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Abstract

An important aspect of designing high performance feedback-controlled motion systems is stability as a pit-
fall of feedback control is that it can make a system unstable, even if the uncontrolled system is stable. The
performance is lost when instability occurs and therefore it is crucial to consider stability in design and analy-
sis. Besides the importance of stability in general, it becomes more challenging with increasing performance
requirements.

The concept of optimal design can aid in designing controlled motion systems. Using optimization can be
of great help to the designer to determine actuator and sensor configurations or to design structural compo-
nents. Consecutively optimizing/designing the components leads to sub-optimal performance. Simultane-
ously optimizing two or more components results in better performance compared to a design approach in
which the components are designed consecutively.

In this thesis, a method is presented for designing one or more components of a controlled motion system
using optimization. During the optimization process, the set of modes that violates the stability criterion
might change. This is not desired from an optimization point of view. Therefore, a key aspect of this method
is to ensure stability by imposing a constraint regarding the stability of each vibration individually considered
in the model. The stability constraint, as proposed in this thesis, aids in well-performing optimization that
converge to feasible designs.

A new way of modeling the open-loop response is presented. It uses a standard PID controller often used
in industry and the structural model is a function of the poles and zeros of the system instead of the conven-
tional modal parameters. Only three parameters are required to evaluate the robustness of a single mode.
Using this model a robustness response surface was obtained via simulations and put into a mathematical
model using NURBS. The robustness response surface is used in the evaluation of the proposed robustness
constraint. The surface model is suited for gradient-based optimization methods.

The proposed method was tested on a relatively simple model of a motion system. Even though the test case
is relatively simple, it is representative of more complex systems as this system possesses the aspects that are
important in controlled motion system design. The optimizer converged to unconventional solutions that in
most cases outperformed designs obtained using engineering principles.
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1
Introduction

1.1. Designing controlled motion systems
Many industrial processes and scientific measurements require accurate and/or fast motions. Examples from
the field of microscopy are the Atomic Force Microscope (AFM) and the Scanning Electron Microscope (SEM).
These microscopes perform very accurate scanning motions to get a clear image of the sample. Furthermore,
speed and accuracy are factors that determine the performance of printing systems, see Figure 1.1, in terms of
resolution and throughput. Also, one can find many examples in the semiconductor industry. Photolithog-
raphy, an essential step in computer chip manufacturing, is one example. A lithography system is shown
in Figure 1.3. In this system a positioning system aligns the substrate with the illumination system before
exposure and measuring, shown in Figure 1.2. The positioning accuracy for this alignment is within the sub-
nanometer range. This accuracy is needed to achieve the small features on the computer chip and is related
to the speed and efficiency of the computer chip. Other steps in computer chip manufacturing that em-
ploy accurate and fast motions are wire bonding, assembly, and inspection. In the examples mentioned, a
Controlled Motion System (CMS) provides the movement and is responsible that this movement meets the
requirements.

Controlled motion systems are mechatronic systems that generally consist of a structural component, an
actuation system, a sensing system, and a control part. The dynamics of these components, as well as the in-
teraction between them, partly determine the systems’ performance. The performance also depends on the
nature (the frequency content and intensity) of disturbances and how well the system can reject these. De-
signing these systems is thus far from trivial, and the overall performance is a complex interplay between the
individual components mentioned in combination with the disturbances, which are unique for every design
challenge. Design engineers must have knowledge and experience in multiple disciplines such as control,
mechanics, and electronics to design controlled motion systems. Tools from each of these fields exist that
can aid the engineer during the design process. However, combining these disciplines and tools is still a
challenge. Therefore, the performance a high-tech motion system can achieve is largely determined by the
experience and skillset of the design engineer.

One specific aspect that is of great importance in designing feedback-controlled motion systems is stability.
The application of feedback control can introduce instability even if the uncontrolled system is stable. Insta-
bility means that the system has an unbounden response to a bounded input. The performance is lost when
instability occurs, and the system is said to be out of control. Therefore stability is crucial when considering
the design and analysis of feedback control systems.

1.2. Optimal design
The concept of optimal design can aid in designing motion systems [17] [7]. In optimal design, a mathemat-
ical model that consists of multiple elements describes the design problem. First, parameterization of the
system creates a set of designs. The design variables that describe a design are combined in the so-called
design vector x. The next element is the objective function f (x) that describes the performance of the system
mathematically. This objective is either maximized or minimized during the optimization. The last elements

1



1.2. Optimal design 2

Figure 1.1: Industrial flatbed printer.
adopted from [16].

Figure 1.2: Inside the ASML’s TWINSCAN NXE:3400C
depicted in Figure 1.3. The wafer stage performs

extreme accurate motions for exposing (right) and
measuring (left).

Figure 1.3: Lithography system of ASML: the TWINSCAN NXE:3400C.

are the constraints. Two types of constraints exist, equality constraints h (x) = 0 and inequality constraints
g (x) ≤ 0 that must be satisfied at the end of the optimization. The formal formulation of an optimization
problem is:

minimize f (x)

subject to h (x) = 0,

g (x) ≤ 0,

x ∈χ⊆Rn.

(1.1)

Using optimization can be of great help to the designer. One example is determining the actuator and sensor
locations, as these strongly affect the performance of motion systems. A poorly chosen actuator configu-
ration can induce structural vibrations, which can significantly limit the system’s bandwidth. On the other
hand, with a poorly chosen sensor configuration, the measurement picks up structural vibrations that limit
the maximum performance. Two concepts from control theory [29] have often been applied in determining
actuator and sensor locations via optimization. The first concept is the use of measures of controllability and
observability. The second concept is using so-called system norms such as the H2-norm and H∞-norm.
These measures provide quantitative information on the presence of mode dynamics in a controlled system,
and mode dynamics are a detrimental factor in the performance of controlled motion systems. Minimizing
these measures could have potential in designing motion systems.

Another example of using optimization for control motion systems is the use of Structural Optimization (SO)
[21] to design the structural components. SO is a method to determine the structural layout that maximizes
performance using optimization. How this performance is defined depends on the design problem. With
motion systems, the performance is often related to the dynamic properties of the structure, such as maxi-
mizing the lowest eigenfrequency. A last example is the use of optimization techniques in selecting the most
appropriate control law and its parameters [28].
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Consecutively optimizing the components using the techniques mentioned above leads to sub-optimal per-
formance. Simultaneously optimizing two or more components results in better performance compared to
a design approach in which the components are designed consecutively. Van der Veen et al. [24] used an in-
tegrated optimization approach for precision motion system design by selecting the structural topology and
controller bandwidth simultaneously. Wang et al. [26] optimized a motion system by simultaneously select-
ing the structural topology, actuator locations, and controller parameters. While the holy grail of an integrated
optimization framework that addresses the system as a whole is not within reach, there are still many oppor-
tunities for integrated optimization to explore. This thesis explores a new integrated optimization framework
approach.

1.3. Research goals
The main goal of this research is to develop and test a new integrated optimization approach that can aid
in the design of controlled motion systems. Integrated optimization refers to simultaneously optimizing the
controller with one or more mechanical aspects, like the actuator location, sensor location, and structure.
The starting point of this thesis is a small idea that has not been explored yet but might be worth explor-
ing. This idea involves deriving a stability response surface that can be used to evaluate the robustness of
controlled motion system designs. A model of the robustness response surface enables the application of
gradient-based optimization algorithms and computationally efficient evaluations. These stability response
surfaces can be used as constraints in a constrained optimization problem. To come to a new optimization
approach the following subgoals are defined:

• Investigate the use of placement criteria proposed in the literature in designing controlled motion sys-
tems. Determine whether these criteria could be useful in obtaining good designs.

• Derive the stability response surface for a single-mode system.

• Extend the idea of the derived stability response surface for a single-mode system to a multi-mode
system.

• Investigate the use of the stability response surface in a constrained optimization problem and explore
its strengths and weaknesses.

In general, vibrations are the limiting factor of feedback-controlled motion systems. Therefore only the dy-
namics of the controller and the structural component are considered in this thesis. The dynamics of the
sensor, actuator, and amplifiers are out of scope.

1.4. Outline
The remainder of this thesis is organized as follows. Chapter 2 provides background information on mod-
eling of the structure and controller, and a test case of a simple controlled motion system that will be used
throughout this thesis is defined.

Chapter 3 starts with a discussion on concepts of control theory. It first covers optimization criteria for ac-
tuator and sensor placement found in the literature which are based on these concepts. The second part of
Chapter 3 looks into the usefulness of these criteria in designing controlled motion systems via simulations
of a simple test case. Based on the simulation results, the chapter concludes with the finding that the criteria
are not optimal in designing controlled motion systems and that a new approach is worth exploring.

Chapter 4 describes a new optimization approach for determining actuator and sensor locations and is the
main contribution of this work. The chapter starts with a review on stability and robustness, two fundamen-
tal concepts in controlled motion system design. Then a mathematical model of a controlled motion system
comprising one rigid-body mode and one flexible mode is derived. This model is then used to construct a so-
called stability response surface. The surface can be used to quickly determine if a design of a single-mode
system is robust or not. The idea of the stability response surface is extended to multi-mode systems. Fi-
nally, a mathematical model of the obtained stability surfaces is made using non-uniform rational B-splines
(NURBS). The NURBS surfaces are suited to use in gradient-based optimization.
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Chapter 5 proposes a new optimization approach that uses the stability response surfaces derived in Chapter 3
as constraints. After defining a relevant case, various tests are conducted to get insight into the strength and
weaknesses of this new approach. First, actuator placement is considered. Then an integrated optimization
of actuator and sensor placement is studied. Finally, structural optimization and a fully integrated optimiza-
tion are performed.

Chapter 6 is the final chapter and gives the conclusions and recommendations of this thesis.



2
Background

This chapter provides theory regarding controlled motion system design that is used throughout this the-
sis. The first three sections provide theory regarding the structural model, controller model, and stability
and robustness. The last section gives a mathematical model of a test case of a motion system that is used
throughout this thesis.

2.1. Structural model
Some of the placement criteria proposed in the literature make use of properties of flexible mechanical struc-
tures. Therefore, this section concisely discusses the modal state-space description and the corresponding
transfer function of such systems. Starting from the discretized equation of motion of a linear mechanical
system with damping (e.g. finite element model):

Mq̈ (t )+Dq̇ (t )+Kq (t ) = Eu (t ) ,

y (t ) = Fq (t ) ,
(2.1)

where q (t ) ∈ Rn is the nodal coordinate vector, y (t ) ∈ Rm is the output vector, u (t ) ∈ Rr is the input vector.
The matrices M ∈ Rn×n and K ∈ Rn×n are the symmetric (semi-) positive definite mass and stiffness matrix
respectively. The matrix D ∈ Rn×n is the damping matrix. The matrix E ∈ Rn×r is the input matrix, and F ∈
Rm×n is the output matrix. The system of equations in Eq. (2.1) are generally coupled and can be decoupled
by transforming the nodal coordinates into the so-called modal coordinate system via the following mapping:

q (t ) ∼=Ψη (t ) , (2.2)

where η (t ) ∈ Rl is the modal coordinate vector containing l modal degrees of freedom. The matrixΨ ∈ Rn×l

is the so-called modal matrix where each column denotes one structural mode shape obtained from the
undamped eigenvalue problem given as:

Kφi =λi Mφi

s.t. φT
i Mφi = 1,

(2.3)

whereφi ∈Rn is the modeshape and
√
λi is the undamped eigenfrequency of eigenmode i . The eigenmodes

are ordered such that the condition λi+1 >λi holds. It is common practice to consider a mapping containing
a subset of the first l ≪ n eigenmodes. Because generally, the lower eigenmodes contribute the most to the
total system’s motion. The contribution of a single eigenmode decreases for increasing eigenmode numbers
because the potential energy of an eigenmode is proportional to the eigenfrequency squared: Ep,i ∝ω2

i η
2
i (t ),

where ω2
i = λi . However, it may happen that a high-frequency eigenmode is of greater importance in com-

parison to a lower eigenmode if the frequency of a disturbance is close to that of the high-frequency mode for
example. Only the first l eigenmodes are considered in this thesis and the effect of disturbances or the like on
mode selection is not considered. Substitution of Eq. (2.2) into Eq. (2.1) and multiplying the left-hand side
with the modal matrix transposedΨT results in:

Mmη̈ (t )+Dmη̇ (t )+Kmη (t ) = Emu (t ) ,

y (t ) = Fmη (t ) ,
(2.4)

5



2.1. Structural model 6

where the matrices are called modal matrices. Thus Mm ∈ Rl×l is the modal mass matrix, and Km ∈ Rl×l

is the modal stiffness matrix. The relations between the modal matrices and nodal matrices through the
eigenvectors are as follows:

Mm =ΨT MΨ= I,

Km =ΨT KΨ,

Dm =ΨT DΨ,

Em =ΨT E,

Fm = FΨ.

