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To assess the impact of implementing energy efficiency and renewable energy measures, urban building
energy models are emerging. In these models, due to the lack of data, the natural variability of the exist-
ing building stock is often highly underestimated and uncertainty on the simulated energy use arises.
Therefore, this work proposes a probabilistic building characterization method to model the variability
of the existing residential building stock. The method estimates realistic distributions of five input vari-
ables: U-values of the floor, external walls, windows and roof as well as window-to-wall ratio, based on
known data (location, geometry and construction year). First, quantile regression has been implemented
to generate the uncorrelated distributions based on the Flemish energy performance certificates data-
base. The accuracy of the marginal distributions is good, as the empirical coverage on the 50%, 80%,
90% and 98% prediction interval deviates 0.6% at most. However, it is needed to include the correlations
between these variables. Hence, three main methods to build multivariate distributions from marginal
distributions and to draw correlated samples are implemented and extensively compared. The
Gaussian copula method is put forward as the preferred method. Considering the mean-maximum dis-
crepancy (MMD), this method performs eight times better than the uncorrelated case (MMD of 0.0027
versus 0.0228).

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Research background

To lower the environmental impact of our existing building
stock and to mitigate climate change, both increasing the energy
efficiency and integrating renewable energy sources are measures
to be pursued. As an example, Le Guen et al. studied how to com-
bine both kind of measures to improve the energy sustainability of
a Swiss village [1]. Orehounig et al. optimised the share of energy
demand covered by renewables through integrating decentralized
energy systems in a Swiss village [2]. Hirvonen et al. assessed the
cost-effectiveness of apartment buildings renovation measures,
including both insulating and replacing heating, ventilation and
air conditioning (HVAC) systems on building level [3].

A lot of recent research initiatives study increasing energy effi-
ciency and integrating renewable energy sources on a district or
city level to include the synergy effects that result from the hetero-
geneity of the existing building stock. As an example, Lawrence
et al. focused on integrating smart building in the electrical grid
[4], while Kensby et al. analysed the potential of buildings to be
used as thermal energy storage in district heating systems [5]. In
this context, urban building energy models (UBEMs) are emerging
and are used to quantify the operational building energy use on
district or city level through building-by-building simulation [6].
UBEMs are typically bottom-up building physical models [7],
enabling to analyse the current status of the building stock and
to assess possible future scenarios that combine energy efficiency
measures with renewable energy integration. They allow for stud-
ies on multiple levels, from street to district to city level.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2020.110566&domain=pdf
https://doi.org/10.1016/j.enbuild.2020.110566
mailto:ina.dejaeger@kuleuven.be
https://doi.org/10.1016/j.enbuild.2020.110566
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enb
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1.2. Research gap

However, rather than fully characterising the whole district or
city, UBEMs usually make use of archetype buildings due to the lack
of sufficient input data on building level [6], reducing the actual
variability of the existing building stock. An archetype building is
a representative building for a group of similar buildings. More
information on archetype buildings can be found in De Jaeger
et al. [8].

Although UBEM simulations have been reported to correspond
reasonably well to measured energy use data on higher aggrega-
tion levels (city to nation), with errors of the considered studies
ranging from 7 to 21% [6], the errors increase significantly when
focusing on smaller scale examples. Particularly for analysis on
smaller scales (~100 dwellings), the use of building archetypes
can be questioned. These analyses include amongst others the
study of low voltage grids [9], the exploration of demand-side
management in electrical grids [10], the design and operation of
distributed multi-energy systems [11], the design and operation
of district heating networks [12], the trade-off between improving
in energy efficiency and employing renewable energy within dis-
tricts and cities [13].

Two examples of archetypes performing worse on smaller
scales can be found in Orehounig et al. [14] and De Jaeger
et al. [15]. Orehounig et al. [14] modelled a Swiss village of
100 buildings using both a simplified (i.e. archetype) and a
detailed (i.e. building-by-building) modelling approach and com-
pared the simulation results against measured energy use. On
municipality level, an 8% deviation in annual energy demand
between the simulations and the measurements is found for
the detailed approach. However, the estimation for a smaller
group of buildings or for a single building can be significantly
worse. In their study, the estimation for buildings constructed
before 1980 deviates approximately 50% deviation in annual
energy demand for the simplified approach, which makes use
of archetypes. Deviations for estimations on building level are
even higher. De Jaeger et al. [15] compared the use of Belgian
TABULA archetypes [16] to the use of geospatial data for a small
district of 99 buildings. They concluded that, depending on the
building typology (detached, semi-detached or terraced dwell-
ing), the TABULA archetypes underestimate the peak heat
demand by 26% to 95% on average and the annual heat demand
by 3% to 80% on average. In other words, the geometry of the
TABULA archetypes is not representative for this particular dis-
trict. Moreover, the archetype approach fails to include the
non-negligible variability in building geometry that is character-
istic for the existing building stock.

These increasing errors are caused by the two tasks that are per-
formed to define archetypes, more in particular segmentation and
characterization [6]. First, the building stock is segmented or divided
into groups of similar buildings, e.g. based on their building type
and construction year. Segmentation inherently reduces the vari-
ability of the existing building stock within UBEMs. In other words,
the actual variability within the existing building stock is overly
simplified (e.g. all buildings are categorised based on their con-
struction year, but possible renovations are often not considered).
However, acknowledging this variability is amongst others crucial
for the optimal design of district energy systems [17]. Second, the
representative building for each group is characterized or defined.
As shown by the examples above, it should be ensured that the
archetype buildings are representative. Ensuring representative
archetypes has successfully been the focus of Ghiassi and Mahdavi
[18], Tardioli et al. [19] and De Jaeger et al. [8]. In addition, mea-
surement data can be obtained from distribution system operators
and can be used both to calibrate the model [20] and to estimate
the simulation error.
2

Unfortunately, the issue of underestimating the variability can
only be tackled by shifting away from archetypes and characteris-
ing each building separately. To the best of the authors’ knowledge,
there is no available method that characterises existing districts
without using energy performance or building archetypes and thus
no available method that includes the full variability of the existing
districts.

1.3. Research objectives

To fill this gap, this paper presents a probabilistic building char-
acterisation method. By using this method, every building of the
UBEM is characterised by a particular probability density function
for the U-values of the ground floor, external walls, windows and
roof as well as the window-to-wall ratio (WWR) based on known
data – i.e. construction year, building location and building geom-
etry. As a result, correlated samples for the U-values and the WWR
can be obtained on building level. The probabilistic approach does
not only allow to estimate an average value per building, but also
to include the probability of being renovated.

