, (2.22)

Lastly, taking the derivative of the Lagrangian with respect to the slack variables,

∇sL = 0 ⇒ ∂L
∂sj

= 2σjsj = 0, j = 1, . . . , ng, (2.23)

which is called the complementary slackness condition. This condition is used to determine which
constraints are active and which are not. Hence in this case, if the Lagrange multiplier is zero, then the
constraint is inactive, whereas if the slack variable is zero the constraint is active. This complementary
condition introduces a combinatorial problem that grows exponentially (2ng) as the number of inequality
constraints is increased.

2.5. Penalty methods 17

For the optimality conditions, the Lagrange multipliers are required to be non-negative for active
constraints, hence putting the stationary conditions together with the non-negative condition, the first-
order optimality relations are given as follows [6],

∇f + JThλ+ JTg σ = 0
h = 0
g + s⊙ s = 0
σ ⊙ s = 0
σ ≥ 0,

(2.24)

These are known as the Karush-Kuhn-Tucker (KKT) conditions. In addition to these conditions, to
make sure that the point found is a minimum, the second order conditions need to be checked (similar
to Equation 2.12) and require the Hessian of the Lagrangian, i.e. [6],

pTHLp > 0 for all p such that:
Jhp = 0
Jgp ≤ 0 for all active constraints.

(2.25)

where Jh and Jg are the Jacobian matrices associated with the equality and inequality constraints
respectively.

2.5. Penalty methods
The concept of penalty methods is another concept used to convert constrained problems to uncon-
strained ones by adding a penalty term to the objective function that is associated with the constraints
only when the constraints are violated or are about to be violated. Penalty methods can be problematic
when directly used with gradient-based optimization, because of difficulties to obtain a solution, but
are quite widely used in gradient-free optimization and also for Merit functions (chapter 5) used in line
search algorithms [6]. This concept is an important one because it is used in interior point methods
which is the choice of gradient-based optimization used for this project. The basic formulation of a
penalized function can be given as [6],

f̂(x) = f(x) + µπ(x), (2.26)

where π(x) is the penalty function and associated with it is the scalar penalty parameter µ. It is similar
to the Lagrangian formulation, however, the parameter µ is fixed and not a variable like the Lagrange
multipliers.

Penalty parameters can be formulated as interior or exterior penalty methods. Exterior methods, apply
penalties if the optimizer violates constraints, while in interior penalty functions, the penalty term is
increased as a constraint is approached. The focus of this section is interior penalty methods as it
provides the basis for the interior point algorithm covered in chapter 5.

Interior Penalty Methods

Interior Penalty methods similar to the exterior penalty methods are solved as a sequence of uncon-
strained problems. The penalty parameter is decreased as the iterations progress. The difference here
is as stated previously, the interior penalty method looks to maintain feasibility whereas, for exterior
penalty methods, the penalty is added only when the constraint is violated. These methods are called
the interior point method because as the name suggests, the iterations while searching for the optimum
remain within the feasible region. These methods are also known as barrier methods because the penalty

18 Chapter 2. Optimization

(a) Plot of inverse barrier and Logarithmic barrier
penalty functions.

(b) Decreasing µ (black line) approaches the true constrained
minimum (blue and red intersection).

Figure 2.10: Barrier function plots [6].

function acts as a barrier to prevent the optimizer from drifting away from the feasible region. For an
inequality constraint g(x) ≤ 0 the Logarithmic barrier function is given as [6],

π(x) =

nq∑
j=1

− ln (−gj(x)) , (2.27)

This can be substituted into Equation 2.26 to give the penalized objective function as,

f̂(x;µ) = f(x)− µ

ng∑
j=1

ln(−gj(x)). (2.28)

Another penalty function known as the inverse barrier function is given as,

π(x) =

ng∑
j=1

− 1

gj(x)
. (2.29)

The plots for the two penalty functions (Equation 2.27 and Equation 2.29) are shown in Figure 2.10a.
It can be seen how the Logarithmic barrier is defined over negative values (feasible region) but as soon
as g(x) → 0, the barrier term stringently tends to ∞. In Figure 2.10b, the black lines represent the
penalized function and the blue lines represent the actual function, while the red region is the infeasible
region. It can be seen that as the penalty parameter reduces, the penalized function approaches the
true minimum.

One drawback of the method is that it is not defined for infeasible points so the optimizer needs to
start optimizing from the feasible region. As it can be seen in Equation 2.29 the equation would yield
an undefined value for a positive value, g(x) > 0.

2.6. Sequential Quadratic Programming
Sequential Quadratic Programming (SQP) is one of the first modern optimization methods. The name
stems from the fact that the method solves a sequence of Quadratic Programming (QP) problems
to achieve optimality [6]. In this section application of SQP for only equality-constrained problems

2.7. Automatic Differentiation 19

is covered because the SQP method does not account for inequality constraints as well as the interior-
point method (chapter 5) does with respect to whether the constraint is active or inactive (Interior-point
optimization is covered in chapter 5).

The KKT conditions as shown in the previous section can be derived by removing the inequality con-
straints from the problem, and yields the following conditions [6],

r =

[
∇xL(x, λ)
∇λL(x, λ)

]
=

[
∇f(x) + JThλ

h(x)

]
= 0. (2.30)

To solve a sequence of linear systems, Newton’s method is applied as follows [6],

Jr(uk)pu = −r(uk)

u ≡
[
x
λ

] (2.31)

Differentiating the vector of residuals given in Equation 2.30 with respect to the vectors in u yields the
following block of nx + nh equations corresponding to a linear system [6]:

[
HL JT

h

Jh 0

] [
px
pλ

]
=

[
−∇xL
−h

]
. (2.32)

where HL is the Hessian of the Lagrangian. These equations can be solved to obtain the descent/search
directions, and the design variables along with the Lagrange multipliers are updated at each iteration.
The variables do not accept a full Newton step but employ a line search such as the backtracking method
given in subsection 2.3.3 [6]:

xk+1 = xk + αkpx
λk+1 = λk + pλ.

(2.33)

where αk is the selected step size after the line search for the kth optimization iteration. This method is
utilized in the optimization methodology developed for this project for solving an optimization problem
with equality constraints.

2.7. Automatic Differentiation
In this thesis project, the derivatives used for the gradient-based optimizer explained in chapter 5 are
calculated using a method known as Automatic Differentiation which is also known as Algorithmic
differentiation (AD). In this section, the basics of AD are covered. AD is a popular approach based on
the application of the chain rule across the various steps in a computer program for the evaluation of
derivatives of requested expressions [11], [12]. The precision with which the derivatives are computed
using AD is determined by the precision with which the function values are evaluated. AD can be
formulated in such a way that, the computational cost can either be proportional to the number of
variables or the number of functions to be evaluated. more on this will be covered towards the end of
this section.

2.7.1. Basic concept

In every computer program or code, there is a sequence of operations that take place in a line-by-line
fashion, for instance, addition, multiplication, trigonometric identities, etc. AD can perform symbolic

20 Chapter 2. Optimization

differentiation based on these basic operations and it accumulates the derivatives of each variable using
a numerical version of the chain rule. Hence these unary and binary operations over multiple lines can
be combined to obtain one elaborate and explicit function expressed over one line of code. The variables
in a program can be represented as the sequence v = [v1, ..., vi, ..., vn], where n is the number of variables
in the program. It is assumed that one or more of these variables are given at the start of the program,
and correspond to x, while towards the end of the sequence, the outputs obtained are f as illustrated
in Figure 2.11a. Then another case needs to be considered, where some variables are overwritten in
a program due to iterative loops. Hence for AD to work, these variables must not be overwritten but
instead stored as different versions as shown in Figure 2.11b. Hence while the sequential accumulation
of these lines of code takes place, then a variable assignment corresponding to a particular line of code
depends only on variables encountered previously including itself, and is expressed as [6],

vi = vi(v1, v2, . . . , vi−1). (2.34)

(a) All the variables considered by AD with x among the first and f among
the last of the variables.

(b) Model to visualize unrolling of loops.

Figure 2.11: Understanding AD [6].

With a sequence of operations and knowing its respective derivatives the numerical equivalent of the
chain rule can be applied to obtain the derivatives for an entire sequence. Note, the unrolling of loops
shown in Figure 2.11b is just for understanding, and may not be done in actual practice. The chain rule
is applied in two ways; the forward mode and the reverse mode. These methods are described below.

Forward-mode AD

In forward-mode AD, an input variable (or seed) is chosen, and the derivatives are obtained by moving
forward along the various operations. The chain rule in this case is given as [6],

dvi
dvj

=

i−1∑
k=j

∂vi
∂vk

dvk
dvj

⇒ v̇i =

i−1∑
k=j

∂vi
∂vk

v̇k. (2.35)

where k is the iterate, j is the seed point and i is the expression for which the derivative is required.

2.7. Automatic Differentiation 21

Figure 2.12: Forward-mode propagates derivatives to all the variables that depend on the seeded variable. [6].

The derivatives with respect to the chosen input variable vj are taken by differentiating symbolically
the explicit expression for vi, which can be computed as the chain rule [6]. A sequence of expressions
is evaluated from vj to v + i− 1 as shown in Equation 2.35. The propagation of derivatives from the
seed point in forward-mode AD is shown in Figure 2.12.

For instance, consider having four variables v1, v1, v1, and v4, where x ≡ v1, f ≡ v4, and df/dx is
required, then following the chain rule as shown in Equation 2.35 the following is obtained [6]:

v̇1 = 1

v̇2 =
∂v2
∂v1

v̇1

v̇3 =
∂v3
∂v1

v̇1 +
∂v3
∂v2

v̇2

v̇4 =
∂v4
∂v1

v̇1 +
∂v4
∂v2

v̇2 +
∂v4
∂v3

v̇3 ≡ df
dx .

(2.36)

In the above equation, v̇1 = 1 is in accordance to Equation 2.35. Further, only the partial derivatives
of the current operation vi need to be evaluated, and then multiplied using the total derivatives v̇ that
have been computed already. This is convenient because only the partial derivatives of the function at
hand need to be evaluated. The Jacobian of the variables with respect to themselves for this example
is given as [6],

Jv =


1 0 0 0

dv2

dv1
1 0 0

dv3
dv1

dv3
dv2 1 0

dv4

dv1

dv4
dv2

dv4

dv3
1

 (2.37)

In the Jacobian, it can be seen that with the seed at j = 1, the required derivatives are propagated
downwards along the diagonal. Hence if the seed had to be set at j = 2, then the first row and first
column of evaluations would be eliminated with the required Jacobian matrix being a (3 × 3) instead
of a (4× 4) matrix. Thus it can be noticed that the cost of forward-mode AD scales linearly with the
number of inputs and is independent of the number of outputs.

22 Chapter 2. Optimization

Reverse-mode AD

In reverse-mode AD, one output variable is chosen and the derivatives are computed backward toward
the input until the desired variables are obtained. The chain rule for reverse-mode AD is an alternative
form and is given as,

dvi
dvj

=

j+1∑
k=i

∂vk
∂vj

dvi
dvk

⇒ v̄i =

j+1∑
k=i

∂vk
∂vj

v̄k. (2.38)

where the summation starts at k = i and is decremented to till j + 1 is reached i.e. j < i. The index
i is fixed at the output of interest with the reverse seed set to v̄i = 1 and then the derivatives are
accumulated till the variable index j is reached (in reverse).

Now applying the reverse-mode AD to the same 4 variable examples as shown for forward-mode AD
the following sequence of derivative computations can be observed [6],

v̄4 = 1

v̄3 =
∂v4
∂v3

v̄4

v̄2 =
∂v3
∂v2

v̄3 +
∂v4
∂v2

v̄4

v̄1 =
∂v2
∂v1

v̄2 +
∂v3
∂v1

v̄3 +
∂v4
∂v1

v̄4 ≡ df
dx .

(2.39)

After setting v̄4 = 1 and using the chain rule in reverse as suggested in Equation 2.38, the derivatives
v̄3 and so on are evaluated. Not all the variables are dependent on one another, hence a computational
graph is created during code evaluation which is used to interpret which variables are dependent on
each other and proceed like shown in Figure 2.13 [6].

Figure 2.13: Reverse-mode propagates derivatives to all the variables that depend on the seeded variable while moving
in reverse. [6].

Once again, the Jacobian matrix of these four variables is the same as given by Equation 2.37 but a
difference can be observed. This time the evaluations proceed from the right bottom corner where v̄4 = 1
and the derivatives are propagated upwards along the diagonal, towards the starting variables. If v̄3 = 1
was set as the seed point, then the 4th row and column would disappear making Jv a (3 × 3) matrix.
And as seen in Figure 2.11a, the last few variables are usually functions. Hence it can be concluded that
the cost of reverse-mode AD scales linearly with the number of functions being evaluated. A drawback
of this method however is that it requires the lines of code to run once in the forward direction to

2.7. Automatic Differentiation 23

for generating the computational graph to see which variable depends on the other, followed by the
calculation of variable values that would be required during the reverse-mode AD for calculating the
respective derivatives.

Hence for the selection of the mode for AD based on computational efficiency, the two things that need
to be observed by a user are, the number of input variables (nx) and the number of function evaluations
or outputs (nf). If the number of input variables is larger, the reverse mode AD is the method to
choose, whereas if nf > nx then using forward-mode AD is beneficial.

Developing a module that can carry out AD for a computer program can be a difficult task, but there
is a Python module for AD that is free to use and is known as Autograd. This is a module from the
library of Pytorch and a pre-print that presents this work by Paszke et al. is available [13]. The module
covers the basic functions required for the optimization algorithm like gradient calculation of a function
with respect to a variable, Jacobian calculation, etc and by default runs reverse-mode AD. Hence for
this thesis project, this module is implemented for differentiation. However, a drawback of this module
is that the data type it utilizes is tensor, and not all other modules in Python accept tensors as input
data types, hence making the implementation of AD hectic as the functions associated with these other
modules would have to be coded separately to support tensor data type. Hence the creation of an AD
module that runs on data types that are supported by other commonly used modules is an interesting
topic for a project.

This page was intentionally left blank.

3
The Deflation method

This chapter will cover the basic concept of deflation and the methods applied in optimization. This
content serves as the basis for the main contribution of this thesis, which is the deflation constraint
(discussed in chapter 6).

Global optimization of non-convex objective functions has been a widely studied topic with many
methods that focus on generating multiple minima to find a global minimum or even explore design
feasibility. For instance, the optimal design of a water bottle could generate multiple minima that
satisfy the design needs (eg. reducing the environmental impact of single-use bottles [14]), however only
a few of them would satisfy aesthetic appeal, which is usually a criterion for designs that cannot be
quantified as a constraint. The deflation method is one such method that helps to generate multiple
distinct local minima and aid in exploring design feasibility.

There are multiple heuristic non-convex optimization techniques with a random restart strategy to scan
the design space for multiple local minima [15], [16]. But even with these random restarts, there is no
guarantee that the optimizer will not discover solutions or minima that have already been discovered
hence increasing computational inefficiency. This issue is remedied by using deflation-based methods.
Papadopoulos et al. [17] describe a novel optimization method that combines deflation with barrier
methods and primal-dual active set solvers to find multiple stationary points in a non-convex topology
optimization problem. Xia et al. [18] present a deflation-based strategy to obtain multiple solutions for
the design of thin-walled structures under compression loading that is displacement controlled. Such
studies, therefore, demonstrate that the use of deflation methods does enable convergence to distinct
solutions despite having to rerun from the same starting point.

3.1. Polynomial deflation
The first instance of the deflation method was first seen in the application for root finding in non-linear
polynomial functions [19]. This method was later extended to Partial Differential Equations (PDE) by
Farrell et al. [20]. Polynomial deflation however provides an easier visualization of the concept and is
covered in this section.

Assume p(x) to be a scalar polynomial function having n multiple roots such as x1, x2, ..., xn and can be
found using an iterative method for instance Newton’s method [21]. After having evaluated the initial
root of p(x), more roots can be found by considering the following deflated function [20],

25

26 Chapter 3. The Deflation method

q(x) =
p(x)

n∏
i=1

(x− xi)
, (3.1)

where q(x) is the deflated polynomial function effectively out of which the already obtained roots
are removed from the function by the multiplicative term in the denominator of Equation 3.1. This
phenomenon can be visualized by considering the simple example demonstrated below.

The polynomial function for this example is considered to be a sine function, sin(πx) which of course
has infinite bounds and infinite roots, but in this case, it is considered to oscillate between (-3,3).

3 2 1 0 1 2 3
x

1

0

1

2

3

si
n(

x)

Original function
Deflated once
Deflated twice
Roots

Figure 3.1: Deflated sine function obtained using Equation 3.1

The black colored plot in Figure 3.1 depicts the original sine function while the blue line depicts the
once deflated function for the root evaluated at −2. The orange line represents the deflated function out
of which two roots have been deflated, which are −2 and 1 (The plots have been generated by coding
a python script). The deflated function for the blue and orange plots calculated as Equation 3.1 are
respectively given as,

q(x) =
sin(πx)

x− (−2)

q(x) =
sin(πx)

(x− (−2))(x− 1)

(3.2)

Hence in the Figure 3.1 it can be seen how in the plots of the deflated functions, how the roots are
completely removed i.e. the function does not cross over zero without affecting the other roots. This
essentially provides a very good visual of how deflation works.

3.2. Deflation applied to Nonlinear equations 27

3.2. Deflation applied to Nonlinear equations
Farrell et al. cite Farrell2015DeflationEquations worked on extending the concept deflation matrix M
and deflation operators m introduced by Brown and Gearhart [22] to implement it for solving Partial
Differential Equations (PDE). With this work, they proved that convergence to different solutions from
the same starting point was achieved after deflation. The method is explained below.

Consider the residuals for a system of n non-linear equations such that [23],

F (x) = 0 (3.3)

After solving the system of equations once to get the solution x1, the deflation matrix and the deflation
operator are defined as follows [23],

M(x;x1) = m(x;x1)I
m(x;x1) = ||x− x1||−p + σ

(3.4)

where I is the identity matrix (n × n), the pole strength or power p dictates the rate at which the
function approaches ∞ (the introduced singularity pertaining to m), and the shift parameter σ which
ensures that the deflated function gains back original behavior when the normed distance ||x−x1|| → ∞
[18], [23]. The deflated nonlinear system of equations is given as [23],

G(x) ≡ M(x;x1)F (x) = 0 (3.5)

This system of equations can be solved to obtain a new solution x2. Here G satisfies the following
properties [18]:

1. The two system of equations, F (x) = 0 and G(x) = 0 both have the same solutions for all x ̸= x1.

2. With the known solution x1, G will not converge again to x1 under the assumption limx→x1
∥G(x)∥ >

0

After having found K̃ multiple solutions, the method in [20] proposes multiplying the deflation matrices
and solving the following set of equations [23],

K̃∏
k=1

M(x;xk)F (x) = 0. (3.6)

To improve the numerical stability of Equation 3.6, the multiplication can be replaced by summation
as claimed by Tarek et al. [23]. Farrell et al. in a recent study [24] have further extended this method
for semi-smooth equations as well. But this will not be explained here as the thesis focuses on the
optimization of smooth and continuous functions.

Deflation does not guarantee that all the solutions to a problem will be found, however, it provides a
powerful tool that complements continuation methods [20]. The deflation method introduced in the
methodology of the present thesis is a major contribution of the work, and what has been discussed so
far forms a good basis and introduction to understanding how deflation can be applied to optimization
problems and is covered in chapter 6.

This page was intentionally left blank.

