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Abstract

Predicting the critical buckling load of cylindrical shells with circular cutouts subjected to uniform axial com-
pression is an important part of the structural design in the aerospace industry as buckling significantly re-
duces the load-carrying capability of the structure. A cutout constitutes a major disruption in the shell geom-
etry, and therefore it should be expected that it has a significant effect on the sustainable buckling load.

An analytical solution for estimating the buckling load of isotropic and quasi-isotropic composite cylin-
drical shells with circular cutouts is developed to assess changes made to the geometry and the material
during the preliminary design phase quickly. The Ritz method is employed to minimize the total potential
energy of an ideal shell that contains a central opening in order to predict a linear buckling load. Finite ele-
ment simulations are conducted to verify the accuracy of the analytical solution. In addition, they are used to
investigate the evolution of buckling modes, the effects of initial geometric imperfections, as well as the shell
failure mode.

The nondimensional curvature parameterα can be used to categorize the buckling behavior of cylindrical
shells and is a function of the cutout radius, the shell radius, and the shell thickness. A small cutout has virtu-
ally no influence on the buckling load compared to a pristine shell and the displacement pattern at buckling
is global. The buckling load decreases rapidly for moderately large cutouts where the stability loss is the result
of a local buckling mode that immediately leads to global buckling. Cylindrical shells with large cutouts are
again relatively insensitive to an increase of the cutout size, but the buckling load is greatly reduced relative
to a shell without a cutout. Large openings also feature a stable local buckling mode where substantial lateral
prebuckling displacements emerge before the structure buckles globally.

While the analytical procedure theoretically should not capture the onset of global buckling independent
of local buckling, it follows numerical trends for cutouts of moderate and large size regardless. Therefore,
it may be used during preliminary design to estimate the impact of changes made to the shell geometry
and material. Local buckling is caused by high compressive stresses next to the cutout and, in some cases,
large lateral prebuckling displacements. The detrimental effect of the stress field may be partially relieved in
composite cylindrical shells by reducing the amount of axial bending stresses that occur. Hence, the chosen
stacking sequence can have a significant influence on the buckling load of shells with moderate and large
openings.
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1
Introduction

Thin shells are frequently used as structural elements when the application requires a design that can carry
loads efficiently while at the same time being lightweight. Hence, shell designs are often employed in the
aerospace industry in the form of cylindrical shells, for example as aircraft fuselages, rocket (inter-) stages,
and even as modules of the International Space Station. The defining characteristic of a shell is its curva-
ture which is simultaneously the reason for the coupling between the structure’s in-plane and out-of-plane
response. As a consequence, shells are able to transfer loads as membrane stresses that would cause a pure
bending response in plates. This is advantageous because stressing the material in a given cross-section
equally through the thickness is one aspect of design optimization. In addition, the thinness of the shell re-
duces the relative bending contribution by decreasing the corresponding stiffness properties. Thus, it also
promotes the more efficient membrane response.

To further improve the design, optimized structures should carry section forces and moments in every
direction as close to the respective limit loads as possible. From this perspective isotropic materials like
steel and aluminum alloys are a poor choice because a single load case and cross-section are often critical
for sizing. Consequently, other parts of the structure do not contribute as much to the load transfer as they
could. Composite materials on the other hand enable the engineer to tailor strength and stiffness properties
to a much larger degree. Typical composites are created by embedding fibers in a matrix material. The fibers
provide high strength and stiffness along their longitudinal orientation while the matrix transfers load to the
fibers and protects them from the environment. As a result, shell designs made from composites are highly
relevant due to the beneficial properties of both shape and material.

Despite their otherwise attractive characteristics, cylindrical shells are susceptible to buckling which de-
scribes the phenomenon where a body undergoes a sudden and drastic deformation when subjected to a
critical load. While some structural elements can sustain their integrity during and after buckling, shell buck-
ling is particularly disadvantageous because the load-carrying capability of the structure is greatly reduced in
the process. Therefore, the design of shells against buckling is extremely important. Even though the theoreti-
cal buckling resistance of cylindrical shells is reasonably high, their real counterparts buckle at comparatively
low stress levels. The reason for this discrepancy is the presence of initial geometric imperfections, especially
mid-surface variations, which are an unwanted result of inherently imperfect manufacturing processes. In
contrast, cutouts are added much more deliberately to shell designs because they may serve as access points
during assembly and inspection, as a simple means of weight reduction, or as aesthetic features like windows.
Since the opening creates a disruption in the geometry of the cylindrical shell, it can be expected that it also
has a significant influence on the shell buckling behavior. Hence, the engineer must be able to estimate the
critical load at which cylindrical shells with cutouts buckle.

Generally speaking, there are three ways to predict or determine the mechanical response of any type
of structure to loads, namely analytical, numerical, and experimental methods. Naturally, experiments are
the most realistic, but they are expensive in terms of both time and money. For this reason, it is not feasible
to test all conceivable design permutations to select the one that performs best. Numerical approaches like
the Finite Element Method (FEM) get rid of the monetary cost issue since simulations do not require the
manufacturing of specimens. Nonetheless, the time it takes to conduct parametric studies is still significant
as models become more and more detailed even though the available computing power increases at a rapid
pace.
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Analytical solutions on the other hand provide reasonably accurate predictions in very little time at almost
no cost. Consequently, they are especially suitable for preliminary design where they immediately enable
their users to assess the consequences of certain design choices. Furthermore, analytical solutions are easily
customized to perform parametric studies. From an academic perspective they are valuable because they
grant insights regarding the interplay of the various mechanisms that cause structural phenomena like buck-
ling and help to determine which variables are the most influential. On the downside, analytical solutions
are often only obtainable for simple geometries and load cases because solving the governing differential
equations tends to be rather complex.

Clearly, predicting the buckling load of composite shells that contain cutouts with an analytical approach
is highly relevant, both from an academic and an industrial point of view. Therefore, the goal of this thesis is
to develop such a solution, to verify its accuracy with Finite Element (FE) simulations, and to investigate the
mechanisms that govern the phenomenon.

1.1. Document Organization
This thesis is divided into eight chapters. After a brief introduction in Chapter 1, the literature on the subject
of the buckling behavior of cylindrical shells with cutouts is reviewed and summarized in Chapter 2. Subse-
quently, Chapter 3 discusses the theoretical foundations of a shell buckling analysis by revisiting, inter alia,
shell theory to describe cylindrical shells mathematically, classical lamination theory to account for com-
posite materials, and energy methods to quantify the shell response. These tools are applied in Chapter 4 to
derive an analytical solution for the linear buckling load of cylindrical shells with circular cutouts considering
the constitutive relations that describe isotropic and quasi-isotropic, symmetric, composite materials. After-
wards, the setup of the FE models, which are used for verification purposes, is presented in Chapter 5. The
next two segments of the thesis, Chapters 6 and 7, are concerned with evaluating the analytical and numeri-
cal results regarding isotropic and quasi-isotropic composite cylindrical shells, respectively. Finally, a critical
assessment of the outcomes is available in Chapter 8 together with recommendations for future work.

1.2. Preliminary Note
A structure may buckle due to a variety of applied loads and cylindrical shells can appear in many shapes.
Naturally, this document cannot provide analytical solutions for every combination of load and shape. In fact,
the buckling analysis in Chapter 4 is restricted to circular cylindrical shells with circular cutouts subjected to
a uniform axial compressive edge load. To reduce the number of words required to describe the problem,
three naming conventions are introduced. First, shell and cylindrical shell will be taken to mean circular
cylindrical shell. Second, it can be assumed that buckling is caused by the aforementioned uniform axial edge
load. Additionally, the word cutout refers to a circular opening. Exceptions from these naming conventions
are clearly specified.



2
Literature Review

This chapter contains a summary of publications that relate to analyzing and understanding the buckling
phenomenon of cylindrical shells with cutouts. The historical development of analytical methods is pre-
sented in Section 2.1. Experiments and the interpretation of their results are covered in Section 2.2. The last
part of this chapter, Section 2.3, discusses numerical analyses of cylindrical shells with cutouts, i.e. predomi-
nantly results obtained with FEM.

2.1. Analytical Work
Before buckling of shells with cutouts can be studied, it is first necessary to be able to predict the stress field in
the structure due to external loads. The simplest case is the shell with zero curvature, i.e. a plate, after which
the more complex case of the cylindrical shell is examined. Even though the buckling response of shells
and plates differ, some analysis choices and their consequences are well illustrated in papers on the latter
subject which is why a short excursion to plate buckling is undertaken. Finally, methods for determining
the buckling load of shells with cutouts are discussed. Semi-analytical approaches are treated as a subset of
analytical methods on the following pages.

2.1.1. Stresses around Cutouts in Plates
Kirsch [1] showed that the stress distribution around a circular opening in an infinite isotropic flat plate sub-
jected to an axial load is described by equation (2.1). The stress tensor components τi j are a function of
the radial coordinate r , the angular coordinate θ, the cutout radius a, and the applied far-field stress τ∞.
Equation (2.1) is valid when the applied load is aligned with θ = 0◦.
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A solution for the stress field in an orthotropic flat plate containing an elliptic opening was presented by
Lekhnitskii [2]. Later, Savin [3] published Lekhnitskii’s method in a compendium about stress distributions
around cutouts in plates and shells. First, the elliptic opening is transformed onto a unit circle in the complex
plane. Using an inverse mapping function and complex potential functions, equation (2.2) allows calculating
stress components at discrete points. µi (i = 1,2) denotes the principal complex roots of the characteris-
tic equation for an anisotropic plate, ϕ′

i refers to the derivatives of the potential functions, and zi indicates
complex coordinates.
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2.1.2. Stresses around Cutouts in Shells
An early examination of the stress distribution around a circular opening in an isotropic cylindrical shell was
conducted by Lur’e [4] who derived an equation similar to (2.4) which satisfies the equilibrium equations
of an unsymmetrically loaded cylindrical shell. Taking R as the shell radius and t as the shell thickness, he
assumed R/a << p

t/a so that higher order terms of his complex stress function could be dismissed. Lur’e
defined the curvature parameter α as shown in equation (2.3).

α= ap
Rt

(2.3)

The problem was more rigorously approached by Lekkerkerker [5] and Van Dyke [6] who independently
concluded that Lur’e’s results were only valid for small values of α as a direct consequence of the aforemen-
tioned simplification and furthermore incorrect by a factor of 0.5.

Lekkerkerker idealized the shell geometry as a spiral shell with infinite length in the circumferential di-
rection, applied the principle of superposition, arrived at the same governing equation as Lur’e, but also
nondimensionalized it by introducing a dimensionless gradient operator ∇.

∇4
Ψ−4µ2i

∂2Ψ

∂x2 = 0 (2.4)

The dimensionless complex function Ψ contains both a stress function Φ as well as the out-of-plane de-
flection w . µ is an alternative curvature parameter that also depends on the Poisson’s ratio ν.

µ= 1

2
4

√
12

(
1−ν2

) ap
Rt

(2.5)

Lekkerkerker solved the partial differential equation (2.4) by separating the variables and subsequently
assuming a solution in terms of Hankel functions (Bessel functions of the third kind) and exponentials. The
final result is expressed as a Fourier series where 2n coefficients, An and Bn , are determined from the bound-
ary conditions. Some stress distributions based on equation (2.6) are plotted in Figure 2.1. The stress field
changes drastically with the curvature parameter µ. It can be seen that cylindrical shells experience bending
stresses which are not present in axially loaded flat plates (µ= 0).

Ψ=
∞∑

m=0

∞∑
n=0

(
An + i Bn

)
f
(
m,n,µr

)
cos2mθ (2.6)

(a) The dependency of the tangential stress components on µ. (b) Stress along the cutout circumference as a function of the angular position.

Figure 2.1: Membrane and bending stresses caused by axial tension as predicted by Lekkerkerker [5], (δ= t ).
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Van Dyke introduced his own curvature parameter β which relates to µ by µ = p
2β. A major difference

between Lekkerkerker’s and Van Dyke’s approach is the calculation of the coefficients An and Bn . While every
term in Lekkerkerker’s Fourier series fulfills the boundary conditions exactly, only the sum of all terms in Van
Dyke’s solution accomplishes the same. Lekkerkerker showed that his analysis is always accurate as long as
a/R is small compared to unity. Van Dyke derived the inequality (2.7) for the same purpose.

a

R
< β

4.6+2β
(2.7)

Adams [7] attempted to simplify the relatively complicated solutions derived by Lekkerkerker and Van
Dyke by finding an approximate solution with Galerkin’s method. Dn , En , Xn , and Yn in equation (2.8) are
undetermined coefficients. Adams’ test functions for the out-of-plane displacement w and the Airy stress
function Φ were obviously inspired by Kirsch’s solution for the flat plate. The stress distribution calculated
with this approach differs significantly from Lekkerkerker’s and Van Dyke’s predictions which were validated
by third parties, for example Tennyson [8].
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Murthy et al. [9] considered an isotropic shell with an elliptic cutout. Instead of Bessel functions, they de-
veloped their solution in terms of Mathieu functions. The coefficients An and Bn were determined with the
Newton-Raphson (NR) method for a given set of boundary conditions. The authors published stress concen-
tration factors, but their approach can probably be extended to calculate stress distributions around elliptic
openings as a function of the radial coordinate as well. Furthermore, the publication covers the extreme cases
of circular cutouts as well as circumferential and axial cracks.

One of the first to study stresses around openings in orthotropic cylindrical shells was Guz [10] who as-
sumed the cutout edges to be clamped. The more common case of a freely displaceable cutout boundary
was treated by Ashmarin [11]. Expressing the governing equation in a polar semi-geodesic coordinate sys-
tem, he applied the Galerkin method by prescribing shape functions for the displacements and calculated
the corresponding stress resultants. The unknown coefficients were determined with the help of a computer.

Another approach was presented by Guz (a namesake) et al. [12]. They summarized solutions for stress
concentration factors of various types of orthotropic shells. The governing equation for the case of a cylindri-
cal shell assuming linear strains and neglecting lateral shear was solved with cylindrical and Krylov functions.
Interestingly enough, the stresses predicted by Ashmarin and Guz et al. agree quite well as Figure 2.2 shows.
The Roman numeral I indicates a free cutout edge while II denotes a clamped cutout boundary. Further-
more, solid lines refer to a Young’s modulus ratio of E1/E2 = 2, dashed ones to E1/E2 = 1, and dot-dashed
lines symbolize a ratio of E1/E2 = 0.5.

(a) Results published by Ashmarin [11]. (b) Prediction according to Guz et al. [12].

Figure 2.2: Tangential stress concentration factors along a cutout in an orthotropic cylindrical shell.
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Lekkerkerker’s approach [5] was modified by van Tooren et al. [13] to investigate the stress distribution
around circular openings in composite sandwich shells. They replaced the Young’s modulus of the isotropic
material with an equivalent membrane property Em of the sandwich structure, calculated a new bending
thickness tb for the analysis to match the composite’s bending stiffness, and then solved for the coefficients
An and Bn twice, i.e. once for the in-plane and once for the out-of-plane response. Adding the bending stress
field corrected for the artificial bending thickness to the in-plane and the far-field stresses yields the final
solution for the stress distribution in the shell.

Oterkus et al. [14] modified a methodology proposed by Madenci et al. [15], see Subsection 2.1.4, to com-
pute stresses in thin composite cylindrical shells with an elliptic cutout. Considered variables are the cutout
size, its shape and orientation, shell wall-thickness variations, cross-section eccentricity, as well as external
loading parameters. The elliptic cutout shape and cross-section were described in Cartesian coordinates us-
ing mapping functions. Model properties were quantified in terms of their total potential energy. A system of
springs connected the actual geometry and a virtual rigid end ring to which all boundary conditions and ex-
ternal loads were applied. The authors argued that this enabled them to select more versatile shape functions.
Eventually, a material stiffness matrix K and a force vector f were be derived. Subsequently,

K u = f (2.9)

was solved through matrix inversion by a computer for the unknown displacement vector u. Figure 2.3
depicts the estimated stress distribution around a circular cutout in a quasi-isotropic composite cylindrical
shell. The calculated stress field for small openings and curvatures, i.e. small values of the curvature param-
eter µ from equation (2.5), approaches the flat plate solution derived by Kirsch [1].

(a) Circumferential stress resultant around the cutout for several shell
radii.

(b) Circumferential stress resultant around the cutout for multiple
cutout radii.

Figure 2.3: Normalized tangential stress resultants around a circular opening in a quasi-isotropic composite shell [14].

2.1.3. Buckling of Plates with Cutouts
Two different methods for determining the buckling load of axially compressed plates with centrally located
cutouts are showcased in this subsection. Nemeth et al. [16] investigated the buckling of a finite orthotropic
plate containing a circular opening. Following the Kantorovich method, they reduced the problem from a
two-dimensional problem to a one-dimensional one. Displacement functions for the prebuckling response
of the structure were assumed and the principle of minimum potential energy was applied to approximate
the stress distribution before buckling occurs. The buckling load was then estimated by minimizing the sec-
ond variation of the total potential energy while prescribing a shape function for the out-of-plane deflection.
The governing differential equations were solved with a computer where the Fourier series expressing the dis-
placements is truncated at N = 3. Since displacement loading is applied, the generalized eigenvalue problem

KM u =λKG u (2.10)



2.1. Analytical Work 7

yields the axial buckling displacement as the eigenvalues λ which may be converted to a buckling load.
KM denotes the material stiffness matrix and KG refers to the geometric stiffness matrix in equation (2.10).
Figure 2.4 illustrates the idealized geometry. Choosing a Cartesian reference frame enables using familiar
and convenient stress-strain relations. However, the authors had to account for the opening by modifying
the displacement functions and integrating from the curved path f (x) to b in the width direction. This results
in a complex problem formulation and probably necessitates a computer to determine solutions.

Figure 2.4: Geometry of a plate with a centrally located cutout and integration boundaries [16].

Kassapoglou [17] predicted the buckling load of a composite plate with two concentric rectangular layups,
see Figure 2.5. When assigning zero stiffness to the smaller one of the two, it can be interpreted as a cutout.
The buckling load is obtained by minimizing the total potential energy, this time with the Rayleigh-Ritz
method. Kassapoglou chose the shape function

w =
M∑

m=1

N∑
n=1

qmnsinmπξsinnπφ (2.11)

The coefficients qmn are to be determined with the Rayleigh-Ritz method. The integration over the whole
domain is performed with the normalized coordinates ξ and φ as defined in Figure 2.5. The variables in the
shape function were selected accordingly. Solving the generalized eigenvalue problem from equation (2.10)
gives the buckling load as a multiple of the applied distributed edge load.

Figure 2.5: Model of two concentric composite plates [17].

The simplicity of Kassapoglou’s approach compared to that of Nemeth et al. is apparent and at least
partly the result of selecting a Cartesian coordinate system for a rectangular cutout. However, Nemeth et al.
were able to truncate their Fourier series at N = 3, whereas the stiffness discontinuity caused by the opening
combined with Kassapoglou’s shape function requires many terms of the Fourier series (2.11) to achieve con-
vergence. In fact, Kassapoglou reported that for the vast majority of cases between 15 and 20 terms in each
direction, i.e. 225 to 400 total terms, were needed to account for the large difference in stiffness.
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2.1.4. Buckling of Shells with Cutouts
Starnes [18] was probably the first to present an analytical solution for the buckling load of isotropic cylin-
drical shells with circular cutouts. Assumptions and simplifications made during his analysis are based on
an extensive testing campaign featuring Mylar, a thermoplastic, and copper shells. He argued that nonlinear
events do not significantly influence the buckling behavior of the shells with cutouts and thus linearized the
problem. Furthermore, Starnes noted that the global loss of stiffness appeared to be caused by local buckling
so that this phenomenon should be investigated. Consequently, changes in the displacement and stress field
far away from the opening were assumed to be small enough to be dismissed. Based on Lekkerkerker’s results,
Starnes proposed that the influence of bending stresses could be neglected and that the membrane stresses
could be approximated with the flat plate solution from Kirsch for small values of the curvature parameter µ.

The specimens in Starnes’ experiments featured two seemingly symmetric buckles when a sudden loss of
stiffness occurred which he modeled with the displacement function

w (r,θ) = e−Br [(
A0 + rC0

)+ (
A2 + rC2

)
cos2θ

]
(2.12)

Here, A0, A2, C0, and C2 are undetermined coefficients while B represents a decay parameter. Defining
the total potential energy as

Π=Um +Ub +V (2.13)

where Um denotes the membrane strain energy, Ub indicates the bending strain energy, and V stands
for the energy due to external forces, Starnes transformed the expressions from curvilinear orthogonal co-
ordinates to a new curvilinear polar reference frame in accordance with equation (2.12). The bending strain
energy was calculated by substituting equation (2.12) while the prebuckling stress distribution for the external
applied load could be approximated with the flat plate stress distribution. To integrate Um , the linear com-
patibility equation in polar coordinates had to be solved. The boundary conditions for the stress resultants
Nr , Nθ, and Nrθ are given by

Nr = Nrθ = 0

Nr = Nθ = Nrθ = 0

for r = a

for r →∞ (2.14)

In a next step, the Rayleigh-Ritz procedure was applied to minimize (2.13) which yielded

[
B1 −λB2

]
A0
A2
C0
C2

= 0 (2.15)

where B1 and B2 are 4x4 matrices whose entries depend on Um , Ub , and V . The eigenvalues λ of the
first term in equation (2.15) provide the buckling load as a multiple of the applied far-field stress. Starnes
calculated these eigenvalues by pre-multiplying equation (2.15) with B−1

2 and then examining

det
(
B3 −λI

)= 0 (2.16)

B3 is a function of a, B , R, t , E , and ν when an isotropic material is considered. In a last step, the eigen-
values were minimized with respect to B . A computer is needed for this step due to the presence of unsolved
integrals which had to be evaluated numerically.

Figure 2.6 shows the buckling stress predicted by Starnes’ analysis in comparison with the buckling stress
measured during his experiments. It can be seen that the analytical results all fall onto a single curve when
normalizing the computed buckling stress of the cylindrical shell with the classical solution (3.63) and plot-
ting this against the curvature parameterµ. The same graph with different numerical values on the horizontal
axis is obtained when the normalized buckling stress is plotted against α instead. Initially, it had been pre-
dicted by Starnes that the analysis would only deliver meaningful results for small values of µ. However, the
analytical solution follows the trend of the experimental measurements between 0.4 ≤ µ ≤ 2.5 reasonably
well, while major discrepancies are apparent for small µ.
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Starnes argued that this was caused by the shells’ sensitivity to initial geometric imperfections which were
not considered in the analysis. Another explanation could be that assuming a displacement function for a
local buckling pattern does not accurately represent the structural response of the shell when a conventional
global buckling mode independent of the cutout is observed for small cutout sizes. Assumptions related
to the smallness of µ seem to hold longer than anticipated which could explain reasonable predictions up
to µ = 2.5. Furthermore, Starnes observed that large prebuckling displacements occurred when the cutout
exceeded a certain size. This implies a nonlinear material response which is obviously neglected in a linear
buckling analysis.

Figure 2.6: Normalized buckling loads obtained from Starnes’ analysis and his experiments [18].

Starnes also pointed out some aspects for reducing the discrepancy between his analytical predictions
and experimental measurements. He suggested adding additional degrees of freedom (DOFs) to the shape
function as the Rayleigh-Ritz method provides overly large buckling load estimates if the assumed displace-
ment function is not sufficiently general. Additionally, he noted that incorporating a prebuckling stress dis-
tribution that accounts for the neglected bending stresses should increase the accuracy of the analysis.

Composite cylindrical shells with rectangular cutouts were treated by Hilburger [19] in his Ph.D. disserta-
tion. He derived nondimensionalized equilibrium (2.17) and compatibility (2.18) equations using the method
of adjacent equilibrium starting from the Donnell-Mushtari-Vlasov nonlinear theory of thin shells. In the
equations below, X and Y are nondimensional coordinates, αb , β′, γb , δb , αm , µ′, γm , as well as δm repre-
sent nondimensional bending and membrane parameters, whereas Kx , Ky , and Kx y denote nondimensional
buckling coefficients.

α2
b
∂4W

∂X 4 +4αbγb
∂4W

∂X 3∂Y
+2β′ ∂4W

∂X 2∂Y 2 +4
δb

αb

∂4W

∂X∂Y 3 + 1

α2
b

∂4W

∂Y 4

p
12C

∂2Φ

∂X 2

−Kxπ
2 ∂

2W

∂X 2 −Kyπ
2 ∂

2W

∂Y 2 −2
Kx yπ

2

α2
b

∂2W

∂X∂Y
= 0

(2.17)

α2
m
∂4Φ

∂X 4 +2αmγm
∂4Φ

∂X 3∂Y
+2µ′ ∂4Φ

∂X 2∂Y 2 +2
δm

αm

∂4Φ

∂X∂Y 3 + 1

α2
m

∂4Φ

∂Y 4 =p
12C

∂2W

∂X 2 (2.18)

The formulas above are also available in reference [20] together with the definitions of the nondimen-
sional parameters. It should be noted that Hilburger’s β′ and µ′ are not equivalent to the curvature param-
eters introduced earlier in this chapter. Instead, C fulfills a similar function. b indicates the circumferential
cutout width, Ai j refers to extensional, and Di j to flexural stiffness matrix elements.

C = b2

R

(
A11 A22 − A2

12

12
√

A11 A22D11D22

)1/2

(2.19)
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The stress analysis of Oterkus et al. [14] is based on a framework proposed by Madenci et al. [15] who
studied the linear buckling of composite shells containing elliptic openings. The main difference compared
to the already presented paper by Oterkus et al. is that Madenci et al. considered the nonlinear version of
the Love-Timoshenko strains to capture the buckling behavior of the shell. Thus, an analytical equivalent of
the geometric stiffness matrix KG in addition to the material stiffness matrix KM was derived. The eigenvalue
problem (

KM +λKG
)

u = 0 (2.20)

was solved with a numerical algorithm for the eigenvalues and eigenmodes of the structure.

2.2. Experimental Work
Naturally, studying the buckling behavior of shells with cutouts in a real-world setting is invaluable and pro-
vides essential insights as analytical models are often based on observations from experiments. Addition-
ally, performing tests to check the accuracy of models is useful for validation purposes. In this context, the
present section first provides some information regarding the influence of cutout parameters such as size,
shape, number, and position on the buckling of shells that contain cutouts. Subsequently, a short overview of
the effects of local isotropic and orthotropic reinforcements is given. The section concludes with a discussion
of initial geometric imperfections.

2.2.1. Cutout Parameters
Motivated by research on the instability of plates with cutouts, Tennyson [8] investigated the buckling behav-
ior of "near-perfect" epoxy cylindrical shells with one central circular cutout. Effectively providing clamped
boundary conditions with two end plates and dealing with the parametric ranges 0 ≤ a/R ≤ 0.189 as well as
0 ≤β2 ≤ 2.58, Tennyson summarized his buckling load measurements as illustrated in Figure 2.7. It should be
noted that the buckling load of the shell containing an opening is normalized with the experimental buckling
load of the same shell before an opening was cut into it. This value is plotted against a/R, and not against
one of the previously introduced curvature parameters.

Figure 2.7: Normalized results of Tennyson’s testing campaign [8].

Tennyson observed two distinct buckling patterns. Global buckling occurred for small openings and local
buckling was observed after the cutout size had been sufficiently increased. A corresponding drop in the
normalized buckling load was measured which leveled out at some value of a/R. The author argued that
since an opening of size a =πR corresponds to a buckling load of zero, there should be another critical point
after which the buckling load resumes to decrease. Tennyson suspected that the local buckling pattern was a
result of "the growing imperfection in shape in the region of the cutout".

Starnes [18], who was already mentioned in Subsection 2.1.4, conducted an extensive series of exper-
iments on Mylar and copper shells which he manufactured himself. During testing the specimens were
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clamped on both edges. While the Mylar shells were force-loaded, the copper shells were subjected to a pre-
scribed displacement until global buckling occurred. Figure 2.8 shows a typical local buckling pattern around
a circular cutout in a Mylar shell. Based on his analysis, Starnes argued that a nondimensional geometry pa-
rameter should be proportional to a/

p
Rt instead of simply a/R. For that purpose, he chose Lekkerkerker’s

µ. Starnes normalized the obtained buckling loads with the classical buckling formula for cylindrical shells.

Figure 2.8: Local buckling of a Mylar shell with µ> 2 [18].

He divided the tested shells into four different groups. For values of µ smaller than 0.4, a diamond buck-
ling pattern was observed while the buckling load was similar to that of a pristine reference shell, i.e. heav-
ily dependent on initial geometric imperfections. In the range 0.4 ≤ µ ≤ 1.0 the normalized buckling load
decreased rapidly and the diamond displacement pattern appeared to originate from the cutout. This led
Starnes to believe that local buckling and the sensitivity to the corresponding stress redistribution caused the
shell instability. Shells with 1.0 ≤ µ ≤ 2.0 showed the same behavior, but the buckling load did not decrease
as drastically with increasing cutout size. Finally, specimens that had a µ-value larger than 2.0 deformed sig-
nificantly in the lateral direction resulting in a stable local buckling configuration. However, this buckling
event was not unstable as the load could be increased further until the shell eventually buckled globally. The
corresponding maximum buckling load was virtually constant regardless of cutout size.

