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It is difficult to say what is impossible, for the dream of yesterday is the hope of today,
and the reality of tomorrow.

-Robert H. Goddard



Summary

The space environment is ever-changing with the space structures getting larger and the orbits get-
ting increasingly crowded with time. This creates a need for removal of large defunct satellites to
avoid the disastrous Kessler syndrome, which poses a major threat to the future of space explo-
ration. According to NASA and some other sources, about 5-10 large objects must be removed
annually from the crowded low Earth orbit to stabilise the current situation. Therefore, this re-
search examines the dynamics and control involved in the active removal of a large space debris,
Envisat. European Space Agency’s e.deorbit mission aims to deorbit Envisat using a chaser satellite,
which synchronises with Envisat’s rotational motion, docks with it, and detumbles and deorbits the
stacked (docked) configuration. In this research, two phases of this mission are modelled, namely
the synchronisation and connected phase. In the synchronisation phase, the chaser matches the
attitude of the tumbling passive target. Then, in the connected phase, the stacked configuration
detumbles to zero angular velocity and reorients itself to a particular attitude to perform the deor-
bitation manoeuvre.

The presence of large flexible appendages makes the configuration prone to elastic perturba-
tions leading to complex dynamics that cannot be represented using rigid body dynamics. Hence,
a unique multibody approach based on the absolute interface coordinates in the floating frame for-
mulation is used to model the Flexible Multibody Dynamics (FMD). The new method proves to be
efficient for the control application, while facilitating easy constraint handling. The satellite model
is adapted to the new modelling technique using beams to model the solar panels. The rigid body
inertia is captured in the multibody formulation using lumped masses.

The controllability characteristics of the two phases of the e.deorbit mission are analysed using
a linear PD controller and an Incremental Nonlinear Dynamic Inversion (INDI) controller. To anal-
yse the effect of unpredicted flexible perturbations on controller performance, the control system
is designed using rigid body dynamics and the environmental torques are excluded from the dy-
namics. Additionally, it is assumed that the rotational motion of the system is decoupled from the
translational motion. In other words, the satellite remains stationary in its orbit during the whole
operation.

For the first phase, both controllers successfully synchronise the chaser with the target debris
tumbling at the rate of 3.5 ◦/s about all axes. The system was controlled, even without structural
damping in the flexible system. However, during the connected phase, the detumbling manoeuvre
introduces complex dynamics due to the large appendage (14.2 m) in the stacked configuration,
which could not be stabilised by the applied controllers. It was found that without damping, the
oscillations increase with time and destabilise the system. Also, large control moments act like im-
pulsive forces to the flexible elements and aggravate the vibrations. Inclusion of structural damping
(2%) and use of smaller control moments, improved the controllability characteristics considerably
and the system achieved convergence with very small oscillations (±0.1◦/s) for both controllers.
Nonetheless, INDI proved to be more stable and showed faster convergence compared to PD, since
smaller vibrations are observed in the flexible elements.
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Preface

This research study aims to analyse the dynamics and control associated with the active removal of
a large uncooperative debris with a large flexible appendage. Through this application, the capa-
bilities of a new multibody modelling technique, which provides a good balance between accuracy
and computation time, is demonstrated. Through this study, I hope to reach out to the scientific
community to work towards a sustainable future, not only on Earth, but also beyond it.
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ê Unit vector along Euler’s Eigenaxis -
F Applied force N
FI Inertial frame for rigid body model -
FB Body fixed frame for rigid body model -
fn nth natural frequency Hz
H Angular momentum vector Nms
I Inertia tensor, with elements Ii j kgm2

K Stiffness matrix N/m
Kp Proportional gain vector Nm/rad
Kd Derivative gain vector Nms/rad
KC B Stiffness matrix after Craig Bampton reduction N/m
L Lagrangian J
L Length of element m
l , M Jacobian in INDI controller design various
M Mass matrix kg
M External moment (g = gravity, d = disturbance, c = control) Nm
MC B Mass matrix after CB reduction kg
N Shape-function vector -
N ,Γ Coefficient matrices representing kinematics in NDI and INDI controllers -
p , q Quaternion vector -
Q Elastic deformation matrix -
Q Quaternion transmuted matrix -
Qi Non-conservative force vector for generalised coordinate i -

q i ,i
j Generalised coordinates of point P j with respect to floating frame

defined at Pi -
Ri Resultant force acting on particle i N

r A,B
i Position vector of a point Pi in frame A relative to frame B m

r Rodrigues Parameters vector -
T Kinetic energy J
T i Transformation matrix defining the relationship between absolute and local

motion of the interface coordinates -

xiii



xiv List of Symbols

U Potential energy J
u Control vector Nm

ui ,i
j Small elastic displacement vector of point P j with respect to floating

frame defined at Pi -
v Virtual control vector -
v o,o

j Absolute velocity vector of point P j m/s

v i ,i
j Relative velocity vector of point P j with respect to floating frame

defined at Pi m/s
W Work Nm
x State vector -
XG ,YG , ZG Location Centre of Mass m

x i ,i
j Position vector of point P j with respect to floating frame defined at Pi m

Z i Transformation matrix defining the relationship between absolute motion
of interface coordinates and floating frame -

Greek

α Mass proportional damping coefficient -
α Penalty factor matrix -
β Stiffness proportional damping coefficient -
Γ Modal participation matrix -
δe Nodal degrees of freedom vector -
θ Euler angle about Y-axis (pitch) rad
θ Euler angle vector rad
Θ Pseudo Euler angles vector rad
λ Lagrange multipliers vector -
ξ Critical damping ratio -
ρ Density of the element kg/m3

σ Modified Rodrigues parameters vector -
φ Euler angle about X-axis (roll) rad
φi

C B Vector containing CB modes of vibration with respect to floating frame
defined at point Pi rad/s

φi
r i g Vector containing rigid body modes of vibration with respect to floating

frame defined at point Pi rad/s
ψ Euler angle about Z-axis (yaw) rad
ψc Constraint modes matrix -
Ω Skew symmetric matrix of angular velocities rad/s
ω Natural frequency rad/s
ω Angular velocity vector rad/s

ω
A,B
i Angular velocity vector of a point Pi in frame A relative to frame B rad/s



1
Introduction

Since the onset of Space Age, the number of satellites launched every year has been increasing pro-
gressively. Unfortunately, most objects launched into space are still orbiting Earth, even though
only a small fraction of them are operational. All these man-made objects in space, which no longer
serve a useful purpose, can be defined as space debris. This accumulating debris has become a ma-
jor threat to current and future space exploration. Thus, to address this problem, the Inter-Agency
Space Debris Coordination Committee (IADC) was formed in 1993, with the goal of achieving inter-
national co-operation in space debris research and mitigation options.

1.1. The Background
Varying sizes of space debris are produced in many stages of a spacecraft’s lifetime. It includes
jettisoned rocket bodies, objects released during missions, fragments due to collisions, and uncon-
trolled dead satellites. While in space, a small 1 cm debris can hit with a force of a hand grenade.
There are more than 17,000 trackable objects larger than a coffee cup, posing great risk of collision
with the current missions (ESTEC, 2015). An instance of such damage is the solar panel on the
Sentinel-1A satellite, which was hit by a millimeter-sized particle as shown in Figure 1.1. The dam-
age, however, was about 100 times its diameter 1.

According to Donald J. Kessler from the National Aeronautics and Space Administration (NASA),
if the growth is not controlled, the amount and density of debris in Low Earth Orbit (LEO) will reach
a threshold. At that point, the debris will collide with each other leading to a cascade of collisions,
thereby leading to an exponential growth of debris (Kessler and Cour-Palais, 1978). Since 1961, more
than 300 satellite fragmentation events have already been documented. Some of them are head-on
collisions, which produced thousands of fragments, with two such events occurring in the recent
past. The first one is the explosion of the anti-satellite missile launched by China in January 2007,
which produced more than 3,200 pieces of debris in one of the most populated orbits of operation,
at about 850 km altitude. The second event that produced around 2,100 pieces of documented de-
bris was the collision of Iridium 33 and Cosmos 2251 at an altitude of 790 km in 2009 (IADC, 2011).
The effects of these events can be seen as a sharp rise of the total debris population in Figure 1.2,
which shows the number of catalogued debris, and their growth over years. This number drastically
increased from 11,000 to 14,000 in 2007, and from 15,000 to 17,000 in 2009, indicating how one in-
cident can cause an exponential surge in the debris population. Sometimes, short-lived debris are
also produced, either accidentally or deliberately. According to IADC (2011), on an average about
five catalogued debris are separated from the International Space Station (ISS) every year. Other

1https://qz.com/773511/photos-this-is-the-damage-that-tiny-space-debris-traveling-at-incredible-speeds-can-do/,
Last Accessed: 12/02/2018
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2 1. Introduction

Figure 1.1: Space debris impact on Sentinel-1A satellite

Figure 1.2: History of catalogued debris (IADC, 2011)

sources, like NASA (2008) and Johnson (2006), suggest six and four catalogued debris per year, re-
spectively .

The most populated region in space is LEO, which extends to an altitude of 2000 km. LEO is
not only populated by satellites, but also by 75% of the catalogued space debris (which can be at-
tributed to the recent collisions in 2007 and 2009). A special type of polar orbit at an altitude of
800-900 km, known as Sun Synchronous Orbit (SSO), is especially populated by satellites. The avail-
ability of solar energy at all times, small repeat cycles and good resolution make it an ideal orbit for
Earth observation satellites. This makes SSO a densely populated orbit with high collision risk. The
current scenario of space debris in Geostationary Earth Orbit (GEO) and LEO can be visualised with
the help of Figure 1.3. Moreover, for satellites in higher orbits where the atmospheric drag is not
very evident, orbit decay can take centuries. Simulations have shown that even if there are no more
satellites launched into this orbit, the debris will continue to grow exponentially.

Since the collision in 2009, the risk of further collisions has elevated alarmingly. An average of
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(a) Geostationary Orbit (b) Low Earth Orbit

Figure 1.3: A visualisation of debris distribution in GEO(left) and LEO(right) Image credits: ESA

10-30 close-approach warnings are now transmitted everyday from the U.S. Joint Space Operations
Center to satellite operators around the world. In case of risk, the active satellites conduct collision
avoidance manoeuvres. In LEO, an approach of debris within 1 km of an operational satellite can
lead to a collision avoidance manoeuvre; in GEO, this distance is about 5 km (IADC, 2011). It is pos-
sible to avoid collisions of active satellites with documented objects, but without adequate collision
avoidance capabilities of the inactive satellites and other debris, there is still a large probability of
collisions. Hence, it is not sufficient to avoid collisions between the active satellites, and there is a
need to remove any large debris, which can cause a further increase in the debris population. This
process is called Active Debris Removal (ADR). According to NASA, at least five large objects need to
be removed annually from LEO to stabilise the current situation (IADC, 2011), while the European
Space Agency (ESA) suggests an order of 5-10 objects to be removed (ESA, 2017).

1.2. e.deorbit
The e.deorbit mission is part of the Clean Space Programme managed by ESA, which aims to miti-
gate the space debris scenario and bring increased attention to environmental impacts of its activ-
ities in space. The e.deorbit specifically aims at developing new technologies for actively removing
debris. Its mission objective, as stated in the ESA (2012) report, is:

"The mission aims to perform the active removal of a big ESA owned object from its or-
bit. By doing so the mission shall actively contribute to the mitigation of the risk of orbital
environment degradation due to in-orbit collisions (Kessler syndrome) and demonstrate
the required technologies for future ADR missions."

The "big ESA owned object" stated here is ESA’s largest Earth observation satellite, Envisat, which
is inoperable since April, 2012. The debris now poses the highest collision risk of all ESA owned
satellites in the densely populated altitude of 600-800 km near polar orbit and is an important case
study for ADR technology. Some key concepts developed for removal of Envisat are the capturing of
debris using:

• Tethers,
• Throw-nets,
• A harpoon, or
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(a) Deploy the tentacles (b) Approach Envisat (c) Deploy Envisat and grab solar
panel boom

(d) Close the tentacle arms (e) Deploy the pushing rods (f) Stabilise stack for deorbiting

Figure 1.4: Phases of e.deorbit mission showing interaction of chaser with Envisat (ESA, 2012)

• Tentacles or clamps.

Other less popular concepts include de-orbiting using ion-beam, expanding foam and hybrid sails.
Among all options stated above, a chaser with tentacles and a robotic arm to capture the target is
among the most promising ones (ESA, 2012), and will also be investigated in further detail in this
research.

For this ADR option, the mission starts with the launch and injection of the chaser satellite to an
altitude of 300 km into an orbit co-planar to that of Envisat. The chaser approaches the target orbit
using Hohmann transfers and commences the rendezvous phase at a relative distance of 3 km. At a
distance of about 50 m from the target, the chaser observes the target and starts synchronising with
its tumbling attitude (Deloo, 2015). It then docks with the target using tentacles and/or a robotic
arm. Finally, it stabilises the attitude of the stacked system and eventually de-orbits it.

The process can be visualised using Figure 1.4. The figure shows six steps, wherein the chaser
first deploys its tentacles and prepares for contact with Envisat. Once it is close enough to establish
contact, it grabs the solar panel beam using the robotic arm. The tentacles lock themselves around
the body of Envisat and push rods are deployed to establish a rigid connection. Lastly, the chaser
stabilises the stack for the de-orbiting manoeuvre.

1.3. Problem Statement
In all of the above mentioned phases in the e.deorbit mission, a number of flexible elements, like the
robotic arm and the tentacles, are involved. Additionally, both spacecraft have solar panels, which
add to the flexibility of the system. According to Junkins and Kim (1993), spacecraft with smaller
appendages are often modelled as rigid bodies due to their relatively dominant rigid properties.
However, with the configuration of Envisat, which includes a 14.2 m long flexible solar panel, large
vibrations can be introduced in the system. Assuming a rigid configuration for long appendages
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can overlook important physical properties, like the vibrational and rotational coupling of the rigid
and flexible elements. This might lead to faulty models, which can be potentially catastrophic lead-
ing to loss of control of the satellite. Also, the presence of large flexible appendages and multiple
bodies stacked into one configuration, characterises a nonlinear flexible multibody problem. Such
a multibody configuration, with slewing, and translating members in the presence of external dis-
turbances, presents numerous challenges to the field of dynamics and control.

The flexible elements, like any other part of the spacecraft, interact with the space environ-
ment, which in turn causes vibrations that can lead to disruptions in the spacecraft attitude. Then,
Envisat’s uncontrolled attitude adds to the perturbations in these flexible elements. Lastly, con-
trol torques applied on the system to attain the required attitude can act like a discrete force to
the flexible elements, possibly exciting their natural frequencies of vibration. Clearly, the ADR not
only requires state-of-the-art sensors, but also a very robust control system to successfully perform
autonomous rendezvous and docking operations, despite all the external disturbances. Once the
connection between the Chaser and Envisat is established, the system becomes very dynamic and
complex due to the flexibility in the connection itself.

From the above discussion, it can be concluded that there is a large scope of research to ad-
dress this problem. The dynamics associated with a flexible chaser satellite docking with a large
uncontrolled flexible target is especially very intriguing, and different possibilities of formulating
such a system will be addressed in further detail in this research. Since the vibrations in the ap-
pendages of typical satellite systems are difficult to predict and act like external disturbances to the
rigid body attitude, it would be interesting to observe the performance of a control system based
on rigid body motion, for a system that is driven by flexible dynamics. Currently, many satellites
are controlled by relatively simple, linear controllers. So, another interesting aspect would be to
analyse the performance of a linear controller for such a dynamic nonlinear system. The alternative
of using a nonlinear controller will also be explored, and the advantages and disadvantages will be
weighed against the aforementioned controller. This will help with the understanding of how flex-
ible dynamics of a multibody system affects the controller performance, originally developed for
controlling rigid body motion.

Another problem associated with the field of dynamics and control of large flexible space struc-
tures is the computation time. Typical software that give reasonable accuracy for such complex
structures have high rendering time. Further, modelling of joints or constraints between two bodies
along with asymmetric structures and material properties can prove to be cumbersome in opera-
tion with the controls. Hence, there is a need for development of modern techniques, which provide
good accuracy in the modelling of dynamics, in combination with fast computation time for control
applications, while enabling easy constraint modelling. Therefore, a new and unique multibody ap-
proach based on floating reference frames, which enables modelling of constraints in a multibody
system without the use of Lagrange multipliers, will be used to model the dynamics in this research.
The new method proposed by Ellenbroek and Schilder (2017) may facilitate good accuracy with rel-
atively low computation time. To summarise, the research will attempt to examine the integrated
dynamics and control of docking with a large tumbling debris with flexible elements.

1.4. Research Question
For this research, the attitude control of a chaser in the vicinity of a target debris will be studied,
taking into account the structural dynamics of the two flexible bodies and the stack after docking.
For a better analysis, the docking phase can be divided into three sub-phases:

1. Synchronisation: In this phase, the system consists of two spacecraft bodies with flexible ap-
pendages, which are completely unconnected. The chaser matches the uncontrolled attitude
of Envisat. The configuration can be defined as two bodies with one rigid hub and one flexible
panel each. Environmental disturbances and flexibility cause perturbations in both space-
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craft individually.

2. Semi-connected: In this phase, the contact is achieved between the target and chaser, but a
rigid connection is not achieved yet. The system is connected by flexible links and prone to
additional torques due to attitude differences. The system configuration can be defined as
one body with two rigid hubs and two flexible panels connected by a flexible link. It can be
visualised as a chain structure with alternating rigid and flexible bodies.

3. Connected: In this phase, a relatively more rigid connection is established. Now, the system
consists of combined mass and inertia properties, and the chaser makes manoeuvres to sta-
bilise the stacked system. The system configuration can now be defined as a large rigid hub
with two flexible panels.

A good attitude control system should be able to achieve the target attitude when unconnected,
maintain the attitude in the semi-connected phase, and finally, completely stabilise the stacked
system in the connected phase in the presence of perturbations coming from the environment and
flexible dynamics. Also, an efficient dynamics model should provide an accurate representation of
the system’s dynamics during all three phases with good computation time. Since the presence of
flexible links between the two satellites in the semi-connected phase can create very complex and
specific dynamics, which requires exclusive attention, this phase will not be modelled and analysed
in this research.

Therefore, in this research the dynamics of the multibody system will be modelled and control-
lability characteristics of this system will be analysed for the synchronisation and connected phase
of the mission, treating the vibrations due to flexibility as external disturbances. Therefore, the re-
search question can thus be formulated as:-

What are the dynamics and controllability characteristics of a flexible chaser spacecraft
before and after docking with a large, flexible and uncooperative space debris?

From this, further questions that can be asked in this research are:

• Does the new multibody technique demonstrate good compatibility with the modelling and
control of the flexible multibody system in both synchronisation and connected phases?

• What are the complications introduced in the control of the system due to coupling of rigid
and flexible body dynamics?

• Can simple controllers designed for rigid bodies stabilise the system in the presence of flexible
perturbations?

• What are the structural aspects that affect the vibrations in the flexible elements?

• How does the controllability of a flexible system differ from that of a rigid system?

• How does a linear controller perform for such a nonlinear dynamic system?

• Will the application of a nonlinear controller show improved response characteristics?

In this research, all the aspects associated with the above stated questions will be analysed.
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Figure 1.5: Scope of the research

1.5. Scope of the research
As shown in Figure 1.5, the thesis is focussed on three main elements. The first aspect is the ap-
plication, which is chosen to be the significant function of ADR, with a focus on removing large
debris with flexible appendages. The reference debris used for this research is that of Envisat. The
chaser models and mission phases examined will also be based on the frame of reference of the
e.deorbit mission, which aims to deorbit Envisat. The system configuration will include three dif-
ferent systems. However, only two phases of the mission (synchronisation and connected phase)
will be examined.

The next prospect of this thesis is the multibody dynamics, which is derived from the system
configuration consisting of a mix of rigid and flexible elements. For this, a new modelling technique,
which provides the combined advantage of easy constraint modelling with good accuracy and com-
putation time will be used. The dynamics will be defined only for the rotational state (which is also
controlled), and the satellites will be assumed to be stationary in their orbits during the operation.
To improve the chances of stabilising the system in the presence of flexible perturbations, structural
damping is included in the modelling. Lastly, to analyse the impact of flexibility alone on the con-
trollability characteristics, the effect of external perturbations will be ignored.

The final aspect of this research is the control system. The system will be assessed for its con-
trollability characteristics in both synchronisation and connected phases. This will be performed
for two types of controllers, one linear and one nonlinear. The control system will be designed for
a rigid body, but applied to a plant based on Flexible Multibody Dynamics (FMD) to analyse the
effects of unprecedented flexible perturbations on controller performance. Again, the effect of en-
vironmental perturbations is ignored. The performance of the controllers will be analysed in their
elementary state and no optimisation will be performed for the control system design.

1.6. Overview of the Report
Attitude control of such a complex flexible chaser-target system before and after docking, requires
numerous models to be put together. To model the dynamics accurately, some common charac-
teristics associated with flexibility in large multibody space structures, performing different opera-
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tions must be understood. Also, the Attitude and Orbit Control System (AOCS) configuration used
for attitude control of these large structures should be analysed. This is discussed in Chapter 2 as
a part of the mission heritage. The important properties of chaser and target spacecraft, which to-
gether form the system configuration, are also discussed in this chapter along with the environment
model. Lastly, mission and system requirements are derived for the e.deorbit mission in light of this
research.

Defining the attitude of a spacecraft requires reference frames and attitude-state representa-
tions, which are introduced in Chapter 3. Since the rigid body dynamics forms the basis of the
guidance system, the Equations of Motion (EOM) are first derived for rigid body motion. Then, the
guidance system for different phases of the mission is defined. The theory and motivation behind
the chosen linear and nonlinear controllers is also explained in this chapter. Lastly, some bench-
mark simulations are made with a rigid system to verify the working of the control system and also,
to compare the performance of the two controllers.

In Chapter 4, the flexible dynamics for the multibody system is defined. Common multibody
approaches are introduced and compared to motivate the choice of the new multibody modelling
technique. Different components involved in modelling of a multibody system, such as discretisa-
tion methods, constraint modelling, model reduction and internal forces, will be introduced and
compared. Then, the new methodology based on floating frames, wherein the dynamics is repre-
sented using absolute interface coordinates, is used to derive the generalised EOM for the system.
These EOM will be used as the plant for the control system analysis.

Now that all elements for the control systems are introduced, the simulator architecture is ex-
plained in Chapter 5. The plant model based on FMD is also verified and validated against some
established test cases from literature. Next, Chapter 6 discusses the methodology behind struc-
turally adapting the satellite model to the new formulation. Some sensitivity studies are performed
to select the most fitting properties to model both rigid and flexible elements. This is followed by
a schematic of the final configuration of the satellite structural model. Lastly, the mathematical
formulation of damping is discussed in this chapter and some results of its effect on dynamics are
presented.

Finally, the results from the simulations are presented and analysed in Chapter 7 for the two
phases of the mission, using different controllers. Based on these results conclusions are drawn
about the final outcome of the research in Chapter 8. Some recommendations to further develop
and improve the models, and extend the research, are also made in this chapter.



2
Mission Heritage

Over the past few decades, space structures have become larger with high power requirements,
which entails large flexible solar panels due to the ample availability of solar energy. This has
brought a diverse set of challenges to the field of spacecraft attitude dynamics and control. Accord-
ing to Junkins and Kim (1993), spacecraft with smaller appendages have a dominant rigid property
and can be modelled as a rigid structure. However, large appendages can cause considerable dis-
turbing torques due to vibration, leading to instabilities in the system, and therefore cannot be mod-
elled as a rigid body. A comparative study of the rigid and flexible models of attitude maneouvre of
multi-body satellites by Teoh et al. (2014), shows that flexibility of solar panels can have significant
effect on the satellite attitude dynamics by inducing a sinusoidal component in the attitude. Fur-
ther, their results show that a flexible model provides a more precise attitude control model. Junkins
and Kim (1993) also discuss how assuming a rigid configuration for long appendages can overlook
important physical properties like the vibrational and rotational coupling of the rigid and flexible
elements. This might lead to faulty models, which can be potentially catastrophic. Hence, the FMD
of the system becomes crucial in such cases.

The study of large flexible multibody space systems includes analysis of dynamics associated
with many applications and operations performed by these structures. This includes assembly and
docking of large space structures, deployment and retrieval of appendages, slew manoeuvres and
precision pointing, and lately, active removal of space debris, all to be controlled in the presence of
disturbing environmental forces. Elastic perturbations are also introduced due to vibration of the
flexible elements like solar panels, robotic arms, and any other parts, which are elementally flex-
ible (for example, joints). In addition, many spacecraft suffer from disturbances associated with
fuel sloshing, which aggravate the vibrations induced due to other flexible elements. This chap-
ter addresses certain problems associated with large flexible space structures, which will be studied
through a brief outlook of the mission heritage. Nonetheless, the importance of modelling flexibility
and its dependency on other prospects in space will be established. The end goal is to understand
the typical structural and AOCS configuration used to control the perturbations induced due to flex-
ibility in these structures. Also, the configuration associated with the e.deorbit mission for ADR of
Envisat will be discussed in detail. At the end of the chapter, some mission and system requirements
will be defined based on this mission heritage.

2.1. Effect of External Torques on Flexibility
A great example of the effect of external torques on the flexible dynamics of a spacecraft is ESA’s
successful mission to comet 67P/Churyunov-Gerasimenko, Rosetta. The spacecraft was launched
in 2004, and after a hibernation period, arrived at the comet in August 2014 and the mission ended

9
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Figure 2.1: Vibrations observed in angular velocity of Rosetta ESTEC (2017)

in September 2016. It is known for being the first deep-space mission ever to entirely rely on solar
power generation beyond the main asteroid belt, where the sunlight is 3-4% of that in the LEO. The
mission aimed to study the nucleus and environment of the comet for nearly 2 years and also at-
tempted to land a probe on its surface. The 2.8 x 2.1 x 2.0 m orbiter was equipped with two 14 m
long solar array wings, which gave reasonable performance at temperatures as low as -100◦C. Each
wing consisted of five solar panels each of dimensions 2.25×2.74 m. The spacecraft hub had a con-
figuration of 24 thrusters arranged in parallel pairs (12 prime and 12 redundant). Out of them, eight
pairs located at the corners of the hub with 10 Nm capacity, were used for attitude control. The re-
maining four pairs were used for∆V manoeuvres. Additionally, it had four reaction wheels of 40 Nm
capacity, also for attitude control (Stramaccioni, 2017).

One of the main perturbing forces considered in the design of AOCS in Rosetta was the coma
drag from the comet as mentioned in Godard et al. (2015). Since the coma drag is directly propor-
tional to the surface area, the intensity of drag affecting the solar panels is more than the spacecraft
bus (the area is larger). This drag can induce torques on the solar panel, which may cause instability
in the spacecraft attitude. Indeed, during the period when the comet was at its perigee close to the
Sun, the coma drag became so evident that the spacecraft had to move away from the comet (still
orbiting) to avoid any accumulation of dust or ice on the panels and also to avoid the disturbing
torque. Further, the mission involved multiple gravity-assisted manoeuvres and rendezvous with
the comet. These activities induced vibrations in the large solar panels, thereby causing attitude
disturbances. Figure 2.1 shows that during the mission, even with the operational controllers, the
vibrations could not be damped out completely. Therefore, Rosetta is a good case study to analyse
the dynamics of spacecraft with large flexible appendages, when exposed to large environmental
disturbing torques.

The effect of perturbing forces is also very evident in the vicinity of Earth. Satellites in LEO are
exposed to a number of perturbing forces due to atmospheric drag, solar radiation pressure, gravity
gradient, and the Earth’s magnetic field. Another perturbation that is observed by LEO satellites, is
the effect of thermal snap. When the thermal environment around a flexible structure in orbit, such
as a solar array, experiences substantial temperature change, vibrations can be induced due to ther-
mal expansion or contraction. These thermal snap vibrations occurring on a flexible solar array are
very low frequency, and measuring the motion using sensors, like accelerometers, is very difficult
(Oda et al., 2011). The Hubble Space Telescope (HST) was launched on April 25, 1990, to conduct
higher-accuracy astronomical observations than ground-based equipment. A pointing control sys-
tem of HST was designed to hold an image stable at the HST focal plane to 0.007 arcsec (rms) for the
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duration of an observation (Oda et al., 2011). However, following the deployment of solar arrays, it
suffered from constant attitude errors, which was later found to be thermally induced. The bending
motion of the arrays due to the thermal snap occurred rapidly during sunshine/ eclipse transition
and disrupted HST’s pointing system. In December 1993, the solar array paddles were replaced with
new units to counter the problem.

Even though the effect of the environmental perturbations is not taken into account in this the-
sis, the analysis is important for the future work wherein these effects should be included in the
robust controller development.

2.2. On-orbit Assembly of Large Space Structures

As space structures get larger, launching them into orbit as a completely assembled structure be-
comes critical. A possibility for delivering such large structures to space is by shipping them in
pieces and subsequently performing on-orbit assembly. These structures often have high power
requirements, which are met through large solar panels. One such structure is the ISS, the largest
habitable satellite produced by mankind, which is operating for over 16 years ensuring a continu-
ous presence of mankind in space since 2000. The spacecraft consists of a main body with different
modules, which are changed from time to time, assembled with four sets of large solar arrays. The
arrays span 2500 m2, which is more than half the size of a football field. They produce more than
60 % of the space station’s electric power. The continuous upgrades and on-orbit assembly of the
space station often results in the shift of center of mass of the configuration. This would require up-
dates in the dynamic model of the multibody system and also modifications in the control system.