4
Variable Stiffness Laminates

Laminated composite materials with variable stiffness are those in which the fibers follow a curvilinear
path, unlike traditional straight-fiber laminates in which the path of the fibers is constant per layer.
Variable-stiffness laminates came into the picture in the late 1980s with the first attempts trying to
align the fibers of the laminate in the direction of the principal stresses, to improve characteristics
like buckling of composite plates [25], [26]. Biggers and Srinavasan [27] in their work presented a
method to construct variable stiffness laminates by stacking layers of constant stiffness laminates over
localized regions. In certain manufacturing processes like draping, straight-fibers after undergoing the
manufacturing process result in the change in curvature of the fibers, usually associated with single or
double curved surfaces [28], [29]. In the following discussion various methods of manufacturing Variable
Stiffness (VS) laminates are covered followed by modeling methods which are then compared to choose
a method that will be applied in a case study for this thesis.

4.1. Manufacturing of variable stiffness Laminates
With manufacturing processes like Automated fiber placement (AFP), Automated Tape Laying (ATL)
and Continuous Tow Shearing (CTS), it is possible to steer the fibers during the deposition of unidi-
rectional composite materials [30], [31]. Even 3D printing is yet another very flexible manufacturing
process and currently, some methods have been developed to manufacture composite structures with
continuous fiber reinforcements that follow curvilinear paths [32]. Since 3D printing may not seem
like a viable option for manufacturing large-scale structures like an aircraft wing, the more matured
manufacturing processes i.e. AFP, and CTS are discussed below.

4.1.1. Automated Fiber Placement

The AFP process utilizes a gantry/robotic system with an attached fiber placement head. The AFP
head enables multiple strips of composite material, or tows, to be laid over the surface contour accu-
rately as it is dictated by the design. The adhesion between the deposited tows and substrate is ensured
by using appropriate process parameters which include heating, compaction, and tensioning systems.
A series of tows form a course. Courses are then combined to create a ply, and multiple plies create a
laminate [33]. In the previously cited reference, Brasington provides a comprehensive overview of the
progression of AFP technology over the course of time.

Like most manufacturing methods, defects can also arise and can be a more prominent factor in VS
laminates. For instance, when shifting of the curved path occurs in a certain direction as seen in the
first two images of Figure 4.2 a), the shifting direction is the same over the structure, however the

29

30 Chapter 4. Variable Stiffness Laminates

axis perpendicular to the course is changing, resulting in gaps or overlaps [34], [35]. Accumulation of
overlaps and gaps ultimately results in waviness that can lead to thickness accumulations for overlaps
resulting in localized stiffness increase or in the case of gaps a decrease in stiffness. Current software
advances do enable the machines to carry out a ”cut-and-restart” procedure but this could result in
discontinuities and as illustrated in the work of Chen et al. [36], inevitable gaps and overlaps. Other
defects associated with AFP include wrinkling of the material being laid down and twisting of the tows,
which can be mitigated with adequate control over process parameters as well. However, methods to
model these defects and analyze the structure must also be explored.

Fayazbakhsh et al.[37] suggested a method in their study named the defect layer method where the
effects of gaps and overlaps have been taken into account. In this method, a correlation between the
volume fraction of defects and elastic properties is found using a micro-mechanical model of the defect,
followed by which the properties are assigned to each finite element based on the former correlation.
Lastly using FEA, the performance of the laminate is evaluated. Nik et al. [38] also show a method to
take into account such defects and an optimization of VS laminates has been carried out. Another inter-
esting study is done by Mishra et al. [39] where they introduced a method that is 45% computationally
efficient as compared to [37] but the method captures buckling behavior more on a non-conservative
side due to stress concentration not being captured accurately.

Since the thickness values can vary in parts of the laminate due to bending of the tows during the
process, ways have been introduced to approximate these thickness variations. Castro et al. in the
study of the application of Edge-Based Smoothened Point Interpolation (ES-PIM) for VS laminate
buckling have used relations for the variation of thickness. Figure 4.1 displays the parameters of the
variable angle tow. First, the effective width of tow relation (we(x, y)) from Blom et al. [38] was used
by Castro et al. and is given as,

we(x, y) ≈
wtow

sin(θ(x, y)) (4.1)

A smeared thickness he is defined in this work, such that the effective volume of the material remains
constant despite the change in width and is calculated as,

he(x) = htow
we(x)

wtow
≈ htow

sin(θ(x)) (4.2)

Figure 4.1: Variable angle tow [40]

4.1. Manufacturing of variable stiffness Laminates 31

4.1.2. Continuous Tow Shearing

CTS is a method developed by Kim et al. [31] to provide a novel approach to overcome the vari-
ous defects induced during AFP such as tow gaps and overlaps by carrying out shear deformation of
partially impregnated tows. Hence in this method, the tows are steered through in-plane shear defor-
mation, unlike the AFP method which utilizes bending deformation and ensures that the fibers within
the tow can be aligned to have a constant angle. A comparison between AFP and CTS processes is
shown in Figure 4.2 and it can be observed that in the AFP process, due to gaps and overlaps, there is
local thickening that takes place; whereas in the CTS process, the distribution of thickness is fairly even.

Figure 4.2: Comparison between AFP and CTS: (a) difference of the tow arrangement and head rotation (left and
middle: AFP, right: CTS), (b) thickness distribution of a VAT plate with the stacking sequence of [θ1,−θ1,−θ2, θ2]

(left: AFP, right: CTS) [41]

An important consideration that needs to be made in this process is that there will be variations in the
width of the tow and the thickness of the tow (Figure 4.3) as it is being sheared [41]. Kim et al. also
suggest ways to parameterize these variations, but first, the parameters involved in the formulation must
be understood. Figure 4.4 is a representation of the CTS process using a rectangular element where
the reference axis depicts the angle with zero shear which is perpendicular to the shifting direction and
the orientation of the CTS head; β is the rotation angle of the reference axis with respect to the x-axis;
L is the distance between the intersection points of a line drawn through the element centroid and
intersecting with the fiber paths, calculated to compensate for the width adjustment as it is different
from the initial width w0; d is the distance of the intersection point from the centroid of the element.
α which is the average fiber angle at the element centroid can be linearly interpolated and is calculated
as,

32 Chapter 4. Variable Stiffness Laminates

Figure 4.3: Change in thickness and width of tow [41]
Figure 4.4: Representation of various parameters in CTS

with a rectangular element [41]

α = α1 +
d

L
(α2 − α1) (4.3)

Kim provides three approaches to calculate the thickness [41],

t = t0 (Op1 : Constant thickness) (4.4)

t = t0/ cos(α− β) (Op2 : Based only on shear angle) (4.5)
t = (w0/L) · t0/ cos(α− β) (Op3 : Based on shear angle and tow width change) (4.6)

where t0 is the original thickness of the tow. These three relations can be used depending on the required
parameterization.

4.2. Modeling methods
Variable Stiffness laminates were originally introduced as structures that were tailored for a particular
load application resulting in weight reduction. The modeling of these laminates facilitates a better
understanding of the loads and opens up opportunities to optimize the structure. Two known methods
for modeling VS laminates include: Direct angle parameterization where an interpolation function
can be used to define the fiber orientation across each layer of the laminate or by using Lamination
Parameters (LP) as primary design variables that define the stiffness properties of the entire laminate
and then using those properties to obtain a ply stacking sequence.

4.2.1. Fiber path parameterization

In this method, the fiber orientation angle of each layer of the laminate serves as a design variable and
the fiber orientation angles can be defined using many interpolation functions, the simplest one being,
linear interpolation. This method was utilized by Gurdal et al. in their work [42] where they studied
the in-plane properties and the buckling response of a variable stiffness panel. The rectangular panel is
considered to be composed of balanced and symmetric angle ply layers having linear variation of a pair
of fiber angles [±θ(x)]s along any axis (but in this case x). The length of the panel is a and the x-axis
is centered along the length of the panel hence spanning from [−a

2 , a
2]. The expression for the angle is

given as,

4.2. Modeling methods 33

Figure 4.5: Reference path definition of a variable fiber angle layer [42]

θ(x) =
2(T1 − T0)

a
|x|+ T0 (4.7)

where T0 is the fiber angle at the center of the panel and T1 is the fiber angle at the ends ±a
2 . With this

simple formulation, closed-form solutions were possible for in-plane stress distribution and displacements
of the panels with various boundary conditions by applying uniform edge displacements. The equation
4.7 can be written in a more general sense such that the angle does not need to vary along either x or
y axis and can vary along an arbitrary axis x′.

θ(x′) = ϕ+ (T1 − T0)
|x′|
d

+ T0 (4.8)

Here ϕ is the angle at which the axis of direction x′ is tilted, and d is the characteristic distance between
which the fiber angle changes from an angle T0 to an angle T1 with respect to the x′ direction. This
can also be seen in figure 4.5.

A linear interpolation is of course a simple method, but it undermines what can be achieved with vari-
able stiffness laminates. Hence by using higher-order interpolation functions, a more refined variation
of the fiber angle can be obtained as observed in a few studies [43], [44].

Paranas et al. [45] represented the fiber angles using Bezier curves while Alhajahmad et al. [46] utilized
Lobatto Legendre polynomials to extend the linear fiber angle formulation to a non-linear case. Wu et
al. and Guimaraes et al. in their work [43], [44] have utilized an alternative definition for non-linear
distribution of fiber angles based on Lagrangian polynomials with the fiber angles varying along both
x and y directions. As shown in figure 4.6, the design domain can be considered to consist of M ×N
pre-selected reference points in the plate domain. A double summation is utilized to fit the non-linear
distribution of the fiber angles and the equation is given as

34 Chapter 4. Variable Stiffness Laminates

Figure 4.6: Non-linear variation of the fiber orientation with M ×N reference points [44]

θ(x, y) =

M−1∑
m=0

N−1∑
n=0

Tmn ·
∏
m ̸=i

(
x− xi

xm − xi

)
·
∏
n=j

(
y − yj
yn − yj

)
(4.9)

where (xi, yj), (xm, yn) are the x-y coordinates of the reference points. The advantage of using this
formulation is that the coefficient of each term (Tmn is also a fiber angle at a specific reference point
(xm, yn). If the variation occurs only across one direction for instance the x-axis, the equation 4.9
becomes,

θ(x, y) =

M−1∑
m=0

Tm ·
∏
m ̸=i

(
x− xi

xm − xi

)
(4.10)

and similarly, for a certain angle of rotation of the fiber path ϕ, equation 4.10 becomes,

{
θ(x, y) = ϕ+ θ(x′) = ϕ+

∑M−1
m=0 Tm ·

∏
m ̸=i

(
x′−xi

x′
m−x′

i

)
x = x cos(ϕ) + y sin(ϕ)

(4.11)

The grid reference points may be chosen randomly and may not be uniform. But, a good selection
of reference points would make the optimization process faster and avoid entrapment in local minima.
Ghiasi et al. [47] present a great comparison of different methods used for achieving VS laminates and
state that the use of a curvilinear function to describe the fiber path and variation of laminate thickness
can also reduce the number of design variables, without compromising structural continuity.

Fiber path parameterization indeed seems quite promising to be used for the design of VS laminates,
however, a few drawbacks also need to be kept in mind. Firstly the method can prove to be computa-
tionally expensive, as with an increasing number of layers the number of design variables would also
increase. Secondly, the design variables relating to each other could occupy a highly non-linear and
non-convex space, hence making it difficult to find an optimum. Thirdly, to avoid converging on local
maxima or minima more of the design space has to be explored to find optimal values in a global sense.
Resulting in increased computation.

4.2. Modeling methods 35

4.2.2. Lamination Parameters

Lamination parameters were first introduced by Tsai et al. [48], [49] to represent the laminate layup
configuration in a compact form. The transformation properties are derived using trigonometric rela-
tions (sines and cosines) in terms of multiple angles. The Lamination Parameters are non-dimensional
and can in turn be used to obtain the in-plane and bending properties (ABD matrices) as they are
related. A great advantage of using lamination parameters is that the number of design variables is
reduced and is independent of the number of layers [3], [50]. The 12 variables are given as,

(V1A, V2A, V3A, V4A) =
∫ 1

2
1
2

(cos 2θ, sin 2θ, cos 4θ, sin 4θ)dz,

(V1B , V2B , V3B , V4B) = 4
∫ 1

2
1
2

z̄(cos 2θ, sin 2θ, cos 4θ, sin 4θ)dz̄,

(V1D, V2D, V3D, V4D) = 12
∫ 1

2

− 1
2

z̄2(cos 2θ, sin 2θ, cos 4θ, sin 4θ)dz

(4.12)

where ViA, ViB and ViD are in-plane, coupling and flexural lamination parameters. z̄ is the normalized
z coordinate (z̄ = z/h through the thickness and θ is the fiber orientation angle of that layer. The
[A], [B], and [D] Matrices can be written as a linear function of the lamination parameters and the
parameters of Tsai and Pagano as [48],

A = h (Γ0 + Γ1V1A + Γ2V2A + Γ3V3A + Γ4V4A)
B = h2/4 (Γ1V1B + Γ2V2B + Γ3V3B + Γ4V4B)
D = h3/12 (Γ0 + Γ1V1D + Γ2V2D + Γ3V3D + Γ4V4D)

(4.13)

where the material invariant matrices Γi’s are given by the parameters of Tsai and Pagano which are
material invariants. These elements can be derived as follows [51],

U1 = (3Q11 + 3Q22 + 2Q12 + 4Q66)/8,
U2 = (Q11 −Q22)/2,
U3 = (Q11 +Q22 − 2Q12 − 4Q66)/8,
U4 = (Q11 +Q22 + 6Q12 − 4Q66)/8,
U5 = (Q11 +Q22 − 2Q12 + 4Q66)/8.

(4.14)

where Qij are the elements of the reduced stiffness matrix and are given as,

Q11 = E1/(1− ν12ν21),
Q22 = E2/(1− ν12ν21),
Q12 = ν12E2/(1− ν12ν21) = ν21E1/(1− ν12ν21),
Q16 = G12.

(4.15)

In this equation, E is the elastic modulus, ν is the Poisson ratio and G is the shear modulus. Now
based on the material invariants U the material invariant matrices can be written as,

36 Chapter 4. Variable Stiffness Laminates

Figure 4.7: Feasible domain for either the in-plane LPs V1A and V3A or only the flexural LPs V1D and V3D [55]

Γ0 =

U1 U4 0
U4 U1 0
0 0 U5

 , Γ1 =

U2 0 0
0 −U2 0
0 0 0

 ,

Γ2 =

 0 0 U2/2
0 0 U2/2

U2/2 U2/2 0

 , Γ3 =

 U3 −U3 0
−U3 U3 0
0 0 −U3

 ,

Γ4 =

 0 0 U3

0 0 U3

U3 −U3 0


.

(4.16)

The linear dependence of the [ABD] matrix on the Lamination parameters as seen in Equation 4.13
seems to be quite useful as proved in the works of Grenestedt et al., that the feasible region of the
lamination parameters is indeed convex in nature [52]. However, a difficulty that has been faced is,
developing an explicit relation for relating the 12 Lamination parameters. Miki et al. [53], [54] in their
works defined the feasible region describing either two in-plane parameters or two bending parameters
to characterize the stiffness of an orthotropic plate as,

V3 ⩾ 2V 2
1 − 1,

−1 ⩽ Vi ⩽ 1(i = 1, 3)
(4.17)

the feasible regions obtained using these relations are shown in the work of van Campen [55] and is
depicted in the figure 4.7.

Later, two dimensional projections of the feasible region were explored by Grenestedt [52] using 4
lamination parameters. In the work of Fukunaga et al., [56], the feasible region of four in-plane or
flexural lamination parameters was depicted using the following relation,

2V 2
1 (1− V3) + 2V 2

2 (1 + V3) + V 2
3 + V 2

4 − 4V1V2V4 ⩽ 1
V 2
1 + V 2

2 ⩽ 1
−1 ⩽ V3 ⩽ 1

(4.18)

An explicit relation for the feasible region combining four coupled lamination parameters for orthotropic

4.2. Modeling methods 37

laminates has been derived by Wu et al. [57] by using the Schwarz inequality along with algebraic
identities to relate in-plane, coupling, and flexural lamination parameters. The relations are given as
follows,

5 (V1A − V1D)
2 − 2

(
1 + V3A − 2V 2

1A) ⩽ 0(
V3A − 4tV1A + 1 + 2t2

)3 − 4
(
1 + 2|t|+ t2

)2 (
V3D − 4tV1D + 1 + 2t2

)
⩽ 0

(4tV1A − V3A + 1 + 4|t|)3 − 4
(
1 + 2|t|+ t2

)2
(4tV1D − V3D + 1 + 4|t|) ⩽ 0

(4.19)

where t ∈ [−1, 1] and in this paper when t=[−1, −0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1], the results
are quite satisfactory. The feasible region plots can be viewed in Figure A.3 [57].

Modeling Technique Benefits Drawbacks

Fiber Path Parametrization
• Few number of design variables

• Continuous smooth path

• Function definition eases curvature constraint application

• Limited design space by path function

• Highly non-linear and non-convex

• Requires function definitions for different developable surfaces

Direct Stiffness Modeling

(Lamination parameters)

• Entire design space encompassed

• Set of continuous design variables defined by a convex region

• Number of design variables independent of number of layers

• Multi-level optimization required for post-processing fiber angles

and fiber path

• Feasible region required for interrelating stiffness properties

Table 4.1: Benefits and drawbacks of the two VS laminate modeling techniques [3]

After having seen the few advantages of using lamination parameters for designing Variable Stiffness
laminates, moving to the drawbacks. The LP parameterization method assumes all plies to be of the
same material. Next, After finding the distribution of the lamination parameters across the design
domain, the fiber orientation angles also need to be determined and this cannot be done empirically,
hence the results may not be unique. Multiple research papers display methods to obtain fiber orien-
tation angles from the optimized values of lamination parameters. Van Campen et al. [2] utilized a
gradient descent approach to find the optimal lamination parameters followed by the usage of Genetic
algorithm (GA) treating the steering constraint by a penalty approach and provide starting points for
the gradient-based optimizer where the minimum loss of performance was achieved in the fiber angle
retrieval process. In this work, they have made it possible to include manufacturing constraints in the
design process using cellular automation (CA). For more information on CA, readers can refer to this
book [58]. Setoodeh et al. [50] however took a different approach to finding the fiber orientation an-
gles. Firstly the optimal distribution of the lamination parameters was obtained and then curve fitting
techniques were used to obtain a continuous fiber orientation angle distribution that would in turn be
evaluated to find the lamination parameters and see how close it is to the optimal values. The fiber
angles are expanded using a set of basis functions and unknown coefficients. these unknown coefficients
are then computed such that the assumed form corresponds to the optimal distribution of the lamina-
tion parameters in a least square sense. So as given by van Campen [55] and also Setoodeh et al. [50]
the most straightforward objective would be the least square distance to the Lamination parameter’s
optimum value, which can be written as,

f = |V − V ∗| with V = {V1A, V3A, V1D, V3D} (4.20)

V ∗ indicates the optimum lamination parameters. This objective function can be used in the thesis to
provide a good case study for fiber angle retrieval using lamination parameters.

A summary of the various benefits and drawbacks of fiber path parameterization and modeling with
lamination parameters can be seen in Table 4.1 obtained from [3]. In addition to what has been dis-
cussed so far, it is important to note that the thickness of the tows is assumed to be constant in the
calculations associated with Lamination parameters which as we have seen from the manufacturing
section (section 4.1 is not the case. However, the relations discussed for the variation of thickness have
been applied in works that utilize fiber path parameterization [40], [59]. Hence fiber path parameteri-
zation seems to be the more appealing solution compared to the other, but owing to the advantages of

38 Chapter 4. Variable Stiffness Laminates

Lamination parameters it would be worthwhile to explore if the thickness variations can be implemented
in this method as well. Hence it can be possibly pursued in future studies do try to do so.

