<]
TUDelft

Delft University of Technology

Economically optimal safety targets for riverine flood defence systems

Dupuits, Guy; de Bruijn, KM; Diermanse, FLM; Kok, Matthijs

DOI
10.1051/e3sconf/20160720004

Publication date
2016

Document Version
Final published version

Published in
FLOODrisk 2016

Citation (APA)

Dupuits, G., de Bruijn, KM., Diermanse, FLM., & Kok, M. (2016). Economically optimal safety targets for
riverine flood defence systems. In M. Lang, F. Klijn, & P. Samuels (Eds.), FLOODrisk 2016: 3rd European
Conference on Flood Risk Management, Lyon, France. Lyon, France. October 17-21, 2016 (Vol. 7, pp. 1-9).
(E3S Web of Conferences; Vol. 7, No. 20004). EDP Sciences.
https://doi.org/10.1051/e3sconf/20160720004

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1051/e3sconf/20160720004
https://doi.org/10.1051/e3sconf/20160720004

E3S Web of Conferences 7, 20004 (2016)

DOI: 10.1051/e3sconf/20160720004

FLOODrisk 2016 - 3" European Conference on Flood Risk Management

Economically optimal safety targets for riverine flood defence systems

E.J.C. Dupuits?, K.M. de Bruijn?, F.L.M. Diermanse” and M. Kok’

"Delft University of Technology, Delft, The Netherlands
2Deltares, Delft, The Netherlands

Abstract. A breach in a flood defence will affect the downstream water levels in a riverine system, and therefore the flood

risk of the system. The effect of this changed flood risk is used in an economical optimization to assess if this significantly

changes the economically optimal safety targets of the flood defences in a riverine system. The impact of breaches on the

flood risk and the economically optimal safety targets is modelled using simplified hydrodynamic relations and a number

of conceptual case studies for small systems. Significant differences were found, but are limited to cases with a relatively
high chance of breaching and/or high impact breaches. These differences seem to mostly affect the optimal heights of the
flood defences, which means that including the effect of breaches can result in a different-optimal investment path.

1 Introduction

A river flood defence system can be defined as a
series of multiple flood defences alongside a river. An
example of such a series of flood defences can be found
in the form of dike rings in the Dutch Rhine and Meuse
river basin. If one of the flood defences breaches, the
water levels downstream of the breach can change which
will affect the failure probability. To determine the flood
risk of the system, the effect of breaches on failure
probabilities downstream need to be addressed.

Economical optimization, as it is used in The
Netherlands, minimizes the total cost, which consist of
the costs of building flood defences and the risk costs [1].
This can be an important tool in determining flood
protection standards. The risk costs in the economical
optimization are a measure of the flood risk, which means
any change in the flood risk can also influence the
economically optimal safety target of each flood defence.

The impact of failures on the flood risk and/or the
economically optimal safety targets of a system depends
on the type of system and its elements, where the
definition of a system depends on the scale. A number of
system types with the impact of failures on the flood
risk/economical optimization can be found in literature,
for example regarding hierarchal flood protection systems
or multi-layer safety [2,3] and coastal flood defence
systems [4-6]. Specifically regarding flood risk in
riverine systems, a number of approaches can be found in
literature, for example in [7-12]. However, these methods
focus on determining flood risks, instead of determining
the economically optimal safety targets.

There are also methods to assess the economically
optimal safety targets for embankment sections in the
Netherlands, but these do not consider the impact of
breached upstream flood defences. For example, the
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research in [1] uses exponentially distributed water level
exceedance probabilities to model flood probabilities. A
remark is made in [1] to replace the exceedance
probabilities with the flood probabilities from a recent
nation-wide flood risk analysis project ([13]), however
this project considers flood defences along the same river
as independent (i.e. does not account for the impact of a
breached dike ring on the downstream dike rings).

Therefore, we will investigate the effect of including
the impact of breaches on the economically optimal
safety targets of flood defences in a riverine system. This
will be done by starting with a conceptual case of two
flood defences, which will be extended to multiple flood
defences. Emphasis lies on getting an initial impression
of the impact on the economically optimal safety targets
for a number of conceptual case studies, which requires
tractable computation times. This is achieved by using
conceptually simplified hydrodynamics, risk, and
economical optimization methods. Finally, a sensitivity
analysis is done with respect to some key parameters and
results from the economical optimization.