(2.5)

The eigenvectors obtained via the eigenvalue problem in Eq. (2.3) have the following orthogonality property:

φT
i Mφ j = 0

(
i ̸= j

)
,

φT
i Kφ j = 0

(
i ̸= j

)
,

(2.6)

which means that the modal mass and modal stiffness matrices are diagonal matrices. This property gen-
erally does not hold for the damping matrix. Therefore damping realizes a coupling between the motions of
individual eigenmodes, and the set of equations in Eq. (2.4) is still coupled. However, it can be shown [11] that
this coupling is small in a lightly damped system which is often the case in mechanical structures. As a result,
off-diagonal terms are set to zero, (Dm)i , j = 0 for i ̸= j , and is known as the modal damping assumption. By
adopting the modal damping assumption, the system of equations in Eq. (2.4) can be rewritten in terms of
modal damping coefficients and natural frequencies as follows:

η̈ (t )+2ZΩη̇ (t )+Ω2η (t ) = M−1
m Emu (t ) ,

y (t ) = Fmη (t ) .
(2.7)

The matrices Z andΩ in Eq. (2.7) are diagonal matrices:

Z = diag(ζ1, ζ2, · · · , ζl ) ,

Ω= diag(ω1, ω2, · · · , ωl ) ,
(2.8)

where ζl is the modal damping ratio of mode l and ωl is the natural eigenfrequency of mode l obtained from
the undamped eigenvalue problem in Eq. (2.3) in which λi = ω2

i . The system of equations in Eq. (2.7) are
uncoupled in the modal coordinate η(t ) and describes the dynamics of a flexible structure in the modal form
with the modal damping assumption.
The system in Eq. (2.7) can be rewritten into two different representations. The first one is the State-Space
representation which, for linear time-invariant (LTI) systems, has the following form:

[
ẋ (t )
y (t )

]
=

[
A B
C D

][
x (t )
u (t )

]
, (2.9)

where x (t ) ∈R2l is the state of the system and ẋ (t ) ∈R2l is its derivative. The output vector y (t ) ∈Rm and the
input vector u (t ) ∈Rr are the same as in Eq. (2.1) and Eq. (2.7). The matrix A (t ) ∈R2l×2l is the system matrix,
B (t ) ∈ R2l×r is the input matrix, C (t ) ∈ Rm×2l is the output matrix, and D (t ) ∈ Rm×r is the feedback matrix.
The feedback matrix D (t ) is zero because the output y (t ) is not directly related to the input u (t ) in Eq. (2.7).
The feedback matrix D (t ) will be omitted from now on. To transform the dynamic system in Eq. (2.7) into the
modal state-space form in Eq. (2.9), a state vector is defined as:

x (t ) =
(
η̇1 (t ) , η̇2 (t ) , · · · , η̇l (t ) , ω1η1 (t ) , ω2η2 (t ) , · · · , ωlηl (t )

)T , (2.10)

where η̇l (t ) is the first time derivative of the modal coordinate ηl (t ) of mode l . The triple matrices (A, B, C)
in Eq. (2.9) in combination with the state vector in Eq. (2.10) that describe the system of Eq. (2.7) are:

A =
[−2ZΩ −Ω
Ω 0l×l

]
,

B =
[

M−1
m Em

0l×r

]
,

C = [
0m×l Ω−1Fm

]
.

(2.11)
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Eq. (2.10) and Eq. (2.11) form the state-space description of the flexible mechanical structure in modal form,
and this description is equivalent to Eq. (2.7). The difference between the two descriptions (state-space
and nodal/modal coordinates) is that State-Space Analysis reduces the order of the set differential equations
to 1. The second and last description describes the dynamics of the mechanical system in the frequency
domain. This description is known as a transfer function of the system and is related to the matrices (A, B, C)
as follows:

G (ω) = C
(

jωI−A
)−1 B, (2.12)

where I (t ) ∈R2l×2l is the identity matrix.
The description in Eq. (2.12) concludes this section on structural models. The descriptions discussed in this
section are linear, and the modal damping assumption applies to the damping model. Both of these model
decisions are valid and therefore commonly used in modeling the mechanics for the design of controlled
motion systems. Using a linear model is accepted because the deformations are due to vibrations that are
small. The two models, state-space and transfer function, are the basis of two placement criteria proposed in
the literature. The following two sections discuss these two criteria.

2.2. Controller model
The control principle mostly applied in motion systems is the classical PID-control principle, despite the de-
velopment of modern control methods in recent years. Its popularity makes it interesting to use PID-control
in this thesis. In control theory, a PID-controller in continuous time and frequency domain are defined as:

u (t ) = kp e (t )+ki

∫ t

0
e (τ)dτ+kd

de (t )

dt
, and (2.13)

Cpid (s) = u (s)

e (s)
=

(
kp + ki

s
+kd s

)
, (2.14)

respectively, where u(t ) is the controller output and e(t ) is the error signal. The two signals are related via the
three terms in Eq. (2.13): a proportional, an integral, and a derivative term. PID-control is straightforward and
generally achieves the required performance, therefore an often chosen solution by mechatronics engineers.
However, the main reason to use PID-control is that the transfer function is a function of just two parameters
if some general guidelines are applied. These guidelines, often referred to as rules of thumb, are commonly
used in the industry, and the transfer function is as follows:

C (s) = 1

3

∣∣∣∣
1

G
(
2π fc

)
∣∣∣∣




1+
2π fi

s
+

s

2π fd

s

2π ft
+1



= 1

3

∣∣∣∣
1

G
(
2π fc

)
∣∣∣∣




1+
2π fc

10s
+

3s

2π fc

s

6π fc
+1




, (2.15)

where fc is the desired bandwidth frequency in Hz and
∣∣∣ 1

G(2π fc )

∣∣∣ is the absolute gain of the plant G(s) at fc .

The parameter fi is related to the integral action and the parameters fd and ft to the derivative action. These

three terms are expressed in terms of the bandwidth frequency fc by applying the rules of thumb: fd = fc
3 ,

ft = 3 fc , and fi = fc
10 . Figure 2.1 shows the Bode plot of the controller in Eq. (2.15). The integral action

increases the loop-gain in the low-frequency region. This, in addition to the proportional action, improves
the reference signal tracking accuracy and disturbance rejection. The derivative action adds a phase lead in
the bandwidth frequency region so that the system is stable and provides robustness. The derivative action
is cut-off in the high-frequency region by adding one extra pole. Adding an extra pole limits the gain at high
frequencies and is known as tamed PID-control. The reason for "taming" the derivative action is to limit the
gain at high frequencies to suppress the effect of high-frequency disturbances and sensor noise, which often
consists of high frequencies.

2.3. Absolute stability and robustness
Feedback control is essential to achieve the required performance for the majority of controlled motion sys-
tems. A simplified block diagram of a typical feedback controlled system is shown in Figure 2.2.
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Figure 2.1: Bode plot of the tamed PID controller C (s) with rules of thumb of Eq. (2.15) with
fc = 100Hz.

Controller
C (s)

Plant
G(s)

u

Measurement
M(s) = 1

r e y
−

Figure 2.2: Simplified representation of a feedback loop. The measurement system does not
influence the loop due to unity gain. The plant, the uncontrolled physical system, consists of the

structural part only.

The measurement system measures the position which is then compared to the reference signal r . This re-
sults in an error signal e that is used to determine the correcting forces that act on the plant.
One of the main advantages of feedback control is the reduction of the effect of disturbances. Even though
engineers aim to design systems that reduce external disturbances to the bare minimum, errors, yet small,
are still present. In feedback control, the sensors observe disturbances so that the controller can actively
suppress them. One of the other main advantages of feedback control is the handling of uncertainties. The
controller design can be such that a system still meets the performance requirements, even for system pa-
rameter variations. How well a system is capable of dealing with uncertainties is known as the robustness
of the system. Modeling errors and system parameters that change over time, e.g. due to bearing wear, are
examples of uncertainties. On the other hand, a pitfall of feedback control is that it can introduce instability
even if the uncontrolled system is stable. Instability means that the system has an unbounded response to a
bounded input. The performance is lost when instability occurs, and the system is said to be out of control.
Therefore stability is crucial when considering the design and analysis of feedback control systems.

Two terms to indicate system stability exist in control theory [3] [29]. The first term is absolute stability and
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is a measure in a qualitative sense. It provides a yes or no answer to whether a system is stable or not stable.
Further characterization of absolute stable systems is the degree of stability and is known as relative stability.
Designing systems that meet a certain degree of relative stability is also referred to as design for robustness.
Multiple tools exist to determine the absolute and relative stability of a system. One way to determine the ab-
solute stability is by looking at the poles of the closed-loop transfer function. In this thesis, the system model
consists of the structural part and the controller part only. Modeling of other aspects that usually comprise a
complete motion system like sensors, actuators, and digital filters is omitted. Thus the closed-loop transfer
function from the reference signal to the measured output signal, also known as the complementary sensi-
tivity function, is defined as:

T (s) = y

r
= G (s)C (s)

1+G (s)C (s)
, (2.16)

where G(s) and C(s) are the transfer function of the mechanics and controller respectively. The most widely
used tool in determining both absolute and relative stability is the Nyquist stability criterion. It is a frequency
domain stability criterion without loopholes, hence its popularity. The criterion is based on Cauchy’s ar-
gument principle [3] and relates the open-loop frequency response to the number of unstable closed-loop
poles. Using Cauchy’s argument principle, a so-called Nyquist diagram can be constructed. How this can be
done is not discussed in this thesis, but can be found in textbooks on control [3] [29]. Figure 2.3 shows an
example the Nyquist plot of the following transfer function:

G (s) = 10(
s2 +2s +2

)
(s +2)

. (2.17)

The transfer function G (s) does not describe a realistic motion system or mechanical plant. It is just to show
the idea of the Nyquist diagram and Nyquist stability. The blue line in Figure 2.3 is the mapping of G (s)

−3 0 3
−3

3

∆Φ

ω= 0ω=∞−1

1
∆G

∆MM

Re|G(ω)|

Im
| G

(ω
)|

Figure 2.3: The Nyquist plot for Eq. (??)

on the Nyquist plot. The Nyquist stability criterion is defined in terms of the (-1, 0) point on the plot and
the proximity of the blue line to this point is a measure of the relative stability. There exist three measures
indicating the relative stability of a system. The first one is the gain margin and is a measure of the factor by
which the system gain would have to be increased for the blue line to pass through the critical (-1, 0) point on
the plot. The gain margin is mathematically defined as:

∆G = 1∣∣G (
jω180

)∣∣ , (2.18)

where ω180 is the frequency for which the phase is −180◦:

Φ (ω180) =−180◦. (2.19)
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Thus the gain margin is the gain of the open-loop system at the frequency for which the phase is −180◦.

The second relative stability measure is the phase margin. The phase margin is the amount of phase shift
at unity magnitude for the blue line to pass through the critical (-1, 0) point on the plot. The phase margin is
mathematically defined as:

∆Φ= 180◦−Φ (ωc ) , (2.20)

where ωc is the crossover frequency: ∣∣OL
(

jωc
)∣∣= 1. (2.21)

The third and last relative stability margin is the modulus margin. It is defined as the shortest distance be-
tween the Nyquist contour and the critical point (-1, 0). The modulus margin is mathematically defined as:

∆M =
∣∣1+OL

(
jω

)∣∣
min

=
∣∣∣S

(
jω

)−1
∣∣∣
min

= (∣∣S (
jω

)∣∣
max

)−1

. (2.22)

The three margins are indicated in Figure 2.3. In designing controlled motion systems a modulus margin of
∆M = 6 dB is commonly used in the industry. The standard margins used in industry for the gain margin
and phase margin are ∆G = 6−1 dB and ∆Φ = 30◦ respectively. If the modulus margin of a system is at least
6 dB, it automatically means that the system also satisfies the mentioned values of the phase and gain mar-
gin. Therefore, only the modulus margin is used in this thesis to determine if a design meets the robustness
requirement. The region for which a system does not meet the requirement on the modulus margin of 6 dB
is indicated with the red circle in Figure 2.3.

2.4. Test case
This section defines a test case of a simple controlled system that will be used throughout this thesis. Even
though the test case is relatively simple, it is representative of more complex systems as this system possesses
the aspects that are important in controlled motion system design, such are the combination of rigid-body
modes and flexible modes. The simple controlled system is a two-dimensional free-free flexible beam, and
the positioning task is to move it in the direction perpendicular to the longitudinal axis of this beam. The
beam has a length of L = 4m, and the height and width are both 0.01 meters. The density of the beam is
ρ = 1000kg /m3 and the Young’s modulus E = 1010N /m2. Euler-Bernoulli beam theory is used as the beam
model, and the number of elements in the finite element formulation is 40. The derivation of the mass and
stiffness matrices for this problem can be found in numerous finite element references [9] [8]. The system
possesses two rigid-body modes, one tilt and one lift mode. Figure 2.4 shows the first eight mode shapes of
the system. Mode one and mode two are the lift and tilt modes respectively, and modes three till eight are the
first six flexible modes.



2.4. Test case 11

0 0.5L L

−0.5
0

0.5
Mode 1

0 0.5L L

−0.5
0

0.5
Mode 2

0 0.5L L

−0.5
0

0.5
Mode 3

0 0.5L L

−0.5
0

0.5
Mode 4

0 0.5L L

−0.5
0

0.5
Mode 5

0 0.5L L

−0.5
0

0.5
Mode 6

0 0.5L L

−0.5
0

0.5

Axial coordinate beam [m]

Mode 7

0 0.5L L

−0.5
0

0.5

Axial coordinate beam [m]

Mode 8

Figure 2.4: The first eight modeshapes of a free-free Euler-Bernoulli beam. Mode 1 and mode 2 are the translational and rotational
modes, respectively. Modes 3 to 8 are the first six vibration modes.