Part II

Methodology

39

5
Gradient-based Optimization

Algorithm

The literature review provided in chapter 2 gives an overview of how gradient-based optimization works
and the different aspects of the method. In this chapter, the interior-point optimization algorithm
utilized for this thesis will be detailed and the effect of the main parameters affecting this optimizer
will be explained by means of test cases. The optimization algorithm is programmed using the Python
programming language.

5.1. Interior - Point Method
The name interior-point stems from interior penalty methods that apply penalization to the constraints
in the optimization problem such that a penalization term is associated with the constraints and op-
timization occurs within the constrained domain. The penalty term increases as the optimizer moves
toward the boundary of the constrained domain.

In the method of interior-point optimization, the key difference as compared to interior penalty methods
is that the constraints are not directly penalized, but instead the penalization acts on slack variables
that are added to the constraints. The formulation is written as follows [6],

minimize
x,s

f(x)− µb

∑ng

j=1 ln sj
subject to h(x) = 0

g(x) + s = 0

(5.1)

where mub is the barrier parameter. The resulting formulation turns the inequality constraint into an
equality constraint with the addition of the slack variables s. Newton’s method can be applied to solve
the KKT system of equation for the above formulation in Equation 5.1, where it can be noted that the
logarithm barrier term (refer chapter 2) associated with the slack variables is only defined for positive
s values and would act as a barrier for negative s values. Owing to the positive s values, g(x∗) < 0 at
the solution, hence satisfying the inequality constraints [6].

The interior-point formulation (Equation 5.1) is equivalent to the original constrained problem within
the limit; µb → 0. Hence, a sequence of solutions needs to be obtained to the problem such that nub

tends to zero.

41

42 Chapter 5. Gradient-based Optimization Algorithm

As explained in chapter 2, a constrained problem can be reformulated to be an unconstrained problem
by utilizing the Lagrangian function along with associated Lagrange variables. The Lagrangian for this
problem is given as [6],

L(x, λ, σ, s) = f(x) + µbe
⊤ ln s+ h(x)⊤λ+ (g(x) + s)⊤σ, (5.2)

Here, lns is a ng vector with its components being the logarithms of each value of s, e = [1, ..., 1] is a
ng vector of 1s which is introduced to express the sum in vector form, λ is the Lagrange variable vector
associated with the equality constraints and σ is the Lagrange variable associated with the inequality
constraints. The KKT conditions can be derived by taking the derivatives with respect to x, λ, σ and
s, which is given as,

∇f(x) + Jh(x)
⊤λ+ Jg(x)

⊤σ = 0
h = 0
g + s = 0
−µbe+ Sσ = 0,

(5.3)

where S is a diagonal matrix with its diagonal values given by the slack variable vector. With this
set of residual equations, Newton’s method can be applied. Taking the Jacobian of the equations in
Equation 5.3, the following linear system is obtained:


HL(x) Jh(x)

⊤ Jg(x)
⊤ 0

Jh(x) 0 0 0
Jg(x) 0 0 I
0 0 S Σ




px
pλ
pσ
ps

 = −


∇xL(x, λ, σ)

h(x)
g(x) + s
Sσ − µbe

 (5.4)

where Σ is a diagonal matrix whose entries are given by the values of σ vector, and I is the identity
matrix. For numerical efficiency, the system can be made symmetric by multiplying the last equation in
Equation 5.4 with S−1, which can be calculated as S−1

kk = 1/sk. This results in the following symmetric
linear system:


HL(x) Jh(x)

⊤ Jg(x)
⊤ 0

Jh(x) 0 0 0
Jg(x) 0 0 I
0 0 I S−1Σ




px
pλ
pσ
ps

 = −


∇xL(x, λ, σ)

h(x)
g(x) + s

σ − µbS
−1e

 (5.5)

This linear system of equations (Equation 5.5) can be now solved using a matrix equation solver module
associated with a programming language of choice. The Figure 5.1 depicts the structure and block sizes
of what makes up the interior-point system as given in Equation 5.5.

5.1.1. Merit function

In the book of Martins and Ning [6], merit functions have been discussed and are something that has been
implemented into this optimizer. In constrained optimization, the decrease in objective function often
competes with the feasibility of a newfound optimum. Especially during a line search, the newfound
point can either result in a decrease in the objective function and increased infeasibility, or an increase
in the objective function and decreased infeasibility. Hence a way to include these two metrics in a
line search needs to be implemented. The Lagrangian function does take into account the two metrics,
however, in every iteration, the values of the Lagrange multipliers are just estimates and may be
inaccurate. Merit functions provide a more elegant way of combining the two metrics. The following
merit function is used in the line-search algorithm used for this project:

5.1. Interior - Point Method 43

Figure 5.1: Shape and structure of the interior-point system matrix given in Equation 5.5 [6]

f̂(x) = f(x)− µb

ng∑
i=1

ln si +
1

2
µp

(
∥h(x)∥2 + ∥g(x) + s∥2

)
, (5.6)

where µb is the barrier parameter from Equation 5.1, and µp is the penalty parameter. The downside
of using such a merit function is that it gets quite difficult to choose a suitable value for the penalty
parameter νp. The parameter needs to be large enough to ensure the feasibility of the newfound point,
however, if it is too large, it will result in a smaller step size. This would result in a higher number of
iterations to reach convergence. For the case studies explored in this thesis, the value of this parameter
varied between 4 and 10.

5.1.2. Maximum allowed step size

The maximum allowed value for the step size can be calculated before the line search because the value
of s and ps is known and it is required that,

s+ αmaxps = τs, (5.7)

where τ is a small value (for instance, τ = 0.005). The maximum step (αmax) is therefore the smallest
positive value that satisfies the equation for all entries in s. If this is not followed, the resulting s values
would be negative, hence triggering the Logarithmic barrier term shown in Equation 5.1 The algorithm
used for determining the maximum feasible step size is given below in Algorithm 2.

After obtaining this maximum feasible step, a simple backtracking line search can be implemented as
shown in subsection 2.3.3 to obtain a new αk corresponding to the kth iteration. The design variables
and slack variables can be updated as follows,

xk+1 = xk + αkpx, where αk ∈ (0, αmax]
sk+1 = sk + αkps

(5.8)

Following this, the step size (ασ) for the Lagrange multipliers (σ) also needs to be calculated such that
they maintain positive values. The procedure depicted in Algorithm 2 can be used to do so. The two
sets of Lagrange multipliers are then updated as follows,

44 Chapter 5. Gradient-based Optimization Algorithm

Algorithm 2 Maximum feasible step size
Inputs:
s ▷ Current slack values
ps ▷ Proposed step
τ ▷ Fractional tolerance(around 0.005

Output:
αmax ▷ Maximum feasible step length

αmax = 1
for i = 1 to ng do

α = (τ − 1) si
psi

if α > 0 then
αmax = min(αmax, α)

end if
end for

λk+1 = λk + αkpλ,
σk+1 = σk + αkpσ

(5.9)

5.1.3. Barrier parameter update

The barrier parameter is the parameter (µb) associated with the Logarithm term in Equation 5.1, and
a very simple approach is to update it using a multiplicative factor, such as, [6],

µbk+1
= ρµbk (5.10)

where the typical value for ρ is around 0.2. However, in this thesis, a more adaptive method proposed
by Wachter et al.[60] is utilized, with the expression given as,

µbk+1
= max

{ϵtol
10

,min
{
κµµbk , µ

θµ
bk

}}
(5.11)

where the constants κµ ∈ (0, 1) and θµ ∈ (1, 2). This way, the barrier term reduces at a superlinear rate
and, as it is known, the barrier problem tends to the original objective when µb → 0. A decrease in the
barrier term tending to zero, however, could result in numerical difficulties as the iterations progress,
which can be avoided by defining a tolerance (ϵtol such that µb does not drop below this tolerance value.

5.2. Developing the Optimization Algorithm
After covering the fundamentals of the interior-point method in the previous section, the optimization
algorithm is explained in this section. To develop an optimizer that is capable of handling versatile
inputs, i.e. constrained and unconstrained optimization problems, the possible type of problems are
narrowed down to four types:

1. Firstly, a fully unconstrained optimization problem which can be solved by applying Newton’s
method to the simple unconstrained conditions of optimality as discussed in chapter 2.

2. Secondly, an optimization problem with only equality constraints that can be solved by employing
the method of SQP which is discussed in chapter 2

5.2. Developing the Optimization Algorithm 45

3. Thirdly, an optimization problem with only inequality constraints which can be solved using the
interior-point method explained above.

4. Lastly, an optimization problem with both equality, and inequality constraints which can again
be solved using the interior point method.

The algorithm for optimization used in this thesis is given below. The algorithm has been divided into
two parts shown in Algorithm 3 and Algorithm 4 just for the purpose of illustration. The algorithm
detects the kind of optimization problem based on the size of the constraint vectors that serve as
inputs to the function. In Algorithm 3 (Part: one), the first type is depicted where the vectors for
the inequality constraint, as well as equality constraints, is empty, and hence it is an unconstrained
problem. The Quasi-Newton approach is applied here, and in the rest of the types, to update the
Hessian of the objective. The Newton’s method utilizes second-order information which results in
better search directions, but calculating the Hessian proves to be a task that may be computationally
expensive. The idea behind the Quasi-Newton method is to use the gradients (first-order information)
during each iteration to develop an approximation of the Hessian. The book of Martins and Ning [6]
provides a great explanation of how the approximation is derived and results in the following expression
for the approximation,

H̃Lk+1
= H̃Lk

− H̃Lk
sks

T
k H̃Lk

sT
k H̃Lk

sk
+

yky
T
k

yT
k sk

, (5.12)

where,

sk = xk+1 − xk

yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1) .
(5.13)

note that sk is the step in the design variable space that resulted from the last line search. The value
of the Lagrange multipliers is set to the latest obtained values while approximating the curvature of
the Lagrangian, because only the curvature in the design variable space is required. However, in the
unconstrained case, there are no Lagrange multipliers and the curvature is directly associated with the
objective function. Hence, the calculations are done with respect to the objective function f(x) instead
of the Lagrangian L.

In Algorithm 3 it can be seen that the second ’if’ statement evaluates the size of the constraint vectors
once again and requires that the inequality constraint vector be empty while the equality constraint to
not be empty. Additionally, now the Lagrange multipliers associated with these constraints also come
into play and hence need to be taken into account in the Lagrangian.

In Algorithm 4 (Part: Two) the third case, i.e. optimization problem with inequality constraint is
handled. The first ’if’ statement in this algorithm requires the vector of inequality constraints to not
be empty while the vector of equality constraints must be empty. Under this part of the algorithm, the
notable difference compared to the previous one is the inclusion of the slack variables associated with
the inequality constraints. Now the barrier term also needs to be included as discussed in section 5.1.

Lastly, in the same algorithm (Algorithm 4), the KKT system discussed in section 5.1 is solved with
both equality and inequality constraints using the interior-point method.

46 Chapter 5. Gradient-based Optimization Algorithm

Algorithm 3 Optimization Algorithm (Part: One)
Inputs:
x0 ▷ Starting point
τopt ▷ Optimality tolerance (around 10−5)
τconvg ▷ Convergence tolerance (eg. 10−5)

Outputs:
x∗ ▷ Optimal point
f(x∗) ▷ Optimal function value

convergence = 10 ▷ Initialize the convergence value higher than τconvg

if h(x) and g(x) are empty vectors then ▷ Unconstrained Optimization
H̃f0 = I ▷ Initialize Hessian of Lagrangian approximation to identity matrix
k = 0
while ∥∇xf∥∞ > τopt or convergence > τconvg do

Evaluate ∇xf
Solve the Quasi-Newton system of equations for px:[
H̃fk

]
[px] = − [∇xf(x)]

αk = backtrack(px, 1) ▷ Line search using Algorithm 1
xk+1 = xk + αkpx ▷ Update design variables
Update H̃fk+1

▷ Compute quasi-newton approximation using Equation 5.12
k = k + 1 ▷ Update iteration value
Calculate convergence value second iteration on-wards.

end while
end if

if h(x) is not an empty vector and g(x) is empty then ▷ Only equality constraints
H̃L0 = I ▷ Initialize Hessian of Lagrangian approximation to identity matrix
k = 0 ▷ Initialize number of iterations
λ0 = 0 ▷ Initialize Lagrange multipliers
while ∥∇xL∥∞ > τopt or convergence > τconvg do

Evaluate ∇xL
Solve the KKT system for p:[

H̃Lk
Jh(x)

⊤

Jh(x) 0

] [
px
pλ

]
= −

[
∇xL(x, λ)

h(x)

]
αk = backtrack(px, 1) ▷ Line search using Algorithm 1
αλ = alphamax(λ, pλ) ▷ Use Algorithm 2
xk+1 = xk + αkpx ▷ Update design variables
λk+1 = λk + αλpλ ▷ Update equality Lagrange multipliers
Update H̃Lk+1

▷ Compute quasi-newton approximation using Equation 5.12
k = k + 1 ▷ Update iteration value
Calculate convergence value second iteration on-wards.

end while
end if

5.2. Developing the Optimization Algorithm 47

Algorithm 4 Optimization Algorithm contd. (Part: Two)
if h(x) is an empty vector and g(x) is not empty then ▷ Only inequality constraints

H̃L0 = I ▷ Initialize Hessian of Lagrangian approximation to identity matrix
k = 0 ▷ Initialize number of iterations
σ0 = 0 ▷ Initialize Lagrange multipliers
s0 = 1 ▷ Initial slack variables
while ∥∇xL∥∞ > τopt or convergence > τconvg do

Evaluate ∇xL
Solve the KKT system for p: H̃Lk

Jg(x)
⊤ 0

Jg(x) 0 I
0 I S−1Σ

 px
pσ
ps

 = −

 ∇xL(x, λ, σ)
g(x) + s

σ − µbS
−1e


αmax = alphamax(s, ps) ▷ Use Algorithm 2
αk = backtrack(px, ps, αmax) ▷ Line search using Algorithm 1
ασ = alphamax(σ, pσ) ▷ Use Algorithm 2
xk+1 = xk + αkpx ▷ Update design variables
sk+1 = sk + αkps ▷ Update design slack variables
σk+1 = σk + ασpσ ▷ Update inequality Lagrange multipliers
Update H̃Lk+1

▷ Compute quasi-newton approximation using Equation 5.12
Update µb ▷ Compute as shown in Equation 5.11
k = k + 1 ▷ Update iteration value
Compute convergence value second iteration on-wards.

end while
end if

if both h(x) and g(x) are not empty vectors then ▷ Both, equality and inequality constraints
H̃L0 = I ▷ Initialize Hessian of Lagrangian approximation to identity matrix
k = 0 ▷ Initialize number of iterations
σ0 = 0 ▷ Initialize Lagrange multipliers
s0 = 1 ▷ Initial slack variables
while ∥∇xL∥∞ > τopt or convergence > τconvg do

Evaluate ∇xL
Solve the KKT system for p:

H̃Lk
Jh(x)

⊤ Jg(x)
⊤ 0

Jh(x) 0 0 0
Jg(x) 0 0 I
0 0 I S−1Σ




px
pλ
pσ
ps

 = −


∇xL(x, λ, σ)

h(x)
g(x) + s

σ − µbS
−1e


αmax = alphamax(s, ps) ▷ Use Algorithm 2
αk = backtrack(px, ps, αmax) ▷ Line search using Algorithm 1
ασ = alphamax(σ, pσ) ▷ Use Algorithm 2
xk+1 = xk + αkpx ▷ Update design variables
sk+1 = sk + αkps ▷ Update design slack variables
σk+1 = σk + ασpσ ▷ Update inequality Lagrange multipliers
λk+1 = λk + ασpλ ▷ Update equality Lagrange multipliers
Update H̃Lk+1

▷ Compute quasi-newton approximation using Equation 5.12
Update µb ▷ Compute as shown in Equation 5.11
k = k + 1 ▷ Update iteration value
Compute convergence value second iteration on-wards.

end while
end if

48 Chapter 5. Gradient-based Optimization Algorithm

5.3. Testing the Optimization Algorithm
The next step after having developed the optimization Algorithm is to test if it works, and what are
the effects of varying its parameters. In this section, a few basic optimization problems using simple
functions and also problems that have been discussed in the book of Martins and Ning [6] are used as
test cases for the Optimization Algorithm.

5.3.1. Unconstrained Optimization

In the previous section, the requirements for the unconstrained optimization were covered in the Al-
gorithm. Now to test if the algorithm can find the minimum of a simple, two-variable, unconstrained
problem is implemented. The problem is defined as follows:

minimize
x

f(x)

where f(x) = x1
2 + 5x2

2
(5.14)

This problem can be visualized using a 3D plot as shown in Figure 5.2. It can be seen that owing to
the parabolic nature of the variables, the problem is indeed a convex optimization problem, resulting
in a single global optima.

Figure 5.2: Visualization of 2-variable problem (Equation 5.14) using a 3D plot.

This problem can also be visualized on the 2D plane with the use of contour plots. In the Figure 5.3,
the path taken by the optimizer starting from the point x0 to the optimal point (global minimum) x∗

is highlighted in green. Since this is an unconstrained problem the only changes that can be made is
in the line search algorithm where the constant associated with the sufficient decrease condition (µ1)
and also the constant (ρ) for decreasing the step-size (α) can be varied (Line search is explained in
subsection 2.3.3). With each different problem, varying these parameters would result in a change of
the path taken by the optimizer, as well as the number of iterations. Hence, only by trying different
values, one can determine the ideal parameter values for a particular problem. In this case, ρ = 0.5 and
µ1 = 0.0001 were used.

5.3. Testing the Optimization Algorithm 49

Figure 5.3: Path taken by the optimizer in a 2-variable problem (Equation 5.14).

5.3.2. Equality constraint problem

For this test case, a problem given in the book of Martins and Ning [6] is implemented. The optimization
problem is given as follows,

minimize
x1,x2

f(x1, x2) = x1 + 2x2

subject to h(x1, x2) =
1
4x1

2 + 5x2
2 − 1 = 0

(5.15)

Figure 5.4: Path taken by the optimizer in a 2-variable problem (Equation 5.16) as given in [6] using inequality
constraint.

Figure 5.4 shows the result that was obtained in the book [6], but instead of having it as an equality
constraint, it is an inequality constraint. The red curve shows the boundary of the constraint and how
the feasible points of optimality are within the curve. Figure 5.5 is the solution generated using the
optimization algorithm described previously. It can be seen that here since the constraint has been
taken as an equality constraint as described in Equation 5.15, it takes a path that lies outside the curve
described by the constraint, and at the solution it converges onto the minimum that intersects with the
curve, hence satisfying the equality constraint. But it can be seen that the optimal point found in this
case is quite similar to the one obtained in [6].

50 Chapter 5. Gradient-based Optimization Algorithm

Concerning the parameters in this case, again as stated previously, the parameter values would vary
from problem to problem, and the only parameters that can be varied here are the ones associated
with the line search method. In this case, ρ = 0.5 and µ1 = 0.0001 were used. However, if a merit
function (Equation 5.6) is used during line search, an additional parameter can be varied, i.e. the
penalty parameter µp. It can be recalled that as the value of this parameter increases the time taken
for convergence would also increase as the path the optimizer would take would stick closer to the
constraint curve.

