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Abstract
We consider the current status continuous mark model
where, if an event takes place before an inspection time
T a “continuous mark” variable is observed as well. A
Bayesian nonparametric method is introduced for esti-
mating the distribution function of the joint distribution
of the event time (X) and mark variable (Y ). We consider
two histogram-type priors on the density of (X ,Y ). Our
main result shows that under appropriate conditions,
the posterior distribution function contracts pointwisely
at rate

(
n∕ log n

)− 𝜌

3(𝜌+2) if the true density is 𝜌-Hölder
continuous. In addition to our theoretical results we pro-
vide efficient computational methods for drawing from
the posterior relying on a noncentered parameteriza-
tion and Crank–Nicolson updates. The performance of
the proposed methods is illustrated in several numerical
experiments.
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1 INTRODUCTION

1.1 Problem formulation

Survival analysis is concerned with statistical modeling of the time until a particular event occurs.
The event may for example be the onset of a disease or failure of equipment. Rather than observing
the time of event exactly, censoring is common in practice. If the event time is only observed
when it occurs prior to a specific (censoring) time, one speaks of right censoring. In case it is only
known whether the event took place before an inspection time or not, one speaks of current status
censoring. The resulting data are then called current status data.

In this paper we consider the current status continuous mark model where, if the event takes
place before an inspection time T, a “continuous mark” variable is observed as well. More specifi-
cally, denote the event time by X and the mark by Y . Independent of (X ,Y ), there is an inspection
time T with density function g on [0,∞). Instead of observing each (X ,Y ) directly, we observe
the inspection time T together with the information whether the event occurred before time T
or not. If it did so, the additional mark random variable Y is also observed, for which we assume
P(Y = 0) = 0. Hence, an observation of this experiment can be denoted by W = (T,Z) = (T,Δ ⋅ Y )
whereΔ = 1{X≤T} (note that, equivalently,Δ = 1{Z>0}). This experiment is repeated n times inde-
pendently, leading to the observation setn = {Wi, i = 1,… ,n}. We are interested in estimating
the joint distribution function F of (X ,Y ) nonparametrically, based onn.

An application of this model is the HIV vaccine trial studied by Hudgens et al. (2007). Here,
the mark is a specifically defined viral distance that is only observed if a participant to the trial
got HIV infected before the moment of inspection.

1.2 Related literature

In this section we review earlier research efforts on models closely related to that considered here.
Survival analysis with a continuous mark can be viewed as the continuous version of the clas-

sical competing risks model. In the latter model, failure is due to either of K competing risks
(with K fixed) leading to a mark value that is of categorical type. As the mark variable encodes the
cause of failure it is only observed if failure has occurred before inspection. These “cause events”
are known as competing risks. Groeneboom et al. (2008) study nonparametric estimation for cur-
rent status data with competing risks. In that paper, they show that the nonparametric maximum
likelihood estimator (NPMLE) is consistent and converges globally and locally at rate n1∕3.

Huang and Louis (1998) consider the continuous mark model under right-censoring, which
is more informative compared to the current-status case because the exact event time is observed
for noncensored data. For the NPMLE of the joint distribution function of (X ,Y ) at a fixed point,
asymptotic normality is shown.

Hudgens et al. (2007) consider interval censoring case k, k = 1 being the specific setting of
current-status data considered here. In this paper the authors show that both the NPMLE and
a newly introduced estimator termed “midpoint imputation MLE” are inconsistent. However,
coarsening the mark variable (i.e., making it discrete, turning the setting to that of the competing
risks model), leads to a consistent NPMLE. This is in agreement with the results in Maathuis and
Wellner (2008).

Groeneboom et al. (2011, 2012) consider the exact setting of this paper using frequentist esti-
mation methods. In Groeneboom et al. (2011) two plug-in inverse estimators are proposed. They
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prove that these estimators are consistent and derive the pointwise asymptotic distribution of
both estimators. Groeneboom et al. (2012) define a nonparametric estimator for the distribution
function at a fixed point by finding the maximiser of a smoothed version of the log-likelihood.
Pointwise consistency of the estimator is established. In both papers numerical illustrations are
included.

1.3 Contribution

In this paper, we consider Bayesian nonparametric estimation of the bivariate distribution
function F in the current status continuous mark model. Approaching this problem within the
Bayesian setup has not been done before, neither from a theoretical nor computational perspec-
tive. While consistent nonparametric estimators exist within frequentist statistics, convergence
rates are unknown. We prove consistency and derive Bayesian contraction rates for the bivariate
distribution function of (X ,Y ) using a prior on the joint density f of (X ,Y ) that is piecewise con-
stant. For the values on the bins we consider two different prior specifications. The first of these
is defined by equipping the bin probabilities with the Dirichlet-distribution. The other speci-
fication is close to a logistic-normal distribution (Aitchison & Shen, 1980), where additionally
smoothness on nearby bin-probabilities is enforced by taking the precision matrix of the Normal
distribution equal to the graph-Laplacian induced by the grid of bins. The graph-Laplacian is
a well-known method to induce smoothness, see for instance Murphy (2013, chapter 25.4) or
Hartog and van Zanten (2017) for an application in Bayesian estimation. Full details of the prior
specification are in Section 2.2.

Our main result shows that under appropriate conditions, the posterior distribution function
contracts pointwisely at rate

(
n∕ log n

)− 𝜌

3(𝜌+2) , where 𝜌 is the Hölder smoothness of the true density.
In this result, we assume that for the prior the bins areas where the density is constant tends
to zero at an appropriate (nonadaptive) rate, as n →∞. The proof is based on general results
from Ghosal and Van der Vaart (2017) for obtaining Bayesian contraction rates. Essentially, it
requires the derivation of suitable test functions and proving that the prior puts sufficient mass in
a neighborhood of the “true” bivariate distribution. The latter is proved by exploiting the specific
structure of the prior.

In addition to our theoretical results, we provide computational methods for drawing from
the posterior. For the Dirichlet prior (D-prior) this is a simple data-augmentation scheme. For
the graph-Laplacian prior we provide simple code to draw from the posterior using probabilistic
programming in the Turing Language under Julia (see Bezanson et al., 2017; Ge et al., 2018). Addi-
tionally, a much faster algorithm is introduced that more carefully exploits the structure of the
problem. The main idea is to use a noncentered parameterization (Papaspiliopoulos et al., 2003)
combined with a preconditioned Crank–Nicolson (pCN) scheme (cf. Cotter et al., 2013). The per-
formance of our computational methods is illustrated in two examples. Code is available from
https://github.com/fmeulen/CurrentStatusContinuousMarks.

