

Delft University of Technology

Data augmentation for machine learning of chemical process flowsheets

Balhorn, Lukas Schulze; Hirtreiter, Edwin; Luderer, Lynn; Schweidtmann, Artur M.

DOI
10.1016/B978-0-443-15274-0.50320-6
Publication date
2023
Document Version
Final published version
Published in
Computer Aided Chemical Engineering

Citation (APA)
Balhorn, L. S., Hirtreiter, E., Luderer, L., & Schweidtmann, A. M. (2023). Data augmentation for machine
learning of chemical process flowsheets. In A. Kokossis, M. C. Georgiadis, & E. N. Pistikopoulos (Eds.),
Computer Aided Chemical Engineering (pp. 2011-2016). (Computer Aided Chemical Engineering; Vol. 52).
Elsevier. https://doi.org/10.1016/B978-0-443-15274-0.50320-6
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/B978-0-443-15274-0.50320-6
https://doi.org/10.1016/B978-0-443-15274-0.50320-6

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)
PROCEEDINGS OF THE 33rd European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece
© 2023 Elsevier B.V. All rights reserved.

Data augmentation for machine learning of
chemical process flowsheets
Lukas Schulze Balhorna, Edwin Hirtreitera, Lynn Luderera, Artur M.
Schweidtmanna,*
a Process Intelligence Research, Department of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
*Corresponding author. Email: a.schweidtmann@tudelft.nl

Abstract
Artificial intelligence has great potential for accelerating the design and engineering of
chemical processes. Recently, we have shown that transformer-based language models
can learn to auto-complete chemical process flowsheets using the SFILES 2.0 string
notation. Also, we showed that language translation models can be used to translate
Process Flow Diagrams (PFDs) into Process and Instrumentation Diagrams (P&IDs).
However, artificial intelligence methods require big data and flowsheet data is currently
limited. To mitigate this challenge of limited data, we propose a new data augmentation
methodology for flowsheet data that is represented in the SFILES 2.0 notation. We show
that the proposed data augmentation improves the performance of artificial intelligence-
based process design models. In our case study flowsheet data augmentation improved
the prediction uncertainty of the flowsheet autocompletion model by 14.7%. In the future,
our flowsheet data augmentation can be used for other machine learning algorithms on
chemical process flowsheets that are based on SFILES notation.
Keywords: Data Augmentation, Flowsheet Autocompletion, SFILES, Transformers

1. Introduction
The design of a flowsheet topology is an important step in early process synthesis. This
step consists of selecting and arranging unit operations for a chemical process. Artificial
intelligence (AI) methods have the potential to learn from previous flowsheets and
support engineers in process development (Hirtreiter et al., 2022; Oeing et al., 2022;
Schweidtmann, 2022; Vogel et al., 2023). For instance, Vogel et al. (2023) proposed an
algorithm for the autocompletion of flowsheets. This autocompletion algorithm is
inspired by text-autocompletion from natural language processing (NLP) that is based on
generative transformer models (Radford et al., 2019). In addition, Hirtreiter et al. (2022)
showed that the prediction of control structure elements from Process Flow Diagrams
(PFDs) can be interpreted as a translation task between PFDs and Process and
Instrumentation Diagrams (P&IDs). Hence, they deployed a sequence-to-sequence
transformer architecture which is commonly used for translation of text between different
languages. These flowsheet transformers rely on machine-readable flowsheet
representations.
To represent flowsheets in a machine-readable format, we depict them as graphs or as
text using unique, i.e., canonical, SFILES 2.0 strings (Vogel et al., 2022b). In general,
flowsheets are drawings of chemical processes. Chemical engineers use flowsheets for
the communication, planning, operation, simulation, and construction of these processes.
An example flowsheet is given in Figure 1.

http://dx.doi.org/10.1016/B978-0-443-15274-0.50320-6

mailto:a.schweidtmann@tudelft.nl

 L. Schulze Balhorn et al.

An intuitive way to represent flowsheets is via graphs with unit operations as nodes and
stream connections as directed edges. Besides the graph representation, flowsheets can
also be represented as strings. D’Anterroches (2005) introduced the Simplified Flowsheet
Input-Line Entry-System (SFILES) notation, which we recently extended to include
control structures and other features in (Vogel et al., 2022b). When creating the SFILES,
we traverse the graph by starting at an input node and following the stream direction until
we reach a product node or a recycle. In case the stream branches at a node, i.e., a splitter,
we need to decide which stream to follow first. To determine the order of the branches in
the linear string, the SFILES algorithm assigns each node a unique rank. The SFILES
string for the flowsheet from Figure 1 is given by:

(raw)(hex){1}(r)<&|(raw)(pp)&|(mix)<1(v)(dist)[{tout}(prod)]{bout}(splt)1(p
rod)n|(raw)(hex){1}(prod).