Ghosh (1997) shows how thermally induced loads generated due to variation in solar power
(shadowing), can cause asymmetrical deformations of solar panel as the solar cells expand or con-
tract. These thermal shocks or vibrations can create forces and moments leading to a change in
attitude. Buckling of the solar panels due to thermal loads has also been a major threat for the space-
craft’s operational stability (Elliott et al., 2012). Additionally, at an altitude of just about 400 km, the
ISS experiences atmospheric drag, which can also cause vibrations in the solar panels. Moreover,
the drag also slows the spacecraft down, lowering its orbit. As a result, the ISS performs multiple
corrective manoeuvres in a year to maintain its altitude. The space station also performs several
collision avoidance manoeuvres to avoid any damage due to space debris impact. The attitude con-
trol system mainly relies on non-propulsive actuators; four Control Moment Gyros (CMGs) with a
capacity of 4760 Nm each, which control the attitude by changing the momentum of the system.
Using momentum control devices facilitate changing the attitude without inducing much vibration
in the system, as it provides continuous momentum exchange as opposed to the discrete pulses of
propulsive units. However, it also includes thruster attitude control to desaturate the CMGs and to
support them during large attitude manoeuvres (Memi and Deason-Sharp, 2006). Additionally, the
ISS uses a one-, two-, or three-axis Torque Equilibrium Attitude (TEA) seeking controller to deter-
mine the smallest amount of momentum required to maintain attitude control. Lastly, vibrations in
the solar panel are detected or measured using accelerometers, Lidar instruments, photogramme-
try, and so on, which are then accounted for in the control system.

Being a manned space station, it requires frequent supplies for the crew and for scientific re-
search. Hence, the spacecraft performs multiple Rendezvous and Docking (RVD) operations in a
year. Additionally, it is equipped with multiple Degree of Freedom (DOF) robotic arms (Dextrous
and Canadarm2), provided by the Canadian Space Agency for performing in-orbit repairs, mainte-
nance and upgrade operations. This is another crucial flexible component to the configuration. The
ISS, thus, is a good state-of-the-art for this study, not only in terms of dynamics associated with a
large multibody spacecraft, but also to study the present technology in RVD operations and AOCS
requirements.
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Figure 2.2: Effect of sloshing on tip displacement of a solar panel Deng and Yue (2017)

2.3. Deployment of Flexible Appendages
Large deployable appendages like communication antennae, solar panels, solar sails, radars and
so on, are an integral part of modern spacecraft due to space limitation imposed by the launch
vehicle. A deployable design allows folding a structure to fit the launcher fairing during launch,
and deployed when the required orbit configuration is reached. The deployment of these large ap-
pendages often cause a disturbance in the spacecraft attitude. A number of factors, like the body’s
inertia, present angular rates, structural frequency, fuel sloshing and environmental perturbations,
can affect the extent of disturbance in the attitude (Meguro et al., 2006). During this phase, attitude
control becomes crucial, because the disturbances can become so large that the satellite can lose its
prescribed attitude and even drift out of control. Therefore, extensive testing is performed before
the launch to predict these perturbations and plan corrective actions during the deployment.

2.4. Effect of Fuel Sloshing
Vibrations in a spacecraft are not only introduced from flexible appendages, but also, from its own
internal dynamics. The rigid hub of a spacecraft is not entirely rigid, because it holds the propellant
tanks. Any large manoeuvres or disturbances associated with operations, like docking, spinning,
and so on, can introduce large amplitude liquid slosh (and subsequently vibrations) in the system.
In the presence of other flexible appendages in the system, the dynamics becomes even more com-
plex with the flexible appendage and liquid slosh coupling with each other. This creates the possi-
bility of slosh dynamics further amplifying the oscillations of the appendages (Deng and Yue, 2017).
Figure 2.2 shows the effect of sloshing on the vibration of a solar panel, causing increased amplitude
of vibration as compared to the one without sloshing. For spinning spacecraft, fuel sloshing often
becomes a source of energy dissipation, causing a nutation about the axis of rotation. The "nutation
angle" is defined as the angular displacement between the principal axis of rotation of the space-
craft and its angular momentum vector and is a measurement of the magnitude of the nutation
(Schlee et al., 2005). A more vigorous sloshing would lead to more energy loss, thereby causing a
larger nutation. In the past, missions have been lost, because of excessive and unanticipated nuta-
tion growth, which completely destabilised the system (Explorer I, 1958 and ATS-5, 1969). However,
nutation can also be caused by energy dissipation through flexible appendages. From the study of
flexible launchers, the slosh dynamics can induce an opposite control effect on the response of the
system (Mooij and Gransden, 2019). When a large mass is involved, fluid motion may also lead to a
shift in centre of mass of the satellite, which may introduce offsets in the applied control moments.
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Figure 2.3: top and side view of Envisat in a body fixed frame given by ESA (2012)

Clearly, modelling of slosh dynamics is critical to increasing the safety and reliability of an attitude
control system, but it is deemed beyond the scope of this study.

2.5. Active Debris Removal
As discussed in the motivation of this research, there is a need for active debris removal to ensure a
sustainable future space environment. Removal of large debris with flexible appendages can prove
to be very challenging and would require a robust attitude control system. The ADR technique
chosen for this research involves a chaser satellite capturing its target by performing RVD opera-
tions and then de-orbiting it. Apart from flexible appendages on the target, flexible appendages on
chaser satellite are also prone to vibration. Hence, its effects on the attitude of the system is in-
evitable. Moreover, during the detumbling and deorbiting manoeuvres, the vibrations may increase
and cause instability. Therefore, modelling the flexibility becomes crucial.

2.6. Reference case - Envisat
Envisat, launched on 1 March, 2002 is the largest civilian Earth Observation satellite owned by ESA,
which lost contact on April, 2012, after 10 years of successful operation. The debris now poses the
highest collision risk of all ESA owned satellites in the densely populated altitude of 600-800 km near
polar orbit. A collision at this altitude might lead to a cascade of collisions making it ill-suited for
any operations in future. If allowed to decay naturally, the re-entry will be uncontrolled and the con-
sequences may be potentially catastrophic due to its large mass (about 8 tonnes). The large mass,
large size, complex capture access due to uncontrollable tumbling and large flexible appendages
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Table 2.1: List of Envisat mass properties (Virgili, 2014)

Value

Mass[kg] 7828

CoG [m]

XG −3.905

YG −0.009

ZG +0.003

Inertia Matrix [kg m2]


16969 0 0

0 124700 0

0 0 129007



Figure 2.4: Orientation of solar array (Corso et al., 2016)

make it an ideal case study for this research.

2.6.1. Target Analysis

The initial launch mass of Envisat was 8138 kg including 319 kg of hydrazine. According to Vir-
gili (2014), the current mass of Envisat is 7828 kg, that means it is assumed that almost all propellant
is consumed. The spacecraft body consists of three major flexible appendages: the large solar array
(14.2 m), the SAR antenna (top) and a Ka-dish band (bottom), as seen in Figure 2.3. To reduce the
scope of the work, in this research only the flexibility due to the presence of the solar panel will be
considered. The risk of fragmentation before and during the de-orbit mission was analysed to be
very low by ESA (2012). It was also noted that the orbit altitude has reduced to 768 km (in 2010)
compared to the launch orbit of 790 km (in 2002). However, the deterioration is very slow and for
the comparatively short period for the RVD of the target and chaser, the orbit can be assumed to
be constant. Further, considering a total mass of 7828 kg and the solar panel of mass, 338 kg, the
Centre of Mass (CoM) and its moment of inertia about the principle axes (Virgili, 2014) is given in
Table 2.1
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Table 2.2: Attitude cases

Attitude Case Angular rate about X-axis [◦/s] Angular rate about Y-axis [◦/s] Angular rate about Z-axis [◦/s]

1 3.5 3.5 3.5

2 1.5 1.5 1.5

3 0 0 3.5

Solar Array
As documented by Corso et al. (2016), the size of the deployed solar panel is 16 m×4.972 m and its
mass is 338 kg. The solar panel is connected to the body of the Envisat by a boom, which is capable
of rotating using the Solar Array Drive Mechanism. However, the boom movement is locked by a
Primary Deployment Mechanism (PDM), which consists of a self-locking gear. It is assumed for this
research that the PDM is functioning and there is no boom rotation. From ground observations,
it was found that the solar array has failed to achieve the desired safe mode position. Further, as
shown in Corso et al. (2016), the boom is 3 m long, and forms an angle of 65◦ with the spacecraft
body length. Further, the solar panel is locked at an angle of 30◦ with the spacecraft body length
as shown in Figure 2.4. The figure shows the orientation of the solar panel boom and array with
respect to the launcher adapter ring. However, this angled configuration is not typical of satellites
with large appendages. Therefore, to get a more general overview, it will be assumed that the solar
panel is attached directly to the satellite like a fixed link, and is aligned with the CoM.

Attitudemodel
Since the loss of connection in 2012, many ground based observations were made to determine the
current attitude state of Envisat. The measurements were made by ground based Satellite Laser
Ranging (SLR), Inverse Synthetic Aperture Radar (ISAR) and optical telescopes, which determined
attitude from laser pulses reflected by the spacecraft. The results from 2013 indicate that the spin
axis of Envisat makes an angle of 61.68◦ with the nadir vector and 90.69◦ with the along-track vector.
Further, the spacecraft is rotating in the counter-clockwise direction with a period of 134.74 s in the
inertial frame and slowing down by 36.7 ms/day as reported by Kucharski et al. (2014). The rotation
rate about Z-axis (radial direction) is 3.5◦/s with a worst case scenario of 5◦/s (Virgili, 2014). It is also
tumbling about other axes but the rotation rates are relatively smaller. The rates computed using
simulation were 20 times slower than that the measured values, implying possible micro-meteorite/
debris impact and/or energy release. However, to understand the system dynamics better, three
attitude cases will be simulated as shown in Table 2.2.

Case 1 is taken as the worst case scenario of Envisat tumbling about all axes with the spin rate of
3.5◦/s. However, this overestimated scenario can prove to be very computationally expensive and
difficult to work with. Therefore, in Case 2, Envisat is assumed to be tumbling about all axes with
the spin rate of 1.5◦/s. Lastly, Case 3 is closer to the observed scenario, wherein it is only tumbling
about the Z-axis.

2.6.2. Chaser Model

According to ESA (2012), the launch mass for the e.deorbit chaser spacecraft is 1628 kg, with 762 kg
of dry mass and 826 kg of consumables. As computed by Habets (2015), the final mass on achieving
orbit is around 1480 kg. The shape of the chaser is assumed to be a rectangular box of dimensions
1.2×1.2×3 m. It also has a solar panel of dimensions 0.05×2.9×1.1 m of mass 25 kg. The CoM is
assumed to be the geometric centre of chaser’s box shaped body. The mass and inertia properties
can be tabulated in Table 2.3. The chaser design aims to achieve a rigid link connection with the
target. It consists of tentacles which are clamped onto the target body. An additional robotic arm
can be included for redundancy and reduce the stringent requirements of a Guidance, Navigation
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Table 2.3: List of Chaser mass properties (Virgili, 2014)

Property Value

Mass[kg] 1480

CoG [m]

XG 0.6

YG 0.6

ZG 1.5

Inertia Matrix [kgm2]


1521 0 0

0 1322 0

0 0 560


Table 2.4: Chaser sensor and actuator characteristics (ESA, 2012)

AOCS/GNC

Sensors

3 x Star tracker

2 x Sun sensor

2 x IMU

2 x GPS receiver

2 x LiQuaRD LiDAR

2 x Far field camera

2 x Near field camera

Actuators 4 x Reaction wheels

RCS 24 x 22 N thrusters (12 redundant)

Capture technique Clamping (optional Robotic arm)

and Control (GNC) system. Instead of a robotic arm, a Lidar can be included for improvement of
the AOCS. This improves the tracking capabilities of the spacecraft, thereby reducing the chances of
an attitude mismatch, and eliminating the need for a robotic arm. As proposed by the Concurrent
Design Facility study team in 2012, the chaser characteristics are tabulated in Table 2.4

Additionally, the chaser will have a bi-propellant system with four engines of 425 N (two active
and two redundant). Also, the 24 thrusters (12 active and 12 redundant) will be used for RVD opera-
tions, as well as attitude control. The connection should be such that the CoM of the two bodies are
aligned. A maximum of 6 cm (both lateral and longitudinal) misalignment can be compensated by
the thrusters.

2.6.3. Connection Model

As stated in the introduction, ESA (2012) proposed three basic models for the capture of the target
using a chaser spacecraft. All three models achieve connection with the target in different ways:
through tentacles, through a robotic arm, or a combination of both. The connection between the
target and the chaser plays a crucial role in the attitude of the system. If the connection is too flex-
ible, the two bodies might have different attitudes even though they are connected. On the other
hand, if the connection is sufficiently rigid, the connected system acts like one stack and the system
can maintain the same attitude. Since all the three models are structurally very different, and the
focus is to model the structural dynamics in the synchronisation and connected phase, the con-
nection will not be modelled in this research. It will be assumed that in the connected phase, the
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Figure 2.5: Stacked configuration of Envisat (bottom) and Chaser (top) (Credits:ESA)

Table 2.5: List of Stack Parameters (Habets, 2015)

Property Value

Mass[kg] 9308

CoG [m]

XG −0.9433

YG 0

ZG −0.0076

Inertia Matrix [kgm2]


130521 0 0

0 27282 0

0 0 134251



connection between Envisat and chaser is rigid. With this conjecture, the stacked properties can be
defined.

2.6.4. Stacked Configuration

The stacked configuration consists of the Envisat and chaser in docked configuration as shown in
Figure 2.5. The geometry of both flexible and rigid elements in this configuration is asymmetric.
The total mass of the connected system is given by sum of mass of the two systems involved. The
mass, inertia and CoM properties of the stack as computed by Habets (2015), is summarised in Table
2.5. Note that only the inertia about principal axes is considered. The configuration is assumed to
be tumbling with the same constant angular rate as that of Envisat. But due to the complexity in dy-
namics of the connection model between the Envisat and chaser, the configuration can be assumed
to be one rigid hub with one large panel (from Envisat) and a smaller panel (from chaser). The
asymmetric flexible configuration makes the dynamics of the tumbling stacked system interesting.
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Table 2.6: Mission Requirements

Req. ID Statement

R-MIS-010 The target object shall be assumed uncooperative. Note: no
inter-satellite or target-ground communications, no hardware
support from the target during rendezvous and docking can be
expected.

R-MIS-020 A target angular velocity of 3.5◦/s rotating around no single
fixed axis shall be considered as a worst case scenario.

R-MIS-030 While matching the target’s attitude in the synchronisation
phase, the chaser shall be already at the vicinity of the target.

R-MIS-040 During the mission phases, the orbital position shall be as-
sumed to be constant.

R-MIS-050 The effect of environmental perturbations shall be neglected.

2.7. Mission Requirements
Since, this research focuses on mainly controlling the rotational state of the chaser during synchro-
nisation, and the stack during detumbling, in the presence of external perturbations due to flex-
ibility, only mission requirements relevant to the study will be addressed. Some official mission
requirements are chosen from ESTEC (2014) and listed in Table 2.6. More requirements, derived
from the observations made on mission heritage are also listed in the table.

2.8. System requirements
The system requirements will include the design requirements for the mission. Only the system and
subsystem requirements relevant to the research will be discussed here.

2.8.1. Mechanical System

In Table 2.7, the requirements of mechanical system in terms of design and function will be defined
as per the system requirements of the mission.

2.8.2. Control System

The requirements of the control system, which includes the sensors, actuators and controllers will
be discussed in Table 2.8. The mission requires a robust control system to perform the whole oper-
ation autonomously, even in the presence of anomalies.
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Table 2.7: Mechanical System

Req. ID Statement

R-SYS-010 There shall be no flexibility introduced in the stacked system
due to the tentacles or robotic arm used for the capture.

R-SYS-020 There shall be 3% structural damping in the flexible ap-
pendages.

R-SYS-030 The chaser in the sychronisation phase shall represent a rigid
hub with one flexible appendage.

R-SYS-040 The system in the stacked configuration shall represent a rigid
hub with two flexible appendages.

R-SYS-050 The mechanical links (tentacles or robotic arm) used to main-
tain connection between the chaser and target should be strong
enough to withstand any torques due to flexibility.

R-SYS-060 A rigid connection shall be assumed between the chaser and
Envisat during the connected phase.

Table 2.8: Control system

Req. ID Statement

R-ACS-010 The chaser spacecraft shall be 3-axis controlled to comply with
the requirements for the rendezvous manoeuvres, forced trans-
lation, capture manoeuvres from the beginning of the ren-
dezvous phase till the controlled re-entry of the stack.

R-ACS-020 Sensors (like accelerometers) shall be present to record the ef-
fect of flexibility on the attitude

R-ACS-030 The chaser spacecraft shall provide the only means of control
for the stacked configuration during the detumbling manoeu-
vre.

R-ACS-040 The stacked configuration shall achieve a set point attitude in a
stabilised state to perform deorbiting manoeuvre.

R-ACS-050 The control limit should be chosen such that the induced mo-
tion does not result in large vibrations in the panel.

R-ACS-060 Both actuators and sensors shall be assumed to be ideal.
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3
Flight Dynamics

To control the attitude of a spacecraft, the first step is to define the attitude with respect to a refer-
ence. Depending on the application, the reference can be chosen on the body itself (e.g., to define
the rigid body motion of the satellite) or another location away from the body (e.g., to define the
motion of a robotic arm relative to the body). For the design of a robust control system, the com-
plete kinematics and dynamics of the system should be modelled correctly. To achieve this, it is
important to understand the attitude parametrisation, reference frames and their transformation
from one to the other.

To evaluate the controllability characteristics of a Flexible Multibody System (FMS) using the
guidance and control based on a rigid system, two kinds of reference frames will be established for
each model (rigid and flexible). However, only the aspects associated with the rigid body modelling
will be discussed in this chapter. The FMD will be defined in Chapter 4. First, the reference frames
relevant to the rigid body formulation will be introduced in Section 3.1. Second, the different types
of attitude representation for defining the orientation of the spacecraft itself will be discussed in
Section 3.2. Then, a trade-off will be performed and the most fitting attitude representations, which
in combination with reference frames form the co-ordinate systems of the Envisat-Chaser model in
3D space, will be selected in the same section. Sometimes the coordinates need to be transformed
from one representation to another for interpolation of dynamics. This is achieved using transfor-
mation matrices introduced in Section 3.3. Then to define the evolution of the rigid body attitude
with time, the kinematic and dynamic equations of motion will be set up in Section 3.4. Since the
flexible vibrations are unwanted and can be treated as perturbations to the rigid body system, the
guidance and control of the satellite can be modelled based on the rigid body EOM defined in this
chapter. This is, because synchronisation, detumbling and all other operations performed on the
satellite, are to control the rigid body rotational motion of the satellite. Therefore, in Section 3.5,
the guidance logic for different phases of the mission will be explained. To understand the effect
of flexible dynamics on controllability, one linear and one nonlinear controller will be chosen. The
theory of these controllers will be provided in Section 3.6

3.1. Reference Frames
Reference frames are required to define the attitude of the spacecraft in terms of angular position,
velocity and acceleration. Sometimes a combination of reference frames is needed to be able to
define the complete dynamics of the system. Based on the application alone, a number of reference
frames can be derived. One, a reference frame to define the motion of the body. Two, a reference
frame attached to the spacecraft body to define the orientation of the spacecraft in its orbit. And

21
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Figure 3.1: Envisat Geometric Frame (Virgili et al., 2014)

Figure 3.2: Chaser Geometric Frame (ESA, 2012)

three, multiple localised fixed frames on the spacecraft body to define the position of appendages
and actuators with respect to its CoM.

3.1.1. Inertial Frame

An inertial frame (FI ) is used to define the attitude of an orbiting body, which is continuously
changing with time. An inertial frame can be placed at any point with respect to which the motion
of the object remains constant, unless acted upon by an external force. Newton’s laws of motion are
only valid in the inertial frame, unless apparent forces are introduced. Even though the translational
motion will not be simulated in this thesis, the rigid body Euler EOM are derived from Newton’s laws.
Therefore, an inertial frame is required to obtain even the simplest form of these EOM. Typically for
defining the position of the spacecraft in its orbit, Earth is chosen as the reference frame. However,
for the current application, only the rotational state of the spacecraft needs to be defined so the
inertial frame can be chosen arbitrarily.
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Figure 3.3: Envisat Body Frame (Virgili, 2014)

3.1.2. Geometric Frame

The geometric reference frame is fixed the spacecraft, and can be placed anywhere on the body. It
defines the position of any point on the vehicle with respect to its origin. The frame is also useful
for efficient formulation of multibody dynamics, which for this research is imperative. It is used to
define the contribution of each element to the rotational inertia of the system using Steiner’s parallel
axis theorem.

For the Envisat model, the geometric frame is shown in Figure 3.1. While the origin can be
placed anywhere on the system, the X-axis lies along the length of the Envisat body, the Y-axis is
along the SAR antenna, and the Z-axis is perpendicular to the plane completing the right handed
system. For the chaser model, the geometric frame is adapted from ESA (2012). The X-axis is along
the direction of the thrusters, the Y-axis opposite to the solar panel, and the Z-axis lies along the
chaser body length, as shown in Figure 3.2.

3.1.3. Body Fixed Frame

The body fixed frame (FB ) is a geometric frame with its origin at the spacecraft’s CoM. It is used to
define the position and orientation of the spacecraft with respect to the inertial frame. The rotation
of the spacecraft about the body fixed X, Y and Z axis are called roll, pitch and yaw, respectively. Any
change in the rotational dynamics of the spacecraft is recorded as the relative change in body fixed
frame with respect to the inertial frame. Therefore, the body fixed frame is needed to represent the
kinematics and dynamics of the spacecraft.

In case of Envisat, the orientation of the body frame is the same as the geometric frame, but with
the origin at the CoM, as shown in Figure 3.3. Similarly, the chaser’s body frame is the same as the
geometric frame, but located at its own CoM.
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Table 3.1: Attitude representation characteristics (Singla et al., 2005)

Parameterisation Dimensions Kinematic Equations Singularities Constraints

DCM (Ci j ) 9 Ċ =
 Linear

functions of ω

C No C T C = I

Euler Angles (θi ) 3 θ̇ =
Trigonometric

functions of θi

ω θ =±π
2 or θ = 0,π No

Quaternions (qi ) 4 q̇ =
 Linear

functions of qi

ω No q T q = 1

RP (ri ) 3 ṙ =
 Non− linear

functions of ri

ω φ=±π No

MRP (σi ) 3 σ̇=
 Non− linear

functions of σi

ω φ=±2π No

3.2. Attitude State Representation

The attitude can be represented in different formulations based on the application (e.g., simulation,
interpolation or visualisation). Based on the requirements for the current system and characteristics
of different parametrisations, a fitting model will be selected. Further, it is imperative to understand
the orientation of the frames with respect to each other to visualise the dynamics, since it is often
defined using a computationally efficient, but less visual representation. The common representa-
tions are the Direction Cosine Matrix (DCM), Euler angles, quaternions, Rodrigues Parameters (RP)
and Modified Rodrigues Parameters (MRP). An analysis of their characteristics and trade-off will
help the selection of the most fitting attitude representations for the research.

3.2.1. Trade-Off and Selection
A trade-off can be done based on the characteristics of each attitude parametrisation as tabulated
in Table 3.1. At any time and for the application in hand, the use of the representation should be
free of singularities. In case of uncontrolled debris like Envisat, encountering a singularity is a po-
tential danger, because of the chaotic attitude tumbling. For simulation of dynamics and for control
applications, the representation should minimise the computation time and be numerically stable
for the chosen integration method. It should allow for the largest possible stepsize driven by local
truncation errors, and user specified tolerances. Lastly, to analyse the attitude evolution with time,
the representation must be easy to visualise. Thus, based on this analysis the advantages and dis-
advantages are tabulated in Table 3.2

Based on these criteria, DCM can be eliminated as an option for formulating the EOM, even
though it has no singularities. This is because the attitude is represented using nine terms, which
becomes computationally heavy. Additionally, it requires six constraint equations in addition to the
three independent time propagation equations to define the attitude. DCM is also known to be com-
putationally unstable while integrating non-linear dynamics and needs frequent re-normalisation
and re-orthogonalisation to prevent poor results. However, the DCM itself is an important means for
transformation between the inertial and body frame, and will be thoroughly used in this research.

Euler angles have comparatively lower computational effort compared to DCM. They are very
easy to transform from one reference frame to another. However, they are not always the best suited
model for computer simulation, because of the presence of a singularity. Euler’s rotation theorem
states that any attitude definition based on three independent parameters will contain a singularity
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Table 3.2: Analysis of parameterisation (Singla et al., 2005)

Parameterisation Advantages Disadvantages

DCM (Ci j )

• No singularities, because the matrix is in-
vertible.

• Orientations define unique direction cosine
matrices.

• Nine elements make parametrisation com-
putationally expensive.

• Requires six constraint equations in addi-
tion to the three independent ones for time
propagation.

Euler Angles (θi )

• Minimal set of parameters, computation-
ally faster.

• Easy to interpret and widely used to visu-
alise attitude.

• Reference-frame transformations are very
easy.

• Contains singularity, which could cause
problems for the attitude parametrisation
of tumbling satellites.

• To avoid singularity, book-keeping is re-
quired, so that the angles can be switched
to an alternate set representing the same at-
titude.

Quaternions (qi )

• Low computational effort.

• Kinematic equations are linear.

• No singularity.

• Frame transformations are relatively more
complex compared to Euler.

• Constraint qT q = I (orthogonality) must be
maintained in simulations.

RP (ri ) • Minimal parameterisation.
• Singularity present

• Non-linear kinematic differential equations

MRP (σi ) • Minimal parametrisation

• Non-linear kinematic differential equa-
tions.

• Singularity present, but delayed and can
be avoided using shadow parameter tech-
nique.

in one of them. This means that this particular attitude cannot be simulated. As long as the attitude
of the satellite will not get close to that attitude, the chosen set of Euler angles can be safely used,
otherwise one could switch to an alternative set, which has the singularity in another parameter.
However, this book-keeping may prove cumbersome when also a commanded attitude is involved.
Further, for a tumbling target, which can easily move towards the singularity, attitude representa-
tion through Euler angles is not preferred.

Quaternions seem to be a very attractive choice for this research with their low computational
effort and absence of singularities. With respect to Euler angles, the quaternions contain a redun-
dant dimension, which eliminates the singularity. Moreover, unlike Euler angles with trigonometric
expressions, in quaternions the equations of motion are linear, making it computationally more ef-
ficient. However, the disadvantages of quaternions are that they cannot be used for visualisation of
the attitude and also have a normalisation constraint. The normalisation requires special attention
during integration and controller design. Lastly, since they can only define an attitude ranging be-
tween ±180◦, it may complicate the application of continuous attitude tracking.

Lastly, RP and MRP, which are again three parameter representations, are less computation-
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(a) Rotation about Z-axis (b) Rotation about Y-axis (c) Rotation about X-axis

Figure 3.4: Euler angles - rotation sequence ZYX

ally expensive, but do contain singularities. Nonetheless, the singularities in RP cannot eliminated,
which is not sufficient to model the dynamics of a tumbling body. Lastly, the singularities in MRP
can be avoided using shadow sets where the sign of quaternion vectors are flipped without affect-
ing the rotation. However, implementing the shadow parameter technique requires book-keeping,
which is not very favourable for controller design.

Therefore, based on the analysis, quaternions can be selected as the most fitting model for this
study. For analytical purposes (like visualisation and interpretation of attitude) and transformation
of reference frames, Euler angles are also discussed. In the coming sections, quaternions and Euler
angles are developed in more detail. The transformation between the two attitude representations
will also be discussed, so that the attitude obtained using quaternions can be anticipated using Eu-
ler angles.