1.4 Outline

The outline of this paper is as follows. In Section 2 we introduce further notation for the current
status continuous mark model and detail the two priors considered. Subsequently, we present

https://github.com/fmeulen/CurrentStatusContinuousMarks
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the main theorem on the posterior contraction rate in Section 3. The proof of this result is given
in Section 4. In Section 5 we present MCMC-algorithms to draw from the posterior and give
numerical illustrations, including a simulation study.

1.5 Notation

For two sequences {an} and {bn} of positive real numbers, the notation an ≲ bn
(or bn ≳ an) means that there exists a constant C > 0, independent of n, such that
an ≤ Cbn. We write an ≍ bn if both an ≲ bn and an ≳ bn hold. We denote by F and
F0 the cumulative distribution functions corresponding to the probability densities
f and f0 respectively. The Hellinger distance between two densities f , g is written as
h2(f , g) = 1

2
∫ (f 1∕2 − g1∕2)2. The Kullback–Leibler divergence of f and g and the L2-norm of

log(f∕g) (under f ) by

KL(f , g) =
∫

f log
f
g
, V(f , g) =

∫
f
(

log
f
g

)2

.

2 LIKELIHOOD AND PRIOR SPECIFICATION

2.1 Likelihood

In this section we derive the likelihood for the joint density f based on data n. As W1,… ,Wn
are independent and identically distributed, it suffices to derive the joint density of W1 = (T1,Z1)
(with respect to an appropriate dominating measure). Recall that f denotes the density of (X ,Y ).
Let F denote the corresponding distribution function of (X ,Y ). The marginal distribution function
of X is given by

FX (t) =
∫

t

0 ∫

∞

0
f (u, v) dv du.

Define the measure 𝜇 on [0,∞)2 by

𝜇(B) = 𝜇2(B) + 𝜇1 ({x ∈ [0,∞) ∶ (x, 0) ∈ B}) , B ∈ , (1)

where  is the Borel 𝜎−algebra on [0,∞)2 and 𝜇i is Lebesgue measure on Ri. The density of the
law of W1 with respect to 𝜇 is then given by

sf (t, z) = g(t)
(
1{z>0}𝜕2F(t, z) + 1{z=0}(1 − FX (t))

)
, (2)

where

𝜕2F(t, z) = 𝜕

𝜕z
F(t, z) =

∫

t

0
f (u, z) du.

By independence of W1,… ,Wn, the likelihood of f based onn is given by l(f ) =
∏n

i=1sf (Ti,Zi).
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2.2 Prior specification

In this section, we define a prior on the class of all bivariate density functions on R2. Denote

 =
{

f ∶ R
2 → [0,∞) ∶

∫
R2

f (x, y) dx dy = 1
}
.

For any f ∈  , if S denotes the support of f and ∪jCj, j = 1,… , pn is a partition of S, we define a
prior on  by

f𝜽(x, y) =
∑

j

𝜃j

|Cj|
1Cj(x, y), (x, y) ∈ R

2
,

where |C| = 𝜇2(C) is the Lebesgue measure of the set C and𝜽 = (𝜃1, ,… , 𝜃pn ). We require that all 𝜃j
are nonnegative and

∑
j 𝜃j = 1 (i.e., 𝜽 is a probability vector). We consider two types of prior on 𝜽.

1. Dirichlet. For a fixed parameter 𝛼 = (𝛼1,… , 𝛼pn ) consider 𝜽 ∼ Dirichlet(𝛼). This prior is
attractive as draws from the posterior distribution can be obtained using a straightforward
data-augmentation algorithm (cf. Section 5.1). We will refer to this prior as the D-prior.

2. Logistic-Normal with graph-Laplacian precision matrix. For a positive-definite matrix Υ,
assume that the random vector H satisfies H ∼ Npn (0, 𝜏

−1Υ−1), for fixed positive 𝜏. Next, set

𝜃j =
𝜓(Hj)

∑pn
j=1𝜓(Hj)

, where 𝜓(x) = ex
. (3)

That is, we transform H by the softmax function implying that realisations of 𝜽 are probability
vectors. The matrixΥ is chosen as follows. The partition ∪jCj induces a graph structure on the
bins, where each bin corresponds to a node in the graph, and nodes are connected when bins
are adjacent (meaning that they are either horizontal or vertical “neighbours”). Let L denote
the graph-Laplacian of the graph obtained in this way. This is the pn × pn matrix given by

Li,i′ =
⎧
⎪
⎨
⎪
⎩

degree node i if i = i′

− 1 if i ≠ i′ and nodes i and i′ are connected
0 otherwise.

. (4)

We take

Υ = L + p−2
n I.

We will refer to this prior as the LNGL-prior (logistic-normal graph-Laplacian).

Remark 1. Under the D-prior values of 𝜃j in adjacent bins are negatively correlated, preventing
the density to capture smoothness. This is illustrated in the numerical study Section 5. We would
like to take a large number of bins, while not overparametrizing. The idea of the graph-Laplacian
prior is to induce positive correlation on adjacent bins and thereby specify a prior that pro-
duces smoother realizations. The numerical illustrations reveal that the posterior based on the
LNGL-prior are less sensitive to the chosen number of bins in the partition, compared to the
posterior based on the D-prior.
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Hjort (1994) (section 2.4) has proposed a modification to the Dirichlet prior (D-prior) to
induce smoothness among nearby bins. These generalized D-priors on probability vectors in Rk

take the form

𝜋(p1,… , pk−1) ∝ p𝛼1−1
1 ⋅ p𝛼k−1

k exp (−𝜏Δ(p)) ,

where p ∶= (p1,… , pk) is a probability vector and 𝜏 > 0. Small values of Δ(p) indicate a certain
characteristic is present. To connect it to the graph-Laplacian, one choice is indeed to take

Δ(p) = pTΥp.

Just as for the LNGL-prior, MCMC methods can be used to sample from the posterior in case of
the generalized D-prior. The difference in the two approaches consists of imposing smoothness
on the 𝜃j directly (as in case of the generalized D-prior), or in terms of Hj, followed by applying
the transformation in Equation (3). We feel the approach we take in this paper is conceptually
somewhat simpler. Moreover, it allows to use MCMC methods where the prior is obtained in a
simple way as the pushforward of a vector of independent standard Normal random variables.

Remark 2. For both the generalized D-prior and the LNGL-prior, the posterior mode has the usual
interpretation of a penalized likelihood estimator. The choice of 𝜏 controls the amount of smooth-
ing. In a Bayesian setting, uncertainty on 𝜏 is dealt with by employing an additional prior on 𝜏
(in the numerical section we will follow this approach). For the LNGL-prior another handle to
control smoothness is be obtained by consideringΥr, where r ≥ 1. Hartog and van Zanten (2017)
study the effect of r in a simulation study in the setting of classification on a graph and advise
to take r = 1 or r = 2 to obtain good performance empirically. In this paper r = 1 throughout.
However, the numerical methods apply to any value r ≥ 1.