To characterise each building separately, a considerable number
of input parameters is required for each building. These include
location and geometry, thermal quality of the building envelope,
HVAC systems, renewable energy systems, building appliances
and occupant behaviour. Although these characteristics could be
acquired per building through on-site measurements or surveys,
the data acquisition effort becomes infeasible on district or city
level, as discussed by Hong et al. [21] and Monteiro et al. [22]. As
an alternative to real data, statistical data on the building envelope
and system characteristics can often be obtained from governmen-
tal databases such as the energy performance certificates (EPC)
databases in Europe [23]. EPCs are labels that inform consumers
of the energy efficiency of buildings they plan to purchase or rent.
The Flemish EPC database is therefore a valuable resource for
energy performance-related data of buildings (i.e. building type,
construction year, building geometry, thermal performance of the
building envelope, information on the HVAC systems, . . .). How-
ever, privacy issues are often the key argument for not sharing
the data on building level. In addition, the data quality of these
databases should be treated with care, as discussed more elabo-
rately in Section 2.1.

In this work, the Flemish EPC database is employed to obtain
the probability density functions for the building energy related
data and to relate these to parameters that are known on individ-
ual building level through geographical information system (GIS)
and cadastral data – i.e. construction year, building location and
building geometry. As the different building energy related param-
eters appear to be correlated, three methods to draw correlated
samples from these marginal – i.e. uncorrelated – probability dis-
tributions are implemented in multiple variants and extensively
compared. Including the correlations is of utmost importance to
achieve realistic samples. Based on four numerical performance
indicators, the Gaussian copula method is selected to be included
in the probabilistic building characterization method. In addition,
although this method is harder to implement, it is easier in use.

The novelty of this method is the ability to characterise each
building of a UBEM separately in a probabilistic way. This method
is also particularly interesting to obtain realistic input parameter
variations to perform uncertainty and sensitivity analyses of the
energy demand for existing residential neighbourhoods within
future work. As these simulations are often used to make decisions
towards a more sustainable city or district, it is highly important to
include the impact of uncertainties [24–26]. More particular use
cases are listed in Section 4.

Although this probabilistic approach can be extended to the
building energy systems as well as to other building typologies
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(e.g. office buildings), a first assessment of the usability of the EPC
database focuses solely on the building envelope characteristics of
Flemish single-family dwellings. In this work, only continuous
building-level variables, for which data were available, are dis-
cussed. The probabilistic method will be extended to the building
energy systems within future work. The building energy systems
are categorical variables and require a classification method
instead of a continuous method. In addition to the building-level
parameters, local climate conditions and urban-level parameters
(e.g. morphology) should be included in the UBEM [27], but this
is also considered to be future work.

In the next Section, the probabilistic methodology to allocate
building energy related data in UBEMs is introduced. Three main
methods to characterize the multivariate probability distribution
of the U-values and the WWR and multiple variants of these meth-
ods are introduced. Then, these distributions are used to generate
correlated samples. Additionally, four performance indicators to
compare these methods are described. In Section 3, the perfor-
mance indicators for the three methods are presented and dis-
cussed. Finally, in Section 4, the conclusions are drawn.
2. Methodology

In this Section, the workflow of the probabilistic building char-
acterisation method is presented, which is also illustrated in Fig. 1.
First, the marginal distributions for the U-values and the WWR are
obtained, through quantile regression (QR). Second, the multivari-
ate distributions of the U-values and the WWR are determined
based on the marginal distributions and samples are drawn. To
build the multivariate distributions and to draw correlated sam-
ples, three main methods in multiple variants are proposed. The
three main methods are the sequential method, the Gaussian cop-
ula method and the empirical copula method. The most appropri-
ate method is identified based on four performance indicators and
will be included in the probabilistic building characterisation
method. After presenting quantile regression to obtain the mar-
ginal distributions and describing the different methods to build
the multivariate distributions, the performance indicators are
introduced.
2.1. Marginal distributions for the U-values and WWR

In a first stage, the marginal distributions for the building envel-
ope properties (i.e. the U-values of the floor, external walls, win-
dows and roof as well as the WWR) are obtained through
quantile regression, based on available data (i.e. building geometry
and construction year). A marginal distribution of a random
variable X (e.g. U-value of the roof) includes the probabilities of
Fig. 1. Graphical overview of the me
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all possible values for X, regardless of the values of other correlated
variables (e.g. U-value of the external walls and the windows).
Therefore, marginal distributions do not consider any correlation.
This subsection first describes the available data in Flanders as well
as the Flemish EPC database, which is used to fit the quantile
regression models. Then, the theory of quantile regression is intro-
duced. Finally, the generation of the marginal distributions in prac-
tice is explained.

For Flanders, the available data for all buildings consist of con-
struction year, building location and building geometry. Building
geometry data can be obtained from the Flemish GIS, but for this
study, they are obtained from a CityGML model of the city of Genk
(Belgium) with level of detail (LOD) 2 [28]. The available building
geometry and location data include postal code, building type (ter-
raced, semi-detached or detached dwelling), building volume,
building height, ground floor area, façade area and roof area. The
heated floor area can be deduced from an assumed number of stor-
eys. In this work, the assumed number of storeys is defined as the
maximum number of floors with a height of at least three metres
that fit within the ridge height [15]. As many single-family dwell-
ings are characterised by building extensions with a lower height
than the main volume, the heated floor area is calculated for main
buildings and building extensions separately to avoid an overesti-
mation. Finally, the construction year can also be obtained from
the Flemish cadastral database, which is a land registry that con-
tains, among others, information on the ownership, land use, build-
ing geometry, and building construction year for taxation
purposes.

To obtain the marginal probability distribution function for all
U-values and the WWR of the buildings, quantile regression mod-
els [29] are built with data from the Flemish EPC database as input.
Since EPCs are labels that report on the energy efficiency of build-
ings, a significant amount of useful data is available from the Flem-
ish EPC database. These data include building type, construction
year, building geometry, thermal performance of the building
envelope as well as information on the HVAC systems and provide
an essential link between the known and the unknown data on
existing districts. However, statistical methods are required as
the data cannot be shared on building level due to privacy issues.
In addition, not all buildings are included in the database. In this
work, an anonymised version of the EPC database that excludes
address-related information is used, although the municipality in
which the dwelling is situated is known.

It is important to note that the use of the EPC dataset to deter-
mine distributions on the U-values and the WWR should be con-
sidered with care because of two aspects. First, EPCs are only
established before purchasing or renting a building and buildings
are very likely to be renovated immediately after they have been
purchased. Second, only EPCs of existing buildings are considered
thodology, as used in this work.
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and their exact construction layers and materials are often
unknown. When this is the case, conservative values are used by
default, which are also visible in Fig. 2. Fig. 2 illustrates the U-
value of the external wall and the roof for the buildings of the
EPC dataset that were constructed in 1900. In the scatter plot, mul-
tiple vertical (U-value of 1.7 and 2.7 W/m2K) and horizontal lines
(U-value of 2.1 and 2.9 W/m2K) are clearly visible, indicating often
applied default values for the U-values of the external wall and the
roof respectively. As a result, the EPC dataset gives a rather conser-
vative view of the existing building stock. These drawbacks of
using EPC data highlight the need for more accurate data on the
current state of our existing building stock. Despite these short-
comings, the EPC dataset is used as it is the best data source that
is currently available.