2 Economically optimal with failures

The effect of a breach can have either a positive or
negative impact on other flood defences in the same
system, similar to [12]. For example, a positive impact is
the storage of discharge in the area behind a breach,
effectively reducing the discharge for downstream flood
defences (Figure 1A). An example of a negative impact is
the shortcutting of a protected area (e.g. polder) which
leads a higher discharge in a neighbouring river (Figure
1B).

In order to apply these impacts into economically
optimal safety targets, an economical optimisation

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
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method is needed. In this paper, we will conceptually
base the economical optimisation method on the one used
in The Netherlands for the quantification of economically
optimal safety targets (e.g. see [1]). The objective of this
economical optimisation method is the minimisation of
the total cost, which is comprised of the investment costs
and the expected flood damages. However, compared to
[1] we will use simpler relations, similar to earlier work
in [5,6] and comparable to for example [14].

First, the investment costs per flood defence are
assumed to be a linear function of a fixed cost and a
variable cost per meter dike height increase. The timing
of the investment is fixed to a single investment at the
start of the regarded time period. Time dependent
processes such as economic growth, are ignored for the
preliminary assessment in this study, with the purpose of
obtaining a simple total cost equation. If these where not
to be ignored, finding the duration and size of repeated
investments would have to be part of the optimisation
(e.g. [15,16]). Secondly, the flood risk is assumed to be
the product of the annual probability of flooding times
the expected annual damage given flooding; because this
is an annual cost, it needs to be discounted. Thirdly, the
starting height of all flood defences is assumed to be zero
in the investment function. These assumptions expand the
total cost relation for » flood defences as follows:

n
D:
TC = Z PL?L + Cf,i + Cv,ihi (1)

=1

where for flood defence i the annual flooding probability
is denoted by P;, the expected damage given flooding by
D;, the fixed cost by Cy;, the variable cost by C,; and the
height by 4,. Furthermore, when a damage is discounted
by a discount rate » (»>0) annually over an infinite time
period, it converges to D;/ r [17].

In this paper, we assume that the previously described
impacts only affect the economical optimization in
Equation 1 with regard to the failure probability. If the
flood damages are dependent on the extent or type of
flooding (e.g. see [13]), the flood damage could be
impacted as well. However, in this paper, in case of a
flooding a fixed number is used as an estimate for the
flood damage. Furthermore, the storage of the polder
areas is assumed to not be a limiting factor (i.e. the
breach discharge is constant).

2,
River B -
2 J 1 " 1
River A = = River A =
A) ®)

Figure 1. Positive (A) and negative (B) impact of a breach in
the embankment along area 1 on the failure probability
of area 2.

3 Conceptual case

For the conceptual case, a system with two flood
defences is used to preliminary assess the effect of either

a positive or a negative impact. For positive impacts, the
system of Figure 1A is used, while for negative impacts
Figure 1B is used. As mentioned in the previous section,
we assume that these impacts manifest themselves via the
failure probability. Because both systems assume a
breach in defence 1 in the case defence 1 fails, the
consequence, or impact (either positive or negative), will
be felt at defence 2. If the probability of a breach at flood
defence 1 is equalled to the failure probability of flood
defence 1, a relation for the failure probability of flood
defence 2 can be found using the law of total probability
as follows:

P, = P1P2|breach +(1- Pl)leno_breach 2)

where P, is the probability of a breach at defence 1, and
Pypreach is the failure probability of flood defence 2
given breached conditions at flood defence 1. Similarly,
P3ino_breach is the failure probability of flood defence 2
given no breach at flood defence 1. In case impacts are
ignored for the conceptual systems of Figure 1A and
Figure 1B, Equation 2 reduces to P, = P;ng breach-

In this conceptual case, the failure probabilities will
be approximated by probabilities of water level
exceedance, similarly to [1]. However, in following
sections this approximation will be replaced in order to
represent other failure mechanisms as well. Nevertheless,
for now, exponential exceedance relations are used as
follows:

P =exp (_h/ﬁ) (3)

where for P; the height of flood defence 1 (h,) is used
together with an exponential distribution parameter for
defence 1 (B;). On the other hand, for both P, jng preach
and P;jpreach the height of flood defence 2 is used,
together with consecutively exponential distribution
parameters .82|n0,breach and .32|breach~

With these exponential exceedance relations, the
economically optimal exceedance probabilities can be
found. In order to do so, Table 1 shows some
hypothetical values. However, Table 1 does not show the
value of the exponential distribution parameter p,
because that depends on the type of impact. In case of a
system with positive impact B3 breach = 0.4 and
Bajpreach = 0.2. When the system with negative impact is
chosen, B;ino breach = 0.2 and By jpreach = 0.4. In other
words, a larger beta value leads to higher water levels for
the same probability of exceedance.

Defence 1 Defence 2
£ [m] 0.4 See text
Cr[€] 20-10° 20-10°
C,[€/m] 10-10° 10-10°
D [€] 10°-10° 10°
r[-] 0.04 0.04

Table 1. Parameter values for the conceptual systems.
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Figure 2. Optimal values for P; and P, as functions of D,, for positive (A) and negative (B) impacts respectively. Optimal values
are calculated with and without impacts.

The optimal exceedance probabilities for the conceptual
systems with positive and negative impact, compared to
no impact, are shown in Figure 2, as functions of D;.
These values were found by calculating the total costs for
all height combinations of defence 1 and defence 2
ranging between 0 and 20 meter (step size = 0.01 meter).

As the chosen parameter values are hypothetical, the
relevancy of Figure 2 lies with the behaviour of the
optimal annual exceedance probabilities as a function of
the flood damage at defence 1. The differences might be
larger or smaller depending on different values for the
parameters in Table 1. For a more in depth discussion of
a similar conceptual system, see [5,6].

For flood defence 1, in case of a positive impact, the
effect of the impact seems limited; other than requiring a
slightly higher flood damage at defence 1 before building
a flood defence becomes economically optimal, the
exceedance probabilities with and without impact appear
to be identical. However, in case of negative impact and
relatively low values of the flood damage at defence 1,
building a flood defence becomes not only economically
optimal sooner, but the optimal probability is smaller as
well. Nevertheless, the latter effect seems to diminish
once the flood damage at defence 1 becomes larger.

The plot for defence 2 in Figure 2A indicates that in
case of a positive impact and relatively small flood
damages at defence 1, the optimal annual exceedance
probability of defence 2 should be somewhat smaller
when compared to the case where positive impacts are
ignored. Intuitively, this makes sense as the load at
defence 2 is smaller than when ignoring the positive
impact. Nevertheless, once the optimal exceedance
probability of defence 1 becomes smaller, the difference
with and without impact at defence 2 difference becomes
negligible. Figure 2B indicates that the opposite is true in
case of negative impacts: for defence 2, and for relatively
small flood damages at defence 1, the optimal annual
exceedance probability of defence 2 should be somewhat
larger when compared to the case where negative impacts
are ignored. Again, intuitively, this makes sense as the
load at defence 2 is larger than when ignoring the
negative impact. Here too the difference between with

impacts and without impact becomes negligible for
smaller optimal exceedance probabilities of flood defence
1. These findings agree with the conclusions in [11].

4 Monte Carlo flood risk simulations for
economically optimal safety targets

The conceptual case indicates that, under certain
circumstances, there can be a significant effect of
including the impact of breaches. However, the
conceptual case has a number of shortcomings. First, the
usage of exceedance probabilities instead of failure
probabilities (i.e. the height of the flood defences is
considered, not its resistance against other failure modes).
Secondly, the conditional probabilities, as used in
Equation 2, become impractical when a larger number of
flood defences are wused and/or with possible
combinations of negative and positive impacts. Thirdly,
the load reduction or load increase should preferably be
modelled explicitly using breach models in the
hydrodynamic analyses. In Section 4.1, these issues are
addressed in two ways: the exponential exceedance
relation will be replaced by a reliability function
representing load and strength, and the consequences of
breaches are evaluated by manipulating (peak) discharges
in a Monte Carlo simulation, similar to the conceptual
model as described in [12]. Furthermore, even though the
Monte Carlo simulations will be relatively
computationally efficient, it will be no longer feasible to
run an entire height range, as was done in Section 3, for
each flood defence in a system with multiple defences. A
different method of approaching the system optimal
configuration with impacts is described in Section 4.2.