Remark 3. One can argue whether the presented prior specifications are truly nonparametric. It
is not if one adopts as definition that the size of the parameter should be learned by the data. For
that, a solution could be to put a prior on pn as well. While possible, this would severely complicate
drawing from the posterior. As an alternative, one can take large values of pn (so that the model
is high-dimensional), and let the data determine the amount of smoothing by incorporating flex-
ibility in the prior. As the D-prior lacks smoothness properties, fixing large values of pn will lead
to overparametrization, resulting in high variance estimates (under smoothing). On the contrary,
as we will show in the numerical examples, for the LNGL-prior, this overparametrization can be
substantially balanced/regularized by equipping the parameter 𝜏 with a prior distribution. The
idea of histogram-type priors with positively correlated adjacent bins has recently been used suc-
cessfully in other settings as well, see for instance Gugushvili et al. (2018), Gugushvili et al. (2019).

Remark 4. Ting et al. (2010) consider the limiting behavior of the LNGL-prior under mesh refine-
ment. Unsurprisingly, in the limit it behaves like the “ordinary” Laplace operator which is the
infinitesimal generator of a diffusion process without drift.

Remark 5. There is a rich literature on density estimation. An excellent recent review covering
both frequentist and Bayesian methods is given in McDonald and Campbell (2021). A popular
alternative choice of prior for density estimation, not considered here, is the Pólya tree prior, see
for example Müller and Rodriguez (2013) and Hanson (2006). The relation between Polya-tree
and D-priors is well known in the literature. The LGNL-prior is designed to induce more smooth-
ness. For graphical models its theoretical properties have been studied in Kirichenko and van
Zanten (2017).
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3 POSTERIOR CONTRACTION

Denote the posterior measure byΠn(⋅|n) (under the prior measureΠn described in Section 2.2).
In this section we study the asymptotic behavior (as the sample size n tends to infinity) of the
posterior measure from a frequentist point of view. Hence, we assume there is a data-generating
“true” distribution F0 (with density f0) and investigate whether the posterior measure of F
concentrates around F0.

Assumption 1. The underlying joint density of the event time and mark, f0, has compact support
given by = [0,M1] × [0,M2] and is 𝜌-Hölder continuous on. That is, there exists a positive
constant c and a 𝜌 ∈ (0, 1] such that for any x, y ∈,

|f0(x) − f0(y)| ≤ c ||x − y||𝜌. (5)

In addition, there exist positive constants M and M such that

M ≤ f0(x, y) ≤ M, for all (x, y) ∈. (6)

Assumption 2. The censoring density g is bounded away from 0 and infinity on (0,M1). That is,
there exist positive constants K and K such that 0 < K ≤ g(t) ≤ K < ∞ for all t ∈ (0,M1) .

Assumption 3. For the D-prior, the parameter 𝛼 = (𝛼1,… , 𝛼pn ) satisfies ap−1
n ≤ 𝛼l ≤ 1 for all l =

1,… , pn and some constant a ∈ R+.

Let 𝜀n = (n∕ log n)−
𝜌

2(𝜌+2) and 𝜂n = 𝜀2∕3
n . Note that 𝜀n ≤ 𝜂n and n(𝜀2

n ∧ 𝜂2
n)→ ∞ as n → ∞. Our

main theoretical result is the following theorem.

Theorem 1. Consider either of the priors defined in Section 2.2 and impose Assumptions 1 and 3.
Fix (x, y) ∈. Then for sufficiently large C

E0Πn(f ∈  ∶ |F(x, y) − F0(x, y)| > C𝜂n|n) → 0, as n → ∞,

provided that all bin areas are equal to 𝜀4∕𝜌
n .

The rate 𝜂n is known as a contraction rate. The proof of this theorem is based on the following
two lemmas.

Lemma 1. Fix f0 and g satisfying the conditions in Assumption 1 and 2. If

Sn =
{

f ∈  ∶ KL(sf0 , sf ) ≤ 𝜀2
n,V(sf0 , sf ) ≤ 𝜀2

n
}
. (7)

then Πn(Sn) ≥ e−cn𝜀2
n for some constant c > 0.

Lemma 2. Fix (t, z) ∈. Define Un(t, z) ∶= {f ∈  ∶ |F(t, z) − F0(t, z)| > C𝜂n}. There exists a
sequence of test functions Φn such that

Esf0
(Φn) = o(1),

sup
f∈Un(t,z)

Esf (1 − Φn) ≤ c1e−c2C2n𝜀2
n
, (8)

for positive constants c1, c2, and constant C appearing in Theorem 1.
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The remainder of the proof of Theorem 1 is standard and follows the general ideas in Ghosal
et al. (2000).

4 PROOF OF LEMMAS

4.1 Proof of Lemma 1

Proof. The proof consists of four steps:

1. constructing a subset Ωn of Sn for which the prior probability can be bounded from below;
2. deriving this bound for the D-prior;
3. deriving this bound for the LNGL-prior;
4. verifying that the prior mass condition is satisfied for the choice of 𝜀n in the lemma.

In the proof we will use double-indexation of coefficients, so rather than 𝜃j we write 𝜃j,k, where
(j, k) indexes a particular bin. A similar convention applies to H.

Step 1. We first give a sequence of approximations for f0. Let 𝛿n be a sequence of positive
numbers tending to 0 as n → ∞. For each n, let An,j, Bn,k be sets such that ∪Jn

j=1∪
Kn
k=1(An,j × Bn,k) is a

partition of, where the integers Jn and Kn are chosen such that |An,j| = |Bn,k| = 𝛿n for all j and k.
Let f0,n be the piecewise constant density function defined by

f0,n(t, z) =
Jn∑

j=1

Kn∑

k=1

w0,j,k

|An,j × Bn,k|
1An,j×Bn,k (t, z), (9)

where w0,j,k = ∫An,j
∫Bn,k

f0(u, v) dv du. That is, we approximate f0 by averaging it on each bin. Set
𝜀

2
n = 𝛿

𝜌

n. By Lemma 4 in Appendix there exists a constant C > 0 such that the set defined by

Ωn ∶=
{

f ∈  ∶ ||f − f0,n||∞ ≤ C𝛿𝜌n, supp(f ) ⊇
}
. (10)

satisfies Ωn ⊆ Sn.
Recall that pn = JnKn denote the total number of bins. According to the prior specifications in

Section 2.2, for any f ∈  , we parameterize

f𝜽(x, y) =
∑

j,k

𝜃j,k

|An,j × Bn,k|
1An,j×Bn,k (x, y), (x, y) ∈ R

2
,

where 𝜽 denotes the vector obtained by stacking all coefficients {𝜃j,k, j = 1,… , Jn, k = 1,… ,Kn}.
For any (t, z) ∈ An,j × Bn,k, j, k ≥ 1, we have

|f𝜽(t, z) − f0,n(t, z)| = |An,j × Bn,k|−1|𝜃j,k − w0,j,k| ≤ 𝛿−2
n max

j,k
|𝜃j,k − w0,j,k|.