Later, Starnes [21] also reported that slots at the horizontal opening boundaries increased the sustainable
buckling load of the structure. He suggested that the slots disrupted the bending stress field around the cutout
and therefore delayed the onset of buckling.

Toda [22] varied both size and shape (circular, rectangular, and elliptic) of cutouts in Mylar shells. He
obtained a scatter band of buckling loads comparable to that published by Starnes. Toda adjusted the nondi-
mensional parameterα to include the area A of the cutout since he expected the amount of removed material
to be indicative of the shell response.

α= ap
Rt

=
√
πa2

πRt
=

√
A

πRt
(2.21)
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He also regrouped the different buckling behavior ranges proposed by Starnes as a function of α, specif-
ically to α< 0.5, 0.5 ≤ α≤ 2.0, and α> 2.0. Obviously, the actual shell response does not change. Hence, the
main difference is that Toda merged 0.4 ≤µ≤ 1.0 with 1.0 ≤µ≤ 2.0 into one category.

Montague et al. [23] tested cylindrical shells made from aluminum with axially elongated cutouts. They
introduced the curvature parameter

r = rp
Rt

(2.22)

where r is a characteristic value for a given cutout shape. If the opening was circular, Montague et al. set
r = a so that r = α. For a rectangular cutout, they proposed r = 0.25(b + l ), i.e. an eighth of its perimeter.
An interesting result of their testing campaign was that almost tripling the cutout length l only resulted in a
buckling load reduction of about 10%. Thus, they showed that the removed shell area incorporated into α

by Toda is not a relevant factor for the buckling load prediction. Furthermore, Montague et al. noticed two
different failure modes. Relatively thick cylindrical shells yielded before they buckled locally while others fea-
tured a stable local buckling load along the cutout edge in the form of cosine waves. Since r was not indicative
of which behavior was to be expected, the researchers defined a slenderness ratio S. Low slenderness ratios
corresponded to yielding followed by buckling whereas a high slenderness ratio implied stable local buckling.

S = 3

√
t 4

R2l 2 (2.23)

Toda [24] revisited his previous research in 1983 when he experimented on Mylar shells with circular
cutouts. The results are plotted in Figure 2.9 and illustrate the different characteristic parameter ranges forα.
Moreover, one can see that the virtually constant normalized buckling loads branch off at varying values of α
depending on the ratio R/t which had been predicted by Tennyson.

Figure 2.9: Nondimensional buckling loads as a function of α as well as R/t [24].

The most comprehensive experimental study on the buckling of cylindrical shells with cutouts was proba-
bly conducted by Jullien et al. [25] who tested more than 100 steel specimens. They investigated the effects of
cutout size, shape, location, and number. The authors confirmed that the axial cutout dimension has a neg-
ligible influence on the buckling load and found that the circumferential opening size dominates the shell
response. Both varying the cutout shape as well as the cutout location did not significantly alter the buckling
load which suggests that the stress field above and below the shell is, if at all, of little importance. However,
the buckling mode of rectangular and circular cutouts was different in so far as that the displacement pattern
depicted in Figure 2.8 was skewed towards the corners of the rectangular opening. When multiple openings
were cut into the specimens, the measured buckling loads were the same as for a single cutout of the same
size if the displacement patterns around the openings did not interfere. When an interaction of the stress and
displacement fields occurred, the buckling load dropped, but not as much as the sum of the individual cutout
parameters would suggest. As a measure for the shell response, Jullien et al. proposed
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r = cp
Rt

= RΘp
Rt

(2.24)

whereΘ denotes the circumferential opening angle of the cutout and c is the circumferential cutout width
regardless of the shape of the opening.

Aluminum shells with a single and two opposing openings were investigated by Zhao et al. [26]. They
noted that the global buckling load of the specimens with two cutouts was not half as big as that of shells with
only one opening where all cutouts have the same radius. Instead, the solid curve in Figure 2.9 represents the
relation between the two configurations more accurately.

More recently, Bisagni [27] studied composite sandwich shells with a [90/−19/19/CORE/90/−19/19]
stacking sequence where the facesheets were manufactured from Hexcel IM7-8552 unidirectional (UD) car-
bon fiber pre-impregnated laminas. The core material was Evonik Rohacell WF200. A large cutout was drilled
on one side of the cylindrical shell while two smaller ones were cut on the opposing side. Bisagni reported that
the response of the shell was linear elastic until buckling occurred and measured a buckling load reduction
of approximately 30% compared to a pristine specimen.

Shirkavand et al. [28] conducted experiments on seven composite cylindrical shells with cutouts. The
specimens were made from E-glass fibers embedded in an epoxy resin where a [90/∓23/90] layup was con-
sidered. The authors chose to plot the normalized buckling loads against the a/R instead of α. Hence, the
effects of varying shell thicknesses could not be quantified. Anyhow, increasing the cutout size lead to lower
buckling loads just like for isotropic cylindrical shells. Shirkavand et al. also measured linear elastic material
behavior before buckling occurred.

Khakimova et al. [29] studied the buckling response CFRP cylindrical shells with a central circular cutout
made from the Hexcel IM7-8552. A layup of

[±34/02/±53
]

was selected. The obtained load-displacement
curves and the buckling load are plotted as a function of the cutout diameter (and therefore as a function ofα
since neither shell radius nor shell thickness were changed) in Figure 2.10. These graphs agree well with the
observations reported by the aforementioned researchers.

Figure 2.10: Load-displacement curves and measured buckling loads [29].

2.2.2. Reinforcements
Shells can be stiffened in many different ways. This subsection is limited to reinforcements where material is
added in the vicinity of the opening, i.e. local reinforcements.

In his second referenced publication, Toda [24] defined the parameter

γ= W

W0
(2.25)

to quantify the ratio between the mass of material added by any stiffeners W and the mass of the material
removed by creating the cutout W0 in an isotropic cylindrical shell. He suggested that for every α, there is
an optimal ratio γopt for which a maximum buckling load is achieved given a single reinforcement design.
Toda determined that this value of γopt decreases with increasing α. Furthermore, he reported that it was
not possible to restore the full load-carrying capability of the pristine shell after introducing an opening in
the structure. However, the larger the cutout, the more beneficial it was to add more local reinforcements
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because the onset of the stable local buckling configuration was delayed. This also resulted in a higher global
buckling load. Similar conclusions were drawn by Jiao et al. [30] who placed ringed stiffeners around circular
cutouts in mild steel cylindrical shells.

Investigations on local orthotropic reinforcements were published by Hilburger in collaboration with
Starnes [31], Hilburger together with Nemeth [32] and Hilburger by himself [33]. Shells manufactured from
UD graphite-epoxy tape with stacking sequences of

[∓45/02

]
s , [∓45/0/90]s , and

[∓45/902

]
s were considered.

Both pristine as well as cylindrical shells with rectangular cutouts of various sizes were tested. Regarding the
buckling of the pristine specimens, Hilburger, Starnes, and Nemeth stated that instability is caused by a "non-
linear coupling between localized destabilizing compressive axial and circumferential stress resultants and
the radial deformations that occur in the shell near the cutout". Hence, by mitigating one or both reasons for
buckling, it should be possible to delay its onset. The authors also noted that these large radial displacements
resulted in a stress redistribution away from the opening reducing the effective load-carrying width of the
shell and thus explaining a measured loss of axial stiffness.

Groups of 0° and 90° plies were placed along the cutout edges to stiffen the structure. The experimental
buckling loads indicated that the thickness increase and consequently the added bending stiffness played the
largest role in retarding buckling. However, the more plies were added, the less efficient each new one was.
On average, 90° reinforcements were 4.5% more effective than 0° ones. Using additional 0° plies increased
axial stress concentrations near the cutout while reducing circumferential ones. Stiffeners consisting out of
90° plies had the opposite effect. While the local buckling displacement pattern for rectangular cutouts was
the same as previously described regardless of the number of added plies, the local buckling mode became
unstable for some critical amount of reinforcing plies resulting in immediate global buckling. Hilburger and
Nemeth noted that the shells seemed to become more imperfection-sensitive when thicker stiffeners were
used which was also concluded by Toda during his experiments on isotropic reinforcements.

2.2.3. Imperfections
The buckling load of a cylindrical shell without cutouts is significantly reduced by initial geometric imperfec-
tions, especially by mid-surface variations. Hence, it can be expected that deviations from the ideal geometry
and material properties have some influence on the response of shells that contain openings. Since it is
impossible to create perfect structures as manufacturing processes are inherently flawed, examining imper-
fections based on experimental work only is a rather futile endeavor. Instead, the geometric and physical
properties of real specimens are measured and compared with perfect computer models. Therefore, imper-
fections are predominantly discussed in Subsection 2.3.4.

Anyhow, investigations targeted specifically at determining the influence of initial imperfections on the
buckling of circular cylindrical shells with cutouts were conducted by Starnes et al. [34]. Starnes and his
co-authors studied composite shells made from graphite-epoxy prepregs which were modified by cutting
rectangular openings into them. They considered mid-surface imperfections, wall-thickness variations, cor-
responding thickness-adjusted lamina properties, shell-end imperfections, as well as nonuniform loading.
Taheri et al. [35] focused on mid-surface imperfections. They manufactured their asymmetric composite
shell with a circular opening from E-glass fibers and an epoxy resin. In both cases, the shell edges were pot-
ted, and the testing machines were operated in displacement-control mode.

2.3. Numerical Work
The availability of analytical models is often restricted to relatively simple geometries and material combi-
nations while experiments tend to be expensive in terms of both time and money. Complex structures are
therefore often analyzed by employing approximate numerical methods, usually FEM. Insights obtained by
applying this approach are covered on the following pages. First, the effects of cutout parameters are revis-
ited and expanded upon. The next part deals with the influence of shell parameters such as shell length and
wall thickness. Afterwards, numerical predictions of structures with reinforcements are evaluated. Finally,
the relevance of initial geometric imperfections on the buckling of cylindrical shells with cutouts is outlined.

2.3.1. Cutout Parameters
Some of the first numerical work was conducted by Brogan and Almroth who, amongst others, developed
early iterations of the computer code STAGS (STructural Analysis of General Shells). Equipped with this tool,
Almroth et al. [36] verified Tennyson’s hypothesis that the curvature parameter α is not sufficient to quantify
the structural response of cylindrical shells with large cutouts as shown in Figure 2.9. Furthermore, they noted
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that the global buckling load of shells that contain circular and square cutouts is practically identical if the
circumferential cutout dimension is the same.

Hilburger et al. reported on the structural response of quasi-isotropic cylindrical shells with rectangular
cutouts subjected to axial loading and internal pressure in 1998 [20] as well as 1999 [37]. They modeled and
analyzed the cylindrical shell with STAGS. Radial and circumferential displacements at and near the shell
edges were restricted to simulate the potting encountered in real experiments. An arc-length solver was used
which switched automatically between nonlinear static and nonlinear dynamic algorithms depending on the
amount of kinetic energy present in the simulation.

The first local buckling mode for this structure is displayed in Figure 2.11. It features an elliptic displace-
ment pattern where the major and minor semi-axes are oriented along the cutout diagonals. Buckling was
caused by the previously mentioned interaction of destabilizing biaxial stresses as well as large radial dis-
placements. The latter leads to a stress redistribution away from the cutout and a loss of axial stiffness. For
small openings, the stress redistribution is enough of a disturbance to immediately trigger global buckling
whereas larger openings feature stable local buckling modes. Adding internal pressure introduces tensile
stresses which relieves the severity of the biaxial stress state and thus delays the onset of local buckling.

Figure 2.11: Displacement pattern at local buckling of a cylindrical shell with a rectangular cutout [37].

Shariati et al. [38] considered steel shells with elliptic cutouts and varied their position along the longitu-
dinal shell axis. The authors included imperfections in the shape of the first three eigenmodes from a linear
buckling analysis and the effects of plasticity in their models. Rigid plates were connected to the shell edges
out of which only one could displace axially. The ensuing nonlinear static system of equations was solved
with the Riks method in Abaqus.

Figure 2.12: Normalized buckling load as a function of the relative cutout location [38].
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Figure 2.12 indicates that there is some dependency of the buckling load on the cutout location. Moving
the center of the opening towards one of the shell edges slightly increases the buckling load. When shells are
longer, the benefit of changing the cutout location is more pronounced. However, the influence is relatively
small which is probably the reason why Jullien et al. [25] stated that there was no effect of the cutout location
on the buckling load during their experiments.

Shariati et al. argued that the positioning effect may be explained with the stress field in the cylindrical
shell. The stress distribution just before, at, and after buckling is visualized in Figure 2.13 for two different
cutout positions. It is clearly visible that the material below and above the cutout carries less load. This effect
is apparently reduced once the cutout is moved towards one of the shell edges. Figure 2.13 also provides
an intuitive explanation for the importance of the circumferential cutout size as the area of reduced stresses
seems to be limited by the cutout width. A different reasoning for the trends in Figure 2.12 was proposed by
Han et al. [39]. They noted that cutouts closer to the shell edges appeared to promote higher order buckling
modes and therefore larger buckling loads.

(a) Cutout at shell longitudinal midpoint. (b) Opening shifted towards one shell edge.

Figure 2.13: Prebuckling, buckling, and postbuckling von Mises stress distribution [38].

The results obtained by Shariati and his co-authors were confirmed by Salloomi et al. [40] who discussed
the same problem. Furthermore, Shariati et al. conducted a small validation study which suggested that
buckling loads and modes were predicted accurately, whereas the shell-end shortening at buckling was un-
derestimated.

In addition to their own experiments, Shirkavand et al. [28] simulated the structural response of their
specimens in Abaqus. Like Shariati et al., they introduced imperfections in the shape of eigenmodes from
a linear buckling analysis. Results were obtained with a nonlinear dynamic implicit procedure. While the
researchers reported their findings as a function of a/R, converting them to equivalentα values suggests that
they are in agreement with the characteristic ranges identified by Starnes and Toda.

Likewise, Khakimova et al. [29] performed numerical analyses in conjunction with their experiments. The
curves in Figure 2.14 were generated with Abaqus. The buckling load versus cutout diameter plot suggests
that no local buckling event occurred for d = 40 mm, but the load-displacement graph on the left features
a reaction force drop that is typical for this event. However, Khakimova et al. studied a

[±34,02,±53
]

layup
which might respond differently than isotropic or quasi-isotropic composite cylindrical shells.

Figure 2.14: Numerically predicted local and global buckling loads as well as load-displacement curves [29].
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Shariati et al. [41], Wang et al. [42], and Salloomi et al. [40] all investigated the influence of cutout shape
and orientation on the buckling behavior of isotropic cylindrical shells. Shariati et al. employed a nonlinear
static analysis with the Riks method in Abaqus, Wang et al. selected the Abaqus linear eigenvalue procedure,
and Salloomi et al. resorted to a solver in Ansys. All parties reported that changing the cutout shape by
varying the lengths of the ellipse semi-axes was more detrimental when it resulted in a larger circumferential
cutout size. On the other hand, altering the axial dimension of the cutout had very little influence on the
buckling load. Of course, this is expected based on previous discussions. Figure 2.15 was created by rotating
the major and minor ellipse axes. Again, it can be seen increasing the circumferential cutout size decreases
the obtainable maximum load as an angle of θ = 0◦ corresponds to the major ellipse semi-axis being aligned
with the longitudinal shell axis.

Figure 2.15: Dependency of the buckling load on the rotation angle of an elliptic cutout [42].

2.3.2. Shell Parameters
Jullien et al. [25] also modeled cylindrical shells with the FE code CASTEM 2000 in addition to their testing
campaign. They accounted for nonlinear geometric and material effects. Figure 2.16 shows that the maxi-
mum buckling load approaches a lower bound when the cutout parameters are kept constant and the shell
length-to-radius ratio L/R is increased.

Figure 2.16: Asymptotic lower bound of the maximum buckling load [25].

In their first publication, Shariati et al. [38] stated that the buckling load of the structure is more sensitive
to the cutout position if the shell is longer, see Figure 2.12. Their second paper [41] suggests that clamping
both shell edges changes the curve in Figure 2.16 only in so far as that the asymptotic limit is reached later,
i.e. for a higher value of L/R.
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Han et al. [39] simulated the buckling behavior of isotropic cylindrical shells with rectangular cutouts that
were either thin or moderately thick. They performed their numerical analyses with Ansys and considered
large displacements as well as multi-linear isotropic hardening. The cylindrical shells were subjected to a
uniform axial shell-end load. Otherwise, the DOFs of the shell edges were completely constrained.

Thin shells always buckled in the same way and at similar load levels regardless of whether plasticity was
included in the analysis or not. On the other hand, thicker shells yielded first, causing a chain reaction of
local and then global buckling. The global buckling configuration was more reminiscent of column buckling
than of the displacement pattern observed for thin shells. The fact that thick shells tend to yield before an
instability occurs is probably one of the reasons Montague et al. [23] reported the behavior that is described
in Subsection 2.2.1.

2.3.3. Reinforcements
Relatively early, Brogan and Almroth [43] discussed the effects of placing two isotropic stringers parallel to
the vertical edges of a rectangular cutout. Regardless of the geometric proportions they chose, they were not
able to reach the buckling load of an equivalent cylindrical shell without a cutout. Like Toda, they found that
adding stiffener mass was only beneficial up to a certain threshold ratio of γ.

Later, Almroth et al. [44] investigated the effects of an isotropic rectangular frame positioned around the
cutout. Surprisingly, the reinforced structure performed worse than an unreinforced one. The authors at-
tributed this to stress concentrations caused by the additional frame stiffness. Despite obtaining unfavorable
results, Almroth et al. suggested that reinforcements should be optimized for maximum bending stiffness to
reduce the large radial displacements that occur at local buckling.

Shi et al. [45] compared seven different isotropic reinforcement configurations around circular and rect-
angular cutouts in composite shells with quasi-isotropic layups. The FE models were created in Nastran
and the analysis procedure accounted for large displacements. It was determined that stiffener designs
which redirect stresses smoothly around the cutout are preferable to those that promote unevenly distributed
stresses. Since the stress fields around circular and rectangular openings are different, distinct reinforcement
configurations are required. Again, it was suggested that a higher bending stiffness delays the onset of local
buckling and therefore increases the maximum sustainable load carried by the structure.

Jiao et al. [30] reproduced their experiments in Abaqus where they considered initial geometric imperfec-
tions measured during testing. A linear buckling analysis was used to determine an optimal ringed stiffener
thickness which approximately corresponded to a weight ratio of γ= 1.

The publications by Hilburger, Starnes, and Nemeth [31–33] also discuss numerical analyses of the tested
laminates. The models were set up similar to the already presented work by Hilburger [37]. Initial geometric
imperfections were not considered. The data points in Figure 2.17 illustrate the conclusions drawn from the
experiments, i.e. that additional material is less effective in terms of increasing the buckling load and that 90◦

ply reinforcements are generally more efficient than 0◦ ones.

Figure 2.17: Local orthotropic reinforcements around rectangular cutouts [31].
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2.3.4. Imperfections
Starnes, Hilburger, and Nemeth [34] conducted an extensive examination of the influence of various imper-
fections on the buckling behavior of composite cylindrical shells with a rectangular cutout by comparing
experimental measurements with numerical predictions from STAGS. The solver was modified such that a
nonlinear static response was considered when neither instabilities nor modal interactions were detected.
When zero tangent stiffnesses were encountered, an arc-length algorithm was used instead of the standard
NR method.

By comparing the coordinates of the inner and outer shell walls, mid-surface imperfections were esti-
mated and linearly interpolated so that nodes in the FE model could be moved accordingly. Wall thickness
variations were furthermore used to adjust the lamina properties based on the rule of mixtures assuming a
constant fiber volume fraction. Finally, the shell edge nodes were modified to represent the effects of nonuni-
form loading during testing.

The results of various linear and nonlinear analyses considering different combinations of imperfections
as well as experimentally measured buckling loads are summarized in Table 2.1. Specimens C1 to C3 are
reference shells without cutouts. The effects of mid-surface imperfections on the buckling load are more
pronounced in these shells than in the specimens that contain openings, i.e. C4 to C6. For the latter group,
the authors concluded that linear buckling analyses provide reasonable estimates when knockdown factors
are applied to account for imperfections. The specimens did not appear to be disproportionately sensitive to
a certain kind of imperfection with the exception of shell C4. The discrepancy between the numerical results
and the experimental measurements was explained with material failure that had not been modeled.

Nonlinear [kN]

No.
Bifurcation

Buckling [kN]
Without

Imperfections
Mid-Surface

Imperfections
Thickness
Variations

Nonuniform
Loading

All
Experiment

[kN]

C1 148.8 142.7 140.5 142.3 141.5 136.5 123.6
C2 215.4 200.3 182.6 199.3 195.9 184.9 152.0
C3 189.6 180.3 170.9 180.4 179.5 170.0 142.0
C4 108.9 105.4 108.9 106.1 74.9 75.3 74.8
C5 118.3 106.4 101.9 108.1 103.8 102.7 91.2
C6 106.8 105.4 106.9 105.4 105.4 105.0 95.7

Table 2.1: Buckling loads predicted for various imperfections and measured test results [34].

The idealized shells featured two diamond-shaped buckles with inversion symmetry around the cutout
center. Naturally, the presence of imperfections removed this symmetry. For the real structure, a single el-
liptic buckle on one side of the cutout was observed. Starnes and his co-authors noted that a stable local
buckling mode was encountered for the imperfect cylindrical shells which changed shape multiple times.
Each buckling mode jump was accompanied by larger radial displacements that resulted in a loss of axial
stiffness with every jump.

Jullien et al. [25] provided several plots in which they showed that the obtainable buckling load of isotropic
cylindrical shells with cutouts greatly depends on the boundary conditions. If the loaded shell edge was al-
lowed to deform freely, the buckling load dropped considerably in comparison with a specimen where a
uniform displacement was prescribed. Starnes [18] had proposed that initial geometric imperfections domi-
nate the shell response for very small openings as the buckling load is independent of the cutout size in this
domain. Jullien et al. suggested that the threshold for this behavior was reached when the cutout dimensions
were equal to one half-wave of the Yoshimura buckling pattern. Brunesi et al. [46] reproduced parts of the
study by Jullien et al. in Nastran NX 10 and verified the numerical results.

Tafreshi [47] built up on Hilburger’s [37] work and included imperfections in the shape of eigenmodes
from a linear buckling analysis in Abaqus. The nonlinear static solver computed that this did not lower the
buckling load significantly which was explained with the presence of sufficiently large cutouts.

Schenk et al. [48] introduced random boundary conditions and imperfections in isotropic shells using the
theory of random fields. They performed linear and nonlinear buckling analyses in STAGS where they noticed
that the results from linear bifurcation analyses were much lower than those of nonlinear ones. This was
justified with the fact that the linear analysis could not account for the stress redistribution caused by the large
radial displacements and therefore overestimated stresses which consequently leads to an underestimation



20 2. Literature Review

of the linearized buckling load.
Orifici and Bisagni [49] used Abaqus to apply the concept of a single perturbation load to quasi-isotropic

and cross-ply laminates as well as to thin and thick sandwich composites. The shells were subjected to the
transverse perturbation force in a first load step which simulated initial geometric imperfections. A subse-
quent nonlinear dynamic step provided an estimate for the buckling load. When large cutouts were consid-
ered, the authors could not detect any influence of the perturbation force on the buckling load and concluded
that the opening itself could be considered as a dominant imperfection. In contrast, there was some depen-
dency of the buckling load on the perturbation load when smaller cutouts were modeled which lead Orifici
and Bisagni to believe that some imperfection interaction occurred. Arbelo et al. [50] published results that
agree well with Orifici and Bisagni.

Alfano and Bisagni [51] incorporated chaos theory in an imperfection sensitivity study on composite
cylindrical shells with and without cutouts. By defining control parameters related to mid-surface imper-
fections, an integrity measure was calculated. Simulations of the structural response were performed with
a nonlinear dynamic procedure in Abaqus. A reduction of the integrity measure characterized the onset of
buckling. When comparing shells with and without cutouts, this integrity measure eroded earlier for pristine
shells, thus verifying that cylindrical shells with cutouts are less sensitive to mid-surface imperfections.

Taheri et al. [35] used a probability density function to determine which imperfections in the shape of
eigenmodes were most likely to be present in a real structure. They incorporated them in their Abaqus mod-
els and compared the predictions of the nonlinear buckling analysis with one where imperfections were sim-
ulated with a single perturbation load. Overall, the differences between the two approaches were negligible.
The concept of a probability density function was adopted by Shirkavand et al. [28] who estimated buck-
ling loads for different a/R ratios. Like other researchers, they observed that the effects of initial geometric
imperfections are reduced with increasing cutout size.

In the same year, Alfano and Bisagni [52] employed a probabilistic approach and increased the number of
considered imperfections compared to their previous investigation. Namely, they incorporated longitudinal
stiffness variations, ply misalignment, and shell-end imperfections in their study. Latin Hypercube sampling
in conjunction with the Strength-Stress Interference method was used to check representative data points
with an Abaqus nonlinear dynamic buckling analysis. Again, imperfections played less of a role for shells
with cutouts compared to pristine reference shells.

Khakimova et al. [29] modified their perfect shell models with imperfection data measured during their
experiments. Considering mid-surface imperfections and thickness-adjusted lamina properties, they reran
their nonlinear static analyses in Abaqus. Figure 2.18 illustrates how the buckling loads change when different
shell configurations and cutout sizes are considered. Accounting for imperfections clearly reduces the dis-
crepancy between perfect shells and experiments. However, the gap is not fully closed suggesting that some
disregarded imperfection types or material failure could provide alternative explanations for the difference
between theory and practice. Finally, Khakimova et al. identified ranges of the curvature parameter α where
the characteristic shell response defined by Starnes and Toda can be observed. Of course, the limited number
of data points makes it difficult to determine threshold values. Hence, the exact boundary values indicated
in Figure 2.18 are debatable.

Figure 2.18: Buckling loads as a function of cutout diameter for two different shell specimens [29].



3
Theoretical Prerequisites

The analysis described in Chapter 4 necessitates prior knowledge of various concepts and theories. These are
revisited on the following pages. First, general shell theory is presented in Section 3.1 and, by adding further
assumptions, adjusted for shallow shells in Section 3.2. Section 3.3 discusses the classical lamination theory
to incorporate composite laminates. Subsequently, energy methods are introduced to quantify the structural
response in Sections 3.4 and 3.5. The Ritz method as an approximate solution procedure is described in
Section 3.6. Afterwards, the compatibility equation and the Airy stress function are evaluated as tools to
reduce the number of variables in the analysis. Some aspects of coordinate transformations are reviewed in
Section 3.9. Finally, Section 3.10 examines the derivation of buckling stresses of pristine cylindrical shells as
reference values.

3.1. General Shell Theory
A shell is a body that is bounded by two curved surfaces where the distance between its boundaries, the thick-
ness t , is small in relation to its other dimensions a and b. Curvature allows shells to carry loads efficiently
because their stretching and bending response is coupled. Figure 3.1 illustrates a general shell where the
displacements u, v, w correspond to the curvilinear coordinates x, y, z. The radii Rx and Ry are equal to the
inverse of the curvature with respect to the corresponding axis.

Figure 3.1: A general shell with a right-handed curvilinear coordinate system.

An early mathematical description of shells was derived by Love [53] who added the assumptions of thin-
ness and small deflections to Kirchhoff’s plate bending theory. The combined set of their premises is known
as the Kirchhoff-Love hypothesis which entails four main considerations:

1. Lines normal to shell’s middle surface remain straight, orthogonal and do not extend after deformation.

2. The normal stress τzz is negligible compared to the other stress components.

3. Shells are thin, i.e. t ¿ a,b.

4. Displacements are small compared to the shell thickness.

21
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The first two assumptions constitute the so-called Kirchhoff hypothesis. From point 1 it follows that out-
of-plane elongations and shortenings cannot occur which implies a state of plane strain.

Combining assumptions 1 and 2 suggests a state of plane stress. This introduces two formal contradic-
tions. Hooke’s law for isotropic materials states that shear stresses normal to the shell mid-surface are solely
caused by out-of-plane shear strains. Consequently, the shear stresses τy z and τxz must be equal to zero.
However, the corresponding stress resultants Qx and Qy are required for the force equilibrium of a shell dif-
ferential element. Additionally, plane strain and plane stress cannot exist simultaneously unless the material’s
Poisson’s ratio is equal to zero which is generally not the case. Nonetheless, the Kirchhoff hypothesis manages
to accurately predict the structural response of both plates and shells. In fact, Novozhilov [54] showed that
the error introduced by Kirchhoff’s assumptions is of the order t/Ri (i = x, y) relative to unity.

Various rules of thumb are used to estimate whether the thinness criterion 3 is fulfilled. A popular one is
given by Ventsel and Krauthammer [55] on page 294.

max

(
t

Ri

)
≤ 1

20
(3.1)

From assumption 4 it follows that all nonlinear strain-displacement relations must vanish since first-order
derivatives are much larger than higher order ones.