Two actuators and two sensors are needed to drive the system because the system possesses two rigid-body
modes. The configuration of the system, beam with the actuator and sensor arrangement, is symmetric with
respect to the midpoint of the beam. Thus one parameter, a coordinate along the x-axis, is needed to deter-
mine the actuator arrangement, and the same holds for the sensor arrangement. Figure 2.5 shows a sketch of
the system considered.

Fy1 Fy2

Sy1 Sy2

y

x

Figure 2.5: Sketch of the plant, modeled as a Bernouilli-Euler beam, and the actuator and sensor arrangement. Two
actuators, Fy1 and Fy2, and two sensors, Sy1 and Sy2, are used to control the two rigid-body modes. The arrangement
of both the actuators and sensors is symmetric. One coordinate is needed to define the positions of the two actuators

and one coordinate is needed to define the positions of the two sensors.

The system model consists of a mechanical part and a control part. Models of other subsystems that normally
comprise a controlled motion system, such as actuators and sensors, are omitted. The reason why only the
mechanics are considered, besides the controller, is because the mechanical part is often the most determin-
ing factor for the total system performance [20]. Figure 2.6 shows the control structure of the feedback loop
considered in this section.
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Figure 2.6: Block diagram of the control structure that is used throughout this thesis. The plant is a beam modeled as a
Bernouilli-Euler beam. The sensor coupling matrix maps the two sensor measurements into the pure translation y

and pure rotation θ. The actuator decoupling matrix distributes the force Fy and torque Tθ over the two actuators Fy1
and Fy2.

By adopting the actuator decoupling and sensor coupling from the work of [2], two SISO control systems are
realized. One system for rotation along the z-axis and one system for translation along the y-axis. In the
following analysis only the control system for the translation is considered.



3
Input/Output criteria

This chapter discusses concepts from control theory that has been used by researchers to find optimal In-
put/Output (I/O) configurations in flexible mechanical structures. The notions of the Controllability Gramian
and Observability Gramian and system norms like the H2-norm and H∞-norm are defined. The last section
discusses the limitations of the derived I/O criteria for mechatronic motion systems.

3.1. Controllability and Observability Gramians
The concepts discussed in this section are the concepts of controllability and observability. Controllability
and observability are structural properties in linear time-invariant (LTI) systems in the state-space form in
Eq. (2.9), discussed in the previous section. The controllability and observability for a system with triple ma-
trices (A, B, C) are defined [29] as follows:

Definition 1 The dynamical system described by the pair (A, B) is said to be controllable if, for any initial state x(0) = x0,

t1 > 0 and final state x1, there exists a (piecewise continuous) input u(t ) such that the solution of Eq. (2.9) satisfies

x (t1) = x1. Otherwise, the system or the pair (A, B) is said to be uncontrollable

Definition 2 The dynamical system described by the pair (C, A) is said to be observable if, for any t1 > 0, the initial state

x(0) = x0 can be determined from the time history of the input u(t ) and the output y(t ) in the interval of [0, t1]. Otherwise,

the system, or (C, A), is said to be unobservable

Controllability and observability are both important properties of a control system and play a crucial role
during the design process. Several qualitative criteria that provide a yes or no answer exists to determine
whether a system is controllable and observable. These criteria are helpful for the control designer since
these criteria are easy to compute and provide quick answers on whether or not a system is controllable and
observable. However, from an optimization viewpoint, a quantitative measure indicating the degree of con-
trollability and observability is preferred. Very efficient solution methods for optimization problems exist
that use continuous model functions and continuous derivatives is the main reason [17] for the preference of
quantitative measures. In control theory, the so-called controllability and observability Gramians comprise
quantitative information regarding controllability and observability respectively, and are defined as:

Wc (t ) =
∫ t

0
eAτBBT eAT τdτ, (3.1)

Wo (t ) =
∫ t

0
eAT τCT CeAτdτ, (3.2)

where Wc (t ) is the controllability Gramian, Wo (t ) is the observability Gramian, and the matrices (A, B, C)
refer to the matrices of the state-space model of the flexible mechanical system as discussed. The system is
controllable if the controllability Gramian is positive definite for any t > 0. For the system to be observable,
the observability Gramian must be positive definite for any t > 0. These two criteria provide a qualitative an-
swer. However, the values of the Gramian matrices contain information on how controllable and observable

13
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a system is. This fact makes the use of Gramians in optimization interesting because they are suited for well-
developed solution methods. It is generally known that Wc (t ) and Wo (t ) satisfy the differential Lyapunov
equations [5]:

dWc (t )

dt
= AWc (t )+Wc (t )AT +BBT , (3.3)

dWo (t )

dt
= AT Wo (t )+Wo (t )A+CT C. (3.4)

When A is asymptotically stable, which is the case for flexible mechanical structure models without rigid body
modes, then the Gramians Wc (t ) and Wo (t ) reaches a steady state for t = T →∞. The solution for the steady
state Gramians are then the solution of the following Lyapunov equations:

AWc +WcAT +BBT = 0, (3.5)

AT Wo +WoA+CT C = 0. (3.6)

Eq. (3.5) and Eq. (3.6) are not valid for systems with rigid-body modes. However, vibrations often determine
the performance of controlled motion systems. Especially how vibrations are excited by forces and measured
by sensors is an essential part of controlled motion system design. It is common practice to locate the ac-
tuators and sensors in the nodes of the vibration modes of the lowest order because they are most likely the
most determinantal for the system performance. One interpretation of the controllability Gramain is that
it contains information on the amount of energy a controller needs to provide to change a mode from one
energy state to another. This interpretation becomes clear by looking at a general optimization problem in
control engineering. The optimization problem is to find the control input that minimizes the control energy
required to bring the system from state x0 at t = 0 to state xT at t = T :

minimize J (u) =
∫ T

0
uT (t )u (t )dt , (3.7)

where u (t ) is the control input. The analytical solution for the control input [6] of an LTI system, such as the
flexible structure model derived in the previous, section is given by:

u (t ) =−BTeA(T−t )W−1
c (T )

(
eAT x0 −xT

)
, (3.8)

and the corresponding control energy [6] is given by:

J = (
eAT x0 −xT

)T
W−1

c (T )
(
eAT x0 −xT

)
. (3.9)

The analytical solution in Eq. (3.8) and the corresponding energy in Eq. (3.9) only hold when the system is

controllable. The term
(
eAT x0 −xT

)T (
eAT x0 −xT

)
in Eq. (3.9) is the energy difference of the state at t = T due

to the free-response from x0 at t = 0 and the desired state xT at t = T . Therefore, the controllability Gramian
can be viewed as a scaling between the difference in state energy that the controller must overcome and the
correct control energy to overcome this. If Wc (T ) is small or W−1

c (T ) is large, it means that some state transi-
tions require a large amount of input energy.
Based on the fact that vibrations are often the limiting factor of the performance of a controlled motion sys-
tem, it can be interesting to use the Gramians in an optimization setting to determine actuator and sensor
locations. For engineering purposes, it is desirable to replace the matrices with a single quality factor. There-
fore, Muller and Weber [14] proposed the following three scalar criteria for optimization:

1. minimize
x

λ
(
Wc (x,T )−1) ,

2. minimize
x

tr(Wc (x,T )) ,

3. minimize
x

det(Wc (x,T )) ,

(3.10)

where λ means the highest eigenvalue. The three criteria proposed by Muller and Weber are generally appli-
cable to any dynamic system in the state-space form. Hac and Liu [6] investigated the use of the controllability
Gramain as an optimization measure specifically for flexible structures in the modal state-space description.
Hac and Liu show that the controllability Gramian, and thus the optimal actuator arrangement, strongly de-
pends on the time T . The variation in optimal actuator arrangements for different times T is due to the
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oscillatory nature of the homogenous response of flexible modes. Therefore Hac and Liu use the steady-state
solution of the controllability Gramian to eliminate the dependence on T. Gawronski [4] and Hac and Liu
[6] show that when the damping ratio’s ζi are small, which is the case in metal structures, and the natural
frequencies ωi are well spaced, the controllability Gramian simplifies to:

Wc,i = diag

(
βi

4ζiωi
,
βi

4ζiωi

)
, (3.11)

where βi is the sum of the actuator contributions for a particular mode:

βi =
r∑

q=1
φT

i E
(
:, q

)
, (3.12)

where E
(
:, q

)
is the contribution of actuator q . With this relatively simple form of the controllablity Gramian

in Eq. (3.12) ends the discussion on placement criteria based on Gramians. The discussion mainly focussed
on controllability. However, the concepts of controllability and observability are complementary and this
discussion also applies to the observability Gramian.

3.2. H2 and H∞ system norms
The concepts of controllability and observability were the topic of the previous section. This section gives a
short introduction of two other concepts, the so-called system norms, that have been applied often in deter-
mining actuator and sensor locations in an optimization setting. Both of these system norms are based on
the transfer function in Eq. (2.12). This transfer function of the state-space system (A, B, C) with m outputs
and r inputs is:

G (ω) = C
(

jωI−A
)−1 B, (3.13)

where G (ω) is a m×r matrix that describes the relation between the r inputs and m outputs in the frequency
domain. The definition of the H2-norm of the system in Eq. (3.13) is defined as:

∥G∥2
2 =

1

2π

∫ ∞

−∞
tr

[
G∗ (ω)G (ω)

]
dω, (3.14)

where G∗ (ω) is the complex-conjugate transpose of G (ω). The term tr[G∗ (ω)G (ω)] in Eq. (3.14) is the sum of
the squared magnitudes of all the elements of G (ω), thus from each input to each output, and is integrated
over all the frequencies. The H2-norm simulates an input of F (ω) = 1 in the frequency domain and the
inverse Fourier transform of this input is the impulse function f (t ) = δ(t ). Thus, an interpretation is that it is
a measure for the response intensity at each output due to an impulse at each input. The H2-norm is related
[4] to the controllability Gramian Wc and observability Gramian Wo via:

∥G∥2 =
√

tr
(
CT CWc

)=
√

tr
(
BBT Wo

)
. (3.15)

T. Gawronski [4] and Hac and Liu [6] derived the controllability Gramian given in Eq. (3.12) based on two
assumptions. The first assumption is that the damping ratios ζi are small, and the second assumption is that
the natural frequencies ωi are well spaced. Based on these two assumptions, the H2-norm for a single mode
i can be approximated as:

∥Gi∥2
∼= ∥Bmi∥2 ∥Cmi∥2

2
√
ζiωi

, (3.16)

where ∥Bmi∥2 and ∥Cmi∥2 are the norm of the modal state-space input matrix and the norm of the modal
state-space output matrix of mode i respectively. The energy norm for a single mode in Eq. (3.16) shows that
if that mode is uncontrollable, then there is no energy transmitted into this mode, and therefore the norm is
zero. The norm is zero as well if that mode is unobservable.

The second system norm that is used in locating actuator and sensor positions in an optimization problem is
the H∞-norm and is defined as:

∥G∥∞ = sup
u(t )̸=0

∥∥y(t )
∥∥

2

∥u(t )∥2
, (3.17)

or, alternatively as:
∥G∥∞ = max

ω
σmax (G (ω)) , (3.18)
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where σmax (G (ω)) is the largest singular value of G (ω). Rewritting Eq. (3.17) to 1 shows that the H∞-norm
provides an upper bound of the average system output to the average system input. For a single-input-single-
output (SISO) system this upper bound is the peak of the transfer function. Figure 3.1 show both the H2-norm
and H∞-norm of a SISO system. The H2-norm is the area under the curve and the H∞-norm is the highest
value of G (ω).

Figure 3.1: H2 and H∞ norms (a) of a single mode; and (b) of the system.

3.3. The usefulness of criteria in designing motion systems
The criteria discussed in the previous sections are continuous functions of the actuator and sensor locations.
The first-order derivatives are also continuous functions, except for a specific case. The case for which the
first-order derivatives become discontinuous is shown later in this section. Apart from this particular case,
the criteria are well suited to use in an optimization setting because efficient solution methods for optimiza-
tion problems that use continuous model functions and continuous derivatives exist. Therefore the criteria
were used a lot by researchers in determining actuator and sensor locations in an optimization setting. The
majority of these optimization problems were static mechanical structures, like bridges or fixed-fixed plate,
shell, or beam structures [13] [12], in which the actuators and sensors are used in active control of unwanted
structural vibrations. In vibration control, the actuator and sensor configuration should result in the highest
possible controllability or energy norm of the set with considered modes. There are two positive effects for
a well-chosen actuator configuration. The first positive effect is that the energy required for suppressing vi-
brations is less relative to a system with an actuator and sensor configuration with a lower controllability or
energy norm. The second positive effect is that it takes less time to bring the structure back to an acceptable
state after vibrations occur. Static shape control, the second application, is about controlling one or a few
modes. The modes to be controlled are often the first bending or the first torsional mode. The objective is to
maximize the controllability or energy norm of the first bending or the first torsional mode while minimizing
the effect of the actuators on higher-order modes. The idea is that the required energy to activate the desired
mode is low while the required energy for the remaining modes is high. The literature shows that usage of the
discussed criteria can aid in designing systems regarding vibration control.
However, little literature is available in which the concepts of the Gramians or energy norms are applied to
motion systems with rigid-body modes. In general, vibrations are the limiting factor of feedback-controlled
motion systems. Thus using the concepts of the Gramians or energy norms to minimize the effect of vibra-
tions present in the feedback loop could be justified. However, the question arises of how effective these
criteria are in designing motion systems in terms of performance. This section discusses the concepts of the
Gramians and energy norms within the context of motion systems. It tries to answer how useful they are in
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designing motion systems.