Hence

Ωn ∶=
{

f𝜽 ∈  ∶ max
j,k

|𝜃j,k − w0,j,k| ≤ C𝛿𝜌+2
n

}
⊆ Ωn (11)

and consequently Πn(Sn) ≥ Πn(Ωn).



JONGBLOED et al. 1337

Step 2. For the D-prior we have 𝜽 ∼ Dirichlet(𝛼) for fixed 𝛼 = (𝛼1,… , 𝛼pn ), where we assume
that ap−1

n ≤ 𝛼l ≤ 1 for all l = 1,… , pn. By lemma 6.1 in Ghosal et al. (2000), we have

Πn(Ωn) ≥ Γ

( pn∑

l=1
𝛼l

)(
C𝛿𝜌+2

n

)pn
pn∏

l=1
𝛼l

≥ exp
(

logΓ(a) + pn log
(

C𝛿𝜌+2
n

)
+ pn log(ap−1

n )
)
.

As pn ≍ 𝛿−2
n , pn log 𝛿𝜌+2

n ≍ pn log p−(𝜌+2)∕2
n = −(𝜌∕2 + 1)pn log pn. We conclude that the expo-

nent behaves asymptotically as a multiple of −pn log pn.
Step 3. Let 𝜃j,k =

𝜓(Hj,k)
∑

j,k 𝜓(Hj,k)
as defined in (3). For the LNGL-prior, as will become clear shortly,

we need a lower bound on |Υ| and upper bound on the largest eigenvalue ofΥ. For the latter, note
that all eigenvalues of any stochastic matrix are bounded by 1. For the graph considered here,
there exist diagonal matrices U and D such that D(U + L) is a stochastic matrix (simply adding
elements to the diagonal to have a matrix with nonnegative elements, followed by renormalizing
each row to have its elements sum to one. This procedure implies that in the present setting the
largest eigenvalue of L is bounded by 8. Therefore, the largest eigenvalue ofΥ is bounded by 9. As
L has smallest eigenvalue 0, the smallest eigenvalue of Υ equals p−2

n . Hence

|Υ| ≥ (p−2
n )pn = exp

(
−2pn log pn

)
.

We have the following bounds:

𝛿

2
n||f − f0,n||∞ ≤ sup

j,k
|𝜃j,k − 𝜃0,j,k| = ||S(H) − S(H0)||∞

≤ ||S(H) − S(H0)||2 ≤ ||H −H0||2,

assuming S is the softmax function. At the last inequality we use that this function is
Lipschitz-continuous with respect to || ⋅ ||2 (cf. proposition 4 in Gao & Pavel, 2018). Therefore

Ωn ∶= {H ∶ ||H −H0||2 ≤ C𝛿2
nΔn} ⊆ {f ∶ ||f − f0,n||∞ ≤ CΔn}, .

where Δn ∶= 𝛿𝜌n. While notationally implicit, both sets in the preceding display are sets of 𝜔s
induced by the constraints on either H or f . Hence it suffices to lower bound

∫ ∫Ωn

𝜑(H; 0, 𝜏Υ−1) dHf (𝜏) d𝜏.

We first focus on the inner integral. As the largest eigenvalue of Υ s bounded by 9, we have
HTΥH ≤ 9||H||22. Hence,

n(𝜏) ∶=
∫Ωn

𝜑(H; 0, 𝜏Υ−1) dH

= (2𝜋𝜏)−pn∕2|Υ|1∕2
∫Ωn

exp
(
− 1

2𝜏
HTΥH

)
dH

≥ (2𝜋𝜏)−pn∕2 exp
(
−pn log pn

)
∫Ωn

exp
(
− 1

2𝜏
9||H||2

)
dH.
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If H ∈ Ωn, then

||H||2 ≤ ||H −H0||2 + ||H0||2 ≤ C2
𝛿

4
nΔ2

n + ||H0||2.

which means that

n(𝜏) ≥ (2𝜋𝜏)−pn∕2 exp
(
−pn log pn

)
∫Ωn

exp
(
− 1

2𝜏
9
(

C2
𝛿

4
nΔ2

n + ||H0||2
))

dH

= (2𝜋𝜏)−pn∕2 exp
(
−pn log pn

)
exp

(
− 1

2𝜏
9
(

C2
𝛿

4
nΔ2

n + ||H0||2
))

Vol(Ωn).

Hence,

logn(𝜏) ≥ −
pn

2
log(2𝜋𝜏) − pn log pn −

1
2𝜏

9
(

C2
𝛿

4
nΔ2

n + ||H0||2
)
+ log Vol(Ωn). (12)

We express the asymptotic behavior of all terms in the exponent in terms of pn. To this end,
note that pn ≍ 𝛿−2

n , hence Δn ≍ p−𝜌∕2
n , leading to 𝛿4

nΔ4
n ≍ p−2

n p−𝜌n = p−𝜌−2
n . As Vol(Ωn) ≍ Δ

pn
n we

have log Vol(Ωn) ≍ pn logΔn ≍ − 𝜌

2
pn log pn. So we can conclude that the right-hand-side of (12)

behaves as −pn log pn for n large.
Step 4. For both priors, the prior mass condition gives the following condition on 𝜀n:

pn log pn ≲ n𝜀2
n.

As 𝛿𝜌n = 𝜀2
n we get pn ≍ 𝛿−2

n =
(
𝜀

2∕𝜌
n

)−2
= 𝜀−4∕𝜌

n . Hence we need to choose 𝜀n such that

𝜀

−4∕𝜌
n log(1∕𝜀n) ≲ n𝜀2

n.

This relationship is satisfied if

𝜀n ≍ (n∕ log n)−
𝜌

4+2𝜌
.

▪
4.2 Proof of Lemma 2

Proof. We consider different test functions in different regimes of t: t ∈ (0,M1) and t ∈ {0,M1}.
First consider (t, z) ∈ (0,M1) × (0,M2]. For {hn} and {en} sequences of positive numbers

defined by

hn = (2M2)−1C𝜂n min(1,M
−1
) and en =

1
2

CK𝜂nhn,

be two sequences tending to zero (where C is as in Theorem 1). Define the tests

Φ+n (t, z) = 1

{
1
n

n∑

i=1
𝜅

+
n (t, z;Ti,Zi) −

∫

t+hn

t
g(x)F0(x, z) dx > en∕2

}

,

Φ−n (t, z) = 1

{
1
n

n∑

i=1
𝜅

−
n (t, z;Ti,Zi) −

∫

t

t−hn

g(x)F0(x, z) dx < −en∕2

}

,
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where

𝜅

+
n (t, z;T,Z) = 1[t,t+hn](T)1(0,z](Z),
𝜅

−
n (t, z;T,Z) = 1[t−hn,t](T)1(0,z](Z).