The linear strain tensor components εi j in equation (3.2) are then obtained for the coordinate system
illustrated in Figure 3.1. A detailed derivation is available in Chapters 11 and 12 of reference [55].
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The superscript 0 denotes mid-plane strains while κ indicates the curvature contribution. A and B sym-
bolize the Lamé parameters which relate the change in arc length on the shell surface to the variation of the
corresponding curvilinear coordinate.
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3.2. Shallow Shell Theory
Equations (3.2) and (3.3) are relatively complex and therefore difficult to implement in a buckling analysis.
Donnell [56], Mushtari [57], and Vlasov [58] were able to simplify the strain-displacement relations by incor-
porating two additional assumptions.

1. The transverse shear forces Qx and Qy have a negligible influence on the in-plane equilibrium.

2. The out-of-plane displacement w dominates the shell bending response.
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It is interesting to note that the first assumption takes care of one of the contradictions from the Kirchhoff
hypothesis. Anyhow, restricting the permissible shell response means that only shells with certain properties
meet the new requirements. Novozhilov [54] identified these as shells with rapidly varying stress gradients in
the direction of at least one in-plane coordinate as well as the so-called shallow shells.

Ventsel and Krauthammer [55] provide the inequalities(
∂z

∂x

)2

< 0.05 and

(
∂z

∂y

)2

< 0.05 (3.4)

to determine whether a given thin shell also fulfills the shallowness criterion. The numerical values in
equation (3.4) correspond to a maximum angle of 13° between the x-y-plane and a plane tangent to the shell
mid-surface. Most shells used in modern designs can be idealized as thin and shallow. Unfortunately, the
term "shallow" is frequently omitted when talking about this type of shell even though the structural response
of shells and shallow shells is not necessarily identical.

It can be shown that the Lamé parameters of shallow shells are reasonably well approximated by A = B = 1.
The same result is also obtained for flat plates. Considering a circular cylindrical shell where Rx = ∞ and
Ry = R as depicted in Figure 3.2, equations (3.2) and (3.3) simplify considerably, see (3.5) and (3.6). Due to the
thinness constraint, the z/Ri terms are discarded. Furthermore, all partial derivatives of A and B disappear
and the curvature expressions become a function of w only.

Figure 3.2: A circular cylindrical shell with a curvilinear coordinate system.

The out-of-plane displacements are not small when the phenomenon of buckling is studied. This violates
one of the assumptions introduced by Love. Hence, nonlinear strain terms are added back into the strain
expressions. Starting from the general nonlinear Green strains for shallow shells, the squares of certain rota-
tional terms may be dismissed when requiring the out-of-plane deflection w to be bounded by |w | ≤ 5t . The
resulting nonlinear strain-displacement relations for thin, shallow shells are then given by equations (3.5)
and (3.6). They are identical with the nonlinear strains for the flat plate except for the inclusion of a w/R term
in εy y . A comprehensive discussion of this derivation is given in Subsection 18.2.2 of reference [55].
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3.3. Classical Lamination Theory
An arbitrary composite material is unlikely to feature any symmetries. Therefore, it usually classifies as an
anisotropic body, i.e. there is a directional dependency between the stresses τi j and the strains εi j . As long
as the material is loaded in the elastic domain, the generalized Hooke’s law for this constitutive model is
given by equation (3.7) in Voigt notation. Here, the stiffness tensor C is symmetric so that Ci j =C j i when it is
written in matrix form. The number of independent elastic constants is 21.



τxx
τy y

τzz
τy z

τxz
τx y


=



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
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(3.7)

Orthotropic materials have three symmetry planes that are all perpendicular to one another. A conse-
quence of this symmetry is that there is no coupling between shear strains and normal stresses. Also, shear
strains in one plane do not cause shear stresses in any other plane. The number of independent elastic con-
stants reduces to 9 and the new stiffness tensor is formulated as shown in equation (3.8).
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(3.8)

Of course, strains can also be expressed as a function of stresses. The inverse of the stiffness tensor C is
the compliance tensor S which is specified in equation (3.9) for an orthotropic material.
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(3.9)

Composite plies may be idealized as orthotropic materials. As mentioned before, the Kirchhoff-Love hy-
pothesis assumes a state of plane stress in the shell. Hence, equation (3.8) reduces to (3.10) assuming that the
fiber orientation in the lamina coincides with the x-axis in Figure 3.2. The resulting stiffness matrix is often
referred to as the Q matrix with components Qi j . If the coordinate axis and the fiber orientation do not align,
the entries Qxs and Qy s become nonzero. Equation (3.10) is also valid for local lamina coordinate systems. In
such a case it is common to replace the indices x, y, s with 1,2,6 to denote the local reference frame.


τxx
τy y

τx y

=

Qxx Qx y 0

Qx y Qy y 0

0 0 Qss



εxx
εy y

2εx y

 (3.10)

Equation (3.11) may be used to calculate the components of Q. Ei is the Young’s modulus along the
direction i , Gi j represents the shear modulus in the i j -plane, and νi j refers to the Poisson’s ratio as the
quotient of the contraction along the j -axis relative to the extension in i -direction.

Qxx = Ex(
1−νx yνy x

)
Qy y =

Ey(
1−νx yνy x

)
Qx y =

νx y Ey(
1−νx yνy x

)
Qss =Gx y

(3.11)
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If the local and global reference frames do not align, the transformation matrix T as defined in (3.12) may
be used to rotate Q to the global coordinate system in which case it is denoted as Q. T in equation (3.13) is
given for a conventional orthogonal coordinate system, e.g. the one depicted in Figure 2.5.

Q = TTQT (3.12)

T =

 cos2θ sin2θ sinθcosθ

sin2θ cos2θ −sinθcosθ

−2sinθcosθ 2sinθcosθ cos2θ− sin2θ

 (3.13)

The section forces and moments, or stress resultants and couples, N , Q, and M are helpful to describe the
structural response of a laminate. They are illustrated in Figure 3.3 and are defined in equation (3.14) for a
cylindrical shell.

Figure 3.3: Stress resultants and couples acting on an infinitesimal shell element.
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(3.14)

Even though the stress tensor is symmetric, the shear forces Nx y and Ny x as well as the twisting mo-
ments Mx y and My x are not necessarily of equal magnitude because of the dependency on R. However, as
stated previously, the z/R terms are negligible if the shell is thin. Hence, a distinction between the two shear
forces and twisting moments is not required. With this is mind, the laminate is characterized by first rotating
individual plies in the direction of the global coordinate system with equation (3.12), then substituting the
stress-strain relations (3.10), subsequently the strain-displacement relations (3.5) and (3.6), integrating the
relevant section forces and moments from (3.14) over the thickness, and finally summing everything up to
arrive at the well-known ABD matrix presented in equation (3.15).
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In a more compact form, one may also write

[
A B
B D

]
=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66

 (3.16)

A, B, and D, each with elements Ai j , Bi j , and Di j , refer to the extensional, coupling, and flexural stiffness
matrices which are readily calculated as
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(3.17)

where n indicates the lamina number and zn refers to the corresponding ply boundary coordinates.
Strains may also be expressed in terms of section forces and moments. The inverse of the ABD matrix is

the abd matrix given in equation (3.18) which may be interpreted as a compliance matrix with elements ai j ,
bi j , and di j .
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Shell structures are often designed with laminates that are symmetric and balanced. Symmetric layups do
not feature any coupling between the in-plane and the out-of-plane response of the laminate which means
that all elements of B and b are equal to 0. Furthermore, a symmetric and balanced laminate is not subject to
in-plane extension-shear coupling, i.e. A16 = A26 = a16 = a26 = 0. The fact that these terms are zero is advan-
tageous in so far as that the complexity of the structural response is reduced and that analytical solutions are
easier to develop.

The stress-strain relations of isotropic materials can also be described with the ABD matrix because
isotropy is a special case of orthotropy. An isotropic material does not exhibit coupling between in-plane
and out-of-plane, extension and shear, or bending and twisting quantities. Thus, the corresponding matrix
elements are given in equation (3.19) where C represents the extensional and D the bending stiffness.
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3.4. Energy Methods
Energy methods constitute a powerful procedure for the analysis of structures because the former can be
used to approximate the response of the latter to loads by applying the Ritz method. Therefore, the concept
of energy methods is illustrated here and expressions for certain types of energy are derived in Section 3.5.

The state of a structure can be quantified through the total energy Π of its current configuration. A struc-
ture is said to be in equilibrium when its energy level corresponds to a relative extremum. Using the varia-
tional operator δ, this is written as

δΠ= 0 (3.20)

All configurations that satisfy equation (3.20) lie on a so-called equilibrium path. The stability of an equi-
librium path is determined by the type of the local extremum of Π. Minima indicate a stable configuration
whereas maxima characterize an unstable one. At the transition point between these two states a structure is
susceptible to the loss of stability. Hence, buckling can occur when

δ2Π= 0 (3.21)

For the purpose of a general buckling analysis it is reasonable to dismiss all energy contributions except
for the strain energy U and the energy added by external forces V . There are two different ways to quantify
these energies. When describing energy as a function of strains, and therefore displacements, one speaks of
total potential energy. In this case the geometric boundary conditions have to be fulfilled. When the dynamic
boundary conditions are satisfied and the energy is given in terms of stresses, one speaks of total comple-
mentary energy. In any case, the total energy is given by

Π=U +V (3.22)

A simplified procedure for estimating the buckling load is a linear bifurcation analysis. By prescribing
displacements in the shape of typical buckling patterns it is possible to determine the point on the equilib-
rium path where the assumed deformation pattern emerges. Hence, one can estimate the buckling load by
evaluating equation (3.20) and solving an eigenvalue problem without considering (3.21). A drawback of this
procedure is that there is no unique solution for the buckling displacements because they are represented by
the eigenmodes that correspond to the calculated eigenvalues which relate to the buckling loads.

3.5. Energy and Equilibrium Equations
The formula for the strain energy U that is stored in a linear elastic body is

U = 1

2

∫
V

(
τxxεxx +τy yεy y +τzzεzz +2τx yεx y +2τxzεxz +2τy zεy z

)
dV (3.23)

Substituting the strain expressions from equation (3.5) yields

U = 1

2

∫
V

[
τxx

(
ε0

xx + zκxx

)
+τy y

(
ε0

y y + zκy y

)
+2τx y

(
ε0

x y + zκx y

)]
dV (3.24)

Integration over the thickness allows converting stresses to section forces and moments as defined in
equation (3.14).

U = 1

2

∫
A

[
Nxε

0
xx +Mxκxx +Nyε

0
y y +Myκy y +2Nx yε

0
x y +2Mx yκx y

]
d A (3.25)

Equation (3.26) is then obtained by incorporating the ABD matrix relations from (3.15).

U =1

2

∫
A

[
A11

(
ε0

xx

)2 +2A12ε
0
xxε

0
y y +4A16ε

0
xxε

0
x y + A22

(
ε0

y y

)2 +4A26ε
0
y yε

0
x y +4A66

(
ε0

x y

)2
]

d A

+
∫

A

[
B11ε

0
xxκxx +B12

(
ε0

xxκy y +ε0
y yκxx

)
+2B16

(
ε0

xxκx y +ε0
x yκxx

)
+ B22ε

0
y yκy y +2B26

(
ε0

y yκx y +ε0
x yκy y

)
+4B66ε

0
x yκx y

]
d A

+ 1

2

∫
A

[
D11κ

2
xx +2D12κxxκy y +4D16κxxκx y +D22κ

2
y y +4D26κy yκx y +4D66κ

2
x y

]
d A

(3.26)
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Now, the strain-displacement relations from equation (3.5) are implemented in (3.26) alongside the sim-
plifications associated with a symmetric laminate. Furthermore, the strain energy is split up into the mem-
brane strain energy Um and the bending strain energy Ub .

U =Um +Ub (3.27)

Um =1

2

∫ L

0

∫ 2πR

0

{
A11

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2]2

+2A12

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2][
∂v

∂y
− w

R
+ 1

2

(
∂w

∂y

)2]

+ 2A16

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2][
∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y

]
+ A22

[
∂v

∂y
− w

R
+ 1

2

(
∂w

∂y

)2]2

+ 2A26

[
∂v

∂y
− w

R
+ 1

2

(
∂w

∂y

)2][
∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y

]
+ A66

[
∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y

]2}
d y d x

Ub =1

2

∫ L

0

∫ 2πR

0

[
D11

(
∂2w

∂x2

)2

+2D12
∂2w

∂x2

∂2w

∂y2 +4D16
∂2w

∂x2

∂2w

∂x∂y
+D22

(
∂2w

∂y2

)2

+ 4D26
∂2w

∂y2

∂2w

∂x∂y
+4D66

(
∂2w

∂x∂y

)2]
d y d x

(3.28)

Since the B matrix elements are equal to zero, there are no displacement terms with odd powers which
tend to be considerable obstacles when deriving closed-form solutions for the governing differential equa-
tions as noted by Nemeth [59]. Closed-form solutions are desirable results of analyses because their evalua-
tion is computationally inexpensive.

V denotes the potential energy added due to external forces which is quantified in equation (3.29) where
certain terms are dismissed. The lateral pressure p acts on the outside of the shell as illustrated in Figure 3.3.

V =−
∫ L

0

∫ 2πR

0

[(
pw

)− (
Nxε

0
xx +Nyε

0
y y +2Nx yε

0
x y

)
+

(
Mxκxx +Myκy y

)]
d y d x (3.29)

By evaluating the Euler-Lagrange equations (3.30) it is then possible to determine the nonlinear equilib-
rium equations of shallow shells. The functional F only includes the internal strain energy U and the potential
energy added by the external pressure term as explained by Jones [60].

∂F

∂u
− ∂

∂x

 ∂F

∂
(
∂u
∂x

)
− ∂

∂y

 ∂F

∂
(
∂u
∂y

)
= 0

∂F

∂v
− ∂

∂x

 ∂F

∂
(
∂v
∂x

)
− ∂

∂y

 ∂F

∂
(
∂v
∂y

)
= 0

∂F

∂w
− ∂

∂x

 ∂F

∂
(
∂w
∂x

)
− ∂

∂y

 ∂F

∂
(
∂w
∂y

)
+ ∂2

∂x2

 ∂F

∂
(
∂2w
∂x2

)
+ ∂2

∂x∂y

 ∂F

∂
(
∂2w
∂x∂y

)
+ ∂2

∂y2

 ∂F

∂
(
∂2w
∂y2

)
= 0

(3.30)

Comparing the results of (3.30) with (3.15) yields

∂Nx

∂x
+
∂Nx y

∂y
= 0

∂Nx y

∂x
+
∂Ny

∂y
= 0

∂2Mx

∂x2 +2
∂2Mx y

∂x∂y
+
∂2My

∂y2 +Nx
∂2w

∂x2 +2Nx y
∂2w

∂x∂y
+Ny

∂2w

∂y2 +
Ny

R
+p = 0

(3.31)
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3.6. Ritz Method
Solving boundary value problems for differential equations such as (3.31) exactly tends to be quite difficult.
The previously discussed energy methods are employed as an alternative framework. The biggest obstacle of
this approach is usually the minimization of the total energy of the system. For this purpose, approximate
procedures like the Ritz method [61] have been developed.

If the total energy of a structure is described by a functional F where

Π=
∫

V

[
F

(
f ,
∂ f

∂x
, . . . ,

∂m f

∂xm

)]
dV (3.32)

then the function f can be substituted with the infinite series

f ∗ (
x, y, z

)= N∑
n=1

qnφn

(
x, y, z

)
(3.33)

Here, qn are yet undetermined coefficients which are sometimes called Ritz coefficients. φ is a test func-
tion that should fulfill the following criteria:

1. φ is a complete series.

2. φ is continuous and derivable up to the power of m in equation (3.32).

3. φ satisfies the appropriate boundary conditions which depend on the chosen energy formulation.

The energy is minimized by evaluating

∂Π

∂qn
= 0 where n = 1,2, . . . , N (3.34)

which yields N expressions for as many undetermined coefficients. Solving the corresponding system of
equations allows the resubstitution of qn in (3.33). It can be shown that the total energy given by Π

[
F

(
f ∗)]

approaches the energy of the exact solution Π
[
F

(
f
)]

when N goes to infinity assuming that conditions 1, 2,
and 3 are satisfied.

Obviously, the series (3.33) has to be truncated at some point. In this case, the Ritz method overesti-
mates the stiffness of the structure. Convergence of the two energy states is achieved by choosing φ so that
the displacement or the stress field of the structure is accurately described. If φ is not selected carefully, an
approximate solution may be imprecise at best or completely incorrect at worst. When a complex response
must be modeled, the amount of DOFs in the infinite series can be increased through the modification of f ∗

by extending its definition according to equation (3.35).

f ∗ =
N∑

n=1
q1nφ1n +

P∑
p=1

q2pφ2p +·· ·+
R∑

r=1
qsrφsr (3.35)

As a consequence, the convergence rate is increased but the system of equations that has to be solved to
determine the Ritz coefficients becomes more complicated since minimization now requires

∂Π

∂q1n
= 0

∂Π

∂q2p
= 0 . . .

∂Π

∂qsr
= 0 for n, p,r = 1,2, . . . , N ,P,R (3.36)

In any case, it is convenient to write the derivatives in matrix form which is showcased in Chapter 4.



∂Π
∂q1n

...
∂Π
∂q2p

...
∂Π
∂qr s


=



K1n1n . . . K1n2p . . . K1nr s

...
. . .

... . . . ...
K2p1n . . . K2p2p . . . K2pr s

... . . . ...
. . .

...
Kr s1n . . . Kr s2p . . . Kr sr s





q1n
...

q2p

...
qr s


=



0
...
0
...
0


(3.37)
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3.7. Compatibility Equation
As suggested by the third equilibrium equation in (3.31), the shell membrane and bending response is cou-
pled. Consequently, the in-plane displacement fields u and v are not necessarily compatible with arbitrary
out-of-plane deflections w . Admissible configurations satisfy the compatibility equation. The membrane
strains from equation (3.6) are differentiated such that

∂2ε0
xx

∂y2 = ∂3u

∂x∂y2 + ∂2

∂y2

[
1

2

(
∂w

∂x

)2]
∂2ε0

y y

∂y2 = ∂3v

∂x2∂y
− 1

R

∂2w

∂x2 + ∂2

∂x2

[
1

2

(
∂w

∂y

)2]
∂2ε0

x y

∂x∂y
= 1

2

[
∂3u

∂x∂y2 + ∂3v

∂x2∂y
+ ∂2w

∂x∂y

(
∂w

∂x

∂w

∂y

)]
(3.38)

is obtained. The last term in each expression is evaluated with the product rule.

∂2

∂y2

[
1

2

(
∂w

∂x

)2]
= ∂3w

∂x∂y2

∂w

∂x
+

(
∂2w

∂x∂y

)2

(3.39a)

∂2

∂x2

[
1

2

(
∂w

∂y

)2]
= ∂3w

∂x2∂y

∂w

∂y
+

(
∂2w

∂x∂y

)2

(3.39b)

∂2w

∂x∂y

(
∂w

∂x

∂w

∂y

)
= ∂3w

∂x∂y2

∂w

∂x
+ ∂3w

∂x2∂y

∂w

∂y
+

(
∂2w

∂x∂y

)2

+ ∂2w

∂x2

∂2w

∂y2 (3.39c)

Adding (3.39a) and (3.39b) while subtracting (3.39c) twice eliminates the in-plane displacements u and v .
The result is the nonlinear compatibility equation for circular cylindrical shells given by equation (3.40). An
implicit consequence of these operations is that u and v become functions of w .

∂2ε0
xx

∂y2 +
∂2ε0

y y

∂x2 −2
∂2ε0

x y

∂x∂y
=

(
∂2w

∂x∂y

)2

− 1

R

∂2w

∂x2 − ∂2w

∂x2

∂2w

∂y2 (3.40)

3.8. Airy Stress Function
The Airy stress functionΦ is introduced to reduce the number of variables that need to be considered during
an analysis. If the stress resultants are formulated in accordance with equation (3.41), they always fulfill the
requirements for the in-plane equilibrium according to (3.31).

Nx = ∂2Φ

∂y2 Ny =
∂2Φ

∂x2 Nx y =− ∂2Φ

∂x∂y
(3.41)

Strictly speaking, the Airy stress function can only be applied to materials with symmetries that prohibit
stress gradients through the thickness as a dependency on z is missing in equation (3.41). When evaluating
composites this means that the stress resultants are averaged over the laminate thickness, i.e. ply stresses are
not accurately modeled. Using (3.41), the out-of-plane equilibrium equation is rewritten as

D11
∂4w

∂x4 + (
2D12 +4D66

) ∂4w

∂x2∂y2 +D22
∂4w

∂y4 − ∂2Φ

∂y2

∂2w

∂x2 +2
∂2Φ

∂x∂y

∂2w

∂x∂y
− ∂2Φ

∂x2

∂2w

∂y2 − 1

R

∂2Φ

∂x2 = p (3.42)

where the bending stiffness terms D16 and D26 have been neglected. This is a common assumption as
they are usually small compared to the other components of the D matrix. By applying the relations from the
abd matrix (3.18) for a symmetric and balanced laminate, the nonlinear compatibility equation becomes

a22
∂4Φ

∂x4 + (
2a12 +a66

) ∂4Φ

∂x2∂y2 +a11
∂4Φ

∂y4 =
(
∂2w

∂x∂y

)2

− 1

R

∂2w

∂x2 − ∂2w

∂x2

∂2w

∂y2 (3.43)
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The structural response of a shell is fully defined when both the out-of-plane deflection w and the Airy
stress function Φ are known. In fact, if a displacement field w is given, then the corresponding stress distri-
bution in the shell can be determined by solving the partial differential equation (3.43) forΦ.

The relations (3.42) and (3.42) simplify significantly when an isotropic material is considered.

D∇4w − ∂2Φ

∂y2

∂2w

∂x2 +2
∂2Φ

∂x∂y

∂2w

∂x∂y
− ∂2Φ

∂x2

∂2w

∂y2 − 1

R

∂2Φ

∂x2 = p (3.44)

∇4Φ= Et

[(
∂2w

∂x∂y

)2

− 1

R

∂2w

∂x2 − ∂2w

∂x2

∂2w

∂y2

]
(3.45)

3.9. Coordinate Transformation
The equations and derivations discussed up to this point are mostly valid for the curvilinear reference frame
displayed in Figure 3.2. Just like a rectangular cutout should be expressed in Cartesian coordinates, which
has been showcased in Subsection 2.1.3, a circular opening in a cylindrical shell is more conveniently de-
scribed with a semi-geodesic polar coordinate system as illustrated in Figure 3.4a. Hence, some coordinate
transformations are required to adjust the previous expressions.

(a) Curvilinear polar coordinate system. (b) Substitute reference frame.

Figure 3.4: Coordinate systems with their origins at the cutout center.

Comparing Figures 3.4a and 3.4b shows that the r,θ coordinates are identical to the transformed x ′, y ′

if the latter are rotated appropriately. Since the Lamé parameters of shallow shells are approximated as
A = B = 1 and the through-the-thickness-coordinate remains the same, the coordinate transformation from
the curvilinear system in Figure 3.2 to semi-geodesic polar coordinates in Figure 3.4a is equivalent to the
transformation from Cartesian to polar coordinates in two dimensions. Consequently, the relations between
x, y and x ′, y ′ are

{
x
y

}
=

[
sinθ cosθ
cosθ −sinθ

]{
x ′

y ′

} {
x ′

y ′

}
=

[
− sinθ cosθ
cosθ sinθ

]{
x
y

}
(3.46)

Inversion is easily achieved by substituting −θ for the angle in equation (3.46).

3.9.1. Transformation Matrices
Directional quantities are transformed from one coordinate system to another by evaluating the direction
cosines ti j between them. The formulas for 1D- (coordinates and displacements), 2D- (strain and stress
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tensors), as well as 4D-quantities (stiffness and compliance tensors) are presented in equation (3.47). Trans-
formed values are marked with a prime.

x ′
i = ti m xm

ε′i j = ti m t j nεmn

C ′
i j kl = ti m t j n tkp tl qCmnpq

u′
i = ti mum

τ′i j = ti m t j nτmn

S′
i j kl = ti m t j n tkp tl q Smnpq

(3.47)

In matrix form, one may write

x′ = T1Dx ε′ = T2Dε C′ = T4DC (3.48)

with

T1D =
[

t1 t3
t4 t2

]
(3.49a)

T2D =

 t 2
1 t 2

3 2t1t3

t 2
4 t 2

2 2t4t2
t1t4 t3t2 t1t2 + t3t4

 (3.49b)

T4D =



t 4
1 2t 2

1 t 2
3 4t 3

1 t3 t 4
3 4t1t 3

3 4t 2
1 t 2

3

t 4
4 2t 2

4 t 2
2 4t 3

4 t2 t 4
2 4t4t 3

2 4t 2
4 t 2

2

t 2
1 t 2

4 2t1t3t4t2 2t 2
1 t4t2+2t1t3t 2

4 t 2
3 t 2

2 2t1t3t 2
2 +2t 2

3 t4t2 t 2
1 t 2

2 +t 2
3 t 2

4 +2t1t3t4t2

t1t 3
4 t1t4t 2

2 +t3t 2
4 t2 3t1t 2

4 t2+t3t 3
4 t3t 3

2 3t3t4t 2
2 +t1t 3

2 2t1t4t 2
2 +2t3t 2

4 t2

t 3
1 t4 t 2

1 t3t2+t1t 2
3 t4 3t 2

1 t3t4+t 3
1 t2 t 3

3 t2 3t1t 2
3 t2+t 3

3 t4 2t 2
1 t3t2+2t1t 2

3 t4

t 2
1 t 2

4 t 2
1 t 2

2 +t 2
3 t 2

4 2t 2
1 t4t2+2t1t3t 2

4 t 2
3 t 2

2 2t1t3t 2
2 +2t 2

3 t4t2 4t1t3t4t2


(3.49c)

where Voigt notation has been applied. Every transformation matrix T is valid for a tensor of a certain
dimension. Tensor strains are the only type of strain measure that is correctly converted without further
modification of T2D. By comparing the general one-dimensional transformation matrix T1D from (3.49a) with
the special case in equation (3.46), components of higher order transformation matrices may be determined.

3.9.2. Partial Derivatives
A function f

(
r
(
x, y

)
,θ

(
x, y

))
can be differentiated with respect to x (or y) by applying the chain rule.

∂ f

∂x
= ∂ f

∂r

∂r

∂x
+ ∂ f

∂θ

∂θ

∂x
(3.50)

Mapping functions that define r and θ in terms of x and y are derived from Figure 3.4a.

r =
√

x2 + y2 θ = arctan
x

y
(3.51)

Equation (3.50) is divided by f . Expressions for the partial derivatives ∂r /∂x and ∂θ/∂x in (3.50) are found
by differentiating the mapping functions in (3.51).

∂

∂x
= sinθ

∂

∂r
+ 1

r
cosθ

∂

∂θ
(3.52)

The partial derivative with respect to y is determined in a similar fashion.

∂

∂y
= cosθ

∂

∂r
− 1

r
sinθ

∂

∂θ
(3.53)

One may write the second partial derivative as
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∂2 f

∂x2 = ∂

∂x

(
∂ f

∂x

)
(3.54)

and the first partial derivative is already known. It is substituted and after applying the product as well as
the chain rule, the resulting expression is simplified.

∂2 f

∂x2 =
(
∂r

∂x

)2 ∂2 f

∂r 2 + ∂2r

∂x2

∂ f

∂r
+2

∂r

∂x

∂θ

∂x

∂2 f

∂r∂θ
+

(
∂θ

∂x

)2 ∂2 f

∂θ2 + ∂2θ

∂x2

∂ f

∂θ
(3.55)

Again, (3.55) is divided by f while the mapping functions are used to calculate partial derivatives.

∂2

∂x2 = sin2θ
∂2

∂r 2 +cos2θ

(
1

r

∂

∂r
+ 1

r 2

∂2

∂θ2

)
− sin2θ

(
1

r 2

∂

∂θ
− 1

r

∂2

∂r∂θ

)
(3.56)

The same procedure is applied to obtain the other two possible partial derivatives.

∂2

∂y2 = cos2θ
∂2

∂r 2 + sin2θ

(
1

r

∂

∂r
+ 1

r 2

∂2

∂θ2

)
+ sin2θ

(
1

r 2

∂

∂θ
− 1

r

∂2

∂r∂θ

)
(3.57)

∂2

∂x∂y
= 1

2
sin2θ

(
∂2

∂r 2 − 1

r

∂

∂r
− 1

r 2

∂2

∂θ2

)
−cos2θ

(
1

r 2

∂

∂θ
− 1

r

∂2

∂r∂θ

)
(3.58)

Alternatively, one could have also multiplied the first order partial derivatives (3.52) and (3.53) with each
other to arrive at the same results. Fourth-order partial derivatives are needed for the analysis in Chapter 4 as
well. However, they are not presented in detail here due to their size. Anyhow, they can be easily calculated
by applying the procedure just described.