While AI models require big training data, machine-readable flowsheet data is typically
limited. The reason for limited data is that flowsheets are mainly depicted as images and
therefore not machine-readable (Schweidtmann, 2022). Recently, we propose to
automatically find flowsheet images in literature (Schulze Balhorn et al., 2022) and to
make them machine-readable via computer vision (Theisen et al., 2023). However, this
methods need to be implemented at a large scale. In addition, the majority of flowsheets
are not publicly available due to company’s intellectual property protection. Chemical
process datasets with machine-readable flowsheets are rare and often contain only dozens
of flowsheets (Hirtreiter et al., 2022; Oeing et al., 2022; Vogel et al., 2023; Zhang et al.,
2018; Zheng et al., 2022). However, AI methods like transformers usually require big
training data.
One promising approach to overcome limited training data for artificial intelligence is
data augmentation. Data augmentation builds on the idea to generate additional artificial
training data by masking, modifying, perturbating the available original training data at
hand. For example, in computer vision, data augmentation is an established method to
improve the model performance by adding modified copies of already existing images
(Shorten & Khoshgoftaar, 2019). However, no data augmentation method for flowsheets
exists yet. Thus, a augmentation method is needed which adds modified copies of already
existing flowsheets to mitigate the issue of limited available flowsheet data.
We propose a novel data augmentation method for process flowsheets. Specifically, we
use a text-based augmentation method for SFILES which is inspired by the augmentation
of SMILES strings for molecules (Bjerrum, 2017). Our approach is to randomize the
branching decisions in the SFILES generation. We demonstrate the proposed flowsheet
augmentation method in the context of a flowsheet autocompletion model from (Vogel et
al., 2023).

2. Data augmentation methodology
To augment the flowsheet data sets, we modify the branching decision in the SFILES
generation algorithm to create multiple SFILES strings representing the same flowsheet.
In the case of determining canonical SFILES the branching decisions are made by
assigning every node of the graph to a unique rank. Hence, canonical SFILES are a unique
mapping of a flowsheet graph to a string. When generating augmented SFILES, the
branching decisions are made randomly, resulting in a non-canonical form. The
difference lies in the order of branches in the linear string. The resulting augmented
SFILES contain the identical information as the canonical SFILES, thus describing the
same process flowsheet. Hence, all augmentations can be translated back to the original
canonical SFILES. In Figure 1 we show the augmentation of the example flowsheet.

2012

Data augmentation for machine learning of chemical process flowsheets

Figure 1: Augmentation example for the flowsheet from Figure 1. The node rank is
given in square brackets after the node name.

 During augmentation, only the uniqueness of the SFILES representation is lost while the
full flowsheet topology information is preserved. Notably, we do not change the order of
the input branches during data augmentation. Otherwise, flowsheets with disconnected
sub-graphs cannot be translated back to the original canonical form. This is for example
important for independent processes with heat integration, such as (raw)(hex){1}(prod)
in the example flowsheet from Figure 1.
The number of augmented SFILES that can be derived from a single flowsheet graph is
limited. Specifically, the number of potential augmented SFILES depends on the number
of available branching points for a given flowsheet, with more branching points leading
to an exponential increase of augmentation possibilities. For example, the flowsheet in
Figure 1 contains two branching points. This results in three augmented SFILES
representations and four SFILES representations in total.
The two branching points in this case are the distillation column dist-1 and the splitter
after the distillation column splt-1. At the first branching point, we switch the order of the
top and bottom outlet streams. The second augmentation affects only the bottom product
stream prod-2. Recycles without unit operations always appear directly after the splitting
unit, here that leads to (splt-1)1 in all cases. In case the product branch is visited before
the recycle branch, additional squared brackets around prod-2 are used. To make the
methodology for flowsheet augmentation openly accessible, we include it in our public
SFILES 2.0 Github repository (Vogel et al., 2022a).