Note that if (T,Z) ∼ sf (as defined in (2)), then

Esf (𝜅
+
n (t, z;T,Z)) =

∫
1[t,t+hn](x)1(0,z](u)sf (x,u) d𝜇(x,u)

=
∫

t+hn

t ∫

z

0
g(x)𝜕2F(x,u) d𝜇2(x,u) =

∫

t+hn

t
g(x)F(x, z) dx.

By Assumption 2,

Esf

[
(𝜅+n (t, z;T,Z))2

]
= Ef (𝜅+n (t, z;T,Z)) ≤

∫

t+hn

t
g(x) dx ≤ Khn.

The same upper bound holds for Ef
[
(𝜅−n (t, z;T,Z))2

]
.

By Bernstein’s inequality (Van der Vaart, 1998, lemma 19.32),

Esf0
(max(Φ+n (t, z),Φ−n (t, z))) ≤ 2 exp

(

− 1
16

ne2
n

Khn + en∕2

)

= o(1).

Let {𝜂n} be a sequence of positive numbers tending to zero as n → ∞. For (t, z) ∈ [0,M1] × (0,M2],
define sets

Un,1(t, z) = {f ∶ F(t, z) > F0(t, z) + C𝜂n},
Un,2(t, z) = {f ∶ F(t, z) < F0(t, z) − C𝜂n}.

Then Un(t, z) = Un,1(t, z) ∪ Un,2(t, z).
When f ∈ Un,1(t, z), for any x ∈ [t, t + hn], by the monotonicity of F and f0 ≤ M, we have

F(x, z) − F0(x, z) ≥ F(t, z) − F0(t, z) − (F0(x, z) − F0(t, z))

≥ C𝜂n −MM2hn ≥ C𝜂n∕2.

Then it follows

∫

t+hn

t
g(x)(F(x, z) − F0(x, z)) dx ≥ C𝜂n

2 ∫

t+hn

t
g(x) dx ≥

CK
2
𝜂nhn = en.

Hence, for f ∈ Un,1 we have

Esf (1 − Φ
+
n (t, z)) = Psf

(
1
n

n∑

i=1
𝜅

+
n (t, z|Ti,Zi) −

∫

t+hn

t
g(x)F0(x, z) dx < en∕2

)

≤ Psf

(
1
n

n∑

i=1
𝜅

+
n (t, z|Ti,Zi) −

∫

t+hn

t
g(x)F(x, z) dx ≤ −en∕2

)

.
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Further, Bernstein’s inequality gives

Esf (1 − Φ
+
n (t, z)) ≤ 2 exp

(

− 1
16

ne2
n

Khn + en∕2

)

≤ c1e−c2C2n𝜀2
n
,

for some constants c1, c2 > 0.
When f ∈ Un,2(t, z), x ∈ [t − hn, t], we have

F(x, z) − F0(x, z) ≤ F(t, z) − F0(t, z) + F0(t, z) − F0(x, z)

≤ −C𝜂n +MM2hn ≤ −C𝜂n∕2,

and

∫

t

t−hn

g(x)(F(x, z) − F0(x, z)) dx ≤ −
CK
2
𝜂nhn = −en.

Hence for f ∈ Un,2, the type II error satisfies

Esf (1 − Φ
−
n (t, z)) ≤ Psf

(
1
n

n∑

i=1
𝜅

−
n (t, z|Ti,Zi) −

∫

t

t−hn

g(x)F(x, z) dx ≥ en∕2

)

.

Using Bernstein’s inequality again, we have

Esf (1 − Φ
−
n (t, z)) ≤ c1e−c2C2n𝜀2

n
, for some c1, c2 > 0.

For the boundary case (t, z) ∈ {0,M1} × (0,M2]. With a similar idea, in order to give nonzero
test sequences, we use 𝜅+n define Φ+n (0, z),Φ−n (0, z) and 𝜅

−
n define Φ+n (M1, z),Φ−n (M1, z). When

f ∈ Un,1(0, z), using the tests sequence Φ+n (0, z) defined in case t ∈ (0,M1), we have

sup
f∈Un,1(0,z)

Esf (1 − Φ
+
n (0, z)) ≤ c1e−c2C2n𝜀2

n
.

When f ∈ Un,2(M1, z), using the tests sequence Φ−n (M1, z) defined in case t ∈ (0,M1), we have

sup
f∈Un,2(M1,z)

Esf (1 − Φ
−
n (M1, z)) ≤ c1e−c2C2n𝜀2

n
.

Note that for any f ∼ Πn and t ∈ An,j, j = 1,… , Jn,

∫

M2

0
f (t, v) dv = |An,j|−1

Kn∑

k=1
𝜃j,k ≤ 𝛿

−1
n Kn = M2. (13)

Here we use 𝜃j,k ≤ 1 and |An,j| ≥ 𝛿n. When f ∈ Un,2(0, z), for any x ∈ [0, hn], using (13) we have

F(x, z) − F0(x, z) ≤ F(x, z) − F(0, z) + F(0, z) − F0(0, z)

≤
∫

x

0 ∫

z

0
f (u, v) dv du − C𝜂n

≤ M2hn − C𝜂n ≤ −C𝜂n∕2,
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and

∫

hn

0
g(x)(F(x, z) − F0(x, z)) dx ≤ −en.

Define

Φ−n (0, z) = 1

{
1
n

n∑

i=1
𝜅

+
n (0, z|Ti,Zi) −

∫

hn

0
g(x)F0(x, z) dx < −en∕2

}

.

By the Bernstein’s inequality,

Esf (1 − Φ
−
n (0, z)) ≤ c1e−c2C2n𝜀2

n
.

Using similar arguments as above, when f ∈ Un,1(M1, z), for any x ∈ [M1 − hn,M1], using (13) we
have

F(x, z) − F0(x, z) ≥ F(x, z) − F(M1, z) + F(M1, z) − F0(M1, z)

≥ C𝜂n −
∫

M1

M1−hn
∫

z

0
f (u, v) dv du

≥ C𝜂n −M2hn ≥ C𝜂n∕2,

and

∫

hn

0
g(x)(F(x, z) − F0(x, z)) dx ≥ −en.

Define

Φ+n (M1, z) = 1

{
1
n

n∑

i=1
𝜅

−
n (M1, z|Ti,Zi) −

∫

M1

M1−hn

g(x)F0(x, z) dx > en∕2

}

,

hence,

Esf (1 − Φ
+
n (M1, z)) ≤ c1e−c2C2n𝜀2

n
.

To conclude, Φn(t, z) ∶= max(Φ+n (t, z),Φ−n (t, z)) satisfies

Esf0
Φn(t, z) = o(1),

sup
f∈Un(t,z)

Esf (1 − Φn(t, z)) ≤ c1e−c2C2n𝜀2
n
.

