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Computational reduction of optimal hybrid vehicle energy management

Carlos Armenta1, Sébastien Delprat1, Rudy R. Negenborn2, Ali Haseltalab2, Jimmy Lauber1,
and Michel Dambrine1

Abstract— Pontryagin’s Minimum Principle is a way of
solving hybrid powertrain optimal energy management. This
paper presents an improvement of a classical implementation.
The core of this improvement consists in relaxing the tolerance
on some intermediate steps of the algorithm in order to reduce
the number of iterations and thereby reducing the number
of operations required to compute an optimal solution. The
paper describes both a classical implementation of Pontryagin’s
Minimum Principle as well as the improved version. Numerical
simulations are conducted on an academic example to demon-
strate the benefits of the proposed approach.

I. INTRODUCTION

Hybrid powertrains use at least two energy sources for
their propelling, and at least one of them is reversible. A
control strategy is needed to manage the power-split between
the different sources such that a criterion, for instance, the
fuel consumption is minimized.

In simulation over a priori known mission, the problem is
to compute an optimal solution to the energy management
problem. It can be obtained, for instance, using Dynamic Pro-
gramming. It consists of reformulating the energy manage-
ment problem as a shortest path problem within an oriented
graph with positive costs [1] [2] [3]. It can handle both state
and control constraints seamlessly. Still, it is subject to the
so-called ’curse of dimensionality’ that restricts the algorithm
to problems with a single energy storage system. Another
approach is based on Pontryagin’s Minimum Principle (PMP)
[4] [5]. This approach provides the necessary conditions
that allow computing the optimal solution. The resulting
algorithm is more computationally efficient than DP, but it
cannot handle state constraints.

Real-time control algorithms can be derived from optimal
conditions. They are known as Equivalent Consumption
Minimization Algorithms [6]. Considering potential real-
time applications, for instance, within the Model Predictive
Control framework, the reduced computational cost of the
PMP based algorithms is of importance. Improving optimal
control algorithm efficiency is also of interest for topology
an sizing optimization. It consists in choosing the powertrain
components and also the way they should be connected [7]
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[8]. This is typically done by solving many optimization
problems for different numerical settings (such as component
power rating, energy storage capacity) over a large set
of mission profiles. This procedure can be computational
intensive since it relies on an almost exhaustive search. As
a result, improving the optimal control algorithm efficiency
allows either expanding the search space or reducing the
computation time.

Problem statement: The classical implementation of the
PMP-based algorithm consists of two major optimization
sub-problems. First, at each instant, the control is a solution
to an instantaneous optimization sub-problem that depends
on an additional parameter denoted as co-state and second,
the co-state is the root of a function which is computed using
a bisection search.

Contribution: The algorithm is modified to improve the
computational efficiency of the algorithm significantly. The
underlying idea is that both sub-problems do not need
to be solved with high accuracy before their convergence
toward the optimal solution. As a result, the intermediate
solutions are computed using weak but sufficient accuracy
by exploiting the convexity properties of both subproblems.

Organization: The results of this work are presented as
follows: Sect. II briefly introduces the theoretical background
on PMP and how it can be used to obtain a numerical solution
to a hybrid powertrain optimal energy management problem;
Sect. III details how to improve the classical approach;
Sect. IV puts the proposed improved control scheme and the
classical one at test in an academic example in simulation;
conclusions are given in Sect. V.

II. PRELIMINARIES

In this paper, a series hybrid vessel is considered. In order
to focus on the proposed improvement, a simplified hybrid
powertrain model is considered with perfect energy storage
and a perfect DC/DC converter. However, the presented algo-
rithm can be extended to other hybrid powertrain topologies
with more detailed models.

A. Series Hybrid topology

In the series hybrid topology, the vessel is exclusively
propelled by the electric motor, see Fig. 1. The propelling
power is supplied to this traction motor by the energy storage
system (typically a battery) and/or the Auxiliary Power Unit
(APU).