Quantile regression, introduced by Koenker and Bassett [29],
estimates a model of the quantiles of the conditional distribution
of the response variable as functions of observed covariates. This
can be compared with an Ordinary Least Squares (OLS) method
in which the conditional mean is estimated by minimizing the
squared residuals. In particular, instead of estimating the mean,
QR models estimate the conditional distribution of the response
variable. In more detail, in OLS, the sample mean l of a variable
y, which is an estimate of the unconditional population mean E
(Y) based on n data points, is found by solving the following
problem:

min
l2R

Xn

i¼1
yi � lð Þ2 ð1Þ

Likewise, an estimate of the conditional expectation function E
(Y|x) can be equally found by OLS by replacing l by a parametric
function l(x, b):

min
b2Rp

Xn

i¼1
yi � l xi;bð Þð Þ2 ð2Þ

In QR, the unconditional sth quantile of y, i.e. qs; can be found by
solving the following problem:

min
qs2R

Xn

i¼1
qs yi � qsð Þ ð3Þ

where qs yi � qsð Þ = s*ðyi � qsÞ for yi � qsð Þ > 0 and qs ðyi � qsÞ = (s–1)
*ðyi � qsÞ for ðyi � qsÞ < 0. Similarly, an estimate of the conditional
sth quantile of y can be found by replacing qs by a parametric func-
tion qs xi;bð Þ:
Fig. 2. The U-values of the external wall and the roof for the buildings of the EPC
dataset that were constructed in 1900. This Figure shows a correlation between the
U-values of the external wall and the roof and shows the importance of including
correlations. Also, the default values of the EPC dataset are visible. This is an
inherent shortcoming of the employed dataset.
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min
b2Rp

Xn

i¼1
qs yi � qs xi;bð Þð Þ ð4Þ

By definition, quantiles are in fact a representation of the
cumulative distribution functions (CDF) of the corresponding ran-
dom variable. More in particular, given the CDF F(y) of a random
variable y, qs, i.e. the sth quantile, relates to F(y) as follows: F
(qs) = s. Therefore, QR models are able to characterize a complete
range of quantiles and thus approximate the full CDF of y. The QR
models in this work are linear and the optimisation problem to
estimate the quantiles is thus solved through linear programming
[29].

To setup the marginal distributions, an anonymised version of
the EPC database, the StatsModels and the scikit-learn Python
packages were used. Before the EPC data could be used to fit the
QR models, some invalid data points are removed, as they contain
incorrect information. This has been done by visually observing
scatter plots and applying filters to the data. For construction year,
total floor area, protected volume, only values between the 1st and
the 99th percentile were kept. For the external wall area, only val-
ues between the 2.5th and the 97.5th percentile were kept. For all
other geometrical parameters, only values between the 2.5th and
the 99th percentile were kept. The U-value of the external walls
is between 0.15 and 3 W/m2K. The U-value of the windows is
between 0.8 and 6 W/m2K. The U-value of the ground floor is
between 0.15 and 3 W/m2K. The U-value of the roof is between
0.15 and 6 W/m2K. By using an 80/20 ratio for training and test
dataset, the QR models were built based on a training dataset of
340,618 dwellings in the EPC database, leaving 85,155 dwellings
as an out-of-sample test dataset. The accuracy of the QR models
has not been tested for less than 340,618 data points nor for a dif-
ferent ratio of training and test dataset, although this could be
explored in future work.

In this work, postal code, building type, construction year, total
floor area, protected volume, ground floor area, façade area (opa-
que plus transparent) and roof area were considered as explana-
tory variables, since they are available for all buildings and a
preliminary analysis showed their relevance. Then, QR models
are fitted for each output variable (U-values of the ground floor,
external walls, windows and roof as well as WWR) and each sth

quantile, with s ranging from 0.01 to 0.99. As a result, 495 models
are fitted. Subsequently, to generate the marginal distributions for
the test dataset buildings, the explanatory variables for each dwell-
ing are fed into each of the QR models. In other words, the value
corresponding to each sth quantile is predicted for each output
variable for each dwelling. That way, the CDFs for the five output
variables are characterized by aggregating the QR models for each
sth quantile.
2.2. Correlated samples for the U-values and WWR

While marginal distributions of random variables can be used
to generate samples, these samples are only realistic if the random
variables are completely independent in the multivariate case, i.e.
multiple random variables. In other words, if the random variables
are correlated and samples are generated by solely using their mar-
ginal distributions, the generated values would be uncorrelated
and would not represent realistic samples. In this case, the vari-
ables are not independent and their correlations are clearly visible
in the EPC dataset, as illustrated in Fig. 2. Fig. 2 shows that build-
ings with a good external wall are more likely to have a good roof
compared against the buildings with a bad external wall. Therefore,
after obtaining the marginal distributions for the different vari-
ables, it is important to infer their multivariate relations (i.e. their
multivariate distribution or the correlations between the different
variables), so that realistic samples can be generated.
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In this work, three main methods to build multivariate distribu-
tions from marginal distributions and to draw correlated samples
are proposed and extensively compared: the sequential method,
the empirical copula method and the Gaussian copula method.
The three main methods all envisage another way to include the
correlations between the U-values and the WWR. The sequential
method simply changes the input variables that are used to fit
the QR models, whereas the empirical copula method and the Gaus-
sian copula method both employ a particular copula, i.e. a function
that link multivariate distributions to their univariate marginal
distributions. As illustrated in Fig. 3, different variations of the
three methods are tested. The three methods and their variations
are introduced more elaborately below. First, it is presented how
these methods are used to generate correlated samples based on
the test dataset. Then, it is explained how these methods are
implemented based on the training dataset.
2.2.1. Sequential method
The first method is developed within this paper and is referred

to as the sequential method or SM (Fig. 3). The method is easy to
implement, as it sequentially fits different QR models. The main
idea is to sequentially build QR models where successive QR mod-
els are based on both the original input variables and the previ-
ously estimated output variables, instead of fitting the QR models
separately for all output variables based on an identical set of input
variables (i.e. the marginal distributions). In this way, the gener-
ated samples are correlated, as the previously estimated output
variables are taken into account to estimate the next output vari-
able. First, it is explained how to generate samples, then it is
described how to implement the method.

Generating correlated samples using this method is rather
straightforward. First, the probability distribution for the first out-
put variable is predicted based on the initial input data. Then, a
particular value is sampled from this distribution. Subsequently,
the probability distribution for the second output variable can be
predicted based on the initial input data and the sampled value
for the first output variable, as the QR model of the second variable
uses the first random variable as input. Again, a particular value is
sampled from this distribution. This is repeated until a value is
sampled for the last output variable.