3.9.3. Integrals
The change of the reference system requires an adjustment of both the integration limits as well as the inte-
gration variables. ∫ x1

x0

∫ y1

y0

d y d x =
Ï

A
d A =

∫ θ1

θ0

∫ r1

r0

r dr dθ (3.59)

3.9.4. In-plane Equilibrium Equations and Airy Stress Function
The in-plane equilibrium equations in the new reference frame are given by

1

r

∂
(
r Nr

)
∂r

+ 1

r

∂Nrθ

∂θ
− Nθ

r
= 0 1

r 2

∂
(
r 2Nrθ

)
∂r

+ 1

r

∂Nθ

∂θ
= 0 (3.60)

As a consequence, the relation between the section forces and the Airy stress function must change so
that equation (3.60) is always fulfilled. The validity of the new expressions may be confirmed through direct
substitution of (3.61) in (3.60).
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r
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∂r
+ 1
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∂θ2 Nθ =
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∂r 2
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(
1

r

∂Φ

∂θ
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(3.61)

3.10. Classical Buckling Theory
Donnell [62] is often credited with the first formulation of a single governing equation that describes the
buckling behavior of isotropic circular cylindrical shells. He eliminated the coupling between in-plane and
out-of-plane displacements as described in Section 3.7. When employing the method of adjacent equilib-
rium, equations (3.44) and (3.45) can be combined such that (3.62) is obtained.

D∇8δw + Et

R2

∂4δw

∂x4 −∇4

(
Nx

∂2δw

∂x2 +2Nx y
∂2δw

∂x∂y
+Ny

∂2δw

∂y2

)
= 0 (3.62)
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Batdorf [63] modified equation (3.62) by multiplying it with ∇−4 which removes some mathematical in-
consistencies when clamped boundary conditions are part of the problem formulation. The first term in the
ensuing equation can be interpreted as the shell bending stiffness, the second one as its extensional resis-
tance, and the third one as a measure of the applied load. Batdorf solved the modified buckling equation
assuming an axisymmetric displacement pattern and derived the classical expression for the buckling stress
of an isotropic cylindrical shell τcl.

τcl =
E√

3
(
1−ν2

) t

R
(3.63)

He defined the parameter Z , now named after Batdorf himself, as

Z =
√

1−ν2 L2

Rt
(3.64)

Equation (3.63) is valid for Z ≥ 2.85, that is for cylindrical shells which qualify as moderately long. Even
though obtaining an expression like (3.63) was most definitely a great achievement, it was also soon discov-
ered that isotropic shells never reached the theoretical buckling loads in experiments.

Koiter [64] resolved the apparent discrepancy with the publication of his Ph.D. dissertation in 1945 where
he included initial geometric imperfections in his analytical model of cylindrical shells. The scientific com-
munity was mostly unaware of this breakthrough until Koiter’s dissertation was translated from Dutch to
English in the 1960s. In the meantime, Donnell and Wan [65] had included imperfections in the shape of
eigenmodes obtained from a linear buckling analysis in a numerical approach. Realizing the implications of
these results, and to some extent certainly motivated by the "space race", the National Aeronautics and Space
Administration (NASA) conducted an extensive testing campaign to quantify the effects of initial imperfec-
tions. As a result, the well-known NASA SP-8007 [66] was published which provides knock-down factors for
the design of shells against buckling.

While structures have been designed with isotropic materials in the past, composites are popular today
because they offer the possibility to tailor strength and stiffness properties in every direction to optimize
material usage. The previously presented buckling formula is of course not valid for composite cylindrical
shells which is why Nemeth et al. [67] published equations for determining the buckling load of laminated
shells. Neglecting the influence of all coupling terms in equation (3.15) and allowing buckling waves in both
the axial (m) as well as the circumferential (n) direction, the buckling stress is approximated by minimizing

p̃π2 = n4α2
b

m2π2 +2β′n2 + m2π2

α2
b

+ 12ρ2

n4α2
m

m2π2 +2µ′n2 + m2π2

α2
m

(3.65)

All terms in equation (3.65) are known for a given laminate with the exception of the number of buckling
waves. The definitions of the nondimensional stiffness parameters are given in reference [67] and the con-
stants β′ and µ′ should not be confused with the curvature parameters β and µ. The buckling stress τcl of a
pristine cylindrical shell relates to the nondimensional loading parameter p̃ by

τcl = p̃π2√D11D22
t

R2 (3.66)
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Buckling Analysis

A linear bifurcation analysis for estimating the buckling load of cylindrical shells with circular cutouts is pre-
sented. After introducing the geometry and loading conditions in Section 4.1, major assumptions as well as
the general solution approach are highlighted in Section 4.2. Next, the methodology is demonstrated for the
case of isotropic shells in Section 4.3. The analytical formulation is subsequently derived for quasi-isotropic,
symmetric, composite laminates in Section 4.4. Modifications to the shape function as well as the corre-
sponding effects on the solution procedure are investigated in the last part of the chapter, Section 4.5.

4.1. Geometry and Loading Conditions
The buckling analysis is developed for a cylindrical shell with a circular cutout of radius a subjected to a uni-
form axial shell edge load N x as shown in Figure 4.1. A polar semi-geodesic coordinate system r,θ with its
origin at the center of the opening is employed to quantify the response of the cylindrical shell mathemati-
cally. The reference frame r,θ is chosen over x, y from Figure 3.2, which is also illustrated below, because it is
more convenient to describe a circular cutout in a polar coordinate system.

Figure 4.1: A cylindrical shell loaded by a uniform axial edge load N x .
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4.2. Assumptions and Solution Approach
Several assumptions are made during the linear buckling analysis of the cylindrical shell. They are divided
into two categories, namely assumptions that relate to shell buckling in general, as well as assumptions that
are specific to the buckling of cylindrical shells with circular cutouts. The first group entails the following
considerations:

• The premises of the Kirchhoff-Love hypothesis, with the exception of the assumption of small displace-
ments compared to the shell thickness, are valid.

• The shell is of constant thickness t and features a constant radius R.

• The shell curvature is small which means that the strain-displacement relations for shallow shells apply.

• The shell is idealized as a perfect structure, i.e. geometric and material imperfections are not modeled.

• The shell is not stiffened.

• The orthotropic plies of the composite shell are perfectly bonded.

• There are no large prebuckling displacements such that a linear eigenvalue analysis can be performed
to estimate the buckling load.

• Buckling occurs while the material behavior is linear elastic. This is justified with observations made
by Starnes [18], Bisagni [27], and Shirkavand et al. [28] for isotropic and composite shells, respectively.

Even though the last assumption is motivated with conclusions from investigations on the buckling of
shells with cutouts, it is also employed during the derivation of the classical buckling load for pristine cylin-
drical shells. The remaining assumptions are specific to shells with circular openings:

• The shell instability originates from local buckling in the area around the cutout which is true as long as
the curvature parameter µ is larger than approximately 0.5 according to Starnes [18]. The local nature
of the buckling event was also confirmed by Hilburger, Starnes, and Nemeth [31–33].

• Thus, the effects of displacements, strains, and stresses are small everywhere but in the vicinity of the
opening.

• The prebuckling stress distribution in the shell is approximated with the flat plate solution by Kirsch [1]
as the effects of bending stresses and higher shell membrane stresses are considered to be negligible.

The solution procedure illustrated in Figure 4.2 is inspired by the approach presented by Starnes [18] in
his Ph.D. dissertation where he investigated the buckling behavior of isotropic shells with circular cutouts
analytically and experimentally. He validated the analytical results with buckling tests of Mylar specimens.
This provides the opportunity to reuse Starnes’ data for the verification of numerical simulations, and the
experimental results for the validation of the modified analytical solution for the isotropic shell.

The shell response is quantified with the method of total potential energy and therefore a displacement
function has to be prescribed. Since the structural behavior is expressed in the r,θ reference frame, so is
the shape function. It must produce negligible displacements far away from the cutout due to the localized
nature of the buckling event which suggests the use of an exponential function with a negative exponent.
Additionally, the shape function has to provide a smooth transition at the origin of the coordinate system
when the cutout radius is almost zero. Hence, its derivative with respect to r must approach zero for small
values of the radial coordinate. This can be achieved by multiplying the negative exponent with r . Of course,
the shape function must also accurately describe the buckling displacement pattern around the opening. A
function that satisfies all of these conditions was proposed by Starnes based on his extensive experimental
studies. It is given in equation (4.1) where A0, A2, C0, and C2 denote undetermined Ritz coefficients and B is
a decay parameter.

w (r,θ) = e−Br [(
A0 + rC0

)+ (
A2 + rC2

)
cos2θ

]
(4.1)

As shown in equation (3.22), the total potential energyΠ can be written as the sum of the membrane strain
energy Um , the bending strain energy Ub , and the potential energy due to external forces V . Expressions for
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these quantities are originally derived in the curvilinear coordinate system x, y in Chapter 3. Consequently,
they have to be transformed into the r,θ reference frame. The contribution of Ub can be evaluated as soon
as a displacement function is assumed. After approximating the prebuckling stress distribution with the flat
plate solution, it is also possible to determine the energy contribution of V . The calculation of Um is more
complicated because the stress resultants at buckling are not known. To work them out, the linear shell
compatibility equation is solved for the Airy stress functionΦ.

Having obtained an expression for Π, the total potential energy is minimized with the Ritz method. This
yields two matrices which set up the generalized eigenvalue problem. Minimum eigenvalues are computed
as a function of B using a numerical algorithm. Finally, the buckling load is given as the product of the
minimum eigenvalue and the applied load. The eigenvectors that correspond to the minimum eigenvalues
are interpreted as the buckling mode shapes.
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Figure 4.2: Flow chart outlining the analysis procedure.
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4.3. Isotropic Shells
As mentioned at the beginning of the chapter, the solution approach visualized in Figure 4.2 is described
in detail based on the special case of an isotropic shell with a circular cutout. The following subsections
are concerned with explaining individual blocks of the above flow chart. Section 4.4 then focuses on the
changes made to the respective solution steps in order to adapt the procedure for quasi-isotropic, composite,
symmetric cylindrical shells.

4.3.1. Total Potential Energy
The total potential energy of the shell amounts to

Π=Um +Ub +V (4.2)

where Um and Ub have been defined in equation (3.28) while V is specified in (3.29). Substituting the
equivalent ABD matrix components for isotropic materials from (3.19), applying the von Kármán approx-
imation to the expression for V since out-of-plane displacements are large, and denoting the prebuckling
stress resultants with the superscript 0, the respective energy contributions may be rewritten as

Um = 1

2Et
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N 2

x +N 2
y −2νNx Ny +2(1+ν) N 2

x y

]
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(4.3)

4.3.2. Coordinate Transformation
Since the formulas in equation (4.3) are developed for the reference frame depicted in Figure 3.2, some co-
ordinate transformations are required. First, the derivation of Um in Section 3.5 would have been equally
valid with the subscripts r,θ instead of x, y . Also acknowledging the change of the integration variables, see
Subsection 3.9.3, this immediately becomes

Um = 1

2Et

Ï {[
N 2

r +N 2
θ −2νNr Nθ+2(1+ν) N 2

rθ

]
r
}

dr dθ (4.4)

Considering the transformations for the partial derivatives described in (3.56) through (3.58), the bending
strain energy Ub is expressed as

Ub =D
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(4.5)

Likewise, the total potential energy due to external forces is converted by substituting the partial deriva-
tives (3.52) and (3.53) as well as the 2D transformation matrix (3.49b).
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(4.6)

Since the linear version of the compatibility equation (3.45) is needed in Subsection 4.3.4, it also has to be
converted. Again, the second-order partial derivatives (3.56) and (3.57) are used to obtain
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(4.7)



4.3. Isotropic Shells 39

The biharmonic operator ∇4 in polar coordinates may be written as
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4.3.3. Prebuckling Stress Distribution
The most accurate formulation of the stress field in an isotropic cylindrical shell with a circular cutout prior to
buckling has probably been derived by Lekkerkerker [5]. However, his solution is computationally expensive
to implement because stresses can only be computed in concentric circles around the opening. Furthermore,
it does not extend to composite shells. Like the solution proposed by Van Dyke [6] for isotropic cylindrical
shells, Ashmarin’s [11] result for the stress distribution in an orthotropic shell is determined by solving the
governing equations numerically. Since the goal is to derive an analytical solution, these alternatives are
dismissed. The publication by Guz et al. [12] covers the stress field in an orthotropic shell, but it suffers from
similar restrictions as Lekkerkerker’s approach.

It is much more convenient to approximate the stress distribution in a cylindrical shell with that of the flat
plate which is a reasonable assumption as long as the curvature parameter µ is small, see Figure 2.1. While
Lekhnitskii’s [2] solution for the orthotropic plate can yield results for stress concentration factors as sug-
gested by Kassapoglou [68], obtaining stress distributions is more difficult because the dependency on the
radial coordinate also has to be accounted for. Moreover, multiple aspects of the solution procedure change
depending on the equivalent elastic properties of the laminate, for example the equation for the transfor-
mation from real to complex coordinates mentioned in Subsection 2.1.1, which increases the complexity of
determining stress resultants considerably.

In contrast, the solution for the stress distribution around a circular cutout in a flat isotropic plate derived
by Kirsch [1] is available in closed-form and furthermore extends to the quasi-isotropic case. Multiplying
equation (2.1) with t yields an expression for the in-plane stress resultants. Assuming a compressive stress
τ∞ and considering the different definition of the reference frame in the aforementioned equation, the pre-
buckling section force components N 0

r , N 0
θ , and N 0
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These expressions are substituted in equation (4.6) which yields
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4.3.4. Linear Compatibility Equation
In Section 3.8 it was shown that the introduction of the Airy stress functionΦ reduces the number of variables
that have to be considered during an analysis. Additionally, Φ can be used to determine the stress resultants
by solving the compatibility equation (3.45) which is desirable because Nr , Nθ, and Nrθ in (4.4) are unknowns.
Since a linear eigenvalue analysis is performed, it is sufficient to solve the linear version of the compatibility
equation. Substituting the shape function (4.1) on the right-hand side (RHS) of (4.7) gives

∇4Φ= g0(r )+ g2(r )cos2θ+ g4(r )cos4θ (4.11)

where gm (m = 0,2,4) in (4.12) are disturbance function terms of a partial differential equation (PDE). To
be precise, (4.11) is a fourth-order inhomogeneous PDE with constant coefficients.
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4.3.5. Complementary and Particular Solution
An inhomogeneous differential equation is solved by determining the complementary (Φc ) as well as the
particular (Φp ) part of its solution. One solution forΦc was derived by J.H. Mitchell in 1899 and can be found
on page 246 in reference [69].
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(4.13)

The method of variation of parameters is employed to compute Φp . However, this procedure only works
for ordinary differential equations (ODEs). Separating the variables in a traditional sense is not possible with-
out considerable effort because of mixed partial derivatives originating from ∇4Φ. Hence, the cosine pattern
in (4.11) inspires an educated guess for the particular solution.

Φp = h0(r )+h2(r )cos2θ+h4(r )cos4θ (4.14)

In a more general way, one may write

Φpm = hm(r )cosmθ (4.15)

Substituting (4.15) on the left-hand side (LHS) of equation (4.11) results in

d4hm
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dr 3 − 2m2 +1

r 2

d2hm

dr 2 + 2m2 +1

r 3

dhm

dr
+ m4 −4m2

r 4 hm = gm (4.16)

after dividing by cosmθ which is permissible due to the linear independence of the cosine function. Con-
sequently, the problem is reduced to an ODE and the complete particular solution of (4.11) is the sum of all
hm terms (m = 0,2,4). The complementary solution for the ODE that corresponds to a certain m in (4.16)
needed for applying the method of variation of parameters is simply the sum of the factors in front of the
respective cosmθ term in (4.13) when neglecting θ .

For example, the ODE for m = 0 is
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= g0 (4.17)

with the homogeneous solution

h0c =C01lnr +C02r 2lnr +C03r 2 +C04 (4.18)

A particular solution can be determined by evaluating

hm =
N∑

n=1
hmn(r )

∫ {
gm(r )Wmn(r )

Wm(r )

}
dr (4.19)
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hmn refers to the variables in the n-th term of the m-th complementary solution and Wm is their Wron-
skian. Wmn is equal to Wm where the n-th column of the corresponding matrix is replaced by zeros except
for the last row which contains a one. The disturbance function gm is already known. For the chosen shape
function there will always be four terms in (4.18) as well as in (4.21), and therefore the summation terminates
at N = 4. Computing (4.19) for m = 0 yields
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The complementary solutions for m = 2 and m = 4 are given by

h2c =C21r 2 +C22r 4 +C23r−2 +C24

h4c =C41r 4 +C42r 6 +C43r−4 +C44r−2
(4.21)

The particular solutions for h2 and h4 are obtained by applying (4.19) again.
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Resubstitution of hm in (4.14) and subsequently in (4.11) satisfies the original PDE. Hence, assuming a
particular solution of the type hm (r )cosmθ is appropriate. Ei1 (Br ) in equations (4.20) and (4.22) denotes
the exponential integral as given in [70] on page 228. Definition 5.1.1 is equivalent to equation (4.23) with a
slightly different notation.

Ei1 (z) =
∫ ∞

z

e−t

t
d t (4.23)

4.3.6. Boundary Value Problem and Stress Resultants
The sum of (4.13) and (4.14) yields the complete solution of the PDE (4.11).

Φ=Φc +Φp (4.24)

Boundary conditions provide constraints for the unknown constants in (4.13). These are:

1. Stresses must be periodical with respect to the angular coordinate θ.

2. The strain energy must be bounded, i.e. it cannot go to infinity.

3. Stress components normal to the cutout edge must be equal to zero.

Nr (r = a) = 0 (4.25a)

Nrθ (r = a) = 0 (4.25b)

4. Since the analysis is concerned with a local buckling phenomenon, it is assumed that the stress resul-
tants far away from the cutout are negligible.

Nr (r →∞) = 0 (4.26a)

Nθ (r →∞) = 0 (4.26b)

Nrθ (r →∞) = 0 (4.26c)
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Equation (3.61) provides information on how the Airy stress function Φ relates to the stress resultants.
The corresponding partial derivatives of Φ are computed, see Appendix A.1, and are assessed with the above
requirements in mind. In some cases, there are multiple reasons why a certain constant is dismissible. One
argument is obviously sufficient and therefore it is acceptable that the following list is not exhaustive.

I. From (4.26a): r n terms with n ≥ 0 are not admissible.

b0 = c0 = d0 = b1 = d1 = 0

II. From (4.26b): r n terms with n ≥ 0 are not admissible.

an = bn = cn = dn = 0 (n ≥ 2)

III. The constants a1 and c1 do not appear in the expressions for the stress resultants. Thus, they may be
discarded without loss of generality.

a1 = c1 = 0

IV. From (4.25a): Only cosmθ terms may be nonzero.

c ′2 = d ′
2 = a′

3 = b′
3 = c ′3 = d ′

3 = c ′4 = d ′
4 = a′

n = b′
n = c ′n = d ′

n = 0 (n ≥ 5)

V. From (4.25b): Only cosmθ terms may be nonzero.

a′
0 = 0

VI. Condition IV. is also satisfied when

a′′
1 r−1 −2a′

1r−3 +b′
1r−1 = 0

−c ′′1 r−1 −2c ′1r−3 +d ′
1r−1 = 0

After factoring out the squares of the stress resultants according to equation (4.4), a′′
1 and b′

1 retain a
factor of r−1. The integration limits in the polar reference frame are taken as a and ∞. It is known that∫ ∞

a
r−1 dr = [lnr ]∞a =∞

which means that the strain energy becomes unbounded unless all six constants are zero.

a′′
1 = a′

1 = b′
1 = c ′′1 = c ′1 = d ′

1 = 0

Consequently, the Airy stress function simplifies to

Φ= [
a0lnr +h0 (r )

]+[
a′

2r−2 +b′
2 +h2 (r )

]
cos2θ+

[
a′

4r−4 +b′
4r−2 +h4 (r )

]
cos4θ (4.27)

The remaining constants are determined from the boundary conditions (4.25a) and (4.25b) which must
hold for all θ. In other words: the factors of cosmθ of the stress resultants in Appendix A.1 have to be equal to
zero. This yields five equations for five unknowns as a0 does not appear in the expression for Nrθ . The values
of a0, a′

2, b′
2, a′

4, and b′
4 are presented in Appendix A.2.

Having calculated all constants, the compatibility equation is solved and it is possible to compute explicit
functions for the stress resultants in the buckled configuration using equations (3.61) and (4.27).

Nr = k11(r )+k12(r )cos2θ+k13(r )cos4θ

Nθ = k21(r )+k22(r )cos2θ+k23(r )cos4θ

Nrθ = k31(r )+k32(r )sin2θ+k33(r )sin4θ

(4.28)

The coefficients ki j are specified in Appendix A.3.
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4.3.7. Energy Minimization with the Ritz Method
Now that all terms in equations (4.4), (4.5), and (4.6) are known, the total potential energy of the shell may
be determined through integration. Terms with trigonometric functions that are orthogonal in the interval
[0,2π] can be removed because their integrals are zero. B ,r ≤ 0 does not make any physical sense and there-
fore the product of these variables must be positive. Thus, an alternative formulation of the exponential
integral, namely definition 5.1.2 from [70], can be substituted.

Ei1 (Br ) =−Ei(−Br ) (4.29)

This makes it possible to evaluate some additional definite integrals in equation (4.4) so that any type
of numerical integration as in Starnes’ solution is avoided. After completing the integration, the original
exponential integral (4.23) is resubstituted by applying (4.29) again.

The buckling load of the cylindrical shell is subsequently approximated by minimizing the total poten-
tial energy with the Ritz method which is discussed in Subsection 3.6. The presence of four undetermined
coefficients requires taking four partial derivatives and setting each of them equal to zero.

∂Π

∂A0
= 0

∂Π

∂A2
= 0

∂Π

∂C0
= 0

∂Π

∂C2
= 0 (4.30)

Like terms are collected and assembled to form the matrices in (4.31).

KM


A0
A2
C0
C2

= τcrKG


A0
A2
C0
C2

 (4.31)

Equation (4.31) is recognized as the generalized eigenvalue problem where the buckling stress τcr is a
multiple of the applied far-field stress τ∞ which is conveniently chosen as 1 MPa. The components of KM

and KG are given in Appendix A.4. Both matrices are symmetric because the expression for the total potential
energy Π only contains second-order terms of the undetermined Ritz coefficients. Furthermore, KM scales
with the material stiffness while KG depends on the applied load, i.e. there is some resemblance of features
present in the material and the geometric stiffness matrices from a linear buckling analysis in FEM.

Unfortunately, the presence of the exponential integral prohibits the analytical calculation of the eigen-
values of (4.31). Moreover, they are still a function of B and need to be minimized with respect to this param-
eter as well. Hence, a numerical procedure is adopted. The function "eig" from the Matlab software package
automatically solves the generalized eigenvalue problem with a Choleksy factorization of the matrix on the
RHS of (4.31). This is a standard algorithm when the both matrices in equation (4.31) are symmetric [71].
Minimization of τcr with respect to B is subsequently achieved with a brute force approach.

4.4. Quasi-Isotropic, Symmetric, Composite Shells
The analytical solution for isotropic shells is extended to quasi-isotropic, symmetric, composite cylindrical
shells by accounting for the more general formulation of the corresponding constitutive relations. The ap-
proach outlined in Figure 4.2 is still applicable, but the derivation of the membrane strain energy in Subsec-
tion 4.4.1 requires deriving the shell compatibility equation in a different manner. Furthermore, the formula-
tion of the bending strain energy in Subsection 4.4.2 becomes more complex because both the strain and the
stiffness tensor depend on the orientation of the reference frame while the number of bending stiffness terms
increases. Subsections 4.4.3 and 4.4.4 discuss the remaining procedure which remains mostly unchanged.

4.4.1. Membrane Strain Energy
An equation for the membrane strain energy Um is derived by combining (3.18) and (3.25) considering the
subscripts of the semi-geodesic polar coordinates which yields

Um = 1

2

Ï [(
a′

11N 2
r +2a′

12Nr Nθ+2a′
16Nr Nrθ+a′

22N 2
θ +2a′

26NθNrθ+a′
66N 2

rθ

)
r
]

dr dθ (4.32)

where a′
i j represent the compliance matrix elements expressed in the coordinate system r,θ. They are

determined by inverting the transformed extensional stiffness matrix A′ instead of the converted ABD′ ma-
trix because all elements of B′ are zero for symmetric laminates. Since the laminate stiffness properties are
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often calculated in the x, y reference frame illustrated in Figure 4.1, it is desirable to express the solution in
such coordinates. Thus, the transformation for fourth-order tensors from Section 3.9 must be applied to the
original extensional stiffness matrix A. Before doing so, A is simplified by noting that the relations between
the individual elements of A are the same for quasi-isotropic laminates and isotropic materials, i.e. there are
only 2 independent elastic constants.

A11 = A22 A16 = A26 = 0 A66 =
A11 − A12

2
(4.33)

Substituting these expressions in A, considering Voigt notation, and multiplying the obtained vector with
the transformation matrix T4D from (3.49c) returns

A = A′ =

A11 A12 0
A12 A11 0

0 0
A11−A12

2

 (4.34)

This result is expected because the in-plane stiffness properties of isotropic materials and quasi-isotropic
laminates are identical in every direction and consequently do not change when switching between different
reference frames. Due to A = A′, the compliance matrices a and a′ obtained through inversion are also equal.

a = a′ =


A11

A2
11−A2

12
− A12

A2
11−A2

12
0

− A12

A2
11−A2

12

A11

A2
11−A2

12
0

0 0 2
A11−A12

 (4.35)

Substituting the entries of (4.35) in equation (4.32) yields

Um = 1

2

Ï {[
A11

A2
11 − A2

12

(
N 2

r +N 2
θ +2N 2

rθ

)
−2

A12

A2
11 − A2

12

(
Nr Nθ−N 2

rθ

)]
r

}
dr dθ (4.36)

Just as in Section 4.3, the next step is to determine the stress resultants of Um in (4.36) for integration.
Again, the linear version of the compatibility equation (3.43) is formulated, and the compliance matrix ele-
ments are replaced with expressions from (4.35). Furthermore, the fourth-order derivatives are transformed
to the polar semi-geodesic coordinate system. Because the laminate is quasi-isotropic, the stiffness terms in
equation (4.37) are constant. If this was not the case, the governing PDE would have variable coefficients in
which case determining a solution is substantially more complex.
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The two terms in parentheses on the LHS of equation (4.37) may be rewritten as ∇4Φ. Bringing the A
matrix entries to the RHS and converting the partial derivative there as well yields

∇4Φ=− 1

R
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12
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[
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(
1

r

∂w

∂r
+ 1

r 2

∂2w

∂θ2

)
− sin2θ

(
1

r 2

∂w

∂θ
− 1

r

∂2w

∂r∂θ

)]
(4.38)

The only difference between the compatibility equations (4.11) and (4.38) are the respective stiffness
terms. In fact, it would have been equally valid to substitute the Young’s modulus of the isotropic material
with the equivalent in-plane laminate stiffness property of a quasi-isotropic composite Em , which is defined
in equation (4.39), to arrive at the expression in (4.38).

Em = A2
11 − A2

12

t A11
(4.39)

Consequently, the solution to the compatibility equation for the quasi-isotropic composite is given by
substituting equation (4.39) in the particular solution terms h0, h2, and h4 in (4.20) and (4.22) as well as
modifying the constants a0, a′

2, b′
2, a′

4, and b′
4 of the complementary solution in Appendix A.2 accordingly.
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4.4.2. Bending Strain Energy
A new expression for the bending strain energy contribution Ub is obtained by following the derivation of U
in Section 3.4, but with the subscripts r,θ instead of x, y .

Ub = 1

2

Ï [(
D ′

11κ
2
r r +2D ′

12κr rκθθ+4D ′
16κr rκrθ+D ′

22κ
2
θθ+4D ′

26κθθκrθ+4D ′
66κ

2
rθ

)
r
]

dr dθ (4.40)

Like in the previous segment, the stiffness tensor is rotated such that one can formulate the transformed
bending stiffness matrix components D ′

i j as a function of Di j . Additional relations between the bending
stiffness elements of quasi-isotropic laminates do not exist, so a simplification analogous to (4.33) is not
possible. As a consequence, the following transformation equations are more complex than those for the in-
plane relations. It is noted that they also incorporate the bending-twisting coupling terms D16 and D26 which
are often neglected in analytical solutions for reasons of simplicity as indicated by Kassapoglou [72].
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(4.41)

Combining the transformation matrix T2D, the strain-displacement relations (3.6), as well as the par-
tial derivatives (3.56), (3.57), and (3.58) allows determining expressions for the curvature contribution of the
strains in the polar semi-geodesic coordinate system.
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(4.42)

Substituting equations (4.41) and (4.42) back into (4.40) yields an equation that describes the bending
strain energy contribution with known terms that may be integrated.

4.4.3. Energy Contribution of External Forces
The most accurate quantification of the prebuckling membrane stress distribution contribution to the total
potential energy for a laminated composite would consist of calculating V for every ply and subsequently
adding up the energy of all laminas. However, the fact that the laminate is quasi-isotropic means that com-
puting V as expressed in equation (4.10) provides the same final energy quantity due to the assumption of a
pure membrane stress state in the prebuckling domain. Hence, equation (4.10) may be reused for the quasi-
isotropic case.
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4.4.4. Final Steps
At this point, expressions for Um , Ub , and V with known terms are available which can be integrated as de-
scribed in Subsection 4.3.7 to determine the total potential energy of the structure. Afterwards, the final steps,
i.e. the energy minimization with the Ritz method and the calculation of the eigenvalues with Matlab, remain
unchanged. Naturally, KM and KG feature different entries than for the isotropic shell. These are presented
in Appendix B. They simplify to the matrix elements of the isotropic solution when the equivalent stiffness
terms from equation (3.19) are substituted.