3. Case study and Results
3.1. Data and Data augmentation
We use two SFILES datasets which were created by (Vogel et al., 2023). Firstly, we use
their proposed flowsheet generator to generate a large-scale dataset of about 8,000

2013

 L. Schulze Balhorn et al.

artificial flowsheets. Here, we can flexibly scale the dataset size. Secondly, we use a
dataset made from 223 Aspen and DWSIM chemical process simulations. We call this
the real dataset. Before starting the training runs, we split each dataset into a training
dataset, a validation dataset, and a test dataset. For the two training datasets we created a
maximum of five augmentations for each SFILES, which roughly increases the dataset
five-fold. By limiting the number of augmentations to five, we ensure that larger
flowsheets are not over-represented.

Figure 2: Example prediction of the flowsheet autocompletion model. Figure adapted
from (Vogel et al., 2023).

3.2. Flowsheet autocompletion
We consider a process design case study and use the flowsheet autocompletion model
from (Vogel et al., 2023). The objective of the model is to support chemical engineers in
the design of a new process topology. It can suggest the following unit operation for an
incomplete flowsheet, similar to sentence completion in messenger apps. Specifically, the
start of a SFILES is given and the autocompletion model predicts how the sequence ends
by iteratively predicting the following building block, token, of the SFILES (Figure 2). It
should be highlighted that the prediction is only based on the process topology and does
not consider operating points, components, and material flows. The autocompletion
model is built on the transformer architecture in a decoder-only approach (Radford et al.,
2019). Because transformer models are very data-intensive, the generated dataset is used
to pretrain the flowsheet autocompletion. The real dataset is then used to fine tune the
flowsheet autocompletion. For a more detailed description of the model we refer to
(Vogel et al., 2023).
To study the effectiveness of data augmentation we retrain the model for flowsheet
autocompletion from (Vogel et al., 2023). Specifically, we train the model both with
augmented and non-augmented flowsheet data. Overall, we consider three different
training scenarios. First, we train the model with the non-augmented generated dataset
and fine-tune this model with the real dataset (i). This model is used to reproduce the
results from (Vogel et al., 2023). Secondly, we augment the real data and use them to
fine-tune the pretraining model, resulting in model (ii). We thus only alter the fine-tuning.
Finally, we train the flowsheet autocompletion with augmented data for both pretraining

2014

Data augmentation for machine learning of chemical process flowsheets

and fine-tuning, yielding model (iii). For a fair comparison of training runs with and
without data augmentation, we use the same hyperparameters.
3.3. Results
We use perplexity to measure the model performance. Perplexity describes the
uncertainty of a model in its predictions. Therefore, a low perplexity is desirable. Here, a
lower perplexity means that the model is more confident that the suggested unit operation
is reasonable. Perplexity is the exponential of the negative average log-likelihood of the
next token prediction. It is also equivalent to the exponential of the cross-entropy loss
obtained during model training. The perplexity is computed as

𝑃𝑃𝑃𝑃(𝑇𝑇) = exp�−
1
𝑛𝑛
� log𝑃𝑃(𝑡𝑡𝑖𝑖|𝑡𝑡1:𝑖𝑖−1)
𝑛𝑛

𝑖𝑖

� , (1)

where 𝑇𝑇 = (𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛) is a sequence of 𝑛𝑛 tokens and 𝑃𝑃(𝑡𝑡𝑖𝑖|𝑡𝑡1:𝑖𝑖−1) describes the predicted
probability for the next token 𝑡𝑡𝑖𝑖 given the sequence 𝑡𝑡1:𝑖𝑖−1.

Table 1: Perplexity 𝑃𝑃𝑃𝑃 results of data augmentation. Best test result in bold font.
The column “Augm.” shows whether the training data were augmented or not.
Pretraining and fine-tuning test perplexity are both evaluated after the model training
is completed with the fine-tuning dataset.
Model 𝑷𝑷𝑷𝑷 pretraining 𝑷𝑷𝑷𝑷 fine-tuning Training

Time Augm. Test Augm. Train Val Test
(i) No 5.38 No 3.13 4.23 5.02 51 min
(ii) No 6.33 Yes 3.32 4.12 4.69 57 min
(iii) Yes 5.16 Yes 3.07 3.80 4.28 1 h 31 min