4.1 Flood risk method

The failure probability of a flood defence can be
represented by a reliability equation as follows:

Z=R-S @)
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where R is the strength of the flood defence, and S is the
load by the (peak) discharge of a river. The load on a
flood defence will be described by a Gumbel distribution
representing the (extreme) discharge distribution of the
river Rhine at Lobith, as used in [18]. These discharges
will be converted to equilibrium water levels (quasi
uniform approach) using the Chézy formula; the chosen
parameter values necessary for the calculations are listed
in Table 2. The widths have been chosen in such a way
that, given the discharge distribution over both rivers, the
equilibrium water levels in both rivers are practically the
same for any discharge.

River A River B
Discharge (Q) [m’/s] 2/30 1/30
Width [m] 1092 550
Slope [-] 0.0001 0.0001
Nikuradse [m] 0.05 0.05

Table 2. River discharge parameters.

For the strength of a flood defence a lognormal
distribution is assumed, with a mean equal to the height
of the flood defence, and an assumed coefficient of
variation of 0.2, similar to [6]. This lognormal
distribution represents a ‘critical water level’ for which
the flood defence fails if it is exceeded; the critical water
level can be lower or higher than the actual crest height.
The critical water level approach is a more integral way
of describing failure probabilities, as not only the
exceedance of crest level is included
(overflow/overtopping), but also for example piping.
Among others, the flood disaster of New Orleans due to
hurricane Katrina showed that flood defences can fail at
water levels below their crest height due to for example
piping [19].

A Monte Carlo simulation is used to manipulate
(peak) discharges as a method of describing impacts. A
Monte Carlo iteration starts with sampling the critical
water levels of all the flood defences, while also sampling
one or more river discharges, depending on how many
rivers are present in a given case. From there on, the
flood defences are checked sequentially according to
Equation 4 by starting at the upstream boundary. In case
a flood defence fails (Z < 0), a breach is always assumed
to occur and a fixed percentage of the discharge is
subtracted from the sampled discharge for all subsequent
flood defences along that same river (positive impact).
On the other hand, in case of shortcutting (or negative
impact), the percentage of discharge which has flown into
the area behind the flood defence is added to the river
that is connected to the exit point of the shortcut. This
implies that the probability of shortcutting to occur, given
a breach at a flood defence prone to shortcutting, is equal
to one. This assumption might overestimate the impact of
shortcutting, and needs to be checked when applied to a
real case.

4.2 Economical optimisation method

In Section 3, the minimum of the total costs was
determined by calculating the total cost for all

combinations of defence 1 and defence 2 in a range
between 0 and 20 meters, with a step size of 0.01 meter.
This type of brute force calculation is no longer feasible
when more than two flood defences are used, in
combination with longer flood risk calculation times. For
example, in case of five flood defences which each can
have ten different states (or heights), the number of
possible system configurations would be 10°. If each
configuration would take a single second to calculate, it
would take almost 28 hours to calculate all the
configurations.

For this preliminary study, the number of states is
reduced to five. The first state is based on the optimal
height without impacts, which can be calculated using
numerical integration of Equation 4. The remaining four
states are based on the first state, reducing and increasing
the height with 0.2 and 0.4 meter, respectively. The step
size of 0.2 meter is based on similar choice in [20], where
it was mentioned that smaller steps have no practical
value.

These five states will not guarantee that the global
minimum of the total cost is actually found. However, the
findings in Section 3 suggest that the system
configuration with and without impact probably do not
differ greatly, which is the reason for choosing the states
around the optimum without interactions. Furthermore,
the goal of this study is not to find the economically
optimal system configuration with impacts, but to
investigate the relative difference of including impacts.