The latest can be a fuel cell system [9] or, as in this paper,
an ICE coupled to a generator. The power to be delivered
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to the load (i.e. traction motor) is denoted by w, and it is
subject to the following power split equation:

w(t) = y(t) + u(t), (1)

with y(t) ∈
[
y, y

]
being the battery power and u(t) ∈

[0, umax] the APU output power. In order to lighten the
expressions, the dependence on the time variable t is omitted
when there is no ambiguity. The battery state of charge
dynamics is:

ẋ(t) = f(u,w) =
−y(t)

Q
=
u(t)− w(t)

Q
, (2)

where Q is the storage capacity and x the battery state of
charge. The APU fuel consumption to be minimized is given
as:

min
u(·)

J [u] =

∫ T

0

ṁf (u(τ))dτ, (3)

with the fuel mass flow rate ṁf assumed to be convex in
u. Considering eq. (1) and both the APU output power and
DC/DC limitations, the set of admissible inputs is defined
as U(w) = [u, u] with u = max(0,−y + w(t)) and u =
min(umax,−y + w(t)).

B. Pontryaging’s Minimum Principle

In simulation, the required power profile w(t) to be
supplied to the load is known over the optimization horizon
[0, T ]. It can be measured on an existing vessel or computed
using a velocity profile and a model [10]. The vessel en-
ergy management can be formulated as an optimal control
problem:

min
u(·)

J [u] =

∫ T

0

ṁf (u(τ))dτ (4)

subject to
ẋ = f(u,w), (5)
U(w) = [u, u] , (6)
x(0) = x0 and x(T ) = xT , (7)

with x0 and xT the initial and final state of charge.

C. Necessary conditions for optimality

Let us define the Hamiltonian function as:

H(u, λ,w) = ṁf (u) + λT f(u,w), (8)

Fig. 1. Powertrain diagram

with λ being the co-state. PMP establishes a necessary
condition for optimality [5]:

∂H

∂λ
= ẋ(t) (9)

∂H

∂x
= −λ̇(t) (10)

u(t) = arg min
ν∈U

H (ν, λ(t), w(t)) . (11)

According to (2) and (10), the co-state is constant:

λ̇(t) = 0⇒ λ(t) = λ0, ∀t ∈ [0, T ] , (12)

λ0 being a constant to be determined. Furthermore, it is
assumed that the Hamiltonian is convex in the control. As a
result, PMP optimality conditions are also sufficient. From
(11), let us denote the optimal policy by Π, a function
depending on the load power w(t) and the co-state value
λ0:

u(t) = Π (λ0, w(t)) = arg min
ν∈U

H (ν, λ0, w(t)) . (13)

Thus, the original optimal control problem is reduced to a
Boundary Value Problem (BVP) parametrized by a single
unknown λ0:

ẋ(t) = f (Π (λ0, w(t)) , w(t)) , (14)
x(0) = x0, x(T ) = xT . (15)

Considering any arbitrary value for λ0, the initial state of
charge x0 being known, the final state of charge value x(T )
can be determined by direct integration:

x(T ) = x(0) +

∫ T

0

f(Π(λ0, w(t)), w(t))dt. (16)

Finally, the initial costate λ0 is the root of the following
defect function:

g(λ0) = x̃T (λ0)− xT . (17)

In order to solve the optimal control problem, one must solve
two sub-problems: (i) the Hamiltonian minimization (11) and
(ii) the co-state computation (17).

In order to prove that it is possible to find λ0 such that
g(λ0) = 0, let us introduce the following property

Theorem 2.1: Let λ0 ≤ 0, −∂ṁf/∂u be a strictly de-
creasing function with respect to u, and f defined in (2), then
the optimal policy Π is a decreasing function with respect
to λ0 and there is a monotonic increasing relation between
the value of λ0 and the final state of charge x(T ).

Proof: Let us first consider the uc the unconstrained
solution to the Hamiltonian minimization:

uc = arg min
ν

H (ν, λ0, w(t)) . (18)

H has a local minimum if ∂H/∂u = 0, then

∂H

∂u
(uc, λ0, w)=

∂ṁf

∂u
(uc)+

1

Q
λ0 =0⇒ λ0=−Q

∂ṁf

∂u
(uc) ,

(19)
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since −∂ṁf/∂u (uc) is a strictly decreasing function with
respect to uc, the relation between the optimal control uc
and λ0 is strictly decreasing.