The results of the different training runs are shown in Table 1. For the fine-tuning, model
(ii) performs slightly better than model (i) on the test set. We explain this improvement
by the fact that the fine-tuning data are limited in size (i) and with the data augmentation
we can make the model more robust (ii). Even though the test perplexity is lower with
data augmentation, the training perplexity is higher. This shows that the model trained
with data augmentation is less prone to overfitting and generalizes better to unseen data.
With data augmentation also applied to the pretraining (model (iii)), we see the best
performance in all categories, improving the fine-tuning perplexity by 14.7% compared
to model (i). We conclude that data augmentation can also improve the pretraining with
a relatively large, generated dataset, resulting in a better fine-tuning performance.
In general, we see that the augmented SFILES are valid flowsheet representations and
that they help the flowsheet autocompletion to learn the SFILES grammar and chemical
process structure. For future work it would be interesting to investigate if it is more
favorable for pretraining to generate more artificial data, to increase the dataset with data
augmentation, or to combine both methods. It is worth noticing, that the training and test
perplexity are in every case more similar for the models trained with augmented data.
Due to the higher variance in the training data, these models are less prone to overfitting.
4. Conclusions
We propose a data augmentation of chemical flowsheet data by randomizing the
branching decisions in the graph traversal for producing SFILES. We thereby
demonstrate a way to increase the available flowsheet data for subsequent training of AI
models. We apply augmented SFILES to the problem of flowsheet autocompletion and
show that the augmentation improves the model performance in low data regimes. In

2015

 L. Schulze Balhorn et al.

future research, we aim to apply the data augmentation methodology to further NLP
models to improve their performance. The long-term goal should be to increase the
flowsheet dataset size by mining additional flowsheets from literature (Schweidtmann,
2022; Schulze Balhorn et al., 2022) and companies and, if necessary, digitizing them
(Theisen et al., 2023). A combination of both, data augmentation and increased dataset,
size will be necessary and most beneficial.

References
Bjerrum, E. J. (2017). Smiles enumeration as data augmentation for neural network

modeling of molecules. arXiv preprint arXiv:1703.07076.
d’Anterroches, L. (2005). Process flowsheet generation & design through a group

contribution approach. [CAPEC], Department of Chemical Engineering, Technical
University of Denmark.

Hirtreiter, E., Schulze Balhorn, L., & Schweidtmann, A. M. (2022). Towards automatic
generation of Piping and Instrumentation Diagrams (P&IDs) with Artificial
Intelligence. arXiv preprint arXiv:2211.05583.

Oeing, J., Welscher, W., Krink, N., Jansen, L., Henke, F., & Kockmann, N. (2022).
Using artificial intelligence to support the drawing of piping and instrumentation
diagrams using dexpi standard. Digital Chemical Engineering, 4, 100038.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Schulze Balhorn, L., Gao, Q., Goldstein, D., & Schweidtmanna, A. M. (2022).
Flowsheet Recognition using Deep Convolutional Neural Networks. In Computer
Aided Chemical Engineering (Vol. 49, pp. 1567-1572). Elsevier.

Schweidtmann, A. M. (2022). Flowsheet mining. Manuscript, In preparation. TU Delft.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for

deep learning. Journal of big data, 6(1), 1-48.
Theisen, M. F., Flores, K. N., Schulze Balhorn, L., & Schweidtmann, A. M. (2023).

Digitization of chemical process flow diagrams using deep convolutional neural
networks. Digital Chemical Engineering, 6, 100072.

Vogel, G., Schulze Balhorn, L., Hirtreiter, E., & Schweidtmann, A. M. (2022a).
Process-intelligence-research/sfiles2: V1.0.0 (Version Release). Github.
https://github.com/process-intelligence-research/SFILES2

Vogel, G., Schulze Balhorn, L., Hirtreiter, E., & Schweidtmann, A. M. (2022b).
SFILES 2.0: An extended text-based flowsheet representation. arXiv preprint
arXiv:2208.00778.

Vogel, G., Schulze Balhorn, L., & Schweidtmann, A. M. (2023). Learning from
flowsheets: A generative transformer model for autocompletion of flowsheets.
Computers & Chemical Engineering, 171, 108162.

Zhang, T., Sahinidis, N. V., & Siirola, J. J. (2019). Pattern recognition in chemical
process flowsheets. AIChE Journal, 65(2), 592-603.

Zheng, C., Chen, X., Zhang, T., Sahinidis, N. V., & Siirola, J. J. (2022). Learning
process patterns via multiple sequence alignment. Computers & Chemical
Engineering, 159, 107676.

2016