3.2.2. Euler Angles
Euler angles are a commonly used minimal dimension representation for attitude in the aerospace
industry. The orientation of the body is expressed as rotations about a single axis of a body-fixed
frame. A total of 12 unique Euler-angle combinations (six symmetric and six asymmetric) are possi-
ble, which are commonly applied in 3-2-1 (ZYX) sequence. Figure 3.4 shows the rotation of inertial
frame (FI ) to body-fixed frame (FB ). In Figure 3.4(a), it can be seen that the first rotation is about
the ZI -axis by an angle ψ (yaw), resulting in the new frame I’. Then in Figure 3.4(b), the rotation
happens about Y ′ by an angle θ (pitch), giving reference frame I”. Lastly, Figure 3.4(c) shows the
rotation about the X ′′-axis over an angle φ (roll). These rotations can be numerically represented
as: 

X ′

Y ′

Z ′

=C3(ψ)


X I

YI

ZI

=


cosψ sinψ 0

−sinψ cosψ 0

0 0 1




X I

YI

ZI

 (3.1)


X ′′

Y ′′

Z ′′

=C2(θ)


X ′

Y ′

Z ′

=


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ




X ′

Y ′

Z ′

 (3.2)


XB

YB

ZB

=C1(φ)


X ′′

Y ′′

Z ′′

=


1 0 0

0 cosφ sinφ

0 −sinφ cosφ




X ′′

Y ′′

Z ′′

 (3.3)
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Figure 3.5: Rotation about Euler eigenaxis

Equations (3.1) through (3.3) can be combined to get:
XB

YB

ZB

=C1(φ)C2(θ)C3(ψ)


X I

YI

ZI

=C B
I


X I

YI

ZI

 (3.4)

where C B
I is an orthonormal matrix such that (C B

I )−1 = (C B
I )T . It is called a rotation matrix to obtain

body frame B from inertial frame I, and can be expanded as:

C B
I =C1(φ)C2(θ)C3(ψ) =


cθcψ cθsψ −sθ

sφsθcψ−cφsψ sφsθcψ+cφcψ sφcθ

cφsθcψ+ sφsψ cφsθsψ− sφcψ cφcθ

 (3.5)

where c ≡ cos and s ≡ sin. Therefore, Euler angles are used in this research, for transformation of
reference frames and for visualisation of attitude.

3.2.3. Quaternions
Another method used for representing the orientation can be achieved by introducing a unit vector
ê along the Euler’s eigenaxis. The orientation of both FB and FI can be defined with respect to this
axis, as shown in Figure 3.5. Thus, the unit vector can be written as (Wie, 1998):

ê = e1x̂I +e2 ŷI +e3 ẑI (3.6)

or
ê = e1x̂B +e2 ŷB +e3 ẑB (3.7)

where e1,e2 and e3 represent the direction cosines of the Euler axis relative to both FB and FI ,
and maintain a relation such that e1

2 + e2
2 + e3

2 = 1. The four quaternions, also known as Euler
parameters are given by:

q1 = e1 sin(ϕ/2) (3.8)

q2 = e2 sin(ϕ/2) (3.9)

q3 = e3 sin(ϕ/2) (3.10)

q4 = cos(ϕ/2) (3.11)

whereϕ denotes the rotation about the Euler axis. For simplicity, in this section the Euler vector will
be denoted by e and vector q = (q1, q2, q3) such that,

q = e sin(ϕ/2) (3.12)
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It is important to note that these quaternions are not independent of each other because e1
2+e2

2+
e3

2 = 1. This implies,

q T q +q2
4 = q2

1 +q2
2 +q2

3 +q2
4 = 1 (3.13)

Also,

q ⊗q−1 = q−1 ⊗q =
[

0 0 0 1
]T

(3.14)

where ⊗ indicates the quaternion multiplication. The multiplication between two quaternion vec-
tors p = (p1, p2, p3, p4) and q = (q1, q2, q3, q4) is given by:


r1

r2

r3

r4

=


p4 p3 −p2 −p1

−p3 p4 p1 −p2

p2 −p1 p4 −p3

p1 p2 p3 p4




q1

q2

q3

q4

 (3.15)

or r = p ⊗q . Note that the quaternion multiplication is not commutative. The transformation from
FA to FB can be done using a rotation matrix, like in the case of Euler angles. The rotation matrix
can be written as (Wie, 1998):

C B
A =C (q , q4) =


1−2(q2

2 +q2
3 ) 2(q1q2 +q3q4) 2(q1q3 −q2q4)

2(q1q2 −q3q4) 1−2(q2
1 +q2

3 ) 2(q2q3 +q1q4)

2(q3q1 +q2q4) 2(q2q3 −q1q4) 1−2(q2
1 +q2

2 )

 (3.16)

Due to the absence of trigonometric functions, the quaternions provide a computationally fast and
robust representation without singularities. However, just like Euler angles the quaternions are not
unique. The quaternion q represents the same orientation as−q . Moreover, quaternions are not the
best fit for visualisation purposes and are relatively harder to interpret than Euler angles. Therefore,
the quaternions will only be used in the EOM to simulate the kinematics of the system.

3.3. Coordinate Transformations
This section describes the transformation between Euler angles and quaternions.

3.3.1. Euler Angles to Quaternions

This transformation is used when a commanded attitude (or setpoint attitude) given by Euler angles
is to be converted to quaternions. According to Wie (1998), this transformation can be achieved by
assuming each rotation axis as an Euler axis. Then, the consecutive rotations can be represented
using quaternions as:

q = q ′′′⊗ (q ′′⊗q ′) (3.17)

where q ′′′, q ′′ and q ′ represent rotations ψ (yaw), θ (pitch) and φ (roll), respectively. The equation
can be further expanded in matrix form as follows:


q1

q2

q3

q4

=


q ′′′

4 q ′′′
3 −q ′′′

2 q ′′′
1

−q ′′′
3 q ′′′

4 q ′′′
1 q ′′′

2

q ′′′
2 −q ′′′

1 q ′′′
4 q ′′′

3

−q ′′′
1 −q ′′′

2 −q ′′′
3 q ′′′

4




q ′′

4 q ′′
3 −q ′′

2 q ′′
1

−q ′′
3 q ′′

4 q ′′
1 q ′′

2

q ′′
2 −q ′′

1 q ′′
4 q ′′

3

−q ′′
1 −q ′′

2 −q ′′
3 q ′′

4




q ′

1

q ′
2

q ′
3

q ′
4

 (3.18)
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Using the definition of quaternion from Equations (3.11) and (3.12), the matrix of individual quater-
nions can be written as:

q ′ =


0

0

sinψ/2

cosψ/2

 , q ′′ =


0

sinθ/2

0

cosθ/2

 q ′′ =


sinφ/2

0

0

cosφ/2

 (3.19)

Substituting this back into Equation (3.18), the equation can be simplified to:
q1

q2

q3

q4

=


sin φ

2 cos θ2 cos ψ2 −cos φ2 sin θ
2 sin ψ

2

cos φ2 sin θ
2 cos ψ2 + sin φ

2 cos θ2 sin ψ
2

cos φ2 cos θ2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ2

cos φ2 cos θ2 cos ψ2 − sin φ
2 sin θ

2 sin ψ
2

 (3.20)

3.3.2. Quaternions to Euler Angles

According to Shuster (1993), the quaternions can be converted into Euler angles by comparison of
their DCM, which represent the same rotation sequence. Considering the 3-2-1 rotation sequence,
gives: 

φ

θ

ψ

=


atan2(2(q2q3 +q1q4)), q4

2 +q3
2 −q1

2 −q2
2

asin(2(q2q4 +q1q3))

atan2(2(q1q2 +q3q4)), q4
2 +q1

2 −q2
2 −q3

2

 (3.21)

Here, atan2 is used to determine the right quadrants of the angles φ and ψ. Furthermore, using the
constraints on Euler angles to avoid singularity given by,

−π≤φ<π, −π/2 ≤ θ ≤π/2, −π≤ψ<π (3.22)

and the property of quaternions as stated in Equation (3.13),

q2
1 +q2

2 +q2
3 +q2

4 = 1 (3.23)

q2q4 −q1q3 = 0.5 (3.24)

which gives:
(q1 +q3)2 + (q2 −q4)2 = 0 (3.25)

From this equation, it can be concluded that the equation holds when q1 =−q3 and q2 = q4. Using
these conditions in Equation (3.21), it is found that φ and ψ are ambiguously defined at these val-
ues. That means, Euler angles for the corresponding values cannot be found due to the presence of
singularity in Euler angles at these points. This transformation is used when the orientation is dif-
ficult to visualise using the quaternions. However, for computation purposes the Euler angles will
not be used at all.

3.4. Kinematics and Dynamics of rotational motion
The attitude of a spacecraft can be completely defined using two sets of equations - kinematic equa-
tions and dynamic equations. They can be defined as:

• Kinematic Equations: Kinematics is the study of motion of a body irrespective of the forces
and torques acting on it. The kinematic equation defines the time evolution of position and/or
attitude. Here, it relates time derivatives of orientation angles to (angular) velocity.
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• Dynamic Equations: Dynamics is the study of motion of a body in response to the forces and
torques acting on it. In this thesis, the dynamic equations define the time evolution of angular
velocity vector due to torque.

Since the kinematics and dynamics of a rigid and flexible spacecraft are quite different, it is impor-
tant to understand both models for this research. This section will describe the complete EOM of a
rigid body, adapted from Wie (1998).

3.4.1. Kinematic Equations
For a rigid body, the position of one point with respect to another point on the body remains con-
stant throughout its attitude evolution. Therefore, in this section the kinematic differential equa-
tions will be developed using time-dependent relations of two reference frames. The equations will
be derived in terms of quaternions.

Consider the angular velocity of FB with respect to FI , expressed by vector ωB ,I
B . Further, the

direction cosine matrix to transform from FI to FB is denoted by C =C B
I . The transformation can

be written as: 
b1

b2

b3

=C


i1

i2

i3

 (3.26)

or 
i1

i2

i3

=C T


b1

b2

b3

 (3.27)

Taking the time derivative of this equation results in:
0

0

0

= Ċ
T


b1

b2

b3

+C T


ḃ1

ḃ2

ḃ3

= Ċ
T


b1

b2

b3

+C T


ω×b1

ω×b2

ω×b3

 (3.28)

The last term is the derivative of basis vector in inertial frame with components solved along the
body axis (Wie, 1998). The derivative of the DCM is defined as:

Ċ =


Ċ11 Ċ12 Ċ13

Ċ21 Ċ22 Ċ23

Ċ31 Ċ32 Ċ33

 (3.29)

Therefore, the kinematic differential equations in terms of direction cosines can be written as:

Ċ −C TΩ= 0, or Ω=−ĊC T (3.30)

On simplification,Ω can be written as:

Ω=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3.31)

Ω represents a skew-symmetric matrix, typically also represented by a tilde ("∼") symbol on top of
the variable. Some properties of the skew-symmetric matrix are stated in Appendix A. Substituting
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quaternion elements into the DCM (see Equation (3.16)) such that q = [q1 q2 q3 q4]T , gives:

ω1 = 2(q̇1q4 + q̇2q3 − q̇3q2 − q̇4q1)

ω2 = 2(q̇2q4 + q̇3q1 − q̇1q3 − q̇4q2)

ω3 = 2(q̇3q4 + q̇1q2 − q̇2q1 − q̇4q3)

(3.32)

Differentiating the quaternion unit constraint as shown in Equation (3.13) gives:

0 = 2(q̇1q1 + q̇2q2 − q̇3q3 − q̇4q4) (3.33)

Rearranging the above equations and re-writing in matrix form gives:
q̇1

q̇2

q̇3

q̇4

= 1

2


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3



ω1

ω2

ω3

 (3.34)

Or,

q̇ = 1

2
Qω, Q =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (3.35)

Equation (3.35) shows the change in orientation of two reference frames with time, rotating with an
angular velocity (ω) in terms of quaternion co-ordinates.

3.4.2. Dynamic Equations
The dynamics of a body acted upon by forces can be formulated using several methods. Most
commonly used methods are Newtonian, Lagrangian and Hamiltonian mechanics. According to
Likins (1974), the Newton-Euler method is a better fit for simple geometries and rigid bodies. How-
ever, Lagrange’s and Hamilton’s principle are best suited for deriving more complex and flexible
multi-body systems.

Assuming a rigid body with constant mass and angular momentum about its CoM,H , is given
by (Wie, 1998):

H = Iω (3.36)

whereω is the angular velocity and I is the inertia tensor given by,

I =


Ixx −Ix y −Ixz

−Ix y Iy y −Iy z

−Ixz −Iy z Izz

 (3.37)

Further, the external moment around the CoM would result in a rate of change of angular mo-
mentum:

M =
(

dH

dt

)
I
=

(
dH

dt

)
B
+ωB ,I ×H (3.38)

The time derivative of angular momentum vector can be further evaluated as:(
dH

dt

)
B
=ωB ,I

(
dI

dt

)
B
+ I

(
dωB ,I

dt

)
B

(3.39)
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For a rigid body,
(

dI
dt

)
B
= 0. Therefore, using Equations (3.38) and (3.39), Euler’s rotational EOM can

be written as:

M = I ω̇+ω× Iω (3.40)

Re-arranging to get the expression for angular acceleration:

ω̇= I−1(M −ω× Iω) (3.41)

The ω× Iω term represents the coupling between the three axes, also known as gyroscopic cou-
pling, and M = Mg +Md +Mc constitutes all external moments including gravity (Mg ), other envi-
ronmental disturbances ( Md ), and the control moment (Mc ). However, as stated before, the effect
of environmental torques is not considered, so Md = 0. Therefore, M only consists of control mo-
ments acting on the system.

The equations of motion were derived assuming that the body is rigid. But in some cases, the
body may not have a constant mass throughout and cannot be assumed to be rigid by definition.
For example, in case the propellant of the spacecraft is burnt or leaked. In such a scenario, two ad-
ditional external forces come into picture, namely, the Coriolis moment and relative moment due
to variable mass. However, in case of Envisat, all the fuel in the tanks is assumed to be completely
exhausted and there are no possible modes for a change in mass. Though there will be variation
in mass of the chaser during thrusting and de-orbiting, the change in mass is very small, and the
associated torques are negligible compared to the control torques and flexibility.

The kinematics and dynamics for a flexible spacecraft strongly depend on the type of formula-
tion. Additionally, the distance between any two points on a FMS can change with its motion (due
to flexibility), which in turn affects the EOM. It also depends on the configuration of the spacecraft,
the internal forces and the constraints at the contact points between different elements of the multi-
body system. The flexible body requires special attention and therefore, will be discussed in detail
in Chapter 4.

3.5. Guidance
As stated before, the goal of this thesis is to analyse the effect of flexibility on the controllability char-
acteristics of a chaser spacecraft performing ADR operations on a large passive debris with flexible
appendages. The guidance system is a block in the GNC system, which generates the commanded
state to be achieved by the controller. To analyse the effect of disregarding the flexible body dynam-
ics in the control system design, the guidance is based on the dynamics of a rigid body. By doing this,
perturbations due to flexibility are treated as unpredicted external disturbances. This also proves to
be advantageous, because flexible bodies react differently, to different kinds of forces in the space
environment. For instance, the response or induced vibration due to a debris impact (an impulsive
force) will be different from vibrations induced due to slew manoeuvres. It is also assumed that the
chaser spacecraft is already in the vicinity of Envisat, and the orbital position is frozen. Since the
two phases of the mission being examined are essentially different, the guidance for each phase will
be discussed separately.

3.5.1. Synchronisation phase
In the synchronisation phase, the chaser needs to match the attitude of the target debris, which
is rotating with an angular velocity of 3.5◦/s about all axes (worst case scenario). This means that
the guidance must be based on the target attitude, and the target mass moment of inertia, It ar (as
stated in Table 2.1) must be used for the EOM. So, the initial target state vector (x0) used for the
guidance system with the angular velocity and quaternions (in the same order) can be written as:

x0 = (3.5, 3.5, 3.5, 0, 0, 0, 1)T (3.42)
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It must be noted that the target attitude changes continuously with time, as it tumbles about all
axes. Therefore, the chaser, which is assumed to start with zero angular velocity must be able to ac-
celerate to the target angular velocity, achieve and maintain a stable predefined attitude to perform
the docking operation using its tentacles. Because of the large error in angular rates, first this error
must be reduced (below certain threshold through control) and after that the commanded attitude
can be achieved and stabilised.

3.5.2. Connected phase
In the connected phase, the chaser is assumed to have successfully docked with the target. At this
point, detumbling of the stacked configuration can be performed. The stack is assumed to have
the same state as that of the tumbling target during synchronisation. In other words, there was no
change in angular velocity due to the docking operation. Therefore, the guidance system will now
be based on the state expected after de-tumbling. However, for this phase, a number of operations
associated with deorbiting will be examined. These include:

• Detumbling: Detumbling is associated with the control problem of reducing the angular ve-
locity from the current value (refer Table 2.2) to zero. Therefore, the guidance will command
just zero angular rates (for rate control only).

• Detumbling + reorientation: This operation involves a combined control of the angular rates
as well as the attitude, which results in detumbling and reorientation to a specified attitude
for the final deorbitation manoeuvre.

• Reorientation: In this operation, the goal is to achieve a specified attitude to execute the deor-
bitation manoeuvre. It is assumed here that detumbling has already been performed and the
initial angular rates are zero. So, the guidance command consists of both zero angular rates
and a specified attitude, because angular velocities must remain zero even after the reorien-
tation attitude is achieved.

3.6. Attitude Control
Attitude control of satellites with large, flexible appendages can become complicated in the pres-
ence of oscillations induced due to (sudden) attitude changes. The stacked configuration of a chaser
spacecraft with a large, passive target aggravates the controller even more, considering the asymme-
try in both mass properties and geometry. The classical PD (Proportional and Derivative) controller,
which is still widely used in spacecraft attitude control, may not be robust enough to handle the
perturbations due to flexibility caused by abrupt commanded manoeuvres. Further, if the control
input is not smooth, it may result in adding to the vibration of the solar panels. Robust control algo-
rithms that can counteract the uncertain nonlinear dynamics provide a possible way to guarantee
the stability of the satellite. According to Liu and Tavakoli (2011), by appropriately inverting the dy-
namic model of the plant to be controlled, a control law can be constructed such that the nonlinear
part of the dynamics is linearised, the interactions between the regulated variables are decoupled,
and time characteristics of the decay of the state errors can be analysed individually. This allows
the controller with non-linear perturbations better. One such control system that is based on the
dynamics of the system is, Nonlinear Dynamic Inversion (NDI). The NDI controller enables mul-
tivariable control and avoids gain-scheduling by directly incorporating the nonlinear dynamics in
the control law. However, NDI is sensitive to model mismatches and measurement errors, which
can result in instability. Therefore, a variation of NDI called Incremental Nonlinear Dynamic In-
version (INDI) was developed to retain the advantages and to reduce vehicle model dependency of
NDI (Sieberling et al., 2010). This controller with its increased robustness may become a good fit for
attitude control in the presence of elastic disturbances. It must be noted that the primary goal is to
study the effect of flexibility on controller performance, without trying to optimise the controller.
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Figure 3.6: Schematic of a typical NDI controller

3.6.1. PD Controller
A linear PD controller is still among the most widely used controllers for attitude control. These con-
trollers are mostly used for problems, where the steady-state error is not zero. The control moment
is defined using:

Mc =−(Kp e +Kd ė) (3.43)

where Kp and Kd are proportional and derivative gains, respectively. The error in state and state
derivative are defined by e and ė, respectively. For quaternions, the error state is denoted by qe

instead of e, and q̇e instead of ė. Quaternions being a four parameter representation, cannot be
simply subtracted to get the error. The error, qe is computed using the quaternion multiplication as
shown in Equation (3.15), and its derivative is simply calculated using differentiation. This is given
by:

qe =Qc q (3.44)

q̇e = Q̇c q +Qc q̇ (3.45)

where

Qc =


q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c

 (3.46)

and q is the quaternion vector and Qc is a square matrix of commanded quaternions.

3.6.2. Incremental Nonlinear Dynamic Inversion
As stated before, the INDI controller is an enhanced modification of the NDI controller. In a space-
craft attitude control problem, where the dynamics are nonlinear and often changing from one op-
eration to another, for a linear controller often a single set of gains is insufficient to ensure efficient
control. In such a case, gain scheduling needs to be done to adapt the controller according to the
operations. However, by using a nonlinear feedback controller like NDI (or INDI), the need for gain
scheduling can be eliminated and closed-loop stability is ensured.

An NDI controller typically consists of two loops. The outer loop linearises the system introduc-
ing a virtual control, v , which is used in the inner loop as shown in Figure 3.6. The control moment
is then obtained using:

Mc = M−1(x)(v − l (x)) (3.47)
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where M(x) and l (x) depend on the state variables (x) and are given by:

M(x) = ∂

∂x
(Nω+Γ)

03×3

I−1

 (3.48)

l (x) = ∂

∂x
(Nω+Γ)

 Nω+Γ
I−1(ω× Iω+Mg +Md )

 (3.49)

Here, the notations used are the same as those used to derive the rigid body EOM. The PD controller
is used as the outer loop linear controller, which gives the virtual control by using Equation (3.43).
The terms N , Γ and the associated Jacobian depend on the state and the kinematic equations of the
system. Using Equation (3.34), N and Γ, which are basically the coefficient matrices in the EOM,
can be written as:

N = 1

2
Q , Q =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (3.50)

Γ=
(
0 0 0 0

)T
(3.51)

After evaluating the Jacobian, it is substituted into Equations (3.48) and (3.49) to find M(x) and l (x),
and the final control moment can be computed.

In cases where the dynamic models are very complex, dynamic inversion becomes difficult and
may lead to incorrect results. Therefore, an alternative approach of INDI alters the structure of NDI
in such a way that only a small part of the model is used and the model mismatch is minimised
(Sieberling et al., 2010). The change in dynamics (or angular velocity) per unit time is approximated
by a first-order Taylor series. With the notation “0" indicating the nominal case, the dynamics can
be approximated by:

ω̇≈ ω̇0 + ∂ω̇

∂ω

∣∣∣
ω0

(ω−ω0)+ ∂ω̇

∂u

∣∣∣
u0

(u −u0) (3.52)

The first term of the equation is the angular acceleration that can be obtained from onboard sensors
in a real life implementation. For high sampling rates, when the difference between new and cur-
rent angular acceleration becomes small, the equation can be further reduced. The partial deriva-
tive with respect to the state, i.e., the second term, can then be neglected. Therefore, the equation
becomes

ω̇≈ ω̇0 + ∂ω̇

∂u
(u −u0) (3.53)

The second partial derivative can be derived from the dynamic equation of motion, Equation (3.41),
which is simply found to be ∂ω̇

∂u = I−1. Using the notation ∆Mc = u −u0 to represent the difference
between the control moments of the current and the previous timesteps, and re-arranging Equation
(3.53), we get:

∆Mc = I (v − ω̇0) (3.54)

The virtual control term (v ) is computed using a PD controller with dynamic inversion, which is ap-
plied in two loops. This is to obtain a Time Scale Separation (TSS) in the inversion of the dynamics,
which allows quicker control. The outer loop is defined by:

ẋ2 = Nu2 (3.55)

where x2 = θ, u2 =ω and N is a matrix used for dynamic inversion of the plant given by Equation
(3.50). However, it was found that N matrix, that represents the rigid body kinematics in the INDI
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Figure 3.7: Synchronisation phase

controller degenerates once the attitude exceeds ±180◦ of rotation. While it is possible to correct the
problem by using the MRP representation, an easier alternative was used to solve the problem. By
observing the angular rates of a body about an axis, it is possible to derive the evolution of attitude
about the same axis by simple integration. This virtually represents the Euler angles without the
singularity, and will be referred to as “pseudo Euler angles" for the rest of the research. From Figure
3.7, it can be seen that for Euler angles, discrete jumps are observed in the target attitude during the
synchronisation phase. Pseudo Euler angles being infinitesimal increments in angles, show a con-
tinuous representation of attitude. The kinematics of the rigid body system can be simply defined
using the angular velocity. This gives:

Θ̇=


Φ̇

Θ̇

Ψ̇

=


ω1

ω2

ω3

 (3.56)

N is defined as the coefficient matrix that establishes the relation between the rate of change of
attitude, Θ̇, with the angular rates of the system, ω. From Equation (3.56), it can be concluded that
N becomes an identity matrix for this formulation.

Going back to the outer loop, the virtual control is defined by the error in attitude (as compared
to commanded) and the proportional gain.

v2 =−Kp e (3.57)

Here, for pseudo Euler angles, e can be mathematically represented as:

e =Θc −Θ (3.58)

where Θc are the commanded pseudo Euler angles and Θ are the current pseudo Euler angles. It
must be stated that:

• Pseudo Euler angles cannot be used for complete attitude representation with respect to a
reference frame in the classical sense, because they are derived from the angular rates and
simply represent an incremental change in attitude with time. However, it should be noted
that they are only used for the controller design, which is mainly aimed at angular rate control
in both synchronisation (rate change from 0◦/s to 3.5◦/s) and detumbling (rate change from
3.5◦/s to 0◦/s). The attitude is still represented using quaternions. The kinematics are fully
representative by using pseudo Euler angles and serve the objective of this research.
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• For the re-orientation manoeuvre (see Section 3.5), which is performed for the connected
phase, the initial rate is assumed to be zero. Therefore, any angle change specified using Eu-
ler angles will require the same amount of rotation as that when using pseudo Euler angles.
Therefore, the choice to use these angles still holds.

The virtual control is used by the outer loop to get the first control vector u2,

u2 = N−1(v2) (3.59)

This control vector, u2, is then fed as a reference to compute the virtual control again into the inner
loop, given by:

v =−Kd (x1 −u2) (3.60)

This can be substituted into Equation (3.54) to obtain the change in control effort (∆Mc ). The final
control torque is given by:

Mc = Mc ,0 +∆Mc = Mc ,0 + I (v − ω̇0) (3.61)

Having discussed the theory for the two controllers used in this research, the FMD used to define
the plant will be discussed in the coming chapter. Since the goal is to analyse the effect of flexible
dynamics originating from the plant, it will be assumed that both sensors and actuators measur-
ing rigid body motion are ideal. When optimising the controller design, more realistic models for
sensors and actuators should be used to assess the controller performance. However, this is cur-
rently beyond the scope of this thesis. Before proceeding to the next chapter, a benchmark for the
controller performance will be established in the next subsection.

3.6.3. Benchmark Simulations
The controllers can be tested for the rigid body model to establish their performance against a more
nonlinear flexible model. Additionally, it will be interesting to see the performance of PD and INDI
controllers for a rigid body model without any perturbations, as compared to the flexible model with
vibrations. Therefore, in this section some results from rigid body simulations will be presented and
analysed. All the rigid body simulations were performed with a controller frequency of 25 Hz and a
standard RK4 (Runge Kutta 4th order) integrator. The gains used for the synchronisation and con-
nected phase for all controllers are stated in Table 3.3. In the table, Kp represents the proportional
gains and Kd the derivative gains.

From Table 3.3, on analysing the gains, it can be observed that in the synchronisation phase, the
same gain for all three axes could be used for both PD and INDI. This is because the chaser satellite
does not have a large variation in the moment of inertia, and does not have large differences in the
dynamics about the three axes. Contrarily, the dynamics in the connected phase, is very different
about the three axes, due to large disparity in inertia about these axes. This is reflected on the PD
gains, which had to be tuned separately for the three axes. The INDI does not suffer from this prob-
lem, because it is based on the inverse dynamics and already accounts for the change in dynamics
in the controller.

Figure 3.8 shows the performance of both PD and INDI controller for the synchronisation

Table 3.3: Controller Gains

Synchronisation Phase Connected Phase

Controller Kp Kd Kp Kd

Rate -[500,500,500] - -[5000,1500,4500] -

PD [250,250,250] [500,500,500] [30,15,52.5] [5000,1500,6000]

INDI -[1.44,1.44,1.44] [0.935,0.935,0.935] -[0.0075,0.0075,0.0075] [0.1125,0.1125,0.1125]
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(a) PD angular rates
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(b) INDI angular rates
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(c) PD pseudo Euler angles
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(d) INDI pseudo Euler angles
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(e) PD control effort
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(f) INDI control effort

Figure 3.8: Rigid body control - Synchronisation phase

phase. Since the guidance command (Envisat) is constantly changing with time, first rate control
(simple proportional control) is performed until the angular rate error reaches a norm of 0.5 ◦/s and
then, the PD and INDI controllers are used to achieve full state stabilisation. For the synchronisation
phase, both controllers achieve steady state with comparable performance. The INDI seems to have
a faster settling time, but also suffers from a larger overshoot, when the switch from the rate control
to full control is performed. On comparing the convergence of angular rates from Figure 3.8(a) and
Figure 3.8(b), it can be observed that both controllers suffer from small steady state errors. From
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Figure 3.9: Rigid body control - Detumbling phase

analysis, it was found that the performance of both the controllers can be slightly improved by in-
creasing the sampling frequency of the controller. However, the INDI controller still suffered from
a slight steady state error, which could be due to the large overshoot when switching from the rate
to full control. This can be confirmed by observation of controller performance in the connected
phase.

Figure 3.9 shows a simple detumbling control performed using a rate controller. Here, the con-
troller did not make an effort to stabilise the attitude. However, from Figure 3.9(a) it can be seen
that the basic proportional controller successfully detumbles the satellite in its stacked configura-
tion. Also, from Figure 3.9(b), it can be seen that the attitude has also been stabilised.

Figure 3.10 shows the performance of PD and INDI controllers for the detumbling as well as
reorientation phase. Again both controllers successfully stabilise the system and give comparable
performances in terms of settling time. However, the response of INDI is slightly smoother com-
pared to PD controller, with the penalty of more saturated controls. Another observation that can
be made here, is that there is no steady state error in INDI controller as it was seen in the synchro-
nisation phase. This confirms the fact that the error was induced due to the switch between the
controllers.