With the aid of the Python control toolbox [15], a Python script was written to determine the highest pos-
sible bandwidth as a function of the actuator location. The sensor locations are at x=0, x=1, x=2. Thus at 0,
25, and 50 percent of the beam. Figure 3.2 shows the normalized result of the simulation with x=2.
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Figure 3.2: Normalized bandwidth as a function of the actuator location for sensor position s=2.
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Figure 3.3: The H2-norm for three sets of modes as a function of the actuator position for sensor position s=2.

The result for s = 2 is compared with the H2-norm as a function of actuator location for three different sets
of modes. Figure 3.3 shows the result for the H2-norm. The first thing to notice is that no single local opti-
mum for the bandwidth coincides with a local optimum of the H2-norm. The best actuator location regard-
ing bandwidth is at 0.34 percent of the beam or at x = 1.14 m. The bandwidth at this location is 494 rad/s.
The local minima of the H2-norm is when the actuator is located at x = 0.89 m. The maximum achievable
bandwidth at this location is 186 rad/s. This simple test shows that energy norms are not suited to use for
optimizing controlled motion systems for which high bandwidth is important.



4
Robustness constraints

This chapter gives the derivation and modeling of stability constraints. These constraints are a central part
of a new integrated optimization approach that this thesis explores. This chapter also discusses limitations,
as in model assumptions, and strengths of using stability constraints. The testing of these constraints in an
optimization problem is the topic of chapter 4.

4.1. Model
4.1.1. Structural model
The transfer function of a damped flexible structure can be expressed as a superposition of rigid-body modes
and flexible modes:

G (s) =
m∑

i=1
Gi (s)+

m+n∑
j=m+1

G j (s) , (4.1)

where the first term is the summation of the m rigid-body modal transfer functions and the second term
is the summation of the n flexible modal transfer functions. The first important step is that a plant with
one rigid-body and one flexible mode is considered for now. It might seem a crude oversimplification at first,
which is true. Designing motion systems requires taking into account multiple flexible modes in combination
with the desired rigid-body mode. The reason is that more than one mode may be close to violating the
robustness criteria in a final design. Also, the set of modes that are crucial regarding stability may vary during
the design process when different designs are considered, especially in optimization. However, one of the
main points of this work is that, based on a simple system with only one rigid-body mode and one flexible
mode, a robustness response surface can be constructed that can be used for systems with multiple modes
as well. For now a system with one rigid-body mode and just one flexible mode is considered:

G (s) = φrb,sφrb,a

Mrbs2 + φfl,sφfl,a

Mfl
(
s2 +2ζωfls +ω2

fl

) , (4.2)

where φrb,s and φrb,a are the modal contributions of the rigid-body mode at the sensor location and actuator
location respectively. The modal contributions to the total transfer function due to the flexible mode at the
sensor location and actuator location are φfl,s and φfl,a respectively. Mrb is the modal mass of the rigid body
mode and Mfl is the modal mass of the flexible mode, and ωfl is the eigenfrequency of the flexible mode. The
damping model is defined as c = 2ζωfl.

Now it is generally known that machine dynamics can be detrimental on the performance of controlled mo-
tion systems. Rankers [19] investigated the effect of machine dynamics on the system performance during
his Ph.D. research. Rankers identified four types of basic characteristics observed in the frequency response
of mechanical systems. For the single-mode system in Eq. (4.2), the type of characteristic of the frequency
response depends on the interaction between the rigid-body mode and the flexible mode. These types are

18
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identified by introducing a variable α as

α=

φfl,sφfl,a

Mfl

φrb,sφrb,a

Mrb

. (4.3)

The parameter α relates the high-frequency contribution of the flexible mode to that of the rigid-body mode.
The four characteristic dynamic behavior patterns are identified based on the magnitude and sign of α. Fig-
ure 4.1 shows these patterns for a single-mode system without damping (ζ= 0) for different values of α. The
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Figure 4.1: Bode plots of a system with one rigid body and one flexible mode for different values of α

dynamic response for α > 0 is characterized by a -2slope/zero/pole/-2slope behavior. The anti-resonance
(zero) is located left of the resonance (pole). The relative distance between the anti-resonance and the res-
onance increases as the absolute value of α becomes larger. The increasing distance is because the location
of the zero shifts toward the left while the location of the pole remains unchanged. An −1 < α < 0 results
in a -2slope/pole/zero/-2slope behavior. Now the anti-resonance is located right of the resonance. The rel-
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ative distance between the zero and pole increases with the increasing magnitude of alpha, while the pole
location remains unchanged. The third and fourth types of system characteristics occur for α = −1 and
α < −1. For α = −1, the system has a -2slope/pole/-4slope behavior and if α < −1, the systems behavior
is a -2slope/pole/-2slope. No anti-resonance is present for systems that are of type three or four. One im-
portant observation that is worth mentioning at this point is that the phase always returns to −180◦ in the
high-frequency range for all systems, except if α≤−1. For systems with α≤−1 the phase goes to −360◦ after
the eigenfrequency ωfl of the flexible mode. This type of behavior is called a "non-minimum phase" system
which means that the system starts moving the direction opposite to the direction of the input force. This
behavior type is undesired and can seriously limit the performance of a controlled motion system, especially
if this behavior occurs at the lower frequency range. One note is that the value α = −1, which is the point
between non-minimum phase behavior and behavior with an anti-resonance, is true for a system with no
damping. In the case of a lightly damped system, this value slightly changes as is shown later.

Now, the single-mode system of mode m can be written as a function of α instead of the conventional or
textbook form in Eq. (4.2) as:

Gm (s) = Km

(
1

s2 + αm

s2 +2ζωm s +ω2
m

)
, (4.4)

where αm is the dimensionless modal parameter of mode m. It contains information, based on the magni-
tude and sign, on the shape of the single-mode system, and Km is a constant factor that is not a function of
frequency. Changing Km results in a vertical shift of the FRF, but it does not influence the ‘shape’ of the FRF.
The interesting difference between the two descriptions is that, by combining the modal parameters into α,
the ‘shape’ of the FRF is a function ofα and the eigenfrequency of the modeωm only, while five parameters in
Eq. (4.2) determine the shape of the FRF due to the modal contributions at the actuator and sensor locations.
Soα combines the modal information into one dimensionless parameter. The single-mode system structural
model in the form of Eq. (4.4) will be used in the open-loop system to determine stability and robustness later
on.

As mentioned before, in practice, a set of modes have to be considered during the design of a motion sys-
tem. The FRF of the total system is the result of the interaction of each mode with the rest of the modes. Now
the question arises how to calculate the characteristic dynamic behavior αm , that contains information on
the shape of the frequency response, of mode m that is part of a system comprising a set of modes. What
follows are two methods to compute αm . The first method is an extension of Eq. (4.3) and is only valid if
modes are well-spaced. The second method uses the zeros and poles of the complete system.
The modal parameter in Eq. (4.3) is the ratio of the high-frequency contribution of the flexible mode to that
of the rigid-body mode. Before deriving the mathematical expression for αm , an assumption is made on
the structural part of the system. This assumption is that the eigenfrequencies of the relevant modes are
well-spaced. That the modes must be well-spaced is a vague term, and the question is ‘how’ well-spaced
modes must be. The qualitative answer is that the effect of the resonance or anti-resonance of the previous
mode is faded away enough before the interaction with mode m takes place. This depends on the value and
sign of α. If the values of α of two consecutive modes are low, then the eigenfrequencies can be closer to-
gether. If this is the case, then αm is the ratio between the high-frequency contribution of flexible mode m
to the high-frequency contribution of the system comprising all the previous flexible modes including the
rigid-body mode. Consider the transfer function of one rigid-body mode and m flexible modes expressed in
modal parameters:

G (s) = φrb,sφrb,a

Mrbs2 +
m−1∑
i=1

φi ,sφi ,a

Mi
(
s2 +2ζωi s +ω2

i

) + φm,sφm,a

Mm
(
s2 +2ζωm s +ω2

m
) . (4.5)
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Thenαm is the ratio between the high-frequency contribution of mode m and the sum of the high-frequency
contributions of all the other modes in Eq. (4.5):

αm = lim
s→+∞

φm,sφm,a

Mm
(
s2 +2ζωm s +ω2

m
)

φrb,sφrb,a

Mrbs2 +
m−1∑
i=1

φi ,sφi ,a

Mi
(
s2 +2ζωi s +ω2

i

)
,

αm =

φm,sφm,a

Mm

φrb,sφrb,a

Mrb
+∑m−1

i=1

φi ,sφi ,a

Mi

.

(4.6)

It turns out that computing αm ’s with Eq. (4.6) is not an accurate method for practical systems. Modes are
most likely not well-spaced enough such that the dynamics of other modes do not influence the values of
αm . The second method is based on the zeros and poles of the complete system and is valid irrespective
of whether modes are well-spaced or not. First, consider the case for which the mode results in an anti-
resonance, thus αm >−1. Figure 4.2 shows the asymptotic behavior of such a system. The logarithmic scales
of magnitude and frequency give a linear asymptotic behavior before and after the pole/zero pair, often called
the mass-line, and have a slope of −2. Expressions for the low-frequency and high-frequency asymptotes are
obtained by taking the limit of Gm(s), defined in Eq. (4.4), as s approaches zero and infinity, respectively. The
low-frequency asymptote La and high-frequency asymptote Ha are:

La =Km
1

s2 ,

Ha =Km
(1+αm)

s2 = (1+αm)La .
(4.7)

Eq. (4.4) learns that the level of the high-frequency asymptote Ha exceeds the low-frequency asymptote La

by a factor (1+αm).
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Figure 4.2: The dynamics present in the total system FRF can be approximated by single-mode
systems, each of which is a function of the modal parameter αm and the constant mapping factor

Km .
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From the asymptotic behavior shown in Figure 4.2, one can deduce that the high-frequency asymptote exceeds

the low-frequency asymptote by a factor
(

fr / fa
)2. Setting this factor equal to (1+αm), the dimensionless

modal parameter αm of mode m can be expressed as a function of the poles and zeros:

αm =
(

fm,r

fm,a

)2

−1, (4.8)

where fm,r and fm,a are the frequency of the resonance and anti-resonance of mode m respectively. The fre-
quency of the anti-resonance corresponds with the frequency, which is the imaginary part, of the zero zm of
mode m. The frequency of the resonance corresponds with the frequency of the pole pm of mode m. For
non-minimum phase behavior, no anti-resonance occurs. In this case, the frequency of the zero is equal to
zero (Im(zm) = 0), and Eq. (4.8) is not valid to compute αm anymore.

Eq. (4.4) is used to derive αm as a function of zm for a non-minimum phase mode. Plugging in zm in Eq. (4.4)
and solving for αm gives the following expressions for αm :

αm =−
(

ωm

Re(zm)

)2

−1− 2ζωm

Re(zm)
, αm < ζ2 −1, (4.9)

and
αm = ζ2 −1. (4.10)

The boundary between non-minimum phase behavior and behavior with an anti-resonance is α= ζ2 −1 for
damped systems instead of -1. This automatically means that Eq. (4.8) is valid ifαm > ζ2−1. Now the question
arises which expression to use for computingαm . This is determined by the zero zm . If the system has an anti-
resonance due to mode m, then the zero zm is a complex conjugate pair. If two zeros exist that are both real,
one negative and one positive, than the mode is non-minimum phase and Eq. (4.9) is used to compute αm .
An example follows to show how well a set of single-mode systems can resemble the dynamics of the total
plant. The plant of the test case defined in Section 2.4 is considered in this example. A two-dimensional
free-free flexible beam with a length of 1 meter modeled with Euler-Bernoulli beam theory. The location of
the actuator and sensor are at 0.25 and 0.1 meters, respectively. This results in a system in which the first
five modes are controllable and observable, and one of these modes shows non-minimum phase behavior.
The dimensionless modal parameters α are obtained via the strategy presented earlier in this section. The
single-mode systems are mapped onto the corresponding pole of the total plant by computing the factor K :

K =

∣∣∣Gt (s)
∣∣

s= jωPm

∣∣∣
∣∣∣Gm (s)

∣∣
s= jωPm

∣∣∣
. (4.11)

Figure 4.3 shows the plant together with the resulting single-mode systems. The FRF’s of the single-mode
systems are plotted only for the frequency range at which the dynamics of the (anti)-resonance are present.
The reason is to prevent that Figure 4.3 becomes unclear due to the excess of lines.

There are two observations worth mentioning. The first one is that some single-mode systems are more ca-
pable of resembling the total plant dynamics than others. The single-mode system of mode one, for example,
shows virtually no error with the dynamics in the total system FRF, while the capability of mode three to re-
semble the frequency range after the anti-resonance is lost quickly with the effect that this introduces an
error. There is a combination of two factors that influence this error. The first one is the magnitude and sign
of alpha of two consecutive modes. The dynamics of one mode extend to a broader frequency range as the
magnitude of alpha increases. The first reason is that the frequency of the anti-resonance moves away from
the frequency of the resonance. The second reason is that the magnitude of the dynamics is damped out less
quickly for frequencies away from the (anti-)resonance. The magnitude of the dynamics of one mode super-
poses with the dynamics of other modes in the total system FRF, which a single-mode system can not capture.
However, looking at the stability and robustness of a controlled motion system, the frequency range around
the bandwidth is most crucial. The mode dynamics in this frequency range are most likely responsible for not
meeting the robustness criteria or even absolute stability. Therefore, a set of single-mode systems can prob-
ably resemble the dynamics of the total plant around the bandwidth frequency because the dynamics are
likely to have a small magnitude of α. The second factor that influences the error is if the eigenfrequencies
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Figure 4.3: The dynamics present in the total system FRF can be approximated by single-mode
systems, each of which is a function of the modal parameter αm and the constant mapping factor

Km .

of two consecutive modes are not well-spaced. In practice, the relative distance between eigenfrequencies
decreases as the mode number increases. On the other hand, the modes in the lower frequency range limit
the controller bandwidth.