The method is implemented based on the training dataset in
different steps. First, the order in which the output variables will
be sampled is defined. Then, an estimate of the conditional expec-
tation function of the first output variable Y1, E(Y1|x), is calculated
for each of the 99 quantiles based on the input variables x, using
Equation (4). In other words, the QR model for the first output vari-
able is fitted based on the original set of input variables. Next, an
estimate of the conditional expectation function of the second out-
put variable Y2, E(Y2|x,Y1), is calculated for each of the 99 quantiles
based on the input variables x and the first output variable Y1. In
other words, the QR model for the second output variable is fitted
based on the original set of input variables plus the first output
variable. Subsequently, the QR model for the third output variable
is fitted based on the original set of input variables plus the first
Fig. 3. Overview of the considered methods to draw correlated samples. Three main me
Gaussian copula method. For the sequential method and the empirical copula method,

5

two output variables. This is repeated until the QR model for the
last output variable is fitted.

To find the most optimal order in which the output variables
should be sampled from the EPC dataset, the order was perturbed
in a preliminary analysis, resulting in 120 combinations. This pre-
liminary analysis showed that the different orders performed
rather similar. Therefore, and due to the rather poor performance
of the method (Section 3.2.1), only seven variants are shown in this
work and are listed in Table 1.

2.2.2. Empirical copula method
The second method is proposed by Clark et al. [30] and is

referred to as the Empirical copula method or ECM (Fig. 3). This
method represents a simple methodology to define the copula
function based on historical data. It has been applied first to recon-
struct space–time variability in joint forecasts of precipitation and
temperature [30] and has been implemented in this work to char-
acterize the energy-performance related parameters of existing
residential buildings (i.e. joint scenarios for the U-values and the
WWR).

The main idea of the method is to use historical data to build
rank correlations [31]. The correlation between the random vari-
ables is thus modelled based on their ranks. First, for each variable
X, i.e. U-values of the ground floor, external walls, windows and
roof and WWR, the method uses its marginal distributions and
generates N uncorrelated samples:

X ¼ x1; x2; � � � ; xNð Þ ð5Þ
Then, these N samples are sorted by value from small to large,

resulting in v (Equation (6)).

v ¼ xð1Þ; xð2Þ; � � � ; xðNÞ
� �

; xð1Þ � x 2ð Þ � � � � � xðNÞ ð6Þ
These ranked uncorrelated samples are illustrated in the middle

table of Fig. 4. v represents a single column in this table. Subse-
quently, a template Z is used to define the ranks of historical values
based on historical data. In Z, each column corresponds to a partic-
ular output variable and contains n buildings from a historical
dataset, given by Y (Equation (7)). This vector Y could also be
sorted by value from small to large, resulting c (Equation (8)).

Y ¼ y1; y2; � � � ; yNð Þ ð7Þ

c ¼ yð1Þ; yð2Þ; � � � ; yðNÞ
� �

; yð1Þ � y 2ð Þ � � � � � y Nð Þ ð8Þ

As a result, each row corresponds with a particular data point,
i.e. building, and indicates the relative rank of each of the five vari-
ables of the particular data point. Now, consider vector Z that con-
tains the indices describing the original observation numbers
1;2; � � � ;N as the values in the ordered vector c appeared in Y . This
vector Z corresponds to the particular column in the ranked tem-
plate Z that is also illustrated in the left table of Fig. 4. As an exam-
ple, in this illustration, the WWR of the first building selected from
the historical dataset is the highest of all selected buildings, the
WWR of the second selected building is second lowest of all
selected buildings and so on. In other words, the values of the N
thods are considered: the sequential method, the empirical copula method and the
different variations have been evaluated.



Table 1
Overview of the different orders that are used in the different variations for the
sequential method in this work.

Name Order (First> second > third > fourth > fifth)

SM 1 Ufloor > Uwall > Uroof > Uwindow > WWR
SM 2 Ufloor > Uwall > Uroof > WWR > Uwindow

SM 3 Ufloor > Uwall > Uwindow > Uroof > WWR
SM 4 Ufloor > Uwall > Uwindow > WWR > Uroof

SM 5 Ufloor > Uwall > WWR > Uroof > Uwindow

SM 6 Ufloor > Uwall > WWR > Uwindow > Uroof

SM 7 Ufloor > Uwindow > Uwall > Uroof > WWR
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buildings in template Z are simply replaced by their relative ranks.
This matrix of ranks is used as the template Z representing the rank
variable correlation.

Using the template Z, the ranked uncorrelated samples are com-
bined to mimic the ranks in this template. In other words, the cor-
related sample values are constructed, represented by the
reordered vector XSS , following Equation (9):

XSS ¼ xss1 ; x
ss
2 ; � � � ; xssN

� �
;where ð9Þ
xssq ¼ xðrÞ ð10Þ
q ¼ Z½r� ð11Þ
r ¼ 1;2; � � � ;N ð12Þ
These correlated samples are also illustrated in the right table of

Fig. 4. In this illustration, the ranked template Z prescribes that the
smallest value of the WWR, xð1Þ ¼ 0:05, should be placed in corre-
lated sample q ¼ Z 1½ � ¼ 5. Therefore, xss5 ¼ xð1Þ ¼ 0:05. The ranked
template Z also prescribes that the second smallest value of the
WWR, xð2Þ ¼ 0:1, should be placed in correlated sample
q ¼ Z 2½ � ¼ 2. Therefore, xss2 ¼ xð2Þ ¼ 0:1 and so on. If N correlated
samples of the five variables are to be generated, then template Z
should be an Nx5 matrix and thus contain N buildings from the
historical dataset.

In this work, multiple definitions of the template Z are pro-
posed. A first definition of template Z is to use one single template
to draw the N samples for all buildings of the test dataset. This
method is referred to as ECM Single. Obviously, the results then
highly depend on the selected N buildings from the training data-
set. In a second approach, referred to as ECM Random, there are as
many templates Z as there are buildings in the test dataset. Every
template Z is based on N randomly selected dwellings. As a third
approach, the template Z is defined by drawing samples from a
subset of similar buildings. Three definitions have been used
within this third approach. First, the template Z for a particular
building is based on buildings with the same building type (i.e. ter-
raced, semi-detached or detached). This method is referred to as
the ECM Type. Second, the template Z for a particular building is
Fig. 4. Simplified illustration of how to obtain correlated samples using the empirical c
template Z represents a dwelling included in the historical dataset. In template Z, all U-v
real dwelling, five uncorrelated samples are generated first and ranked from small to larg
uncorrelated samples to obtain correlated samples.
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based on buildings that were constructed five years before or after
the particular building. This method is referred to as the ECM Year.
Third, the template Z for a particular building is based on buildings
that have an identical building type and that were constructed five
years before or after the particular building. This method is
referred to as the ECM Type Year.

2.2.3. Gaussian copula method
The third method, originally developed by Pinson et al. [32], is

referred to as the Gaussian copula method (GCM) (Fig. 3). This
method infers a parametric multivariate Gaussian copula using
the marginal distributions of the random variables. This parametric
multivariate Gaussian copula is characterized by a correlation
matrix R, which is estimated based on the training dataset and is
used to generate samples. It has been applied first to create statis-
tical scenarios for short-term wind power production [32] and has
been implemented in this work to create statistical scenarios for
the U-values and the WWR of existing residential buildings.