Lastly, Figure 3.11 shows the performance of the two controllers to achieve a prescribed atti-
tude starting from zero angular velocity. Again, both controllers show comparable performance in
terms of convergence and settling time. A more dynamic system would help analyse the perfor-
mance of the two controllers better. Another observation that can be made about all phases except
setpoint control (or reorientation), is that the time history of the pseudo Euler angles show that
large excursions take place about all axes, which cannot be represented using Euler angles due to
the singularity. This confirms the choice of quaternions for attitude representation in the EOM. As
the angular displacement is beyond the range of ±180◦, it also shows that quaternions could not be
used in the INDI controller.

With these results as a benchmark, now the flexible model can be added to the system, and the
analysis will be performed again using the same gains as for the benchmark simulations.
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(a) PD angular rates
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(b) INDI angular rates
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(c) PD pseudo Euler angles
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(d) INDI pseudo Euler angles
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(e) PD control effort
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Figure 3.10: Rigid body control - Detumbling + Reorientation phase
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(b) INDI angular rates
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(c) PD pseudo Euler angles
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(d) INDI pseudo Euler angles
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(e) PD control effort
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(f) INDI control effort

Figure 3.11: Rigid body control - Set point control



42 3. Flight Dynamics



4
Flexible Multibody Dynamics

In the past, spacecraft were small and modelled as rigid bodies for its (system) attitude control de-
sign. However, many satellites today have large flexible appendages to meet the high power require-
ments of current day missions. For a quick judgement of motion in a multibody system, often it is
acceptable that the elements of the system are considered rigid. However, when high accuracy is
required (like to maintain precision pointing of a satellite), the flexibility in the structural elements
cannot be ignored. To minimise computation time and capture the dynamics of vibration due to
flexible elements, an accurate yet computationally inexpensive formulation is required. The FMD
deals with the study of machines and mechanisms, especially when multiple deformable bodies are
involved. This requires the mindful choice of a number of elements, including reference frames,
coordinate systems, internal forces associated with flexibility, constraints and so on.

In this chapter, first the different formulations for reference frames for a flexible multibody sys-
tem will be studied and the most fitting model will be selected in Section 4.1. This will be followed
by the derivation of the generalised EOM and possible discretisation of flexible elements to describe
the vibrations in Section 4.2. Then, in Section 4.3, the force, modal reduction techniques (to opti-
mise computation time) and constraint modelling for the selected formulation will be investigated.
Lastly, the kinematic and dynamic EOM will be derived for the current multibody system in Section
4.4.

4.1. Reference Frame Formulation For Flexible Multibody Systems
To define the complete kinematics and dynamics of a FMS, a number of reference frame formu-
lations can be used. To reduce the simulation time and to capture the vibrational motion of the
flexible appendages, the effect of deformation can be approximated by superimposing small linear
vibrations on the rigid body motion, also called mean rigid body motion. So, the formulation should
be such that the resulting EOM can define the mean rigid body motion of the system, when exposed
to large rotations. Three essentially different, but commonly used formulations in FMD are: the in-
ertial frame formulation, the co-rotational frame formulation, and the floating frame formulation.
In this section, first the three formulations will be briefly defined. Then, a detailed comparison will
be made based on characteristics relevant to the research.

4.1.1. Inertial Frame Formulation
The inertial frame formulation directly defines the motion of the FMS with respect to the central
body, which is Earth (in this case). In other words, the inertial frame serves as a global reference
for the system. According to Wasfy and Noor (2003), it is derived from the nonlinear Finite Element
Method (FEM) and continuum mechanics, which will be discussed in Section 4.2.2. Each body is

43
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Figure 4.1: Multibody representation in an inertial reference frame

Figure 4.2: Multibody representation in a co-rotational reference frame

then discretised forming a finite mesh. The DOF of such a system are defined by absolute position
and orientation of the local coordinate frames at the nodes of the discretised body. This can be visu-
alised using Figure 4.1, in which the complete system is divided into nodes and defined with respect
to the global inertial reference frame (marked in red). Some important characteristics of this for-
mulation relevant to this research, like modelling of deformation, angular velocities, computation
time, accuracy, and so on, are listed in Table 4.1 with respect to the current application. These will
be discussed in more detail in Section 4.1.4

It is often desirable to establish additional reference formulations to be able to analyse individ-
ual contributions of flexible elements to the mean rigid motion of the body. Two such formulations
are: co-rotational frame and floating frame.
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Figure 4.3: Multibody representation in a floating reference frame

4.1.2. Co-rotational Frame Formulation
The Co-rotational Frame Formulation can be defined as a nonlinear extension of the linear FEM for-
mulation. The motion of the body is defined using rigid body motion and flexible modes at their nat-
ural frequency. This formulation is derived from the field of structural dynamics, wherein the (large)
rigid body motion is defined with respect to the inertial frame, and small elastic deformations in the
elements are superimposed using linear FEM mass and stiffness matrices. The formulation still
captures the nonlinear elastic deformation within an element, because each discretised element
has its own reference frame, as visualised in Figure 4.2, with the co-rotational frames marked in red.
This can be simply transformed into the global inertial frame (nonlinear formulation) using rotation
matrices. The individual reference frame at the nodal points or any other point (defining the mean
rigid body motion) of the discretised element is a type of reference frame called co-rotational frame.
As for the inertial frame formulation, some key characteristics of this formulation are discussed in
Table 4.1.

4.1.3. Floating Frame Formulation
The Floating Frame Formulation is an extension of rigid multibody dynamics to a flexible multibody
system. In this method, small elastic deformations are superimposed on large rigid body motion to
represent the motion of floating frame, which moves along with the body. The elastic deformations
are obtained from mode shapes and eigenfrequencies, which are either computed numerically or
experimentally for each flexible link. From Figure 4.3, it can be observed that the floating refer-
ence frame is present for every element at the interface points of the system. The interface points
are the point of connection between two elements or the end nodes of the multibody system. The
floating frames can be placed anywhere on the multibody system, but placing them at the interface
points, where rigid and/or flexible bodies connect, allows easy application of constraints and facil-
itates modelling of rigid-flexible or flexible-flexible coupling (Wasfy and Noor, 2003). However, the
interface coordinates do not contribute to the DOF of the system and require additional constraint
equations in the EOM, which are nonlinear and add to the total number of unknowns to be solved
for. This disadvantage can be eliminated using the new formulation of the floating frame in terms of
absolute interface coordinates given by Ellenbroek and Schilder (2017). In this method, the floating
frame is defined in terms of the local coordinates at the interface points (instead of the typical defi-
nition with respect to inertial). The local coordinates are then defined directly in the inertial frame.
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Some other important characteristics of the floating frame are summarised in Table 4.1.

4.1.4. Comparison of the approaches
Table 4.1 summarises the properties of the three approaches for FMD modelling. In this section,
some of the desirable properties required for the current application will be discussed and then,
Table 4.1 will be used to find the most fitting approach/approaches based on their advantages and
disadvantages. Some desirable properties are stated below:

• Deformation: The deformation of all flexible elements should be represented in the formula-
tion. The approach should be able to record the deformation either in the local frame or in the
global frame. From Table 4.1, all the approaches are capable of denoting the deformation in
flexible components. However, for this research the computations will be performed within
the frame of linear elastic theory and the elastic deformation in the flexible appendages will
be considered small. The floating frame is better suited for this application as compared to
the other two formulations, which model larger deflections better.

• Angular velocity: Since Envisat is tumbling with a relatively large, uncontrolled angular veloc-
ity of 3.5°/s, the reference frame formulation should be able to model large angular velocities.
Again, all three approaches can be used to model large angular velocities.

• Mixed rigid and flexible body configuration: The system comprises of multiple flexible ap-
pendages as well as rigid bodies, when in stacked configuration. The formulation should be
able to capture both rigid and flexible body motion. It should also be easy to model the rigid
bodies alone to analyse the effect of flexibility on the system. From the table, it can be con-
cluded that the floating reference frame is very adaptable with modelling both rigid and flex-
ible configurations, while many co-rotational and the inertial frame formulations have some
restrictions for a completely rigid body.

• Inertial forces: When a body is defined in a non-inertial frame, the effect of apparent forces,
like centrifugal and Coriolis forces, need to be taken into account. Additionally, if the flex-
ible motion is defined in the local frame, coupling terms should be introduced to link the
rigid body motion with the flexible modes (refer to Section 4.3.2 for details). These forces are
mainly introduced in the floating frame, because the frame also translates with respect to in-
ertial and the flexible modes are defined with respect to the floating frame. The inertial forces
are absent in the other two formulations, because the inertia tensor is defined directly with
respect to the inertial frame.

• Possibility of modal reduction: By considering only the low frequency modes, which are the
major contributors of the vibration characteristics, the model can be made computationally
less expensive without loss in accuracy. Nonlinear modal reductions can easily be applied
in the floating frame formulation, which is updated every time step. This is not practical in
the other two formulations, because the internal forces are calculated at the nodes (in terms
of generalised coordinates), and then transformed into a nonlinear formulation through a
rotation matrix. Additionally, they need to be updated every time step, which means that the
reduction needs to be applied at every time step as well. This beats the purpose of saving
computation time.

• Deflection: According to Wasfy and Noor (2003), a typical flexible space structure does not
suffer from large deflections. Especially for the current test case, large deflections are not ex-
pected. Therefore, the formulation should be able to model small deflections correctly. From
the table, it can be seen that floating frame is more fitting for small deflections, while the other
two are more fitting for large deflections.
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• Computation time: The computation time should be as low as possible to allow multiple
simulations for the control system design. Modal reduction with floating reference frames re-
duces the computation time almost twofold. This makes the co-rotational and inertial frame
formulation relatively slower. Moreover, these two formulations also perform the same with
respect to computation time for small and large deformations, because both models are for-
mulated in the same way. The computation time is also dependent on the resolution of dis-
cretisation in the FEM model.

• Constraint handling: Since the interface points are usually located at the joints, which al-
low relative rotation between the two bodies, the problem becomes geometrically nonlinear
in nature. In such cases, additional constraint equations are required in the floating frame
formulation, which cannot be solved analytically (though a new alternative formulation as
stated before can rectify the problem). In the inertial and co-rotational frame formulation,
such constraints can be imposed in a very simple way by placing the interface points on the
body’s finite element node at the joint. By doing this, the degrees of freedom of the nodes
shared by both bodies can be equated and therefore, constrained.

• Accuracy: The accuracy should be high within a reasonable computational load (CPU time),
which is superior for the floating reference frame, as compared to the co-rotational and the
inertial frame formulations, because it takes the nonlinear coupling terms associated with
flexible inertia forces into consideration. The co-rotational formulation also loses some ef-
ficiency (and experiences increased computational effort) due to its inability to differentiate
between rigid and flexible parts. In other words, rigid bodies are modelled as flexible bod-
ies with high stiffness. Lastly, the inertial frame formulation suffers from frame invariance,
which is an apparent lack of variation in some physical quantities (like material properties,
mass) due to interpolation of large rotations.

• Control applications: To perform multiple control simulations for a complex configuration in
the presence of perturbations, there has to be a good balance between accuracy and compu-
tation time. This requires an accurate representation of the vibrations in the dynamics of the
system in the most condensed or reduced form possible to save computation time. Floating
frame formulation dominates in these aspects because the models can be reduced without
losing accuracy.

• Complexity: The formulation should be easy and less prone to error to ensure correct formu-
lation of the two phases - synchronisation and connected phase. This aspect makes floating
frames a risky choice, because the formulation is very dependent on the correct choice of
interface points, which requires a certain experience. It is also different for different config-
urations, which makes the method mathematically exhausting. The other two formulations
are based on discretisation models, which can easily be simulated with any FEM software.

Based on the analysis, it can be concluded that the most fitting formulation for this multibody
system with small deformations and relatively large rotation speed is the floating frame formula-
tion. Despite its complexity, it provides the advantage of reduced computation time and good ac-
curacy for the control model. Further, it is an extension of rigid multibody dynamics, which allows
easy comparison of the rigid and flexible models. The new formulation of floating frames, based
on the principle of absolute nodal coordinates given by Ellenbroek and Schilder (2017), even en-
ables straightforward constraint handling, while still allowing the use of linear model reduction
techniques. This new method will be discussed in further detail in Section 4.3. Since the floating
reference frame is non-inertial, some additional modelling techniques will be required to model
the inertial coupling terms. The modal reduction techniques should also be studied along with
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Table 4.1: Comparison of three FMD approaches (Wasfy and Noor, 2003)

Corotational Frame Inertial Frame Floating Frame

1. Deformation Denoted by corotational
frame at each finite ele-
ment.

Denoted directly with re-
spect to inertial frame.

Denoted by floating frame
for each flexible compo-
nent.

2. Angular ve-
locities

No restriction on angular velocity magnitude.

3. Mixing rigid
and flexible
bodies

Most implementations place some restrictions on con-
figuration of a rigid body. For instance, a closed loop sys-
tem (like a parallel mechanisms) must have at least one
flexible body.

Based on multibody dynam-
ics that can easily model
both rigid and flexible sys-
tems in the same configura-
tion.

4. Inertial
forces

The translational part of mass matrix is constant. Ef-
fects of coupling between rigid and flexible system, Cori-
olis and centrifugal forces are absent because the inertia
forces (inertia tensor) are defined with respect to inertial
frame and remain constant.

The mass matrix consists of
nonlinear rigid-flexible cou-
pling terms, which are nec-
essary to account for dy-
namic response of flexible
inertia forces.

5. Possibility
of modal
reduction

Not practical, because
element vector for inter-
nal forces is nonlinear in
nodal coordinates, since it
involves a rotation matrix.

Not practical, because the
element vector for internal
forces is nonlinear in nodal
coordinates since it involves
a finite strain measure.

Nonlinear modal reduction
can be applied to bodies
with non-uniform, large an-
gular velocity. Modal reduc-
tion needs to be performed
at every time step.

6. Deflection Suitable for FMS with large deflections and large rotation
speeds.

Suitable for FMS undergo-
ing small deflections.

7. Computation
time

The computation time does
not reduce, even when small
deflections are assumed.

The computation time re-
mains the same for both
large and small strains.

Reduced almost twofold be-
cause of modal reduction.

8. Accuracy This formulation cannot dif-
ferentiate between a rigid
and a flexible body, and as-
sumes that the rigid body is
a stiffer flexible body. This
results in a less efficient for-
mulation.

Interpolation of large ro-
tations with respect to the
inertial frame leads to frame
invariance, which again
leads to a less efficient
formulation.

Superior accuracy because
the coupling between rigid-
flexible elements and iner-
tial forces due to flexibility
are well accounted for.

9. Control ap-
plication

Computationally expensive for good accuracy. Provides a good balance be-
tween accuracy and speed.

10. Constraint
handling

Possibility of enforcing constraints directly by equating
DOF of nodes shared by 2 bodies.

Typically requires Lagrange
Multipliers to constrain
EOMs.

11. Complexity Easy to model using discretisation tools like Abaqus, An-
sys and so on.

Requires experience and in-
sight to select correct inter-
face points for the applica-
tion. Relatively complex to
model.

the application of constraints, which will be discussed in further detail in the same section. Be-
fore jumping into the kinematics and dynamics written in this particular formulation, first the basic
steps to set up the generalised equations of motion will be discussed.
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4.2. Generalised Equations of Motion
One of the objectives of this research is to model the dynamics of multibody flexible space struc-
tures to obtain a realistic simulation of attitude control. The EOM can be derived in many forms
depending on the configuration of the system and other properties, like computation time, accu-
racy and so on. The dynamics governing the attitude should include the vibration of appendages,
joint motion, flexibility in connection model (between chaser and Envisat) and any other possible
elastic deformations. For this research, it will be assumed that there is no plastic deformation (in
the form of bending, elongation, etc.), that is, the computation will be performed within the frame
of linear theory of elasticity.

According to Rutkovsky et al. (1970), the most typical way to model a large spacecraft with
branched appendages and docked transportation models is by dividing the multi-body elements
into two groups :

• Elastic bodies: They represent the solar panels and antenna reflectors (like of Envisat).

• Rigid bodies: These are assumed to be connected to the rigid central hub via massless links.

The rigid bodies and flexible appendages are strongly coupled. This means that any manoeuvres
or perturbations causing vibrations in the flexible appendages will affect the attitude of the entire
spacecraft. Additionally, the external torques, like gravity gradient, solar radiation or even a per-
turbation resulting from a debris impact can also cause disturbances in attitude. Therefore, a good
dynamic model is an essential part of an effective three-axes control system. A flexible body has an
infinite number of DOFs. By discretising the body into a finite number of DOFs, using discretisation
techniques like FEM, Lumped Parameter Model (LPM) and so on, one can represent the dynamics
of the entire system with a reasonable accuracy. In this section, different dynamics approaches and
discretisation methods for multibody flexible systems are investigated, and the most fitting method
for the research is chosen based on the following requirements.

1. The model should be computationally fast and robust for the control system to achieve con-
vergence of attitude error within a finite time.

2. The model should be numerically simple, compact and effective (a good approximation) for
the control of Envisat-chaser system.

3. The model should be compatible with the chosen multibody reference frame formulation.

To derive the EOMs, first the concept of generalised coordinates should be introduced. In the
study of multibody systems, the generalised coordinates define the local parameters that uniquely
define the configuration of any element or system with respect to a reference. The choice of gen-
eralised coordinates for a physical system is based on a number of factors. Two such factors are:
(a) The configuration of the system (open loop or closed loop), and (b) Easy solution to the equa-
tions of motion. Usually, the generalised coordinates are selected such that they provide the mini-
mum number of independent coordinates to define the configuration of a system, which simplifies
the formulation of EOM. However, it is possible that a set of generalised coordinates may be de-
pendent and require constraint equations to model the coupling between them, for instance, at the
interface points between two bodies.

4.2.1. Dynamics Approaches
Before studying the mathematical modelling (or discretisation) methods for structures, it is im-
portant to understand the dynamics approaches used to derive the EOM. The dynamics approach
should be able to model the complex asymmetric geometry of a FMS with variable mass distribu-
tion in the presence of internal coupling forces (like rigid-flexible coupling) and external torques
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coming from the environment. There are different methodologies to derive equations of motion of
multi-body systems. The two common categories are the vectorial (or numerical) approaches and
the analytical approaches.

Vectorial approaches use theorems based on conservation of linear and angular momentum.
Also known as the Newton-Euler method, all physical coordinates and forces in this method are
represented by vector quantities. The formulation depends on free-body diagrams, which makes
inclusion of reaction forces and interactive forces inevitable. Main limitation of using this method
is that it considers the dynamics of individual components of the system separately. This further
requires computation of some extra equations due to kinematic constraints and interaction forces
(coupling). The vectorial approach becomes laborious and complicated in terms of computations
(especially for a FMS) and therefore, it is not the preferred model (Meirovitch, 1980).

On the other hand, analytical approaches (also called Lagrange’s method) model the system as a
whole without any additional equations for interacting forces. The equations are derived using the
Conservation of Energy principle, thereby representing the system mechanics in terms of two scalar
functions, kinetic energy and potential energy, and one infinitesimal term, virtual work associated
with non-conservative forces (e.g., friction). The formulations also follow the principle of virtual
work, which states that, "The virtual work of the external applied forces on the virtual displacements
compatible with the kinematics is zero". This gives a robust mathematical model, which is indepen-
dent of the coordinate system used. This makes it an ideal choice for the structural modelling of
a flexible spacecraft. Some variational models of this approach are D’Alembert’s principle, Hamil-
ton’s principle, and Lagrange’s principle as stated in Junkins and Kim (1993), which will be discussed
below.

D’Alembert’s principle
D’Alembert’s principle extends the principle of virtual work to structural dynamics. It states that, "a
problem of dynamic equilibrium can be transformed into a problem of static equilibrium by adding
the inertia forces — mi ẍi to the externally applied forces Fi and constraints forces F ′

i ". Here, ẍi de-
notes the acceleration of i th particle where i = 1...N . According to Newton’s law, the resultant force
Ri for every particle is given by,

Ri = Fi +F ′
i −mi ẍi = 0 (4.1)

The total for all particles can be found by summation and taking into account the constraint forces
(which cause zero displacement according to the principle of virtual work). This can be written as:

N∑
i=0

(Fi −mi ẍi ).δxi = 0 (4.2)

where δxi is the virtual displacement. The sum
∑N

i=0(Fi −mi ẍi ) of the applied external forces and
the inertia forces is called the effective force. Unfortunately, this principle is difficult to apply on
multibody systems, which are continuously varying with time. It still uses vector quantities ex-
pressed in an inertial frame and cannot be translated directly into generalised coordinates. This will
be achieved with Hamilton’s principle as shown below.

Hamilton’s principle
D’Alembert’s principle, despite being a complete formulation of dynamic equilibrium, cannot be
used, because it defines the position coordinates of particles in the system, which, in general, are
not independent of each other as well as time, and thus cannot be formulated in generalised coor-
dinates. Hamilton’s principle solves the problem by expressing the dynamic equilibrium in the form
of a scalar energy function, which is independent of the coordinate system. The virtual work, δW ,
due to external forces can be written in the form:

δW =∑
Fiδxi (4.3)
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If some of the external forces are conservative, then

δW =−δU +δWnc (4.4)

where U is the potential energy and δWnc is the virtual work due to non-conservative forces. The
dynamic equation then derived using Hamilton’s principle (expressed using a Variational Indicator
(V.I.) is of the form (see Preumont (2013) for detailed derivation),

V.I . =
∫ t2

t1

[δL +δWnc ]dt = 0 (4.5)

where
L = T −U (4.6)

L stands for the Lagrangian of the system and T is the kinetic energy of the system. This dynamic
formulation changes with time and, therefore, is capable of defining the variable mass distribution
and deflection with time. The statement of dynamic equilibrium as stated by Preumont (2013) says
that “the actual path is the one that cancels the value of the variational indicator with respect to
all arbitrary variations of the path between two instants t1 and t2, compatible with the kinematic
constraints such that δxi (t1) = δxi (t2) = 0" as shown in Figure 4.4. Another formulation used to
solve similar problems is the Lagrange’s principle.

Lagrange’s principle
Using Hamilton’s principle, the flexible system can be defined using generalised coordinates (qi ).
When the generalised coordinates are independent, the change in the configuration can be repre-
sented in terms of virtual variation in generalised coordinates, qi . This allows transformation of
Equation (4.5) into a differential equation form. Therefore, T , U and L can be written as:

T = T (q1, ..., qn , q̇1, ..., q̇n ; t ) (4.7)

U =U (q1, ..., qn ; t ) (4.8)

L = T −U =L (q1, ..., qn , q̇1, ..., q̇n ; t ) (4.9)

On derivation, the Lagrange equations can be written as:

d

dt

(∂L
∂qi

)
− ∂L

∂qi
=Qi (4.10)

where i = 1, ...,n, equal to number of independent coordinates. Qi represents all the non conserva-
tive forces. This formulation allows us to write the governing EOM in an easy and straightforward
way.
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Table 4.2: Analysis of modelling techniques

Approach Advantages Disadvantages

Global Mode Approach

• Accuracy is high for simple configu-
rations.

• Flexibility of the whole system is in-
cluded directly.

• Needs extensive assumptions to
solve complex configurations,
which may be impractical.

Rayleigh Ritz Approach

• Good accuracy for low DOF sys-
tems.

• Quick convergence when the right
admissible functions are chosen.

• Higher frequencies show poor con-
vergence characteristics.

• Difficult to find fitting admissible
functions for complex models.

Lumped Parameter Approach

• Good model for geometrically com-
plex systems.

• Mathematically simple and easy to
simulate.

• Deflections need to be known at a
finite number of locations.

• Accuracy low, compared to the
mathematical models (like FEM) for
the same amount of discretisation.

Finite Element Model

• Structure can be discretised into
very small elements for high accu-
racy.

• Every node only affects its neigh-
bour - highly uncoupled system.

• Complex geometries can be mod-
elled using dedicated FEM software.

• High-order system matrix - compu-
tationally heavy.

• Not easy to accommodate physical
insights due to design changes (like
constraints at joints).

4.2.2. Discretisation Techniques for Structural Modelling
While each mode of vibration contributes to the attitude in some way, the vibration of even a sim-
ple beam attached to the spacecraft can have infinite modes. Fortunately, by expressing the elastic
deformations as a product of finite mode shapes and generalised coordinates (known as discreti-
sation), one can represent the entire system with reasonable engineering accuracy (Grewal, 1994).
Some popular techniques of discretisation include Global Modes Method, Rayleigh-Ritz, Lumped
Parameter Method, and Finite Element Method. Another possible way to model the vibrations is by
assuming an infinite number of DOF. Such a system is considered to be a distributed or continuous
system. It should be noted that discrete and distributed systems are just two mathematical models
that can be used to define identical physical systems, it has nothing to do with dynamic character-
istics of the system (Meirovitch, 1986). In this section, the most fundamental techniques for struc-
tural modelling used for formulating equations of motion are discussed. Mathematical models for
such a dynamic system are in the form of differential equations, which can be ordinary differen-
tial equations for discrete systems and partial differential equations for continuous systems. The
section focusses on understanding how to formulate differential equations and how to solve them
efficiently for a flexible spacecraft model. For this, four discretisation options will be analysed. They
are:

1. Global Modes Method: This approach is a classical method of modelling the equations of
motion. The structure is regarded as a distributed parameter system (or continuous system),
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which allows the representation of the total flexibility of a body directly. The governing equa-
tions consist of differential equations in terms of spatial variables and time dependent factors.
The approach can be very accurate for infinite DOF models, provided it has a simple geom-
etry. Sometimes explicit physical assumptions are made to simplify the system and make
modelling by this approach more practical. Many appendages, however, are not simple in
configuration and partial differential equations of structural dynamics become cumbersome
through continuum mechanics.

2. Rayleigh Ritz Method: According to Meirovitch (1986), "The Rayleigh Ritz method is simply a
procedure for lowering the estimate of first eigenvalue (λ1) by producing a trial function (zi ,u)
reasonably close to the first natural mode of vibration". In other words, the method discretises
the system by assuming certain mode shapes of the elements. Depending on the problem,
a sequence of approximate solutions are constructed using admissible or comparative func-
tions. These approximate solutions can be used to solve an arbitrary continuous system (uni-
form or non uniform) by defining it in the form of discrete linear elements (reducing infinite
degrees of freedom to a finite model with n degrees of freedom). For simpler configurations,
Rayleigh Ritz acts like the Global Modes Method, because then the system does not require
discretisation, and the total flexibility of the system can be represented by a single function.
This method can also be used instead of or along with lumped parameter method for a good
approximative model.

3. Lumped Parameter Method: One simple assumption of this method is that the deflections
need to be known at a finite number of locations. The distributed parameters of mass and
stiffness are taken to be equivalent to lumped masses at these locations, with lumped stiffness
describing the resistance to relative motion, thereby, discretising the system. The sum of the
lumped masses and lumped stiffness should be equal to the total mass and stiffness of the
system. Since the model is based on approximations of where the deformation might happen,
it proves to be less accurate compared to other models with the same discretisation. However,
the accuracy can be improved by increasing the lumped parameters. For instance, an infinite
number of lumped masses can represent the system exactly.

4. Finite Element Method: The mathematical theory of Rayleigh Ritz forms the foundation of
the FE model. The displacements of a structure can be expressed in terms of a finite number
of discrete coordinates. The structure is first divided into a finite number of elements, which
are connected at nodal points. Then, the displacements of these nodal points are marked as
the generalised coordinates of the structure, and express the deflection of the complete struc-
ture by means of assumed displacement functions. Basically, the complications of developing
admissible functions for a complex model over the entire domain (globally) can be avoided by
developing the admissible functions for smaller domains (locally). Therefore, in FEM, the par-
tial differential equations of motion are transformed into second-order differential equations
called interpolation functions, which are functions of displacements, velocities and acceler-
ations of the FEM coordinates. The interpolation functions can be evaluated in closed form,
which eliminates any integration errors and giving very accurate results.

The characteristic advantages and disadvantages of these discretisation models are summarised in
Table 4.2. The best fitting models will be selected based on the requirements and system character-
istics stated in the coming section.

Analysis of Modelling Techniques
There are a number of challenges associated with modelling a flexible multibody spacecraft. An
adequate model of a FMS is a high-order one, due to the large number of flexible modes with min-
imal or no damping. Moreover, elastic frequencies are small and closely packed, with unknown
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frequencies and mode shapes (Levine, 1999). Further, based on the requirements of this research, a
trade-off can be done with four desirable characteristics:

• Accuracy of model: The model should give a good approximation of physical effects of flexi-
bility to an extent such that its influence on the attitude dynamics and control can be studied
effectively. The global modes model seems to be a very attractive option, because it gives sim-
ple yet accurate models for high degree of freedom systems. However, for this research, the
system has a complex multibody structure, which would require extensive assumptions for
simplification. Moreover, the model does not show good accuracy for systems with variable
mass and geometry. Correspondingly, Rayleigh Ritz can become less accurate with the wrong
choice of admissible functions, which become very difficult to choose for a FMS with a mixed
rigid and flexible configuration. Then, LPM being an approximation of where the deformation
can happen (due to an assumed lumped mass distribution) will perform inferior to FEM for
the same discretisation. However, if sufficient amount of discretisation is applied, accuracy
can be improved.