The fourth mode shows non-minimum phase behavior (α≤−1). The absence of an anti-resonance charac-
terizes this behavior, but more importantly, a permanent phase shift of −180◦ occurs. The permanent phase
shift opposes the behavior of other system types, which always return to -180 degrees after the (anti-)resonance.
The result is that the phase of the single-mode systems that come after the non-minimum phase mode is off
by 180◦, as shown in Figure 4.3. Non-minimum phase behavior is highly undesired as it can seriously en-
danger stability. In defining an optimization problem, an option is to define an inequality constraint, like
g (x) =α−1, to prevent non-minimum phase behavior.

4.1.2. Controller and open-loop model
The Nyquist criterion is applied to the open-loop system to determine the stability and robustness of the
closed-loop system. The open-loop system is the product of the controller transfer function and the transfer
function of the mechanical plant, which were discussed in the last two sections. Inserting both the mechani-
cal model of Eq. (4.4) and controller model of Eq. (2.15) in the open-loop system, defined as OL(s) =C (s)G(s),
results in the following open-loop system:

OLm(s) = Km

(
1

s2 + αm

s2 +2ζωm s +ω2
m

)
1

3

∣∣∣∣
1

G
(
2π fc

)
∣∣∣∣




1+
2π fc

10s
+

3s

2π fc

s

6π fc
+1




, (4.12)

where fc is the desired bandwidth frequency in Hz. The system in Eq. (4.12) is slightly rewritten by introduc-
ing a relative bandwidth C :

Cm = ωbw

ωm
, (4.13)
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where C is the relative bandwidth and f f l is the eigenfrequency of the flexible mode in Hz. Inserting Eq. (4.13)
in Eq. (4.12) results in:

OLm(s) = Km
1

3

∣∣∣∣∣
1

G
(
2πCω f l

)
∣∣∣∣∣

︸ ︷︷ ︸
gain

(
1

s2 + αm

s2 +2ζωm s +ω2
m

)



1+
2πCω f l

10s
+

3s

2πCω f l

s

6πCω f l
+1




︸ ︷︷ ︸
shape

. (4.14)

The open-loop system in Eq. (4.14) can be seen as a product of two parts. The first part is a constant gain that
is independent of the frequency. The second part is a function of the frequency and describes the ’shape’ of
the open-loop FRF. Now the open-loop system is only a function of three parameters: α, the relative band-
width C , and the eigenfrequency of the flexible mode ω f l . Only α and C change the shape of the FRF and
these parameters influence the stability and robustness. However, a change inω f l results in a horizontal shift
of the FRF and does not influence the stability and robustness, which is shown in Figure 4.4. This means that
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Figure 4.4: Stability and robustness of the open-loop system in Eq. (4.14) is only a function of the
modal parameter αm and the relative bandwidth Cm . (a) Three systems with different

eigenfrequencies but with the same value for the modal parameter and relative bandwidth. (b) The
robustness for the three system is the same.

the stability and robustness of the system in Eq. (4.14) is completely determined by just two parameters: α
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and C . Thus any change in the design, whether it is a change in the topology or the location of actuators and
sensors, does not influence the stability and robustness if α and C remain constant.
Now that the robustness is a function of two variables, Eq. (4.14) can be used to construct a response sur-
face for the robustness of a closed-loop controlled system that comprises one rigid-body mode, a flexible
mode, and a PID controller. The response surface is general and can be used to evaluate if a design meets the
robustness criteria.

4.2. Relative stability response surface of a single-mode system
The open-loop transfer function of a controlled motion system was derived in the previous section. The
derivation of this function was based on a mechanical model comprising of a rigid-body mode and just one
flexible mode. This mechanical model is a crude oversimplification of reality because, in practice, a system
contains infinite flexible modes. However, the derived model can be used in determining the robustness of a
system comprising multiple flexible modes. Section 4.3 explains how and under what conditions. This sec-
tion looks into the relative stability of the single-mode system derived in the previous section.

The stability of the system in Eq. (4.14) is a function of two parameters: α and C . The parameter α deter-
mines the shape of the plant frequency response, and C determines the shape of the controller frequency
response, as discussed in the previous section. The fact that just two parameters determine stability allows
visualizing the three stability margins via three-dimensional plots. The Python Programming Language [25]
with the aid of the Python package "Python Control System Library" [15] is used to generate such a plot. Fig-
ure 4.5a shows the Modulus Margin ∆M in decibel as a function of positive values of α up to α= 100 and the
relative bandwidth C from three decades before to two decades after C = 1. The stability response surface in

(a) Interaction (b) Interaction

Figure 4.5: The robustness response surfaces of a single-mode system for (a) positive values of α and
(b) negative values of α.

Figure 4.5a reveals a plane at which the modulus margin is constant and two profiles nearby C = 1. The figure
also shows a region indicated by a grey plane. This region is where absolute stability is not met, or in other
words, where the controlled motion system is unstable. The modulus margin is not plotted in the unstable
region for two reasons. The first reason is that a system must be stable in the absolute sense before one can
determine relative stability. The second reason is that the modulus margin can meet the robustness criteria,
even if the system is unstable. Therefore, it is not clear in Figure 4.5a whether a system is stable and robust
if the unstable region is not indicated. The modulus margin goes to infinity at a point of transition from ab-
solute stability to instability. Therefore, the surface is capped at a modulus margin of 30 dB at the transition
points to make Figure 4.5a clearer.

The region of the stability response surface that complies with the robustness criteria of ∆M ≤ 6 dB is in-
dicated by the color blue. For the most part, this region is a flat plane with a constant modulus margin of
∆M = 3.4 dB. The mass line of the system determines the modulus margin at this plane. The resonance and
anti-resonance play no role, which can be confirmed by looking at the Nyquist plot of different systems on
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Figure 4.6: Nyquist plots for three different systems with the same modulus margin of ∆M = 3.4 dB,
indicated by the green circle. For each system, the modulus margin is determined by the mass line

and not by the resonance and anti-resonance.

this plane. Figure 4.6 shows the Nyquist plots of three systems evaluated at three different locations. The
modal parameter of the system in the middle in Figure 4.6 is α = 0, meaning that the system only consists
of one rigid-body mode and no flexible mode. The shape of the Nyquist plot does not depend on the choice
of the controller bandwidth, and the value for C is not relevant for this case. The modal parameter of the
systems depicted on the left and right in Figure 4.6 is α = 0.1. For the left system, the controller bandwidth
is located left at the eigenfrequency of the flexible mode at C = 0.35. The modulus margin is determined by
the mass line left of the eigenfrequency. The controller bandwidth of the right system is chosen right from
the eigenfrequency of the flexible mode at C = 2. In this case, the mass line right of the eigenfrequency de-
termines the modulus margin of the system. The surface learns that a stable motion system is feasible if the
bandwidth frequency is chosen some distance from the eigenfrequency of the flexible mode. The minimum
distance required increases for systems with a higher α as the resonance plays a more prominent role in the
controlled system.
The stability response surface in Figure 4.5a reveals, besides the plane, two distinct profiles. It shows that
robustness can be an issue if the bandwidth is close to the eigenfrequency of the flexible mode as both these
profiles have regions that do not comply with the robustness criteria of ∆M ≤ 6. The robustness of the left

Figure 4.7: Nyquist plots of systems on the left side of
left profile of the modulus response surface in

Figure 4.5a.

Figure 4.8: Nyquist plots of systems on the right side
of left profile of the modulus response surface in

Figure 4.5a.

profile in Figure 4.5a is determined by the resonance of the system. The anti-resonance determines the mod-
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ulus margin of the right profile. That the left and right profile are a consequence of the resonance and anti-
resonance respectively can be confirmed by looking at Nyquist plots in these regions. Figure 4.7 and Figure 4.8
show a set Nyquist plots with systems located at the left profile. Figure 4.7 shows a set of systems with con-
stant α ≈ 0.22. The relative bandwidth is increased from C1 ≈ 0.40 to C2 ≈ 0.90. The modulus margin varies
from ∆M1 = 4 dB, for which the system meets the robustness criteria, to ∆M2 = 8 dB, for which the system
fails the criteria. The set of systems shown in Figure 4.8 have the same constant α as in Figure 4.7, α ≈ 0.22.
But for this set the relative bandwidth is increased from C2 ≈ 0.90 to C3 ≈ 0.95. Now the modulus margin
varies from ∆M2 = 8 dB back to ∆M3 = 4 dB. Both Figure 4.7 and Figure 4.8 show that the resonance of the
single-mode system is determinative for the modulus margin and thus for the fact whether the robustness
criteria is met or not.
Figure 4.9 and Figure 4.10 show a set Nyquist plots with systems located at the right profile in Figure 4.5a. The
modal parameter is again kept constant at α ≈ 0.42. The relative bandwidth is increased from C4 ≈ 0.95 to
C5 = 1 in Figure 4.9. The modulus margin varies from∆M4 = 4 dB, for which the system meets the robustness
criteria, to ∆M5 = ∞ dB, for which the system is at a transition point between stable and unstable. In Fig-
ure 4.10 the relative bandwidth is increased from C5 = 1 to C6 ≈ 1.15 and the modulus margin goes back from
∆M5 =∞ dB to ∆M6 = 4 dB. Both Figure 4.9 and Figure 4.10 show that the anti-resonance of the single-mode
system is determinative for the modulus margin and thus for the fact whether the robustness criteria is met
or not.

Figure 4.9: Nyquist plots of systems on the left side of
right profile of the modulus response surface in

Figure 4.5a.

Figure 4.10: Nyquist plots of systems on the right side
of right profile of the modulus response surface in

Figure 4.5a.

This concludes the discussion of the stability response surfaces for a single-mode system. The following sec-
tion discusses multi-mode systems. The main focus is how and under what conditions a stability response
surface can be used on a multi-mode system. The reader is referred to Appendix A for the graphs and discus-
sion of stability response surfaces for the gain margin and the phase margin. The reason is that the modulus
margin is the most important in controlled system design. If the robustness criterion regarding the modulus
is met, it automatically means that the system also satisfies the criteria regarding the gain and phase margins,
see [20].

A similar analysis for the profile shown in Figure 4.5a could be made. However, the only thing that is men-
tioned here is that for C > 1 stability is lost if α < −1. A system with α < −1 is known as a non-minimum
phase system as discussed and it is not possible to create a stable system if the bandwidth is placed after the
resonance frequency.
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4.3. Relative stability response surface of a multi-mode system
The relative stability response surfaces discussed in Section 4.2 are based on a structural system with one
rigid-body mode and one flexible mode. In reality, structural systems comprise infinite flexible modes. In
controlled motion system design, it must be ensured that the total system complies with the robustness cri-
teria. The design engineer must take into account the set with the most important modes regarding perfor-
mance and stability. In this section, a different version of a stability response surface is derived with the aim
to use these surfaces on systems comprising multiple flexible modes.

Evaluating the robustness of a single-mode system via the stability response surface discussed in Section
4.2 requires two dimensionless parameters. The first parameter is the relative bandwidth C and is defined in
Eq. (4.13) as the ratio between the bandwidth frequency fc and the eigenfrequency of the flexible mode ω f l .
The definition of the relative bandwidth does not change for multiple mode systems, but each mode results
in a different relative bandwidth because of the difference in eigenfrequency:

Cn = fc

ωn
, (4.15)

where Cn is the relative bandwidth of mode n, fc is the bandwidth frequency, and ωn is the eigenfrequency
of flexible mode n. The second dimensionless parameter is the modal parameter α and the computation of
αm for mode m is discussed in Section 4.1.1.

The stability response surface of a single-mode is not suited to analyze the robustness of a multi-mode sys-
tem by evaluating the surface at different locations for each mode. The reason why is a shift in the gain takes
place after an interaction. This shift in the gain is cumulative and can become larger or smaller with each
interaction between a mode and the rest of the system. This effect is shown in Figure 4.11.

Figure 4.11: A shift in the gain occurs in multi-mode systems. The figure shows a difference in
controller gain of a controller with bandwidth frequency of fbw = 104 [rad/s] between the

single-mode system indicated in blue and the total system indicated in black. This effect has to be
compensated for.

The figure shows a positive shift of the gain in the high-frequency range due to the second flexible mode.
The larger the value of α, the greater the increase or decrease in the gain. The gain increases if α is positive
and decreases if α is negative. This cumulative effect is not embedded in the information a stability response
surface of a single-mode system provides. This can be explained using Figure 4.11. Assume the controller
bandwidth fc = 104 rad/s, then the controller gain is determined by the gain of the plant at this frequency, the
black mass-line. However, the controller gain for the first mode embedded in the stability response surface
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is determined by the gain of the blue mass-line. There is a difference between the controller gain used in ob-
taining the stability response surface and the true controller gain of the complete system. To create a stability
response surface for a multi-mode system, the following extra parameter, besides α and C , is introduced:

∆G = |Gt (s)|2π fc −|Gi (s)|2π fc , (4.16)

where |Gt (s)|2π fc is the gain of the total plant evaluated at the controller bandwidth frequency fc . |Gi (s)|2π fc

is the gain of the reduced system of the mode of interest. The robustness of a multi-mode system with well-
spaced modes is a function of three parameters; α, C , and ∆G . A single-mode system with any α and C , but
with a constant ∆G = 0, results in a certain modulus margin. The modulus margin is the same as the single-
mode stability surface because∆G = 0. To create a multi-mode stability surface,∆G is increased or decreased
until the modulus margin for that system is 6 dB, the robustness criteria. The ∆G for which the single-mode
system results in a modulus margin of 6 dB is then plotted along the third axis. For positive α, this results in
two surfaces shown in Figure 4.12 and Figure 4.13.