4.5. Shape Function Modification
It is desirable to define the shape function (4.1) in a more general form in order to capture structural behavior
that is more complex. This is useful when describing buckling modes of composite shells. Consequently,
the displacement function may be converted into a Fourier series in θ. Furthermore, Figure 2.8 suggests that
higher order terms of r may be required to describe the displacement field, so an improved shape function
should feature a power series in r . An appropriate double series is given by

w (r,θ) = e−Br
M∑

m=0

N∑
n=0

[
A2n (m)r mcos2nθ

]
(4.43)

where A2n (m) = A2n ,C2n ,E2n , . . . for m,n = 0,1,2, . . .. The original shape function is then obtained by
setting M = N = 1. As mentioned earlier, the energy of the system approximated with the Ritz method ap-
proaches the energy of the real solution if M and N tend to infinity. As such, solutions for displacement
functions that correspond to larger M and N are of interest for convergence studies.

First, it is assumed that N = 1 = const. so that the consequences of increasing M can be investigated.
Larger M result in higher powers of r in w (r,θ) and introduce additional undetermined Ritz coefficients.
Thus, the partial derivatives of the transformed equations for Ub and V contain higher order terms of r . The
same effect is observed for the RHS of the linear compatibility equation (4.11). Hence, the expressions for gm
change which in turn yields a new particular solution hm for the PDE as suggested by equation (4.19). The
complementary solution is only modified in so far as that the constants a0, a′

2, b′
2, a′

4, b′
4 have to offset the

new hm . Consequently, the coefficients ki j in equation (4.28) differ from their previous formulation. The
increased number of Ritz coefficients requires calculating more partial derivatives when minimizing the total
potential energy of the structure. Therefore, the dimensions of KM and KG grow depending on the value of
N . More specifically, these matrices are of the size (M +N +2)× (M +N +2). Overall, the solution procedure
does not require elaborate modifications if M is increased. However, one has to pay a higher price for the
calculation of eigenvalues and eigenvectors as the computational complexity of this procedure is of the order
O(n3) where n is the dimension of the matrices KM and KG.

Additional cosine terms are considered by setting M = 1 = const. while modifying N . Most of the observa-
tions made for the previous case hold true. A major difference is the fact that raising N by one adds another
gm term due to the nature of the disturbance function in the compatibility equation (4.11). Thus, the homo-
geneous solution (4.13) has to provide additional constants such that the force equilibrium at the cutout edge
is satisfied, i.e. one further ki j term is needed to define each stress resultant. Consequently, the difficulty of
determining the definite integrals increases significantly as a larger number of more complex integrals have
to be solved. For example, ∫ ∞

a

[
e−Br Ei(−Br )r−3

]
dr (4.44)

does not appear to be solvable analytically. Furthermore, the solution of∫ ∞

a

[
Ei(−Br )r−1

]
dr (4.45)

contains the generalized hypergeometric function hypergeom
(
i , j ,k

)
as well as the Euler-Mascheroni

constant γ. Even though these integrals can be evaluated numerically, they significantly add to the cost of
the analytical solution. Technically, they are also present when the shape function only features cos2θ, but
they do not appear in the final expression of the membrane strain energy because of identical terms with
opposite signs. Moreover, their inclusion leads to a very large equation for Um and consequently the size of
the matrix entries of KM increases considerably. As a result, the quality of the solution cannot be assessed in
a feasible manner which is why only the modification of the shape function with respect to r is discussed in
Chapters 6 and 7.



5
Finite Element Models

This chapter describes the design of the FE models that are used for the verification of the analysis presented
in Chapter 4. Section 5.1 focuses on the generation of the shell geometry including the cutout. Material prop-
erties of isotropic and composite cylindrical shells are presented in Section 5.2. The element type selection
as well as the shell discretization are subject of Section 5.3 while Section 5.4 covers the considered boundary
conditions. Finally, the three FE analysis procedures employed to predict the buckling of cylindrical shells
with circular cutouts are discussed in Section 5.5.

5.1. Geometry
The software Abaqus by Dassault Systèmes was chosen for all stages of a typical numerical analysis with FEM,
i.e. solving the governing matrix equations as well as pre- and post-processing.

Naturally, the first step is to create the geometry of the shell considering the circular opening. For this
purpose, a 3D cylindrical shell is generated by extruding a circle. Next, the body is cut with a solid tube whose
base is a circle the size of the cutout. Even though this does not result in a perfect curvilinear circular opening
which is modeled with the semi-geodesic polar coordinate system in the analytical solution, it is nonetheless
a very good approximation. An exemplary shell is depicted in Figure 5.1 where the partitions for meshing are
already visible.

Figure 5.1: A cylindrical shell with a circular cutout in Abaqus.

The buckling loads predicted by the analysis are compared with the results from Abaqus for certain shell
and cutout dimensions. Two different sets of geometric parameters are considered, one for the isotropic
cylindrical shells and one for the quasi-isotropic shells. Starnes [18] reported both experimental as well as
analytical results in his Ph.D. dissertation. These constitute a valuable data set for verification and validation

47
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purposes. Hence, it makes sense to size the FE cylindrical shells so that they match Starnes’ specimens. His
Mylar shells, which accounted for the vast majority of tested cylindrical shells, had a diameter of 8 inches. A
shell length of 203.2 mm is assumed so that a length-to-radius ratio of L/R = 2 is obtained. Table IV in Starnes’
dissertation provides further geometric properties which are used to compute the remaining geometric pa-
rameters. All configurations considered for isotropic cylindrical shells are summarized in Table 5.1.

L = 203.2 mm, R = 101.6 mm

R/t = 100 R/t = 200 R/t = 400 R/t = 800

No. a [mm] α [-] No. a [mm] α [-] No. a [mm] α [-] No. a [mm] α [-]

I1.1 1.017 0.1 I2.1 1.012 0.14 I3.1 1.017 0.2 I4.1 1.016 0.28
I1.2 2.034 0.2 I2.2 2.031 0.28 I3.2 2.034 0.4 I4.2 2.035 0.57
I1.3 3.052 0.3 I2.3 3.051 0.42 I3.3 4.069 0.8 I4.3 3.051 0.85
I1.4 4.069 0.4 I2.4 4.071 0.57 I3.4 6.092 1.2 I4.4 4.071 1.13
I1.5 6.103 0.6 I2.5 6.102 0.85 I3.5 8.104 1.6 I4.5 6.086 1.69
I1.6 8.138 0.8 I2.6 8.141 1.13 I3.6 10.17 2.0 I4.6 8.141 2.27
I1.7 10.17 1.0 I2.7 10.12 1.41 I3.7 14.25 2.8 I4.7 10.20 2.84
I1.8 12.18 1.2 I2.8 12.17 1.69 I3.8 16.26 3.2 I4.8 12.17 3.39
I1.9 14.20 1.4 I2.9 14.23 1.98 I3.9 18.28 3.6 I4.9 14.23 3.96

I1.10 16.21 1.6 I2.10 16.28 2.27 I3.10 20.34 4.0
I1.11 18.33 1.8 I2.11 18.26 2.54
I1.12 20.34 2.0 I2.12 20.39 2.84

Table 5.1: Geometric parameters for isotropic cylindrical shells.

The verification of the analytical results for quasi-isotropic, symmetric laminates is performed with the
shell dimensions that are presented in Table 5.2. They are practically identical to those listed in the previous
table but rounded to more appealing numbers.

L = 200 mm, R = 100 mm

R/t = 100 R/t = 200 R/t = 400 R/t = 800

No. a [mm] α [-] No. a [mm] α [-] No. a [mm] α [-] No. a [mm] α [-]

QI1.1 1.0 0.1 QI2.1 1.0 0.14 QI3.1 1.0 0.2 QI4.1 1.0 0.28
QI1.2 2.0 0.2 QI2.2 2.0 0.28 QI3.2 2.0 0.4 QI4.2 2.0 0.57
QI1.3 3.0 0.3 QI2.3 3.0 0.42 QI3.3 4.0 0.8 QI4.3 3.0 0.85
QI1.4 4.0 0.4 QI2.4 4.0 0.57 QI3.4 6.0 1.2 QI4.4 4.0 1.13
QI1.5 6.0 0.6 QI2.5 6.0 0.85 QI3.5 8.0 1.6 QI4.5 6.0 1.69
QI1.6 8.0 0.8 QI2.6 8.0 1.13 QI3.6 10.0 2.0 QI4.6 8.0 2.27
QI1.7 10.0 1.0 QI2.7 10.0 1.41 QI3.7 14.0 2.8 QI4.7 10.0 2.83
QI1.8 12.0 1.2 QI2.8 12.0 1.69 QI3.8 16.0 3.2 QI4.8 12.0 3.39
QI1.9 14.0 1.4 QI2.9 14.0 1.98 QI3.9 18.0 3.6 QI4.9 14.0 3.96

QI1.10 16.0 1.6 QI2.10 16.0 2.26 QI3.10 20.0 4.0
QI1.11 18.0 1.8 QI2.11 18.0 2.55
QI1.12 20.0 2.0 QI2.12 20.0 2.83

Table 5.2: Geometric parameters for composite shells.

5.2. Material Properties
The analysis in Chapter 4 is capable of estimating the buckling load for isotropic and quasi-isotropic com-
posite shells. Mylar is selected to represent the isotropic material in accordance with Starnes’ buckling tests,
whereas Hexcel IM7-8552 is the material of choice for the composite plies.

Starnes determined the modulus of elasticity of his Mylar specimens through experiments in a tensile
testing machine. He reported an average Young’s modulus of 7.25·105 psi. No measurements were conducted
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to specify the Poisson’s ratio ν. Instead, Starnes assumed ν = 0.3. Since he did not document the density of
the material, a value of ρMylar = 1.38 g/cm3 [73] is presumed. Even though Mylar does not feature all the
typical characteristics of an isotropic material, it will be idealized as one to remain consistent with Starnes’
assumptions. The material properties of the thermoplastic are given in Table 5.3.

E [MPa] ν [-] ρ [g/cm3]

4998.7 0.3 1.38

Table 5.3: Material properties of Mylar.

Hexcel IM7-8552 is a frequently used composite where carbon fibers are embedded in an epoxy matrix.
Its material properties were determined by Camanho et al. [74] according to ASTM standards as part of an
investigation on the damage propagation in notched laminates. They reported mean values for the elastic
in-plane properties but did not include any value for the average laminate density. However, they stated that
the average fiber volume fraction of their specimens was equal to 59.1%. Thus, the average ply density may be
approximated by assuming ρC F = 1.9 g/cm3 and ρE pox y = 1.3 g/cm3 for the density of carbon fiber and epoxy,
respectively. Furthermore, the definition of composite plies with engineering constants in Abaqus requires
information about out-of-plane properties. These are also not available and therefore estimated with the
relations in equation (5.1).

E2 = E3 G12 =G13 G23 =
G12

2
ν12 = ν13 ν23 = 2ν12 (5.1)

Even if the elastic out-of-plane properties are only approximated, their influence on the final buckling
load is negligible as explained in Section 5.3. Anyhow, the relevant material properties of Hexcel IM7-8552
are summarized in Table 5.4.

E1 [MPa] E2 [MPa] E3 [MPa] G12 [MPa] G13 [MPa] G23 [MPa]

171000 9080 9080 5300 5300 2650
ν12 [-] ν13 [-] ν23 [-] ρ [g/cm3]

0.32 0.32 0.64 1.654

Table 5.4: Material properties of Hexcel IM7-8552.

5.3. Element Types and Meshing
The shell geometry is idealized with S4R elements from the Abaqus element library. A number of cylindrical
shells are also discretized with S4 elements to evaluate its influence on the buckling load in Subsection 6.2.1.
S4 and S4R are general-purpose, conventional, finite-strain shell elements where each of the four nodes fea-
tures six DOFs. Their strain-displacement formulation approximates the Koiters-Sanders shell theory [75].
While the S4 element features four integration points, this number reduces to one for S4R elements. Conse-
quently, the S4 element is more computationally expensive, but in return not prone to hourglassing. However,
hourglass control is available for elements with reduced integration. In any case, both elements provide ac-
curate solutions to problems where thin and thick shells are modeled [76]. Transverse shear deformations
are negligible in thin shells, i.e. corresponding stiffness properties have little influence on the structural re-
sponse. Furthermore, conventional shell elements make use of the plane stress assumption which further
reduces the effect of out-of-plane stiffness properties.

To set up the calculation of the matrices presented in Section 5.5, the shell geometry has to be discretized.
From earlier discussions it is clear that rapidly varying stresses can be expected in the vicinity of the cutout.
Consequently, this area must feature a relatively fine mesh. Depending on the dimensions of the opening, a
square partition with an edge length of three or four times the size of the cutout diameter is created. The ver-
tical boundaries are extended until they intersect with the curves of the shell edges and the square partition
is split into eight parts as shown in Figure 5.1. Mesh seeds are introduced at the shell edges as well as on all
visible curves in the cutout vicinity. Seeds on lines that connect the boundary of the opening to the edges of
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the square partition feature a single bias of five towards the opening. All other mesh seeds are not biased. The
entire pre-processing is automated with custom Python scripts for all combinations of geometry, material
properties, element types, boundary conditions, and analysis procedures. Consequently, the exact number
of elements for a given seed can be calculated such that a prescribed mesh size is obtained at the edges of the
square partition. A structured mesh is created for the partition around the cutout while the mesh control is
set to ’free’ for the remaining shell geometry.

The final result is presented in Figure 5.2 considering a characteristic mesh size of 4.5 mm. The elements
in the vicinity of the cutout are small enough to capture the high stress gradients, and the remaining geometry
is meshed with sufficiently large elements as to not increase computational cost needlessly.

Figure 5.2: The discretized shell geometry.

5.4. Boundary Conditions
The boundary conditions applied to the shell are shown in Figure 5.3 for displacement- as well as force-
controlled loading. Clamped shell edges are modeled. Consequently, all nodal DOFs at the two shell edges
are restricted with the exception of U3 at the upper shell edge. The same is true for the reference point in the
case of force loading. In contrast, the cutout boundaries are not constrained and therefore they are able to
deform freely.

(a) Displacement loading. (b) Force loading.

Figure 5.3: Boundary conditions and different load applications.
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Usually, structures are loaded in displacement control mode so that more conclusive load-displacement
curves can be obtained. However, the analysis in Chapter 4 assumes a force control setting. Hence, both load
applications are modeled to investigate possible differences. Displacement-controlled loading is achieved by
applying a uniform displacement at the topmost row of nodes of the shell. In contrast, force loading is realized
by prescribing a concentrated force on a centrally located reference point and subsequently distributing the
load equally to the aforementioned node set with a kinematic coupling constraint. For both cases the load
application is purely axial, i.e. in negative z-direction in Figure 5.3.

5.5. Analysis Types
Several different numerical algorithms are available to predict buckling, each one of them with their distinct
advantages and drawbacks. To evaluate the performance of the solution procedure presented in Chapter 4,
a linear eigenvalue analysis is performed for direct comparison. Some shortcomings of a linear eigenvalue
analysis can be overcome with either a nonlinear static or a nonlinear dynamic simulation. Hence, these are
also considered. Furthermore, evaluating the predictions from the nonlinear procedures can provide addi-
tional insights regarding the mechanisms governing the buckling behavior of cylindrical shells with circular
cutouts.

5.5.1. Linear Eigenvalue Analysis
As stated earlier, a linear bifurcation analysis may be performed by solving an eigenvalue problem. Its output
is the point on the load-displacement curve where the equilibrium path bifurcates.(

KM +λn
crKG

)
un = 0 (5.2)

The variables in equation (5.2) are the material stiffness matrix KM, the n-th eigenvalues λn
cr, the geomet-

ric stiffness matrix KG, and the n-th eigenvectors un. The components of KM are determined with the strain-
displacement matrix B and the stiffness tensor C. B is constant for a given geometry when linear strains, i.e.
small displacements, are assumed. KG scales linearly with the applied load.

The problem is solved when an eigenvalue λn
cr causes the term in parentheses KM +λn

crKG, which is equal
to the stiffness matrix K, to become singular. The critical buckling load is then given by multiplying λn

cr with
the applied load. Hence, an arbitrary displacement or concentrated force may be prescribed, and the buck-
ling load can almost always be calculated. The eigenvectors un that correspond to the eigenvalues λn

cr can be
interpreted as the mode shapes of the buckled structure.

A limitation of the procedure is that buckling loads tend to be overestimated because a linear prebuckling
response is assumed. This is not necessarily the case for real structures, especially not for imperfection-
sensitive ones. Moreover, eigenvectors are not unique and therefore the displacement field, and as a result
the stress field, of the buckled structure can only be predicted as normalized quantities with unknown mag-
nitudes. Additionally, a linear buckling analysis is by definition not able to capture nonlinear effects.

Abaqus provides two eigenvalues extraction algorithms that approximate λn
cr, namely the Lanczos and

the subspace method. For most considered simulations less than 20 eigenvalues are requested in which case
it is recommended to use the subspace procedure [76].

5.5.2. Nonlinear Static Analysis
A static analysis is governed by

Ku = f (5.3)

where K = KM +KG is the tangent stiffness matrix, while u and f denote the displacement and external
force vector, respectively. Nonlinear behavior is modeled when B and C are not assumed to be constant.
The strain-displacement matrix then becomes a function of the displacement vector and the stiffness tensor
depends on the stress tensor τ. From the first modification it follows that the equilibrium equations are
satisfied on the deformed structure. The second nonlinearity allows modeling effects like plasticity. As a
result, displacement and stress fields obtained from nonlinear analyses are reasonably accurate if the model
accounts for the effects that govern the structural response.

Stating the obvious, the main difference between the linear eigenvalue and the nonlinear static analysis is
that nonlinear effects are considered. Any static or dynamic solver computes the structural response until the
initially prescribed load is reached, even if buckling has not occurred yet. Thus, the buckling load prediction
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from the linear eigenvalue analysis is typically used as an input for the nonlinear procedure to guarantee that
unstable behavior on the equilibrium path is encountered.

When predicting the buckling of cylindrical shells with nonlinear procedures, it is common practice to
introduce initial geometric imperfections in the shape of the eigenmodes from the linear eigenvalue analyses
into the model. Unless specifically mentioned, these are not included.

Again, one may choose between two algorithms that solve the nonlinear equation (5.3) for the displace-
ment vector u. The NR method is a gradient-based algorithm whereas the Riks method searches for new
equilibrium states in a circular arc around the base configuration. Both algorithms are initiated by applying a
load increment to the undeformed structure. Once the convergence criteria are met, i.e. as soon as the force
residual and the relative change of the displacement vector u are sufficiently small, the geometry is updated,
and the computation of the next increment commences. When the NR algorithm is used, individual incre-
ments are calculated as a fraction of the prescribed load. In contrast, an increment is computed in terms of
the arc length for the Riks method. Due to the gradient-based approach, the NR algorithm has difficulties
overcoming zero tangents, but the relation between the applied load and the current increment is straight-
forward. On the other hand, the Riks method can follow an equilibrium path regardless of any tangents with
the drawback that the relation between the applied load and a given increment cannot be known a priori.
Despite its shortcomings, the NR algorithm is chosen because the dynamic solver does not support the Riks
method.

Since static analyses do not account for time-dependent quantities, dynamic effects such as buckling
mode jumps or modal interactions cannot be captured. These also tend to prevent convergence unless addi-
tional measures are taken, for example the inclusion of artificial damping mechanisms. To reduce the number
of required convergence studies, numerical stabilization in nonlinear static analyses is not considered.

5.5.3. Nonlinear Dynamic Analysis
Any structural response may be described with the equation of motion in its most general form.

Ma+Cv+Ku = f (5.4)

In addition to the terms present in the static procedure, the mass matrix M, the damping matrix C, the ac-
celeration vector a, and the velocity vector v are introduced. Consequently, the effects of inertia and damping
can be quantified which can stabilize the structural response.

The algorithms that are available to solve equation (5.4) are usually classified as implicit and explicit.
An implicit nonlinear dynamic analysis solves the governing nonlinear equation through matrix inversion at
time t +∆t with information from t +∆t . As a result, implicit algorithms are unconditionally stable, but the
calculation of each time step is quite expensive. In contrast, the structural response at t+∆t is computed with
information from only t when an explicit scheme is employed. Therefore, errors are introduced which may
add up over time unless the time increment ∆t is sufficiently small. The advantage of an explicit procedure
is the reduced computational cost per time step. Since the maximum allowable ∆t is "approximately equal
to the time for an elastic wave to cross the smallest element dimension in the model" [75], and the element
size close to the cutout is very small, an implicit procedure is chosen because the time increment required for
convergence of the explicit algorithm becomes unreasonably small.

Time integration in Abaqus is by default based on a subset of the generalized α-scheme, namely the
Hilber-Hughes-Taylor method. When a quasi-static application is prescribed, the backward Euler operator is
employed. Damping can be incorporated by specifying C as a function of mass, stiffness, internal forces, or by
defining the parameters that control numerical damping. The approach mentioned last is the simplest one
and is therefore selected. Two different damping settings are considered to determine convergence, namely
a quasi-static application with linearly ramped loads and default damping properties as well as a moderate
dissipation application with linearly ramped loads in combination with maximum numerical damping for
the high frequency response, i.e. α=−1/3.

Since equation (5.4) contains the time derivatives a and v, structural behavior that previously led to con-
vergence problems can now be captured. In other words, buckling mode jumps and modal interactions are
accurately predicted for the modeled geometry.
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Isotropic Cylindrical Shells

Chapter 6 deals with the buckling behavior of isotropic cylindrical shells that contain circular cutouts. Results
obtained from the analytical procedure developed in Chapter 4 are presented in Section 6.1 and are compared
with predictions of Starnes [18]. Section 6.2 is concerned with evaluating numerical analyses for verification
purposes. In particular, buckling loads and mode shapes from FE simulations are contrasted with the analyt-
ical model. Additionally, the effects of initial geometric imperfections on the shell buckling resistance as well
as shell failure are investigated. The last part of the chapter, Section 6.3, relates both analytical and numerical
buckling load estimates to the experimental measurements published by Starnes.

6.1. Analytical Results
A first evaluation of the analytical results for the buckling stress τcr from equation (4.31) is performed by com-
paring the present method with the normalized buckling stresses reported by Starnes. For this purpose, four
different sets of analytical predictions are considered. One, the normalized buckling stresses determined by
employing the solution from Chapter 4 with the shape function suggested by Starnes (denoted as Analyti-
cal in the figures below). Two, the same as one, but with a modified displacement function where quadratic
terms of the radial coordinate r are included in the displacement function (Analytical extended). Three, the
normalized buckling stresses which have been reported by Starnes in his dissertation in Table IV (Starnes
Table). Four, the normalized buckling stresses computed with the matrix components presented by Starnes
in his Ph.D. dissertation on pages 50 to 53 (Starnes Matrix). The buckling stresses are normalized with the
classical buckling stress τcl of the pristine shell, see equation (3.63). All four cases are visualized in Figure 6.1
where the normalized buckling stress is plotted against the curvature parameter µ from equation (2.5).
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Figure 6.1: Analytical predictions for the normalized buckling stress of isotropic shells.
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As identified by Starnes and regardless of the solution method, the normalized buckling stresses all fall
onto a single curve as long as the horizontal axis is proportional to a/

p
Rt . Initially, increasing the cutout size

causes a significant decrease of the buckling stress. This rapid decline transitions to a range of µ where the
buckling load remains approximately constant independent of the radius of the circular opening. Interest-
ingly enough, if the cutout size is increased further, the shell appears to be able to carry more load once again
before it buckles.

Figure 6.1 raises two important questions. First, what is the reason for the discrepancy between the buck-
ling stresses predicted by Starnes’ solution and the estimates computed with the present method? Second,
why does the extended analytical solution not behave like the other solutions for small values of µ?

Focusing on the former concern first, an explanation can be found by looking at the derivation of the
eigenvalue problem, more specifically by inspecting the calculation of the boundary value problem coeffi-
cients. Starnes reported

b′
2 =

Et

4RB 3

[
A0e−B a

(
B 2a +B

)
− A2B 3a2Ei1 (B a)+C0e−B a

(
B 2a2 +2B a +2

)
−C2e−B a

(
B 2a2+B a

)]
(6.1)

whereas

b′
2 =

Et

4RB 3

[
A0e−B a

(
B 2a +B

)
− A2B 3a2Ei1 (B a)+C0e−B a

(
B 2a2 +2B a +2

)
−C2B 2a2e−B a

]
(6.2)

is obtained from the analysis in Chapter 4, see Appendix A.2. The underscored term in Starnes’ b′
2 is miss-

ing in equation (6.2). Other than that, Starnes’ membrane stress function terms k12 and k32 are equivalent to
those in Appendix A.3. Substituting equations (6.1) and (6.2) in the expressions for the corresponding stress
resultants demonstrates that the boundary conditions Nr (r = a) = 0 and Nrθ (r = a) = 0 are not satisfied by
Starnes’ version of b′

2. Consequently, his solution is offset by some value that depends on the product of the
decay parameter B and the cutout radius a.

Furthermore, Starnes’ solution for the particular solution term h0 is exactly negative of what is presented
in equation (4.20). The effects of these two differences are investigated by modifying the present solution ac-
cordingly, i.e. Starnes’ b′

2 as well as his alternative definition of h0 are incorporated in the analytical solution.
The new buckling stress predictions are computed and subsequently illustrated in Figure 6.2 which shows the
normalized buckling stress on the vertical and µ on the horizontal axis.
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Figure 6.2: Normalized buckling stress predictions after modification of the present solution.

Clearly, adding the extra term in b′
2 impacts the buckling stress estimates considerably. In contrast, alter-

ing h0 does not appear to have any effect. The latter is a direct consequence of the membrane strain energy
formulation in equation (4.4). All stress resultants are squared, and therefore the sign of h0 does not influence
the final expressions for the matrix components of KM and KG.
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Further insight can be gained by evaluating the different solution methods with respect to each other.
Figure 6.3 shows a plot where the normalized buckling stresses from Starnes’ Table IV are taken as a baseline.
Since Starnes rounded his results to the nearest one-hundredth, the apparent discontinuities for each curve
may be explained with a fluctuation of the reference values of up to 1%. It can be seen that Starnes’ results do
not coincide perfectly with the present adjusted analysis which is attributed to a number of smaller discrep-
ancies between the two solutions. In any case, it is evident that the additional term in b′

2 accounts for most
of the gap between the present analysis and Starnes’ version in Figure 6.1.
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Figure 6.3: Comparison between the different analytical solutions.

Figure 6.3 also verifies what has been suggested earlier when the Ritz method was introduced. Increasing
the DOFs of the shape function by adding extra powers of r leads to a lower buckling stress because the Ritz
method converges to the exact solution while overestimating the stiffness of the structure. Hence, the trend
from the standard to the extended analytical solution makes sense.

Coming back to the second question raised by Figure 6.1 regarding the reason for the low buckling stresses
predicted by the extended analytical solution when cylindrical shells with small µ are considered, it is helpful
to plot the buckling τcr stress as a function of the decay parameter B as depicted in Figure 6.4. Therein, the
functions of the two shells I1.2 and I1.6 from Table 5.1 are visualized.
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Figure 6.4: Buckling stress τcr versus decay parameter B .

While the curve representing the shell containing the larger cutout is smooth, the blue one features down-
wards spikes that appear to be somewhat out of place. These are the reason for the low buckling stresses
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observed in Figure 6.1. Even when the standard solution is considered, the matrices KM and KG are ill-
conditioned. The condition number for inversion, which is calculated as the ratio between the largest matrix
element and the smallest one, is of the order 108 for this case and certain products of B a. Incorporating
higher order terms of r in the displacement function w worsens the problem. For quadratic r terms, that is
M = 2 in equation (4.43), the worst-case condition number increases to approximately 1.5 ·1013. Since Mat-
lab uses 16 digits of precision by default [77], the number of significant digits is substantially reduced and the
computation of the eigenvalues is susceptible to numerical noise which manifests itself in the spikes depicted
in Figure 6.4. Adding even higher order terms of r in the displacement function exacerbates the issue such
that the calculated buckling stresses are meaningless regardless of the cutout radius. As a result, convergence
cannot be studied past quadratic terms of r or when the argument of the trigonometric function features a
factor of θ larger than two for the reasons discussed in Section 4.5.

Three options for overcoming the first restriction are increasing the numerical precision, choosing an
eigenvalue extraction algorithm that can cope with severely ill-conditioned matrices, and identifying the
problematic regions in Figure 6.4 in order to exclude them from the domain of admissible results. Increasing
the number of significant digits is not further investigated. Employing the QZ-algorithm instead of the stan-
dard procedure does not improve the numerical predictions even though the Matlab documentation suggests
otherwise [71]. One reason could be that documentation refers to a different type of condition number, in
particular the ratio between the largest and the smallest eigenvalue which is not an issue. Finally, limiting the
solution space does not resolve the underlying issue. Furthermore, it is not reliable because numerical noise
might deteriorate parts of the function τcr = f (B) where the global minimum would be found if no noise was
present.