• Computational load: The simulation model should not be heavy on the computer, in terms
of time as well as the processor capability. However, that also depends on the quality of algo-
rithm written by the programmer. The global modes method can be simulated in numerical
computing software, like MATLAB. However, the Envisat-chaser model consists of many ele-
ments with different mass and stiffness. All these elements will have to be modelled separately
with different boundary conditions and shape functions, making the model mathematically
and computationally demanding. Also, since the spacecraft is rotating about all three axes,
the model can become very complex. Therefore, this model is not the preferred option for the
study. Rayleigh Ritz is also not the most suited approach for this study, because the system has
a number of flexible attachments, making it impossible to define admissible functions at sub-
structure level due to dependency of boundary conditions. Even if all boundary conditions
are defined individually, the computation becomes very expensive with no guarantee of good
accuracy. Both LPM and FEM can be simulated on any commercial FEM software. The com-
putational load can be controlled by reducing the amount of discretisation. However, there is
a certain trade-off between computation load and accuracy in these formulations.

• Compatibility with floating reference frame: The model should be adaptable in the chosen
frame of reference selected in Section 4.1. Since the floating reference frame was selected,
this adds a constraint on the model that it should be reducible. The most suited models for
this reference frame will be FEM and LPM, because they consist of finite mass and stiffness
matrices as a result of the finite discretisation. It is also possible to reduce the Rayleigh Ritz
formulation, however, it requires the additional step of numerically computing the important
modes, unlike FEM and LPM. This can be easily reduced using most FEM software. Lastly, the
global modes method is a more suited formulation for the inertial reference frame, since it is
always defined with respect to an inertial frame. Moreover, as there is no discretisation and
the model cannot be solved in a closed form (infinite series), this model cannot be reduced.

• Ease of simulation: The chosen model should be easy to program and simulate in the avail-
able software. Again, FEM and LPM models can be easily simulated using any commercial
FEM software. This allows simulation of very complex multibody configurations with asym-
metric mass and geometric distribution. The global modes and Rayleigh Ritz method can
only be simulated numerically (coded in MATLAB, C++ and so on) and do not have dedicated
software. Therefore, again the finite discretisation methods are preferred.

On summarising the properties of every model in Table 4.2, and weighing them against the parame-
ters chosen for the trade off, two models selected for the research are the lumped parameter method
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and the finite element method. The FE model being the more accurate of the two will be used to
model the flexible elements in this thesis. Further, FE models produce mass and stiffness matri-
ces, which can be easily reduced using the modal reduction techniques that will be discussed in
Section 4.3.3. Since most solar panels are axially stiff, they can be modelled as beam elements for
simplicity. This also eliminates the need to consider complex inertial forces like Centrigual stiffen-
ing as it will be explained in Section 4.3.2. Therefore, in the next section, the generalised EOM for a
beam will be derived using a FE model.

4.2.3. Generalised Equations of Motion using FEM for a beam
As stated before, the FE modelling is a numerical technique in which a continuous flexible structure,
is divided into small but finite substructures known as elements, which are interconnected at nodes.
In this way, an infinite DOF system can be modeled using a set of elements having a finite number of
degrees of freedom. By choosing the size of the element to be small enough, the deformation within
the finite element can be approximated using low-order polynomials (as compared to a continuous
system).

Consider a beam element (single element of a discretised FE model) of length L, as shown in
Figure 4.5. Let the beam element on deformation have a transverse displacement w(x) and nodal
rotation θ. For beams, the displacement field can be approximated using a cubic polynomial of the
form:

w(x) =α1 +α2x +α3x2 +α4x3, 0 ≤ x ≤ L (4.11)

The cubic polynomial function should be chosen such that it is differentiable at least twice. This is
to ensure that the chosen trial function is admissible. Now, Equation (4.11) can be written in the
form:

w(x) =
(
1 x x2 x3

)

α1

α2

α3

α4

 (4.12)

The vector for nodal degrees of freedom of this element at the two end nodes i and j can be written
as:

δe =


wi

θi

w j

θ j

 (4.13)
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where the nodal rotations can be defined using the slope:

θ = ∂w

∂x
(4.14)

On differentiating and substituting Equation (4.12), the nodal DOF vector can be written as:

δe =


wi

θi

w j

θ j

= [Ā]


α1

α2

α3

α4

 (4.15)

where [Ā] is a function of x. On rearranging, the above equation can be written as:

w (x) =
(
1 x x2 x3

)
[Ā]


wi

θi

w j

θ j

 (4.16)

which can be written with a simplified notation:

w (x) =
{

N (x)
}
δe (4.17)

Here, the vector
{

N (x)
}

is the vector of interpolation functions for beam elements, known as shape

functions. This vector is used to express the displacement of any point in terms of the nodal DOF.
Using the Lagrange’s principle to derive the generalised EOM, first the potential energy and the

kinetic energy should be derived. The potential energy can be found using the expression for strain
energy given by:

U = 1

2
E I

∫ L

0

(∂2w

∂x2

)2
d x (4.18)

where E is the Modulus of Elasticity (which depends on the material), and I is the area moment of
inertia (which depends on geometry). Substituting for shape function, the equation becomes,

U = 1

2
δT

e E I
∫ L

0

{
Nx x

}T {
Nx x

}
d x δe (4.19)

where {
Nx x

}
=

{
∂2N (x)
∂x2

}
(4.20)

The potential energy can be further simplified to:

U = 1

2
δT

e Keδe (4.21)

where Ke is the element stiffness matrix given by:

Ke = E I
∫ L

0

{
Nx x

}T {
Nx x

}
d x (4.22)

The kinetic energy of the beam with density, ρ and cross-sectional area, A is given by:

T = 1

2
ρA

∫ L

0
ẇ 2d x (4.23)
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Again, inserting the shape function gives,

T = 1

2
δ̇e

T
ρA

∫ L

0

{
Nx

}T {
Nx

}
d xδ̇e (4.24)

which can be simplified to:

T = 1

2
δ̇e

T
Me δ̇e (4.25)

Here, Me is the element mass matrix, given by:

Me = ρA
∫ L

0

{
Nx

}T {
Nx

}
d x (4.26)

On completing the Lagrangian formulation given by Equation (4.10), the final element equation of
motion for free vibration becomes:

Me δ̈e +Keδe = 0 (4.27)

Upon assembly of elemental equations, the generalised equation for the whole system can be writ-
ten as:

M δ̈+Kδ= 0 (4.28)

If the damping term is included, an additional velocity term is added to the equation (C δ̇). Also,
external forces can be accounted for by adding a term on the right hand side (F ). Then, Equation
(4.28) becomes:

M δ̈+C δ̇+Kδ= F (4.29)

Equation (4.29) is the generalised form of equation of motion for a beam. However, any body dis-
cretised using the FE model can always be represented in the same form and thus, Equation (4.29)
will be referred to throughout the thesis as the generalised equation of motion. Further, also the
procedure for derivation of the EOM remains the same for any configuration, with only the change
in shape functions, energy expressions of potential and kinetic energy, and the DOF vector.

4.3. Floating Frame Formulation
In the floating frame formulation, the rigid multibody problem is extended to a flexible one, such
that a large rigid body motion is defined with respect to the inertial frame, and the elastic properties
are defined using a local coordinate frame called the floating reference frame. This frame being non-
inertial needs special modelling techniques to formulate the internal and inertial forces. Further, it
is imperative to discuss the coordinate system that will be used to define the rigid body motion of
the floating frame itself.

One of the main advantages of the floating frame formulation is the possibility of reducing the
model order without loss of accuracy, thereby reducing the computation time. To achieve this, dif-
ferent modal reduction techniques will be studied in Section 4.3.3. Then, to ensure the kinematics
are defined correctly, constraints need to be applied to the EOMs to capture the motion of the in-
terface points. Different possible techniques to apply thesis kinematic constraints will be discussed
in Section 4.3.4. Additionally, the new formulation given by Ellenbroek and Schilder (2017), which
combines the convenient constraint modelling techniques of inertial frame and corotational frame
formulations without the need to introduce extra constraint equations, will be compared with the
traditional constraint modelling methods in the same section.

4.3.1. Absolute and Relative Coordinates
In floating reference frames, the rigid body motion can be formulated using two kinds of coordi-
nates - absolute generalised coordinates and relative generalised coordinates as shown in Figure
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Figure 4.6: Relative and Absolute Coordinates

4.6. In absolute coordinates, the coordinates of each body are defined with respect to the global
inertial frame. The dynamics of these bodies is coupled using constraints, which would link the
rigid body dynamics with the flexible dynamics. However, by expressing the local elastic DOF at the
interface of the bodies and defining the mean rigid body motion using the floating frame, these con-
straints can be simplified. According to Ellenbroek and Schilder (2017), this formulation gives the
combined advantage of being able to enforce constraints without the use of Lagrange multipliers
(as will be discussed in Section 4.3.4), and still have the possibility of modal reduction. Therefore,
it is possible to define the motion of a flexible body in terms of motion of the interface points. In
such a case, the body behaves like a superelement (Schilder et al., 2018), in which the displacement
field of a finite element is described uniquely in terms of the displacement of its nodes. This will be
discussed in further detail in the coming sections.

In the relative coordinates formulation, the coordinates of a body in a chain of bodies are ex-
pressed in terms of the coordinates of the previous body in the chain, and the DOFs of the joint
connecting the two bodies. This proves to be advantageous for open loop systems for which the gen-
eralised coordinates are independent. Relative coordinates based techniques involve the additional
step of computing each element in the chain. This can be inconvenient for variable structure FMS
and the ones involving contact/impact, where the displacement of a node cannot be defined inde-
pendently. The configuration of the system changes from a single rigid hub with an appendage to
two rigid hubs with appendages connected by a flexible link in between. Therefore, it is not suitable
in this research, where the structure/configuration changes with the phases, and constraint mod-
elling becomes unavoidable and requires updates in every phase. In addition, for FMS involving
closed loops, the solution depends on the choice of the location of the cut-joint constraint, which
requires some skill and experience.

4.3.2. Nonlinear Inertia Effects

When the spacecraft or a component of the spacecraft is translating and/or rotating in a non-inertial
frame, a number of nonlinear inertial forces, which couple the rigid and flexible elements like tan-
gential, centrifugal and Coriolis force, are introduced. Another internal force associated with fast
rotating objects caused by coupling of the axial and bending axis is the centrifugal stiffening. A brief
description of all these nonlinear inertial coupling effects is given in this section.



4.3. Floating Frame Formulation 59

Rigid-Flexible Coupling Terms
Since the floating frame is moving, flexible accelerations need to be introduced in addition to the
linear mass terms. The nonlinear tangential, centrifugal and Coriolis terms couple the rigid body
acceleration of the floating frame with the flexible accelerations defined relative to it. This accounts
for the rigid body motion caused due to the vibration of the flexible appendages. A common tech-
nique and efficient way to model these terms with modal reduction, is by partitioning the gener-
alised coordinates in the following way (Wasfy and Noor, 2003):

q =
(
qT qθ q f

)T
(4.30)

where subscripts T,θ, and f denote rigid body translation, rigid body rotation, and flexible coordi-
nates, respectively. Because the time constant of translational motion is at least one order of mag-
nitude larger than the one for rotational motion, for the duration of the analysis the position and
velocity of the satellite can be assumed to be constant. This means that effectively translational and
rotational motion are decoupled, and any perturbation dependent on orbital position is constant
as well.

The corresponding mass matrix with coupling terms can be written as:

M =


MT T MTθ MT f

MθT Mθθ Mθ f

M f T M f θ M f f

 (4.31)

Here, MT T is a constant translational mass matrix representing the mass of entire body, M f f rep-
resents the mass of the flexible elements, which is a constant finite element mass matrix, and Mθθ

represents the rotary inertia matrix, which can be assumed constant if the deformations are small,
and time varying if the deformations are large. For this research, the deformations in the flexible
panels can be considered small and the inertia tensor can be assumed to be constant. M f θ, MθT

and MT f vary with time and represent the coupling between flexible body motion, rigid body trans-
lation and rigid body rotation. The matrix is symmetric and the off diagonal coupling terms are
equal. Nonetheless, terms involving coupling between rigid and flexible motion can be either de-
rived through inertia shape integrals, details of which can be found in Shabana (2013), or using ded-
icated reduction models (like Craig-Bampton), which have added advantages as will be discussed
in Section 4.3.3.

The Coriolis and centrifugal inertial terms can be added as quadratic velocity terms in the equa-
tions of motion as a function of generalised coordinates, which is a typical formulation used in
multibody systems (Shabana, 2013), using the equation:

Fc = Ṁ q̇ + 1

2

∂(q̇ T M q̇)

∂q
(4.32)

where Ṁ q̇ represents the Coriolis force vector and ∂(q̇ T M q̇)
∂q represents the centrifugal force vector.

Being higher order velocity terms associated with generalised coordinates, these forces are a func-
tion of internal elastic deformation with respect to the interface points. Since elastic deformation
is assumed to be small, these terms should not have a significant effect on the dynamics. Some
benchmark problems simulated by Schilder et al. (2018) show that ignoring these fictitious forces
for small deformations still lead to accurate results. Therefore, for this study, the effect of Coriolis
and centrifugal terms will be ignored.

Centrifugal stiffening
Also known as dynamic stiffening, centrifugal stiffening is an inertial effect that acts along the axis
of rotation of the body causing an axial stress that increases the bending stiffness. Hence, this ef-
fect is the result of coupling between the axial and bending deformations. When a rotating body
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is connected to another body, this effect will also occur at the root of the joint, because of trans-
fer of inter-body forces (Wasfy and Noor, 2003). However, this effect also depends on the way the
flexible link is modelled. For instance, if a classical Euler-Bernoulli beam model is considered as
the flexible appendage, the bending deformation will be decoupled from the axial deformation and
the dynamic stiffening is neglected. This is because the axial deformation is neglected in an Euler-
Bernoulli beam, which is a reasonable assumption for appendages with high axial stiffness. On the
contrary, this is not true when the appendage is modelled as a plate or a Timoshenko beam. In the
FE formulation, this effect is captured in the nonlinear part of the stiffness matrix, which accounts
for the nonlinear inertial coupling between axial and bending stiffness. The system stiffness matrix
appears to be of form:

K =


0 0 0

0 0 0

0 0 KL +KN L

 (4.33)

where KL is the constant linear stiffness matrix and KN L contains the nonlinear time varying terms,
which include centrifugal stiffening term in addition to any other coupling terms linking axial and
bending stiffness. For this research, the deformations are assumed to be small, but the angular ve-
locity is large. The solar panels can be assumed to have a high axial stiffness, which is a common
assumption for space structures (Wasfy and Noor, 2003). Therefore, the effect of centrifugal stiffen-
ing will be negligible, and the nonlinear terms from the stiffness matrix can be eliminated.

4.3.3. Modal Reduction
In most FMS applications, it is possible to truncate the modal expansion, such that only the sig-
nificant modes are taken into account (Ellenbroek and Schilder, 2017). This is because, the high
frequency modes carry little energy and have negligible contribution to the dynamics of the com-
plete system. According to Wasfy and Noor (2003), by reducing the modes, the computation speed
can be improved twofold. This reduces the number of EOM to be solved and therefore, facilitates
the use of large integration steps. Modal reduction leads to effective reduction in computation time,
only if the mass and stiffness matrices are constant and not a function of time and/or generalised
coordinates. When these terms are constant, the reduction can be performed at once, in the begin-
ning of the simulation. Otherwise, the modal reduction needs to be performed at every time step,
which defeats the purpose of reducing computation time. Thus, structures with large deflections
and high angular velocities are not suitable for modal reduction, because of the nonlinearity intro-
duced in the stiffness matrix due to centrifugal stiffening. But as discussed in the previous section,
this internal force can be ignored for the current research.

Before the modal reduction process is discussed, the term "interface points" should be under-
stood in further detail. In general, the forces act on the entire body, however, the boundary condi-
tions and constraints need to be applied at the interaction points between any two bodies, whether
rigid or flexible, to ensure proper coupling. To perform reduction of an FE model and to account for
the constraints, an interface point is introduced at physical boundaries, like joints and connections.
The generalised coordinates for reduced modes are defined with respect to these interaction points,
and the vibrations are represented as a sum of important modes.

The mode shapes can be reduced using two different techniques - a dedicated theoretical modal
reduction technique or using experimental data. Since it is not possible to experimentally test the
vibration modes for the e.deorbit mission, the theoretical techniques will be discussed in further
detail. However, a number of questions need to be answered during the modal reduction process.
How to decide which mode shapes are important? Which subsystem should be included while com-
puting the natural frequency? Is it reasonable to model the appendage as a simple fixed free beam?
To answer these questions, different modelling techniques will be explored. The model order reduc-
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tion can be divided into three commonly used techniques: Static (Guyan), hybrid (Craig-Bampton)
and manual modal reduction.

Static (Guyan) reduction
The static reduction, also known as Guyan reduction, works on a master-slave principle. For a sys-
tem with N degrees of freedom, the m that are dominating, are called master DOF, and the s that are
eliminated, are called slave DOF. The component modes are computed with the assumption that
there are no inertial forces involved. This makes the method more suitable for stiffness reduction
only, because of the inertial coupling terms involved in the mass matrix, which are not preserved. In
other words, the reduction technique is suitable for static problems, but for dynamic problems, the
approximations become extreme. Furthermore, the eigenvalues obtained for the reduced system
are always higher than those of the original system. This results in a decrease of quality of eigen-
value approximation as the mode number increases. Therefore, this method will not be discussed
in further detail.

Hybrid (Craig-Bampton) reduction
This hybrid reduction technique combines the static reduction with dynamic boundary conditions.
Depending on how the boundary conditions are applied, they can be further classified into differ-
ent methods. The most commonly used hybrid reduction method is the Craig-Bampton method,
in which the system’s dynamic behaviour is defined using two types of information (Geradin and
Cardona, 2001):

• Static Boundary Modes: Obtained using Guyan or static reduction, by assuming a unit dis-
placement at each boundary DOF.

• Dynamic Boundary Modes: A reduced set of eigenmodes for a clamped beam boundary con-
dition (in this case), obtained from the FEM or lumped discretised model.

Let xb represent the boundary DOF and xi represent the internal DOF of the subsystem. Then, the
system of equations defining the dynamics of the system can be written as:Mbb Mbi

Mi b Mi i

ẍb

ẍi

+
Kbb Kbi

Ki b Ki i

xb

xi

=
 fb

0

+
gb

0

 (4.34)

where gb represents the reaction force with other substructures and fb represents the external
forces. To obtain the dynamic boundary modes of vibration, the boundary degree of freedom should
be constrained (xb = 0). This reduced Equation (4.34) to:

Mi i ẍi +Ki i xi = 0 (4.35)

Equation (4.35) becomes the eigenvalue problem, which can be solved using:

(Ki i −ω2
i Mi i )φi = 0 (4.36)

whereωi is the angular velocity for the respective fixed interface mode shape inφi . Now the static
boundary modes need to be computed. This constrained mode is obtained using the static defor-
mation shape at one of the boundaries, when a unit displacement is applied and all but one DOF is
constrained. This is done for every interface point (with appropriate boundary conditions) and DOF
until a set of constraint modes is obtained. For instance, in a 3D situation, an interface point on a
fixed-fixed beam will have three DOF as shown in Figure 4.7, which results in a total of six constraint
modes for two interface points. Now, recalling the second equation from Equation (4.34):

Mi b ẍb +Mi i ẍi +Ki b xb +Ki i xi = 0 (4.37)
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Figure 4.7: Interface point with 3 DOF on one end of a fixed-fixed beam

As stated in the previous section, the static part is obtained by neglecting the inertia forces. This
condenses the equation to:

xi ,st at =−K −1
i i Ki b xb (4.38)

The term −K −1
i i Ki b forms the static condensation matrix, which allows the static response of the

internal degree of freedom xi to be represented as a function of unit displacement of the boundary
DOF (xb), as: xb

xi

=ψc xb =
 I

−K −1
i i Ki b

xb (4.39)

Here, the matrixψc denotes the constraint modes. Combining both constraint modesψc and fixed-
interface vibration modesφi , the internal DOF can be finally written as:

xi =ψc xb +φi qi (4.40)

where qi denotes the generalised coordinate or DOF associated with the subsystem. Using this, the
final reduction matrix RC B can be written as:

xb

xi

=
 xb

ψc xb +φi qi

=
 I 0

ψc φi

xb

qi

= RC B

xb

qi

 (4.41)

The reduction matrix (RC B ) can be used to obtain the reduced mass and stiffness matrices, given
by:

K̃ = RT
C B K RC B M̃ = RT

C B MRC B (4.42)
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A detailed representation of these matrices is given by:

K̃ =
K̃bb 0

0 ω2
i

 (4.43)

K̃bb = Kbb −Kbi K −1
i i Ki b (4.44)

M̃ =
M̃bb M̃bq

M̃qb I

 (4.45)

M̃bb = Mbb −Mbi K −1
i i Ki b −Kbi K −1

i i Mi b +Kbi K −1
i i Mi i K −1

i i Ki b (4.46)

M̃qb =φT
m (Mi b −Mi i K −1

i i Ki b ) = M̃ T
bq (4.47)

There are a number of advantages of Craig-Bampton reduction. The formulation ensures that both
mass and stiffness is taken into account (unlike Guyan reduction). It also takes into account the
different boundary conditions at the interface, which confirms the coupling between the rigid and
flexible bodies, and accountability of any external forces. For the floating frame formulation, this
method is very compatible, because the local interface coordinates can be treated as generalised
coordinates corresponding to Craig-Bampton reduction. Therefore, the static modes can be easily
used to define the local elastic displacement (Schilder et al., 2018). A disadvantage of this method is
that if the interface point is changed, the whole analysis needs to be performed again. However, the
reduction is very flexible and the output can be easily assembled by the FE software. The fact that all
DOF are captured in the formulation eliminates the need for added constraints, and the mass and
stiffness matrices can be used directly in the EOM, which is an added advantage.

Manual reduction
It is also possible to manually filter out the important frequencies and condense the mass and stiff-
ness matrices by simply eliminating the terms of lower importance. The effective modal mass pro-
vides a scale for judging the contribution of a vibration mode. Modes with relatively high effective
masses can be readily excited by base excitation. In other words, they have a larger contribution to
the total energy of the system. On the other hand, modes with low effective masses do not cause a
significant change to the energy. Consider a multi-body system for which the mode shapes are be-
ing analysed used FEM. Now another question arises about how many modes should be included in
the analysis? This number should be such that the total effective modal mass, which is the sum of all
effective masses of the model, is at least 90% of the actual mass (Irvine, 2013). The EOM discretised
through FEM (assuming no damping) will result in the form:

M ẍ +K x = F (4.48)

where M is the mass matrix, K is the stiffness matrix, ẍ is the acceleration vector, x is the displace-
ment vector, and F is the forcing function or base excitation function. The solution to Equation
(4.48) will be given by the eigenvalues and eigenvectors, which represent the natural frequency of
the modes. The generalised mass matrix (or normalised mass matrix) is given by:

m̂ =φT Mφ (4.49)

where φ is the eigenvector. Then, let us consider an influence vector r̄ , which represents the dis-
placements of the masses resulting from static application of a unit ground displacement. Then,
the modal participation factor, which indicates the relative contribution of the system modes to the
system states for every eigenmode, can be computed using:

Γi = L̄

m̂i i
(4.50)
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where Γi is the modal participation factor, and, L̄ is a coefficient vector given by:

L̄ =φT Mr̄ (4.51)

Finally, the effective modal mass matrix, me f f ,i for each mode i is given by:

me f f ,i =
L̄2

m̂i i
(4.52)

Thus, any mode that contributes strongly has a higher effective modal mass and has to be included
in a reduced-order model, while a mode with low effective modal mass can be eliminated for a
multibody system. Typically, the first two modes have the major contribution to the total effective
mass.

It is also possible to compute the effective masses and modal participation factors of the modes
using an FEM software. The simplicity of the technique makes it a viable option for this research.
This method is independent of flexibility and inertia characteristics, which makes it applicable to
a wide range of problems. The accuracy of the method improves with increased discretisation of
the FEM model. However, there are a number of disadvantages, which cannot be overlooked. The
model still requires constraints to account for kinematic and geometric conditions of the multibody
system at the interface points. Further, the rigid flexible coupling and other inertial forces are not
taken into account. This requires extra computation of these terms through shape integrals. Also,
there is a large probability of error, because not all DOF may be captured in the formulation. In
conclusion, this method is suitable for rigid body systems where there are no inertial forces involved,
but for FMS, it can prove to be cumbersome and risky, because of the additional computations
required.

Therefore, for this research, Craig-Bampton seems to be the ideal reduction model and will be
consequently used to derive the EOM.

4.3.4. Constraints
Modelling of joints and interfaces is a crucial aspect in computational methodology for flexible
multibody systems. Constraints define the kinematics of these joints by linking the motion between
two participating bodies. It can be any condition that reduces the DOF of a mechanical system. In
analytical dynamics, the basic classification of constraints include two types: holonomic and non-
holonomic constraints. Holonomic constraints are implicit functions of generalised coordinates and
time, and are represented byφ(q , t ) = 0. Non-holonomic constraints are implicit functions of gener-
alised coordinates, velocities and time, and are represented byφ(q , q̇ , t ) = 0. Some common meth-
ods used for incorporating these constraints in EOM are:

1. Lagrange multiplier method: In this method, the constraint reaction force can be added to the
global EOM in the form:

FR = ∂φT

∂q
λ (4.53)

where ∂φT

∂q is the Jacobian constraint matrix and λ is the vector of Lagrange multipliers. This
method has proved to be of high accuracy in terms of satisfying constraints. Addtionally, both
holonomic and non-holonomic constraints can be modelled systematically for arbitrary con-
figurations of an FMS. The main disadvantage is that it adds to the number of unknowns in
the set of coordinates to be solved, which results in an increase in computation time. Also,
according to Wasfy and Noor (2003), zero terms are introduced on the diagonal of the equiva-
lent nonlinear stiffness matrix, which considerably increase its stiffness and required solution
effort. Therefore, some alternative methods, which do not have these shortcomings will be
discussed.
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2. Penalty method: To eliminate the drawback of the increased number of unknowns introduced
by Lagrange multipliers, the penalty method can be used instead. In this method, the reaction
forces are written in the form:

FR = ∂φT

∂q
α
∂φ

∂q
(4.54)

where α is a diagonal matrix that contains the penalty factors for each constraint equation.
The method has the disadvantage that the constraint equations are not satisfied exactly (less
accurate than Lagrange multipliers) and that large values of α lead to stiff equations. The
method is more suitable for a system with components connected by incompatible nodal in-
terfaces. In such a case, penalty springs are introduced to represent the shape and stiffness
of joints. However, this method is also not suitable due to its poor accuracy in satisfying con-
straints.

3. Augmented Lagrangian method: The augmented Lagrange method combines both the La-
grange multiplier and the penalty methods to diminish the shortcomings of both methods.
By introducing a penalty spring whose stiffness is comparable to the stiffness of other com-
ponents of the FMS, the number of iterations and effort required to solve the system of un-
knowns can be reduced. This is because the constraints are appropriately scaled to generate
system matrices of the same order of magnitude. The constraint is satisfied with the good ac-
curacy of Lagrange multipliers at the end of each solution time step. However, it is difficult to
derive a convenient formulation for the choice of penalty parameter. It can also lead to some
inaccuracies due to approximation of second derivatives of the constraint in the formulation
(Gill et al., 1986).

4. Absolute coordinate formulation: Ellenbroek and Schilder (2017) proposed a new technique
to directly enforce constraints without the use of Lagrange multipliers. This is achieved by ex-
pressing the floating frame coordinates and the local elastic deformation in the flexible body
directly in terms of the interface coordinates, which is defined with respect to the inertial
frame. By demanding that the elastic body has no deformation at the location of the float-
ing frame, the reduced modes can be used to eliminate the floating frame coordinates and
then, the local elastic deformation is defined directly in terms of the motion of the interface
points. This couples the bodies directly without the need to enforce constraints because now
the nodes of the two connecting bodies can be defined as equal (as it is done in the inertial
frame formulation). This new method eliminates the shortcomings of constraint handling,
which is a great advantage when it comes to modelling of multiple interface points (as in the
stacked configuration). In combination with the Craig-Bampton modes, the EOM can be sig-
nificantly condensed without loss in accuracy. Therefore, this method will be adapted for the
research and will be discussed in further detail for the derivation of kinematic equations.

4.4. Equations of Motion
Having discussed the different aspects involved in the floating frame formulation, the kinematic and
dynamic EOM will be formulated. The EOM will be formulated in absolute coordinates, with the dy-
namic equations reduced using Craig-Bampton reduction. The equations will also include inertial
coupling terms between rigid-flexible systems, but the quadratic velocity terms including Coriolis
and centrifugal forces will not be accounted for in the formulation (for simplicity). The constraints
will be directly incorporated in the formulation without the use of Lagrange multipliers or penalty
function, as a result of the new formulation approach using absolute coordinates (Ellenbroek and
Schilder, 2017).