Figure 4.12: Stability response surface of a multi-mode system of the modulus margin for positive
values of α and C > 1.

Figure 4.13: Stability response surface of a multi-mode system of the modulus margin for positive
values of α and C < 1.

The way to interpret these surfaces is as follows. The three parameters of a single-mode m are computed,
thus the relative bandwidth Cm , the modal parameter αm , and the difference of the gain with the complete
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system ∆Gm in dB. Then if the point (Cm ,αm ,∆Gm) lies above the surface in Figure 4.12 or under the surface
in Figure 4.13, then that mode is violating the robustness criterion of the complete system.
Figure 4.14 shows two surfaces for negative α and C < 1.

Figure 4.14: Stability response surface of a multi-mode system of the modulus margin for positive
values of α and C > 1.

If the point (Cm ,αm lies inside the domain of the surfaces in Figure 4.14, then the point (Cm ,αm ,∆Gm) must
be either above the top surface or under the bottom surface for that mode not to violate the robustness of the
complete system.

4.4. NURBS interpolation of relative stability response surface
The robustness response surfaces plotted in the previous section are surface plots based on sets of three-
dimensional data points obtained via simulations. No information is available in between these data points.
From an optimization point of view, it is beneficial to use a mathematical model that can describe the surface
continuously compared to the set with finite data points. A continuous model makes evaluating any point
in the domain straightforward and possibly provides analytical information on the derivative of the surface.
Analytical derivatives allow gradient-based optimization algorithms. The surfaces obtained in Section 4.4 are
smooth but with a wide variation in the gradient. This variation in the gradient makes it difficult to model
these surfaces with interpolation techniques and require careful attention. This section describes the theory
and process in obtaining the mathematical models of the robustness surfaces.

Different techniques exist to model surfaces using a set of finite data points. In this thesis, nonrational B-
spline surfaces are used. A B-spline surface is well suited to create accurate representations of the robustness
surfaces obtained in Section 4.4 for a few reasons. The first reason is that B-spline surfaces are capable of rep-
resenting free-form surfaces that are relatively complex precisely. The second reason is that the theory has an
easy-to-understand geometric interpretation. It does not require much effort to learn the theory regarding
B-spline surfaces and to apply it. To create a mathematical model of the surfaces using B-spline surfaces, an
open-source Python library is used. This Python library, developed by the Department of Mechanical Engi-
neering of Iowa State University [1], is a great tool to create and evaluate B-spline surfaces. Most of the theory
that follows is found in The NURBS Book by Les A. Piegl [18], and sometimes the reader is referred to papers
for additional details.

A nonrational B-spline surface uses piecewise polynomial functions. Before stating the definition of these
so-called B-spline basis functions, let U = {u0, · · · ,um} be a nondecreasing sequence of real numbers. For
example ui ≤ ui+1, i = 0, · · · ,m −1. The ui are called knots, and U is the knot vector. Then the B-spline basis
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function is defined as:

Ni ,0 (u) =
{

1 if ui ≤ u < ui+1

0 otherwise
,

Ni ,p (u) = u −ui

ui+p −ui
Ni ,p−1 (u)+ ui+p+1 −u

ui+p+1 −ui+1
Ni+1,p−1 (u) ,

(4.17)

where Ni ,p (u) is the i th B-spline basis function of degree p. Eq. (4.17) shows that evaluating the B-spline of
degree p requires a recursion of evaluations of lower-order functions starting at p = 0 to p = p−1. In this the-
sis, cubic curves (p = 3) are used to guarantee C 2 continuity. The first and second derivatives of the surface
model are continuous, and this makes the model suited for gradient-based optimization algorithms using
analytical derivatives.

A nonrational B-spline surface uses the B-spline basis functions in two directions, u and v . A surface of
degree p in the u direction and degree q in the v direction is defined as:

S (u, v) =
n∑

i=0

m∑
j=0

Ni ,p (u) N j ,q (v)Pi , j 0 ≤ u, v ≤ 1, (4.18)

where Ni ,p (u) and N j ,q (v) are the nonrational B-spline basis functions as defined in Eq. (4.17). Pi , j ∈ R3 are
so-called control points. The set of all control points forms a bidirectional control net and determines the
shape of the surface globally. The B-spline surface S (u, v) is a smooth surface that resembles the global shape
determined by the control net. There are a few things to note here. First, the control points do not coincide
with the interpolated surface S (u, v). Second, the control points are different from the data points that define
the surface that must be interpolated. The surface model S (u, v) is a parametric function. The coordinates
u and v correspond to an unique point on the surface and are normalized to [0,1]. To evaluate the B-spline
basis functions at the boundaries of the normalized domain, the knot vectors U and V have the following
form:

U =





0, · · · ,0︸ ︷︷ ︸
p+1

,up+1, · · · ,ur−p−1,1, · · · ,1︸ ︷︷ ︸
p+1





, (4.19)

V =





0, · · · ,0︸ ︷︷ ︸
q+1

, vq+1, · · · , vs−q−1,1, · · · ,1︸ ︷︷ ︸
q+1





. (4.20)

Figure 4.15 shows an example of a control net with twenty control points. Straight lines connecting the con-
trol points reveal the global shape of the surface. Figure 4.16 shows an example of a nonrational B-spline
surface based on the control net in Figure 4.15.

Figure 4.15: A control net with twenty
control points. The control points are
connected via straight lines, revealing
the global shape of the surface model.

Figure 4.16: The interpolated surface
model based on the control net depicted
in Figure 4.15. The control points do not

coincide with the surface.
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To construct a surface model S (u, v) using Eq. (4.18) that interpolates a surface described by points data re-
quires determining a control net

{
Pi , j

}
, knot vectors U and V , and selection of the B-spline polynomial order

p. As mentioned before, cubic curves (p = 3) are used. The order p = 3 ensures that the first and second
derivatives of the surface model are continuous. It facilitates the use of analytical derivatives of the surface in
gradient-based optimization algorithms up to the second derivative.

Many methods to determine knot vectors and a control net to interpolate a surface to point data exist in
the literature. The theory of the steps used in this thesis is found in The NURBS Book by Les A. Piegl [18]. Let
us assume a set of (n +1)× (m +1) data points

{
Qk,l

}
, k = 0, · · · ,n and l = 0, · · · ,m that describes a surface. To

construct a B-spline surface of degree (p, q) that interpolates these points, the following must hold:

Qk,l = S (ūk , v̄l ) =
n∑

i=0

m∑
j=0

Ni ,p (ūk ) N j ,q (v̄l )Pi , j , (4.21)

where ūk and v̄l are the parametric coordinates on the B-spline surface that correspond to the data point
Qk,l . The first step is to determine these parametric coordinates. Multiple methods exist of choosing ūk and
v̄l . The most widely used method is the method of chord length because it is generally adequate [18]. In
general, it gives a good uniform parameterization. However, in this thesis, a newer method is used. This
method proposed by Lee [10] gives better results than the chord length method when the data takes sharp
turns [18]. This is the case with the robustness response surfaces, especially at the transition from where the
mass-line determines the robustness to where the resonance determines the robustness. The method is also
known as the centripetal method and is defined as follows:





ūl
0 = 0, v̄0

k = 0, ūl
n = 1, v̄m

k = 1, ∀k, l

ūl
k = ūl

k−1 +

√∣∣Qk,l −Qk−1,l
∣∣

∑m
s=1

√∣∣Qs,l −Qs−1,l
∣∣

, k = 1, · · · ,m, l = 0, · · · ,n

v̄ l
k = v̄ l−1

k +

√∣∣Qk,l −Qk,l−1
∣∣

∑n
t=1

√∣∣Qs,l −Qs,l−1
∣∣

. k = 0, · · · ,m, l = 1, · · · ,n

(4.22)

The next step is to construct the knot vectors U and V by choosing proper knots ui and v j . The most straight-
forward method is to choose the knots such that they are equally spaced. However, this method is not recom-
mended [18]. Instead, a technique used by many, for example in [27], is applied. In this technique, the knots
are determined by averaging the parameterization of the data points obtained via equation Eq. (4.22). First,
a reduced set of ūk and v̄l is obtained by averaging across all ūl

k , l = 0, · · · ,m, v̄ l
k , m = 0, · · · ,n via:

ūk = 1

m +1

m∑
l=0

ūl
k , k = 0, · · · ,n (4.23)

v̄l =
1

n +1

n∑
k=0

v̄ l
k . l = 0, · · · ,m (4.24)

Then to obtain the knots and the knot vectors, another averaging is applied. Each knot is the average of p
neighboring parameters. With this method the knots reflect the distribution of ūk and v̄l . The knots that
define the knot vector becomes:

u0 = ·· · = up = 0 um−p = ·· · = um = 1

u j+p = 1

p

∑ j+p−1
i= j ūi j = 1, · · · ,n −p

(4.25)

The main result of this method is that equal numbers of data points are located inside the support domain
of all of the B-splines, Ni ,p (ūk ) = 0 if |i −k| ≥ p. If this is the case, it is guaranteed that the system of linear
equations in Eq. (4.21) is non-singular or not ill-conditioned. Hence, the control net

{
Pi , j

}
can be calculated

by Gaussian elimination.

To obtain the NURBS models, the robustness response surfaces described in Section 4.3 are first divided
in patches. The reason for this is that the complete surface shows large variations in gradients. To model the
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surface regions with large gradients accurately requires a dense grid of control points. Evaluating a point in
a region that is rather smooth would be unnecessarily computationally costly. Therefore, to reduce compu-
tational time, the surface is divided into rather smooth patches and patches containing large variations in
gradients. The number of control points is equal to the number of data points that define the surface. Thus
the number of data points needs to be reduced to obtain a NURB model that is computationally attractive.
This was done with the aid of Python as follows. The first and third row of the data points is selected initially
and linear lines between the points of the first row and third row are computed. The distances of the data
points of the second row to the linear lines are then computed and if one of the distances is greater than
a certain threshold, the rows are kept in the surface model. The second row is removed if all distances are
smaller than the threshold which reduces the set of data points. This method is repeated for all rows and the
same is done for the columns. The result is a reduced data set of the surface patches without compromising
accuracy. Figure 4.17 shows two examples of this process, one patch with a small variation in the gradient
and one patch with a large variation in the gradient.
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Figure 4.17: The complete data set, reduced data set, and the control net with the interpolated surface for two patches.



5
Optimization

The application of the robustness constraint derived in Chapter 4 in an optimization problem is studied in
this chapter. This chapter starts with the optimization problem statement, plus details are given on modeling
aspects and the solution procedure. The remainder of this chapter presents examples of optimizations and
their results for different parameterizations, such as actuator placement, actuator and sensor placement, and
shape optimization.

5.1. Optimization problem statement and its solution
In formulating an optimization problem with the robustness response surface as an constraint, one is free
to choose the objective function and to add other constraints. The bandwidth frequency usually determines
the performance of a controlled motion system. Increasing the bandwidth decreases the system’s rise time,
which means a faster operation or better tracking in a tracking task. Increasing the bandwidth also improves
the disturbance rejection of the controlled system. The bandwidth of systems that must carry out repetitive
tasks many times often must be as high as possible as it increases throughput and can reduce cost. So the
objective of the optimization problem in this thesis is to maximize the bandwidth frequency of the controller.
The objective function is defined as the inverse of the bandwidth to comply with the negative null form. As
for the constraints, no extra constraints are imposed other than the robustness response surface constraint
and the constraint on the structural modal parameter α. The problem stated in the negative null form:

minimize
x

f (x) =ω−p
bw

subject to ±Si ,m ∓∆Gm ≤ 0 ∀m ∈ {1,2, · · · ,n}

− (
α j +1

)≤ 0 ∀ j ∈ {1,2, · · · ,n −1}

Cm = ωbw

ωm

αm =





(
Im

(
pm

)

Im(zm)

)2

−1

−
(

ωm

Re(zm)

)2

−1− 2ζωm

Re(zm)
ζ2 −1

if αm > ζ2 −1

if αm < ζ2 −1

if αm = ζ2 −1

(complex zero pair)

(real zero pair)

(one real zero)

∆Gm =
∣∣∣∣

Gt (ωbw )

KmGm (ωbw )

∣∣∣∣
dB

Km = |Gt (ωPm)|
|Gm (ωPm)|

Kφm =ω2
m Mφm

0 < x ≤ x ≤ x

,

(5.1)
where ωbw is the bandwidth frequency and p is a penalty on the objective function. Si ,m is the NURBS sur-
face patch that is active for mode m, evaluated at the the relative bandwidth Cm and modal parameter αm

34
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of mode m. The active patch is identified by looping over all patches and selecting the one for which the
point (Cm , αm) lies in its domain. The domains of patches for positive α do not overlap. For negative α some
patches share the same or parts of their domain. If two patches are active, the constraint is computed for
both and the most critial value is set as contraint for that particular mode. The robustness constraint value is
set to -100 if Cm lies outside the domain of C of the patches. The difference in frequency between the band-
width and the eigenfrequency is such that the mode will not endanger the robustness of the system in this
case. There are two possibilities if Cm lies inside the domain of the patches but αm is not. If the value of αm

is between zero and the minimum value of α at Cm , then αm is set to this minimum value α. The robustness
constraint value is set to -100 if αm is greater than the maximum value of α. However, α’s greater than the
maximum value of the surface is practically impossible and has never occurred in any optimization case. The
number of robustness constraints is equal to the number of modes n considered in the optimization. How-
ever, the number of α constraints is equal to n − 1. The primary purpose of this constraint is to prevent a
permanent phase shift after the resonance of the mode so that the robustness constraint of the succeeding
mode is valid. There is no need to impose the α constraint on the last mode because the succeeding mode is
not considered in the optimization. Additionally, non-minimum phase behavior is undesired in general. In
the problem statement, ∆Gm is the difference in gain, in decibel, between the single-mode system Gm and
the total system Gt at the bandwidth frequency. Km is the mapping factor that maps the single-mode system
onto the total system at the frequency of the pole ωPm .