Nevertheless, for future research, more efficient
calculation methods might be needed to find the optimal
system configuration. This can be obtained by either
reducing the flood risk calculation cost (e.g. surrogate
models), and/or the number of system configurations that
actually need to be calculated (e.g. a flood risk based
greedy algorithm).

5 Application

The method described in Section 4 will be applied to
a number of hypothetical systems, shown in Figure 3.
These systems were chosen in order to investigate the
effect of positive impacts (Figure 3A), negative impacts
(Figure 3B) and both negative and positive impacts
(Figure 3C).

Rive

I B™ ¢ - =
Ca JC3 2 J1 (3 L 2, [ L)
Ri\fcrAL - - - River A - - -
A) ®)
4, 2,
River B™= =
3 1
River A = =
©)

Figure 3. Three types of systems with four defences:
positive impact (A), negative impact (B), and both (C).



E3S Web of Conferences 7, 20004 (2016)

DOI: 10.1051/e3sconf/20160720004

FLOODrisk 2016 - 3" European Conference on Flood Risk Management

5.1 Input

Three systems, shown in Figure 3, will be optimised
with and without impacts. In case impacts are included, it
is assumed for all systems that if a breach occurs, a fixed
percentage of the river discharge flows from the river into
the polder area previously protected by the flood defence.
Initially, this discharge reduction will be set at ten
percent, and will be increased in Section 6. In follow up
research this discharge reduction will have to be
motivated by for example hydrodynamic simulations.
The impact of discharge reductions on the water level,
using reductions of ten and twenty percent and the
parameters of Table 2, is shown in Figure 4.

10 T T T

— 110 reduction
—&— 10% reduction i
—&— 20% reduction

Water level [m]

0d . . .
0 0.5 1 1.5 2

Discharge [11-13/’5] x10*

Figure 4. Water level as a function of the discharge, plotted
for no reduction, 10% reduction and 20% reduction.

For the sake of the example, the systems in Figure 3B
and Figure 3C can only shortcut in one direction: from
river A to river B. Furthermore, the flood defences that
are prone to shortcutting are not threatened by river B.
Both these simplifications can be justified for example
when River B lies significantly lower than River A.

The effect of including these impacts can be shown by
looking at the total number of breaches. This is done for
the system in Figure 3A, and the total number of breaches
are plotted in Figure 5, using a Monte Carlo run with 10’
samples with all four defence heights set to eight meter.

4
g 10 : :
I o reduction
I 10% reduction
38F [ 120% reduction | |
g
=
&
D36 b
5 —
°
5
=) 34+ E
£
3
Z
i H H |
Defence 1 Defence 2 Defence 3 Defence 4

Figure 5. Number of breaches runs per defence for the system
in Figure 3A with 107 samples, using no impact and
positive impact (10% and 20% discharge reduction).

Figure 5 shows that the number of breaches are
approximately constant without impacts, but decreases
for the downstream flood defences; the decrease is
greater when a larger discharge reduction is used.
Another way of looking at this is by looking at the
distribution of the number of breaches per Monte Carlo
run, which is shown in Figure 6. Figure 6 shows the
decrease of the number of breaches can primarily be
attributed to a decrease in the number of situations with
more than one breach. If the damage for each defence is
assumed to be equal, the same can also be displayed in a
flood loss (FS) curve, as shown in Figure 7.

Regarding the investment costs and the discount rate,
values are used similar to the conceptual system in
Section 3. They are regarded as constant for all three
system configurations, and are listed in .Table 3.

=1

106 =5 |1
@ =3
s -4
(5]
£
310t r ]
o
S
=]
b5}
H
S 102' 1
z

o | | o

No reduction 10% reduction 20% reduction

Figure 6. Distribution of the number of breaches (#) for the
system in Figure 3A with 107 samples, using no impact
and positive impact (10% and 20% discharge reduction).

107! . .

e 100 reduction
102 —&— 10% reduction | -
—&— 20% reduction

o

0 L 1 fasl
1D 2D 3D 4D

S [euros]
Figure 7. Flood loss (S) curves with 107 samples for the
system in Figure 3A. Exceedance probabilities (F) are
shown for no impact and positive impact (10% and 20%
discharge reduction), using equal damages D per defence.