To derive the complete equations of motion, first some fundamental properties need to be de-
rived. Therefore, the kinematics of a material point on a flexible body with respect to a floating
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Figure 4.8: Position of material point P j with respect to inertial frame at point Po using floating frame at point Pi

frame will be derived in Section 4.4.1. This will result in an expression for relative velocity of elas-
tic deformation of a material point in the floating frame, in terms of absolute velocity difference
between the floating frame and the material point. Then, a relation is established between the lo-
cal elastic velocities and the absolute velocities at the interface points in Section 4.4.2. Here, the
placement of the interface points and floating frame for the system configuration of this research is
also discussed. The floating frame is then removed from the kinematic description through relevant
transformation matrices, which are derived in Section 4.4.3. The final EOM in terms of absolute
coordinates are derived in Section 4.4.4, followed by a discussion on the method used to solve it
in Section 4.4.5. It should be noted that the following derivation has been adapted for the current
configuration from Ellenbroek and Schilder (2017).

4.4.1. Kinematics of a Material Point on a Flexible Body using the Floating Frame Formu-
lation

Before defining the kinematics of a multi-body system consisting of both rigid and flexible elements,
it is foremost to understand how the kinematics of a flexible body in which the position of one point
with respect to the other changes with time.

Figure 4.8 shows a flexible body with two material points Pi and P j . A floating frame is placed
with Pi at the origin and the absolute position is defined with respect to the inertial frame (with
origin at Po) using the position vector r o,o

i and the rotation (or transformation) matrix C o
i . Note that

the notation superscript "A,B" on the position or velocity vectors (e.g., r A,B
i ) indicates the position

of point "Pi " defined in frame A, relative to the frame at B. Also, for the rotation matrix, the subscript
A and superscript B indicates a transformation from frame A to frame B. Similarly, the position of
material point P j is defined with respect to the floating frame Pi using the position vector, r i ,i

j and

the rotation matrix, C i
j . Therefore, the rotation matrix from the local frame at P j to the inertial frame

at Po can be given using:

C o
j =C o

i C i
j (4.55)

Also, the position vector of P j can be transformed into absolute coordinates using:

r o,o
j = r o,o

i +C o
i r i ,i

j (4.56)

By taking the time derivative, the absolute linear velocity for material point P j can be obtained as:

ṙ o,o
j = ṙ o,o

i +Ċ o
i r i ,i

j +C o
i ṙ i ,i

j (4.57)
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But previously, in Equation (3.30), it was derived that the time derivative of the rotation matrix is the
product of a skew symmetric matrix and the rotation matrix itself. Therefore, using Ċ o

i = ω̃o,o
i C o

i ,
the equation can be written as:

ṙ o,o
j = ṙ o,o

i + ω̃o,o
i C o

i r i ,i
j +C o

i ṙ i ,i
j (4.58)

Using the properties of skew-symmetric matrix, transformation and orthogonal matrices (see Ap-
pendix A), the equation can be simplified to:

ṙ o,o
j =ṙ o,o

i + ω̃o,o
i r o,i

j +C o
i ṙ i ,i

j

=ṙ o,o
i − r̃ o,i

j ω
o,o
i +C o

i ṙ i ,i
j

=ṙ o,o
i −C o

i C i
o(r o,i

j ×ωo,o
i )+C o

i ṙ i ,i
j

=ṙ o,o
i −C o

i det(C i
o)(C i

or
o,i
j ×C i

oω
o,o
i )+C o

i ṙ i ,i
j

=ṙ o,o
i −C o

i det(C i
o)C i

o(r i ,i
j ×ωi ,o

i )+C o
i ṙ i ,i

j

=ṙ o,o
i −C o

i det(C i
o)r̃ i ,i

j C i
oω

i ,o
i +C o

i ṙ i ,i
j

(4.59)

Since a right-handed coordinate frame is used and the point Pi is a floating frame fixed to the body,
the mirroring effect on rotation (a negative determinant) need not be considered. The mirroring ef-
fect can be explained by a simple example. Consider a 90º rotation around axis in a right-handed co-
ordinate frame (1,1,1). This axis, when mirrored in the XY-plane, would give a -90º rotation around
the left-handed coordinate frame (1,1,-1). Also, since the attitude representation by quaternions is
used, the mirroring effect is naturally overlooked. Therefore, the determinant of the rotation matrix
(det(C i

o)) always remains positive unity. The final equation can be written in the form:

ṙ o,o
j = ṙ o,o

i −C o
i r̃ i ,i

j C i
oω

o,o
i +C o

i ṙ i ,i
j (4.60)

Now, the absolute angular velocity for the material point, P j can be written similar to Equation
(4.56), given by:

ω
o,o
j =ωo,o

i +C o
i ω

i ,i
j (4.61)

Combining Equation (4.60) and (4.61), the velocity of a material can be defined using: ṙ o,o
j

ω
o,o
j

=
C o

i 0

0 C o
i

I −r̃ i ,i
j

0 I

C i
o 0

0 C i
o

 ṙ o,o
i

ω
o,o
i

+
C o

i 0

0 C o
i

 ṙ i ,i
j

ω
i ,i
j

 (4.62)

A more condensed and convenient representation can be written as:

v o,o
j = [

C o
i

][− r̃ i ,i
j

][
C i

o

]
v o,o

i + [
C o

i

]
v i ,i

j (4.63)

Here, the "[ ]" will be used as a simplified notation for the compound matrices. v o,o
j and v i ,i

j are
(6N ×1) vectors containing all variations of the absolute and local interface coordinates with time,
respectively.

[
C i

o

]
is a (6N × 6N ) block diagonal matrix consisting of all rotation matrices associ-

ated with the respective interface points. Lastly,
[− r̃ i ,i

j

]
is the column-assembly of all (6×6) skew-

symmetric matrices representing displacement and rotation of all interface points, when the system
experiences rigid body motion in a certain direction with respect to the floating frame. Therefore,
the local velocity of point P j with respect to the floating frame can be reformulated to be:

v i ,i
j = [

C i
o

]
v o,o

j − [− r̃ i ,i
j

][
C i

o

]
v o,o

i (4.64)

From the above equation, it can be concluded that the relative velocity of elastic deformation in a
floating frame can be defined by the absolute velocity difference between the floating point and the
material point. This principle will be used to define the local elastic velocities due to vibration of the
flexible appendages with respect to the floating frame, which can be located at an interaction point
or the rigid hub.
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4.4.2. Relation between Local Elastic and Absolute Velocities at the Interface Point
Now that the kinematics of a material point is defined in absolute coordinates, a relationship should
be established for transformation of local elastic velocities to the absolute formulation. Assuming
that the elastic deformation of the flexible elements are small, the flexible body can be discretised
into many linear finite elements called superelements, which can be used to define dynamics with
respect to a floating frame at Pi with a constant mass matrix Mi and stiffness matrix Ki . This can be
achieved by establishing generalised coordinates q j , j to represent the deformation using the modes
obtained after Craig-Bampton reduction. This is applicable with an assumption that the deforma-
tion can be represented by a linear combination of selected modes (Ellenbroek and Schilder, 2017).
The deformation will include the small elastic displacements, ui ,i

j , and rotation of the interface

points, θi ,i
j . Therefore, the generalised coordinates can be written as:

q i ,i
j =

ui ,i
j

θ
i ,i
j

 (4.65)

The relative position of the interface point P j with respect to floating reference frame at Pi fixed to

the body will change due to the flexible parts. The local position vector r i ,i
j can be written as the

sum of a fixed undeformed position and local elastic deformation:

r i ,i
j = x i ,i

j +ui ,i
j (4.66)

where x i ,i
j is the position vector of point P j with respect to the floating frame on the undeformed

body. Using the rotation matrix to write the position of points Pi and P j in absolute coordinates,
the elastic displacement is given by:

ui ,i
j = r i ,i

j −x i ,i
j =C i

o(r o,o
j − r o,o

i )−x i ,i
j (4.67)

Since rotations cannot be expressed as proper vectors, the orientation after deformation cannot
be simply expressed as the sum of the undeformed orientation and elastic rotation. Therefore, it
is assumed that the undeformed orientation of a material point with respect to the local frame is
always zero, i.e. the undeformed local rotation matrix becomes an identity matrix. So, the final local
orientation of a material point after deformation can be described as a change in the rotation of
the interface point θi ,i

j . The validity of this assumption is derived in a detailed manner in Appendix
B. This can be used to define a relation between the relative velocity of a material point and the
generalised coordinates corresponding to the reduced modes:

q̇ i ,i
j =

θ̇i ,i
j

u̇i ,i
j

≈
ωi ,i

j

u̇i ,i
j

= v i ,i
j (4.68)

Relating the above equation with Equation (4.64), gives the relation between relative velocity of ma-
terial point with absolute velocities of the floating frame and the material point:

q̇ i ,i
j = [

C i
o

]
v o,o

j − [− r̃ i ,i
j

][
C i

o

]
v o,o

i (4.69)

In general, the dynamic equations in floating frame formulation include absolute coordinates of
floating frame and the relative coordinates of interface points with respect to the floating frame.
However, by using Equation (4.69), the local elastic velocities or the need for relative coordinates
can be eliminated by expressing both floating frame and interface points in absolute coordinates.
This ensures coupling of the bodies without the need of constraints through Lagrange multipliers
as discussed in Section 4.3.4.
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Placement of interface and floating points
In this research, there are a number of multibody configurations. In the synchronisation phase, both
Envisat and chaser consist of a rigid body and a flexible appendage. In the semi-connected phase,
the two multibody systems are connected by a flexible link. Finally, in the stacked phase, the con-
nection is considered rigid and the configuration can be considered to be one single rigid hub with
two appendages located asymmetrically. The single satellites contain one interface point between
the rigid hub and the solar panel. However, the semi-connected and stacked configuration will have
multiple interaction points. In such a scenario, the floating frame should be able to represent the
dynamics due to the elastic deformation at multiple interface points.

A smart choice of location is also important, because when using the Craig-Bampton modes
with the floating frame formulation, the total degrees of freedom will consist of 6N DOF for N -
interface points, and an additional 6 DOF for the rigid modes obtained from absolute floating frame
coordinates. This creates an overlap, because the rigid body modes are counted twice. This can
be avoided by ensuring that there is no deformation at the location of the floating frame and then
evaluating the Craig Bampton modes at the location of the floating frame. This constraint can be
numerically represented as:

[φi
C B ]q̇ i ,i

i = 0 (4.70)

where [φi
C B ] is the (6×6N ) matrix of Craig-Bampton modes evaluated at the local frame. Physically,

this constraint indicates that the floating frame remains attached to the same material point in both
deformed and undeformed configurations. This ensures that the rigid body modes are represented
by the floating frame and only the elastic modes are taken into account from the Craig-Bampton
reduction, thereby eliminating the non-unique modes. The CoM can be considered to be a point,
which does not suffer from deformation, because the elastic deformation in the system is assumed
to be very small. Additionally, by placing the floating frame at the CoM of the system, its coordinates
can be easily represented in terms of absolute interface coordinates, eliminating it from the EOM
and establishing constraints without the need for Lagrange multipliers. This also provides the EOM
some consistency for all three phases. Therefore, for the rest of the research, the location of the
floating frame will be assumed to be at the CoM of the system.

4.4.3. Elimination of the Floating Frame from the Kinematic Description
As stated in the previous section, the floating frame will be located at the CoM of the system and not
at any interface point. To ensure uniqueness in the modes chosen, it is required to place the float-
ing frame at a location with no deformation. This allows simplification of the complete multibody
formulation to absolute coordinates of interface points.

Figure 4.9 shows a body with the floating frame located at Pi on the rigid hub, connected to two
flexible appendages. The interface points P j and Pk are placed at the connection points of these
bodies, with their position defined with respect to the floating frame using generalised coordinates
(with reduced degree of freedom), q i ,i

j and q i ,i
k . The floating frame itself is defined with respect to

the inertial frame with {r o,o
i ,C o

i }. By eliminating the floating frame, the position of the interface co-
ordinates is given by {r o,o

j ,C o
j } and {r o,o

k ,C o
k }.

In a more general case containing N interface points, with Pi still representing a non-inertial
point, where the floating frame is placed. The deformation (q i ,i

i ) of this point due to an arbitrary
interface point, P j can be represented by reduced modes related to the interface point,φi

j . The total
elastic deformation of Pi due to all the interface points can then be given using superposition of all
modes (φi

j ) and the generalised coordinates (q i ,i
i ), given by:

q i ,i
i =

N∑
j=1

φi
j q i ,i

j (4.71)
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Figure 4.9: Relative and Absolute representation of interface points P j and Pk

Due to the nonlinear relation between the relative and absolute position of the interface points, as
well as floating frame (because the system changes with time), these constraints cannot be solved
at position level (Ellenbroek and Schilder, 2017). Solving this at velocity level, however, is an option.
Therefore, differentiating Equation (4.71), with φ̇i

j = 0, gives:

q̇ i ,i
i =

N∑
j=1

φi
j q̇ i ,i

j = 0 (4.72)

Substituting Equation (4.69), the equation becomes:

q̇ i ,i
i =

N∑
j=1

φi
j ([C i

o]v o,o
j − [−r̃ i ,i

j ][C i
o]v o,o

i ) = 0 (4.73)

Rewriting this to give the relation between the velocity of floating frame and the absolute velocities
of the interface points gives:

[Q i ][C i
o]v o,o

i =
N∑

j=1
[φi

j ][C i
o]v o,o

j where [Q i ] =
N∑

j=1
φi

j [−r̃ i ,i
j ] = [φi

C B ][φi
r i g ] (4.74)

Here, [Q i ] is a (6×6) matrix representing the elastic deformation (due to the reduced modes) of the
interface points. The matrix [−r̃ i ,i

j ] represents the 6 rigid body modes of the deformed body at the
interface points relative to the floating frame at Pi . The summation can be represented as the linear
combination of all Craig-Bampton modes. When the body is undeformed, the position vectors r i ,i

j

will be equal to position vectors x i ,i
j . As a result, [Q i ] becomes an identity matrix, and is therefore

always invertible. Hence, the absolute velocity of the floating frame can be written as:

v o,o
i = [C o

i ][Q i ]−1
N∑

k=1
φi

j [C i
o]v o,o

j (4.75)

Writing Equation (4.75) with a more simplified notation:

q̇ o,o
i = v o,o

i = [C o
i ][Zi ][C̄ i

o]v o,o
j (4.76)

where, v o,o is a (6N × 1) vector containing the absolute velocities of all interface points, [C̄ i
o] is a

(6N ×6N ) matrix containing an assembly of (6×6) rotation matrices, and lastly, [Z i ] is a (6×6N )
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transformation matrix, which defines the relation between the absolute motion of the interface co-
ordinates and the absolute motion of the floating frame. These can be mathematically represented
by:

v o,o =


v o,o

1
...

v o,o
N

 [C̄ i
o] =


[C i

o]
. . .

[C i
o]

 (4.77)

[Z i ] = [Q i ]−1[φi
C B ] = [Q i ]−1

(
φ1 · · · φN

)
(4.78)

where the subscript "CB" in φi
C B represents the reduced modes. Here, [Z i ] denotes the rigid body

motion due to the motion of an interface point in floating frame at Pi . Recalling Equation (4.69) and
adapting it for multiple interface points, the local velocity of the deformed body becomes:

q̇ i ,i = [
C̄ i

o

]
v o,o − [− r̃ i ,i ][C̄ i

o

]
v o,o

i (4.79)

where the terms without a subscript represent the compound matrices containing the position and
velocity of all interface points. Substituting v o,o

i from Equation (4.76), the local velocity of the de-
formed body can be written in terms of absolute velocities of interface points, and is given by:

q̇ i ,i = [
C̄ i

o

]
v o,o − [φi

r i g ]
[
C i

o

]
[C o

i ][Z i ][C̄ i
o]v o,o (4.80)

Simplifying and writing in matrix form,

q̇ i ,i =
[

[φi
r i g ] I

]−[Z i ]

I

 [C̄ i
o]v o,o = [T i ][C̄ i

o]v o,o (4.81)

Here, q̇ i ,i represents a 6N ×1 column matrix containing the local velocities relative to the floating
frame due to elastic deformation in the body, [φi

r i g ] is a 6N ×6N compound matrix containing the
rigid body modes for all interface points given by:

q̇ i ,i =


q̇ i ,i

1
...

q̇ i ,i
N

 , [φi
r i g ] =


−r̃ i ,i

1
...

−r̃ i ,i
N

 (4.82)

Lastly, [T i ] is a (6N × 6N ) transformation matrix which defines the relation between the absolute
and local motion of the interface coordinates.

[T i ] = I − [φi
r i g ][Z i ] (4.83)

Here, [T i ] can be physically interpreted to remove the rigid body motion from the motion of an
interface point, such that only the velocity of the elastic part remains (Dwarshuis, 2017). The two
matrices [Z i ] and [T i ] are called the transformation matrices and the final velocity equation in
terms of the transformation matrices is given by:q̇ o,o

i

q̇ i ,i

= Aq̇ o,o , where A =
[C o

i ][Z i ][C̄ i
o]

[T i ][C̄ i
o]

 (4.84)

Therefore, Equation (4.84) allows the successful formulation of the dynamic equations of floating
frame completely in terms of inertial coordinates. Together, Equations (4.76) and (4.84) define all
degrees of freedom for the floating frame formulation in absolute interface coordinates.
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4.4.4. Final Equations of Motion in Absolute Coordinates
The equations of motion can be derived using the principle of virtual work, as stated in Section
4.2. The equations can be divided into two parts, based on the standard floating frame formula-
tion, wherein the DOF of the system are represented using the absolute floating frame coordinates
(q o,o

i ) and the local interface coordinates with respect to the floating frame (q i ,i
j ). The modes and

respective mass and stiffness matrices for the local coordinates are chosen based on Craig-Bampton
reduction. Therefore, the generalised equation of motion for a FMS can be written in the form:

M q̈ +C q̇ +K q =Q (4.85)

Here, the M and K denote the global mass and stiffness matrices, q are the generalised coordinates
of the floating frame and local frames of the system, C q̇ includes the quadratic velocity inertia forces
due to terms like damping, centrifugal and Coriolis forces, and lastly, Q includes the externally ap-
plied forces and moments like gravity gradient, control torques and so on. In a more elaborated
floating frame formulation, the equation can be written as: M i

r r M i
r f

M i
f ,r M i

f f

q̈ o,o
i

q̈ i ,i
j

+
C i

r r C i
r f

C i
f ,r C i

f f

q̇ o,o
i

q̇ i ,i
j

+
0 0

0 K i
f f

 0

q i ,i
j

=
∑

F o
i

Li
j

 (4.86)

In the above equation, the subscript f indicates the flexible part and r indicates the rigid part. A
coupling between rigid and flexible DOF is indicated by r f or f r . Also, it can be noted that the
stiffness matrix only has a flexible part, because the rigid body does not induce any elastic forces.
Vector

∑
F o

i is the sum of all external forces and moments in the floating frame with respect to the
inertial frame. Li

j gives the effect of an external force or moment on the mode shapes.
To transform the system from floating frame formulation to an absolute formulation, Equation

(4.84) can be used. Rewriting:q̇ o,o
i

q̇ i ,i

= Aq̇ o,o , where A =
[C o

i ][Z i ][C̄ i
o]

[T i ][C̄ i
o]

 (4.87)

To get the acceleration, these terms can be differentiated. This gives:q̈ o,o
i

q̈ i ,i

= Aq̈ o,o + Ȧq̇ o,o (4.88)

Performing the transformation in Equation (4.85) by pre multiplying by AT and post multiplying by
A, the equations of motion become:

AT M Aq̈ o,o + AT (M Ȧ +C A)q̇ o,o + AT K q i ,i = AT Q (4.89)

By making some simplifying assumptions (that will be listed below), the equations can be reduced
to (Schilder et al., 2018):

[R̄o
j ][MC B ][R̄ j

o ]q̈ o,o + [R̄o
j ][Ti ]T [Cl oc ]q̇ o,o + [R̄o

j ][Ti ]T [KC B ]q i ,i =Qo (4.90)

where [MC B ] and [KC B ] represent the local mass and stiffness matrices obtained from the FE model
after performing Craig-Bampton reduction. While [Cl oc ] is the generalised velocity matrix (detailed
description by van de Wetering (2018)). It can be noticed that the elastic forces are still expressed in
terms of floating frames and not with respect to inertial frame. This is because the transformation
to absolute coordinates cannot occur at position level. Comparing the terms of Equations (4.90)
and (4.89), it can be seen that the stiffness matrix in both the equations are the same. To match the
acceleration and velocity terms, it is assumed that (Dwarshuis, 2017),
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1. The mass matrices are expressed in the undeformed configuration of the component (for the
acceleration term).

2. The mass matrix is lumped (for the velocity term).

3. Each body is defined by one element at the interface points, which guarantees that the inter-
face points chosen for this formulation and the floating frame formulation are the same (for
velocity term).

A more detailed derivation of these assumptions can be found in Dwarshuis (2017). Therefore,
Equation (4.90) represents the final EOM of a superelement, suitable for the simulation of flexible
multibody dynamics.

4.4.5. Solving the Equations of Motion
Now that the EOM for the FMS have been formulated in absolute interface coordinates, the atten-
tion can be shifted to solving the problem. The mass and stiffness matrices can be obtained from
the CB-reduction. As stated before, for this research all quadratic velocity inertia terms (like Coriolis
and centrifugal stiffening forces) except damping will be ignored. Damping becomes an important
source of energy dissipation to ensure stability of large space structures in the presence of unwanted
vibrations. This is discussed in further detail in Section 6.3

As discussed before, this formulation is sensitive to the location of the floating frame. But be-
cause no relationship can be developed between the absolute interface coordinates at position level,
the transformation is performed at velocity level. Therefore, numerical integration is required to
solve the EOM for the position. An inherent problem associated with this numerical solution is a
drift in the position of the floating frame due to numerical error. To check and correct this drift,
Newton Raphson iterations are performed. The EOM are therefore not solved for large absolute
positions of the interface points, but instead for small increments or changes in the coordinates
within the time increment. The current floating frame coordinates are taken as an initial estimate
for the next iteration. According to Schilder et al. (2018), only a few Newton Raphson iterations are
required. Once sufficient accuracy is obtained for both absolute interface coordinates and abso-
lute floating frame coordinates, the local interface coordinates and local elastic deformation can
be determined consistently. Finally, the EOM can be solved again. Figure 4.10 summarises the im-
portant steps to derive the complete EOM for the multibody system in terms of absolute interface
coordinates.
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STEP 1:

Define kinematics of a material point, Pj on a flexible body with respect to floating frame reference (FFR)
located at point, Pi.

This results in an expression for relative velocity of Pj  with respect to Pi  [Eq:4.64], which is given by
difference between absolute velocity of material point and absolute velocity of floating frame reference.

STEP 2:

Define relation between local elastic velocities and absolute velocities of the material point or interface
point (IF).

This results in Equation 4.68, which defines the local elastic velocity with respect to FFR. It is given by
the difference between the absolute velocity of the IF (containing both elastic + rigid body modes) and
the rigid body motion of the body in terms of absolute velocity of FFR.

STEP 3:

Select important elastic modes and avoid the system rigid body modes being accounted twice by
applying constraints.

The extra rigid body modes are eliminated by computing the CB modes, which is used to select the
important modes, at the location of FFR, placed at the body's centre of mass. It is assumed that the
center of mass remains the same in both deformed and undeformed configuration, therefore, giving only
the rigid body modes. This constraint is represented by Equation 4.72

STEP 4:

Eliminate the FFR from the kinematic description. 

The mass and stiffness matrices computed at the FFR of the body can be transformed in terms of
absolute interface coordinates using rotation matrices, T and Z computed using Equation 4.84. At this
point, the system can be constrained directly by equating the overlapping interface points, without the
need for Lagrange multipliers.

STEP 5:

Final formulation of dynamic equations of the flexible multibody in terms of absolute interface
coordinates.

Basic generalised equation of motion is derived using Lagrange principle in the FFR and then, the
transformation is performed using T and Z matrices. The end result is the dynamic equation in terms of
absolute interface coordinates given by Equation 4.90

STEP 6:

Solving the final equations of motion.

The solution is obtained through integration of the EOMs, which are written in terms of velocity (and not
position) because the transformation of FFR to absolute IF coordinates could only be performed at
velocity level. All fictitious forces and quadratic inertia terms are neglected. Newton Raphson iterations
are required to correct for a drift introduced in FFR location as a result of numerical inaccuracies. 

Figure 4.10: Summary of deriving FMD in terms of absolute interface coordinates



5
Simulator

In the previous chapters, the theory behind different aspects of the research has been introduced.
In Chapter 3, the flight dynamics associated with rigid body motion was discussed. Further, the
guidance and control design required for simulation were also set up in the same chapter. Based on
the basic architecture of a GNC system, as shown in Figure 5.1, some benchmark simulations were
made using the PD and INDI controllers. It was assumed that the plant behaves like a rigid body,
and the sensors and actuators are ideal. In Chapter 4, the dynamics associated with a FMS were
derived. Having established all this, it is now possible to build a simulator and replace the plant
dynamics with the equations derived for the FMS. The final simulator would enable the analysis of
dynamics and controllability characteristics of the system, when the flexible vibrations are treated
as unpredictable disturbances.

In this chapter, the control simulator will be assembled with the dynamics from the new multi-
body modelling technique based on absolute interface coordinates. First, the basic architecture of
the complete system will be set up and the individual subsystems will be addressed in detail in Sec-
tion 5.1. Second, in Section 5.2, the subsystem (plant) based on the new FMD methodology will be
verified and validated to ensure proper working of the simulator.

5.1. Simulator Architecture
Figure 5.2 shows the architectural design for the simulator developed in this research (using the
software MATLAB® as programming environment). In the figure, the basic architectural design of a

Mission manager Guidance Control

Plant

Actuators

Sensors

Ideal

Ideal

State State

Error

Plant

Control

Others

Guidance

Settings

+ +
--

Mc

State

Figure 5.1: Basic GNC architecture
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typical GNC system (refer Figure 5.1) has been maintained. The simulator shown in Figure 5.2, can
be divided into four subsystems - Mission manager, Guidance, Controller and lastly, Plant or FMD.
The mission manager first sends the settings to the plant, guidance and controller subsystems to
initialise the simulation. Then, guidance outputs the commanded state, which is compared against
the current state from the plant. The error between the states is then fed into the controller, which
computes the required control moment for the plant. The plant uses the control input to propagate
to a new state and feeds it back for error computation. The loop continues until the error between
the commanded and current state is very small and the system has been stabilised. In the coming
section, the subsystems will be discussed in further detail.

5.1.1. Mission Manager
The mission manager is responsible for initialisation of the other subsystems, as shown in Figure
5.2 in the yellow block. The plant, being configuration specific, needs to be initialised based on
the phase of the mission. For instance, the synchronisation phase will include one solar panel and
one lumped mass to balance the inertia. The connected phase will include two asymmetric solar
panels with two lumped masses to account for inertia. The plant’s initial state is also defined here.
Further, the plant requires information about material properties, location of interface points and
boundary conditions. Other settings indicating information about damping, simulation time, time
step for integration and so on, is also included here. Similarly, the guidance is dependent on the
mission phase as stated in Section 3.5, which is initialised by the mission manager. The controller
selection between PD or INDI is also made in this subsystem, which passes on the respective gains
to the controller. Lastly, the controller sampling frequency is set.

5.1.2. Guidance
Based on the current phase of the mission, the guidance subsystem first sets up the state vector
containing angular velocity, quaternions and pseudo Euler angles. Note that three extra states of
pseudo Euler angles were added due to the anomaly in the controller. Therefore, the state for the
target during synchronisation phase, now becomes:

x0 = (3.5, 3.5, 3.5, 0, 0, 0, 1, 0, 0, 0)T (5.1)

Similarly, the different operations in the connected phase, including detumbling only, detumbling
and reorientation, and reorientation only, have ten states each in the vector, depending on the an-
gular velocity case selected from Table 2.2. The subsystem also includes the rigid body EOM, which
use the initial state vector to derive the commanded state at every time step at the controller sam-
pling frequency. This commanded state is then used to compute the error in the plant state.

5.1.3. Controller
The controller block uses the error in state to compute the control moment using the control laws
stated in Section 3.6. The controller output saturation is initially set to ±50 Nm as proposed by
Habets (2015). However, a sensitivity study will be performed for the selection of a better control
limit. Because the main goal from the control perspective is to control the rotational motion of the
satellite, a simple filter is applied in the block to check if the error in angular rates is above a certain
threshold. If the condition is met, rate control is applied first to bring the error below the threshold
after which the full state control is applied using a PD or INDI controller.

The subsystem contains a Zero-Order Hold (ZOH), which is used to hold the same value of con-
trol moment for the chosen sampling time and mimics the working of an on-board digital controller.
The ZOH discretises the control signal, as shown in Figure 5.3. By doing this, uninterrupted control
is applied to the plant even when the time steps used in the plant are smaller. The accuracy of
ZOH depends on the sampling frequency. The larger the frequency, the closer the signal gets to a
continuous one.
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Figure 5.2: Simulator Architecture
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Figure 5.3: Discretised control using ZOH

5.1.4. Plant
The plant subsystem contains the FMD defined in Chapter 4, which is the main focus of the thesis.
It is further divided into 3 levels - Body, Multibody and Solve Dynamics. Each block will be discussed
in further detail.

Body Level
The information and settings about the multibody system configuration, which comes from the
mission manager, are inputs to the body level. The initialisation of each flexible body (or element)
in the multibody system occurs at this level. First, the mass and stiffness matrices are set up using
principles of FEM. Then, the position and rotation matrices for each node are defined, based on
the system geometry. Further, the Craig-Bampton (CB) reduction is applied to obtain the important
modes of vibration, and also to reduce the mass and stiffness matrices per element.