Figure 5.5: Path taken by the optimizer in a 2-variable problem (Equation 5.15).

5.3.3. Inequality constraint problem

For this test case again, the problem defined previously can be used, but instead of an equality constraint,
it would now be an inequality constraint. The problem can be now written as.

minimize
x1,x2

f(x1, x2) = x1 + 2x2

subject to g(x1, x2) =
1
4x1

2 + 5x2
2 − 1 ≤ 0

(5.16)

Figure 5.6: Path taken by the optimizer in a 2-variable problem (Equation 5.16).

5.3. Testing the Optimization Algorithm 51

As seen previously, Figure 5.4 shows the result obtained by Martins and Ning [6] and it was noted
how the path taken by the optimizer is through the region within the constraint after starting from
the outer region. The path converges onto an optimal point after 19 iterations. Now coming to the
solution generated using the developed algorithm; Figure 5.6 shows the path followed by the optimizer
after starting from a point outside the feasible region. The path converges onto a minimum after 17
iterations, and this was achieved by varying the parameters involved.

Looking at the parameters that can be varied, in this case, there are two additional parameters as
compared to the Equality constraint case. Firstly it is the barrier parameter µb associated with the
Logarithm of slack variables in Equation 5.2. As discussed previously, when the barrier parameter tends
to zero the original objective is achieved. The effect of this parameter is that, when the initial value is
high, the initial steps taken by the algorithm are quite large and can reduce the number of iterations
if the corresponding optimal point also lies far away from the starting point. If the value selected is
too large, the path taken would over-shoot in the initial directions and cause the number of iterations
required for convergence to increase. Also If the value is too small, then the steps taken are also quite
small again resulting in an increase in the number of iterations. Hence it may be important from case
to case to find a correct balance for finding the initial value of the barrier parameter µb (these effects
can be observed in Appendix B, Figure B.1). The value for the barrier parameter selected in this case
is µb = 1 Secondly, it can be seen that towards the end, the path does leave the feasible region and the
reason behind this is that the penalty parameter (µp) associated with the Merit function (Equation 5.6)
is not sufficient to keep the path within the constrained region. Again, if a very high value is selected for
this, the number of iterations would also increase. But in this case, µp = 15 was considered sufficient
here because the main goal was to obtain a decrease in the number of iterations. Further, the line
search parameters were kept the same as the previous case i.e., ρ = 0.5 and µ1 = 0.0001.

5.3.4. Equality and inequality constraint problem

The last test case is one where both, equality and inequality constraints will be used. A problem in the
book of Martins and Ning [6] is defined where two inequality constraints are used, but here one of them
will be turned into an equality constraint instead. The problem is given as,

Figure 5.7: Optimization problem with two inequality constraints as given in [6].

52 Chapter 5. Gradient-based Optimization Algorithm

minimize
x1,x2

f(x1, x2) = x2
1 −

1

2
x1 − x2 − 2

subject to g(x1, x2) = x2
1 − 4x1 + x2 + 1 ≤ 0

h(x1, x2) =
1

2
x2
1 + x2

2 − x1 − 4 = 0 .

(5.17)

Here in Figure 5.7, we can see that both the constraints given in Equation 5.17 are used as inequality
constraints, but the optimal point, in this case, would be the same even if g2(x) as shown in the figure
is modeled as an equality constraint.

Figure 5.8: Path taken by the optimizer in a 2-variable problem with both, equality and inequality constraints
(Equation 5.17).

After solving this problem using the developed optimizer, the result is shown in Figure 5.8. As would
be expected since the elliptical curve is the curve formed by the equality constraint, the path that the
optimizer takes is on the outside of the curve and moves its way to the optimal point. The parameters,
in this case, are the same as the previous case of inequality constraint, and hence would entail the same
explanation. In this case, the solution is achieved in 7 iterations.

5.4. Conclusion
In this chapter, a gradient-based optimization method is discussed and the algorithm used in this project
is explained. The following conclusions can be drawn from what is covered so far,

1. Examples from the book of Martins and Ning [6] have been used as verification test cases. After
having tested the optimization algorithm with all these cases, it can be concluded that the method
works quite well and is also versatile.

2. The selection of the parameters involved can vary from one problem to another, and can be setup
by observing the behavior of the optimizer in the first few iterations.

The next step would be the implementation of the deflation function to this method which will be
discussed in the next chapter.

6
Deflation applied to optimization

The main scientific contribution of this thesis is presented in this chapter. The principle of deflation as
discussed in chapter 3 will be extended to be applied to any optimization algorithm by carrying out a
simple step. The goal is to enable the discovery of multiple local minima in non-convex optimization,
as many as desired, which would eventually lead to the global minimum. A test case is presented in this
chapter to illustrate how the different parameters affect the performance of the developed framework.

A Non-linear Programming (NLP) problem can be considered, for which multiple solutions need to be
evaluated, and is given as [23],

minimize
x∈Rn

f(x)

subject to c(x) = 0
l ≤ x ≤ u

(6.1)

where l and u are the lower and upper bounds of the design variable x respectively. Now as seen in
chapter 2, This constrained minimization problem can be converted into an unconstrained problem by
expressing the objective function as the Lagrangian and is expressed as [23],

L(x, λ, z+, z−) = f(x) + c(x)Tλ+ (x− u)T z+ − (x− l)T z− (6.2)

where λ ∈ Rm is the Lagrange multiplier vector associated with the equality constraints, z−, z+ ∈ Rn
+

is the Lagrange multiplier vectors associated with the lower and upper bound respectively. Now, the
KKT conditions are satisfied when [23],

∇xL(x, λ, z+, z−) = 0
c(x) = 0
l ≤ x ≤ u
z+ ≥ 0
z− ≥ 0

(x− u)T z+ = 0
(x− l)T z− = 0

(6.3)

A point x that satisfies these conditions is therefore known as a KKT point, and finding multiple
solutions to the NLP boils down to finding solutions that satisfy these conditions.

53

54 Chapter 6. Deflation applied to optimization

6.1. Deflation for optimization of NLP
The deflation operator and deflation matrix approach covered in chapter 3 can be applied to obtain
multiple minima for the NLP described in Equation 6.1. The system of equations that satisfy the
KKT conditions, herein called the KKT equations, can be expressed as a system of residuals given
by F (x, λ, z+, z−) = 0 and systematically modified to obtain multiple minima. After finding the first
solution x1, the deflated system of KKT equations can be expressed as [23],

G(x, λ, z+, z−) ≡ M(x;x1)F (x, λ, z+, z−) = 0 (6.4)

Solving this problem with Newton-like methods requires the evaluation of the Jacobian of the deflated
nonlinear system of equation G. To utilize the interior point algorithm introduced in chapter 5 the
changes shown in Equation 6.4 needs to be implemented to the KKT equations of Equation 5.5. It
must be noted that the Hessian of Lagrangian shown in Equation 5.5 is required to be a symmetric
matrix to yield the corresponding descent direction. Tarek et al [23] found that after applying deflation,
some numerical errors caused the Hessian matrix to be non-symmetric, resulting in numerical difficulties
while calculating the search directions. This can possibly be remedied by the Hessian approximation
shown in Equation 5.12 which forces the matrix to be symmetric.

But this method requires quite a few modifications that need to be carried out within the optimization
method itself, and is probably a reason why Papadopoulos et al. [17] formulated a specialized primal-
dual interior point algorithm from scratch to implement deflation. Doing such modifications to an entire
method is quite tedious and the proposed adoption of deflation as an additional constraint, detailed
in the next section, consists of a novel and simpler solution to the issue of the non-symmetric Hessian
matrix.

6.2. Developing the deflation constraint
The idea to apply deflation as a constraint for optimization is original and independently developed
in the context of this thesis. The only literature reference using a similar approach is the non-peer
reviewed submitted pre-print [23]. In this pre-print the methodology consists of formulating an inequal-
ity deflation constraint that can be implemented in optimizers which support constrained optimization.
However this methodology does not perform adequately in a larger design space after it has found the
first few solutions (covered in test cases in section 6.3). For the present thesis, the approach is quite
different because the deflation constraint is reformulated to include a crucial parameter that aids the
constraint explore larger design spaces while yielding multiple distinct solutions. Hence, the method
herein proposed can be considered as a novel method.

6.2.1. The initial approach

As stated previously, Tarek et al.[23] were the first to introduce the approach of implementing deflation
as a constraint. In their work they propose two versions of the deflation constraint. In the first version,
the work introduces an additional variable y into the optimization problem along with the deflation
constraint m. With y ≥ 0, the deflation constraint is given as [23],

m(x;x1) = ||x− x1||−p + σ ≤ y (6.5)

where x1 is the first optimal point that is found previously, p is a power (usually varies between 2-4),
and a shift term σ (as introduced in chapter 3). After this constraint becomes active it is considered
that, if the new found optimal point x2 is associated with the variable y such that y is finite and has a
value in exact arithmetic, then x1 ̸= x2 (since limx→x1

m(x;x1) = ∞). It can further be proved that
every KKT point of the new NLP with a finite value of y is a KKT point of the original formulation [23].

6.2. Developing the deflation constraint 55

A proof of how (x∗, y∗) would be a regular KKT point for the modified problem after the introduction
of the deflation constraint is provided in Appendix C.

If it is assumed that m > 0 and y > σ, the deflation constraint would be equivalent to the distance
constraint as follows [23]:

||x− x1||p ≥ z (6.6)

where z = 1/(y − σ). Thus, it becomes clear that the deflation constraint essentially puts a constraint
on the known solutions. If at any point, the optimizer approaches z = 0 or y = ∞, then the deflation
operator is not distancing the new points from the known optimum points sufficiently. Hence, in this
case, the main hyperparameters that can be varied to ensure that this distancing occurs are the shift σ
and the power p as shown in Equation 6.5.

The method shown in Equation 6.5 can also be modified further to omit the additional variable y and
replace it with a large finite constant M , such that the deflation constraint would look like [23],

m(x;x1) = ||x− x1||−p + σ ≤ M (6.7)

Therefore, there are no additional variables, and with a proof similar to what is shown in Appendix C,
it can be proved that the newly found x∗ is a regular KKT point to Equation 6.1. So far, Equation 6.5
and Equation 6.7 have been evaluated with a single known solution, whereas for K̃ known solutions the
deflation constraint can be expressed as a summation:

K̃∑
k=1

m(x;xk) ≤ y (6.8)

After implementing and testing these methods presented in [23], it was quite difficult to obtain the
gradient-based optimizer to deflate away from the already found solution(s), and it did not seem to
work as expected. There was a lot of dependence on the hyperparameters to be varied based on the
number of required solutions. This warranted a further study of the parameters within this constraint,
and how the constraint could be reformulated to have the desired results.

6.2.2. Improved deflation constraint

Based on the ideas for a deflation constraint as discussed previously, a new deflation constraint was
developed and implemented in this thesis project. Firstly, it was important to clearly understand the
parameters and how the constraint value varied with the parameters. In Figure 6.1, the variation of
the value associated with the deflation constraint is shown about a known solution along the x and
y axis i.e. (x∗, y∗). The curve it follows is a representation of the left-hand side of Equation 6.5 for
p = 2. As the value of x approaches that of x∗, the value of the deflation function, m(x;x∗) → ∞. The
parameter σ that can be seen in Figure 6.1 is the value by which the curve of the deflation constraint
gets offset or shifted. σ can be adjusted according to the height of the local maxima in the vicinity of
the found solution to enable faster discovery of other local minima without getting stuck between these
saddle points created by this constraint (This situation will be explained in section 6.3) while using a
gradient-based optimizer. It must be noted that the value associated with the deflation constraint in
such a formulation is always positive and in the previous section the deflation constraint was active or
inactive mainly owing to the value of the variable y (Equation 6.8) through the optimization process.

Based on the observations of these parameters, another deflation constraint can be formulated such that
it maintains a positive value within a given radius of action r and has been portrayed in Figure 6.1a. So

56 Chapter 6. Deflation applied to optimization

(a) Radius about which the constraint acts.

(b) Enlarged view of how the value of the deflation constraint changes away from
the known solution.

Figure 6.1: A 2-D representation of the deflation constraint (Top and front plane).

a distance-based constraint can be formulated such that the constraint will be triggered by a conditional
statement. For a known solution x1, the constraint is given as,

if ||x− x1|| ≤ r
then m(x;x1) = ||x− x1||−p + σ

(6.9)

Since this constraint is triggered by a conditional, it implies that the constraint is only active when the
optimizer is in the vicinity of the known solution. The advantage of this would be that, while forming
the Lagrangian, if the conditional is not triggered, it reduces the need of allotting a Lagrange multiplier
for the deflation constraint and additionally a slack variable as well in the case of an Interior point
optimizer. Hence having a slight positive effect on computational efficiency.

The same constraint can also be formulated in a way that the need for a conditional statement can be
omitted. The deflation constraint can be written as,

rdist = r − ||x− x1|| (6.10)

m(x;x1) =
rdist
|rdist|

∗ (||x− x1||−p + σ) ≤ 0 (6.11)

Hence this formulation acts as a traditional constraint and would require to have a Lagrange variable
throughout the optimization process. Figure 6.2.2 provides plots of the variation in the deflation

6.3. Testing the deflation constraint in optimization 57

constraint values for two different σ values. For this plot, r = 2 and it can be seen that when r becomes
2, the constraint value crosses over to the negative and slowly tends to zero as the optimizer moves away
from the known solution. Hence this constraint would be active only when the optimizer is within the
radius of action r, i.e., when m(x;x1) > 0. Hence it can be noted that the curves shown in Figure 6.1
and Figure 6.2.2 remain the same till the radius of action r is reached, beyond which the rdist

|rdist| term in
Equation 6.11 switches the value to negative.

(a) σ = 0, r = 2 and p = 2

(b) σ = 1, r = 2 and p = 2

Figure 6.2: The variation in value of deflation constraint represented in Equation 6.11 about a known solution x1 = 0.

The plots for variation in parameters r, p have been attached in Appendix C. After having formulated
the new deflation constraint, it was tested to verify its workings, which is covered in the section to
follow.

6.3. Testing the deflation constraint in optimization
In this section, the discussed approaches to the deflation constraint will be tested, using a double-cosine
function with multiple local minima, given in Equation 6.12 and plotted in Figure 6.3. The developed
optimization scheme should be able to explore multiple or all of these local minima.

f(x1, x2) = −(cos(x1)cos(x2)) (6.12)

Note that the double-cosine function is periodic, such that multiple maxima and minima span infinitely.
Hence, while running the optimizer, bounds will be set for allocating a region of interest.

The optimizer used for running these tests is the gradient-based interior point optimizer discussed
in chapter 5. The solution to Equation 6.12 using the different deflation constraint formulations is

58 Chapter 6. Deflation applied to optimization

Figure 6.3: 3D plot of double-cosine function (Equation 6.12)

discussed below.

6.3.1. Approach using an additional variable

The first deflation constraint which was tested was the one presented in the work of Tarek et al. [23],
as discussed in the previous section, and shown in Equation 6.5. This utilizes the additional variable y
and is passed through the optimizer with the variables x1 and x2.

Point no. x1 x2 y
1 -3.14159 -3.14159 1
2 -1.9626e-12 -1.9626e-12 11.3729
3 -0.167069 -0.167069 20.8866
4 -0.355569 -0.355569 20.799

Table 6.1: The results obtained while using additional variable y

The optimizer is set to minimize the double-cosine function within the bounds, (-4.8,4.8) along both
axes and is provided with the starting point (-2.5,-2.5). The starting point is left to be the same while
discovering the different solutions. The optimizer is also set to generate 4 solutions, which means that
deflation has to be done thrice. As it can be seen in Table 6.1, the first point does not require the
deflation constraint, hence the variable y has no value. The deflation constraint does work and moves
to the second minimum at approximately (0, 0). However, when it comes to the third minimum point,
even though a finite value has been obtained for y, the optimizer is not getting deflated sufficiently
away from the known solution, obtaining results that are very close to each other beyond this as can
be seen in Figure 6.4 (where the black dots represent the obtained solutions and the red is the starting
point), implying that the optimizer recognizes the region to be feasible. This would indicate that this
formulation is causing the overall value of the deflation constraint m(x, x∗) to be ≤ y, keeping the
deflation constraint inactive. The values of the parameters used in this case are stated under Figure 6.4,
and varying these parameters did have an effect on deflation (portrayed in Appendix C). Increasing
the σ value from 5 to 40, helped to deflate it further, and obtain the three minima along the diagonal
with the fourth minima again in the vicinity of the third. Therefore it can be concluded that, if the
value of y obtained through the optimizer is too large, it can cause the constraint to be inactive, hence

6.3. Testing the deflation constraint in optimization 59

Figure 6.4: Deflation of double-cosine function (Equation 6.12) using additional variable (y) formulation as shown in
Equation 6.5(deflated thrice with parameters, σ = 5, and p = 2).

preventing the deflation constraint from fulfilling its function.

6.3.2. Approach with a large finite value

This approach is another one discussed in the work of Tarek et al. [23] and is shown in Equation 6.7.
Here, as mentioned previously, the additional variable y is replaced with a large finite value M . The
starting point for the optimizer is the same as taken previously, i.e. (-2.5,-2.5), and is again set to
generate 4 solutions. The M value was increased from the value 6 to observe how the solution changes
(refer to images in Figure C.3). At M = 10 the deflation constraint progresses fairly well in locating
three distinct minima, as can be seen in Table 6.2 and Figure 6.5, but at the 4th point is getting caught
in the vicinity of the 3rd, hence the deflation constraint is becoming inactive around this point. The
formulation of this constraint is such that an increase in the value of M would mean that the deflation
constraint function m would reach inactivity sooner when compared to having a lower M value. This
can also be observed in the images provided in Figure C.3. However, selecting the value of M would
require a number of trials and seeing if it provides satisfactory results but it is important to note that
exploring all the minima in this space would not be possible using this method and would require a sort
of adaptive value assignment of M .

Point no. x1 x2

1 -3.14159 -3.14159
2 1.23109e-07 1.23109e-07
3 3.14159 3.14159
4 3.32451 3.32451

Table 6.2: The results obtained while using finite value M = 10.

60 Chapter 6. Deflation applied to optimization

Figure 6.5: Deflation of double-cosine function (Equation 6.12) using finite value (M = 10) formulation as shown in
Equation 6.7(deflated thrice with parameters, σ = 5, and p = 2).

Point no. x1 x2

1 -3.14157 -3.14157
2 -5.76301e-08 -5.76301e-08
3 1.06066 1.06066
4 -3.14159 3.14159

Table 6.3: The results obtained while using radius of action r = 1.5.

6.3.3. Improved deflation constraint

After understanding the shortcomings of the previously presented methods, the newly developed de-
flation constraint is tested with the double-cosine function. The constraint utilized is shown in Equa-
tion 6.9, and the same starting point (−2.5,−2.5) is set for the optimizer. The additional parameter
to be varied is the radius of action r, which for this case is chosen as r = 1.5. Therefore, it can be
imagined that the deflation constraint remains active within a circle of 1.5 (units depending on the
design variable) radius with the center being the known optimal point. Table 6.3 shows the optimizer
was able to obtain 4 distinct minima. However, the third point is quite close to the second point and
this can also be seen in Figure 6.6a. This does imply that the deflation constraint becomes inactive
here, but there is a fairly intuitive reasoning behind this. The radius of action where the deflation
constraint is active is 1.5, and the distance between these points would be equal to the radius of the
action itself. The optimizer stops at this point because it can be imagined that where the deflation
constraint is active is an upward-curved region with the maximum value of the deflation function being
at the center of the circle i.e the known point. Around this region, the function value reduces, much like
shown in Figure 6.2.2. And as the circle ends, the downward curve of the deflation function encounters
the upward curve of the main objective function, hence creating a new local minimum at this point.
This can be a shortcoming of this method, which could lead to the discovery of multiple of such minima,
depending on the choice of the radius of action.