Consequently, only the cases M = 1 and M = 2 can be considered for convergence. A reduction of the
buckling stress between 0.5% and 5.5% depending on the curvature parameter µ is observed which indi-
cates that the original displacement function is indeed a reasonable choice. Nevertheless, convergence is not
achieved for all possible shell configurations from Table 5.1.

One may also vary the input values of the Young’s modulus and the Poisson’s ratio to determine the sensi-
tivity of the solution to these variables. Altering the material stiffness does not have any effect on the nondi-
mensionalized buckling stresses. In other words, the plot in Figure 6.1 is always the output of the analysis
regardless of the choice of E . Hence, the results are independent of the Young’s modulus as should be ex-
pected when a nondimensionalization is performed. However, this is not the case for the Poisson’s ratio ν

as shown in Figure 6.5 which suggests that µ is not an appropriate choice for the nondimensional curvature
parameter. Since curvature is a geometric property, one might suspect that removing the dependency of µ
on ν resolves the issue. Still, plotting the nondimensional buckling stress against α yields a graph that is very
similar to Figure 6.5. Evidently, a nondimensional curvature parameter that maps all shell configurations
onto a single design curve is not yet available. Of course, a potential explanation for the dependency on ν is
the possibility that the analytical solution does not accurately model the shell response, but the results from
FE simulations indicate trends similar to those in Figure 6.5.
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Figure 6.5: Normalized buckling stress for various values of the Poisson’s ratio ν.
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6.2. Numerical Results and Verification
FE analyses for the shell configurations I1.1 to I1.12, I2.10 to I2.12, I4.8, and I4.9 from Table 5.1 are run to
verify the analytical results and to gain a better understanding of the buckling behavior of cylindrical shells
with circular cutouts. Three different types of numerical procedures are considered, namely linear bifurcation
analyses (LBA), nonlinear static (NLS), as well as a nonlinear dynamic (NLD) simulations.

Since the analytical solution predicts local buckling, the same phenomenon must be identified in the
numerical simulations. To make a distinction between local and global buckling, the idea of initial and max-
imum buckling is introduced. Initial buckling corresponds to the load step where a minimum tangent stiff-
ness is encountered for the first time. A relative threshold value invalidates negligible stiffness changes and
thereby eliminates the influence of numerical noise during the automated post-processing. When a tangent
stiffness of zero or less is calculated and the first condition has not been fulfilled yet, then initial buckling is
assumed to have occurred regardless. Maximum buckling simply refers to the limit load of the structure.

Consequently, one may distinguish between two cases. Either the requirements for initial and maximum
buckling are met simultaneously which suggests that the cylindrical shell buckles without experiencing a
stable local buckling configuration, or initial buckling is followed by maximum buckling which indicates that
the shell can be loaded after an initial loss of stiffness.

6.2.1. Comparison of Modeling Alternatives
Various modeling alternatives for the shell are assessed by comparing the respective buckling loads which
depend on mesh size, element type, load application, and, for dynamic simulations, damping. Hence, up
to 24 numerical analyses need to be performed per shell configuration and analysis type to account for all
possible permutations. To reduce this number, a reference model with S4R elements, displacement loading,
and default quasi-static damping settings is considered. The influence of each parameter is subsequently
evaluated by varying one setting with respect to the reference model. Thus, the number of required simula-
tions per shell configuration is reduced to either 9 or 12 depending on the analysis type. Mesh convergence is
not plotted in the figures below for reasons of clarity and conciseness. In short, only the smallest cutout size
demands a characteristic mesh size of 1 mm whereas a value of 2 mm is sufficient for all other cases.

A LBA cannot differentiate between initial and maximum buckling. Hence, the curves in Figure 6.6 pro-
vide all available and necessary information to investigate the effects of the element type and the load appli-
cation. Each curve is labeled with the used element, i.e. S4 or S4R, as well as the load application type, that is
D for displacement loading and F for force loading.

The numerical results for the models loaded with a uniform shell-end displacement agree well with each
other. In contrast, the buckling loads of the force-loaded cylindrical shells seem to diverge from the reference
model with increasing µ. The discontinuities in the curve representing the force-loaded shell correspond
to jumps between different ratios of R/t . Overall, the shells discretized with S4R elements and subjected to
a displacement load can be considered as representative of all modeling variants even though a maximum
relative difference of 4% is not ideal.
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Figure 6.6: Relative difference of initial/maximum buckling load estimates for various modeling alternatives considering a LBA.
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Figures 6.7 and 6.8 are concerned with the numerical predictions of nonlinear static analyses where a
distinction between initial and maximum buckling is required since the structural response is evidently not
the same. While the maximum buckling loads shown in Figure 6.8 are practically independent of element
type, load application and the curvature parameter µ, the same cannot be said for the initial buckling load
curves shown in Figure 6.7. Again, a change of the R/t ratio at µ = 2 and µ = 3 coincides with an increase of
the relative difference of the buckling loads. However, the maximum deviation is only approximately 2% and
therefore small enough to deem the predictions obtained from the model with S4R elements and displace-
ment loading as typical.
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Figure 6.7: Relative difference of initial buckling load estimates for various modeling alternatives considering a NLS simulation.
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Figure 6.8: Relative difference of maximum buckling load estimates for various modeling alternatives considering a NLS analysis.

As mentioned before, the nonlinear dynamic analyses include damping effects. Hence, a fourth curve is
added in Figures 6.9 and 6.10 which quantifies the influence of maximum numerical damping with respect
to the reference model that uses default quasi-static settings. The relative difference of the initial buckling
load displayed in Figure 6.9 follows similar trends as observed for the nonlinear static case, i.e. the variation
increases once shell configurations with different R/t are considered. In contrast to Figure 6.8, Figure 6.10
features an offset between shells subjected to displacement and force loading. While the NLS simulation
aborts when dynamic events occur because no numerical stabilization is used, the iterations of the NLD
procedure may converge and therefore postbuckling equilibrium configurations are calculated. To reach the
postbuckling domain, the reaction forces at the constrained nodes have to increase for force loading while
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this is not required for displacement loading which explains the higher maximum buckling loads of the curve
corresponding to the former case. Again, the largest relative difference of the two buckling load definitions is
about 2% and consequently the S4R model with displacement loading is representative of the other options.
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Figure 6.9: Relative difference of initial buckling load estimates for various modeling alternatives considering a NLD simulation.
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Figure 6.10: Relative difference of maximum buckling load estimates for various modeling alternatives considering a NLD analysis.

For every type of analysis, the buckling load predictions of cylindrical shells discretized with S4R ele-
ments and subjected to a uniform shell-end displacement yield reasonably close results compared to the
investigated alternatives. Hence, they are referred to in the following when numerical results are mentioned.

6.2.2. Buckling Loads
A comparison between the numerically obtained buckling loads and those predicted with the analytical so-
lution serves as a starting point for the verification of the method presented in Chapter 4. Figure 6.1 is repro-
duced and the results from the LBA, NLS, as well as the NLD analyses are added which yields the extra curves
in Figure 6.11. Here, the normalized buckling load is the ratio between the sum of all reaction forces at the
bottom shell edge at buckling Fcr and the classical buckling load Fcl which is computed by multiplying τcl with
2πRt . It has been stated before that a distinction between initial and maximum buckling is only meaningful
for the nonlinear simulations because the linear eigenvalue analyses cannot differentiate between the two
cases. Furthermore, the analytical solution assumes local buckling, so it should be evaluated with respect to



60 6. Isotropic Cylindrical Shells

this type of structural response. Unstable local buckling that immediately leads to global buckling cannot be
distinguished from global buckling without an unstable local buckling mode in Figure 6.11. However, stable
local buckling configurations are clearly visible as the curves for the nonlinear simulations separate.

Although the exact values differ for each analysis type, the numerical predictions in Figure 6.11 suggest
that the buckling load is initially constant, then drops off and finally reaches a level where it stabilizes again.
The buckling load that corresponds to this second plateau seems to depend on the R/t ratio of the respective
shell. Furthermore, the results of the nonlinear analyses coincide which indicates that dynamic effects do not
play a major role until the isotropic cylindrical shells buckle globally. Finally, the nonlinear procedures also
predict that a stable local buckling configuration exists beyond a certain value of the curvature parameter µ.

0 0.5 1 1.5 2 2.5 3 3.5 4
Curvature Parameter  [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
on

di
m

en
si

on
al

 B
uc

kl
in

g 
Lo

ad
 F

cr
/F

cl
 [-

]

Analytical
Analytical ext.
Starnes Table
FEM LBA
FEM NLS, ini
FEM NLS, max
FEM NLD, ini
FEM NLD, max

Figure 6.11: Normalized buckling loads of isotropic shells.

It is not surprising that the buckling loads of the LBA and the analytical solution follow similar trends
since an eigenvalue analysis is performed in both cases. Obviously, there is an offset between the LBA and the
analytical procedure which is more pronounced for extreme values ofµ. The higher buckling loads calculated
with the method presented in Chapter 4 are mainly caused by two limitations of the analysis. Firstly, the
prebuckling stress distribution in the shell is approximated with the flat plate solution of Kirsch [1] as stated
in Section 4.2 and therefore the stress field quantified by KG is underestimated. Consequently, the eigenvalues
that lead to critical stress states must be larger. Secondly, the Ritz method converges to the exact solution by
overestimating the stiffness of the structure which also increases the calculated buckling loads.

The large difference between the two methods for small µ is explained with the fact that the LBA antici-
pates the global buckling in this domain whereas the analytical procedure always prescribes local buckling.
Hence, local buckling constitutes a higher order buckling mode which naturally corresponds to higher critical
buckling loads. Predictions also diverge for large µ which are obtained by decreasing the shell wall thickness.
Apparently, the disproportional bending stiffness reduction promotes lower buckling loads which is coun-
terintuitive because the bending stress contribution decreases for smaller thicknesses t . Since the analytical
procedure does not capture the effects of bending stresses, it cannot predict this behavior.

Before comparing the nonlinear numerical simulations with the analytical solution, it is pointed out that
the relation between the LBA and the nonlinear procedures inverts at approximately µ = 0.65. This is sur-
prising because buckling loads obtained from nonlinear analyses are typically lower than those from a LBA.
Figure 6.12 illustrates the prebuckling stress distribution in terms of the von Mises stress shortly before ini-
tial buckling occurs assuming linear and nonlinear geometric behavior. The stress field predicted by a linear
static analysis yields some insight into the stress distribution considered by the LBA. As the curvature param-
eter increases, the maximum stress for the nonlinear analysis rises more rapidly because large displacements
in the cutout area cause additional bending stresses. The same out-of-plane deflections also reduce the axial
stiffness in the cutout region which results in a stress redistribution away from the opening as the cross-
section above and below the cutout becomes devoid of stresses for larger µ. Evidently, nonlinearities can play
an important role in the buckling behavior of shells with cutouts. The LBA cannot account for their influence
in KM and KG which leads to the aforementioned inversion of the buckling load in Figure 6.11.
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Geometrically Linear Geometrically Nonlinear

I1.4
(µ= 0.364)

I1.6
(µ= 0.728)

I1.10
(µ= 1.45)

I2.11
(µ= 2.31)

Figure 6.12: Prebuckling distribution of the von Mises stress as computed by geometrically linear and nonlinear procedures.
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Since the working principles of the LBA and the analytical procedure are similar, the differences between
the analytical solution and the nonlinear analyses can be explained with the ideas just described. Compared
to the LBA, constant nondimensional buckling loads are observed over a larger range of the curvature param-
eter µ as large displacements cause a stress redistribution inside the cylindrical shell. Again, there appears
to be some dependence of the nonlinear buckling loads on R/t which is more pronounced for initial than
for maximum buckling. This suggests that the global buckling configuration is less sensitive to the emerging
displacement and stress fields.

Additionally, the analytical solution is assessed with respect to its ability to predict buckling loads when
material parameters are changed. Since the normalized buckling loads are independent of the Young’s mod-
ulus, the Poisson’s ratio is varied. More specifically, numerical simulations with the limiting cases of ν = 0
and ν= 0.5 as well as ν= 0.3 are run. The results are plotted in Figure 6.13. Like the analytical buckling load
estimates, the FE analyses indicate the normalized buckling loads do not fall onto a single curve. This con-
firms that the curvature parameter µ and its dependence on ν is not an effective parameter when the goal
is to obtain an unambiguous design curve from which the engineer can predict the buckling load of a real
structure by multiplying the nondimensional parameter with material constants and geometric properties.
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Figure 6.13: Effect of the Poisson’s ratio on the normalized maximum buckling loads.

The trends in Figure 6.13 are not identical for different values of ν when comparing the considered anal-
ysis types. In fact, one obtains a different order of buckling loads sorted from highest to lowest that depends
on the Poisson’s ratio for the linear and nonlinear analyses. For example, the nonlinear simulations indicate
that the buckling load is at its maximum when the material is incompressible whereas the opposite is the case
according to the analytical solution. Moreover, there are some trend inversions for the LBA as well as the NLS
and NLD procedures. Consequently, it is questionable whether the method presented in Chapter 4 is suitable
for comparing materials with different values of the Poisson’s ratio.

6.2.3. Buckling Mode Shapes
A second output of the generalized eigenvalue problem are eigenvectors which are typically interpreted as
the displacement pattern at buckling. Again, the working principles of the analytical solution and the LBA
are very similar as buckling mode shapes are predicted in the same way. Eigenvectors can be scaled to an
arbitrary length which means that even though the displacement patterns are represented accurately within
the limitations of a linear buckling analysis, their amplitude is impossible to determine. In most cases the
magnitude of the largest deflection is normalized to unity and all other displacements are adjusted accord-
ingly.

Figure 6.14 shows the buckling mode shapes obtained from various analyses. AN1 and AN2 refer to the
analytical solution and its extended version, respectively. The displacement patterns of the LBA correspond
to the lowest calculated eigenvalue. One should note that the gap between the first and second lowest eigen-
value of the LBA decreases as the curvature parameter µ becomes smaller. Closely spaced eigenvalues are
often observed in LBAs for pristine cylindrical shells which buckle globally. A tendency towards global dis-



6.2. Numerical Results and Verification 63

placement pattern is also observed for shells with small cutouts which explains this phenomenon as multiple,
somewhat global, buckling configurations yield similar buckling loads.

I1.4
(µ= 0.364)

I1.6
(µ= 0.728)

I1.10
(µ= 1.45)

I2.11
(µ= 2.31)

AN1

AN2

LBA

Figure 6.14: Initial buckling patterns of isotropic shells.

Unsurprisingly, the buckling mode shapes of the analytical procedure are restricted to the cutout vicinity.
Adding an extra r term in the shape function improves the displacement pattern for large µ but dampens
the deflections above and below the opening compared to the LBA. Overall, the buckling patterns of the lin-
ear procedures are relatively similar if µ is above a certain threshold value. When the curvature parameter is
small, then the LBA buckling mode shape becomes more global even though the highest displacement ampli-
tudes are still located at the cutout edge. Furthermore, the estimated buckling patterns are clearly dominated
by the destabilizing effects of compressive stresses since the highest deflection amplitudes are located where
stress concentrations are expected.

6.2.4. Buckling Mode Shape Evolution
To better understand the mechanisms that govern the buckling behavior of cylindrical shells with circular
cutouts, the process of buckling itself is investigated in more detail. The numerical nonlinear dynamic pro-
cedure is the most general of the considered analysis types and therefore evaluated in this subsection. Load-
displacement curves such as those shown in Figure 6.15 provide some insight into the shell response when
the structure is subjected to a uniform end shortening. The axial reaction force at the bottom of the shell RF3
and the axial displacements at the top of the shell U3 are normalized with quantities derived from the clas-
sical buckling stress τcl assuming linear relations. Fcl has been defined at the beginning of Subsection 6.2.2.
The reference buckling displacement ucl is calculated with equation (6.3).

ucl =
1√

3
(
1−ν2

) Lt

R
(6.3)

Figure 6.15 suggests that nonlinear geometric effects influence the shell response more and more as the
curvature parameter µ increases. Shells with small cutouts deform linearly until a maximum load is reached
and lose a considerable percentage of their load-carrying capability afterwards. Cylindrical shells with larger
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µ exhibit a configuration where the structural stiffness is significantly reduced. However, this event is not
critical as the cylindrical shell recovers part of its initial stiffness and can be loaded further until a second
stiffness loss occurs. Both the initial and the maximum load at which a loss of stiffness is observed decreases
when the value of µ is increased.
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Figure 6.15: Normalized load-displacement curves for various isotropic shells.

Naturally, one would expect that some sort of buckling can be observed at these characteristic points.
Hence, radial displacements scaled up by factor five are depicted in Figure 6.16 as a measure of the out-of-
plane deformation to verify this suspicion. Images labeled with an A are taken in the prebuckling domain.
The letter B refers to equilibrium states where large displacements are limited to the cutout area, i.e. local
buckling. C denotes the displacement field just before global buckling and D indicates the global buckling
pattern. For reference, the maximum displacements at local buckling correspond to deformations inwards
equal to 1.73 mm, 3.80 mm, and 2.64 mm for the shells I1.6, I.10, and I2.11, respectively. It should be noted
that shell I2.11 is only half as thick as the other ones. After global buckling, the maximum displacements are
2.25 mm, 2.39 mm (both outwards), 8.30 mm, and 5.32 mm (both inwards). Shells with small openings do
not buckle locally and therefore the related field is empty for shell I1.4 in Figure 6.16.

The shape of the prebuckling configuration A in Figure 6.16 looks relatively similar for all shells and it is
conceivable how the local buckling mode B of shells I1.6, I1.10, and I2.11 emerges. However, it is difficult to
extrapolate from the shape of A to the global buckling displacement pattern D . When comparing the buckling
mode evolution of shell I1.6 with its initial and maximum buckling load in Figure 6.11 as well as with the load-
displacement curve in Figure 6.15, one can see that the critical loads for local and global buckling are almost
indistinguishable. The shell also buckles globally shortly after the onset of local buckling, the prebuckling
response is almost completely linear, and the displacement pattern of the global buckling configuration of
shell I1.6 is similar to that of I1.4. Additionally, the growth of the out-of-plane deflection from state B to
C is negligible. Starnes suggested in his Ph.D. dissertation [18] that global buckling for certain values of the
curvature parameterµ is triggered by the disturbance of the stress redistribution at the onset of local buckling.
The present data for shell I1.6 supports this conclusion. Thus, predicting local buckling in this domain is
equivalent to determining the global buckling load of the cylindrical shell.

Increasing µ further significantly changes the buckling behavior of the cylindrical shells. The local buck-
ling configurations in rows B and C become stable as the initial and maximum buckling loads in Figure 6.11
separate. The same information can be obtained from the load-displacement curve in Figure 6.15. Further-
more, the local buckling pattern evolves as the two buckles above and below the cutout split horizontally into
two parts. In addition, the out-of-plane displacement amplitude grows to a great extent from state B to C for
the shells I1.10 and I2.11. As a result, the structure buckles globally when the individual buckles interfere with
each other which yields the global buckling configuration in row D .

Figure 6.16 also allows relating the linear buckling mode shapes from Figure 6.14 to the nonlinear ones. In
fact, the displacement patterns obtained from the NLD procedure differ considerably from the linear eigen-
value analyses. Small openings trigger a global buckling configuration that is only marginally influenced by
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the presence of a cutout. Apparently, the influence of geometric nonlinearities relieves the severity of the
stress field in the area around the opening if the cutout is sufficiently small which explains the different buck-
ling modes for small µ. The transition from global to local buckling features a symmetric mode shape that
is not predicted by the linear eigenvalue analyses. Buckling mode shapes for larger curvature parameters re-
semble those of the linear procedures in the sense that the largest displacement amplitudes can be found on
the left and the right side of the opening where stress concentration peaks are located. However, the nonlinear
simulations indicate that four additional diamond-shaped buckles are positioned around the cutout.
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(µ= 0.364)

I1.6
(µ= 0.728)

I1.10
(µ= 1.45)

I2.11
(µ= 2.31)

A

B

C

D

Figure 6.16: Radial displacements amplified by factor 5 during loading (A), at stable local buckling (B), before (C), and after (D) global
buckling of isotropic shells.

6.2.5. Initial Geometric Imperfections
It is well known that pristine cylindrical shells are sensitive to initial geometric imperfections. Different kinds
of imperfections have already been discussed in Subsection 2.3.4 where their respective influence on the
buckling behavior of shells with and without cutouts is quantified in Table 2.1. Incorporating thickness vari-
ations and nonuniform loading usually requires imperfection data measured on real specimens. Generally
speaking, the same is true for mid-surface variations, but a popular approach is to assume them in the shape
of buckling mode shapes as it is presumed that these imperfections are the most detrimental to the structure’s
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buckling resistance. Hence, mid-surface variations are introduced in the NLD analyses by superimposing the
displacement patterns obtained from the LBA and scaling them relative to the shell wall thickness.

Comparing the buckling patterns in Figures 6.14 and 6.16 indicates that the predictions from the LBA
do not necessarily agree with the NLD procedure. However, higher order buckling mode shapes calculated
with the LBA are reasonably similar to the displacement patterns computed with NLD analyses. Criteria for
the selecting mode shapes are their type (local or global) as well as position, number, and orientation of
buckling waves. Global buckling displacement fields are considered for the shells I1.4 and I1.6 since they
buckle without experiencing a stable local buckling configuration. Shell 1.10 exhibits stable local and global
buckling which is why displacement patterns for both instabilities are introduced.

Nondimensional load-displacement curves are displayed in Figure 6.17 for shell I1.4 and varying imper-
fection amplitudes. Raising the imperfection amplitude results in a continuous and significant reduction of
the buckling load where the shape of the load-displacement curve only starts to deviate from the ideal refer-
ence shell when relatively large imperfection amplitudes are taken into account.
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Figure 6.17: Normalized load-displacement curves considering an imperfect geometry of shell I1.4 (µ= 0.364).

A similar effect can be observed for slightly larger cutouts in Figure 6.18 where the unstable local buckling
event acts as a threshold until the imperfection amplitude is sufficiently large. An identical imperfection
amplitude as in the previous case results in less of a buckling load reduction, see Table 6.1.
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Figure 6.18: Normalized load-displacement curves considering an imperfect geometry of shell I1.6 (µ= 0.728).
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Comparing mid-surface imperfections in the shape of local and global buckling modes is interesting since
the load-displacements curves in Figures 6.19 and 6.20 differ greatly. Imperfections that resemble the local
buckling pattern have practically no influence on the buckling load as shown in Figure 6.19. It is probably
unrealistic that imperfections increase the buckling load of a structure, but this result shows that certain
imperfection shapes are less detrimental than others. An explanation for low sensitivity of the shell response
to local buckling mode imperfection could be the natural presence of this imperfection shape due to the
growth of large out-of-plane displacements in the vicinity of the cutout.
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Figure 6.19: Normalized load-displacement curves considering an imperfection in the shape of the local buckling mode for shell I1.10
(µ= 1.45).

In contrast, imperfections that correspond to the global buckling mode lead to load-displacement curves
more akin to those in Figures 6.17 and 6.18. However, this type of imperfection completely changes the buck-
ling behavior of the cylindrical shell as the stable local buckling configuration ceases to exist for an imper-
fection amplitude of 5%. It returns for larger amplitudes, but the maximum sustainable buckling load is
reduced considerably which suggests that the overall shell response is completely different than that of the
ideal reference shell. As such, it could be the case that a suboptimal imperfection shape was selected, but the
importance of the corresponding choice is once again highlighted.
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Figure 6.20: Normalized load-displacement curves considering an imperfection in the shape of the global buckling mode for shell I1.10
(µ= 1.45).
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The normalized (Norm.) maximum buckling loads from the above figures are summarized in Table 6.1.
Additionally, the relative (Rel.) change with respect to the buckling load of the ideal shell is listed. Consider-
ing the limited number of data points and the fact that the mid-surface imperfection patterns vary with the
cutout size, the overall results of this brief investigation on the influence of imperfections on the buckling be-
havior of cylindrical shells with cutouts are somewhat inconclusive. The sensitivity of the buckling load with
respect to a given imperfection amplitude decreases with increasing µ as long as imperfections in the shape
of the initial buckling configurations are incorporated in the nonlinear simulation. Furthermore, imperfec-
tions can theoretically increase the maximum buckling load as indicated in Table 2.1. Whether imperfections
in the form of local or global buckling modes are assumed heavily influences the numerical predictions.

Imperfection
Amplitude [-]

I1.4
(µ= 0.364)

I1.6
(µ= 0.728)

I1.10, local
(µ= 1.45)

I1.10, global
(µ= 1.45)

Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-]

0% 0.877 100% 0.777 100% 0.708 100% 0.708 100%
5% 0.784 89.4% 0.776 99.8% 0.708 100% 0.694 98.0%

10% 0.683 77.9% 0.774 99.6% 0.708 100% 0.574 81.1%
20% 0.561 64.0% 0.682 88.3% 0.709 100.1% 0.538 76.0%
50% 0.470 53.6% 0.559 71.9% 0.711 100.4% 0.455 64.3%

Table 6.1: Normalized and relative maximum buckling loads for several isotropic shells and imperfection amplitudes.

6.2.6. Shell Failure
Up to this point, one of the main concerns has been estimating the limit load of isotropic cylindrical shells
with cutouts due to buckling. It is then interesting to evaluate whether the buckling load is reached before the
structure fails because it exceeds the material strength to determine which of these cases is critical and drives
the design. Hence, the concept of Figure 6.16 is repurposed to indicate the current stress level in the shell.
Mylar is a ductile material and therefore a reasonable choice for the stress measure is the von Mises stress.

Before discussing aspects of strength in more detail, Figure 6.21 yields some insight regarding the as-
sumption related to equation (4.26) which states that the in-plane stress resultants far away from the cutout
are negligible. Row B shows that this is a reasonable approximation, but the stresses are not actually equal to
zero. As a consequence, the assumption associated with equation (4.26) introduces a small error in the an-
alytical solution. It would be more accurate to prescribe a far-field stress that is equal to the buckling stress.
However, this cannot be realized without an iterative solution process because the buckling load is not known
before the analysis is performed. Additionally, the formulation of the eigenvalue problem requires splitting
the stiffness matrix into two parts where one scales with the applied load which renders the described bound-
ary condition obsolete.

Figure 6.21 also shows that the stress maxima are found on the left and right side of the cutout regardless
of whether the shell is being loaded or in the process of buckling. The opening acts as a stress raiser which ex-
plains these positions. Another contributing factor for the observed location of maximum stress are bending
stresses which become more significant as the out-of-plane deflections grow with increasing µ.

The prebuckling stress distribution depicted in Figure 6.12 is equivalent to row A in Figure 6.21. Hence,
the previously discussed effects that are observed before any sort of buckling event occurs are also visible
here. In addition, it may be noted that bending stresses divide the stress field above and below the cutout
into two parts as their share of the total stress at a given point increases with larger µ. Shell configurations
with stable local buckling modes feature four buckles compared to the two for unstable local buckling. It
seems like the split of the stress field in the prebuckling domain is a good indicator as to what type of local
buckling mode can be expected if the cylindrical shell is loaded further.

Furthermore, the stress redistribution associated with local buckling is visualized in row B of Figure 6.21.
The character of the stress field changes dramatically compared to row A. While the cutout area remains
heavily loaded, regions further away from the opening that were previously unstressed start to contribute to
the load transfer in the shell. The stress field after global buckling depends on whether a stable local buckling
configuration exists for a given shell. If it does not, then unstable local buckling leads to a stress distribution
that is comparable to that of the cylindrical shell that fails globally without any kind of local buckling.
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Figure 6.21: Von Mises stress distribution in isotropic shells during loading (A), at local buckling (B), before (C), and after (D) global
buckling.
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The maximum von Mises stresses from Figure 6.21 are quantified in Table 6.2.

I1.4
(µ= 0.364)

I1.6
(µ= 0.728)

I1.10
(µ= 1.45)

I2.11
(µ= 2.31)

A 108.6 MPa 159.7 MPa 154.9 MPa 68.4 MPa
B 185.7 MPa 174.4 MPa 72.4 MPa
C 119.5 MPa 143.8 MPa 183.7 MPa 74.3 MPa
D 162.0 MPa 194.9 MPa 120.7 MPa 51.4 MPa

Table 6.2: Maximum von Mises stress during loading (A), at local buckling (B), before (C), and after (D) global buckling.

Reference [73] recommends using the stress at 1% offset of 115.8 MPa for structures that are loaded in
compression since Mylar does not yield. The ultimate compressive stress is reported as 206 MPa. Hence,
buckling is critical for shells I1.4, I1.6, and I1.10 while strength is not a concern. Neither buckling nor strength
drives the design of the thinner shells (I2.xx, I3.xx, I4.xx) from Table 5.1.

6.3. Experimental Results and Validation
Finally, the analytical and numerical predictions are validated with the experimental buckling loads that
Starnes reported in his Ph.D. dissertation [18]. Testing is influenced by numerous factors and therefore it is
not surprising that no distinct curves, but rather a scatter band of the maximum buckling loads was obtained.
Additionally, Starnes documented the force at which local and global buckling was observed for some exper-
imental setups and shell configurations. In particular, the results for Starnes’ shells 6, 17, and 20 are relevant
because the boundary conditions and load application of these specimens are similar to those described in
Chapter 5. Adding the buckling data of all shells to Figure 6.11 makes the plot somewhat convoluted. There-
fore, only the local and global buckling loads of shell 6 are included in Figure 6.22.
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Figure 6.22: Normalized buckling loads of isotropic shells including experimental data.