To obtain the multivariate Gaussian copula, the key is to trans-
form the original output variables of the buildings in the training
dataset into a multivariate Gaussian random variable, of which
the interdependence structure can be summarized by a unique
covariance matrix. First, the marginal distributions for all output
variables for all buildings of the training dataset are generated
(i.e. the values that correspond to each of the 99 percentiles). Then,
it is determined in which percentile of this estimated marginal dis-
tribution the real value is situated for all output variables. Given
the CDF F(xk) of a random variable xk, qs;k, i.e. the s

th quantile for
variable xk, relates to F(xk) following Equation (13):

sk ¼ F qs;k
� � � Uniform 0;1½ � ð13Þ

Based on that, each historical value xk is mapped to its quantile
sk. By doing so, the historical values are mapped to a set of uni-
formly distributed values in the interval [0,1]. Then, given this uni-
formly distributed sk, a second transformation is performed to
obtain a Gaussian variable with zero as a mean and one as a stan-
dard deviation, following Equation (14):

U�1 : x !
ffiffiffi
2

p
erf�1ð2x� 1Þ ð14Þ

where erf�1is the inverse error function and U�1 is the probit func-
tion that is equal to the inverse of the Gaussian CDF. Hence, apply-
ing the probit function to the uniformly distributed variable sk, as
shown in Equation (15), results in Yk, which is a random variable
that Gaussian distributed with zero as a mean and one as a standard
deviation.

Yk ¼ U�1ðskÞ � Normalð0;1Þ ð15Þ
Finally, the method assumes that the random vector

Y ¼ Y1;Y2; � � � ;Y5ð Þ containing the transformed random variables
Ykfor each of the five output variables is a multivariate normal dis-
tribution with 0 as a mean and the desired covariance matrix as
opula method. In this example, five correlated samples are drawn. Each row in the
alues and WWRs are replaced by their ranks. To create five correlated samples for a
e. Template Z describes which rank to combine with which in the newly generated
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covariance. From a multivariate Gaussian variable, the covariance
matrix can easily be determined. This covariance matrix only needs
to be calculated once based on the training dataset. When generat-
ing correlated samples, only the covariance matrix is required, but
the training data is not.

The main idea of the method is thus to calculate the covariance
matrix based on historical data and use this matrix to include the
correlations in new samples. After estimating the multivariate
Gaussian copula, the procedure to generate samples is illustrated
in Fig. 5. To obtain the correlated samples, two transformations,
opposite to Equations (15) and (13), are performed. First, a corre-
lated sample is drawn from a multivariate normal distribution
characterised by a 0-mean and the defined covariance matrix,
which has 1-values on its diagonal (i.e. a unit standard deviation).
Then, these values are transformed to their percentiles. This trans-
formation, described by Equation (16), is opposite to the transfor-
mation described by Equation (15).

sk ¼ UðYkÞ ð16Þ
Finally, these percentiles are transformed to the real values for

all output variables based on their marginal probability distribu-
tions as generated by the QR models. Again, this transformation,
described by Equation (17), is the inverse of the transformation
described by Equation (13).

qs;k ¼ F�1 skð Þ ð17Þ
This way, the value of variable k, qs;k, can be obtained, for the 5

variables and for the desired number of samples.

2.3. Performance indicators

This work proposes a probabilistic building characterisation
method to enrich the available data with energy performance-
related data within UBEMs. Five parameters are considered, i.e.
the U-values of the floor, external walls, windows and roof as well
as the WWR. First, QR has been proposed to generate the marginal
distributions for these five variables. Then, the different methods
to build multivariate distributions from marginal distributions
and to draw correlated samples have been presented. In this work,
12 random samples are generated for all 85,155 buildings of the
test dataset. The different implementations of the probabilistic
building characterisation method are extensively compared based
on multiple performance indicators. These performance indicators
are introduced below.

To check the accuracy of these marginal distributions, the em-
pirical coverage is checked at different prediction intervals. In this
work, the 50%, 80%, 90% and 98% prediction intervals are consid-
ered and the empirical coverage on these intervals is computed.
As an example, the 90% prediction interval is discussed. For the
90% prediction interval, the empirical coverage is equal to the per-
centage of all buildings in the test dataset of which the real value
falls within the predicted 5th and 95th quantiles and should ideally
be close to the theoretical range of 90%. The empirical coverages
are shown in the next Section.

To check the accuracy of the multivariate distributions, the
ideal performance indicator measures the distance between the
real multivariate distribution of all 85,155 buildings in the test
dataset and the generated multivariate distributions of all 85,155
buildings in the test dataset. This is exactly achieved by the main
performance indicator, the mean-maximum discrepancy (MMD)
[33]. The MMD is a distance on the space of probability measures
that is used to compare statistical distributions and that has been
used in several machine learning applications and non-parametric
testing. Formally, this distance is defined as the largest difference
in expectations over functions in the unit ball of a reproducing
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kernel Hilberspace. The MMD is a good and complete performance
indicator, as it quantifies the distance between the real multivari-
ate probability distribution and the multivariate probability distri-
butions generated by the different methods. The MMD allows to
assess the relative performance of the different methods compared
to each other. However, it is not straightforward to correctly inter-
pret the magnitude of the MMD for the best performing method. In
other words, although the MDD is small for the best performing
method, it is difficult to assess whether this method is representa-
tive for the real probability distribution based on MDD. Therefore,
two additional performance indicators are proposed in this work.

The first additional performance indicator focuses on the corre-
lation between the U-values, in sets of two, and is therefore
referred to as the correlation error. To calculate the correlation
error, all U-values (i.e. of the floor, external walls, windows and
roof) are first labelled as bad, moderate and good. The thresholds
between these three categories are defined based on the 33th
and the 66th percentile of the real values of the buildings in the
test dataset respectively. For every set of U-values (e.g. U-value
roof and U-value external wall), the percentage of buildings that
falls within each possible combination of labels (e.g. good and
bad) is calculated. Then, the root mean square error between the
particular method in a particular sample compared to the real val-
ues over all variable sets (vs) and all label sets (ls) is calculated. In
other words, the correlation error using method m and sample i
(CEm;i) is calculated following Equation (18):

CEm;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6

vs¼1

P9
ls¼1 pls;m;i � pls;r

� �2
54

s
ð18Þ

where pls;m;i is equal to the percentage of buildings that falls within
this label set (e.g. good and bad) for this variable set (e.g. U-value
roof and external wall) considering method m and sample i and
pls;r is equal to the percentage of buildings that falls within this label
set for this variable set for the real values. The correlation error for
methodm is then defined as the median error over the 12 generated
samples. The correlation error is actually a simplified version of the
MMD where the 5-variate general distribution is transformed to
pair-wise discrete distributions. While the correlation error is easier
to understand, the MMD is much more complete.