However, the main advantage of this method is that, even though not all the minima located would be
of utmost significance, it can be used to locate them all, especially in this example of the double-cosine

6.3. Testing the deflation constraint in optimization 61

(a) 4 solutions generated with σ = 0, r = 1.5 and p = 2 (b) 15 solutions generated with σ = 0, r = 3 and p = 2

Figure 6.6: The solution obtained after deflation of double-cosine function with the deflation constraint formulation
given in Equation 6.9.

function. Figure 6.6b shows how all the significant minima of this objective function have been achieved
after deflating 14 times, i.e. 15 distinct solutions obtained. Increasing r, in this case, proves to improve
the number of evaluations required to find the significant minima, but after a certain threshold, if the
radius becomes too large, it may engulf significant minima, hence deflating away from this region (this
is covered in Appendix C under Figure C.3). Therefore, utilizing a smaller radius of action might lead
to more evaluations being required, but in the end, it makes the algorithm more robust by enabling the
discovery of all possible minima.

6.3.4. Updating the optimizer's starting point

The concept of deflation was developed while considering that the starting point of the optimizer re-
mains the same and hence even starting at the same point leads to the discovery of different solutions.
However, while testing the deflation method described previously, it was hypothesized that once the
gradient-based optimizer has found a minimum in one region around its starting point, having a new
starting point from this minimum for the next round of optimization would enable the next minimum
to be found with more computational efficiency.

This hypothesis was tested using the same double-cosine function (Equation 6.12, but this time the
bounds of the optimization space were enlarged such that both axes spanned from (−7.8 → 7.8) and
the initial starting point was set as (−5.5,−5.5). The parameters of the deflation constraint are set as;
the radius of action r = 1.5, shift σ = 1, and power p = 2.

Firstly a baseline was set using the case where the starting point was kept the same as seen in Figure 6.7a.
It can be seen that to find all the significant minima 50 solutions need to be evaluated, and in these 50
solutions, the optimizer comes across many other local minima which are either created by the deflation
constraints associated with the already found solutions as explained in the previous section, or saddle
points of the objective function.

For the second case, as shown in Figure 6.7b the only change made was for the start point of the
optimizer after finding a new solution. The new start points were set to be points with a small offset
from the point of the previous solution, because at the exact point of the previous solution the deflation
constraint value becomes m(x, xk) = ∞, which would raise numerical difficulties. To illustrate this idea,
if the first minimum is given by the coordinates (2, 2), the starting point after the first deflation can

62 Chapter 6. Deflation applied to optimization

(a) 50 solutions generated with same starting points (σ = 1, r = 1.5,
p = 2 and time = 47.84 sec)

(b) 32 solutions generated with updated starting points (σ = 1, r = 1.5,
p = 2 and time = 14.45 sec)

Figure 6.7: The effect of updating the starting point after finding each new minimum and performing a new deflation.

be (1.9, 2) or (2.1, 2). In Figure 6.7b, it can be observed that the optimizer can locate the significant
minima in just 32 evaluations as compared to the previous 50 evaluations when starting from the same
point, hence resulting in way fewer discoveries of the undesirable minima. There is no established metric
as of now with how the number of evaluations would be affected by a change in the size associated with
the design space, but it could be an interesting study to help improve the efficiency of this method.

6.4. Conclusion 63

6.4. Conclusion
In this chapter, the concept of deflation applied as a constraint was explored, first by reviewing the
only work present on this concept done by Tarek et al. [23]. This concept was further built on, and an
improved way of implementing a deflation constraint has been developed in this project. The following
conclusions can be drawn from what has been discussed so far,

1. Applying deflation as a constraint opens up opportunities to explore different solutions to a
non-convex problem, while being compatible with any optimization algorithm that supports the
addition of a new constraint.

2. With the formulation of an inequality deflation constraint to find multiple minima, an originally
unconstrained problem would become a constrained problem when the deflation constraint is
added.

3. Applying the deflation constraint to gradient-based optimizers helps to further explore the ca-
pabilities of these optimizers to find global minima as compared to gradient-free ones, such as
genetic algorithms or particle swarm, where accuracy could be lost due to their heuristic nature.

4. The methods proposed in the pre-print of Tarek et al. [23] do provide a foundation for the idea
of using deflation as constraint. However, in the attempts carried out using these methods, the
obtained results were not satisfactory. The results were sensitive to the parameters affecting the
methods, for instance y in Equation 6.5 and M in Equation 6.7. However, even after varying
these parameters, the constraint would fail to deflate the optimizer beyond a certain minimum,
hence limiting the number of meaningful solutions that could be obtained.

5. The improved deflation constraint proposed in this thesis proved to perform well and robustly,
fulfilling its function to find all minima points in a design space. The formulation is also dependent
on its main parameter, the radius of action r. If the value of r is too large, it could lead to
the constraint engulfing significant minima points. Smaller values for r are recommended, even
though more function evaluations may be needed. Hence, to further improve on the method,
a study could be done to make the value of r to change dynamically, or to revisit the current
constraint formulation while trying to remove the dependence on r.

This page was intentionally left blank.

Part III

Results

65

7
Case studies

In this chapter, the methodology discussed in the previous chapters is used to assess the working of the
optimization method along with the deflation constraint while comparing it to pre-existing optimization
methods. Additionally, the deflation constraint will also be used in one of these pre-existing optimization
methods to demonstrate its capability in gradient-free optimization as well. The following case studies
related to composite design will be covered in this chapter:

1. Case study 1: The optimization of laminate stacking sequence for buckling load maximization
is based on the work of Riche et al. [61].

2. Case study 2: The optimization of laminate stacking sequence for a minimum weight and a
required buckling strength using deflation coupled with the pre-existing optimization method.

3. Case study 3: The optimization of lamination parameters for a given cantilever loading on a
variable stiffness composite plate based on the work of Setoodeh et al. [62].

4. Case study 4: Retrieval of fiber paths from optimized lamination parameters which will be
compared to the work of Setoodeh et al in [50].

5. Case study 5: Multi-layer variable stiffness plate fiber path retrieval using the developed method
in comparison to the pre-existing method of optimization.

The case studies will be explained in sub-sections, where the results obtained using the developed
deflated gradient-based optimization algorithm will be compared to a pre-existing genetic algorithm
optimizer that is available in the Python module, pymoo [63].

7.1. Case study 1

7.1.1. Problem description and formulation

This case study based on the work of Riche et al. [61] serves as an example of how the deflation
method can provide quite versatile solutions for a certain problem and can be utilized to explore other
options if the global minimum is undesirable from a manufacturing point of view. The fiber angles for a
constant stiffness and constant mass plate under bi-axial loading will be optimized, with the objective
of maximizing the buckling load. The geometry of the plate under consideration is shown below in
Figure 7.1. The figure depicts a simply supported plate with bi-axial loading; λNx along the x-axis
and λNy along the y-axis with λ being an amplitude parameter. The length and width of the plate

67

68 Chapter 7. Case studies

are respectively a and b. The laminated plate is considered to have N number of plies, and is assumed
to be symmetric and balanced, using ply angles of 0◦, 90◦, and ±45◦. The thickness (t) of each ply is
assumed to be the same. The symmetric and balanced condition provides a reduction in the number
of design variables, hence each ply does not have to be attributed to a design variable. Thus, for a
laminate with N plies, the number of independent design variables is N/4.

Figure 7.1: The geometry of laminated plate and applied loads [61].

For calculating the critical buckling eigenvalueλcb, it is assumed that the laminate buckles with m half
waves in the x−direction and n half-waves in the y−direction. Hence, an analytical solution can be
derived such that the buckling load amplitude λb is a function of the out-of-plane stiffness matrix of the
laminate (Dij) and the number of half waves in both, x and y directions. Riche et al. have provided a
relation for this in their work [61]. However, due to a possible misprint, the relation is incorrect. This
relation was then corrected by deriving the relation again with reference to the book of Kassapoglou
[1] and the correct relation is given as,

λb(m,n)

π2
=

[D11(m/a)4 + 2(D12 + 2D66)(mn/ab)2 +D22(n/b)
4]

(m/a)2Nx + (n/b)2Ny
(7.1)

The values of m and n need to be found such that it minimizes λb to yield the critical buckling load
λcb and this varies with the number of plies considered, the material, the dimensions of the plate and
the load case. Now, for the constraints; in this optimization case, the allowable strains in each layer
were set as a constraint, hence limiting the strain in each layer. The ultimate allowable strains are
ϵ1

ua = 0.008, ϵ2ua = 0.029, and γ12
ua = 0.015. The principle strains in the ith layer of the laminate

are related to the applied loads as follows [61],

λNx = A11ϵx +A12ϵy
λNy = A12ϵx +A22ϵy

(7.2)

ϵi1 = cos2 θiϵx + sin2 θiϵy
ϵi2 = sin2 θiϵx + cos2 θiϵy
γi
12 = sin2 θi(ϵy − ϵx)

(7.3)

In Equation 7.3, θi refers to the fiber angle associated with the ith layer with ϵx and ϵy are the global

7.1. Case study 1 69

strains of the plate. The term λ in Equation 7.2 is the load amplitude and this becomes λcs for the
lowest value of λ such that only one of the principal strains in one of the layers has exceeded the
allowable strain. In the case herein considered, γxy is not present because the layers of the laminate are
to be balanced and symmetric.

The optimization is done to maximize the buckling load, and in this case there are no ply contiguity
constraints taken into account. Hence, the optimization problem can be formulated as,

minimize
θ∈Rn

(1/λcb)

subject to ϵ1
i ≤ 0.008

ϵ2
i ≤ 0.029

γ12
i ≤ 0.015

(7.4)

The objective function is given as shown in Equation 7.4 because it is a maximization problem that
can be formulated as an inverse of a minimization problem. The results are generated for a graphite-
epoxy plate with the following material properties and ply thickness; E1 = 18.50E6 psi (127.59 GPa),
E2 = 1.89E6 psi (13.03 GPa), G12 = 0.93E6 psi (6.41 GPa), ν12 = 0.3, and t = 0.005 in. (0.0127 cm).

Load factor λ

Stacking sequence Buckling (cb) Failure (cs)
(9010,±452, 902,±453, 902,±454)s 3973.01 14,205.18
(±45, 9010,±45, 908,±45, 908)s 3973.01 8,935.74
(904,±452, 9016,±45, 906)s 3973.01 8,935.74
(902,±45, 906,±45, 908,±45, 9010)s 3973.01 8,935.74
(908,±45, 902,±45, 902,±45, 902,±456)s 3973.01 14,205.18

Table 7.1: Results for the buckling load maximization problem obtained by Riche et al. [61].(64 plies, a = 20 in.,
b = 10 in., Nx = 1 lb, Ny = 1 lb)

7.1.2. Results

The Table 7.1 shows the results that were obtained by Riche et al., and it can be observed that they
have generated multiple half stacks with the same buckling load and different strain failure loads. This
portrays the variety of combinations that can be obtained for the same design load and in this way
by assessing the options a feasible stacking sequence can be selected. It can be observed that the load
factors for strain failure are consistently higher than the critical buckling load factors which imply that
the strain constraint in each layer is not violated. These results were obtained using Genetic Algorithm
(GA) that allows for parallel processing. It must be noted that the GA had to make combinations
considering only the three allowed ply angles, i.e. 0◦, 90◦, and ±45◦. Whereas, for the gradient-based
optimizer, the fiber angle is varied continuously between (0, 90). After the optimized stacking sequence
is found, the results are manipulated such that, the interval (0,90) is divided into 3 parts which are, (0,
30), (30, 60), and (60, 90). If the ply angle corresponds to the first second or third interval, the value
is set to 0◦, 90◦, and ±45◦ respectively.

The gradient-based optimizer with the deflation constraint provided a variety of stacking sequences with
similar critical buckling load factors, as compared to the results obtained by Riche et al., after generating
80 solutions (which took 23 minutes). Table 7.2 shows the 5 best solutions that were obtained, where
it can be seen that the results may be close to those obtained by Riche et al. but are still inferior.
Hence the best result cannot be attributed as possible as a global optimum. The reason behind this
could be because the gradient-based optimizer considers continuous variables as mentioned previously,
opposed to the three discrete fiber angles utilized by GA. Therefore, it can be considered as another
drawback to the gradient-based deflation method, that discrete variables cannot be taken into account

70 Chapter 7. Case studies

Load factor λ

Stacking sequence Buckling Failure
(906,±45, 904,±45, 902,±45, 902,±45, 902,±45, 904,±45, 02, 902)s 3955.44 8,072.14
(908,±452, 902,±45, 902,±45, 904,±45, 904,±45)s 3954.9 11,619.78
(904,±452, 9024)s 3953.88 8,027.76
(9012,±4520)s 3945.61 15,029.39
(906,±45, 904,±45, 904,±452, 9010)s 3923.9 9,837.9

Table 7.2: Results for the buckling load maximization problem obtained using the gradient-based optimizer with
deflation. (Top 5 of 80 solutions generated with p = 2, σ = 1 and r = 8)

for optimization and conversion of optimized variables to required discrete values can yield points that
are not actual local minima.

7.2. Case study 2

7.2.1. Problem description and formulation

In this case study, minimization of weight is explored with reference to the work of Riche et al. [61].
Here the thickness of the plate being optimized also becomes a design variable and the objective function
is the volume of the plate. To attribute to the thickness of the plate, another set of design variables
is included in addition to the ply fiber angles, i.e. the thicknesses associated with each ply. This
doubles the number of design variables. Schläpfer [64] introduces the concept of ghost layers, which is
essentially a layer that carries information about material properties and also the ply fiber orientation
but is associated with zero thickness value. Hence if the jth layer is zero, the following must be
applicable for a plate with j layers,

j∑
k=1

tk −
j−1∑
k=1

tk = 0 for tj = 0 (7.5)

Now for this case, the objective function is the volume of the plate and additionally compared to the
previous case, another constraint can be introduced into the problem which is the buckling load factor
of the plate. The allowable strain constraint will also be appended such that it can satisfy a required
target load factor. This target load factor would be set even for the buckling load factor. Hence the
optimization problem can be formulated as follows,

minimize
θ,t∈Rn

(
j∑

i=1

ti)ab

subject to ϵ1
i ≤ 0.008

ϵ2
i ≤ 0.029

γ12
i ≤ 0.015

1− (λcb/λt) ≤ 0
1− (λcs/λt) ≤ 0

(7.6)

Here tk is the thickness associated with each ply, a is the length of the plate, b is the width (refer,
Figure 7.1) and the new term in the constraints, λt is the target load factor that needs to be achieved
with the primary objective being volume optimization. The material properties are the same as utilized
in the previous case study, for a graphite epoxy plate. The baseline can be established by referring
to another set of results by Riche et al. [61] where they optimize a plate with 48 with the objective
being buckling load factor maximization. Table 7.3 shows 4 stacking sequences with 48 plies with the

7.2. Case study 2 71

corresponding load factors. So for a target load factor that is lower than these optimized values of load
factors, it can be hypothesized that the number of plies required would also reduce, hence lowering the
volume.

Load factor
Stacking sequence Buckling Failure

(902,±454, 04,±45, 04,±45, 02)s 14,168.12 13,518.66
(±453, 02,±452, 02, 902, 04±45, 02)s 14,134.76 13,518.66
(902,±453, 02,±45, 02,±45, 04,±45, 02)s 14,013.71 13,518.66
(±452, 02,±452, 902, 04,±45, 02,±45, 02)s 13,662.61 13,518.66

Table 7.3: Results for the buckling load maximization problem obtained by Riche et al. [61]. (48 plies, a = 20 in •
b = 5 in, Nx = 1 lb, Ny = 0.125 lb).

7.2.2. Results

Since it was concluded from the previous case study that, the gradient-based optimizer is not the best
to be used with discrete-valued variables, in this case, a pre-existing Genetic Algorithm optimizer that
is available in the python module, pymoo [63] was utilized. For this optimization method, the deflation
constraint is also included to obtain multiple solutions and to see its working with a different optimizer
to test the claim that it can be run with any optimization method. For this optimizer, once again
the variables need to be continuous, but since it is a heuristic method, the conversion of continuous to
discrete variables can be done during the optimization process itself and this would directly affect the
value of the objective function, unlike the gradient-based method. So this in turn makes it possible for
the method to be applied for discrete variable optimization.

The main parameters to be varied in this optimizer are the population size, that is the number of
individuals that is crosses over to get the fittest individual, and the number of generations, which is
used as a termination criterion. In this case, it is known what the ballpark figures for the load factors
associated with a stacking sequence with 48 plies look like (Table 7.3), so the target λt is set as 10000,
which should result in a decrease in the number of layers. So the optimizer is given a total number of
variables as 24 which is 12 for the ply angles (note balanced and symmetric) and 12 for the thicknesses
associated with the 12 layers. While generating the results, a new term is introduced, that is the margin
of safety, which is a margin over the target load factor and can be expressed as a percentage. This is
calculated as,

MScb = (λcb/λt)− 1
MScs = λNy = (λcs/λt)− 1

(7.7)

Margin of Safety
Stacking sequence Plies Buckling Failure

(904, 06, 902,±455)s 48 7.44% 15.85%
(±453, 04,±452, 02,±452, 02)s 44 6.49% 12.94%
(±454, 04,±45, 02,±45, 02,±45)s 44 10.3% 12.94%
(902, 06, 904, 02, 904,±453)s 48 3.84% 9.21%
(904, 04±452, 902, 02, 904, 02, 902)s 48 13.73 % 5.155 %
(902,±45, 02,±45, 02,±454, 04)s 44 2.55% 14.2%

Table 7.4: Results for the buckling load maximization problem obtained using the GA optimizer with deflation. (6
solutions generated with p = 3, σ = 1 and r = 1)

The first run with the genetic algorithm was done without deflation, and with the number of generations
starting at 10. Despite varying the number of generations to 50, there were no changes in the number of

72 Chapter 7. Case studies

plies and gives the first solution in Table 7.4. Then the population size was changed from 20 to 30 and
a 44-plies layup was obtained, with 8.7% and 13.08 % margin of safety for buckling and strain failure
load factors respectively. Following this, the number of generations was turned down to 30, with the
populations size back to 20, and now the deflation constraint was applied to obtain 6 solutions. After
deflation, it can be seen that a variety of solutions have been obtained with a varying margin of safety
and also a few with decreased number of plies. The third solution seems to be the most promising with
the maximum margin of safety obtained for the critical buckling load factor and can seem better than
the one obtained with GA alone after varying the parameters.

Hence it can be concluded that applying deflation to this GA optimization proves that the deflation
constraint works even in heuristic algorithms for optimization and it helps to explore the design space
better to obtain a global optimum even if the parameters of the algorithm are not at their optimal
values.

7.3. Case study 3

7.3.1. Problem description and formulation

The development of variable stiffness laminates was the primary motivation behind this thesis project
in the course of which an optimization algorithm was developed. Variable stiffness can be modeled in a
structure either by using Lamination parameters or by using a direct angle parameterization approach
as we have seen in the chapter 4. After seeing the potential in Lamination parameters, it was decided
to explore if the developed method can be used to optimize lamination parameters. The minimum
compliance design of VS panels done by Setoodeh et al. [62] is going to be verified in this case study.
This can be achieved through the minimization of the complementary strain energy. The in-plane or
bending behavior of a composite plate can be modeled using only 4 parameters regardless of how many
layers there are and whether the feasible LP domain is convex. It can be proved that the complementary
strain energy in the LP space is also convex [62]. Hence the local design problem would also be convex.
In this case, the distribution of the 4 in-plane LPs will be obtained for a cantilever plate that is under
a uniformly distributed load q0.