Next, the constraints are set up at the end nodes of each element, which serve as the interface
points for the multibody system. Then, the positions of interface points and Floating Frame Ref-
erence (FFR) are specified on each body. Several transformation matrices are defined to translate
between interface points and global states, between interface points and FFR, and between global
states and FFR. Lastly, the initial local deformation is computed based on the mode shapes and,
subsequently, the position vectors for FFR and the transformation matrices are updated. The final
output of the body level is a structure containing a list of bodies with mass, stiffness, modes, po-
sition and transformation matrices defined individually. Another output is a list of constraints on
the joints between two adjacent bodies. In other words, it contains information about the overlap-
ping nodes at the interface points. The body level block is called only once at the beginning of the
simulation to initialise the plant.

Multibody Level
The multibody level uses the list of bodies and joints to assemble the structure into global mass and
stiffness matrices. At this point, the boundary conditions are applied to the system to constrain any
DOF identified in the original configuration. These constrained DOF will remain fixed throughout
the simulation and can be excluded from the state vector for reducing computation time. Since
there are a number of overlapping interface points at the joints, the states can be further reduced by
considering only one set of dependent (overlapping) states. Note that the state vector initialisation
for the plant only occurs once during the simulation. Once the complete state vector is set up, the
kinematics and dynamics can be updated.
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First, to update the kinematics, all the position vectors and transformation matrices are up-
dated. With the new global mass and stiffness matrices, the acceleration is computed with the in-
fluence of external forces like control moments. If the settings specify addition of damping, it is also
accounted for in this step. Second, the state derivative is assembled and sent to the solve dynamics
level for integration.

Solve Dynamics Level
The solve dynamics level contains an integrator for the solution of state derivatives from the multi-
body level. The control moment from the controller is also an input to this block. At this level,
the specifications for integration, including relative tolerance, absolute tolerance and step-size are
specified. For this research, both relative and absolute tolerances for integration are set to 10−7

and an integration step-size of 10−3 s is used. The in-built MATLAB® ordinary differential equation
(ODE) solvers like ode45, ode113 and ode15s did not perform well in terms of accuracy and com-
putation time. Therefore, a high-order, variable-coefficient Ordinary Differential Equation solver
called VODE is used. With fixed-leading-coefficient implementation, the integrator shows bet-
ter performance both in terms of accuracy and computation time. It is suitable for solving both
stiff and non-stiff differential equations. Originally part of the NetLib mathematical library (Brown
et al., 1989), it is adapted to MATLAB® for the simulation.

After every integration step, the new state along with the control moments is fed back to the
multibody block for computation of the derivative for the next time step. Since the controller sam-
pling frequency (25 Hz) is an order smaller than the frequency used for integration of dynamics
(1000 Hz), the same control moment is applied until the integration time step matches the control
time step. This is achieved using the ZOH from the controller subsystem. The new state is fed back
to the control loop for error computation at the control sampling frequency. Once the plant has
been initialised, only the multibody and solve dynamics levels remain in the control loop. Hence,
the integration continues till the final simulation time is reached.

Since the analysis of FMD is pivotal for this research, the plant must be verified and validated to
ensure that the model is correct and fulfils its intended purpose. Therefore, in the coming section,
the part of software defining the plant will be checked.

5.2. Verification and Validation
In Figure 5.2, the blocks highlighted in blue represent the structural dynamics of a flexible sys-
tem, which acts as a plant for the control system. In this section, the working of the plant model
will be validated using test cases given by Ellenbroek and Schilder (2017), originally adapted from
Jonker (1988) (slider crank) and Cardona (2000) (spherical jointed beam). Additionally, the kinetic
energy, elastic energy, total energy and internal/external work of the system will be examined to un-
derstand the dynamics better and to ensure that the total energy is balanced.

By law of conservation of energy, the total energy, Etot , of the system (assuming no dissipation)
should be conserved at every time step. This should account for elastic energy (or potential energy),
Eel as , kinetic energy, Eki n , and external work of the system, Wext . Therefore, the total energy of the
system is calculated using

Etot (t ) = Eel as(t )+Eki n(t )+Wext (t ) (5.2)

Further, the elastic energy should be calculated for each element at the body level (van de Weter-
ing, 2018) at each time step. It is given by:

E b
el as(t ) = 1

2

(
ui ,i (t )

)T KC B
(
ui ,i (t )

)
(5.3)
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Figure 5.4: Test case for verification

where, ui ,i (t ) is the elastic deformation of each element with respect to the floating frame at time t .
Then, the total elastic energy is calculated at the multibody level (for N bodies) given by:

Eel as(t ) =
N∑

b=1
E b

el as(t ) (5.4)

The kinetic energy is also calculated at multibody level and is given by:

Eki n(t ) = 1

2

(
v o,o(t )

)T Ms y s
(
v o,o(t )

)
(5.5)

where v o,o(t ) is the velocity of each element with respect to the inertial frame at time t . Ms y s repre-
sents the system mass matrix. The total work is calculated as the sum of initial energy of the system
and the work done by external forces W (t ), integrated over the total time, T , as shown below:

W (t ) =
∫ T

t=0
dW (t ) dt +Ei ni t =

∫ T

t=0
(F o(t ))T v o,o(t ) dt +Ei ni t (5.6)

where v o,o(t ) is the velocity vector of the interface point with respect to inertial frame and F o(t )
represents the external forces acting at the interface. Lastly, Ei ni t represents the initial energy of
the system, which comes from the prescribed motion to the system. For the validation, the first
test cases is that of a 2D slider crank mechanism (Jonker, 1988). The configuration of the system
is shown in Fig. 5.4(a). The system consists of a rigid crank, which is rotating with a constant pre-
scribed angular velocity of 150 rad/s. The crank is then attached to a flexible connector of length
0.3 mm and a circular cross-sectional radius of 0.006 m. The connector is assumed to have material
properties of steel, i.e., a Young’s modulus of 2·1011 N/m2 and mass density of 7800 kg/m3. The
other end of the connector is then linked to a slider, which is allowed to move without friction. The
mass of the slider is half of that of the connector. The constant angular velocity prescribed to the
crank should induce a linear motion in the slider in the absence of flexibility. However, due to the
elastic deformation of the connector, some perturbations can be observed in the slider motion. To
model the dynamics of flexible connecter, it is divided into three nodes. The Point A in Fig. 5.4(a),
which is halfway between the two end points serves as the location for the floating frame. The other
two end points act as interface points. Figure 6.3 shows the displacement or mean motion of the
midpoint throughout the simulation. On comparing with the reference dynamics obtained from
the multibody software “Spacar" 1, the results from the new method show an exact match. Figure
5.5(b) shows the total energy of the system. It can be seen that the work done by the system is trans-
lated into kinetic energy and the total energy of the system remains zero and hence, conserved.

The second test case is that of a 3D beam constrained by a spherical joint at one end (Car-

1Private communication, Marcel Ellenbroek, 2018
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Figure 5.5: Slider Crank
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Figure 5.6: Beam with Spherical Joint

dona, 2000), as shown in Fig. 5.4(b). The beam is 141.42 mm long with a cross-section area of
9 mm2 and an area moment of inertia of 6.75 mm4. The mass density is 7.8·10−3 kg/mm−3 and
a Young’s Modulus of 2.1·106 N/mm2. The beam is given a torque of 200 Nmm about the vertical
axis for the first 10.2 s and then, an impulsive force of 100 N is applied at the tip in vertical direc-
tion. The beam is modelled using two beam elements, and the resulting motion is completely in
response to the external force and moment. The absolute angular velocity about the vertical axis is
plotted against time. From Fig. 5.6(a), it can be seen that the new method matches the reference
very closely. Further, in Fig. 5.6(b), a clear rise in the system’s energy can be seen when the impulse
is added to the system. The energy remains conserved at all time as the sum of the system’s kinetic
energy, elastic energy and external work. Both cases follow the Law of Energy Conservation, thus
verifying the software based on the new formulation. The structural model of the satellite can now
be modelled to fit the software design.
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6
Structural Modelling of the Satellite

A typical multibody structure can be divided into flexible and rigid bodies. The displacement field
consists of the flexible elastic deformation superimposed on the rigid body motion. To analyse the
dynamics, the satellite configuration must be structurally modelled in a way, which is compatible
with the new FMD methodology described in Chapter 4. The number of structural elements, mate-
rial properties and mass properties also play a crucial role in defining the flexible dynamics accu-
rately. A sensitivity study will be performed for the selection of these parameters for both e.deorbit
and stacked configuration in Section 6.1.

Since the elastic vibrations are perturbations to the rigid body motion, the control moment is
applied to the centre of mass of the configuration, which lies on the rigid hub due to its large mass.
Therefore, it is crucial to also incorporate the rigid body dynamics in the flexible multibody system.
In other words, the controller design for the flexible multibody system (minus the elastic perturba-
tions) should be based on the same (satellite) properties as the rigid body. This also facilitates the
comparative study of control-structure interaction of the flexible model as compared to the rigid
model. The adaptation of rigid inertia properties to the flexible system will be discussed in Sec-
tion 6.2.

Lastly, vibration of flexible appendages involve continuous exchange of kinetic and potential
energy. In the absence of dissipative forces, the elastic energy of the system keeps increasing, and
the system can become too dynamic for the controller to stabilise. Therefore, most flexible space
structures have a small amount of active (controlled) or passive (structural) damping in the system,
to improve the closed loop stability. Therefore, in Section 6.3, a simple yet effective way of including
damping in weakly damped systems is explained.

6.1. Modelling of flexible elements
To define the position of the floating frame in the deformed configuration with respect to the inter-
face points, it is advantageous to select a beam or plate configuration. This is because the deforma-
tion of any material point on these elements can be easily defined with respect to the local frame
using established shape functions. Further, in the stacked configuration, the geometry becomes
asymmetric. Choosing simple beam elements allows superposition of the oscillations caused by the
dominant natural frequencies of the two asymmetric panels, and verification that the response of
the system is as expected. Therefore, in this research, the flexible appendages will be represented
using beam elements.

To model the dynamics of the solar panels as closely as possible using beams, a number of pa-
rameters must be carefully selected. These are:

• Young’s Modulus (E): This is a property of a material to resist deformation along an axis in

83
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Figure 6.1: Angular velocity response for lower limit and upper limit of the solar panel

the presence of forces. A high value of Young’s modulus corresponds to a material with high
stiffness. According to Hassmann and Fenili (2007) and Fufa et al. (2010), for a 1 m long so-
lar panel, the Young’s modulus ranges between 4.8×1010 N/m2 to 5.8×1010 N/m2. To analyse
the dynamics associated with these lower and upper limits, test simulations are made for a
2.9 m long beam constrained with a spherical joint on one end, initially in a stationary state
(defining the configuration of the chaser). Figure 6.1 shows the response of the system to a
0.1 N force applied at the tip in X, Y and Z-directions for the first 10 s. The simulation time
is 30 s with a timestep of 10−3 s. From the figure, it can be observed that the lower limit of
E = 4.8×1010 N/m2 suffers from larger amplitude vibrations compared to the upper limit of
E = 5.8×1010 N/m2 about all three axes. However, the mean value about which the oscilla-
tions occur, remains very similar. Since the test case for the research has a relatively high
angular velocity and the modelling technique is new, a stiffer system (with smaller vibrations)
is preferable for the preliminary analysis. Therefore, it will be assumed that a 1 m long beam
element representing a solar panel has a Young’s modulus of 5.8×1010 N/m2.

• Poisson’s ratio: It is assumed that the elastic deformations are small and there is no strain (or
yield) in the system. For such a system, typically a Poisson’s ratio of 0.3 is taken.

• Length: The length of a beam element also has an effect on the stiffness. The smaller the
beam element, the higher will be its stiffness (for the same cross-sectional area and Young’s
modulus). However, the total length of the beam (or sum of beam elements) is taken equal to
the length of the solar panel.

• Cross-section area: Modelling of beams demand that the cross-sectional area of the beam is
negligible compared to the length. Therefore, a square cross-sectional area of dimensions
0.03×0.03 m is assumed. Here, the solar panel, which is a plate like structure, is modelled as a
beam element, because its main load carrying direction is along the central longitudinal axis
of the panel. The solar panel is connected to the rigid hub through a boom, which transfers
the flexible motion of the panel to the rigid hub. Since the boom acts like a slender beam,
the whole flexible appendage is modelled as a beam for simplicity. This model can be further
developed to a boom with flexible plate in future work.

• Discretisation of beam elements: The term discretisation refers to the number of beam ele-
ments used to divide the flexible body. For the same Young’s modulus and cross-sectional
area, the larger the discretisation, the smaller will be the length of the beam element, which
results in a stiffer system. For very long flexible bodies, discretisation becomes necessary, be-
cause the Young’s modulus cannot be made too high to attain the required stiffness. However,
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Table 6.1: Material properties of chaser solar panel (sensitivity analysis)

No. of beam
elements [-]

Young’s Mod-
ulus [Nm−2]

Length per
element [m]

Mean computa-
tion time [s] (10
runs)

Case 1 1 1.71×1011 2.90 993

Case 2 3 5.64×1010 0.97 6,717

Case 3 5 3.50×1010 0.58 11,131
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Figure 6.2: Position of tip of solar panel about X, Y and Z axis for 3 cases given in Table 6.1

for dynamic analysis, the number of interface points increase with larger number of beam
elements and the state vector becomes very large. This results in large computation time.
Therefore, it is imperative to find a balance between length, Young’s modulus and discretisa-
tion to model the flexible elements as accurately as possible, without much increase in the
computation time.

To find the correct balance between length (L), Young’s modulus (E) and discretisation
(number of beam elements), a sensitivity study is performed to get the best performance in
terms of accuracy and computation time. Theoretically, by maintaining the same E/L ratio, it
should be possible to have the same elemental stiffness. For the chaser solar panel length of
2.9 m, this analysis will be performed for three test cases as shown in Table 6.1. For different
number of beam elements, the same E/L ratio is maintained. The absolute position of the tip
node is studied to analyse the effect on accuracy, for a constant angular velocity of 2 ◦/s about
all axes for a 30 s simulation with a timestep of 10−3 s. The computation time is averaged over
10 runs for each of the three cases1. Figure 6.2 shows that the effect of discretisation on the
accuracy is not large for the selected test cases, since all three axes show comparable results.
However, the simulation time tabulated in Table 6.1 shows that Case 1 requires the least com-
putation time. Therefore, for the rest of the research, flexible elements will be modelled using
the material properties stated for Case 1. For consistency, the same length of beam elements
will be used to define the solar panels of the stacked configuration as well. This will require the
target solar panel, which is 14.2 m long, to be divided into five beam elements. So, the stacked
configuration in the connected phase would require a total of 6 beam elements to model the
flexible bodies.

• Density: The density of the flexible elements is computed by simply dividing the mass of the
solar panel by the volume of the beam. This is done to capture the mass properties of the solar

1Processor: Intel (R) Core (TM) i5 - 7200U CPU @ 2.50 GHz 2.70, Memory: 8.00GB, Graphics: NVIDIA GeForce Experience
Version 3.16.0.140
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panel, which has a crucial role in the flexible dynamics.

• Boundary Conditions: In this research, it is assumed that the chaser is already at the location
of Envisat and needs to synchronise with its attitude at a fixed location. In other words, it is
assumed that there is no translational motion and the satellite must spin about its centre of
mass at the same location. Therefore, assuming the rigid body as a point mass, the solar panel
is constrained on one end with a spherical joint. This allows the solar panel to have an angular
velocity in any direction, but constrains the position of the end attached to the rigid body. In
the stacked configuration, a similar assumption is made. The rigid body is assumed to be a
point acting like a rigid hinge between the two panels, allowing rotation about this fixed point,
but constraining the position of the ends attached to the rigid body.

While the rigid bodies can be modelled as stiffer flexible bodies (as it is done in typical FEM formu-
lations), such an assumption proves to be computationally very heavy and induces high frequency
vibrations due to numerical sensitivities as a result of the stiff system of differential equations. Al-
ternatively, it is possible to account for the rigid body properties, without physically modelling it in
the FMS. One possible way of achieving that will be discussed in the coming section.

6.2. Modelling of rigid elements
An important property of a rigid body that plays a major role in the dynamics of a system is the
mass moment of inertia (also called rotational inertia). It is a measure of the body’s resistance to
change its direction of rotation and/or magnitude. Since it depends on the mass and dimensions of
the body, the stacked configuration has an inherently larger rotational resistance. However, accord-
ing to Shabana (1997), rotary inertia can be added to a flexible system using lumped masses. But,
lumped masses are point masses, which do not have a geometry and, therefore, cannot have an in-
ertia about their own axis. This eliminates the possibility to place the lumped mass at the spherical
joint in the flexible model (where the control moment is also applied). Therefore, to add rotational
inertia to the rigid body the lumped masses are placed at the adjacent node (or the next interface
point). This way, the inertia can be translated to the constrained node using Steiner’s parallel axis
theorem, which gives a relation between the inertia tensor of a body with mass M relative to the
centre of mass (ICOM ), and the inertia tensor relative to another point O (IO) at a distance d from
the centre of mass of the body. This gives:

IO = ICOM +Md 2 (6.1)

For a point mass, the inertia simply becomes Md 2. The mass matrix used here is a diagonal matrix.
It should also be noted that the flexible body itself has some rotational inertia. For a slender beam,
the moment of inertia can be computed about an axis at an end point using I = mL2/3, where m
is the mass and L is the length of the beam. For a slender beam, the inertia about the axis along
the length is negligible, while the other two axes can be computed using mL2. The sum of the in-
ertia from the lumped masses, Im , and, that from the slender beam, Is should account for the total
inertia of the system, IT , which is given in Table 2.3 for the chaser and Table 2.5 for the stacked
configuration. Therefore, the lumped mass can be calculated about each axis using:

IT = Is +Md 2 (6.2)

M = (IT − Is )/d 2 (6.3)

It must be stated that the computation of the mass moment of inertia for flexible body is not the per-
fect representation of the body’s inertia. This may lead to a small mismatch between the inertia of
the flexible multibody system and the rigid body inertia stated in Section 2.6. Therefore, the chosen
nonlinear controller must be robust and not very sensitive to these model mismatches. Any large
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Figure 6.3: Simplified representation of the structural model for synchronisation (top) and connected (bottom) phases.

difference in inertia will still result in destabilisation of the system. It is possible to model the inertia
better using shape integrals defined with respect to the global frame (Shabana, 1997). However, for
this research, since the elastic deformation is defined with respect to the floating frame, the inertia
shape integrals are defined locally. Therefore, this method cannot be implemented currently, but
will be included in the future work.

Figure 6.3 shows the simple representation of the final configuration of the system of the chaser
and the stacked model for synchronisation (top) and connected phase (bottom), respectively. Note
that the lumped masses (shown in red) are added to the fixed mass matrices of the interface point
(or node) only after the CB reduction has been performed. This ensures that the natural modes are
not affected by the “pseudo" modelling of the rigid body inertia. Both systems are constrained at
the spherical joint, which acts as the CoM of the system. The control moment for both the phases
are applied at this location.

To understand the sensitivity of the system to the lumped mass inertia, the dynamics of the
chaser model is simulated with an external force of 0.1 N at the tip about all axes starting with zero
angular velocity. From Figure 6.4(a), it can be confirmed that as a beam element, the flexible body
has negligible inertia compared to the one with the lumped mass. Without the added inertia, the
angular velocity about X-axis jumps to 150 ◦/s within 1 s, while the one with inertia remains very
small. Figures 6.4(b) and 6.4(c) show that the beam element contributes to some inertia in the Y
and Z-directions. However, the inertia still remains smaller than the one with lumped mass. An-
other interesting observation that can be made from the figures is that the models without lumped
inertia also suffer from larger vibrations under the force, despite having the same stiffness. Lastly,
Figure 6.4(d) shows the angular velocity evolution with time (10 s) about all axes with lumped iner-
tia included. Interestingly, the Z-axis with the smallest inertia (≈560 kgm2) shows larger vibrations
compared to the other two axes. Also, the system has a much smoother response compared to the
model without the lumped inertia. This is because the rigid body motion now dominates in the
multibody system, as anticipated.

To perform a preliminary analysis of the expected dynamics based on the different phases of
the mission, it can be stated that:

• Synchronisation: The chaser configuration needs to start from zero angular velocity and match
the target attitude, including angular velocity and orientation (which is also constantly chang-
ing with time). Sudden control moments applied at the spherical joint shown in Figure 6.3 will
cause vibration in the solar panel, which will further cause a disturbance in angular velocity.
Since the inertia of the chaser and also the size (and mass) of the flexible element is smaller, it
must be relatively easier to control the satellite in the presence of elastic perturbations.

• Connected: From the figure it can also be observed that the stacked configuration has large
asymmetry in geometry, as well as large inertia. Since it is tumbling at a rate of 3.5 ◦/s about
all axes, the system becomes very dynamic (with possibly very large vibrations) and may be
difficult to control.
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Figure 6.4: Sensitivity to lumped mass inertia

Since the vibrations will not be accounted for in the controller, the system might continue to vibrate
forever without any structural damping. Therefore, it is worthwhile to include structural damping
in the simulations to improve the stability and controllability characteristics of the system.

6.3. Damping
According to Santini et al. (1979), undamped flexible structures in space can have responses which
can increase without limits due to exchange between kinetic and potential energy. At this point,
addition of damping removes or dissipates energy from the system, preventing it from reaching an
uncontrollable state. Therefore, structural damping becomes very important for stability and con-
trol of flexible space structures. Structural damping in space structures is introduced in two ways
- passive and active damping. Passive damping, the most common way, is achieved through intro-
ducing energy dissipaters in structural joints (like torsional springs) and truss structures. However,
it is often supported by active damping through pressure controlled joints, piezo-electric elements
or damping in attitude control (through predicted behaviour or measurements with sensors). It can
be said that passive damping alleviates the vibrations to a level such that active damping can be
applied. According to Fujimori et al. (1986), Foist et al. (2004) and Rutkovsky et al. (1970), a typical
space structure has an effective damping ranging between 0.5% to 3%. However, in combination
with active damping, this value can be increased to 5% (Santini et al., 1979).

When a system is weakly damped and its eigenfrequencies are well-separated, the effect of
cross-damping can be neglected (Géradin and Rixen, 2014). This assumption, proposed by Lord
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Rayleigh, simplifies a complex multiple degree of freedom (MDOF) system to a collection of single
degree of freedom (SDOF) oscillations. Recalling the first statement, for the current configuration
and dynamic modelling, both conditions are true. Damping in space structures is very small, and
the dynamic modelling is such that the mass and stiffness matrices used in the EOM can be written
in the form,φT

C B MφC B andφT
C B KφC B , whereφC B denotes the modal mass matrix after CB reduc-

tion. This diagonalises the system and decouples the undamped modes. It is now possible to apply
proportional damping or Rayleigh damping, which is widely used to model dissipative behaviour in
complex structures. Here, the damping matrix, C , can be expressed as a linear combination of mass
and stiffness matrices (Géradin and Rixen, 2014):

C =αM +βK (6.4)

where α is the mass proportional damping coefficient, and β is the stiffness proportional damping
coefficient. These terms can then be related to the damping ratio using:

ξn = 1

2ωn
α+ ωn

2
β (6.5)

where ξn is the damping factor, andωn is the associated natural frequency. For two natural frequen-
cies, the expression can be written as: (

ξi

ξ j

)
= 1

2

 1
ωi

ωi

1
ω j

ω j

(
α

β

)
(6.6)

where subscripts i and j are associated with the first two important natural frequencies. Usually,
each natural frequency has a different contribution or critical damping ratio. However, assuming
both modes have the same critical damping factor, the values of α and β are tabulated in Table 6.2
for both chaser and Envisat solar panels. Since the chaser solar panel is smaller and susceptible
to lesser vibrations, a smaller value of damping factor can be selected. Envisat solar panel would
require larger damping but within the range of structural damping in space structures, since no
active damping is involved. Therefore, a damping ratio of 0.005 (0.5%) and 0.02 (2%) is selected
for the chaser and Envisat solar panel respectively. Note that the first two natural frequencies are
computed using the natural frequency of a cantilever beam given by :

fn = Kn

2π

√
E I

ρAL4 (6.7)

Here, Kn = 3.52 for the first mode of vibration and Kn = 22.0 for the second mode, E is the Young’s
modulus in N/m2, ρ is the density in kg/m3, A is the cross-sectional area in m2, I is the area moment
of inertia in m4 for a rectangular cross-section. A disadvantage of Rayleigh damping is that it proves
to be ineffective when a wide range of frequencies is considered (Géradin and Rixen, 2014). How-
ever, the new dynamic multibody modelling method used in this research considers only reduced
modes or important modes. Therefore, Rayleigh damping still performs well for this method. The
assumption of proportional damping also reduces the computation time, making it well suited for
control applications with longer simulation times.

To understand the effect of damping on the dynamics and stability of the system, the previously
simulated case of the chaser with 0.1 N tip force for the first 10 s is now done with the damping in-
cluded. Figure 6.5 shows the response of the system with and without damping. From the figure, it
can be observed that addition of damping smoothens out the small oscillations seen in the system
without damping, without affecting the mean motion or rigid body motion of the system. Therefore,
damping can promote the controllability characteristics of a structure by reducing such perturba-
tions.
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Table 6.2: Damping coefficients for flexible elements

ξn fn1[Hz] fn2[Hz] α β

Envisat 0.02 0.0563 0.3523 0.0156 0.0122

Chaser 0.005 2.4374 15.2344 0.00014 0.0825
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Figure 6.5: Response to 0.1 N tip force with and without damping

Now that the modelling has been established, the simulations can be performed using the
multibody model for the two phases of the mission, and the performance of the chosen controllers
can be analysed.



7
Results

In this chapter, the results from the simulation are presented. The simulations are made in an it-
erative manner. Initially, they are made without structural damping in the flexible model. Only
if convergence is not achieved due to large oscillations, the damping is included. Also, the worst
case scenario of Envisat tumbling at 3.5◦/s is analysed first. If convergence is achieved in this case,
the other two attitude scenarios stated in Table 2.2 are not simulated. The rigid body simulations
presented in Chapter 4, are used as benchmark to analyse the performance of the controllers. All
simulations are made with a integrator relative and absolute tolerance of 10−7. The dynamics is
simulated with a step size of 10−3 s and the controller is sampled at 25 Hz. The control moment sat-
uration is initially set to ±50 Nm, as proposed by Habets (2015). As mentioned before, both sensors
and actuators are assumed to be ideal. The gains used for the flexible simulations are the same as
that used in the benchmark simulations, stated in Table 3.3.

In Section 7.1, the results from the synchronisation phase are presented.

7.1. Synchronisation
In the synchronisation phase, the configuration to be controlled only consists of the chaser space-
craft, which has a 2.9 m long solar panel. The system is expected to be relatively easier to control
compared to the stacked configuration due to lower flexibility and inertia. The chaser state starts
with an initial angular velocity of 0◦/s. Therefore, the initial chaser state vector, in the sequence,
angular velocity, quaternions, pseudo Euler angles, is given by:

x0,cha = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)T (7.1)

and the Envisat initial state is given by:

x0,t ar = (3.5, 3.5, 3.5, 0, 0, 0, 1, 0, 0, 0)T (7.2)

However, the Envisat attitude, which acts like the commanded state for the controller, is continu-
ously changing. This can create a large error in attitude (as explained in Section 3.5), which makes it
difficult for the controllers to stabilise the complete state (angular rate and orientation). Therefore,
first rate control is applied until a threshold is reached, after which the controller switches to full
state control. For the current simulation, this threshold was set to a norm of 0.5◦/s for the angular
velocity. Note that the worst case scenario is analysed first.

Figure 7.1 shows the performance of both PD and INDI controllers in the synchronisation phase
with the flexible multibody plant (without damping). Both the controllers successfully synchronise
the chaser (solid line) with the target attitude (dashed line). From Figures 7.1(a) and 7.1(b), it can
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(b) INDI angular rates
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(c) PD pseudo Euler angles
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(d) INDI pseudo Euler angles
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(e) PD control effort

0 20 40 60 80 100

Time [s]

-50

0

50

C
on

tr
ol

 e
ffo

rt
 [N

m
]

Mc
x

Mc
y

Mc
z

(f) INDI control effort

Figure 7.1: Flexible multibody control (without damping)- Synchronisation

be observed that INDI achieves steady state faster than the PD controller. This is unlike the ob-
servation made in the benchmark rigid body simulations from Figure 3.8, wherein both controllers
showed similar convergence time. This is possibly because INDI being a nonlinear controller, is
more sensitive to the small vibrations that were induced during the switch from the rate control to
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full control. Therefore, it attempts to correct the error quickly, which can be observed from Figure
7.1(f), where small spikes in the control moment is observed. These spikes were not observed in the
rigid body simulations and so, they are possibly caused by due to the flexibility in the system.