To check the sensitivity of the correlation error, variations of
this correlation error are assessed. First, instead of considering
the U-values in sets of two, they can also be considered in sets of
three or four, changing the number of variable sets from six to four
or to one respectively. Second, instead of labelling the U-values in
three bins (bad, moderate and good), they can also be labelled in
five or ten bins, changing the number of label sets from 9 to 25
or to 100 respectively if the U-values are considered in sets of
two. Third, instead of assessing the median error over the 12 sam-
ples, the minimum or the maximum error can also be assessed.

The number of random samples – in this work 12 – has been
evaluated based on the variability of the correlation error over
the different samples for the well-performing methods. The vari-
ability is found to be sufficiently small. Different numbers of sam-
ples have not been assessed.

The second additional performance indicator looks at the aver-
age behaviour of the different samples over all the buildings of the
test dataset and is therefore referred to as the average error.
Opposed to the two previous performance indicators, this indicator
does not quantify the correlations between the variables within
the generated samples, but rather the average behaviour of the
generated samples. Methods that include the correlations in a good
way often generate samples that are not as close to the average.
They tend to generate more extreme and realistic scenarios, result-
ing in an increased average error. Therefore, this performance indi-
cator is not equally important as the two previous performance



Fig. 5. Simplified illustration of how to obtain correlated samples using the
Gaussian copula method. The illustration only shows one dimension of the
multivariate distribution and should thus be applied for each of the variables of a
dwelling. First, a correlated sample is drawn from a multivariate normal distribu-
tion. Then, these values are transformed to their corresponding percentiles. These
percentiles are used to derive the real values based on the marginal distributions.

I. De Jaeger, J. Lago and D. Saelens Energy & Buildings 230 (2021) 110566
indicators. The average error of variable X using method m and
sample i ðAEX;m;iÞ is calculated following Equation (19):

AEX;m;i ¼
xm;i � xr
�� ��

xr
ð19Þ

where xm;i is equal to the average value over all the buildings of the
test dataset of variable X using method m and sample i and xr is
equal to the real average value over all the buildings of the test
dataset of variable X. The average error of variable X for method
m is then defined as the median error over the 12 generated sam-
ples. The average error is calculated for both the UA-value on build-
ing level and the average U-value on building level (i.e. the UA-
value divided by the total heat loss area), resulting in AEUA;m and
AEU;m respectively.

To check the sensitivity of the average error, variations of the
average error are assessed. Instead of assessing the median error
over the 12 samples, the minimum or the maximum error can also
be assessed.

Finally, next to these numerical performance indicators, the
implementation effort and the ease of use after implementation
of the different methods should be considered, which are more
qualitative performance indicators.

3. Results and discussion

In this work, a probabilistic building characterisation method is
proposed to allocate the U-values of the floor, external walls, win-
dows and roof as well as the WWR to all single-family dwellings
within UBEMs. First, QR is presented to generate the marginal dis-
tributions for these five variables. Then, different methods to build
multivariate distributions from marginal distributions and to draw
correlated samples are proposed. In this Section, these methods are
compared extensively based on the proposed performance indica-
tors. First, the performance of the marginal distributions is
assessed. Then, the different methods to build multivariate distri-
butions and to draw correlated samples are compared.

3.1. Accuracy of the marginal distributions

First, to obtain the marginal distributions of the five output
variables, one QR model is fitted for each of the variables. The
postal code, building type, construction year, total floor area, pro-
tected volume, ground floor area, façade area, and roof area are
used to predict the distribution of the U-values of the floor, exter-
nal walls, windows and roof as well as the WWR.

To illustrate the method, it is applied to a building of the test
dataset of which the real values are known. The building is a ter-
raced dwelling situated in Ypres (Belgium) and is constructed in
1962. Its floor area is 166 m2, its protected volume is 491 m3, its
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ground floor area is 96 m2, its façade area is 195 m2 and its roof
area is 107 m2. Fig. 6 displays the marginal distributions for the
U-values and the WWR (in grey) as predicted by the QR models.
The black lines in Fig. 6 represent the real values. As shown, the
real values fall within the predicted distributions, illustrating an
appropriate implementation of the QR models. Additionally, it
should be noted that the predicted distributions inherently include
the probability of particular renovations that might have taken
place, which is an additional benefit of the QR models.

To check the accuracy of the QR models for the whole test data-
set, rather than only for one particular building, the empirical cov-
erage of the predictions at different prediction intervals is
evaluated and shown in Table 2. The empirical coverage is close
to the theoretical range for all output variables and all considered
prediction intervals, as it deviates 0.6% at most. Therefore, the
accuracy of the marginal distributions is concluded to be good.

3.2. Accuracy of the correlated samples

Subsequently, the different methods to build multivariate dis-
tributions frommarginal distributions and to draw correlated sam-
ples are compared based on the four performance indicators that
were introduced in Section 2.3. First, the results for the different
variants of the sequential method are presented. Then, the results
for the empirical copula method are discussed. Subsequently, the
results for the Gaussian copula method are described. Finally, the
best variants of the three methods are compared, while using the
uncorrelated method as a reference.

3.2.1. Sequential method
First, the performance of the sequential methods is compared

and shown in Fig. 7. Evaluation through MMD and CE both rank
SM 2 and SM 1 at the top, although all variants of the sequential
method perform rather similar compared to the other methods,
which will be shown in Section 3.2.4. The MMD varies from
0.0068 to 0.0084 (Table 3). The CE, defined as the median over
the 12 samples, varies from 0.0305 to 0.0333 (Table 3), i.e. the
RMSE over all label sets (e.g. good and bad) and all variable sets
(e.g. U-value roof and external wall) is 3.3% at most for the seven
considered methods. The AEU does not result in the same ranking
as the MMD and the CE, nor as the AEUA. However, again, there
are no significant differences between the different methods
according to the AEs. The AEU and the AEUA, both defined as the
median over the 12 samples, vary from 0.0035 to 0.0049 and from
0.0032 to 0.0049 respectively (Table 3). The error of the average
behaviour of the sequential methods is thus limited to 0.05. Both
AEs result in slightly different rankings.

Additionally, the variability between the 12 samples is checked
based on the CE and the AEs. In Fig. 7, the error bars represent the
range between the minimal value and the maximal value of the 12
samples for both the CE and the AEs. The variability of the CE is
very low, i.e. all samples respect the correlations of the real dataset
to a similar extent. The variability of the AEs is higher, which can
be expected as the 12 samples each represent a slightly different
version of the considered building stock. Therefore, it is argued that
the AEs are not the optimal indicators to assess the performance of
a particular method to build multivariate distributions and to draw
correlated samples. Nevertheless, the AEs provide an easy-to-
understand average error for all methods, allowing to assess the
overall behaviour of the different methods.

In Section 3.2.4, SM 2 and SM 1 are further compared to the
other methods.