▪

5 COMPUTATIONAL METHODS

In this section we present algorithms for drawing from the posterior distribution for both priors
described in Section 2.2. Contrary to our theoretical contribution, we include a prior on the scaling
parameter 𝜏 appearing in the LNGL prior. Likewise, for the D-prior we will assume
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𝜏 ∼ Π
𝜃|𝜏 ∼ Dirichlet(𝜏,… , 𝜏).

to ensure a fair comparison of simulation results obtained by either of these priors.

5.1 Dirichlet prior

First, we consider the case where {(Xi,Yi), i = 1,… ,n} is a sequence of independent random vec-
tors, with common density f0 that is piecewise constant on An,j × Bn,k and compactly supported.
This “no-censoring” model has likelihood

l(𝜽) =
∏

j,k
𝜃

Cj,k

j,k ,

where Cj,k =
∑

i 1{(Xi,Yi) ∈ An,j × Bn,k} denotes the number of observations that fall in bin An,j ×
Bn,k. Clearly, the D-prior is conjugate for the likelihood, resulting in the posterior being of Dirichlet
type as well and known in closed form. In case of censoring, draws from the posterior for the
D-prior can be obtained by data-augmentation, where the following two steps are alternated:

1. Given 𝜽 and censored data, simulate the “full data”. This is tractable since the censoring
scheme tells us in which collection of bins the actual observation can be located. Then one
can renormalize the density f restricted to these bins and select a specific bin accordingly and
generate the “full data”. Compare Figure 1 for the two types of observations.

2. Given the “full data”, draw samples for 𝜽 from the posterior which is of Dirichlet type.

5.2 Logistic normal graph-Laplacian prior

For the LNGL prior, one could opt for a data-augmentation scheme as well, but its attractive-
ness is lost since step (2) above is no longer of simple form. Therefore, we propose to bypass

F I G U R E 1 Left: if xi ≤ ti the mark is observed. Right: if xi > ti the mark is not observed
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data-augmentation in this case. In an initial version of this paper we have proposed to use the
probabilistic programming language Turing (see Ge et al., 2018) that is based on the Julia lan-
guage (see Bezanson et al., 2017). With modest programming efforts, samples from the posterior
can then be obtained by Hamiltonian Monte Carlo methods. For completeness, we present the
core of such code in Appendix B. As can be seen, this contains about 10 lines of code and reads
intuitively. However, a much faster algorithm can be derived by exploiting structure in the statisti-
cal model. The main idea is to use a noncentered parameterization (Papaspiliopoulos et al., 2003)
combined with a pCN scheme. The latter scheme dates back to Neal (1998); a more recent expo-
sition can be found in Cotter et al. (2013) (see also Van der Meulen & Schauer, 2017 in a different
application setting).

Let 𝜃 denote the parameter vector (with all 𝜃j,k stacked). Let S ∶ Rp → Rp denote the
“softmax”-function, defined by S(x1,… , xp) = (ex1

,… , xxp )∕
∑p

i=1exi (this is a convenient choice,
for our algorithm other mappings of a vector to a probability vector are also allowed). To sample
from the prior of (𝜏, 𝜃), with 𝜃 ∈ Rp, we sample according to the following scheme

𝜏 ∼ Π
z ∼ Np(0, Ip)

𝜃|z, 𝜏 = S( ̄Uz
√
𝜏),

where ̄U = U−1 with U obtained from the Cholesky-decomposition of the graph-Laplacian matrix
Υ (with a small multiple of the identity matrix added): Υ = UTU. Hence, we have introduced
the random vector z, which is centered in between 𝜏 and 𝜃. The algorithm we propose is a Gibbs
sampler which iteratively updates 𝜏 and z. While our theoretical contribution assumes a prior on
𝜏 of Gamma type (see Assumption 3), the MCMC-algorithms in this section apply more generally
to a prior distribution Π on 𝜏 that is supported on the positive halfline. Small values of 𝜏 induce
more smoothing.

For updating z conditional on 𝜏 we use the pCN scheme: pick a tuning parameter 𝜌 ∈ [0, 1)
(typically chosen close to 1) and propose a new value z◦ for z by setting

z◦ = 𝜌z +
√

1 − 𝜌2w, (14)

where w ∼ Np(0, Ip), independently of (𝜏, z). Next, the Metropolis–Hastings (MH) acceptance rule
is used to accept the proposal z◦ with probability 1 ∧ (z◦, 𝜏)∕(z, 𝜏), where (z, 𝜏) denotes the
likelihood, evaluated in (z, 𝜏) (note that the prior ratio and proposal ratio cancel, as 𝜋(z)q(z◦|z) is
symmetric in (z, z◦)). The likelihood can be simply and efficiently computed. To see this, consider
Figure 1. Observations can be represented either by the left- or right figure. For the ith observation,
we will denote by ai the vector that contains for each cell of the partition the fraction of the area
that is shaded (so most values will be either 0 or 1, only cells intersected by the blue dashed line
will have entries in (0, 1)). With this notation, it is easy to see that

log(z, 𝜏) =
n∑

i=1
log(𝜃Tai), with 𝜃 = S( ̄Uz

√
𝜏).

To efficiently compute the log-likelihood, all that needs to be computed (once), is for each
observation the vector of indices corresponding to the shaded boxes and the corresponding area
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fractions (this enables to exploit sparsity in ai when computing 𝜃Tai). Also note that the Cholesky
decomposition of L only needs to be computed once.

For updating 𝜏, conditional on the data and z, we use a MH-step. We draw a proposal 𝜏◦
according to log 𝜏◦|𝜏 ∼ N(log 𝜏, 𝛿2). It is accepted with probability

1 ∧ (z, 𝜏
◦)

(z, 𝜏)
𝜋(𝜏◦)
𝜋(𝜏)

𝜏

◦

𝜏

,

where 𝜋 denotes the prior density on 𝜏 and the term 𝜏

◦∕𝜏 comes from the Jacobian. Note
that a partial conjugacy for updating 𝜏 gets lost, even when employing a prior of inverse
Gamma type.

We conclude that in one iteration of the Gibbs-sampler, it is only required to do a simple
MH-step for updating 𝜏, sample z◦ as in (14) and use the MH-acceptance rule for this step as well.

Remark 6. In the prior specification we have postulated 𝜃|z, 𝜏 = S( ̄Uz
√
𝜏). Note that the prior on

z centers at zero. However, due to translation invariance of the softmax function, the same prior
on 𝜃 is specified is we take 𝜃|z, 𝜏 = S( ̄Uz

√
𝜏 + v), where v is a vector that is a multiple of the vector

with all elements equal to 1. Despite this identifiability issue, we have not encountered severe
autocorrelation in traceplots for the LNGL-prior.