Clearly, there are significant discrepancies between the buckling load predictions presented in this chap-
ter and the experimental measurements by Starnes. Starting with a comparison between the analytical solu-
tion and the test data, it has already been argued that the analysis from Chapter 4 is based on some simplifying
assumptions, e.g. the prebuckling behavior is linearized and the corresponding stress field is idealized with
that of a flat plate. Furthermore, the shape function always predicts local buckling and therefore the buckling
load estimates for small µ are overly conservative since the actual structure buckles globally as if no opening
was present. The application of the Ritz method also introduces an error as the procedure approaches the
exact solution while overestimating the stiffness of the structure. A quantification of this error is difficult be-
cause the infinite series for the displacement function is terminated rather early. Consequently, no conclusive
convergence study of the analytical buckling load predictions could be performed.
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The LBA shares the limitation of linearizing the shell prebuckling response with the analytical solution
which is not necessarily a reasonable assumption since Starnes observed large deformations for sufficiently
large cutouts. Figure 6.16 shows that these nonlinear geometric effects are also predicted by the nonlinear FE
procedures. Hence, the proximity of the black and green curves in Figure 6.22 is, to some extent, the result of
chance. Nonetheless, the linear eigenvalue analyses capture the general response trends of the real structure,
i.e. an initial reduction of the buckling load which levels off when the curvature parameter, or the cutout
size, becomes sufficiently large. The discontinuities of the buckling load curve at µ = 1.8 and µ = 2.8 have
already been explained with the modification of the shell geometry. The wall thickness of Shell 6 is constant,
so abrupt changes in the buckling load curve due to changing bending stress contributions should not occur.

Normally, one would expect that the NLS and NLD procedures provide estimates closer to the exper-
imental measurements than the LBA. While the nonlinear algorithms seem to predict the emergence of a
stable local buckling mode for the same value of µ, the normalized buckling loads differ greatly from the test
data. Thus, the general buckling behavior of the cylindrical shells seems to be captured. Yet, some modeling
choices cause the nonlinear numerical buckling load predictions to be unconservative.

Mylar has been idealized as an isotropic material, but the data sheet [73] indicates that it would be more
accurate to treat its constitutive relations as transversely isotropic. Transverse stiffness is positively correlated
with buckling resistance and therefore it is suspected that changing the material properties could account for
some of the discrepancy between numerical and experimental predictions. Also, the length-to-radius ratio in
the FE models is slightly smaller than the one that Starnes reported for Shell 6. Figure 2.16 suggests that this
corresponds to a buckling load reduction with respect to the pristine shell of approximately five percentage
points.

It has been mentioned before that cylindrical shells with cutouts buckle globally when the opening is suf-
ficiently small. Hence, the initial slope of the experimental data curve in Figure 6.22 is zero as the buckling
behavior is independent of the cutout size. It is well known that shell buckling is dominated by initial geo-
metric imperfections in the structure. These are not modeled except in Subsection 6.2.5 and therefore these
effects are not accounted for in the numerical results.

Incorporating the effects of mid-surface imperfections may explain some of the discrepancies between
the nonlinear numerical and the experimental results. Of course, one could conclude from Table 6.1 that
a sufficiently large imperfection amplitude is the reason for the entire gap. However, Starnes’ specimens are
described as being of high quality by Jullien et al. [25]. Hence, it is more likely that the low experimental buck-
ling loads are the result of some other type of imperfection, namely nonuniform loading. Table 2.1 suggests
that this imperfection may have a major impact on the sustainable load that cylindrical shells with cutouts
can carry before they buckle. In fact, Starnes manufactured his shells from roll stock sheets that were cut
to size and placed on a mandrel. Subsequently, an adhesive material was applied to bond the circumferen-
tial shell ends with a lap joint. Naturally, the stiffness of this cross-sectional area differs from the rest of the
shell and therefore the assumption of a uniform load introduction in the structure may be overly simplify-
ing. More importantly, Starnes also reported that load misalignments could result in significantly reduced
buckling loads.

As such, idealizing shells with circular cutouts as perfect structures enables the engineer to estimate the
type of buckling, i.e. global, unstable, or stable local buckling, but accurately predicting buckling loads re-
quires precise information about the real geometry. In this sense the analytical solution serves the same
purpose as the numerical simulations because its outputs are qualitatively correct which makes it suitable
for preliminary design applications.





7
Quasi-Isotropic, Symmetric, Composite

Cylindrical Shells

The investigation of the buckling behavior of isotropic cylindrical shells with cutouts from the previous chap-
ter is extended to quasi-isotropic, symmetric, composite shells on the following pages. After a brief discussion
on the choice of a suitable curvature parameter in Section 7.1, the predictions from the modified analytical
solution are presented in Section 7.2. Three different laminate stacking sequences are considered, namely
[0,±45,90]S, [±45,0,90]S, and [90,±45,0]S. The analytical results are verified with numerical simulations in
Section 7.3 which covers the influence of the cutout on buckling loads, buckling patterns, shell failure, as well
as the effects of initial geometric imperfections.

7.1. Curvature Parameters
Several nondimensional curvature parameters have been introduced in Chapter 2, namely Lur’e’s α in equa-
tion (2.3) which is based on geometric quantities only, Lekkerkerker’s µ in (2.5) which also accounts for the
material properties of isotropic cylindrical shells, and finally Hilburger’s C in equation (2.19) which fulfills the
same purpose as µ, but for composite cylindrical shells. Since many plots in Chapter 6 feature µ, an appro-
priate curvature parameter for composites has to be selected. C is an intuitive choice, but the context of its
derivation differs from that of µ. An equivalent expression for the µ of composite cylindrical shells should
be obtained by following the same approach that Lekkerkerker used to arrive at equation (2.4). Since such a
derivation is out of scope, it is noted that the expression for µ of isotropic materials is similar to that of the
Batdorf parameter Z in equation (3.64). Assuming that the relation between µ and Z should remain the same
for composite cylindrical shells yields

µ= 1

2
4

√√√√ A11 A22 − A2
12

A11

√
D11D22

ap
R

(7.1)

after modifying the equivalent Batdorf parameter of a composite shell as given by Nemeth et al. [67]
accordingly. The new expression for µ in terms of C is given by

µ= 1

4
4p

12 8

√
A22

A11

p
C (7.2)

when equating the circumferential width of the circular and the rectangular cutout (2a = b). If further-
more A11 = A22, then the ratio betweenµ and

p
C is approximately 0.4653. The factor 1/

p
t fromα is implicitly

included in µ as the bending stiffness terms scale with t 3 whereas the membrane ones are proportional to t .
The investigation on the influence of ν on the buckling load predictions with analytical and numerical

methods in Figures 6.5 and 6.13 suggests that the isotropic µ is not an ideal choice for the nondimensional
curvature parameter because the normalized buckling loads are not mapped onto a single design curve. By
extension, it should not be expected that the composite µmeets this criterion. However, defining it according
to equation (7.1) allows drawing some parallels with the results from the previous chapter.

73
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7.2. Analytical Results
After adapting the analytical solution as described in Section 4.4, it is possible to estimate the buckling loads
of quasi-isotropic, symmetric, composite cylindrical shells with circular cutouts. The curvature parameter µ
from equation (2.5) is replaced with the expression given in (7.1). Furthermore, the equation for the classical
buckling stress in (3.63) is not valid for composite cylindrical shells. Instead, the analytical and numerical
results are normalized with τcl from equation (3.66) as derived by Nemeth et al. [67]. Table 7.1 summarizes
the buckling stresses calculated with this method for the pristine reference shells. Naturally, the ply stacking
sequence becomes an additional design variable.

[0,±45,90]S [±45,0,90]S [90,±45,0]S

R/t [-] m [-] n [-] τcl [MPa] m [-] n [-] τcl [MPa] m [-] n [-] τcl [MPa]

100 1 6 273.5 1 5 363.5 14 0 250.4
200 1 7 131.9 1 6 178.7 20 0 125.1
400 1 8 65.30 1 8 86.23 29 0 62.48
800 1 10 32.10 1 9 42.28 41 0 31.24

Table 7.1: Number of buckling waves m and n as well as the corresponding buckling stresses for pristine composite shells.

Appendix B presents the matrix elements that govern the generalized eigenvalue problem for composite
cylindrical shells. Since these are populated differently than the matrix entries for the analysis of isotropic
cylindrical shells, only M = N = 1 in the general shape function (4.43) provides meaningful results due to the
effects of ill-conditioned matrices for the case of additional r terms.

Figure 7.1 plots the analytical buckling stress τcr normalized with the reference stress τcl against the new
curvature parameter µ for each layup and R/t combination. One can see that the data points for different
values of R/t do not coincide when the laminate stacking sequence is either [0,±45,90]S or [±45,0,90]S. The
separation is not the result of the modified constitutive relations. Instead, it is caused by the buckling stresses
that are used to normalize the analytical predictions. Comparing the latter in Table 7.1 for the first two lami-
nates reveals that halving the shell thickness reduces the buckling stress by a factor that is slightly larger than
two. However, the analytical buckling stress for the shell with a cutout is exactly halved when R/t is dou-
bled. Only when the buckling mode of the pristine reference shell is axisymmetric, i.e. n = 0 which is also
assumed during the derivation of the buckling stress of isotropic cylindrical shells, the two values change
proportionally so that a single curve is obtained as for the layup [90,±45,0]S.
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Figure 7.1: Analytically predicted normalized buckling stresses for quasi-isotropic laminates.

The [0,±45,90]S laminate appears to be the most sensitive to an increase of the cutout size, followed
by the [±45,0,90]S layup and finally the composite with a [90,±45,0]S stacking sequence. Initially, the last
one provides a low buckling resistance, but it is able to deal with larger cutout sizes more efficiently. As for
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isotropic materials, the buckling stress decreases rapidly at first and then stabilizes at approximately µ = 2.
If the curvature parameter is sufficiently large, a small increase in the normalized buckling stress is observed
again. The normalized buckling stress of the [0,±45,90]S layup is relatively large compared to the predictions
for the isotropic shell displayed in Figure 6.1 while the estimates for the other two laminates are more in line
with those for the isotropic case.

Since the buckling stresses are normalized with different reference values, it is also interesting to look at
the absolute numbers illustrated in Figure 7.2. Results are presented for R/t = 400 as it covers a large range
of the curvature parameter. The order of laminates from the most to the least effective stacking sequences is
the same as the previously mentioned one. All layups perform similarly well for large cutout dimensions. In
contrast to the buckling stresses of the pristine shells indicated in Table 7.1 where the [±45,0,90]S stacking
sequence performs the best, the [0,±45,90]S laminate provides the highest buckling resistance for cylindrical
shells with cutouts. The membrane response of all shells is identical, and the structure is loaded in axial
compression. Hence, it is conceivable that adding more axial bending stiffness is the most beneficial in terms
of increasing the buckling stress when bending stresses are neglected.
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Figure 7.2: Absolute buckling stresses for quasi-isotropic composite shells predicted by the analytical solution.

7.3. Numerical Results and Verification
As in Chapter 6, the analytical results are verified with numerical predictions. Mesh and loading convergence
studies are conducted again and yield similar results as for the isotropic case, i.e. a mesh size of 2 mm is
sufficient for most shell geometries and the type of load application has a negligible effect on the buckling
load estimates. Without checking it is assumed that the conclusions from the investigations regarding the
influence of the element type and numerical damping are still valid.

One should note that the NLS simulations struggle to overcome the sudden change in stiffness associated
with local buckling for the three considered layups. The generated load-displacement curves indicate that
zero tangents cannot explain this behavior for all cases and therefore it is suspected that the structural re-
sponse of composite cylindrical shells during local buckling could be of dynamic nature. In any case, the NLS
procedure aborts early which is why it is not discussed further in this section.

7.3.1. Buckling Loads
First, the analytically predicted buckling loads are compared with the results from the FE simulations. The
buckling load estimates from the LBA are plotted in Figure 7.3 for all shell configurations from Table 5.2.
Nondimensional buckling loads Fcr/Fcl greater than unity for the [0,±45,90]S layup are caused by τcl un-
derestimating the load-carrying capability of the pristine composite shells compared to predictions of the
LBA for the same structure. The numerical buckling loads for the other two laminate stacking sequences
are slightly lower than their analytical counterparts. Furthermore, the number of axial and circumferential
(half)-waves is overestimated in Table 5.2, especially for higher R/t .
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Anyhow, it can be seen that the buckling resistance of composite cylindrical shells in Figure 7.3 is quite
different from that shown in Figure 7.1. The buckling loads decrease continuously in every case due to an
increasing influence of the bending stresses as suggested by Figure 2.1. Furthermore, the individual buckling
load curves separate for all considered layups and therefore the normalization with the reference buckling
loads cannot be the sole origin of this behavior. A similar trend is observed in Figure 6.11 where it has been
argued that a changing relation between membrane and bending stresses in combination with varying sen-
sitivities of the specific buckling modes to these variations causes the buckling loads to drop for higher R/t .
The fact that the order of the R/t curves in Figure 7.3 changes approximately at values of µ where different
buckling patterns emerge appears to support this conclusion.

As in Figure 7.1, the [0,±45,90]S layup performs best, followed by the [±45,0,90]S composite. The stacking
sequence [90,±45,0]S yields the lowest nondimensional buckling loads for a given R/t . Overall, the three
layups are almost equally sensitive to an increase of µ. If one were to plot Figure 7.3 with absolute buckling
loads, then the order of the preferred stacking sequences would the same as in Table 5.2.
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Figure 7.3: Normalized buckling loads for various stacking sequences predicted with a LBA.

Figures 7.4 and 7.5 depict the initial and maximum buckling loads determined with the NLD procedure.
The sequence of the layups in terms of the largest buckling load generally agrees with the analytical solution,
but trend inversions occur at different values of µ due the limitations of the linear eigenvalue analysis. The
displacement fields shown in Subsection 7.3.3 indicate that buckling loads decrease rapidly when unstable
local buckling modes are present. These mode shapes are different for each stacking sequence and they relate
to a varying sensitivity to unstable local buckling.

When the initial buckling load recovers and the maximum one remains approximately constant, the
displacement patterns of all three composites are similar. Hilburger, Starnes, and Nemeth [31–33] found
that adding 90◦ plies around the cutout as a reinforcement against stable local buckling is more beneficial
than doing so with 0◦ laminas. Similarly, the [90,±45,0]S layup resits local buckling to a greater extent than
the [0,±45,90]S one. Apparently, decreasing the axial bending stiffness to lower the corresponding bending
stresses in the vicinity of the opening is more effective than increasing the bending stiffness in an attempt to
limit the out-of-plane displacements.

Initial buckling loads in Figure 7.4 are larger for thicker shells because thinner shells are more susceptible
to large out-of-plane displacements as well as the associated stress redistribution and its consequences due
to the disproportional bending stiffness reduction. The initial buckling loads recover after some value of µ as
predicted by the analytical solution. This critical value is a function of the stacking sequence and R/t , while
the individual layup curves are closely spaced for small µ. Like in Figure 2.9 where the buckling load curve
branches off depending on R/t , the curvature parameter µ is not sufficient to describe the shell response
adequately. Naturally, nonlinear effects must be the cause of this response because the LBA does not predict
comparable trends. It is suspected that the stress redistribution associated with the large prebuckling dis-
placements is responsible for the observed behavior even though there are no obvious stress field patterns
discernible in Subsection 7.3.5.
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The analytical solution also suggests that there is an increase of the initial buckling load for large µ, but it
cannot account for nonlinearities. Therefore, the corresponding trend in Figure 7.1 is better explained with
the change of the local buckling displacement pattern as shown in Subsection 7.3.2. This manifests itself
mathematically through the jump of the global minimum of the buckling stress function plotted in Figure 6.4
towards higher values of the decay parameter B .
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Figure 7.4: Normalized initial buckling loads for various stacking sequences predicted with a NLD analysis.

In contrast to the diverging curves representing the initial buckling load in Figure 7.4, the maximum buck-
ling load in Figure 7.5 can be characterized by µ for all R/t , but there is still some dependency on the stacking
sequence of the laminate. In fact, higher R/t are advantageous which is reasonable because bending stresses
are lower for thinner shells. Additionally, the load-displacement curves in Subsection 7.3.3 indicate that thin-
ner shells also feature a higher nondimensional stiffness after local buckling. Finally, the spacing of the curves
in Figure 7.5 compared to Figure 7.4 implies that the mechanisms that govern the local and global buckling of
shells with large µ are inherently different which supports the argument from Chapter 6 that the two buckling
modes are sensitive to distinct characteristics of the respective displacement and/or stress fields.
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Figure 7.5: Normalized maximum buckling loads for various stacking sequences predicted with a NLD analysis.

Again, R/t = 400 is selected to analyze the results from the various analyses because it covers the largest
range of µ. Figure 7.6 summarizes the analytical predictions, those of the LBA and initial buckling loads
from NLD simulations. Some observations that were made for isotropic shells are also valid for composite
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cylindrical shells. For example, the buckling load estimates by the analytical solution are too high for small
cutout sizes because it is assumed that local buckling always occurs, while the numerical simulations predict
global buckling in this domain. Furthermore, the LBA buckling loads are initially higher than those for the
NLD which is expected, but the trend inverts as soon as nonlinear geometric effects have to be considered.
The fact that the trend inversion of the [90,±45,0]S laminate occurs rather early is partly caused by the relation
between the reference buckling stresses from Table 7.1, but it also suggests that nonlinear effects are more
important for this stacking sequence than for the other two which goes hand in hand with the idea that large
radial displacements are more endurable than the effects of higher stress concentrations.
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Figure 7.6: Normalized (initial) buckling loads of quasi-isotropic shells for R/t = 400.

It is noted that the curves that represent the analytical buckling load prediction intersect in the same
order as those of the NLD procedure which cannot be said for the LBA. Hence, one could argue that nonlinear
geometric effects as well as the actual shell prebuckling stress distribution are reasonably well approximated
by the linearized structural response in combination with the assumption of the flat plate prebuckling stress
field. The analytical solution predicts the largest buckling loads due to the underestimation of the prebuckling
stress distribution and certain characteristics of the Ritz method.
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Figure 7.7: Normalized (maximum) buckling loads of quasi-isotropic shells for R/t = 400.

As mentioned earlier, the analytical procedure is best evaluated against the initial buckling load predic-
tions from the NLD simulations because the maximum buckling mode shapes are always global which is not
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modeled in Chapter 4. Nonetheless, such a comparison is made in Figure 7.7. Important changes relative to
Figure 7.6 are that the NLD maximum buckling loads remain constant from smaller µ onwards and that the
analytical predictions underestimate the numerical buckling loads.

Due to the varying reference buckling loads from Table 7.1, it is helpful to investigate absolute values
as in Figure 7.2. Hence, Figure 7.8 is a version of Figure 7.7 that is adapted accordingly. It is noted that
the [±45,0,90]S laminate provides the highest numerical buckling loads for small µ which is consistent with
the predictions from Table 7.1. The LBA estimates that the [90,±45,0]S layup performs significantly worse
than the other two stacking sequences which is not the case for the NLD procedure. Here, the [±45,0,90]S
composite outperforms its counterparts, but due to the low sensitivity to an increase of the cutout size the
[90,±45,0]S laminate is the next best choice for large cutouts.

The curves predicted with the analytical solution agree reasonably well. However, the buckling resistance
of the [0,±45,90]S is significantly overestimated. This is probably the result of neglecting the bending stresses
in the problem setup. Placing 0◦ plies on the outside of the cylindrical shell considerably increases the bend-
ing stiffness which is accounted for in KM. However, the corresponding detrimental effects on the bending
stress distribution are not quantified in KG.
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Figure 7.8: Absolute buckling loads of quasi-isotropic shells for R/t = 400.

7.3.2. Buckling Mode Shapes
Next, the buckling mode shapes predicted with analytical and numerical methods are evaluated for the con-
sidered laminates. AN in Figures 7.9, 7.10, and 7.11 refers to the eigenmodes obtained from the analytical
solution. Since the shape function (4.1) does not include cosine terms with arguments that feature factors
larger than two for θ, it is not possible to model the rotated buckles that are predicted by the numerical sim-
ulations. As such, the analytical buckling mode shapes for the quasi-isotropic shells resemble those of the
isotropic cylindrical shells from Subsection 6.2.3. Furthermore, there is little variance between the buckling
modes of the different composite layups, yet the buckling load predictions in the previous segment follow
distinct trends.

Looking only at the LBA, one can see how the buckling mode shapes are influenced by the respective
laminate stacking sequence. The buckles are oriented axially for the [0,±45,90]S layup and small µ, they
are skewed for the [±45,0,90]S composite, and almost horizontal for the [90,±45,0]S laminate. Apparently,
the alignment of the buckling pattern follows the orientation of the outermost ply of each laminate which
makes sense because these layers provide the highest bending stiffness. All buckling mode shapes transition
to the localized displacement pattern. While the change of the buckling mode is rather continuous for the
[0,±45,90]S layup, it is much more abrupt for the other two, especially for the [90,±45,0]S composite. This
suggests that the corresponding stress fields vary in a similar pattern which is confirmed in Subsection 7.3.5.

Evidently, the initial buckling patterns predicted with the LBA are vastly different compared to the analyt-
ical solution due to the limitations of the displacement function. Exceptions are cylindrical shells with large
µ where the mode shapes resemble those of the isotropic shells.
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(µ= 0.285)

QI3.3
(µ= 0.76)

QI3.5
(µ= 1.52)

QI4.8
(µ= 3.22)

AN

LBA

Figure 7.9: Initial buckling patterns of the [0,±45,90]S layup.
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Figure 7.10: Initial buckling patterns of the [±45,0,90]S layup.
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Figure 7.11: Initial buckling patterns of the [90,±45,0]S layup.



7.3. Numerical Results and Verification 81

7.3.3. Buckling Mode Shape Evolution
After discussing the shape of the initial buckling modes, the structural response of composite cylindrical
shells is investigated in more detail by evaluating the results from the nonlinear dynamic simulations. The
load-displacement curves shown in Figures 7.12, 7.13, and 7.14 correspond to the radial displacement fields
illustrated in Figures 7.15, 7.16, and 7.17. Again, A, B , C , and D denote the configurations before any type
of buckling occurs, at local buckling, as well as before and after global buckling, respectively. The load-
displacement curves depend on the nondimensional reaction force RF3 at the unloaded shell edge which is
plotted against the normalized uniform shell-end displacement U3. The normalization of RF3 is performed
as explained in Section 6.2.2, whereas the reference displacement at buckling ucl is calculated according to
equation (7.3) assuming a linear shell membrane response. τcl is taken from Table 7.1.

ucl = τcl
A11

A2
11 − A2

12

Lt (7.3)

The loading history of the [0,±45,90]S layup is depicted in Figures 7.12 and 7.15. Shell QI1.3 does not
exhibit a local buckling configuration which is why point B is missing on the respective load-displacement
curve. In fact, none of the investigated QI1.3 shells feature a local buckling mode. Unlike for the isotropic
shell I1.6 in Figure 6.16, a local buckling configuration does not stand out for shell QI3.3 at first glance be-
cause the load-displacement curve only contains a single point where the structure’s stiffness changes dras-
tically. However, the displacement pattern in Figure 7.15 depicts large displacements before the shell buckles
globally which is an indicator of local buckling.

In contrast, the load-displacement curves of shells QI3.5 and QI4.8 include multiple points after which
a stiffness loss is observed. The earlier ones correspond to stable local buckling configurations as the post-
buckling stiffness is positive. The first local buckling displacement pattern is shown in row B of Figure 7.15.
The counterclockwise rotation around the cutout from row B to row C takes place during the second lo-
cal buckling event. It is noted that the normalized postbuckling stiffness of shell QI4.8 is higher than that of
QI3.5. While the local buckling mode shapes in Figure 7.15 are similar, the out-of-plane displacements are re-
stricted to the cutout vicinity which explains the increased stiffness as the effective carrying width of the shell
is larger. Additionally, the transition from one configuration to the other is gradual for shell QI3.5, whereas an
abrupt change is observed for shell QI4.8.
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Figure 7.12: Load-displacement curves for some configurations of the [0,±45,90]S laminate.

Figures 7.13 and 7.16 relate to the [±45,0,90]S layup. Overall, the structural response of this laminate is
relatively similar to the previous one. Again, there is no distinct local buckling event visible in Figure 7.13
for shell QI3.3, but the displacement field in Figure 7.16 implies its existence and the shell configurations
QI3.5 and QI4.8 feature two stable stiffness reductions each just like the layup discussed before. Similarly,
the second stiffness loss corresponds to the rotation of the buckling pattern. One may also notice that the
nondimensional displacement at global buckling is slightly larger for shell QI4.8 than for QI3.5 which suggests
that a critical stress state is reached later due to the larger effective carrying width of the structure.
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Like the isotropic shell, the unstable local buckling mode of the [±45,0,90]S cylindrical shell features a dif-
ferent shape than the stable one. While the prebuckling displacement field resembles that of the [0,±45,90]S
layup, the diametrically opposed buckles combine into a single distortion directly on top of the cutout. The
out-of-plane deflections shown in Figure 7.16 increase substantially over a very short time frame. Conse-
quently, the events denoted by points B and C essentially coincide on the load-displacement curve.
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Figure 7.13: Load-displacement curves for some configurations of the [±45,0,90]S laminate.

The plot in Figure 7.14 and the images in Figure 7.17 represent the structural response of the [90,±45,0]S
laminate. As the load-displacement curve indicates, this layup is less sensitive to an increase of the curvature
parameter. Local buckling occurs at slightly higher nondimensional load levels. Furthermore, the shell can
sustain more additional load between local and global buckling. Comparing the postbuckling characteristics
in Figures 7.12, 7.13, and 7.14 with the respective stiffness properties reveals that the higher D11, the smaller
the gap between points B and C on the load-displacement curves. Hence, one could argue that the shell
response after local buckling is dominated by the ability of the structure to withstand axial bending stresses.
Since the relative contribution of bending stresses is reduced when the shell thickness decreases, it makes
sense that these configurations generally show better results for the maximum buckling load in Figure 7.5.
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Figure 7.14: Load-displacement curves for some configurations of the [90,±45,0]S laminate.

Compared to the response of isotropic cylindrical shells depicted in Figure 6.16, the prebuckling stiffness
of composite shells appears to be less nonlinear since the laminated cylindrical shells buckle locally at re-
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duced nondimensional buckling loads. Consequently, large prebuckling displacements do not have as much
time to develop. The superior postbuckling stiffness of shells with larger µ is also visible for the isotropic case.
Hence, one can expect that the trends depicted in Figure 7.5 are also valid for the isotropic cylindrical shells
even though it cannot be directly inferred from the previous chapter since no distinction between different
R/t has been made.

As Figures 7.15, 7.16, and 7.17 naturally contain the initial buckling modes of the NLD simulations, one
may also evaluate them against the linear mode shapes from Subsection 7.3.2. First, the initial buckling
modes for shell QI1.3 are global as predicted by the LBA. While the displacement patterns do not agree exactly
with the LBA, they also change their shape depending on the layup. For large µ the buckling modes have a
similar shape regardless of the composite stacking sequence. However, when the local buckling mode is un-
stable as for shell QI3.3, then the mode shapes are a function of the layup again. The unstable displacement
pattern in Figure 7.9 evolves naturally into the buckling modes for larger µ. The same is not true for the other
two laminates which implies that the sensitivity of the buckling load to the cutout size shown in Figure 7.4
may be caused by the respective stress distribution.

QI1.3
(µ= 0.285)

QI3.3
(µ= 0.76)

QI3.5
(µ= 1.52)

QI4.8
(µ= 3.22)

A

B

C

D

Figure 7.15: Radial displacements of a [0,±45,90]S laminate calculated with a NLD analysis during loading (A), at local buckling (B),
before (C), and after (D) global buckling. Amplification factor 5.
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To provide some perspective regarding the magnitude of the displacements in Figures 7.15, 7.16, and 7.17,
the following list contains the maximum radial deflections of the configurations B and D , i.e. at local and after
global buckling, for the considered layups. They all point inwards which means that they relate to the color
blue in the images. The order of the deflections is equal to the order of the shell names in the figures.

• [0,±45,90]S; B : n.a., 0.933 mm, 1.45 mm, 0.764 mm, D : 6.18 mm, 2.10 mm, 3.42 mm, 2.11 mm

• [±45,0,90]S; B : n.a., 0.165 mm, 0.305 mm, 0.162 mm, D : 4.84 mm, 3.12 mm, 3.33 mm, 1.73 mm

• [90,±45,0]S; B : n.a., 0.594 mm, 0.763 mm, 0.428 mm, D : 4.57 mm, 1.67 mm, 1.90 mm, 1.44 mm

QI1.3
(µ= 0.289)

QI3.3
(µ= 0.77)

QI3.5
(µ= 1.54)

QI4.8
(µ= 3.27)

A

B

C

D

Figure 7.16: Radial displacements of a [±45,0,90]S laminate calculated with a NLD analysis during loading (A), at local buckling (B),
before (C), and after (D) global buckling. Amplification factor 5.
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QI1.3
(µ= 0.285)

QI3.3
(µ= 0.76)

QI3.5
(µ= 1.52)

QI4.8
(µ= 3.22)

A

B

C

D

Figure 7.17: Radial displacements of a [90,±45,0]S laminate calculated with a NLD analysis during loading (A), at local buckling (B),
before (C), and after (D) global buckling. Amplification factor 5.