3.2.2. Empirical copula method
Second, the performance of the empirical copula methods is

compared. In Fig. 8, the performance indicators are shown for the



Fig. 6. Probability distributions predicted by the QR models for all the U-values and theWWR for one specific dwelling of the test dataset are indicated in grey. The real values
for this dwelling are indicated by the black line. The terraced dwelling is situated in Ieper and is constructed in 1962. Its floor area is 166 m2, its protected volume is 491 m3,
its ground floor area is 96 m2, its façade area is 195 m2 and its roof area is 107 m2. To enhance readability, histograms are created based on 100,000 random samples from the
CDF.

Table 2
Empirical coverages [%] on the 50%, 80%, 90% and 98% prediction interval for all output variables.

Output variable ; Prediction interval ? 50% 80% 90% 98%

Ground floor U-value 50.3 80.2 90.0 98.1
External wall U-value 50.0 80.3 90.6 98.1
Window U-value 50.0 80.1 90.1 98.0
Roof U-value 50.2 80.0 90.1 98.0
WWR 49.7 80.3 90.1 98.1

Fig. 7. Graphical overview of the four performance indicators for 7 of the 120 variants of the sequential method. The error bars show the range between the minimal and
maximal values of the CE and the AEs over the 12 generated samples.

Table 3
Overview of the four performance indicators for the different methods to build
multivariate distributions from marginal distributions and to draw correlated
samples, ranked following the MMD.

MMD CE AEU AEUA

ECM Random 0.0020 0.0160 0.0044 0.0310
ECM Type 0.0024 0.0160 0.0050 0.0311
GCM 0.0027 0.0232 0.0026 0.0099
ECM Single 0.0036 0.0501 0.0781 0.0793
SM 2 0.0068 0.0305 0.0037 0.0047
SM 1 0.0069 0.0305 0.0038 0.0047
SM 5 0.0070 0.0307 0.0035 0.0049
ECM Year 0.0078 0.0242 0.0121 0.0234
ECM Type Year 0.0079 0.0240 0.0125 0.0233
SM 4 0.0079 0.0331 0.0041 0.0038
SM 6 0.0079 0.0331 0.0040 0.0038
SM 3 0.0079 0.0331 0.0036 0.0045
SM 7 0.0084 0.0333 0.0049 0.0032
Uncorrelated 0.0228 0.0415 0.0031 0.0041
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considered variants of the empirical copula method, i.e. ECM Sin-
gle, ECM Random, ECM Type, ECM Year and ECM Type Year. The
MMD varies between 0.0020 and 0.0079 (Table 3). The CE varies
between 0.0160 and 0.0501 (Table 3). Again, the MMD and the
CE provide a similar ranking, except for ECM Single. The MMD does
not capture the unreliability of ECM Single, as it does not distin-
guish between the 12 samples. The CE, however, does capture
the unreliability of ECM Single, since it assesses the 12 samples
separately and reports the median value. The reason for the unre-
9

liability of ECM Single will be explained further. According to the
MMD, ECM Random and ECM Type perform three times better than
ECM Year and ECM Type Year. The hypothesis is formulated that
the subgroups according to the year and to the combination of type
and year are too small and result in a distorted view. Additionally,
subgroups according to year should be defined differently, as some
historical events, such as the oil shocks of the 1970 s, caused a rad-
ical change in the construction industry. More in particular, the
template Z for a building of 1975 contains buildings of 1970 until
1980. In their original state, some of these buildings will have some
insulation, while others have no insulation at all. By now, some of
these building will also have insulated during renovations. This
hypothesis was checked visually. In the EPC dataset, the average
U-value for the dwellings dropped around 1970 and then
decreased steadily until 2007, although another drop is visible
around 1985. However, these observations do not necessarily con-
firm the hypothesis. The AEU provides a similar perspective than
the CE, as opposed to the AEUA. The AEU and the AEUA vary from
0.0044 to 0.0781 and from 0.0233 to 0.0793 respectively (Table 3).
As mentioned earlier, the AEs should not be used to rank the differ-
ent methods, but rather to check if the average behaviour of the
generated samples is in accordance with the reference.

Additionally, the variability between the 12 samples is checked
based on the CE and the AEs. In Fig. 8, the error bars show the range
between the minimal value and the maximal value of the 12 sam-
ples for both the CE and the AEs. The variability of the CE is very
low for all empirical copula methods, except for ECM Single. This
observation makes ECM Single a rather unreliable method, as the



Fig. 8. Graphical overview of the four performance indicators for the empirical copula method. The error bars show the range between the minimal andmaximal values of the
CE and the AEs over the 12 generated samples.
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correlations of the real dataset are not only not well respected but
also highly depending on the particular sample. This can be
expected as ECM Single only uses a single template Z to define
the correlation of all buildings. Therefore, each sample highly
depends on the selected buildings for template Z. The variability
of the AE appears to be low for all empirical copula methods,
except for ECM Single. However, this observation is only valid rel-
ative to ECM Single. Actually, the variability of the AE for the
empirical copula methods is similar to the sequential methods,
as will become more clear in Section 3.2.4, where ECM Random
and ECM Type are compared to the other methods.

Although five variants of the empirical copula method have
been proposed in this work, the definition of the template Z could
still be improved, especially if the template Z is defined by drawing
samples from a subset of similar buildings, as long as the subset
remains sufficiently large. For example, the subset of similar build-
ings could be defined based on the k-nearest algorithm. However,
this extension is left for future work.

3.2.3. Gaussian copula method
Third, the performance of the Gaussian copula method is dis-

cussed. The MMD and the CE of the Gaussian copula method are
0.0027 and 0.0232 respectively (Table 3). The AEU and the AEUA
are 0.0026 and 0.0099 respectively (Table 3). The different perfor-
mance indicators will be put into perspective in the next Section,
by comparing to the other methods.

Opposed to the sequential methods and the empirical copula
methods, no variations of the Gaussian copula method are consid-
ered, since this method already achieves good results compared to
the other methods. The training dataset could have been subdi-
vided into different groups (e.g. according to building type, con-
struction year or both) and a covariance matrix could have been
defined per group. Additionally, it could be explored how the
covariance matrix varies from city centres to more rural context,
but this would require more specific data.

3.2.4. All methods
Finally, the best performing variants of the different methods

(i.e. ECM Random, ECM Type, GCM, SM 1 and SM 2) are compared
Fig. 9. Graphical overview of the four performance indicators for the best performing var
range between the minimal and maximal values of the CE and the AEs, over the 12 gen
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in Fig. 9 and Table 3 to identify the most appropriate method to
build multivariate distributions and draw correlated samples,
which will be included in the probabilistic building characterisa-
tion method. To illustrate the added value of these methods, the
uncorrelated method is included as well. According to the MMD,
ECM Random, ECM Type and GCM perform very similar and are
listed at the top. They perform eight to ten times better than the
uncorrelated case. SM 1 and SM 2 are in between both. This is also
reflected in the CE. While the sequential method is easy and simple
to implement, it might not be able to characterise the correlation of
the variables that are estimated first in a correct manner. In partic-
ular, while the QR model of the last estimated variable is condi-
tioned on all the other random variables, the first estimated
variable is only conditioned on the original inputs but on none of
the other random variables. The different variants of the CE (i.e.
considering the U-values in sets of three or four instead of two
and labelling the U-values in five or ten bins instead of three bins)
show similar results and are therefore not shown in this work.