Defence Defence Defence Defence
1 2 3 4
Cr[€] 20-10° 20-10° 20-10° 20-10°
C,[€m]  10-10° 10-10° 10-10° 10-10°
-] 0.04 0.04 0.04 0.04

Table 3. Economic values for the defences in Figure 3.
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5.2 Calculations and results

Each of the three systems shown in Figure 3 will
initially be calculated with three configurations of
potential flood damages. These configurations will be the
same for each system, and are shown in Table 4. The
number of samples during each Monte Carlo run is 10,

D, D, D; Dy
Config. 1 108 108 10° 108
Config.2 5-107 5-107 5-107 5-107
Config. 3 107 107 107 108

Table 4. Configurations used for the systems of Figure 3.

The calculation results, with and without impacts, for
Figure 3A, Figure 3B and Figure 3C are shown in Table
5, Table 6 and Table 7, respectively. Calculation results
with impacts that are different from the results without
impacts are marked bold. The first thing that stands out is
that configuration 1 and configuration 2 of Table 4 do not
lead to different optimal values when including impacts.
Only in the case of configuration 3, where flood defence
4 has a significantly higher potential flood damage when
compared to the other flood defences, we see different
results.

First, for the system with positive interaction in Table
5 the optimal heights for configuration 3 with impacts are
a step lower than without impacts for most of the
defences. The calculation with impacts has been repeated
a few times, and lead to some interesting results. The
number of defences with lower optimal heights differs

between runs, and ranges between two to four.
Apparently, small variations in the Monte Carlo
estimation of the failure probability lead to these changes.
This indicates that the total cost difference between some
of these combinations is small.

Secondly, the system with predominantly negative
impacts for configuration 3 in Table 6 shows an increase
in height for flood defence 3, and a large increase in
height for flood defence 4. When looking at the failure
probabilities of defence 4 with and without impact, the
optimal height of defence 4 would probably need to be
even higher. Regarding the first three defences, which
defence (and how many) should be a step higher tends to
differ when the calculations are repeated. Again, this can
probably be attributed to small total cost differences
between the various system configurations.

Thirdly, the system with mixed impacts for
configuration 3 in Table 7 indicates that the first and third
flood defence should be increased with a single step,
while the second defence should be decreased with a
single step. Repeated runs did not lead to different
configurations, but given the results with the other two
systems, the difference in total costs might still be small.

Finally, the optimal failure probabilities show some
interesting results as well. Generally speaking, the
optimal failure probabilities with and without impact
seem to be similar. Even when the optimal height of
defences with impacts tends to differ from the optimal
height without impact, the failure probabilities are
approximately similar. Any differences in failure
probabilities can be attributed to the limited number of
steps, and the step size of 0.2 meter.

) Defence 1 Defence 2 Defence 3 Defence 4
Configuration 1 D, = 10° D, = 10° D, = 10° D= 10°
Optimal values h [m] 8.18 8.18 8.18 8.18
(no impacts) P[] 1/368 1/368 1/368 1/368
Optimal values h [m] 8.18 8.18 8.18 8.18
(with impacts) P[] 1/369 1/375 1/387 1/389
. Defence 1 Defence 2 Defence 3 Defence 4
Configuration 2 D; =510 D,=510 D;=510 Dy=510
Optimal values h [m] 7.70 7.70 7.70 7.70
(no impacts) P[] 1/182 1/182 1/182 1/182
Optimal values h [m] 7.70 7.70 7.70 7.70
(with impacts) P[] 1/182 1/189 1/193 1/199
. Defence 1 Defence 2 Defence 3 Defence 4
Configuration 3 D, =107 D, =107 D,=107 D, = 10°
Optimal values h [m] 6.55 6.55 6.55 8.18
(no impacts) Pl 1/35 1/35 1/35 1/368
Optimal values h [m] 6.35 6.35 6.55 7.98
(with impacts) P[] 127 1/28 1/40 1/391