Figure 7.2: Cantilever plate with uniform load [62].

The problem is solved by discretizing the plate into multiple elements and using Finite Element Analysis
to get the displacements at each of the element’s nodes. To do this the python module pyfe3d [65],
developed by Castro was implemented which also has great support for composites in this module. The
displacements were used to then calculate the strain components at each node. An important aspect of
getting the strains from the displacements obtained from the FEM is multiplying the displacement by
strain-displacement matrix BL (if interested, the reader can refer to Chapter 6 in the book by Logan
[66] for its derivation). After finding the strains, the nodal strains are multiplied by the in-plane and

7.3. Case study 3 73

coupling matrix (A-B matrix which can be calculated as shown in Equation 4.13) corresponding to its
nodal values, to get the nodal stress resultants, Nx, Ny, and Nxy. Now the minimization problem is
formulated as,

minimize
Vi

1
2N

T
i ·A−1(Vi) ·Ni

subject to 2V 2
1 (1− V3) + 2V 2

2 (1 + V3) + V 2
3 + V 2

4 − 4V1V2V4 ⩽ 1
V 2
1 + V 2

2 ⩽ 1
−1 ⩽ V3 ⩽ 1

(7.8)

where Ni is the vector of the resultant forces for the Node i, A is the in-plane stiffness matrix which is
a function of Vi calculated with Equation 4.13 and Vi = {Vi1 , Vi2 , Vi3 , Vi4}, the vector of in-plane LPs
of the ith node. For balanced VS laminates, the LPs V2 = V4 = 0. The material properties used for
the numerical evaluations are, E11 = 181.0GPa, E22 = 10.3GPa, G12 = 7.17GPa, and ν12 = 0.28.

7.3.2. Results

The results in this optimization are obtained for each node with 4 Lamination parameters. Hence it
would be feasible to view these distributions across the nodes as contour plots and to make a comparison
of how well the objective function of the entire plate, the compliance is minimized. A non-dimensional
compliance term can be compared which is given as [62],

C̄ =
E22hb

3C

q20a
5

(7.9)

where E2 is the transverse modulus of elasticity, h is the thickness of the laminate, b is the width of the
laminate, q0 is the uniformly distributed load, a is the length of the laminate and C is the compliance
obtained after Optimization and is given as,

C =
1

2
FT · U (7.10)

where F and U are the vectors of external forces and displacements respectively.

Figure 7.3: Optimal Lamination parameter distribution for Cantilever plate [62]. (a/b = 3, and 31× 11 nodes)

The results obtained by Setoodeh et al. [62] will be the baseline for comparison using two different
optimizers; The gradient-based optimizer to see if the convex design space can be used to an advantage,

74 Chapter 7. Case studies

as well as the GA from the pymoo python module as seen previously. Figure 7.3 shows the distribution
of the 4 optimal LPs across the laminate’s nodes and can be visually compared to the results obtained
using the gradient-based interior point optimizer shown in Figure 7.4. Visually, it seems like the result
generated by the gradient-based optimizer is similar to the ones obtained by Setoodeh et al., but has
some dissimilarities towards the right bottom corner. This could be attributed to the fact that at
that portion the stress acting is minimal since it is a free end. Table 7.5 shows the non-dimensional
compliance values calculated using Equation 7.9.

(a) Lamination parameter V1. (b) Lamination parameter V2.

(c) Lamination parameter V3. (d) Lamination parameter V4.

Figure 7.4: Distribution of Lamination parameters obtained using Gradient-based Interior point optimizer. (a/b = 3,
and 31× 11 nodes)

Non-dimensional compliance
Method used C̄gv C̄bv

Baseline from reference [62] 0.0296 0.0394
Gradient-based optimizer 0.0235 0.0294
Genetic Algorithm 0.0245 0.0295

Table 7.5: Non-dimensional compliance results obtained from gradient-based optimizer and GA, compared to baseline
[62] for a/b = 3.

As can be seen in Table 7.5 there are two non-dimensional compliances generated; C̄gv is a general
variable stiffness panel with 4 lamination parameters, and C̄bv is a balanced variable stiffness panel with
2 lamination parameters (V1 and V3). It must be noted that in [62] the non-dimensional compliance
values were erroneously multiplied by 2, as stated by Setoodeh et al in [50]. These errors have been
rectified in the results shown in Table 7.5. It can be observed that the gradient-based optimizer provides
the best results for a general variable stiffness laminate with a minimal compliance value. The same
problem was also evaluated using the GA optimizer from pymoo [63] and it does match up quite well to
the result obtained from the gradient-based optimizer as can be seen under the C̄gv column in Table 7.5.
The Figure 7.5 shows the LP distributions obtained using GA, and it can be seen that these results
seem to be more similar to the results obtained by Setoodeh et al., but are a little jagged and can be
attributed to the fact that this optimizer selects different points in the design space to move towards
the best, rather than utilizing the convex nature of the design space. These results could possibly
improve if the population size is increased, as well as the number of generations, and move towards
the global minimum. For the balanced VS laminate, it yields an almost identical result when the
non-dimensional compliance is compared with the value obtained using the gradient-based optimizer,
however, the distributions for V1 and V3 have a few subtle differences (See Appendix D, Figure D.1) that
can be attributed to the heuristic nature of GA. It is possible to carry a similar optimization out for
the out-of-plane LPs as well, by just replacing the in-plane LPs with out-of-plane ones in the problem

7.4. Case study 4 75

formulation. So instead of the A-matrix, the D-matrix will be written in Equation 7.8 which will be
written as a function of the out-of-plane LPs.

(a) Lamination parameter V1. (b) Lamination parameter V2.

(c) Lamination parameter V3. (d) Lamination parameter V4.

Figure 7.5: Distribution of Lamination parameters obtained using Genetic Algorithm optimizer. (a/b = 3, and 31× 11
nodes)

Hence, in this case, study it can be concluded that using Lamination parameters does help make the
design space convex and in this case with minimum compliance designs. The design space could be
non-convex if the structure under consideration is a complex one (like an aircraft wing) and not just
a simple laminate like a plate with in-plane or out-of-plane loads. Further, it was observed how the
gradient-based optimizer was able to shine in this case by providing the best result in terms of non-
dimensional compliance and can prove to be a vital tool in the design of variable stiffness laminates
involving Lamination Parameters.

7.4. Case study 4

7.4.1. Problem description and formulation

Optimization of variable stiffness laminates using Lamination parameters requires only 4 design vari-
ables that influence the stiffness properties of an element in a discretized laminate, regardless of the
number of layers it has. However once these optimized lamination parameters are obtained, retrieval
of the fiber angles associated with the lamination parameters makes the design space increasingly non-
convex as the number of layers increases. Retrieval of the fiber angles is a topic that is being studied
extensively, and for this case study one of the simpler methods will be utilized to generate the fiber
angles for VS laminates. Setoodeh et al. in their work [50] discuss a method for generating curvilin-
ear fiber paths for the manufacturing of VS laminates using tow placement. A part of their work is
obtaining the fiber angles at each node of the discretized VS laminate for which the LP distribution
is already known. Hence this case study will focus on the retrieval of these fiber angles associated
with each node along the VS laminate. Hence the objective function that will be used is the function
discussed in chapter 4 given by Equation 4.20 using the least square distance between the optimum
lamination parameters and the calculated ones which is based on the fiber angles being optimized. The
design variables here are the fiber angles which will be varied such that the LPs are calculated using
the relation that relates the LPs to the fiber angles as given in, Equation 4.12. In this case, the bounds
for the angles the optimizer can vary the ply angles between are the only constraints considered. A
curvature constraint can be added as well to limit how much the fiber angles between adjacent nodes
vary, however in this case to test the optimization method finding the minimum value for the objective
function is the target.

76 Chapter 7. Case studies

In this case study the same cantilever plate problem is explored as previously, and the LPs obtained in
the previous case study will be the vector of optimum lamination parameters V ∗. The plate is considered
to be a balanced plate with 2 layers [50], which essentially brings the number of design variables down
to just 1. Hence the optimization problem is formulated as,

minimize
θ

|V − V ∗|

subject to 0 ⩽ θ ⩽ 90

(7.11)

Where V is the vector of Lamination parameters calculated using the relations Equation 4.12. It can
be noted that here the lower limit of θ is 0◦ because the optimization considers a balanced laminate,
hence the range has been reduced. Even though the optimization is done for a single design variable,
the design space is still non-convex and can be seen in Figure 7.6. The plot shows how the value of
the objective function changes at a randomly selected node on the laminate when the balanced angle is
changed.

Figure 7.6: Cantilever plate with uniform load [62].

Owing to the non-convex nature of this design space, deflation can be applied in the gradient-based
interior optimization algorithm to pick the ply angle that best minimizes the function. The same
problem will also be solved using the GA from pymoo [63] to provide a comparison case along with the
results obtained by Setoohdeh et al. [50].

7.4.2. Results

As stated previously Setoodeh et al., generated the results for a balanced 2-ply laminate, and for evalu-
ating the results they once a gain computed the non-dimensional compliance as shown in Equation 7.9
using the obtained stacking sequence and compared it to the non-dimensional compliance they obtained
after optimization of the LPs as done in the previous case study. The Figure 7.7 shows the distribution

7.4. Case study 4 77

of the LPs across the nodes for a balanced laminate. The upper images represent the optimal LP distri-
butions while the images below represent the distribution obtained with the retrieved ply fiber angles.
It can be seen that there are a few differences in the optimum and the LPs with retrieved fiber angles
which can be attributed to the non-convex nature of the design space. It can be seen in Table 7.6 the
C̄∗ shows the normalized compliance values with the optimum LPs and C̄ shows the ones obtained with
the retrieved fiber angles. For the baseline result, Setoodeh et al. were able to achieve fiber angles that
were just 4% different from the retrieved fiber angles. It must be noted that here they have utilized
a curvature constraint with quite a high upper limit (κ = 3.333m−1) to obtain the 4% difference. As
the maximum curvature reduces, the percentage difference increased because the rotation of the fibers
across the nodes were restricted.

(a) Lamination parameter V1. (b) Lamination parameter V3.

Figure 7.7: Distribution of Lamination parameters obtained by Setoodeh et al. with upper images representing
optimal LP values and bottom obtained with retrieved angles. (a/b = 3, and 31× 11 nodes)

(a) +θ (b) −θ

Figure 7.8: Distribution of fiber angles obtained by Setoodeh et al. for a balanced ply layup [50]. (a/b = 3, and
31× 11 nodes)

78 Chapter 7. Case studies

Normalized compliance
Method used C̄∗ C̄ %Difference

Baseline from reference [50] 0.0374 0.0389 4.00
Gradient-based optimizer 0.0294 0.0303 3.06
Genetic Algorithm 0.0295 0.0305 3.38

Table 7.6: Normalized compliance obtained with optimum LPs and retrieved stacking sequence.

(a) +θ obtained after deflating 5 times. (b) −θ obtained after deflating 5 times.

(c) +θ obtained with GA. (d) −θ obtained with GA.

Figure 7.9: Distribution of fiber angles of balanced laminate, obtained using gradient-based optimization with
deflation, and GA, respectively.

Coming to the results obtained from the gradient-based optimizer and GA; the upper two figures in
Figure 7.9 show the positive and negative layers obtained for the balanced Laminate using the developed
gradient-based method with deflation. This result was obtained after deflating 5 times (evaluating 6
solutions) at each node of the laminate, and the angle that best minimizes the objective function
(Equation 7.11) is selected. In Table 7.6 it can be seen that the percentage difference between the
non-dimensional compliances obtained with V ∗ and V is approx 3.1% apart. This is a slightly better
result as compared to the ones obtained with GA and also the baseline from Setoodeh et al. This is a
good indication that the global minimum associated with the objective function at the different nodes
of the laminate are being achieved. The bottom two figures in Figure 7.9 show the fiber angles obtained
with GA, and visually when the two are compared there are quite a few differences. These differences
are attributed to the different optimum LP distributions obtained using the two methods. A visual
comparison of these LP distributions has been depicted in Figure D.2 and in Figure D.3.

7.5. Case study 5 79

It can be concluded from this case study, that the deflation-based optimization method is providing
quite a good result with this simple formulation (Equation 7.11), and has a lot of potential for obtaining
the fiber angles associated with multiple layers, i.e. multiple design variables rather than just one.

7.5. Case study 5

7.5.1. Problem description and formulation

The final case study would be building up on the previous one, where the fiber angles along each node for
a balanced laminate are retrieved from the optimum lamination parameters from case study 3. However
here, the number of plies will be increased, such that the optimizer has to deal with a more complicated
design space to obtain the fiber angles stacking at each node that yields LPs that would best match the
optimum LPs. The same objective function as Equation 7.11 is used, to locally minimize the objective
function across each node. Increasing the number of layers from 2 to 4 for a balanced laminate, increase
the design variables to two. Hence this space can still be visualized to actually observe how many local
minima there are.

(a) Contour plot of design space with 2 variables. (b) 3D plot of design space with 2 variables.

Figure 7.10: Design space plots for a random node along the laminate.

Figure 7.10 shows the plots for the design space as a contour plot and a 3D plot. It can be observed
that with this objective function, there is no uniformity associated with how the value of the objective
function varies, and there are multiple local minima in the space. Hence once again, the deflation
constraint coupled with the gradient-based optimization method will be utilized to obtain the optimal
fiber angle distributions for each layer of the laminate. The GA from pymoo will also be used as a
comparison case. In this case study, it will be observed how the percentage difference between the
Non-dimensional compliances (as seen in case study 3) varies with the increasing number of layers and
how the deflation-based optimization method can cope with the increasing design space.

7.5.2. Results

The deflation constraint is set to generate 6 solutions out of which the solution that best minimizes
Equation 7.11 is selected. For the case of the 4-layered-balanced laminate, the fiber angle distribution
associated with the two design variables has been plotted and can be seen in Figure 7.11. These fiber
angles are plotted using the deflation-based method and GA while considering their respective optimum
LP distributions and as it can be seen, in both cases, the angles obtained in Layer-1 and Layer-2 are

80 Chapter 7. Case studies

quite different.

(a) +θ1 obtained after deflating 5 times. (b) θ2 obtained after deflating 5 times.

(c) θ1 obtained with GA. (d) θ2 obtained with GA.

Figure 7.11: Distribution of fiber angles of balanced laminate with 4 layers, obtained using gradient-based
optimization with deflation, and GA, respectively.

Normalized compliance

Number of layers Method used C̄∗ C̄ %Difference

2 Gradient-based optimizer 0.0294 0.0303 3.06
Genetic Algorithm 0.0295 0.0305 3.38

4 Gradient-based optimizer 0.02941 0.029486 0.23
Genetic Algorithm 0.029401 0.029643 0.8

6 Gradient-based optimizer 0.0294 0.02945 0.78
Genetic Algorithm 0.029401 0.029451 0.37

8 Gradient-based optimizer 0.029412 0.0316 7.4
Genetic Algorithm 0.029401 0.02946 0.2

10 Gradient-based optimizer 0.02942 0.02962 1.3
Genetic Algorithm 0.029401 0.02945 0.16

Table 7.7: Normalized compliance obtained with optimum LPs and retrieved stacking sequence for balanced laminates
with multiple layers.

Table 7.7 shows the calculated non-dimensional compliances associated with the generated ply fiber

7.6. Conclusion 81

distributions and optimal LPs. With the gradient-based optimizer that uses deflation to generate 6
solutions, for 4 and 6 layered balance laminates, the Non-dimensional compliances are a very good
match to the optimal values and this could be because the increased number of layers provide more
freedom for the laminates to rotate the fibers along the stack to achieve the required LPs. However,
for 8 layers, it seems like the obtained non-dimensional compliance values are off quite a bit more by
about 7.4% which may be because the optimizer did not obtain a global minimum. Hence, in that case,
evaluating more than 6 solutions would need to be done. Coming to the GA, it seems to be performing
quite efficiently in almost all the cases and does this with fewer function evaluations as compared to
the gradient-based method with deflation.

In this case study it can be observed that the gradient-based method with deflation helps to find
the optimal fiber distributions as the design space increases in size and works quite well with the
formulation suggested in Equation 7.11. Even though the GA with how it samples new points performs
more efficiently in this case, it does not always determine a global minimum. That is where the gradient-
based shines, provided a sufficient amount of solutions are determined to scan that particular design
space.

7.6. Conclusion
In this chapter, the potential of the gradient-based method coupled with the deflation constraint has
been uncovered. With a sufficient number of solutions being determined, and of course selection of the
right deflation parameters, the method can achieve results that might as well yield the global minimum
in the cases covered above. The method could benefit from some improvements to make computations
more efficient, such that it can work faster and this could be explored in future studies to create a
method that can rival the speeds with which GA and other optimization frameworks operate.

This page was intentionally left blank.

8
Research review and future

recommendations

With the aim of answering the research questions covered in section 1.2, the following sections are
presented as highlights of this thesis and points of discussion. At the end of each section the recommen-
dations for future work that stem from these discussions are proposed.

8.1. Gradient-based optimization algorithm
The methodology of the gradient-based algorithm developed for this thesis is covered in chapter 5
where the developed method is tested and verified against various examples obtained from a reference
[6]. The testing also provides insight into the parameters associated with the method and how the
variation of said parameters affects the obtained solutions. It was concluded that the optimal set of
required parameters based on the minimization of evaluation time or the minimization of the number
of iterations required to obtain a minimum, is quite difficult to predict as it changes from problem to
problem. It would require a few runs to gauge the effectiveness of these parameters in a certain design
space and provide appropriate parameters to get its performance up to expectations.

8.1.1. Inclusion of constraints

The chapter 2 provides a great overview of gradient-based optimization by explaining certain concepts
and methods referenced from the literature. The chapter covers how constraints can be included in
an optimization algorithm by implementing the Lagrangian and Lagrange multipliers followed by the
derivation of the optimality conditions that need to be satisfied to yield a search direction that points
in the direction of descent.

8.1.2. Choice of gradient-based method

A brief overview of penalty methods for constrained optimization and SQP, a method for equality con-
strained optimization which is used to develop the optimization algorithm in this thesis is also given in
this chapter. For problems with inequality constraints or a combination of equality and equality con-
straints, the formulation of the interior-point optimization method is implemented into the optimization
algorithm. This is because interior point methods are better formulated when it comes to inequality
constraints, as the formulation contains slack variables which serve as an indicator of whether the opti-
mizer is in a feasible region or not. Whereas with SQP the constraints are evaluated at every iteration

83

84 Chapter 8. Research review and future recommendations

to establish a working set, which contains the active constraints and these are included in the KKT
system of equations [6]. Hence this proves to be quite inefficient.

8.1.3. Line-search method

The chapter 2 covers a section about Line-search for Optimization Algorithms. These methods are
required to help the optimizer, not overstep in a particular search direction such that prevents the
optimizer from zig-zagging till a minimum is reached and improves efficiency. Line search algorithms
determine the amount that needs to be stepped in the particular descent direction and the line search
algorithm implemented in the developed optimization algorithm is a back-tracking line search that works
on satisfying the condition of sufficient decrease. The strong Wolfe conditions prove to be excessive as
the time taken to evaluate the parameters required in evaluating these conditions scale up the total
time taken, as compared to the back-tracking method. The difference increases with an increase in the
number of design variables.