From the figures, it can also be observed that the INDI controller suffers from a steady state
error on convergence. The same observation was also made in the benchmark simulations (see Fig-
ure 3.8(b)). It was established before that the steady state error occurred because of the high over-
shoot during the switch from rate control due to which the controller suffers from a slight phase lag.
Nonetheless, for synchronisation case, the nonlinear controller did not give superior performance
in terms of accuracy but showed slightly faster convergence. Since the response of the FMS was
similar to the benchmark simulations even without structural damping, it can be concluded that
the rigid body motion dominates in the synchronisation phase, and the flexible perturbations did
not cause a significant effect on attitude. Since the controllers successfully achieved steady state
for the worst case attitude scenario of 3.5◦/s about all axes without structural damping, the other
(easier) attitude scenarios will not be simulated.

7.2. Connected
The connected phase deals with the stacked configuration, which consists of one large rigid hub
with two asymmetrical panels, one 14.2 m long and one 2.9 m long. The stacked configuration
also has an asymmetric inertia distribution, with the rotational inertia about X and Z-axis almost
an order larger than the one about Y-axis (refer Table 2.5). The asymmetry in the properties (both
flexible and rigid) makes it a challenging control problem. In this state, the stacked configuration
is assumed to start from an initial angular velocity (depending on the attitude case from Table 2.2).
Therefore, for the worst case scenario, the initial state vector becomes:

x0,st ack = (3.5, 3.5, 3.5, 0, 0, 0, 0, 1, 0, 0, 0)T (7.3)

As stated before, the connected phase is analysed for a number of operations associated with deor-
bitation, which are repeated here for convenience:

• Detumbling only, where the angular velocity is reduced from the initial value to zero.
• Detumbling and reorientation, where the goal is to achieve zero angular velocity and defined

orientation. For simulations, pseudo Euler angles of (0◦, 0◦, 0◦)T are commanded.
• Reorientation only, where the defined orientation must be achieved starting from zero angu-

lar velocity. For simulations, pseudo Euler angles of (50◦, -60◦, 30◦)T are commanded.

The simulations will be first made without damping. In case of failure, an analysis will be performed
to study the possible causes, which can be used to improve the controllability characteristics of the
system with damping.

7.2.1. Without Damping
Since the stacked configuration is characterised by relatively larger flexibility and much larger iner-
tia compared to the chaser configuration, it is more difficult to predict the behaviour of the system.
Larger control moments can improve the controllability due to the large rigid body inertia, but can
cause large amplitude vibrations in the solar panels. Similarly, smaller control moments will induce
smaller vibrations in the flexible elements but might prove to be insufficient to stabilise the sys-
tem. Therefore, to understand these characteristics better, simulations are made for all operations
of detumbling and/or reorientation for three attitude cases stated in Table 2.2 using three different
control saturation limits of ±25 Nm, ±50 Nm and ±100 Nm. The results from the simulations are
recorded in Table 7.1. It was found that the flexible vibrations induced were too vigorous for the
chosen controllers. Even with ±25 Nm control moment, the vibrations induced were considerable.
Additionally, in the absence of structural damping, these vibrations grew with time and completely
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Table 7.1: Summary of different detumbling and reorientation simulations.

Intial angular rate ω = 3.5 ◦/s [all axes] ω = 1.5 ◦/s [all axes] ω = 3.5 ◦/s [Z-axis only]

|Mc,max | ±25 ±50 ±100 ±25 ±50 ±100 ±25 ±50 ±100

[Nm] [Nm] [Nm]

Detumbling only[P controller] FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

Detumbling + Reorientation [PD controller] FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

Detumbling + Reorientation [INDI controller] FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

Reorientation [PD controller] FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

Reorientation [INDI controller] FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
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Figure 7.2: Flexible multibody control (without damping)- Detumbling only
(Mc,l i m =±50, ω= 1.5 ◦/s [all axes])
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Figure 7.3: Flexible multibody control (without damping)- Deorbitation + Reorientation
(Mc,l i m =±50 Nm, ω= 3.5 ◦/s [all axes])

destabilised the system.
Figures 7.2 through 7.4 show the response for three of the failed cases, one each from detum-

bling only, detumbling and reorientation, and reorientation only, respectively. In the detumbling
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Figure 7.4: Flexible multibody control (without damping)- Reorientation only
Mc,l i m =±25,Θ = (50◦, -30◦, 60◦)T

phase, wherein only the rate control is performed, very large amplitude vibrations (upto ±0.5◦/s in
angular velocity and ±50◦ in pseudo Euler angles) are observed within the first 200 s with a control
limit of ±50 Nm, as it can be seen from Figure 7.2. Y-axis being the one with the lowest inertia,
suffers the largest deflections. A certain level of coupling between the axes can also be observed
since the braking in the X and Z directions seems to aggravate the vibrations about Y-axis. This can
be attributed to the inertial coupling in the rigid body EOM seen in the term ω× Iω. As stated be-
fore, the flexible body itself has rigid body properties, which is coupled with the flexible dynamics.
This coupling between the axes, also known as the gyroscopic coupling, translates into the flexible
vibrations and further, excites the eigenmodes. Additionally, in all the phases, the vibrations only
appear when the control moments are unsaturated. This indicates that when the control moment
is applied, the work is translated into elastic or strain energy. When the control moment is reduced,
the solar panel acts similar to a spring that is released from its compressed state. This continues till
a new equilibrium is reached in energy.

Next, from Figure 7.3, it can be observed that smallest vibrations are induced when INDI con-
troller is used. It can also be seen that the Y-axis converges a lot faster than the other two axes. By
the time the angular velocity about the other two axes start braking, the vibrations about Y-axis has
already amplified with time due to the large difference in inertia. A possible solution to correct this
problem is by scaling the control moment limits to the inertia ratio between the three axes, so that
convergence of the response for all the axes happen closely. Lastly, an important observation that
can be made from Figure 7.3 is the frequency of vibrations. The oscillation completes one cycle
in approximately 16 s, which gives a frequency of 0.06 Hz. According to Biesbroek (2017), one of
Envisat’s principal solar array mode is 0.06 Hz, with an uncertainty of 20%. This validates that the
flexible multibody model closely represents the experimental values obtained from the vibration
testing of Envisat solar panel. The control moment therefore, excites the natural frequency of the
Envisat panel.

Lastly, the reorientation phase is shown in Figure 7.4, using the PD controller and a lower control
limit of ±25 Nm. The PD controller, even with the lower control limit, induces larger vibrations than
the INDI controller within 300 s, as it can be seen from Figures 7.4 and 7.3. Additionally, the ampli-
tude of vibration can be observed to be increasing a lot faster when using PD controller compared to
INDI controller. From this preliminary analysis, INDI seems to be the more stable controller com-
pared to PD.
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Figure 7.5: Flexible multibody control - Detumbling
(sensitivity to control moments)

To check if the induced vibrations can be reduced using lower control moments, a sensitivity
analysis is performed on the control moments for the detumbling phase for the attitude case of
1.5 ◦/s about all axes. Figure 7.5 shows that the smallest control moment limit of ±10 Nm shows the
least amplitude of vibrations. This confirms that by choosing a smaller control moment limit, the
induced vibrations can be minimised. However, choosing smaller control moments would require
long simulation times, which may prove to be computation intensive. Based on the observations
made from these failed simulations, some conclusions can be drawn to improve the subsequent
simulations:

• The system cannot be controlled without any structural damping, since the amplitude of vi-
brations increase with time and the system continuously gains elastic energy, which eventu-
ally results in destabilisation of the satellite. Therefore, a dissipative force like damping can
improve the controllability of the system.

• The control moments excite the dominating natural frequency of Envisat solar panel, which
has a frequency of 0.06 Hz. This is confirmed by Biesbroek (2017) (official Envisat document)
and the accuracy of the model is validated.

• The angular velocity about Y-axis converges quickly and suffers from larger vibrations due to
the relatively smaller inertia. For a better performance, the control moments can be scaled
according to the inertia about each axis. This will prevent the vibrations amplifying with time,
when the other axes has not achieved convergence.

• Smaller control moments result in smaller vibrations, but increase the time required for con-
vergence by a considerable amount. Additionally, damping being energy dissipative, can add
to the computation time as the system is not conservative anymore. This makes the system
more dynamic and requires larger iterations during integration. Therefore, the simulations
with lower convergence time should be performed first to ensure that the analysis can be
done within the computation power available.

7.2.2. With damping
The simulations for the connected phase are now performed with 1.5% damping. The control mo-
ments are scaled down to ±(10, 5, 10) Nm to account for the inertia difference and to minimise the
vibrations induced due to control moments. An angular velocity of 3.5◦/s about all axes required
large computation time of greater than 2000 s with the reduced moments. And, in the presence of
damping, higher computation effort is required. So, this attitude scenario could not be completed
with the available computational resources in an acceptable time. Therefore, simulations are made
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Figure 7.6: Flexible multibody control (with damping)- Detumbling only
Mc,l i m =±(10, 5, 10) Nm

with an initial angular velocity of 1.5◦/s about all axes, and the results will be presented for all oper-
ations in the connected phase.

Detumbling only
Figure 7.6 shows the detumbling of the stacked configuration with structural damping included.
Compared to Figure 7.2, the performance has improved considerably, since the vibrations in angu-
lar velocity, which was previously upto ±0.5◦/s has reduced to ±0.1◦/s. The norm of the angular
velocity also indicates good convergence. Further, the rather rapid growth in vibration that was ob-
served in the absence of damping has reduced considerably. However, the small vibrations in the
system could not be damped out with the current value of damping ratio. Recalling Figure 2.1 from
mission heritage, which showed that the Rosetta attitude still experienced small amplitude vibra-
tions of ±0.05◦/s, this result is expected, since the controllers are used in their fundamental form.
Also, the deorbitation manoeuvre being a finite time burn, can last several tens of minutes as sug-
gested by Linskens and Mooij (2016) (may be even lasting more than an orbit). During this time, the
closed-loop feedback guidance would have sufficient opportunity to correct for any thrust orienta-
tion mismatch that may result from the flexible perturbations. Therefore, the vibrations are within
the acceptable range for deorbitation manoeuvre.
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(b) Pseudo Euler angles

Figure 7.7: Flexible multibody control (with damping)- Detumbling + Reorientation with INDI
Mc,l i m =±(10, 5, 10) Nm

Detumbling and Reorientation
Figure 7.7 shows the detumbling and reorientation manoeuvre using the INDI controller. It can be
seen that the Y-axis has achieved rigid body convergence, but experiences small perturbations due
to the flexibility. The X- and Z-axes require more time for convergence, but are expected to behave
similarly1.

Reorientation only
Figure 7.8 shows the response of the system while performing reorientation manoeuvre for both
PD and INDI controllers. INDI controller converges sooner compared to the PD controller. Again,
compared to the undamped case, the performance of both the controllers have improved consider-
ably with the vibrations in angular velocity reduced to ±0.1◦/s. The oscillations induced during the
braking manoeuvre are comparable for both PD and INDI controllers (as they increase with time).
However, INDI shows a much faster convergence of rigid body motion (within 250 s) compared to
PD controller (about 600 s). An interesting observation that can be made from Figures 7.8(e) and
7.8(f), is that the control moments after achieving sufficient convergence in rigid body motion, start
correcting for the flexible perturbations. This results in a bang-bang control, which ends up exciting
the eigenmodes further. Therefore, for control of flexible perturbations, the selected controllers are
insufficient. The performance can be improved by adding active damping to the system. One com-
mon way of achieving this, is by introducing bending filters meant for controlling flexible modes.
According to Orr (2013), simple low-pass filters commonly used in aircraft feedback systems, do not
provide sufficient performance to ensure robust stabilisation of the structural modes. This happens
because the filter introduces a penalty in open-loop phase that prevents stable control of the rigid
body dynamics. Without any compensatory filter, similar behaviour was observed (Figure 7.8), i.e.,
a strong coupling between rigid body dynamics, flexible modes, and control actions.

1Due to the long computation time, the simulation could not be finished before thesis submission.
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(a) PD angular rates
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(b) INDI angular rates
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(c) PD pseudo Euler angles
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(d) INDI pseudo Euler angles
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(e) PD control moments
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Figure 7.8: Flexible multibody control (with damping)- Reorientation only
(Mc,l i m =±(10, 5, 10) Nm,Θ = (50◦, -30◦, 60◦)T
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8
Conclusion and Recommendations

The thesis aimed to investigate the dynamics and controllability characteristics associated with a
chaser spacecraft before, and after docking with large inactive space debris. The test case devel-
oped in this research is in line with European Space Agency’s (ESA’s) e.deorbit mission, which aims
to perform Active Debris Removal (ADR) of Envisat, a massive tumbling debris with a large ap-
pendage. The work also demonstrates the capabilities of a novel multibody approach based on
floating reference frames, which provides a good balance between accuracy and computation time,
while enabling easy constraint modelling. In this chapter, some conclusions drawn from the study
will be presented along with some recommendations for future work.

8.1. Conclusions
In this study, two phases of the mission, namely, synchronisation and connected phase were mod-
elled and evaluated. A study was performed to understand the interaction between rigid body and
flexible body dynamics, and its effect on controller performance of a linear PD controller and an
Incremental Nonlinear Dynamic Inversion (INDI) controller. With this the research question was
formulated to be:

What are the dynamics and controllability characteristics of a flexible chaser spacecraft
before and after docking with a large, flexible and uncooperative space debris?

To analyse the research question in detail, it was further subdivided into many smaller questions as
stated below:

• Does the new multibody technique demonstrate good compatibility with the modelling and
control of the flexible multibody system in both synchronisation and connected phases?

• What are the complications introduced in the control of the system due to coupling of rigid
and flexible body dynamics?

• Can simple controllers designed for rigid bodies stabilise the system in the presence of flexible
perturbations?

• What are the structural aspects that affect the vibrations in the flexible elements?
• How does the controllability of a flexible system differ from that of a rigid system?
• How does a linear controller perform for such a nonlinear dynamic system?
• Will the application of a nonlinear controller show improved response characteristics?

The conclusions, which include the answers to all the above stated questions, are presented in two
parts in the sequence of the mission phases. Then, a brief discussion is included for the perfor-
mance of the multibody method.
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8.1.1. Synchronisation
In the synchronisation phase, the chaser with a 2.9 m long solar panel was commanded to match
the tumbling attitude of the target starting from zero angular velocity. The simulations were first
made for the worst case scenario, wherein no structural damping was included and the target was
assumed to be tumbling about all three axes with an angular velocity of 3.5◦/s. Since the initial error
in angular rate was relatively large, a rate controller was used upto a certain threshold (0.5◦/s) after
which a switch was made to the PD or INDI controller. The control limit was set to ±50 Nm for
this phase. The chaser was successfully stabilised using both PD and INDI controllers, even in the
absence of damping. The effect of flexibility did not appear to be evident during the synchronisation
phase. The INDI controller showed faster convergence when compared to the PD controller for the
flexible model. However, INDI suffered from a large overshoot during the switch from rate control
and kept a small steady state error throughout synchronisation. No further simulations were made
with damping, as the system was stabilised for the worst case scenario.

8.1.2. Connected
In the connected phase, the stacked system (docked configuration) with two asymmetric solar pan-
els (14.2 m and 2.9 m) was commanded to perform three operations associated with deorbitation
manoeuvres, i.e., detumbling only, detumbling and reorientation, and reorientation only.

Without damping
An attempt was made to first stabilise the system in the worst case scenario with an angular velocity
of 3.5◦/s. Due to the unpredictable behaviour of the complex dynamics, different control limits of
±25, ±50 and ±100 Nm were used. Both the controllers failed to achieve convergence in the absence
of damping, as large amplitude vibrations (±0.5◦/s) were induced. Even for easier attitude control
cases, assuming 1.5◦/s about all axes, and 3.5◦/s about Z-axis, convergence could not be achieved.
Vibrations were induced due to the excitation of the eigenfrequency of the larger panel (from En-
visat) on interaction with the control moments. Without damping, the vibrations grew without limit
and destabilised the system. The frequency of vibration matched the dominating natural frequency
observed from the vibration tests of Envisat’s solar panel. This shows that the flexibility character-
istics of the solar panel were captured correctly using the new multibody model. Further, it was
observed that the vibrations appeared only when controls were unsaturated. This suggests that the
control moment was translated into elastic energy, which was stored in the solar panel. When the
control moment reduced, the solar panel acted like a released spring causing large vibrations in the
system. Nonetheless, it was observed that smaller vibrations were induced in the system when INDI
controller was used.

Sensitivity analysis
To analyse the possible ways of improving the controllability characteristics of the system, a sensi-
tivity analysis was performed. From this, it was concluded that the vibrations induced due to con-
trol could be reduced by using smaller control limits. Further, it was observed that the Y-axis had
the largest vibrations, because of the lowest inertia. The vibrations aggravated due to the coupling
with X- and Z-axes, as the Y-axis had converged a lot faster and already contained vibrations that
increased with time. Therefore, to solve this problem, the control limit about Y-axis was taken to
be smaller than about X and Z-axes. It was also found that addition of dissipative forces like damp-
ing, improved the convergence characteristics of the system and contained the growth of vibra-
tions. However, inclusion of damping increased the computation time considerably and the worst
case scenario of 3.5◦/s about all axes could not be completed with the currently available resources
within a reasonable time.
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With damping
The three operations were simulated again with the attitude case of 1.5◦/s about all axes. A struc-
tural damping of 1.5% and control limit of ±(10, 5, 10) Nm was used. The results showed consid-
erable improvement over the previously simulated case, and the observed vibrations were reduced
to 0.1◦/s. Even though the vibrations could not be damped out completely, it was concluded that
any errors caused during the deorbitation manoeuvre by such small vibrations, can be corrected
by the closed loop guidance system within a finite time. It was again observed that the INDI con-
troller showed faster convergence in the presence of flexible perturbations. Further, after sufficient
convergence was achieved in the rigid body motion, the controller attempted to correct the flexi-
ble perturbations. This resulted in bang-bang control, which excited the primary eigenfrequency
instead of correcting the motion. Therefore, it was concluded that a simple rigid body controller
could not be used to control the flexible modes in the system and dedicated bending filters would
be required for such corrections. To summarise, a strong coupling was observed in the rigid body
dynamics, flexible vibrations and control actions.

8.1.3. New Multibody approach

The new multibody approach allowed inclusion of the nonlinear Flexible Multibody Dynamics (FMD)
in the control loop. This facilitated the study of flexible dynamics and control interaction. Further,
the ease of contraint handling allowed quick modelling of changing configurations for the different
phases of the mission. Very large angle rotations (greater than 360◦) could be simulated, which was
achieved without any singularity with the use of Pseudo Euler angles in the controller. As stated be-
fore, the flexible behaviour observed in the system was confirmed by the data obtained from ground
tests, proving the accuracy of the method. It also proved to be computationally efficient, because
complex dynamics could be simulated in combination with control in finite time, despite a large
state vector of 159 elements during the connected phase.

8.2. Recommendations
The recommendations for further development of the research can be divided into five parts. The
first aspect deals with the application of ADR itself. The second aspect deals with an improved mod-
elling of the FMD. The third one is based on better structural adaptation of the satellite for the new
FMD model. The fourth part deals with improving the control system design. Lastly, some smarter
choices can be made to enhance the performance of the simulator numerically. These suggestions
will be discussed in detail in the coming sections.

8.2.1. Active Debris Removal

To complete the mission profile of ADR using a chaser satellite, the semi-connected phase of the
mission can be modelled. In this phase, the chaser and target are connected with one or more flex-
ible links (tentacles), while the complete system is tumbling. It is possible to model the phase as a
multibody system with alternating flexible and rigid bodies in a chain like configuration consisting
of Envisat panel (flexible) - Envisat hub (rigid) - flexible connection (flexible) - chaser hub (rigid) -
chaser panel (flexible).

Alternatively, the connection can be modelled using evolving systems approach as shown by Ha-
bets (2015). In this model, the connection is modelled using a rotational spring and damper, which
evolve from an unconnected state to a connected state in a finite time. The dynamics and control-
lability characteristics of this mission phase in combination with the FMD will be very interesting
to study. Additionally, possible disturbances in the flexible connection due to attitude mismatch
between chaser and Envisat can be analysed.
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8.2.2. Flexible Multibody Dynamics
The FMD of the system can be modelled more accurately by including the effect of quadratic ve-
locity terms, like centrifugal stiffening, Coriolis forces and other rigid-flexible coupling terms (dis-
cussed in Section 4.3.2) in the FMD. The modelling technique can be extended to incorporate a ac-
tual rigid body in combination with the flexible bodies. Further, the effect of environmental torques
like gravity gradient, atmospheric drag, etc. can also be taken into account. The model can be ex-
tended with inclusion of the orbital (translation) motion of the system. Other dynamic scenarios
associated with the space environment like deorbitation manoeuvre (associated with a large exter-
nal propulsive force, which can excite the eigenfrequencies) and impact with space debris (impul-
sive force) can also be analysed with the model. Since it was observed that the braking manoeuvre
about one axis induced and amplified the vibrations about other two axes, another interesting as-
pect to study in detail would be the flexible coupling between the three axes. Lastly, in this research
it was assumed that the solar panel rotates at the same rate as the rigid body and only bending
modes were analysed. Therefore, the effect of torsional modes of vibrations can also be considered
in future work.

8.2.3. Structural Model of the Satellite
To model the satellite more accurately using the new FMD formulation, a number of improvements
can be made. First, the solar panel can be modelled using a more realistic configuration, like a
plate attached to a boom. Second, the rigid body inertia can be modelled better, using elemental
shape functions as proposed by Shabana (1997). Since these shape functions can define large rigid
body motion accurately, an exact formulation of the rigid body inertia can be obtained by using
an intermediate element coordinate system. The concept of the intermediate element coordinate
system is similar to the parallel axis theorem currently used in the research, and its orientation with
respect to the body frame can be simply defined with a constant transformation matrix. Third, it was
assumed in that the rotational inertia about all three axes are decoupled. In other words, the system
is assumed to be rotating about its principle axis. However, on examination of Envisat’s attitude, it
was declared that Envisat is not tumbling about its principle axes (Virgili, 2014) and there is coupling
between all three axes of rotation. Therefore, for a more realistic analysis, the coupling between
these axes should be modelled and analysed. Fourth, more efficient ways of adding structural and
active damping to the system can be examined. Lastly, for a better understanding of the dynamics,
the different components of energy in the system, including elastic and dissipative energies, can be
studied in further detail.

8.2.4. Control System
In this research, the controllers were used in elementary forms and no optimisation was performed
to improve their performance. Therefore, there is a big scope of improvement in the control system
design. The performance of more advanced linear and nonlinear controllers like Linear Quadratic
Regulator (LQR), Simple Adaptive Controller, and so on, can also be analysed for this test case. Ad-
ditionally, other control strategies associated with control of tumbling bodies can be explored. For
instance, sequential axis control, i.e, control of each single axis in a sequence can be attempted.
Further, the effect of sensor measurement errors can be added. Since in the stacked system, the
actuators are present only on the chaser body, control allocation of the actuators in the presence
of flexible perturbations is another interesting extension for the research. Also, a sensitivity can be
performed to study the effect of using impulsive actuators, like thrusters compared to the momen-
tum control devices like Control Moment Gyros (CMGs) and reaction wheels. Then, options for
adding active damping to control the flexible vibrations can be explored. Lastly, the controllability
characteristics of the system when the FMD is included in the control system design can be stud-
ied. This can be done in many ways, for instance, using sensors to measure the vibrations in the
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panel. Another option is to use the predicted values of flexible vibrations from the ground tests in
the controller, by adding dedicated bending filters.

8.2.5. Numerical aspects
The simulator used for this research was developed in MATLAB®, which proves to be computation-
ally more demanding than other computing languages like C++ and Python. Translating the simula-
tor to such faster languages can improve the performance considerably. The integration algorithm
(VODE) can be better understood to fine tune the algorithm. This can be achieved by performing a
sensitivity study on the effect of absolute and relative tolerances, and integration stepsize. Lastly, an
additional option of including the Jacobian matrix in the integrator must be considered. According
to Brown et al. (1989), this option decreases the computation time by 12% by saving and reusing the
matrix (under specific conditions), instead of recomputing it every timestep.
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A
Skew Symmetric Matrix

A skew-symmetric matrix ã associated with an algebraic vector a = [ax ay az ]T is defined as:

ã =


0 −az ay

az 0 −ax

−ay ax 0

 (A.1)

The tilde ("∼") symbol on the vector a indicates that the components of the vector are used to gener-
ate a 3×3 skew-symmetric matrix. The vice-versa can be written for a 3×3 matrix of skew-symmetric
form, given by:

B =


0 b12 b13

−b12 0 b23

−b13 −b23 0

= b̃ (A.2)

So, for B = b̃, the elements of vector b become bx = −b23,by = b13 and bz = −b12. Therefore, the
matrix b can be written as:

b = [−b23 b13 −b12]T (A.3)

A vector cross-product c = a ×b can be written in algebraic vector form as:

c = ãb =


ay bz −az by

az bx −ax bz

ax by −ay bx

 (A.4)

Therefore, the tilde operator provides an algebraic representation, which is a convenient and com-
putationally efficient formulation of vector products. Some additional properties of the skew-symmetric
matrix are:

• Transpose:

ãT =−ã =


0 az −ay

−az 0 ax

ay −ax 0

 (A.5)

111



112 A. Skew Symmetric Matrix

• Multiplication with a scalar quantity, α:

αã =


0 −αaz αay

αaz 0 −αax

−αay αax 0

= α̃a (A.6)

• Multiplication with another vector, b
ãb =−b̃a (A.7)

• Multiplication with associated vector:

ãa = (ãa)T = aT ãT =−aT ã = 0 (A.8)

• Addition with another skew-symmetric matrix:

( �a +b) = ã + b̃ (A.9)

• Transformation from one frame (E j ) to another frame (Ei ):

(ã j ) = R j
i ãi R i

j (A.10)



B
Proof of Assumption for Rotation Matrices

To understand the rotation matrix, first its algebraic properties should be discussed. As stated be-
fore, the rotations in this research are finite. Therefore, C is a 3×3 matrix, with three independent
parameters to define rotation. These characteristics constitute the special orthogonal group, SO(3),
also called Lie group of proper orthogonal linear transformations represented by (Cardona, 1990):

SO(3) = {C : C 3 →C 3 | C T C = I , det(C ) =+1} (B.1)

Another concept closely associated with the Lie Groups is, Lie Algebra. It consists of real skew sym-
metric matrices that represent a corresponding set of infinitesimal rotations. The essential geomet-
ric link between the Lie group and Lie algebra that should be understood is that the Lie Algebra is
depictive of the tangent space to the Lie Group, which can be visualised in Figure B.1. The map
(or projection) from tangent space to the Lie Group is called exponential map. Another description
for this would be; the Lie Algebra is the linearisation of the Lie Group about the identity point (For
instance, P j in Figure B.1) and the exponential map is the delinearisation back to Lie group. This
operation is required because, rotations are objects in a non-linear manifold, like SO(3) in this case.
Since SO(3) cannot be defined in vector space, the rotations cannot be interpolated (Cardona, 1990).
Therefore, computations would require introduction of a tangential vector space to account for the
increments in the rotation matrix C .

According to Ellenbroek and Schilder (2017), when the deformations are small, the rotation
matrix, C i

j can be directly related to the nodal rotations θi ,i
j , because in case of linear theory, all

parametrisations of C i
j yield the same results. This can be projected on the non-linear model by

Figure B.1: Visualisation of tangent space on Lie Group
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SO(3)

I A I+A
I+A+½A

2

I+A+½A+   AeA
2

6
3

Figure B.2: Visual example of exponential mapping

Figure B.3: Exponential mapping for rotation of point P j

performing Taylor series expansion for exponential mapping, given by the general equation:

e A =
∞∑

n=0

1

n!
An (B.2)

This can be visualised in Figure B.2, which shows how the exponential mapping transforms from
linear to a non-linear formulation with the addition of terms in the Taylor series. A more specific
and simplified formulation for exponential mapping of the SO(3) group (also known as Rodrigues
rotational formulation) is provided in Sola (2017), using which C i

j can be approximated at time,
t = t0 +∆t about undeformed configuration, given by:

(C i
j )E =C i

j (θi ,i
j +∆t .ωi ,i

j ) = exp(θ̃i ,i
j +∆t .ω̃i ,i

j ) ≈ I3,3 + θ̃i ,i
j +∆t .ω̃i ,i

j (B.3)

where ω̃i ,i
j (a skew-symmetric matrix)is the local angular velocity of point P j with respect to the

floating frame at t = t0. The vector representation of Equation (B.3) can be visualised in Figure B.3.
For small∆t , the equation remains valid, and the nodal rotations, θ̃i ,i

j at t = t0 can be approximated
by inverting the exponential map, or in other words, by applying a logarithmic mapping (Sola, 2017).
This can be denoted by:

Log :SO(3) →S O (3);C → ln(C ) = uθ (B.4)

where,

u =
(C i

j −C i T
j )

2sinθ
(B.5)

Considering very small ∆t in Equation (B.3) gives:

ln(C i
j ) = θ̃i ,i

j (B.6)
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Using Equations (B.4), (B.5) and (B.6), the final expression for nodal rotations can be derived in
terms of rotation matrix as:

θ̃
i ,i
j ≈ 1

2
(C i

j −C i T
j ) (B.7)

At t = t0, the time derivative of θ̃i ,i
j will be approximately equal to the local angular velocity vector.
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