Table 5. Results with and without impacts for the system in Figure 3A.
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) Defence 1 Defence 2 Defence 3 Defence 4
Configuration 1 D,=10° D,=10° D= 10° D, = 10°
Optimal values h [m] 8.16 8.16 8.16 8.18
(no impacts) P[] 1/365 1/365 1/365 1/368
Optimal values h [m] 8.16 8.16 8.16 8.18
(with impacts) P[] 1/360 1/364 1/375 1/311
) Defence 1 Defence 2 Defence 3 Defence 4
Configuration 2 D;=5107 D,=5107 D;=5107 D;=5107
Optimal values h [m] 7.69 7.69 7.69 7.70
(no impacts) P[] 1/183 1/183 1/183 1/182
Optimal values h [m] 7.69 7.69 7.69 7.70
(with impacts) Pl 1/179 1/185 1/190 1/148
) Defence 1 Defence 2 Defence 3 Defence 4
Configuration 3 D,=10 D, =107 D= 107 D= 10°
Optimal values h [m] 6.53 6.53 6.53 8.18
(no impacts) P[] 1/35 1/35 1/35 1/368
Optimal values h [m] 6.53 6.53 6.73 8.58
(with impacts) Pl 1/34 1/36 1/51 1276

Table 6. Results with and without impacts for the system in Figure 3B.

) Defence 1 Defence 2 Defence 3 Defence 4
Configuration 1 D, =10° D= 10° D, = 10° D= 10°
Optimal values h [m] 8.16 8.18 8.16 8.18
(no impacts) P[] 1/365 1/368 1/365 1/368
Optimal values h [m] 8.16 8.18 8.16 8.18
(with impacts) P[] 1/361 1/349 1/363 1/357
) Defence 1 Defence 2 Defence 3 Defence 4
Configuration 2 D, =510 D,=510" D;=5107 D, =510
Optimal values h [m] 7.69 7.70 7.69 7.70
(no impacts) Pl 1/183 1/182 1/183 1/182
Optimal values h [m] 7.69 7.70 7.69 7.70
(with impacts) P[] 1/179 1/171 1/184 1/177
) Defence 1 Defence 2 Defence 3 Defence 4
Configuration 3 D, =107 D, =107 D= 107 D, = 10°
Optimal values h [m] 6.53 6.55 6.53 8.18
(no impacts) Pl 1/35 1/35 1/35 1/368
Optimal values h [m] 6.73 6.35 6.73 8.18
(with impacts) Pl 1/45 1/25 1/47 1/358

Table 7. Results with and without impacts for the system in Figure 3C.
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6 Sensitivity discharge fraction

The discharge fraction which flows into a polder area
due to breaching was set to ten percent in the previous
section. As this discharge fraction is the primary driver
behind any differences obtained in Section 5 with respect
to optimal values with and without impacts, it makes
sense to see what happens if this fraction is altered. Any
significant differences in optimal values encountered in
Section 5 were limited to some specific system
configurations. Therefore, all the systems and
configurations of Section 5 were re-run with an increased
discharge fraction set at twenty percent.

First, for the system with positive impacts in Figure
3A the results with an increased discharge fraction were
similar to those found in Table 5. The only result that
changed was that for configuration 3, the third flood
defence height is lowered with a single step as well.

Secondly, for the system with negative impacts in
Figure 3B the change in discharge fractions is noticeable,
as configuration 2 now showed a difference as well: flood
defence four gets a height increase with a single step.
Furthermore, configuration 3 with an increased discharge
fraction showed a greater difference than with a discharge
fraction of ten percent; the height of the first three flood
defences increased with a single step, and the height of
the fourth flood defence increased with two steps.

Thirdly the system with mixed impacts in Figure 3C
showed, similar to the system with negative impacts, a
significant difference in optimal system states was found.
Configuration 1 sees flood defence 1 increased with a
single step, configuration has the first and third flood
defence increased with a single step, while configuration
3 has the first, third and fourth flood defence increased
with a single step, while the second flood defence gets
decreased with a single step.

The system with mixed impacts and an increased
discharge fraction also showed differences regarding the
optimal failure probabilities, especially for configuration
2, which can no longer be attributed solely to the step size
of 0.2 meter. The optimal failure probabilities are shown
in Table 8.

