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Abstract 
Artificial intelligence has great potential for accelerating the design and engineering of 
chemical processes. Recently, we have shown that transformer-based language models 
can learn to auto-complete chemical process flowsheets using the SFILES 2.0 string 
notation. Also, we showed that language translation models can be used to translate 
Process Flow Diagrams (PFDs) into Process and Instrumentation Diagrams (P&IDs). 
However, artificial intelligence methods require big data and flowsheet data is currently 
limited. To mitigate this challenge of limited data, we propose a new data augmentation 
methodology for flowsheet data that is represented in the SFILES 2.0 notation. We show 
that the proposed data augmentation improves the performance of artificial intelligence-
based process design models. In our case study flowsheet data augmentation improved 
the prediction uncertainty of the flowsheet autocompletion model by 14.7%. In the future, 
our flowsheet data augmentation can be used for other machine learning algorithms on 
chemical process flowsheets that are based on SFILES notation. 
Keywords: Data Augmentation, Flowsheet Autocompletion, SFILES, Transformers 

1. Introduction
The design of a flowsheet topology is an important step in early process synthesis. This 
step consists of selecting and arranging unit operations for a chemical process. Artificial 
intelligence (AI) methods have the potential to learn from previous flowsheets and 
support engineers in process development (Hirtreiter et al., 2022; Oeing et al., 2022; 
Schweidtmann, 2022; Vogel et al., 2023). For instance, Vogel et al. (2023) proposed an 
algorithm for the autocompletion of flowsheets. This autocompletion algorithm is 
inspired by text-autocompletion from natural language processing (NLP) that is based on 
generative transformer models (Radford et al., 2019). In addition, Hirtreiter et al. (2022) 
showed that the prediction of control structure elements from Process Flow Diagrams 
(PFDs) can be interpreted as a translation task between PFDs and Process and 
Instrumentation Diagrams (P&IDs). Hence, they deployed a sequence-to-sequence 
transformer architecture which is commonly used for translation of text between different 
languages. These flowsheet transformers rely on machine-readable flowsheet 
representations. 
To represent flowsheets in a machine-readable format, we depict them as graphs or as 
text using unique, i.e., canonical, SFILES 2.0 strings (Vogel et al., 2022b). In general, 
flowsheets are drawings of chemical processes. Chemical engineers use flowsheets for 
the communication, planning, operation, simulation, and construction of these processes. 
An example flowsheet is given in Figure 1. 
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An intuitive way to represent flowsheets is via graphs with unit operations as nodes and 
stream connections as directed edges. Besides the graph representation, flowsheets can 
also be represented as strings. D’Anterroches (2005) introduced the Simplified Flowsheet 
Input-Line Entry-System (SFILES) notation, which we recently extended to include 
control structures and other features in (Vogel et al., 2022b). When creating the SFILES, 
we traverse the graph by starting at an input node and following the stream direction until 
we reach a product node or a recycle. In case the stream branches at a node, i.e., a splitter, 
we need to decide which stream to follow first. To determine the order of the branches in 
the linear string, the SFILES algorithm assigns each node a unique rank. The SFILES 
string for the flowsheet from Figure 1 is given by: 

(raw)(hex){1}(r)<&|(raw)(pp)&|(mix)<1(v)(dist)[{tout}(prod)]{bout}(splt)1(p
rod)n|(raw)(hex){1}(prod). 

While AI models require big training data, machine-readable flowsheet data is typically 
limited. The reason for limited data is that flowsheets are mainly depicted as images and 
therefore not machine-readable (Schweidtmann, 2022). Recently, we propose to 
automatically find flowsheet images in literature (Schulze Balhorn et al., 2022) and to 
make them machine-readable via computer vision (Theisen et al., 2023). However, this 
methods need to be implemented at a large scale. In addition, the majority of flowsheets 
are not publicly available due to company’s intellectual property protection. Chemical 
process datasets with machine-readable flowsheets are rare and often contain only dozens 
of flowsheets (Hirtreiter et al., 2022; Oeing et al., 2022; Vogel et al., 2023; Zhang et al., 
2018; Zheng et al., 2022). However, AI methods like transformers usually require big 
training data.  
One promising approach to overcome limited training data for artificial intelligence is 
data augmentation. Data augmentation builds on the idea to generate additional artificial 
training data by masking, modifying, perturbating the available original training data at 
hand. For example, in computer vision, data augmentation is an established method to 
improve the model performance by adding modified copies of already existing images 
(Shorten & Khoshgoftaar, 2019). However, no data augmentation method for flowsheets 
exists yet. Thus, a augmentation method is needed which adds modified copies of already 
existing flowsheets to mitigate the issue of limited available flowsheet data.  
We propose a novel data augmentation method for process flowsheets. Specifically, we 
use a text-based augmentation method for SFILES which is inspired by the augmentation 
of SMILES strings for molecules (Bjerrum, 2017). Our approach is to randomize the 
branching decisions in the SFILES generation. We demonstrate the proposed flowsheet 
augmentation method in the context of a flowsheet autocompletion model from (Vogel et 
al., 2023). 