The Hamiltonian being convex in u, and considering the
control saturation such that u ∈ U(w), the optimal policy
(solution to the constrained Hamiltonian minimization (13))
is:

u = min(u,max(u, uc)). (20)

As a result, the optimal control policy Π is a monotonic
decreasing function of λ0. The second assertion follows from
the latter and Lemma 1 in [11].

Theorem 2.1, implies that g(λ0) is only a monotonic
function of λ0 (and not a strictly monotonic one). Due to
the control saturation u ∈ U(w), the reachable final state
of charge set for x(T ) is bounded. As a result, g has a
null derivative for small and large λ0 values that may in-
duces numerical issues when solving (21) using root finding
algorithms such as Newton’s method. Instead, derivative-
free algorithms are preferred and the bisection method is
considered. The co-state is obtained by numerically solving
the following optimization:

λ0 = arg min
λ∈[λ,λ]

|g (λ)| , (21)

with g being monotonic, there always exist sufficiently small
(resp. large) λ (resp. λ) such that g(λ) > 0 > g(λ).

In order to numerically estimate the integral in eq. (16),
the Euler numerical quadrature is used:

x(T ) ≈ x(0) +

N−1∑
i=0

f(Π(λ0, w(i · s)), w(i · s))s, (22)

with s as the sampling period and T = (N − 1) · s.

D. Classical algorithm implementation

To solve the Hamiltonian minimization (11), the control
is gridded and the Hamiltonian is evaluated at each node.
The grid size is denoted by M and at every instant i =
0, 1, . . . , N , the control grid is Ugrid(i). Let us denote by
ugrid(i, k) the elements of Ugrid(i) sorted from the smallest
to the largest such that ugrid(i, k) < ugrid(i, k+1), ∀k =
0, . . . ,M . The considered grid for the classical algorithm is
defined as follows:

ugrid(i, k) = ν(i) + k (ν(i)− ν(i)) /M, (23)

∀i = 0, . . . , N and ∀k = 0, . . . ,M with ν(i) = u, ν(i) =
u. As a result, the optimal policy (13) is replaced by the
following approximation:

Πgrid (λ0, w(i · s)) = arg min
νk∈Ugrid(i)

H (νk, λ0, w(i · s)) , (24)

with Ugrid(i) defined as follows

Ugrid(i)={ugrid(i, k),∀k=0,. . .,M}. (25)

This way, for a given λ0 and w(i · s), the optimal control is
estimated with an accuracy εN :

|Πgrid (λ0, w (i · s))−Π (λ0, w (i · s))| < εN , (26)

with εN = u−u
2N .

The final state of charge is estimated Euler quadrature:

x̃(T ) = x(0) +

N−1∑
i=0

f(Πgrid(λ0, w(i · s)), w(i · s))s. (27)

The co-state is obtained by computing the roots of the
following defect function using a bisection search:

g̃(λ0) = x̃T (λ0)− xT . (28)

Algorithm 1 shows the detailed procedure. Although being
quite simple and widespread [12] [13] [14] [15], this algo-
rithm can be improved. First, let us note that to ensure a good
accuracy on the optimal policy the grid Ugrid is defined with
a constant number of vertices N large enough. During the
initial iterations of the bisection algorithm, the co-state value
is far away from the final one. As a result, all these iterations
are carried out with a fine grid even if a high accuracy on
the control is not needed at that stage. In this paper, we
propose to adapt εN according to the accuracy required by
the bisection algorithm.

Algorithm 1 Classical algorithm

1: Set λ, λ and the inputs w(t), xT , NT , umax, y, y
2: Define Ugrid
3: do
4: λ0 = (λ+ λ)/2
5: for i = 0 to N − 1 do
6: Πgrid(i) = arg min

νk∈Ugrid

H(νk, λ0, w(i · s))