7.3.4. Initial Geometric Imperfections
The effects of mid-surface imperfections are studied by superimposing buckling mode shapes computed
with the LBA and scaling them relative to the shell wall thickness. Global buckling patterns are considered for
shells QI1.3, QI3.3, and QI3.5. Additionally, imperfections in the form of local buckling modes are modeled
for shell QI3.5 because it exhibits a stable local buckling configuration. All imperfection patterns are selected
to match the nonlinear displacement fields illustrated in the previous subsection. Higher order buckling
modes from the LBA provide reasonable approximations for every possible permutation of shell configura-
tion, stacking sequence, and buckling mode type with the exception of the global buckling pattern for shell
QI3.5 with a [90,±45,0]S layup. None of the first 30 LBA eigenvectors correspond to the displacement field in
row D of Figure 7.17. The superposition of two linear buckling modes is used as an approximation instead.
Figures 7.18, 7.19, and 7.20 contain exemplary load-displacement curves for some selected shell and stack-
ing sequence combinations. More information regarding the influence of the imperfection amplitude on the
maximum buckling load for the various laminates is available in Tables 7.2, 7.3, and 7.4.
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The graph in Figure 7.18 is concerned with the [0,±45,90]S version of shell QI1.3. Like for isotropic cylin-
drical shells, it can be seen that the inclusion of mid-surface imperfections results in a significant reduction
of the load that the shell can sustain before it buckles globally. The prebuckling response is mostly linear
except for very large imperfection amplitudes where nonlinearities begin to emerge. Buckling leads to a con-
siderable reduction of the shells’ load-carrying capability with the exception of the shell that is modeled with
an imperfection amplitude of 50%. For this configuration a positive postbuckling stiffness is observed which
indicates that a stable local buckling mode can also exist for cylindrical shells with small µ.
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Figure 7.18: Normalized load-displacement curves for shell QI1.3 with a [0,±45,90]S layup and varying imperfection amplitudes.

The trends of the [±45,0,90]S layup for shell QI3.3 in Figure 7.19 agree with their isotropic counterparts
to a lesser degree. In Figure 6.18 it was observed that the unstable local buckling mode acts as a threshold
as it prohibits large imperfection amplitudes to impact the load-carrying capability of the structure. Such
an effect is, if at all, only present for the smallest considered imperfection amplitude. Higher ones alter the
structural response of the shell in a way that promotes stable local buckling modes. Especially the load-
displacement curve for an imperfection amplitude of 20% is reminiscent of those for shell QI3.5 as it features
two instabilities before global buckling occurs.
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Figure 7.19: Normalized load-displacement curves for shell QI3.3 with a [±45,0,90]S layup and varying imperfection amplitudes.

The load-displacement curves for shell QI3.5 and a stacking sequence of [90,±45,0]S that account for local
imperfection patterns are shown in Figure 7.20. Like for the isotropic cylindrical shells, this type of imperfec-
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tion has almost no effect on the structure’s ability to carry loads. If cylindrical shells with an imperfection in
the shape of a stable local buckling mode could be manufactured, one would be able completely remove the
local buckling event from the shell response at the expense of a negligible portion of the prebuckling stiffness.
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Figure 7.20: Normalized load-displacement curves for shell QI3.5 with a [90,±45,0]S layup and varying local mid-surface imperfection
amplitudes.

As mentioned before, multiple imperfection patterns obtained from a LBA are superpositioned in an at-
tempt to capture the global buckling mode shape of shell QI3.5 in Figure 7.17. Figure 7.21 illustrates the
corresponding load-displacement curves which are uncharacteristic when taking the overall trends from Ta-
bles 7.2, 7.3, and 7.4 into account. It appears that the inclusion of two buckling patterns triggers a nonlinear
structural response before any type of buckling occurs. This is not the case for the other two laminates. As
such, it is debatable whether the described modeling choice is appropriate.
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Figure 7.21: Normalized load-displacement curves for shell QI3.5 with a [90,±45,0]S layup and a combination of local and global
mid-surface imperfections at varying amplitudes.

Normalized and relative nondimensional maximum buckling loads are summarized in the tables below
in the same way as in Subsection 6.2.5. It is especially interesting to compare the relative maximum buckling
loads because they relate to the sensitivity of a given laminate and shell configuration to mid-surface imper-
fections. The results in Subsection 7.3.1 indicate that the stacking sequences [0,±45,90]S and [±45,0,90]S
are approximately equally sensitive to an increase of µ. Similarly, the relative normalized maximum buckling
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loads in Tables 7.2 and 7.3 are comparable for shells QI1.3 and QI3.3. In contrast, the values in Table 7.4 for
these shells are less effected by an increase of the imperfection amplitude. This makes sense because the LBA
predicts mode shapes that are dominated by the stress field in the cylindrical shell because it cannot account
for geometric nonlinearities. One may argue that superimposing the LBA displacement patterns on the pris-
tine shell geometry creates regions that are even more susceptible to bending stresses. Naturally, the layup
with the smallest axial bending stiffness experiences the least amount of additional detrimental stresses and
therefore it is able to resist higher imperfection amplitudes more efficiently.

Imperfection
Amplitude [-]

QI1.3
(µ= 0.285)

QI3.3
(µ= 0.76)

QI3.5, local
(µ= 1.52)

QI3.5, global
(µ= 1.52)

Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-]

0% 1.02 100% 0.811 100% 0.619 100% 0.619 100%
5% 0.906 88.8% 0.751 92.6% 0.620 100.1% 0.577 93.1%

10% 0.833 81.6% 0.612 75.4% 0.620 100.1% 0.554 89.5%
20% 0.730 71.3% 0.454 56.0% 0.621 100.2% 0.473 76.3%
50% 0.579 56.7% 0.381 46.9% 0.620 100.2% 0.352 56.8%

Table 7.2: Normalized and relative maximum buckling loads for a [0,±45,90]S laminate considering mid-surface imperfections.

Imperfection
Amplitude [-]

QI1.3
(µ= 0.289)

QI3.3
(µ= 0.77)

QI3.5, local
(µ= 1.54)

QI3.5, global
(µ= 1.54)

Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-]

0% 0.883 100% 0.653 100% 0.581 100% 0.581 100%
5% 0.740 83.8% 0.635 97.3% 0.581 99.9% 0.605 104.1%

10% 0.638 72.3% 0.543 83.1% 0.581 99.9% 0.574 98.8%
20% 0.529 59.8% 0.484 74.2% 0.580 99.8% 0.568 97.7%
50% 0.406 45.9% 0.361 55.4% 0.578 99.5% 0.456 78.5%

Table 7.3: Normalized and relative maximum buckling loads for a [±45,0,90]S laminate considering mid-surface imperfections.

Imperfection
Amplitude [-]

QI1.3
(µ= 0.285)

QI3.3
(µ= 0.76)

QI3.5, local
(µ= 1.52)

QI3.5, global
(µ= 1.52)

Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-] Norm. [-] Rel. [-]

0% 0.911 100% 0.867 100% 0.780 100% 0.780 100%
5% 0.847 93.0% 0.796 91.8% 0.779 99.9% 0.560 71.8%

10% 0.840 92.2% 0.794 91.5% 0.778 99.8% 0.461 59.1%
20% 0.826 90.7% 0.791 91.1% 0.777 99.6% 0.343 43.9%
50% 0.791 86.8% 0.761 87.7% 0.775 99.3% 0.215 27.5%

Table 7.4: Normalized and relative maximum buckling loads for a [90,±45,0]S laminate considering mid-surface imperfections.

Columns six and seven in each table confirm that the influence of mid-surface imperfections in the shape
of stable local buckling configurations on the shell response is negligible for all considered layups.

7.3.5. Shell Failure
A simple criterion to determine the strength of a composite laminates is the maximum stress failure theory.
It neglects interaction effects between the stress tensor components which means that failure may occur in
multiaxial stress states even though it is not yet predicted by the simplified analysis. Camanho et al. [74]
provide mean failure stresses of Hexcel IM7-8552 plies which are interpreted as the maximum stress allow-
ables without calculating A- and B-basis values due to the relatively small number of tested specimens. In
addition to information regarding the shell failure modes, the evaluation of the stress fields can also provide
some insight into the mechanisms that govern the shell buckling response.
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XT, XC, YT, and YC represent the maximum allowable ply stresses in the direction of the fibers (X ) as well
as perpendicular to them (Y ). S denotes the maximum allowable shear stress. The properties depend on
whether the structure experiences tensile (T) or compressive (C) stresses. Hence, the reserve factors in equa-
tion (7.4) are calculated with the corresponding absolute stress components in the local coordinate system of
the laminas.

τ11

XT
,
τ11

XC
,
τ22

YT
,
τ22

YC
,
|τ12|

S
(7.4)

The average measured ply strengths reported by Camanho et al. [74] are rounded and listed in Table 7.5.

XT XC YT YC S

2325 MPa 1200 MPa 62 MPa 200 MPa 92 MPa

Table 7.5: Average stress allowables of Hexcel IM7-8552 [74].

Three stacking sequences, four shell configurations with eight plies each, five strength allowables and four
characteristic points on the load-displacement curve requires checking a total of 1920 reserve factors. They
are not quantified at this point for the sake of clarity. A qualitative summary is that shell QI1.3 fails due to
excessive compression of the fibers regardless of the layup before the buckling load is reached. Transverse
matrix properties as well as the maximum allowable shear stress are also exceeded, but not to the extent of
the fiber compression. Thinner shells lose their load-carrying capability due to the onset of global buckling
and not because of strength concerns.

The stress distribution in fiber direction of the innermost ply of each laminate is plotted on the shell sur-
face in Figures 7.22, 7.23, and 7.24. This lamina is chosen because it allows comparing the stress field for
various ply orientations. Furthermore, the true stress is at its maximum there according to Lekkerkerker’s
prediction in Figure 2.1a where a positive bending stress causes compression on the inside of the cylindri-
cal shell due to tension which means that a negative bending stress results in compression on the inside as
well when the structure is compressed axially. Previous observations suggest that the bending response of
each laminate is characteristic for the shell’s resistance against buckling, so taking a look at the plies furthest
away from the middle of the composite also makes sense. Since both compressive and tensile stresses are
illustrated, the color blue indicates large compressive stresses, whereas red denotes tension.

While the prebuckling displacements for the three layups are quite similar, the stress fields in Figures 7.22,
7.23, and 7.24 show characteristic differences. Of course, one reason for this is that they are orientated differ-
ently. Anyhow, it is notable that the [0,±45,90]S composite features high destabilizing compressive stresses
on the left and the right side of the cutout. The position of the stress concentrations rotates counter-clockwise
for the [±45,0,90]S layup and the stacking sequence [90,±45,0]S generates a tensile stress field where the first
laminate sees compression. The effect becomes more pronounced with an increase of the curvature pa-
rameter µ. Due to the high axial membrane and bending stiffness, additional displacement loading is more
detrimental for the [0,±45,90]S composite than for the other two. Apparently, it is beneficial to minimize
stress concentrations to optimize the normalized buckling load of shells that are susceptible to local buckling
which is achieved by selecting a layup that features minimal axial stiffness.
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Figure 7.22: Stresses along the fiber direction of the innermost ply in a [0,±45,90]S laminate during loading (A), at local buckling (B),
before (C), and after (D) global buckling.
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Figure 7.23: Stresses in fiber direction in the innermost ply of a [±45,0,90]S laminate during loading (A), at local buckling (B), before (C),
and after (D) global buckling.
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Figure 7.24: Stresses in fiber direction in the innermost ply of a [90,±45,0]S laminate during loading (A), at local buckling (B), before (C),
and after (D) global buckling.



8
Conclusion and Recommendations for

Future Work

The buckling behavior of isotropic and quasi-isotropic composite cylindrical shells with circular cutouts has
been investigated. After reviewing existing literature, the principle of minimum total energy is combined
with the theory of shallow shells as well as classical lamination theory to develop an analytical procedure for
predicting the linear buckling load of cylindrical shells subjected to a uniform axial edge load. Finite element
models are created and solved with linear eigenvalue, nonlinear static, as well as nonlinear dynamic simu-
lations to verify the analytical approach. Mylar and composite laminates made from Hexcel IM7-8552 are
idealized as isotropic and composite materials, respectively. Three laminate stacking sequences are assessed
analytically and numerically, namely [0,±45,90]S, [±45,0,90]S, and [90,±45,0]S. In addition to the primary
verification purpose, the numerical simulations are evaluated with respect to the evolution of the buckling
mode shapes, the influence of initial geometric imperfections, and shell failure.

The results of the investigation are summarized in Section 8.1, whereas recommendations for future work
are provided in the second part of the chapter, Section 8.2.

8.1. Conclusion
Special attention is given to the buckling behavior of isotropic and quasi-isotropic composite cylindrical
shells with circular cutouts in Subsection 8.1.1 and to the benefits and limitations of the analytical solution
in Subsection 8.1.2 of this section.

8.1.1. Buckling Behavior of Cylindrical Shells with Circular Cutouts
The buckling behavior of isotropic and quasi-isotropic composite shells with circular cutouts may be char-
acterized with a nondimensional curvature parameter as long as it is proportional to α = a/

p
Rt where a is

the cutout radius, R is the shell radius, and t is the shell thickness. More elaborate curvature parameters also
account for material properties. For example, µ, which is a function of the Poisson’s ratio ν and α, is available
for isotropic shells, and both C as well as the equivalent µ for composite materials depend on extensional
and flexural laminate stiffness terms. When the analytical or numerical buckling load is normalized with the
buckling load of a pristine reference shell, this quantity can be plotted against any curvature parameter for
a given material (and stacking sequence) to obtain maximum buckling load curves that are closely spaced
regardless of the ratio R/t . These plots may be studied to predict the buckling load of a shell with different
geometric properties, but with an identical nondimensional curvature parameter.

Shells buckle globally if the cutout is comparatively small. The buckling load is virtually constant in this
domain and independent of the cutout size, i.e. the shell approximately behaves as if it was pristine. When
the radius of the opening is increased beyond a critical point, the buckling load begins to decrease drastically.
Now, the shell exhibits an unstable local buckling event restricted to the cutout area that induces a stress
redistribution which constitutes a sufficient disturbance in the structure such that it leads to global buckling.
The corresponding critical curvature parameter as well as the sensitivity to the cutout size depend on the
layup stacking sequence when composite cylindrical shells are considered. Shells experience both of the
aforementioned buckling modes without encountering large lateral prebuckling displacements.
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Significant out-of-plane deflections can be observed before buckling occurs for large openings. This effect
is more pronounced for Mylar shells than for the stiffer composite cylindrical shells. In any case, the large
displacements lead to a stress redistribution away from the cutout which results in a stable local buckling
mode as well as a reduced axial stiffness. Interestingly enough, the load that can be sustained before the
local buckling event triggers increases after a critical cutout size is exceeded. Isotropic cylindrical shells only
feature one stable local buckling mode, but composite shells may exhibit multiple of these events. After
being subjected to further force or displacement loading, the shell buckles globally. This global buckling load
slightly decreases with an increasing cutout size, but it can be approximated as being constant. All buckling
modes are caused by destabilizing compressive stress fields in the area around the cutout in combination
with, if applicable, large lateral prebuckling deformations.

Shells with cutouts always exhibit bending stresses when subjected to a uniform axial load due to the
discrepancy between the centroid of the structure and the applied load. Consequently, changing the stacking
sequence of a laminate influences the buckling resistance of the shell significantly. Layups that reduce the
overall stress concentrations in the vicinity of the opening are less sensitive to an increase of the cutout size
than those that attempt to restrict large bending displacements by increasing the corresponding stiffness
parameters. Out of the three considered layups, the stacking sequence [±45,0,90]S yields the highest buckling
loads regardless of the cutout size.

The shape of the buckling modes depends on the material as well as the layup of the laminate. Addition-
ally, each type of buckling, i.e. global, unstable local followed by global, and stable local followed by global,
features its own characteristic displacement pattern.

The influence of mid-surface imperfections that resemble global buckling modes generally diminishes
the larger an opening becomes. Furthermore, the less a given layup promotes axial bending stresses, the
less it is affected by these mid-surface imperfections. Nonetheless, imperfections are still highly relevant
for the buckling resistance of shells with circular cutouts as they can reduce the sustainable buckling load
considerably. Particularly detrimental imperfections are those that cause a nonuniform loading of the shell.

Curvature parameters cannot be applied in every case, for example when the shell contains very large
openings, i.e. α > 7. Here, the nondimensional buckling load becomes a function of R/t . Similarly, stable
local buckling modes emerge for varying α depending on the shell-radius-to-thickness ratio. Finally, even
though µ and C imply the ability to evaluate different material properties, this is not the case. Hence, α
should be used as the preferred curvature parameter for design purposes.

8.1.2. Analytical Solution
The analytical solution provides a reasonable prediction for the buckling load of isotropic and quasi-isotropic
composite cylindrical shells with circular cutouts when local buckling is considered. For large cutouts and
global buckling, geometric nonlinearities play an important role such that the linear buckling loads are not
necessarily conservative. However, the analytical solution follows the general trends of experimental and
numerical buckling loads for both cases.

Major assumptions during the derivation are the local nature of the buckling event and the approximation
of the prebuckling stress distribution in the shell with the stress field around a circular cutout in an infinite flat
plate. In addition, a linear material response is prescribed by performing a linear eigenvalue analysis. Hence,
the analytical buckling load should follow the trends of the numerical predictions only up to moderately large
cutouts, but it also estimates the local buckling load for higher curvature parameters to a reasonable degree
even though large out-of-plane prebuckling displacements are observed in this case.

A comparison of the numerical linear buckling analysis and its analytical equivalent indicates that the ne-
glected bending stresses can have a significant impact on the buckling load estimates for composite materials
and should therefore be included in the analysis. The dismissal of bending stress in the analytical solution is
also the reason why normalized buckling loads fall onto a single design curve when plotting them against any
curvature parameter as long as the reference buckling load is calculated assuming an axisymmetric displace-
ment pattern.

A reason for the upper bound nature of the analytical buckling load estimates is the application of the Ritz
method to minimize the energy of the structure. Furthermore, the approximation of the prebuckling stress
distribution with the flat plate solution underestimates the stress field, and therefore the analytical buckling
loads are overestimated. The chosen shape function is suitable for isotropic materials but does not contain
sufficient degrees of freedom to model the buckling modes of quasi-isotropic composite laminates.

The main benefit of analytically estimating the shell buckling load is the significant reduction in com-
putational time per buckling load prediction. It is approximately 350 times faster than a numerical linear
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eigenvalue analysis, more than 7,900 times faster than a nonlinear static procedure, and over 15,900 times
faster than a nonlinear dynamic simulation with meshes of approximately 200,000 degrees of freedom. At the
same time, the analytical solution provides reasonably accurate buckling loads.

Overall, there is some discrepancy between absolute analytical and numerical predictions, but also be-
tween numerical and experimental measurements due to the effects of initial geometric imperfections which
were neglected in most simulations. Nonetheless, the analytical solution is well suited to serve as a tool dur-
ing preliminary design to estimate the consequences of changing material or geometric properties because
it can predict general trends as long as the bending stress contribution in the axial direction of the cylindrical
shell is not significant.

8.2. Recommendations for Future Work
Naturally, the information presented in this document cannot explain every aspect concerning the buckling
behavior of isotropic and composite cylindrical shells with cutouts. However, it provides a number of an-
swers, some of which raise interesting new questions. Consequently, recommendations for future research
are discussed hereafter.

There are a few opportunities to extend the analytical solution from Chapter 4. As mentioned in the pre-
vious subsection, it is desirable to model the actual prebuckling stress field of the shell that includes bending
stresses. Unfortunately, a closed-form solution does not appear to be publicly available for any type of consti-
tutive relation. Unless advancements in this field are made, employing semi-analytical approaches is prob-
ably most likely to result in other practical solutions. Of course, obtaining more accurate predictions with
semi-analytical procedures comes at the cost of increased computational time per buckling load estimation
which diminishes one of the major advantages of an analytical method. While enhancing the analytical so-
lution certainly has its merits, one should take into account that sophisticated semi-analytical methods for
the prediction of linear buckling loads of cylindrical shells with cutouts already exist, for example the one
developed by Madenci et al. [15].

Anyhow, Lekkerkerker’s solution [5] could be automated numerically to determine the prebuckling stress
distribution for a given geometry. This allows a more precise quantification of the potential energy due to
external forces which in turn leads to more realistic buckling load predictions.

Modeling the stress distribution in a quasi-isotropic laminate becomes even more inefficient. Following
the idea of van Tooren et al. [13], it should be possible to compute the membrane and bending stress fields
for a given stacking sequence separately by computing the equivalent properties of an orthotropic material.
Evaluating the approach proposed by Ashmarin [11] twice yields a suitable stress field for energy minimiza-
tion purposes.

Extending the analytical solution to composites that are symmetric and balanced, but not quasi-isotropic,
requires solving a significantly more complex version of the compatibility equation in polar coordinates. A
solution for transversely isotropic materials has been developed by Cairns [78] in his Ph.D. dissertation and
could perhaps be extended to the more general orthotropic case which is sufficient to model the membrane
response of a laminated shell.

Instead of expanding the applicability range of the analytical solution, one may also incorporate new
algorithms to improve the computational efficiency of the current solution. For example, a gradient-based
algorithm could be introduced to determine minimum eigenvalues more quickly. Moreover, algorithms that
reduce the condition number for inversion exist [79] and they should be made available for the generalized
eigenvalue problem in order to make use of the full potential of the assumed displacement function.

A second area of interest is the continuing investigation of the buckling behavior of cylindrical shells with
cutouts. An explanation for the, somewhat counterintuitive, increased stable local buckling load of thicker
shells has been proposed, but it should be verified or validated by a third party.

Furthermore, it would be interesting to incorporate imperfection data from an imperfection data bank
to more realistically predict the effects of initial geometric imperfections. This approach could also account
for the influence of nonuniform loading. Corresponding research has already been conducted, for example
by Starnes et al. [34], but a parametric study for as big of a sample size as in the present study has not been
performed yet.

In accordance with the extension of the analytical solution to balanced and symmetric composites, it
makes sense to investigate buckling loads, buckling mode shape evolutions, as well as the imperfection sen-
sitivity of such laminates with linear and nonlinear FE simulations to verify the analytical results and to gain
further insights regarding to governing buckling mechanisms of these structures.





A
Expressions Used During the Analysis of an

Isotropic Shell With a Circular Cutout

Equations and expressions that are helpful for understanding the analysis presented in Chapter 4 are sum-
marized in this appendix.

A.1. General Stress Resultants
Stress resultants for the discussion of the boundary conditions (4.25a) through (4.26c) in Subsection 4.3.6.
The terms after the summations depend on the assumed displacement function.

Nr =a0r−2 +2b0 + c0 (1+2lnr )+2d0θ

+a′′
1 r−1cosθ+

(
2b1r −2a′

1r−3 +b′
1r−1

)
cosθ− c ′′1 r−1sinθ+

(
2d1r −2c ′1r−3 +d ′

1r−1
)

sinθ

−
∞∑

n=2

{[(
n2 −n

)
anr n−2 +

(
n2 −n −2

)
bnr n +

(
n2 +n

)
a′

nr−n−2 +
(
n2 +n −2

)
b′

nr−n
]

cosnθ
}

−
∞∑

n=2

{[(
n2 −n

)
cnr n−2 +

(
n2 −n −2

)
dnr n +

(
n2 +n

)
c ′nr−n−2 +

(
n2 +n −2

)
d ′

nr−n
]

sinnθ
}

+
∂Φp

∂r
r−1 +

∂2Φp

∂θ2 r−2

(A.1a)

Nθ =−a0r−2 +2b0 + c0 (2+ lnr )+2d0θ

+
(
6b1r +2a′

1r−3 +b′
1r−1

)
cosθ+

(
6d1r +2c ′1r−3 +d ′

1r−1
)

sinθ

+
∞∑

n=2

{[(
n2 −n

)
anr n−2 +

(
n2 +3n +2

)
bnr n +

(
n2 +n

)
a′

nr−n−2 +
(
n2 −3n +2

)
b′

nr−n
]

cosnθ
}

+
∞∑

n=2

{[(
n2 −n

)
cnr n−2 +

(
n2 +3n +2

)
dnr n +

(
n2 +n

)
c ′nr−n−2 +

(
n2 −3n +2

)
d ′

nr−n
]

sinnθ
}

+
∂2Φp

∂r 2

(A.1b)

Nrθ =−d0 +a′
0r−2 +

(
2b1r −2a′

1r−3 +b′
1r−1

)
sinθ+

(
2d1r −2c ′1r−3 +d ′

1r−1
)

cosθ

+
∞∑

n=2

{[(
n2 −n

)
anr n−2 +

(
n2 +n

)
bnr n −

(
n2 +n

)
a′

nr−n−2 −
(
n2 −n

)
b′

nr−n
]

sinnθ
}

+
∞∑

n=2

{[(
n2 −n

)
cnr n−2 +

(
n2 +n

)
dnr n −

(
n2 +n

)
c ′nr−n−2 −

(
n2 −n

)
d ′

nr−n
]

cosnθ
}

− ∂

∂r

(
∂Φp

∂θ
r−1

)
(A.1c)

97



98 A. Expressions Used During the Analysis of an Isotropic Shell With a Circular Cutout

A.2. Boundary Value Problem Constants
Nonzero constants of the solution for the Airy stress function (4.27) determined from the boundary condi-
tions in Subsection 4.3.6 and assuming the shape function (4.1).
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A.3. Stress Resultant Coefficients
Stress resultants computed by operating (3.61) on the Airy stress function (4.27) in Subsection 4.3.6. The
terms are obtained assuming the displacement function (4.1).
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A.4. Generalized Eigenvalue Problem Matrices
The setup of the generalized eigenvalue problem as defined in equation (4.31) in Subsection 4.3.7. The ma-
trices KM and KG are given by
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as well as
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(
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)
(A.7b)

K G
13 =B a2Ei1 (2B a) (A.7c)

K G
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1

4B
e−2B a (2B a +1) (A.7d)
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e−2B a (14B a +9)+ 1
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4B
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8B 3a3 −4B 2a2 −2B a −1
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−4B a2Ei1 (2B a)

(
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)
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K G
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B
e−2B a (2B a +1)− 7

2
B a2Ei1 (2B a) (A.7g)

K G
33 =

1

8B 2 e−2B a
(
4B 2a2 +2B a +1

)
−a2Ei1 (2B a) (A.7h)

K G
34 =− 1
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)
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2
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B
Generalized Eigenvalue Problem Matrix

Elements for the Quasi-Isotropic Case

The elements of the generalized eigenvalue problem matrices (4.31) for quasi-isotropic, symmetric laminates
as derived in Section 4.4. They have the same form as indicated in Appendix A.4. Major differences are ap-
parent in the bending contribution terms of KM. The membrane response only changes in so far as that the
isotropic membrane stiffness terms are replaced with equivalent composite ones. Consequently, the thick-
ness t cannot be eliminated in KG as a comparison between (A.7) and (B.2) shows. The new matrix entries are
given by

K M
11 =

3

16
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11 − A2

12

A11R2B 2 e−2B a (2B a +1)

+ B 2

16
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)}
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e−2B a (2B a +5)−8e−B aEi1 (B a) (B a +1)+8Ei1 (2B a)

]
− B

8a

(
D11 −D22

)[
e−2B a

(
2B 2a2 −3B a −8

)
+12B aEi1 (2B a)

] (B.1b)

K M
13 =

3

16

A2
11 − A2

12

A11R2B 3 e−2B a
(
2B 2a2 +2B a +1

)
+ B

16

{
e−2B a

[
2B 2a2 (

3D11 +2D12 +3D22 +4D66

)−2B a
(
5D11 +14D12 +5D22 −4D66

)
+ 7D11 +26D12 +7D22 −12D66

]−4Ei1 (2B a)
(
3D11 +2D12 +3D22 +4D66

)}
(B.1c)

K M
14 =− A2

11 − A2
12

8A11R2B 3 e−2B a
(
2B 2a2 −2B a −1

)
− B

8

(
D11 −D22

)[
e−2B a

(
2B 2a2 −6B a −1

)
−12B aEi1 (2B a)

] (B.1d)

K M
22 =

A2
11 − A2

12

64A11R2B 2

[
e−2B a (14B a +7)−48B 2a2Ei2

1 (B a)
]

+ 1

64a2

{
e−2B a

[
2B 3a3 (

7D11 +2D12 +7D22 +4D66

)−B 2a2 (
13D11 +22D12 +13D22 −84D66

)
− 64B a

(
D11 +6D12 +D22 −4D66

)+256D11 +256D22 +512D66

]
+ 36B 2a2Ei1 (2B a)

(
7D11 +2D12 +7D22 +4D66

)}
(B.1e)

101



102 B. Generalized Eigenvalue Problem Matrix Elements for the Quasi-Isotropic Case
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