2. Data augmentation methodology 
To augment the flowsheet data sets, we modify the branching decision in the SFILES 
generation algorithm to create multiple SFILES strings representing the same flowsheet. 
In the case of determining canonical SFILES the branching decisions are made by 
assigning every node of the graph to a unique rank. Hence, canonical SFILES are a unique 
mapping of a flowsheet graph to a string. When generating augmented SFILES, the 
branching decisions are made randomly, resulting in a non-canonical form. The 
difference lies in the order of branches in the linear string. The resulting augmented 
SFILES contain the identical information as the canonical SFILES, thus describing the 
same process flowsheet. Hence, all augmentations can be translated back to the original 
canonical SFILES. In Figure 1 we show the augmentation of the example flowsheet.  
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Figure 1: Augmentation example for the flowsheet from Figure 1. The node rank is 
given in square brackets after the node name. 

 During augmentation, only the uniqueness of the SFILES representation is lost while the 
full flowsheet topology information is preserved. Notably, we do not change the order of 
the input branches during data augmentation. Otherwise, flowsheets with disconnected 
sub-graphs cannot be translated back to the original canonical form. This is for example 
important for independent processes with heat integration, such as (raw)(hex){1}(prod) 
in the example flowsheet from Figure 1.  
The number of augmented SFILES that can be derived from a single flowsheet graph is 
limited. Specifically, the number of potential augmented SFILES depends on the number 
of available branching points for a given flowsheet, with more branching points leading 
to an exponential increase of augmentation possibilities. For example, the flowsheet in 
Figure 1 contains two branching points. This results in three augmented SFILES 
representations and four SFILES representations in total.  
The two branching points in this case are the distillation column dist-1 and the splitter 
after the distillation column splt-1. At the first branching point, we switch the order of the 
top and bottom outlet streams. The second augmentation affects only the bottom product 
stream prod-2. Recycles without unit operations always appear directly after the splitting 
unit, here that leads to (splt-1)1 in all cases. In case the product branch is visited before 
the recycle branch, additional squared brackets around prod-2 are used. To make the 
methodology for flowsheet augmentation openly accessible, we include it in our public 
SFILES 2.0 Github repository (Vogel et al., 2022a). 

3. Case study and Results 
3.1. Data and Data augmentation 
We use two SFILES datasets which were created by (Vogel et al., 2023). Firstly, we use 
their proposed flowsheet generator to generate a large-scale dataset of about 8,000 
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artificial flowsheets. Here, we can flexibly scale the dataset size. Secondly, we use a 
dataset made from 223 Aspen and DWSIM chemical process simulations. We call this 
the real dataset. Before starting the training runs, we split each dataset into a training 
dataset, a validation dataset, and a test dataset. For the two training datasets we created a 
maximum of five augmentations for each SFILES, which roughly increases the dataset 
five-fold. By limiting the number of augmentations to five, we ensure that larger 
flowsheets are not over-represented. 
 

 
Figure 2: Example prediction of the flowsheet autocompletion model. Figure adapted 
from (Vogel et al., 2023). 