8.1.4. Automatic differentiation

AD is the differentiation technique presented in chapter 2 which is based on a numerical version of the
chain rule and is used to calculate the gradients utilized for the developed optimizer. To apply this
method, a pre-existing Python module is utilized (Autograd [13]) and is set to operate in reverse mode
which proves to be efficient in the case of an increasing number of design variables, but a lower number
of output functions that depend on the input design variables. A disadvantage to this module is that
it operates with the tensor data type, which does not apply to all other libraries in Python. Another
disadvantage would be that it does not support gradients of non-smooth functions like (max., min.,
etc.). But overall the gradients are estimated quite accurately.

8.1.5. Future recommendations

For future work in the direction of optimization methodology, efforts can be made to compare the
performance of different line-search methods, especially ones that have improved performance by the
advent of heuristics in the method [60]. This would improve the convergence behavior of gradient-based
optimizers and result in minimal required iterations.

Another suggestion would be to work on an AD method that can operate with data types that are com-
mon with other Python libraries to enable the seamless implementation of AD methods in optimization.
Also, the support for gradients of non-smooth functions would be an added advantage.

8.2. Deflation method

8.2.1. Concept and parameters involved in deflation

The chapter 3 covers the basic concepts involved in deflation and goes over the history of how the
method has evolved. It covers how the concept can be applied to polynomial deflation, followed by the
deflation of a system of non-linear equations.

8.2.2. Deflation constraint

With these basics cleared, chapter 6 introduces a traditional approach to applying deflation to an opti-
mization method, where the KKT conditions expressed as residuals can be multiplied by the deflation
matrix M to get the new deflated system of equations. But claims of Tarek et al. [23] suggest that
this introduces numerical difficulties associated with the Hessian of the Lagrangian function. Hence it

8.3. Optimization of composite structures 85

is a possible motivation as to why Papadopoulos et al. [17], created a new method for applying defla-
tion with a primal-dual interior point optimization algorithm. Hence the need for a deflation method
that can be applied without modifying the existing optimization framework is fulfilled by the deflation
constraint.

The deflation constraint is an approach originally introduced by Tarek et al. [23] and lay the foundation
for the approach. The work covered in chapter 6 however, is an original and novel formulation of the
approach. The results obtained by the approach developed in the present work perform satisfactorily
by locating if not all, almost all the minima as shown in the test case depicted by Figure 6.7a. Whereas
that is not the case for the approach presented in [23] which fails to deflate after having found a certain
number of solutions. One very important and also newly introduced parameter in the present work,
the radius of action r, controls the radius around which the deflation constraint acts and plays a vital
role. Too large a value can lead to some significant minima being engulfed, hence smaller values of r are
recommended for the discovery of all significant minima, even if more function evaluations are needed.
Another outcome of this chapter is that it verifies the original hypothesis that a deflated gradient-based
method can perform as a global optimizer.

8.2.3. Future recommendations

The deflation constraint method opens up a lot of possibilities for future developments. The current
formulation could on its own be improved in two ways. One could be to have the value of the radius of
action r vary dynamically where each unique minima has its value of r such that when the optimizer
reaches that minimum, the unique r becomes the metric of distance measure. This approach can be
quite straightforward while dealing with 2D problems, but higher dimensions would require further
study. The second way to improve the formulation would be to modify the formulation further and
remove the dependence of r such that it deflates the n-dimensional portion associated with a minimum
which is equivalent to a valley in 2D.

Another possible improvement that can be achieved computationally is the parallelization of deflation.
The current static (one optimization problem at a time) nature of the deflated gradient-based method
developed in this thesis can be adapted to become dynamic, which in essence would be a sequence of
optimization problems solved simultaneously while the solver makes active decisions at different time
instances, based on the information that becomes available as time progresses. With parallelization, for
instance, with a more powerful computational device, there could be three or more deflated-gradient-
based optimizers with randomly dispersed starting points in a design space running parallel. As each
of the optimizers finds minima, the list of found minima gets updated and the other solvers have the
information for the deflation constraint to deflate away from already found minima. This idea would
greatly enhance the ability for global optimization while utilizing the deflation constraint being applied
to almost any optimization method compatible with constrained optimization.

8.3. Optimization of composite structures
The methodology proposed in this thesis is applied to optimization case studies involving composite
structures and is covered in chapter 7.

8.3.1. Constant stiffness stacking angle optimization

In the first case study stacking sequence optimization of a balanced and symmetric composite laminate
for critical buckling under bi-axial load was explored. In this case, the developed methodology was
compared against a free-to-use Genetic algorithm (GA) optimizer. The baseline was set by the results
obtained in literature [61]. Since this optimization involved optimizing layers with discrete angles
(0,±45, 90) and not continuous, the continuous angles obtained by the deflated gradient-based solver
were converted into these discrete values after optimization, and this resulted in buckling loads that

86 Chapter 8. Research review and future recommendations

were below what was achieved in the baseline. The free-to-use GA however performed the best. Hence
the proposed method as predicted performed poorly in such a discrete-based optimization problem.

In the next case study, the same problem was explored but with the main objective being the volume of
the laminate while the buckling load was considered a target constraint. For the weight minimization,
here even the ply thicknesses were considered as a variable with the stacking sequence, essentially
doubling the design variables. After observing the previous case of how the deflated gradient method
performed poorly, the free-to-use GA was utilized and this time the deflation constraint was applied to
it. This resulted in quite a good test, where it was verified that the deflation constraint can be used
with any off-the-shelf optimization method, and also the deflated GA generated superior solutions as
compared to non-deflated GA.

8.3.2. Variable stiffness laminates

In chapter 4 the literature study associated variable stiffness laminates are covered. It shares brief
information about the various available manufacturing techniques, and the various defects that can be
encountered during manufacturing followed by two known methods for parameterizing variable stiffness.
The first method is direct fiber path parameterization and in this method, the fiber paths are parame-
terized by using various interpolation functions, modeled as Bezier curves, etc. The second method is
to model the stiffness properties using 12 parameters known as lamination parameters. 4 Lamination
parameters are associated with each, in-plane, coupling, and bending stiffness. The advantage offered
by this parameterization is that the design space occupied by LPs is convex which is a major advantage
as compared to the highly non-convex space of fiber path parameterization. However, one major chal-
lenge faced with optimizing lamination parameters is that the retrieval of fiber angles is quite tedious,
as it would once again lead to non-convex optimization to help match the obtained LPs and the LPs
corresponding to the optimized fiber angles.

In chapter 7, the third case study covered explores the optimization of Lamination parameters for
minimizing the compliance of a cantilever plate with uniform loading. The gradient-based optimizer
operates without deflation in this case as it takes advantage of the convex design space to obtain the 4
optimized in-plane lamination parameters. The result provides a good match with literature [62] while
yielding a slightly better result when the non-dimensional compliance is compared. The GA is also used
as a comparison case but does not improve over the result obtained by the gradient-based method.

8.3.3. Fiber angle retrieval

In chapter 7, after optimization of the Lamination Parameters, a simple objective function is utilized to
retrieve the fiber angles. Literature [67] provides a baseline obtained fiber layup for a 2-ply, balanced
laminate. Which is essentially only 1 design variable. However, the design space proved to be a non-
convex one owing to the objective function. The baseline is set by the reference literature, and the
optimization is carried out by utilizing the deflated-gradient-based optimizer and the GA. The deflated
optimizer yields the best result when non-dimensional compliance is compared. Hence this method can
be used for fiber angle retrieval.

Another case study is performed but for this, there is no established literature available. The same
objective function is utilized for obtaining the fiber angle distribution for balanced laminates with a
different number of layers. This case study proves that the deflated gradient-based method is quite
robust as it generates results that are comparable if not better than GA.

8.3.4. Future recommendations

The case studies covered in this thesis form only the basis for the capabilities of this method. Future
studies could implement this deflation constraint method for the global optimization of even more
complex models for VS structures that have a variety of loads acting on them which would result in

8.3. Optimization of composite structures 87

highly non-convex design spaces. Manufacturability can also be considered in this case by applying
fiber curvature constraints, and other manufacturing constraints to the optimization problem. The
Ph.D. thesis of Peeters [34] covers this topic in great depth and would serve as a great starting point
for the implementation of manufacturing constraints associated with VS structures

For VS laminates, new methods could be explored for fiber angle retrieval from optimized Lamination
parameters with an emphasis on the development of different and better-formulated objective functions.

This page was intentionally left blank.

9
Conclusion

Based on the research questions covered in section 1.2, the primary research objective of this thesis is
formulated as follows:

Primary Research Objective

To create a deflated gradient-based optimization method that implements a deflation method
that can be used for global optimization of the non-convex design spaces associated with com-
posite structural design problems.

This thesis project achieves the stated research objective by developing a methodology for achieving
deflation not only limited to the originally targeted gradient-based optimization algorithm, but also ap-
plicable to other optimization algorithms such as genetic algorithms, or virtually any other optimization
algorithm that is compatible with constraints.

As gradient-based optimizers are known for their ability to recover local minima, a gradient-based
method was selected for the application of deflation to aid in facilitating gradient-based optimizers to
transition from being local optimizers to becoming global optimizers. The developed gradient-based
optimization algorithm is capable of optimizing constrained and unconstrained problems.

The deflation method herein developed is deflation based on an inequality constraint, which can be
applied to the optimization algorithm to force the optimizer away from existing minima, enabling
the discovery of new minima in a non-convex design space. The original deflation formulation herein
presented is the main contribution of this thesis.

The developed methodology has been implemented in multiple case studies that support the optimiza-
tion of composite structures. The case studies involve the optimization of stacking sequence associated
with constant stiffness laminates, followed by the optimization of lamination parameters of a variable
stiffness laminate, and the optimization of the spatial fiber orientation angles to match the optimized
lamination parameters.

89

This page was intentionally left blank.

References

[1] C. Kassapoglou, Design and Analysis of Composite Structures. Oxford, UK: John Wiley & Sons
Ltd, May 2013, isbn: 9781118536933. doi: 10.1002/9781118536933.

[2] J. M. Van Campen, C. Kassapoglou, and Z. Gürdal, “Generating realistic laminate fiber angle
distributions for optimal variable stiffness laminates,” Composites Part B: Engineering, vol. 43,
no. 2, pp. 354–360, Mar. 2012, issn: 13598368. doi: 10.1016/j.compositesb.2011.10.014.

[3] M. A. Albazzan, R. Harik, B. F. Tatting, and Z. Gürdal, Efficient design optimization of noncon-
ventional laminated composites using lamination parameters: A state of the art, Feb. 2019. doi:
10.1016/j.compstruct.2018.10.095.

[4] S. Kucherenko and Y. Sytsko, “Application of Deterministic Low-Discrepancy Sequences in Global
Optimization,” Computational Optimization and Applications, vol. 30, no. 3, pp. 297–318, Mar.
2005, issn: 0926-6003. doi: 10.1007/s10589-005-4615-1.

[5] P. Kaelo and M. M. Ali, “Some Variants of the Controlled Random Search Algorithm for Global
Optimization,” Journal of Optimization Theory and Applications, vol. 130, no. 2, pp. 253–264,
Dec. 2006, issn: 0022-3239. doi: 10.1007/s10957-006-9101-0.

[6] J. R. R. A. Martins and S. A. (A. Ning, Engineering design optimization, p. 637, isbn: 9781108833417.
[7] X. He, J. Li, C. A. Mader, A. Yildirim, and J. R. Martins, “Robust aerodynamic shape optimization—

From a circle to an airfoil,” Aerospace Science and Technology, vol. 87, pp. 48–61, Apr. 2019, issn:
12709638. doi: 10.1016/j.ast.2019.01.051.

[8] Z. Lyu, G. K. W. Kenway, and J. R. R. A. Martins, “Aerodynamic Shape Optimization Investiga-
tions of the Common Research Model Wing Benchmark,” AIAA Journal, vol. 53, no. 4, pp. 968–
985, Apr. 2015, issn: 0001-1452. doi: 10.2514/1.J053318.

[9] S. Ruder, “An overview of gradient descent optimization algorithms,” Sep. 2016.
[10] A. Rakhlin, O. Shamir, and K. Sridharan, “Making Gradient Descent Optimal for Strongly Convex

Stochastic Optimization,” Sep. 2011.
[11] A. Griewank and A. Walther, Evaluating Derivatives. Society for Industrial and Applied Mathe-

matics, Jan. 2008, isbn: 978-0-89871-659-7. doi: 10.1137/1.9780898717761.
[12] U. Naumann, The Art of Differentiating Computer Programs. Society for Industrial and Applied

Mathematics, Jan. 2011, isbn: 978-1-61197-206-1. doi: 10.1137/1.9781611972078.
[13] A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in PyTorch,” Tech. Rep.
[14] Y. Zhu, B. Guillemat, and O. Vitrac, “Rational Design of Packaging: Toward Safer and Ecode-

signed Food Packaging Systems,” Frontiers in Chemistry, vol. 7, May 2019, issn: 2296-2646. doi:
10.3389/fchem.2019.00349.

[15] A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clus-
tering methods,” Mathematical Programming, vol. 39, no. 1, pp. 27–56, Sep. 1987, issn: 0025-5610.
doi: 10.1007/BF02592070.

[16] A. Arnoud, F. Guvenen, and T. Kleineberg, “Benchmarking Global Optimizers,” National Bureau
of Economic Research, Cambridge, MA, Tech. Rep., Oct. 2019. doi: 10.3386/w26340.

[17] I. P. A. Papadopoulos, P. E. Farrell, and T. M. Surowiec, “Computing multiple solutions of
topology optimization problems,” Apr. 2020. doi: https://doi.org/10.48550/arXiv.2004.
11797.

[18] J. Xia, P. E. Farrell, and S. G. Castro, “Nonlinear bifurcation analysis of stiffener profiles via
deflation techniques,” Thin-Walled Structures, vol. 149, p. 106 662, Apr. 2020, issn: 02638231.
doi: 10.1016/j.tws.2020.106662.

91

https://doi.org/10.1002/9781118536933
https://doi.org/10.1016/j.compositesb.2011.10.014
https://doi.org/10.1016/j.compstruct.2018.10.095
https://doi.org/10.1007/s10589-005-4615-1
https://doi.org/10.1007/s10957-006-9101-0
https://doi.org/10.1016/j.ast.2019.01.051
https://doi.org/10.2514/1.J053318
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.3389/fchem.2019.00349
https://doi.org/10.1007/BF02592070
https://doi.org/10.3386/w26340
https://doi.org/https://doi.org/10.48550/arXiv.2004.11797
https://doi.org/https://doi.org/10.48550/arXiv.2004.11797
https://doi.org/10.1016/j.tws.2020.106662

92 References

[19] J. H. Wilkinson, Rounding errors in algebraic processes. 1994.
[20] P. E. Farrell, Á. Birkisson, and S. W. Funke, “Deflation Techniques for Finding Distinct Solutions

of Nonlinear Partial Differential Equations,” SIAM Journal on Scientific Computing, vol. 37, no. 4,
A2026–A2045, Jan. 2015, issn: 1064-8275. doi: 10.1137/140984798.

[21] P. Deuflhard, Newton Methods for Nonlinear Problems. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, vol. 35, isbn: 978-3-642-23898-7. doi: 10.1007/978-3-642-23899-4.

[22] K. M. Brown and W. B. Gearhart, “Deflation techniques for the calculation of further solutions
of a nonlinear system,” Numerische Mathematik, vol. 16, no. 4, pp. 334–342, Jan. 1971, issn:
0029-599X. doi: 10.1007/BF02165004.

[23] M. Tarek and Y. Huang, Simplifying deflation for non-convex optimization with applications in
Bayesian inference and topology optimization, 2022.

[24] P. E. Farrell, M. Croci, and T. M. Surowiec, “Deflation for semismooth equations,” Optimization
Methods and Software, vol. 35, no. 6, pp. 1248–1271, Nov. 2020, issn: 1055-6788. doi: 10.1080/
10556788.2019.1613655.

[25] M. W. Hyer, P. R. Investigator F Charette, and D. Taylor, “INNOVATIVE DESIGN OF COM-
POSITE STRUCTURES: THE USE OF CURVILINEAR FIBER FORMAT IN COMPOSITE
STRUCTURE DESIGN,” Tech. Rep., 1990.

[26] M. Hyer and H. Lee, “The use of curvilinear fiber format to improve buckling resistance of com-
posite plates with central circular holes,” Composite Structures, vol. 18, no. 3, pp. 239–261, Jan.
1991, issn: 02638223. doi: 10.1016/0263-8223(91)90035-W.

[27] S. B. Biggers and S. Srinivasan, “Compression Buckling Response of Tailored Rectangular Com-
posite Plates,” AIAA Journal, vol. 31, no. 3, pp. 590–596, Mar. 1993, issn: 0001-1452. doi:
10.2514/3.61543.

[28] A. Cherouat, H. Borouchaki, J.-L. Billoët, and *. .-. Borouchaki, “Geometrical and mechanical
drap-ing of composite fabric. Revue Européenne des Éléments Finis,” pp. 693–707, 2005. doi:
10.3166/reef.14.693-707{\"{i}}.

[29] E. Kunze, S. Galkin, R. Böhm, M. Gude, and L. Kärger, “The Impact of Draping Effects on the
Stiffness and Failure Behavior of Unidirectional Non-Crimp Fabric Fiber Reinforced Composites,”
Materials, vol. 13, no. 13, p. 2959, Jul. 2020, issn: 1996-1944. doi: 10.3390/ma13132959.

[30] A. Crosky, C. Grant, D. Kelly, X. Legrand, and G. Pearce, “Fibre placement processes for com-
posites manufacture,” in Advances in Composites Manufacturing and Process Design, Elsevier,
2015, pp. 79–92. doi: 10.1016/B978-1-78242-307-2.00004-X.

[31] B. C. Kim, K. Potter, and P. M. Weaver, “Continuous tow shearing for manufacturing variable
angle tow composites,” Composites Part A: Applied Science and Manufacturing, vol. 43, no. 8,
pp. 1347–1356, Aug. 2012, issn: 1359835X. doi: 10.1016/j.compositesa.2012.02.024.

[32] W. T. Nugroho, Y. Dong, and A. Pramanik, “3D printing composite materials: A comprehensive
review,” in Composite Materials, Elsevier, 2021, pp. 65–115. doi: 10.1016/b978-0-12-820512-
9.00013-7.

[33] A. Brasington, C. Sacco, J. Halbritter, R. Wehbe, and R. Harik, “Automated fiber placement:
A review of history, current technologies, and future paths forward,” Composites Part C: Open
Access, vol. 6, p. 100 182, Oct. 2021, issn: 26666820. doi: 10.1016/j.jcomc.2021.100182.

[34] D. Peeters, “Design Optimisation of Practical Variable Stiffness and Thickness Laminates,” doi:
10.4233/uuid:a07ea6a4-be73-42a6-89b5-e92d99bb6256.

[35] K. Croft, L. Lessard, D. Pasini, M. Hojjati, J. Chen, and A. Yousefpour, “Experimental study of
the effect of automated fiber placement induced defects on performance of composite laminates,”
Composites Part A: Applied Science and Manufacturing, vol. 42, no. 5, pp. 484–491, May 2011,
issn: 1359835X. doi: 10.1016/j.compositesa.2011.01.007.