Defence 1 Defence 2 Defence3 Defence

4
Cl1 1/478 1/331 1/367 1/321
C2 1/241 1/161 1/252 1/163
C3 1/45 1/23 1/49 1/323

Table 8. Optimal failure probabilities using a 20% discharge
fraction for the three configurations (C1, C2, C3, see also
Table 4) of the system with mixed impacts (Figure 3C).

The decreased optimal failure probabilities for
defence 1 and 3 for configuration 2 in Table 8 can be
attributed to the used discharge distribution over River A
(2/30Q) and River B(1/3Q). Because shortcutting in the
systems of Figure 3 can only happen from River A to
river B, a twenty percent discharge reduction from River
A effectively leads to a forty percent discharge increase

in River B. Keeping in mind that the investment costs are
equal among all flood defences, it becomes relatively
cheap to invest extra in the defences that are prone to
shortcutting. This agrees with results found in earlier
work on coastal flood defence systems ([5,6]), which
indicated that for a system with a front defence (similar to
a flood defence prone to shortcutting), extra investments
in this front defence become economically attractive once
it is either cheaper to upgrade and/or more effective at
reducing risk (compared to the downstream defences).

Even though the discharge fraction was increased to
twenty percent, results from repeated runs still showed
small variations with respect to the optimal system
configuration. As mentioned in Section 5, this can
probably be attributed to small variations in the Monte
Carlo failure probability estimations, which also means
that differences in total costs will probably be small. One
of these runs showing this behavior is the system with
mixed impacts in configuration 1. In order to further
examine these changes, the risk costs, investment costs
and total costs of the system with mixed impacts in
configuration 1 are shown in Table 9.

Table 9 shows that the difference in total costs (risk
costs plus investment) for a given discharge fraction is
less than one percent of the risk costs for both discharge
fractions. As the difference in estimated failure
probabilities between Monte Carlo runs can be in the
order of one percent with the used number of samples,
this seems to be a valid explanation for the optimal height
differences between different runs.

Risk Costs Investment

[euro] [euro]
g(; 1=mlp % heietts 28171107 40.68:107
Ziffi”f A 26100107 40.88-107
g(; znzl)(?(;: heights 2.9700-10’ 40.68-10’
giiezczeoi; o-2m, 27447100 40.88107

Table 9. Cost comparison for the system with mixed impacts in
configuration 1, for both discharge fractions (Q,.y)-

7 Conclusion

The results in Sections 5 and 6 show that the effect of
positive impacts on both the optimal failure probability
and the optimal heights seem to be limited to cases that
meet some specific requirements, with different results
regarding the optimal failure probabilities and optimal
flood defence heights. Regarding the optimal failure
probabilities, significant differences between using
impacts and not using them were, in this paper, limited to
flood defences prone to shortcutting in the system with
mixed interaction using a twenty percent discharge
fraction in configuration 2 (Table 8). Therefore, the effect
on the target failure probabilities (safety standards) seems
to be limited in small systems and only noticeable in
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systems such as the aforementioned system. The effects
may be larger when systems with more potential breach
locations and areas are considered, such as for example
the Lower Rhine River (e.g. [21]).

However, regarding the optimal defence heights, a
broader set of changes was detected, compared to the
optimal heights calculated without impacts. Nevertheless,
the effect of positive impacts seems to be limited when
compared to negative impacts, which can also be seen in
the results belonging to the mixed impacts system.

In general, the results from this study indicate that
there can be a significant effect of breach impacts if one
or more of the following system characteristics apply:

e Relatively large failure probabilities

e Relatively large differences in potential flood
damage between flood defences

e Relatively large impact of a breach on the river
discharge(s)

Furthermore, the chosen step size of 0.2 meter in
defence height proved to be too small, at least from the
perspective of the uncertainties regarding the failure
probability estimation. This was noticed because repeated
optimisation runs lead to small differences in the optimal
flood defence heights. In practice, these uncertainties
exist as well, which might warrant larger step sizes in
order to obtain reproducible, significantly different result.
Nevertheless, if a practical case study meets one or more
of the aforementioned requirements, indications have
been found in this study that in principle a different cost-
optimal investment path can be found when including
impacts.
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