The AEs, on the other hand, are larger for the empirical copula
methods than for the sequential methods. Moreover, the AEs are
very low for the uncorrelated case. This can be expected: samples
that do not include correlation are more likely to generate values
that are on average closer to the mean. Samples that include corre-
lation are more likely to generate a more extreme scenario. How-
ever, as already mentioned, the average errors are only included
to assess the average behaviour of the samples, as they do not
include any form of correlation. The average errors are still suffi-
ciently low for the best performingmethods according to theMMD.

To identify the most appropriate method, two additional issues
should be considered. First, the empirical copulamethods are signif-
icantly easier to implement than theGaussian copulamethoddue to
the simplicity to define the template Z. Second, although harder to
implement, the Gaussian copula method is easier in use, as it
requires less memory stored to generate multivariate distributions
for new buildings. The Gaussian copula method only needs the
covariance matrix that has been determined during setup, whereas
the empirical copulas methods need the whole training dataset to
sample historical buildings every time a new multivariate distribu-
tion is generated. Based on the four performance indicators and con-
iants of the considered methods and the uncorrelated case. The error bars show the
erated samples.
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sidering the trade-off between implementation complexity and ease
for future use, the GCM is put forward in this work as the most
appropriate method to build multivariate distributions from mar-
ginal distributions and to draw correlated samples.

The probabilistic method will be particularly interesting to esti-
mate realistic input data distributions to perform uncertainty and
sensitivity analyses for the district energy demand of existing dis-
tricts. However, not all sensitivity analysis methods are able to
include the correlation between different input parameters. Only
random samples can be drawn from these multivariate distribu-
tions. As a result, regression-based sensitivity analysis methods
based on Monte Carlo approaches using optimised sampling or
any other sensitivity analysis method that requires a specific sam-
pling scheme cannot be used.

4. Conclusion

Urban building energy models are emerging, as they can be
used to quantify the operational building energy use on district
or city level as well as to estimate the impact of possible future sce-
narios. Buildings are often modelled following building or energy
performance archetypes that define the energy performance-
related data for all buildings following the particular archetype.
As a result, the natural variability of the existing building stock is
underestimated, causing some of the uncertainty on the simulation
outcome. Therefore, in this work, a probabilistic building charac-
terization method is proposed to model the full variability of the
existing building stock within UBEMs. The method is able to esti-
mate realistic input data distributions to perform uncertainty
and sensitivity analyses for the district energy demand of existing
districts. In this work, five parameters are considered, i.e. the U-
values of the floor, external walls, windows and roof as well as
the WWR, and are estimated based on data that is known for all
Flemish single-family dwellings. The method is developed based
on data of the Flemish energy performance certificates database.

First, QR has been proposed to generate the marginal distribu-
tions for the five variables. The accuracy of the marginal distribu-
tions is checked through the empirical coverage and is found to
be good. The empirical coverage is close to the theoretical range
for all output variables and all considered prediction intervals, as
it deviates 0.6% at most.

Then, a method to build multivariate distributions from mar-
ginal distributions and to draw correlated samples has been devel-
oped and compared to two methods from literature that have been
implemented for the first time within the context of the built envi-
ronment in this work. Also, different variants of these three meth-
ods were shown. The sequential method has been proposed in this
work and changes the input variables that are used to fit the QR
models. The empirical copula method and the Gaussian copula
method have been described in literature of different fields and
were adapted to be used within the field of UBEMs in this work.
Both methods employ a particular copula, i.e. a function that link
multivariate distributions to their univariate marginal
distributions.

To compare the different variants of these three methods, 12
samples are generated for 85,155 buildings of an out-of-sample
test data set. Four performance indicators are proposed: the
mean-maximum discrepancy (MMD), the correlation error (CE),
the average error on the mean U-value and on the UA-value of
the building (AEs). While the MMD is the most complete metric,
the CE and AEs are proposed to better understand the differences
between the different methods and the specific meaning of low
and high MMD values. To calculate the CE, all U-values are dis-
cretized (i.e. labelled as good, moderate and bad) and combined in
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pairs of two (e.g. U-value roof and external wall). The CE quantifies
the RMSE over all label sets (e.g. good and bad) and all variable sets
(e.g. U-value roof and external wall) in a particular sample and a
particular method compared to the real values. The CE is then
defined as the median over the 12 samples. Additionally, the AE
quantifies the absolute percentage error on the average behaviour
of all buildings in a particular sample and a particular method
compared to the real values. The AE is defined as the median over
the 12 samples.

According to the MMD, the Gaussian copula method and the
empirical copula methods, where the copula is defined based on
random buildings or on buildings of the same building type, are
found to perform best. Their MMDs are eight to ten times lower
that the MMD of the uncorrelated method. For these methods,
the CE varies from 1.6% to 2.3% and the AE is limited to 3%. For
the empirical copula method, it is important that the template Z
is defined based on sufficient data points from the training dataset.
This is the reason why the empirical copula methods, where the
copula is defined based on 12 random buildings or on buildings
of the same construction period or on buildings of the same con-
struction period and the same type, do not perform as good. Addi-
tionally, the sequential method, developed in this work, does not
perform as good as the Gaussian and the empirical copula method
since not all correlations are fully included (i.e. the QR model for
the last estimated variable is conditioned on all other variables,
but the first does not include any correlation).

Based on the four numerical performance indicators and con-
sidering the implementation complexity and the ease for future
use, the Gaussian copula method is put forward as the preferred
method to build multivariate distributions from marginal distribu-
tions and to draw correlated samples and is included in the prob-
abilistic building characterisation method.

The probabilistic building characterisation method can be used
to feed data into UBEMs for building-level parameters. The method
is particularly interesting to obtain realistic input building-level
parameter variations to perform uncertainty and sensitivity analy-
ses of the energy demand for existing residential neighbourhoods
within future work. The uncertainty analysis will show the uncer-
tainty on the simulated district energy demand that currently is to
be expected while using the best available input data without
intensive on-site data collection. The sensitivity analysis will allow
to identify the most influencing parameters for the district energy
demand. Ideally, these parameters will be collected with more care
to decrease the uncertainty within future district energy simula-
tions. In addition to the uncertainty and sensitivity analysis, it will
be investigated what the impact of uncertainty on the district
energy demand is within different use cases: the design of district
heating systems (e.g. sizing storage units), the operation of districts
where heating is supplied by a district heating system or by heat
pumps (e.g. control of the system) and the optimal renovation
strategy to achieve energy positive district and cities. As UBEMs
are used to answer important questions within the context of
achieving energy neutral or positive districts and cities, it is crucial
to assess the impact of uncertainty.
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