Remark 7. The same algorithm applies to more general censoring schemes. For example, sup-
pose there are two checkup times, and the mark is only observed if the event took place in
between those checkup times. This setting just corresponds to a different type of shading of boxes
in Figure 1 but otherwise does not implicate any change to the numerical setting. Hence, the
interval-censored continuous-mark model (see for instance Maathuis & Wellner 2008) is covered
by our computational methods.

5.3 Numerical examples

In the following simulations, we compare the priors based on the Dirichlet distribution and
the LNGL-prior. Updating 𝜏 can be done by incorporating a MH-step similar as for the
LNGL-prior.

In each of the reported results, 20,000 MCMC iterations were used, posterior means were
computing after discarding the initial 1∕3 of the iterations as burnin. The algorithms were
tuned such that the MH-steps have acceptance probability of about 0.25−0.5. For analyzing
a dataset of size n = 200 with 100 bins, computing times are about 3 s for 20,000 itera-
tions, using a Macbook-pro 2 GHz Quad-Core Intel Core i5 with 16 GB RAM. Note that the
complexity of the algorithm scales with the number of bins and not with the sample size.
From experiments with a large number of bins it appears that the acceptance rate for the
pCN-step does not deteriorate, as also seen in other settings where pCN is utilized (cf. Cotter
et al., 2013). Julia code (Bezanson et al., 2017) is available from https://github.com/fmeulen/
CurrentStatusContinuousMarks. Computed Wasserstein distances are computed using the trans-
port library in R.

Traceplots (not included here) confirm that in our experiments the chain on (𝜃, 𝜏)
mixes well. Only in case of the D-prior, somewhat larger autocorrelation is observed in the
chain for 𝜏. The prior measure Π is taken to be the standard exponential distribution for
both priors.

https://github.com/fmeulen/CurrentStatusContinuousMarks
https://github.com/fmeulen/CurrentStatusContinuousMarks
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We will consider the following data generated as independent replications of (X ,Y ), where
(X ,Y ) is drawn from the mixture experiment

(X ,Y ) ∼

{
(U,V) with probability 0.3
(1 − U,V) with probability 0.7

,

with (U,V) having density

f (u, v) = (3∕8)(u2 + v)1[0,1]×[0,2](u, v).

In this case, it is easy to sample (X ,Y ) by first sampling from the marginal distribution of X and
then from the density of Y |X . In both cases the inverse of the cumulative distribution function
can be computed in closed form. We assume that the censoring random variable T ∼

√
U where

U is uniformly distributed on [0, 1]. This implies that the density of T is given by t → 2t1[0,1](t).
For the LNGL-prior we take Υ = L + N−2I where L is defined in (4) and N is the number of cells
in the partition used to cover the support of the density.

5.3.1 Results for one dataset

We sample 200 observations from the model. The true density with observations superimposed is
shown in Figure 2. Horizontally/vertically we took 25∕50 bins, yielding equally sized bins. Note
that the number of bins is way larger than the sample size; smoothing/penalisation being enforced

F I G U R E 2 For each cell in the partition of [0, 1] × [0, 2], the probability of the cell is colored.
Superimposed are points representing the data, where the coordinate along the horizontal axis is the censoring
time, and the coordinate along the vertical axis is the mark-variable y. If for a particular point y is
observed/unobserved (cyan/red color), then this means the event time is to the left/right of the censoring time t.
The height of the red points is latent in the observations



1346 JONGBLOED et al.

by the prior. In Figure 3 we compare the performance of the posterior mean estimator under
both prior specifications. Smoothing induced by the LNGL-prior is quite apparent and the poste-
rior mean estimate is visually more appealing. The latter is not surprising as the data-generating
density is smooth.

5.3.2 Varying the number of bins

In Figures 4 and 5 we ran the algorithm on the same dataset using coarser/refined binning.
For each combination of prior/binning, we compute the Wasserstein distance (based on the

𝓁1/cityblock distance) between the probability vector of bin-masses of the estimate and the proba-
bility vector of bin masses of the true data-generating distribution. For a definition and motivation
for using this distance we refer to chapter 2.1 in Panaretos and Zemel (2020).

Prior/bins 5∕10 25∕50 50∕100
Dirichlet 0.118 0.224 0.239

Logistic-normal graph-Laplacian 0.069 0.076 0.082

F I G U R E 3 Left and middle: posterior mean probabilities for Dirichlet- and logistic-normal
graph-Laplacian-priors, respectively. Right: simulation truth. Horizontally 25 bins, vertically 50 bins

F I G U R E 4 Left and middle: posterior mean probabilities for Dirichlet- and logistic-normal
graph-Laplacian priors, respectively. Right: true posterior probabilities. Horizontally 5 bins, vertically 10 bins
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F I G U R E 5 Left and middle: posterior mean probabilities for Dirichlet- and logistic-normal
graph-Laplacian-priors, respectively. Right: simulation truth. Horizontally 100 bins, vertically 200 bins

Here “5/10” for example means: 5 bins in the horizontal direction 10 bins in the vertical direc-
tion. Especially with a large number of bins, the performance of the posterior mean using the
D-prior is visually unappealing. Inspection of the traceplot for the parameter 𝜏 in this setting
reveals large uncertainty. The LNGL-prior on the other hand seems quite robust in performance,
once a sufficiently large number of bins is chosen.

5.3.3 Monte-Carlo study

To compare the performance of the posterior mean estimator under both prior specifications we
conduct a Monte-Carlo study. In each simulation run we

• simulate a dataset;
• compute the posterior mean under both the D- and LNGL-prior;

F I G U R E 6 Simulation study. Wasserstein distance, averaged over 100 Monte-Carlo samples for samples
sizes 100,250, 500 and both the Dirichlet and logistic-normal graph-Laplacian priors
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F I G U R E 7 Simulation study. Wasserstein distance for simulated datasets for samples sizes 100,250, 500
and both the Dirichlet- and logistic-normal graph-Laplacian prior.s Added is the line with intercept 0 and slope 1

• compute the Wasserstein distance (based on the 𝓁1/cityblock distance) between the probabil-
ity vector of bin-masses of the estimate and the probability vector of bin masses of the true
data-generating distribution.

We considered samples sizes 100,250, 500 and took the Monte-Carlo sample size equal to 100.
In Figures 6 and 7 we give two visualizations of the results. As expected, with large sample size
the distance tends to be smaller. Additionally, the LNGL-prior appears to outperform the D-prior
for this choice of data-generating distribution.

6 DISCUSSION

The main theoretical contribution of this paper is Theorem 1. We expect the the rate in this
theorem to be suboptimal. We conjecture 𝜀n to be the optimal rate, suggesting that Lemma 1 is
sufficiently sharp. However, due to the tests constructed in Lemma 1 we obtain rate 𝜀2∕3 in our
main result. We postpone further investigations to future research, where we also hope to obtain
rates in global metrics.