[36] J. Chen, T. Chen-Keat, M. Hojjati, A. Vallee, M.-A. Octeau, and A. Yousefpour, “Impact of layup
rate on the quality of fiber steering/cut-restart in automated fiber placement processes,” Science
and Engineering of Composite Materials, vol. 22, no. 2, pp. 165–173, Mar. 2015, issn: 2191-0359.
doi: 10.1515/secm-2013-0257.

https://doi.org/10.1137/140984798
https://doi.org/10.1007/978-3-642-23899-4
https://doi.org/10.1007/BF02165004
https://doi.org/10.1080/10556788.2019.1613655
https://doi.org/10.1080/10556788.2019.1613655
https://doi.org/10.1016/0263-8223(91)90035-W
https://doi.org/10.2514/3.61543
https://doi.org/10.3166/reef.14.693-707{\"{i}}
https://doi.org/10.3390/ma13132959
https://doi.org/10.1016/B978-1-78242-307-2.00004-X
https://doi.org/10.1016/j.compositesa.2012.02.024
https://doi.org/10.1016/b978-0-12-820512-9.00013-7
https://doi.org/10.1016/b978-0-12-820512-9.00013-7
https://doi.org/10.1016/j.jcomc.2021.100182
https://doi.org/10.4233/uuid:a07ea6a4-be73-42a6-89b5-e92d99bb6256
https://doi.org/10.1016/j.compositesa.2011.01.007
https://doi.org/10.1515/secm-2013-0257

References 93

[37] K. Fayazbakhsh, M. Arian Nik, D. Pasini, and L. Lessard, “Defect layer method to capture effect of
gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement,” Composite
Structures, vol. 97, pp. 245–251, Mar. 2013, issn: 02638223. doi: 10.1016/j.compstruct.2012.
10.031.

[38] M. Arian Nik, K. Fayazbakhsh, D. Pasini, and L. Lessard, “Optimization of variable stiffness com-
posites with embedded defects induced by Automated Fiber Placement,” Composite Structures,
vol. 107, no. 1, pp. 160–166, Jan. 2014, issn: 02638223. doi: 10.1016/j.compstruct.2013.07.
059.

[39] V. Mishra, D. M. Peeters, and M. M. Abdalla, “Stiffness and buckling analysis of variable stiff-
ness laminates including the effect of automated fibre placement defects,” Composite Structures,
vol. 226, Oct. 2019, issn: 02638223. doi: 10.1016/j.compstruct.2019.111233.

[40] S. G. Castro, M. V. Donadon, and T. A. Guimarães, “ES-PIM applied to buckling of variable
angle tow laminates,” Composite Structures, vol. 209, pp. 67–78, Feb. 2019, issn: 02638223. doi:
10.1016/j.compstruct.2018.10.058.

[41] B. C. Kim, P. M. Weaver, and K. Potter, “Computer aided modelling of variable angle tow
composites manufactured by continuous tow shearing,” Composite Structures, vol. 129, pp. 256–
267, Oct. 2015, issn: 02638223. doi: 10.1016/j.compstruct.2015.04.012.

[42] Z. Gürdal, B. F. Tatting, and C. K. Wu, “Variable stiffness composite panels: Effects of stiffness
variation on the in-plane and buckling response,” Composites Part A: Applied Science and Man-
ufacturing, vol. 39, no. 5, pp. 911–922, May 2008, issn: 1359835X. doi: 10.1016/j.compositesa.
2007.11.015.

[43] T. A. Guimarães, S. G. Castro, D. A. Rade, and C. E. Cesnik, “Panel flutter analysis and opti-
mization of composite tow steered plates,” in 58th AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, 2017, American Institute of Aeronautics and Astronautics
Inc, AIAA, 2017, isbn: 9781624104534. doi: 10.2514/6.2017-1118.

[44] Z. Wu, P. M. Weaver, G. Raju, and B. Chul Kim, “Buckling analysis and optimisation of vari-
able angle tow composite plates,” Thin-Walled Structures, vol. 60, pp. 163–172, Nov. 2012, issn:
02638231. doi: 10.1016/j.tws.2012.07.008.

[45] L. Parnas, S. Oral, and Ü. Ceyhan, “Optimum design of composite structures with curved fiber
courses,” Composites Science and Technology, vol. 63, no. 7, pp. 1071–1082, 2003, issn: 02663538.
doi: 10.1016/S0266-3538(02)00312-3.

[46] A. Alhajahmad, M. M. Abdallah, and Z. Gürdal, “Design tailoring for pressure pillowing using
tow-placed steered fibers,” Journal of Aircraft, vol. 45, no. 2, pp. 630–640, 2008, issn: 15333868.
doi: 10.2514/1.32676.

[47] H. Ghiasi, K. Fayazbakhsh, D. Pasini, and L. Lessard, Optimum stacking sequence design of
composite materials Part II: Variable stiffness design, Dec. 2010. doi: 10.1016/j.compstruct.
2010.06.001.

[48] S. W. Tsai and N. J. Pagano, “INVARIANT PROPERTIES OF COMPOSITE MATERIALS,”
Tech. Rep., 1968.

[49] S. W. Tsai and H. T. Hahn, Introduction to Composite Materials. Routledge, May 2018, isbn:
9780203750148. doi: 10.1201/9780203750148.

[50] S. Setoodeh, A. W. Blom, M. M. Abdalla, and Z. Gürdal, “Generating curvilinear fiber paths from
lamination parameters distribution,” in Collection of Technical Papers - AIAA/ASME/ASCE/AH-
S/ASC Structures, Structural Dynamics and Materials Conference, vol. 5, American Institute of
Aeronautics and Astronautics Inc., 2006, pp. 3440–3452, isbn: 1563478080. doi: 10.2514/6.2006-
1875.

[51] J. Dillinger, “Static Aeroelastic Optimization of Composite Wings with Variable Stiffness Lami-
nates,” Tech. Rep.

[52] J. Grenestedt and P. Gudmundson, “Layup Optimization of Composite Material Structures,” in
Optimal Design with Advanced Materials, Elsevier, 1993, pp. 311–336. doi: 10.1016/b978-0-
444-89869-2.50027-5.

https://doi.org/10.1016/j.compstruct.2012.10.031
https://doi.org/10.1016/j.compstruct.2012.10.031
https://doi.org/10.1016/j.compstruct.2013.07.059
https://doi.org/10.1016/j.compstruct.2013.07.059
https://doi.org/10.1016/j.compstruct.2019.111233
https://doi.org/10.1016/j.compstruct.2018.10.058
https://doi.org/10.1016/j.compstruct.2015.04.012
https://doi.org/10.1016/j.compositesa.2007.11.015
https://doi.org/10.1016/j.compositesa.2007.11.015
https://doi.org/10.2514/6.2017-1118
https://doi.org/10.1016/j.tws.2012.07.008
https://doi.org/10.1016/S0266-3538(02)00312-3
https://doi.org/10.2514/1.32676
https://doi.org/10.1016/j.compstruct.2010.06.001
https://doi.org/10.1016/j.compstruct.2010.06.001
https://doi.org/10.1201/9780203750148
https://doi.org/10.2514/6.2006-1875
https://doi.org/10.2514/6.2006-1875
https://doi.org/10.1016/b978-0-444-89869-2.50027-5
https://doi.org/10.1016/b978-0-444-89869-2.50027-5

94 References

[53] M. Miki, “Design of Laminated Fibrous Composite Plates with Required Flexural Stiffness,” in
Recent Advances in Composites in the United States and Japan, 100 Barr Harbor Drive, PO Box
C700, West Conshohocken, PA 19428-2959: ASTM International, pp. 387–387. doi: 10.1520/
STP32802S.

[54] M. Miki and Y. Sugiyama, “Optimum design of laminated composite plates using lamination
parameters,” AIAA Journal, vol. 31, no. 5, pp. 921–922, 1993, issn: 00011452. doi: 10.2514/3.
49033.

[55] J. M. Van Campen, “Optimum lay-up design of variable stiffness composite structures,” Tech.
Rep., 2011.

[56] H. Fukunaga and H. Sekine, “Stiffness design method of symmetric laminates using lamination
parameters,” AIAA Journal, vol. 30, no. 11, pp. 2791–2793, 1992, issn: 00011452. doi: 10.2514/
3.11304.

[57] Z. Wu, G. Raju, and P. M. Weaverz, “Feasible region of lamination parameters for optimization of
variable angle tow (VAT) composite plates,” in 54th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, 2013, isbn: 9781624102233. doi: 10.2514/6.
2013-1481.

[58] Springer, “Springer Complexity,” Tech. Rep.
[59] A. Ashok, “Bayesian Optimization for Lightweight Design of Variable Stiffness Composite Cylin-

ders,” Tech. Rep., 2021.
[60] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1,
pp. 25–57, May 2006, issn: 00255610. doi: 10.1007/s10107-004-0559-y.

[61] R. Le Riche and R. T. Haftka, “Optimization of laminate stacking sequence for buckling load max-
imization by genetic algorithm,” AIAA Journal, vol. 31, no. 5, pp. 951–956, 1993, issn: 00011452.
doi: 10.2514/3.11710.

[62] S. Setoodeh, M. M. Abdalla, and Z. Gürdal, “Design of variable-stiffness laminates using lamina-
tion parameters,” Composites Part B: Engineering, vol. 37, no. 4-5, pp. 301–309, Jun. 2006, issn:
13598368. doi: 10.1016/j.compositesb.2005.12.001.

[63] J. Blank and K. Deb, “Pymoo: Multi-Objective Optimization in Python,” IEEE Access, vol. 8,
pp. 89 497–89 509, 2020, issn: 2169-3536. doi: 10.1109/ACCESS.2020.2990567.

[64] B. Schläpfer and G. Kress, “A sensitivity-based parameterization concept for the automated design
and placement of reinforcement doublers,” Composite Structures, vol. 94, no. 3, pp. 896–903, Feb.
2012, issn: 02638223. doi: 10.1016/j.compstruct.2011.08.034.

[65] S. Castro, pyfe3d, 2023. doi: https://doi.org/10.5281/zenodo.7703876.
[66] I. Koutromanos, Fundamentals of Finite Element Analysis: Linear Finite Element Analysis. Wiley,

2018.
[67] S. Setoodeh, M. M. Abdalla, S. T. IJsselmuiden, and Z. Gürdal, “Design of variable-stiffness

composite panels for maximum buckling load,” Composite Structures, vol. 87, no. 1, pp. 109–117,
Jan. 2009, issn: 02638223. doi: 10.1016/j.compstruct.2008.01.008.

https://doi.org/10.1520/STP32802S
https://doi.org/10.1520/STP32802S
https://doi.org/10.2514/3.49033
https://doi.org/10.2514/3.49033
https://doi.org/10.2514/3.11304
https://doi.org/10.2514/3.11304
https://doi.org/10.2514/6.2013-1481
https://doi.org/10.2514/6.2013-1481
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.2514/3.11710
https://doi.org/10.1016/j.compositesb.2005.12.001
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1016/j.compstruct.2011.08.034
https://doi.org/https://doi.org/10.5281/zenodo.7703876
https://doi.org/10.1016/j.compstruct.2008.01.008

A
Literature study

A.1. Optimization

A.1.1. Gradient-based optimization

Here an example that helps visualize the gradient of a function in 2D is presented. Consider the following
function with two variables [6]:

f(x1, x2) = x3
1 + 2x1x

2
2 − x3

2 − 20x1 (A.1)

The gradient vector for this function can be calculated as follows,

∇f(x1, x2) =

[
3x2

1 + 2x2
2 − 20

4x1x2 − 3x2
2

]
(A.2)

Figure A.1 shows how the gradient vectors at different points are oriented and it can be seen that they
point along the direction of steepest local increase.

Figure A.1: Gradient vector field showing how the gradients point towards maxima and away from minima [6].

For the same function (Equation A.1) the Hessian can be obtained by differentiating the gradient with
respect to the two coordinate directions to obtain,

95

96 Appendix A. Literature study

H(x1, x2) =

[
6x1 4x2

4x2 4x1 − 6x2

]
(A.3)

The variation of the Hessian can be visualized as shown in Figure A.2 by plotting the principal curvatures
at different points. Here the points marked as saddle points can be described as a point at which the
principle curvatures contain both, positive and negative curvature, hence yielding a shape that resembles
a saddle.

Figure A.2: The directions of principal curvature and associated magnitude variation. The solid lines represent
positive curvature while the dashed represent negative curvature [6].

A.2. Variable stiffness Laminates
This appendix displays the feasible regions for the four lamination parameters studied by Wu et al. [57]
which are described using Equation 4.19.

Figure A.3: Feasible domain for four in-plane lamination parameters [57].

B
Interior point optimizer

B.1. Finding the right parameters
The penalty parameter µp of the merit function and the barrier parameter µb are quite vital contributors
to the number of iterations the optimizer takes to reach the minimum, and also the path it follows. The
variation in the number of iterations and path taken can be observed in the figure below,

(a) µb = 1, µp = 2. (b) µb = 1, µp = 20.

(c) µb = 0.2, µp = 15. (d) µb = 10, µp = 15.

Figure B.1: Variation of path taken, and number of iterations required by optimizer with change in optimizer
parameters

97

This page was intentionally left blank.

C
Deflation constraint

C.1. KKT proof
In this section, the proof of how the modified problem, after the introduction of deflation constraint
shown in subsection 6.2.1 provides a solution (x∗, y∗) that also satisfies the stationary conditions of the
original problem is portrayed. The modified problem is given as [23],

minimize
x∈Rn

f(x)

subject to c(x) = 0
m(x;x1) ≤ y
l ≤ x ≤ u

(C.1)

It is to be proved that, x∗ is a regular KKT point to the problem given in Equation 6.1 and that x∗ ̸= x1.
Let a new Lagrange multiplier η be introduced in addition to the ones in Equation 6.2 associated with
the deflation constraint. Therefore the stationary conditions now will be,

∇xf(x) +∇xc(x)
Tλ+ z+ + z− + η∇xm(x;x1) = 0

η = 0
(C.2)

It can be said that η would be 0 at any KKT point, hence the stationary conditions for Equation 6.1
would be satisfied. Since the constraints given in Equation 6.1 are a subset to those in Equation C.1,
x∗ must be a feasible point in the original problem (Equation 6.1) as well, and the complementary
conditions of those constraints must be satisfied.

Since the obtained y∗ is finite, (x∗, y∗) is feasible to the deflation constraint problem in Equation C.1
and m is bounded from below, then m(x∗;x1) must be finite, which implies that (x∗ ̸= x1. This proof
can be trivially generalized also to inequality-constrained NLPs, hence the deflation constraint approach
is a generic and non-invasive way of utilizing deflation for an optimization problem [23].

C.2. Effect of Parameters
In this section, the plots of the effect of varying the various parameters in Equation 6.11 are displayed.
The variation of the parameter σ has already been covered in Figure 6.2.2. Now the variation of the
other two parameters r and p are observed.

99

100 Appendix C. Deflation constraint

(a) σ = 0, r = 2 and p = 2

(b) σ = 0, r = 4 and p = 2

Figure C.1: The variation in value of deflation constraint represented in Equation 6.11 about a known solution x1 = 0.

(a) σ = 0, r = 2 and p = 2

(b) σ = 0, r = 2 and p = 3

Figure C.2: The variation in value of deflation constraint represented in Equation 6.11 about a known solution x1 = 0.

C.3. Test of deflation constraint 101

C.3. Test of deflation constraint
The following images in Figure C.3 show that while using the deflation constraint formulation given in
Equation 6.5, how the change in parameters affects the solution(s).

(a) σ = 10 and p = 3 (b) σ = 40 and p = 2

Figure C.3: The solution obtained after deflation of double-cosine function with different deflation parameters using
deflation constraint formulation given in Equation 6.5.

The following images in Figure C.3 show that while using the deflation constraint formulation given in
Equation 6.7, how the change in parameters affects the solution(s).

(a) σ = 5, M = 6 and p = 2 (b) σ = 5, M = 20 and p = 2

Figure C.4: The solution obtained after deflation of double-cosine function with different deflation parameters using
deflation constraint formulation given in Equation 6.7.

102 Appendix C. Deflation constraint

The following images in Figure C.3 show that an increase in the radius of action in Equation 6.9
decreases the number of solutions that needs to be evaluated to find the significant minimas but an
excessive radius can cause it to not be able to evaluate a significant minimum.

(a) σ = 0, r = 2 and p = 2 (b) σ = 0, r = 3 and p = 2

Figure C.5: The solution obtained after deflation of double-cosine function with different deflation parameters using
deflation constraint formulation given in Equation 6.9.

In Figure C.3.b, it can be seen that in the top left corner, the vicinity of the two obtained minimas are
very close to the significant minima required to be found, and the circles created by both these points
engulf the region of the significant minima. Therefore, this would deflate the optimizer away from this
region.

D
Case studies: Additional results and

proofs

D.1. Case study 3
The results for the LP distribution of a balanced VS laminate were compared using two methods, the
gradient-based optimizer developed for this thesis, and GA from the pymoo module. This is what the
contour plots of the LPs look like:

(a) Lamination parameter V1 obtained with gradient-based
optimizer. (b) Lamination parameter V1 obtained with GA optimizer.

(c) Lamination parameter V3 obtained with gradient-based
optimizer. (d) Lamination parameter V3 obtained with GA optimizer.

Figure D.1: Distribution of Lamination parameters obtained for balanced Variable stiffness laminate. (a/b = 3, and
31× 11 nodes)

103

104 Appendix D. Case studies: Additional results and proofs

D.2. Case study 4
In this section, the results obtained of the LP distribution using the retrieved fiber angles are compared
with the Optimum LP distribution as obtained in case study 3 for a balanced laminate. First, the
results for the GA are displayed followed by the gradient-based optimizer that utilized deflation to get
the ply angles.

(a) Lamination parameter V1 obtained with Stack. (b) Lamination parameter V1∗.

(c) Lamination parameter V3 obtained with Stack. (d) Lamination parameter V3∗.

Figure D.2: Distribution of Lamination parameters obtained for balanced Variable stiffness laminate using GA.
(a/b = 3, and 31× 11 nodes)

(a) Lamination parameter V1 obtained with Stack. (b) Lamination parameter V1∗.

(c) Lamination parameter V3 obtained with Stack. (d) Lamination parameter V3∗.

Figure D.3: Distribution of Lamination parameters obtained for balanced Variable stiffness laminate using the
gradient-based optimizer. (a/b = 3, and 31× 11 nodes)

	Foreword
	Abstract
	Acronyms
	Introduction
	Context and motivation
	Research questions
	Report layout

	I Literature Review
	Optimization
	Representations
	Convex and non-convex functions
	Gradient-based optimization
	Constrained gradient-based optimization
	Penalty methods
	Sequential Quadratic Programming
	Automatic Differentiation

	The Deflation method
	Polynomial deflation
	Deflation applied to Nonlinear equations

	Variable Stiffness Laminates
	Manufacturing of variable stiffness Laminates
	Modeling methods

	II Methodology
	Gradient-based Optimization Algorithm
	Interior - Point Method
	Developing the Optimization Algorithm
	Testing the Optimization Algorithm
	Conclusion

	Deflation applied to optimization
	Deflation for optimization of NLP
	Developing the deflation constraint
	Testing the deflation constraint in optimization
	Conclusion

	III Results
	Case studies
	Case study 1
	Case study 2
	Case study 3
	Case study 4
	Case study 5
	Conclusion

	Research review and future recommendations
	Gradient-based optimization algorithm
	Deflation method
	Optimization of composite structures

	Conclusion
	References
	Literature study
	Optimization
	Variable stiffness Laminates

	Interior point optimizer
	Finding the right parameters

	Deflation constraint
	KKT proof
	Effect of Parameters
	Test of deflation constraint

	Case studies: Additional results and proofs
	Case study 3
	Case study 4