The optimization problem is solved using the Method of Moving Asymptotes (MMA), a gradient-based method
proposed by K. Svanberg [22]. A convex approximation of the optimization problem is constructed and solved
with this technique and is one of the most popular choices of methods in structural topology optimization.
Initially, the optimizations did not run smoothly. The optimizer did not converge to a local optimum and kept
oscillating between designs. The reason for these oscillations was the robustness constraint of the mode for
which the modal parameters α switched sign in each iteration. The optimizer especially had difficulties for
Cm ≈ 1, so when the bandwidth frequency is close to the eigenfrequency of mode m. In this situation, the
robustness is very sensitive to design changes.
MMA can deal with oscillations with the correct MMA settings for the specific problem. The recommenda-
tions concerning design variable limits and scaling proposed by K. Svanberg [23] are applied in the process
to find the correct MMA settings. The objective function is scaled before the first iteration to f0 (x) = 100. The
bounds of the design variables are 0.1 ≤ x ≤ 100. The bounds of the physical variables are mapped onto the
design variable bounds via a linear mapping, so there is a linear relationship between the physical and design
variables. The bandwidth variable is not physically bounded, but in the optimization the bandwidth variable
is bounded with respect to the eigenfrequency of the lowest mode. The bound is set to 0.01ω1 ≤ωbw ≤ 10ω1,
whereω1 is the eigenfrequency of the lowest mode considered. Smooth convergence to (local) optima is eve-
tually achieved by selecting the right move limit setting of the MMA. Table 5.1 states important MMA settings
regarding convergence and operation.

convergence options
tolX 10−4 −30−4

maxIt 200
operational options

MMA subproblem
approximation first order
x_min ωbw 0.1

pa 1.0
ps 1.0

x_max ωbw 100
pa 10
ps 10

move limit 0.02 - 0.05
p 0.2

Table 5.1: MMA convergence and operational options
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5.2. Actuator placement
This section gives examples of designs obtained by solving the optimization problem statement presented in
Section 5.1. The actuator position pa along the Bernouilli-Euler beam and the controller bandwidth ωbw are
the only design variables considered in this section. The position of the sensor and the beam’s shape are thus
fixed during the optimization. Figure 5.1 presents a schematic of the problem. The optimized designs are
compared to designs that were determined by hand using engineering design principles.

Fy1 Fy2

Sy1 Sy2

ps

L−ps

pa

L−pa

x0

L,h, w,E ,ρ

Figure 5.1: Sketch of the actuator placement problem. The plant, modeled as an Euler-Bernoulli beam, and the sensor
arrangement are constant throughout the optimization. The actuator position pa is the design variable. Note that only
one design variable is needed to define the positions of both actuators due to the choice that the arrangement of both

the actuators and sensors is symmetric.

The beam parameters used in this section are: length L = 1 [m], height h = 0.2 [m], width w = 0.1 [m], Young’s
modulus E = 20×1010 [N/m2], and density ρ = 1000 [kg/m3]. Optimization runs for different sensor pair loca-
tions ps are done, where ps ∈ [0.0, 0.1, 0.224, 0.3, 0.4]. For each sensor pair, multiple optimization runs, each
with different initial designs regarding actuator location, were performed. The initial controller bandwidth
is set relatively low at one percent of the eigenfrequency of the first flexible mode, ωbw,0 = 0.01×ω1. Starting
with this bandwidth frequency ensures that the robustness constraints are satisfied at the beginning of the
optimization. However, it does not assure that the constraints regarding the α’s are satisfied since they are
independent of the controller.
The methodology to obtain designs using engineering design principles is as follows. Multiple unique actu-
ator locations are selected for each sensor considered. These locations are the nodes of the flexible modes
and the sensor location under consideration (collocated system). Then, with the aid of Python, a controller
is designed for each design by selecting the highest bandwidth frequency possible, thus without violating the
robustness criteria. The design with the highest controller bandwidth is selected and compared with the de-
sign obtained via optimization.

Table 5.2 presents the designs obtained using the explained methodology and optimization. The second
last column gives the ratio of the bandwidth of the optimized system, bwopt, to the bandwidth of the system
obtained using engineering principles, bwep. This ratio is a performance measure of the optimized system
relative to the system obtained via engineering principles. The second last column shows that the optimized
system does not always perform better. What now follows is a discussion on the results.
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Actuator placement

Design using Design using
engineering principles optimization

initial design final design

ps [m] pa [m] bwep [rad/s] pa [m] bw0 [rad/s] pa [m] bwopt [rad/s] bwopt/bwep [-] case

0 0.224 8.384×103

0.0

182.68

0.1678 7.9943×103 0.954 A
0.1 0.1678 7.9945×103 0.954 A
0.2 0.2259 8.4152×103 1.004 B
0.3 0.2259 8.4153×103 1.004 B
0.4 0.2259 8.4152×103 1.004 B
0.5 0.2259 8.4153×103 1.004 B

0.1 0.224 4.3878×104

0.0

182.68

0.1390 8.8861×104 2.025 C
0.1 0.1391 8.8865×104 2.025 C
0.2 0.1391 8.8865×104 2.025 C
0.3 0.1391 8.8865×104 2.025 C
0.4 0.1391 8.8865×104 2.025 C
0.5 - - -

0.224 0.094 4.5230×104

0.0

182.68

0.1363 4.5005×104 0.955 D
0.1 0.1363 4.5004×104 0.955 D
0.2 0.1363 4.5005×104 0.955 D
0.3 0.3164 5.2314×104 1.157 E
0.4 0.3164 5.2314×104 1.157 E
0.5 0.3164 5.2317×104 1.157 E

0.3 0.355 6.5856×104

0.0

182.68

0.2486 4.8178×104 0.732 F
0.1 0.2486 4.8178×104 0.732 F
0.2 0.2486 4.8178×104 0.732 F
0.3 0.2486 4.8178×104 0.732 F
0.4 0.2486 4.8178×104 0.732 F
0.5 0.2486 4.8178×104 0.732 F
0.335 6.5856×104 0.3570 9.8650×104 1.498 G

Table 5.2: Final designs of the actuator placement problem using optimization for different initial conditions and designs using engi-
neering principles.
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Figure 5.2: The final designs of the actuator placement problem for sensor location ps = 0 [m]. (left)
Design using engineering principles with a bandwidth of bwep ≈ 1334 [Hz]. (middle) Design using

optimization with a bandwidth of bwopt ≈ 1272 [Hz]. (right) Design using optimization with a
bandwidth of bwopt ≈ 1339 [Hz].

The system designs with the sensor location at ps = 0 have the worst performance because all modes have
high observability. Therefore the actuator was placed at the node of the first flexible mode in the design using
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Figure 5.3: The final designs of the actuator placement problem for sensor location ps = 0 [m]. (left)
Design using engineering principles with a bandwidth of bwep ≈ 10481 [Hz]. (middle) Design using

optimization with a bandwidth of bwopt ≈ 6778 [Hz]. (right) Design using optimization with a
bandwidth of bwopt ≈ 15701 [Hz].

engineering principles (EP). The result is that the second mode is the limiting factor and restricts the con-
troller to a bandwidth of bwep ≈ 1334 [Hz]. For the designs using optimization, the optimizer converged to
two optima. One, design A, performs slightly less relative to the EP design. The second, design B, performs
marginally better. Figure 5.2 shows the Nyquist plots of the three designs. The figure shows that two robust-
ness constraints are active for the optimized designs, one for the first flexible mode and one for the second
mode. Design B is just a slight improvement of the EP design with a small adjusted actuator position away
from the node of the first mode. The high observability of all modes prevents further design improvement.
It is safe to say that design B is the global optimum for this simple system and is close to the EP design. Just
two modes were considered in the optimization resulting in designs A and B. Adding more flexible modes to
the optimization results in designs that perform less or lead to situations in which the optimization does not
converge. It is due to the high observability of the modes in combination with the α constraint. The poor
choice for the sensor position results in large values forα, and theα constraint is not satisfied ifα<−1. How-
ever, theα constraint is only needed for the highest mode for which the robustness constraint is active and its
previous modes. For the higher modes it does not matter. Thus for optimization, it is important to consider a
set of modes with no more modes than the highest mode for which the robustness constraint is active in the
final design. One strategy is to consider a low number of modes for optimization and add modes one by one
until the optimized design ensures that the total system is robust too.

The second interesting set of designs is the one with the sensor location at ps = 0.3. For the optimized designs,
the optimizer converged to one optimum starting from five different initial actuator positions. However, the
design performs way less than the EP design. Placing the actuator in the node of the second mode results in
the highest controller bandwidth for the EP design method, with bwep ≈ 10481 [Hz]. The first flexible mode is
observable and controllable, but is not the limiting factor in this case. Removing the presence of the second
mode in the transfer creates a frequency range between modes one and three suited to place the controller
bandwidth. Mode 3 is the limiting factor for the EP design. The optimizer converges to a local optimum where
modes 1 and 2 are the limiting factor, with bwep ≈ 7668 [Hz]. Now the question arises if it is possible that an
initial design results in a system that performs better than the EP design. Selecting the EP design as the initial
design for optimization is the only initial design that results in a better feasible design with a bwep ≈ 15701
[Hz]. In this design, modes 2 and 3 are the limiting factor. If the initial design slightly deviates from the EP
design but is infeasible, the optimizer does not converge or does converge to a system with lower bandwidth.
Figure 5.3 shows the Nyquist plots of the three designs.

The case of ps = 0.1 [m] is the last example of the actuator placement problem. It is a good example where
the design obtained using optimization performs much better in comparison to the EP design. Placing the
actuator in the node of the first mode results in the best EP design, with a bandwidth of bwep ≈ 6983 [Hz]. The
fourth flexible mode is the limiting mode for this design. The optimizer converged to one optimum for all ini-
tial actuator positions except for pa = 0.5 [m]. The α constraint was not satisfied, and the optimizer did not
converge to a feasible design for this initial actuator position. The four other runs did converge to one opti-
mum. With three active constraints, for modes one, three, and four, the bandwidth is limited to bwep ≈ 14143
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Figure 5.4: The final designs of the actuator placement problem. (a) Design using engineering design
principles with a bandwidth of bwep ≈ 6983 [Hz]. (b) Design using optimization with a bandwidth of

bwopt ≈ 14143 [Hz].

[Hz]. The optimized design performs significantly better compared to the EP design with an increased band-
width of factor two. Figure 5.4 shows the Nyquist plots of the EP design and optimized design. Figure 5.5
shows the optimizer’s performance for the case with initial actuator location pa = 0.4 [m]. The optimizer’s
performance of case C can be found in Apendix A. It visually presents a well-performing optimization run,
where, in the end, three robustness constraints are active.
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Figure 5.5
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5.3. Actuator and sensor placement
The actuator position and the controller bandwidth were the design variables of the previous section. In
this section, the sensor location is added to the design variables. The shape of the beam is again constant
throughout the optimization. Figure 5.6 presents a schematic of the actuator and sensor placement problem.
The beam parameters are the same as in the previous section. Multiple optimized designs, each with different
initial designs, are compared to a system obtained using engineering design principles.

Fy1 Fy2

Sy1 Sy2

ps

L−ps

pa

L−pa

x0

L,h, w,E ,ρ

Figure 5.6: Sketch of the actuator and sensor placement problem. The plant, modeled as an Euler-Bernoulli beam, is
constant throughout the optimization. The actuator position pa and the sensor position ps are the design variables.

Note that only one design variable is needed to define the positions of both actuators and one design variable is
needed to define the positions of both sensors due to the choice that the arrangement of both the actuators and

sensors is symmetric.

For the design using engineering principles, the sensor pair location is at the nodes of the first flexible mode
ps =

[
0.223 0.776

]
, and the actuator pair location is at the nodes of the second mode pa =

[
0.0945 0.9055

]
.