The derived rate is nonadaptive. Adaptation can be achieved by employing a prior on the
number of bins, see chapter 10 in Ghosal and Van der Vaart (2017). Computationally, such an
approach is less attractive, as it requires a sampler on the larger space of the union of partitions.
Instead, in our numerical work we have chosen to start off from a larger number of small bins,
and have a prior on the scaling parameter 𝜏 take care of the regularization. This yields an easily
implementable and efficient computational scheme.
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APPENDIX A. TECHNICAL PROOFS

Lemma 3. Let f1 and f2 be bivariate density functions on = [0,M1] × [0,M2]. Assume the density
of the censoring time, g, is bounded. Then there exists a constant C > 0, independent of f1 and f2 such
that

||sf1 − sf2 ||1 ≤ C||f1 − f2||∞.

Proof. Say g is bounded by K. If (t, z) ∈, then

|sf1(t, z) − sf2 (t, z)| =
|||||
g(t)

(
1{z>0}

∫

t

0
(f1(u, z) − f2(u, z)) du

+ 1{z=0}
∫

M1

t ∫

M2

0
(f1(u, v) − f2(u, v)) dv du

)|||||

≤ K max
{

∫

t

0
|f1(u, z) − f2(u, z)| du,

∫

M1

t ∫

M2

0
|f1(u, v) − f2(u, v)| dv du

}

≤ K || ||f1 − f2||∞.

This implies

||sf1 − sf2 ||1 = ∫


|sf1 − sf2 | d𝜇 ≤ K || 𝜇() ||f1 − f2||∞. (A1)
▪

Lemma 4. Impose Assumption 1. Let f0,n be as defined in (9). Define set

Ωn ∶=
{

f ∈  ∶ ||f − f0,n||∞ ≤ C𝛿𝜌n, supp(f ) ⊇
}
.

If f ∈ Ωn, then for sufficiently large n there exists a constant C1 > 0 such that

KL(sf0 , sf ) ≤ C1𝛿
𝜌

n, V(sf0 , sf ) ≤ C1𝛿
𝜌

n.

Proof. The proof is based on lemma B.2 in Ghosal and Van der Vaart (2017), which gives the
following inequalities

KL(sf0 , sf ) ≤ 2h2(sf0 , sf )||sf0∕sf ||∞,

V(sf0 , sf ) ≤ 2h2(sf0 , sf )||sf0∕sf ||∞. (A2)

https://doi.org/10.1214/17-EJS1290
https://doi.org/10.1214/17-EJS1290
https://projecteuclid.org/euclid.ejs/1495850628
https://doi.org/10.1111/sjos.12562
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Therefore, for f ∈ Ωn we bound h2(sf0 , sf ) and ||sf0∕sf ||∞. Substituting these bounds in (A2)
finishes the proof.

Step 1: showing that h2(sf0 , sf ) ≲ 𝛿𝜌n. By the definition of f0,n in (9), for any (t, z) ∈ An,j × Bn,k,

|f0,n(t, z) − f0(t, z)| =
|||||
|An,j × Bn,k|−1

∫An,j
∫Bn,k

f0(u, v)dvdu − f0(t, z)
|||||

≤ |An,j × Bn,k|−1
∫An,j

∫Bn,k

|f0(u, v) − f0(t, z)| dv du

≤ uvAnjBnk,max|f0(u, v) − f0(t, z)|.

By assumption (5) on f0, we have

uvAnjBnk,max|f0(u, v) − f0(t, z)| ≤ cuvAnjBnk,max||(u, v) − (t, z)||𝜌 ≤ L(2
√

2𝛿n)𝜌.

Hence

||f0,n − f0||∞ = jk,max ||tzAnjBnk,max|f0,n(t, z) − f0(t, z)||| ≤ c(2
√

2𝛿n)𝜌. (A3)

Applying Lemma 3 with f1 ≡ f0 and f2 ≡ f ∈ Ωn gives

||sf0 − sf ||1 ≤ C(||f0 − f0,n||∞ + ||f0,n − f ||∞) ≲ 𝛿𝜌n.

where we used (A3) to bound the first term on the right-hand-side. Using the inequality h2(f1, f2) ≤
1
2
||f1 − f2||1, we then have

h2(sf0 , sf ) ≤
1
2
||sf0 − sf ||1 ≲ 𝛿

𝜌

n. (A4)

Step 2. showing that for sufficiently large n there exists a constant c̃ > 0 such that
||sf0∕sf ||∞ ≤ c̃.

First note that

‖‖‖‖‖

sf0

sf

‖‖‖‖‖∞
≤ max

{‖‖‖‖
𝜕2F0

𝜕2F
‖‖‖‖∞

,

‖‖‖‖

1 − F0,X

1 − FX

‖‖‖‖∞

}
≤
‖‖‖‖

f0

f
‖‖‖‖∞

. (A5)

By Assumption 1, there exists M such that f0(t, z) ≥ M for (t, z) ∈. Since f ∈ Ωn we have
f (t, z) ≥ f0,n(t, z) − C𝛿𝜌n. By Equation (A3), there exists a k (depending on c and 𝜌) such that

|f0(t, z) − f0,n(t, z)| ≤ k𝛿𝜌n.

Therefore

f0(t, z)
f (t, z)

≤
f0(t, z)

f0,n(t, z) − C𝛿𝜌n
≤

f0,n(t, z) + k𝛿𝜌n
f0,n(t, z) − C𝛿𝜌n

.
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For n sufficiently large we will have C𝛿𝜌n ≤ M∕2 and therefore the denominator of the
right-hand-side can be lower bounded by M∕2. This implies boundedness of ||f0∕f ||∞ for n
sufficiently large. ▪

APPENDIX B. PROGRAMMING DETAILS IN THE TURING LANGUAGE

For each observation, indexed by i ∈ {1,… ,n}, we compute the vector of indices corresponding
to the shaded area in Figure 1, as well as the fraction of the area that is shaded. This means
that there is an n-dimensional vector ci, where each element is of type (CensoringInformation).
The structure CensoringInformation has two fields: ind and fracarea, holding indices and
areafractions respectively. If L is the graph-Laplacian (with a small multiple of the identity matrix
added), the model is specified in Listings 1 and 2:

@model GraphLaplacianMod(ci,L) = begin
tau ∼ Exponential(1.0)
H ∼ MvNormalCanon(L/tau)
Turing.@addlogprob! loglik(H, ci)

end

Here the log-likelihood is calculated using

function loglik(H, ci)
theta = softmax(H)
ll = 0.0
@inbounds for i in eachindex(ci)

c = ci[i]
ll += log(dot(theta[c.ind], c.fracarea))

end
ll

end
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