3.2. Flowsheet autocompletion  
We consider a process design case study and use the flowsheet autocompletion model 
from (Vogel et al., 2023). The objective of the model is to support chemical engineers in 
the design of a new process topology. It can suggest the following unit operation for an 
incomplete flowsheet, similar to sentence completion in messenger apps. Specifically, the 
start of a SFILES is given and the autocompletion model predicts how the sequence ends 
by iteratively predicting the following building block, token, of the SFILES (Figure 2). It 
should be highlighted that the prediction is only based on the process topology and does 
not consider operating points, components, and material flows. The autocompletion 
model is built on the transformer architecture in a decoder-only approach (Radford et al., 
2019). Because transformer models are very data-intensive, the generated dataset is used 
to pretrain the flowsheet autocompletion. The real dataset is then used to fine tune the 
flowsheet autocompletion. For a more detailed description of the model we refer to 
(Vogel et al., 2023). 
To study the effectiveness of data augmentation we retrain the model for flowsheet 
autocompletion from (Vogel et al., 2023). Specifically, we train the model both with 
augmented and non-augmented flowsheet data. Overall, we consider three different 
training scenarios. First, we train the model with the non-augmented generated dataset 
and fine-tune this model with the real dataset (i). This model is used to reproduce the 
results from (Vogel et al., 2023). Secondly, we augment the real data and use them to 
fine-tune the pretraining model, resulting in model (ii). We thus only alter the fine-tuning. 
Finally, we train the flowsheet autocompletion with augmented data for both pretraining 
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and fine-tuning, yielding model (iii). For a fair comparison of training runs with and 
without data augmentation, we use the same hyperparameters. 
3.3. Results  
We use perplexity to measure the model performance. Perplexity describes the 
uncertainty of a model in its predictions. Therefore, a low perplexity is desirable. Here, a 
lower perplexity means that the model is more confident that the suggested unit operation 
is reasonable. Perplexity is the exponential of the negative average log-likelihood of the 
next token prediction. It is also equivalent to the exponential of the cross-entropy loss 
obtained during model training. The perplexity is computed as 

𝑃𝑃𝑃𝑃(𝑇𝑇) = exp�−
1
𝑛𝑛
� log𝑃𝑃(𝑡𝑡𝑖𝑖|𝑡𝑡1:𝑖𝑖−1)
𝑛𝑛

𝑖𝑖

� , (1) 

where 𝑇𝑇 = (𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛) is a sequence of 𝑛𝑛 tokens and 𝑃𝑃(𝑡𝑡𝑖𝑖|𝑡𝑡1:𝑖𝑖−1) describes the predicted 
probability for the next token 𝑡𝑡𝑖𝑖 given the sequence 𝑡𝑡1:𝑖𝑖−1. 
 

Table 1: Perplexity 𝑃𝑃𝑃𝑃 results of data augmentation. Best test result in bold font. 
The column “Augm.” shows whether the training data were augmented or not. 
Pretraining and fine-tuning test perplexity are both evaluated after the model training 
is completed with the fine-tuning dataset. 
Model 𝑷𝑷𝑷𝑷 pretraining 𝑷𝑷𝑷𝑷 fine-tuning Training 

Time Augm. Test Augm. Train Val Test 
(i) No 5.38 No 3.13 4.23 5.02 51 min 
(ii) No 6.33 Yes 3.32 4.12 4.69 57 min 
(iii) Yes 5.16 Yes 3.07 3.80 4.28 1 h 31 min 

 
The results of the different training runs are shown in Table 1. For the fine-tuning, model 
(ii) performs slightly better than model (i) on the test set. We explain this improvement 
by the fact that the fine-tuning data are limited in size (i) and with the data augmentation 
we can make the model more robust (ii). Even though the test perplexity is lower with 
data augmentation, the training perplexity is higher. This shows that the model trained 
with data augmentation is less prone to overfitting and generalizes better to unseen data. 
With data augmentation also applied to the pretraining (model (iii)), we see the best 
performance in all categories, improving the fine-tuning perplexity by 14.7% compared 
to model (i). We conclude that data augmentation can also improve the pretraining with 
a relatively large, generated dataset, resulting in a better fine-tuning performance. 
In general, we see that the augmented SFILES are valid flowsheet representations and 
that they help the flowsheet autocompletion to learn the SFILES grammar and chemical 
process structure. For future work it would be interesting to investigate if it is more 
favorable for pretraining to generate more artificial data, to increase the dataset with data 
augmentation, or to combine both methods. It is worth noticing, that the training and test 
perplexity are in every case more similar for the models trained with augmented data. 
Due to the higher variance in the training data, these models are less prone to overfitting. 
4. Conclusions 
We propose a data augmentation of chemical flowsheet data by randomizing the 
branching decisions in the graph traversal for producing SFILES. We thereby 
demonstrate a way to increase the available flowsheet data for subsequent training of AI 
models. We apply augmented SFILES to the problem of flowsheet autocompletion and 
show that the augmentation improves the model performance in low data regimes. In 
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future research, we aim to apply the data augmentation methodology to further NLP 
models to improve their performance. The long-term goal should be to increase the 
flowsheet dataset size by mining additional flowsheets from literature (Schweidtmann, 
2022; Schulze Balhorn et al., 2022) and companies and, if necessary, digitizing them 
(Theisen et al., 2023). A combination of both, data augmentation and increased dataset, 
size will be necessary and most beneficial. 
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