The result is that the first mode is not observable, and the second mode is not controllable, and therefore
they will not be the limiting factor in controller design. It turns out that the fourth flexible mode is the limit-
ing factor for this setup and limits the bandwidth to bw = 45148 [rad/s] or bw = 7186 [Hz]. Figure 5.8 shows
the Nyquist plot of the open-loop transfer. The figure displays that the fourth mode is the one that limits the
maximum attainable bandwidth.
Five simulation runs were done for the design using optimization, each simulation with a unique initial de-
sign. Table 5.3 presents these five initial designs and the resulting final designs. The optimizer converged four
times to optimum A with a controller bandwidth of bw ≈ 8871 [Hz]. Only one time did the optimizer converge
to optimum B with a controller bandwidth of bw ≈ 7891 [Hz]. The open-loop Nyquist plot of the EP design

Actuator and sensor placement

Design using
optimization

initial design final design

pa [m] ps [m] bw0[rad/s] pa [m] ps [m] bwopt [rad/s] bwopt/bwep [-] case

0.00 0.00

182.68

0.3122 0.2376 5.5460×104 1.228 A
0.50 0.50 0.2368 0.3120 5.5743×104 1.235 A
0.50 0.00 0.2369 0.3120 5.5737×104 1.235 A
0.25 0.25 0.2020 0.1327 4.9579×104 1.098 B
0.40 0.10 0.2370 0.3120 5.5758×104 1.235 A
0.14 0.10 8.8865×104 0.1735 0.0974 9.8393×104 2.192 C

Table 5.3: Initial and final designs of the actuator and sensor placement problem using optimization.
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Figure 5.7: Optimization performance of design A of the actuator and sensor placement problem
with an initial sensor location of ps = 0.1 [m] and initial actuator location of pa = 0.4 [m].(a)

Robustness constraints with modes two, three, and four as active constraints in the final design. (b) α
constraints. (c) Objective functions. (d) Nyquist plot of the open-loop.
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Figure 5.8: The open-loop Nyquist plots the final designs of the actuator and sensor placement
problem. (left) Design using engineering principles with a bandwidth of bwep ≈ 7186 [Hz]. (middle)

Design A using optimization with a bandwidth of bwopt ≈ 8872 [Hz]. (right) Design B using
optimization with a bandwidth of bwopt ≈ 7891 [Hz].

and the two optimized designs are shown in Figure 5.8. Three robustness constraints are active in design A
for modes two, three, and four. For design B, two robustness constraints are active. The limiting modes are
three and four. Figure 5.7 shows the optimizer’s performance for design A with initial sensor location ps = 0.1
[m] and actuator location pa = 0.4 [m]. Both designs A and B perform better compared to the EP design. The
introduction of more design freedom by adding the sensor position as a design variable makes the optimiza-
tion method more advantageous than the EP method. Comparing the designs of the actuator and sensor
placement problem to the designs of the actuator placement problem shows that the optimizer converged
to a local optimum. The highest bandwidth obtained in the actuator placement problem was for ps = 0.1
[m] with bw ≈ 14143 [Hz], which is significantly better than the actuator and sensor placement designs. The
question arises if an initial design for the actuator and sensor problem may result in a system that performs
better than the best design obtained in the actuator placement problem. Selecting the best actuator place-
ment design as the initial design for the actuator and sensor problem does result in a better feasible design
with a bandwidth of bw ≈ 15755 [Hz]. The robustness constraints of again three modes are active, but this
time it are modes one, four, and five. Design C performs significantly better compared with the EP design,
with a ratio of bwopt/bwep = 2.192.

Figure 5.9 shows the open-loop Nyquist plots of design A and the improved design. The figure also shows the
Nyquist plots of the single-mode systems of the active modes. Where the approximation of the total system
with single-mode systems is very accurate in the previous examples, this is not the case for the situations
depicted in the figure. The single-mode system of mode four in design A does not accurately resemble the
dynamics of the frequency region around mode four. Though the dynamics are dominated by mode four, the
influence of the preceding mode and succeeding mode is large enough to result in an error in the Modulus
Margin (MM). The MM of the total system turns out to be 6.35 dB and does not comply with the robustness
criteria of 6 dB. The source of this error lies in the accuracy of the single-mode plant model and not the con-
troller. A few factors determine the magnitude of the error. The most significant factor is how well-spaced
the modes around the frequency of interest are. The closer the eigenfrequencies of two consecutive modes
are, the higher the change is that a single-mode system can not represent the dynamics well. The magnitude
and the sign of alpha of a mode and its preceding and succeeding modes influence this error. The error is
not cumulative, meaning that the approximation error of one mode has no relation with the approximation
of another mode.
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Figure 5.9: The open-loop Nyquist plots of the final designs of the actuator and sensor placement
problem. (left) Design A with a bandwidth of 8871 [Hz]. In design A, modes 3 and 4 are active. (right)

Improved design with the best performing design of the actuator placement problem as the initial
design. In this design modes 1, 4, and 5 are active at a bandwidth of 15755 [Hz].

5.4. Shape optimization
This section presents examples of shape optimizations for fixed actuator and sensor configurations. The
design variables are the heights of the Euler-Bernoulli beam elements. A design variable is assigned to two
finite elements that have an equal distance to the center of the beam. So the two outer elements share the
same design variable and thus have the same height. The beam is discretized with 60 elements for each case,
which results in 30 design variables.

Fy1 Fy2

Sy1 Sy2

pa

L−pa

pa

L−pa

x0

hi−1

hi
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L, w,E ,ρ

Figure 5.10: Sketch of the beam shape optimization problem. The actuator position pa and the sensor position ps are
constant throughout the optimization. The plant, modeled as an Euler-Bernoulli beam, is discretized using Hermitian
shape functions. One design variable is assigned to the two elements which have an equal distance with respect to the

centre of the beam. The resulting designs are thereby symmetric.

The designs obtained using optimization in the actuator placement problem and the actuator/sensor place-
ment problem are selected as initial designs for the shape optimization problem. Design A of the actuator
placement problem from Section 5.2 is the starting point for the first case of shape optimization. Figure 5.11
shows both the initial and final design. Figure 5.12 shows the Nyquist plot of the open-loop system and the
mode shapes of the initial design and final design. The constraints regarding modes 1 and 2 are active at the
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Figure 5.11: The final design of the beam height optimization problem A with fixed actuator and sensor configuration.
The sensor pair is indicated by the red dashed lines and the actuator pair by the black dashed lines. (left) Initial

configuration. (right) Optimized configuration.

−1.5 0 1.5

−1.5

1.5

Re|OL(ω)|

Im
| O

L
(ω

)|

mode 1
mode 2

0 0.5 1

−0.5

0

0.5

beam length [m]

Mode 1, initial Mode 1, final
Mode 2, initial Mode 2, final

Figure 5.12: The final design of the beam height optimization problem A with fixed actuator and
sensor configuration. (left) Nyquist plot of the open-loop system. (right) The mode shapes of the

critical modes of the initial design and final design.

start of the optimization. Modes 1 and 2 are still the limiting factor in the final design, however, the bandwidth
increased by a factor of 1.086 from bw1 ≈ 1272 [Hz] to bwopt ≈ 1381 [Hz]. The observability and controllability
of the first mode and the observability of the second did not change much in the final design. The controlla-
bility of the second mode was reduced quite significantly. Figure 5.13 shows the final design and Figure 5.14
Design B of the actuator placement problem from Section 5.2 is the starting point for the first case of shape

optimization. Figure 5.13 shows the final design of the beam and Figure 5.14 shows the Nyquist plot of the
open-loop system together with the mode shapes of the initial design and final design. Again the shape op-
timization resulted in an improved design with an increase of bandwidth by a factor of 2.67 from bw1 ≈ 1339
[Hz] to bwopt ≈ 3578 [Hz]. One interesting observation to mention is that both the observability and con-
trollability have increased in the final design. This result opposes the idea of minimizing the controllability
and observability or the energy norm in order to obtain improved mechanical parts in perspective of control
performance.
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Figure 5.13: The final design of the beam height optimization problem B with fixed actuator and sensor configuration.
The sensor pair is indicated by the red dashed lines and the actuator pair by the black dashed lines.
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6
Conclusions and recommendations

6.1. Conclusions
The goal of this thesis has been to develop and test a new method for the design of controlled motion systems.
The initial focus was to maximize the controller bandwidth by determining the actuator and sensor locations.
The performance of placement criteria proposed in the literature in relation to controlled motion systems was
investigated. Based on the conclusion that the criteria are not suited for designing high-performance motion
systems it was decided to develop a method that includes control.

• Actuator and sensor placement criteria proposed in the literature, which was the starting point of this
thesis, originate from two concepts. The concept of controllability and observability and the concept
of energy norms like the H2-norm and H∞-norm. In this thesis, it was shown with an example that
the potential of these criteria in designing controlled motion systems is limited. The criteria contain
information on the system’s gain only while the stability and robustness of a motion system are deter-
mined by the gain and phase of the system. Including information on the system’s phase gives a higher
potential. There it is clear that a successful approach must include control.

• A new mathematical model that approximates the open loop of a controlled motion system was de-
rived. The model is a set of transfer functions, each of which describes the open-loop response of an
individual mode. Together, the transfer functions contain the open-loop response of the complete sys-
tem. The robustness of each transfer function is a function of just three parameters. The accuracy of
this approximation depends on the dynamics of other flexible modes present in the frequency range
of the approximated mode, but the model was capable of decribing the critical modes in almost all 1D
test cases well. The error of the approxation of one mode is independent of the approximations of the
other modes, in other wordes the errors do not accumulate.

• Combinations of the three parameters for which the robustness is equal to a criterion was identified
and resulted in a boundary surface. This boundary surface revealed areas with strong variations in gra-
dients, especially if the frequency range of the mode dynamics is close to the bandwidth frequency. The
boundary surface also revealed a discontinuity at the line where a system type changes from an anti-
resonance followed by resonance to a resonance followed by an anti-resonance. A mathematical model
using non-uniform rational B-splines (NURBS) of this surface allows fast evaluations of the robustness
and sensitivities. The surface model is suited for gradient-based optimization methods.

• A new constraint regarding the robustness of the motion system is proposed. Instead of calculating the
robustness of the complete system, each flexible mode is checked for robustness separately using the
robustness response surface derived in this thesis. One advantage of this method is that the optimizer
has information on the robustness of each mode separately. As a result, it shows well-performing opti-
mization runs that converge to designs smoothly. The combination of the derived robustness response
surface and a gradient-based optimization method contributes to stable convergence.

• The proposed method was used to generate designs by optimizing the actuator and actuator/sensor
locations in a motion system. The optimizer converged to unconventional solutions where the posi-
tions did not coincide with the nodes of the modes in consideration. In each design, constraints of two
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or more flexible modes were active. These observations differ from the common engineering principle
to locate an actuator or sensor at the node of one of the first few modes. The optimized designs were
compared with designs with sensor and actuator locations at the nodes. The proposed method results
in designs with higher performance. However, sometimes the optimizer converges to a local optimum
that performs less compared to a system obtained using engineering design principles. Setting the de-
sign obtained using engineering principles as the initial design for the optimizer results in an improved
optimized design.

6.2. Recommendations
The result of this study is that the proposed method has great potential in designing motion systems. The
method uses gradient-based optimization in which the robustness of a motion system is satisfied indirectly
by ensuring the robustness of each mode individually. One benefit of the method is that it results in well-
performing optimization runs that converge to feasible designs. Also, the use of a derived robustness re-
sponse surface allows for gradient-based optimization methods. What follows are a few topics that are inter-
esting for future research and development.

• The accuracy of the single-mode system model reduces for modes that are not well-spaced. One in-
teresting idea to explore is to increase the model accuracy by appending the model with the model of
the preceding and succeeding modes. The robustness constraint surfaces can then no longer be used
anymore to evaluate the single-mode system for robustness. This will be done differently. However,
the robustness is still evaluated for each mode individually which is beneficial for optimization. The
single-mode model that resembles the open-loop in the frequency range of that mode will not be too
complex.

• Another interesting idea to investigate is to develop a strategy to select initial designs for optimization.
Especially the initial controller bandwidth is worth investigating. The optimization works well if the
initial bandwidth is lower than the eigenfrequency of the first mode, but the optimizer likely converges
to a local optimum. If the initial bandwidth is set relatively high and the initial design is not feasible,
the optimizer might not converge.

• One method of designing motion systems is to maximize the first or a set of eigenfrequencies of the
structural part via topology optimization. This approach focuses on the structure, and control is not
taken into account. A very interesting idea to investigate a new formulation for designing motion sys-
tems is to include the anti-resonance frequency in the topology optimization. One example is to min-
imize the difference between the resonance and anti-resonance frequency of one mode, which is a
measure of the magnitude of α.

• The proposed method has only been tested on a 1D test case. The error of the approximation can
become unacceptable if mode dynamics interfere too much. It is known that the frequency density can
increase as the dimension increases. It would be therefore interesting to investigate the performance
of the method in a 2D and 3D case. 2D and 3D cases make topology optimization possible.
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Optimization performance of design A of the actuator and
sensor placement problem with an initial sensor location of

ps = 0 [m] and initial actuator location of pa = 0 [m].(a)
Robustness constraints with modes two and three as active

constraints in the final design. (b) α constraints. (c) Objective
functions. (d) Nyquist plot of the open-loop.
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sensor placement problem with an initial sensor location of
ps = 0.1 [m] and initial actuator location of pa = 0.4 [m].(a)
Robustness constraints with modes two and three as active

constraints in the final design. (b) α constraints. (c) Objective
functions. (d) Nyquist plot of the open-loop.
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ps = 0.224 [m] and initial actuator location of pa = 0 [m].(a)
Robustness constraints with modes three and four as active

constraints in the final design. (b) α constraints. (c) Objective
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