7: end for
8: Compute x̃(T ) using (27)
9: if x̃(T ) > xT then

10: λ = λ0
11: else
12: λ = λ0
13: end if
14: while |x̃(T )− xT | > ∆

III. IMPROVED ALGORITHM IMPLEMENTATION

As the Hamiltonian minimum is not computed exactly
but estimated using the grid Ugrid, one should carefully
track the actual value of the true optimal control policy Π
with respect to the grid vertices. As a result, the improved
algorithm consists in reducing the grid Ugrid to the smallest
required set and adapting it at each iteration. At every instant
i = 0, 1, . . . , N , Ugrid(i) is a vector whose entries are the
elements from the set (25) sorted from the smallest to the
largest. Thus, it is possible to define the numerical estimate
of the optimal control Πgrid and the control brackets u−,
and u+ as follows:

k = arg min
νk∈Ugrid(i)

H(νk, λ0, w(i · s)), (29)

Πgrid(i) = νk, (30)

u−(i) = νk−1, (31)
u+(i) = νk+1. (32)
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Fig. 2. Tracking of the optimal control

As depicted in Fig. 2, the actual control input that minimises
the Hamiltonian, namely Π, is always bracketed by the
interval [vk−1, vk+1] due to the Hamiltonian convexity. The
grid can be refined using a smaller step size εN and then, at
the next iteration the difference vk+1−vk−1 will be reduced,
and so the approximation of the optimal solution will be
closer to its actual value. The final state of charge x(T )
obtained using the optimal control (22) is also bracketed by
x̃u− and x̃u+ , with :

x̃u−=x(0)+

N−1∑
i=0

f(u−(i),w(i·s))s, x̃u+=x(0)+

N−1∑
i=0

f(u+(i),w(i·s))s. (33)

In order to implement the bisection algorithm, it is necessary
to determine if the final state x(T ) is greater or lower than
xT (step 9 of Algorithm 1). Exploiting Theorem 1, three
cases may occur:
• x̃u− , x̃u+ > xT , then the optimal final state for this co-

state exceed the target x̃(T ) > xT . At each instant i,
the optimal control u(i) is lower than u+(i). Any value
above u+(i) can be removed from Ugrid(i):

Ugrid(i)←Ugrid(i) ∩
{
ν ∈ Ugrid(i) : ν ≤ u+(i)

}
∀i = 0, . . . , N. (34)

• x̃u− , x̃u+ < xT , then the optimal final state for this
co-state subceed the target x̃(T ) < xT . At each instant
i, the optimal control u(i) is greater than u−(i). Any
value below u−(i) can be removed from Ugrid(i):

Ugrid(i)←Ugrid(i)∩
{
ν ∈ Ugrid(i) : ν ≥ u−(i)

}
∀i = 0, . . . , N. (35)

• x̃u− < xT < x̃u+ , then the location of the actual x̃(T )
with respect to xT is unknown. It is necessary to refine
the grid according to Theorem 3.1 (step 10) by adding
two extra values and removing Πgrid(i) from the grid:

Ugrid(i)←Ugrid(i) ∪
[

2u−(i)+u+(i)

3
,
u−(i)+2u+(i)

3

]
− {Πgrid(i)}, ∀i = 0, . . . , N. (36)

The intuitive idea is to add gridding points closer and closer
to the optimal value. Also, by this method, at the beginning

of the algorithm, Ugrid might contain a small number of
points to be evaluated in (11). Algorithm 2 shows the detailed
procedure.

Algorithm 2 Improved algorithm

1: Set λ, λ and the inputs w(t), xT , N , umax, y, y
2: do
3: Initialize λ0 = (λ+ λ)/2
4: for i = 0 to N − 1 do
5: k(i) = arg min

νk∈Ugrid(i)

H(νk, λ0, w(i · s))

6: u−(i) = νk−1
7: u+(i) = νk+1

8: end for
9: Compute x̃u− and x̃u+ according to (33).

10: if (xT − x̃u−)(xT − x̃u+) > 0 then
11: if x̃u− > xT then
12: λ = λ0
13: Remove values in Ugrid according to (34)
14: else
15: λ = λ0
16: Remove values in Ugrid according to (35)
17: end if
18: else
19: for i = 0 to N do
20: Refine Ugrid according to (36)
21: end for
22: end if
23: while |xT − x̃u− | > ∆ || |xT − x̃u+ | > ∆

Theorem 3.1: Let Hj(u), with j = 1, 2, . . . , p be a
sequence of convex functions on a convex domain D, and
assume that the sequence converges to a function H(u). Then
H(u) is convex.

Proof: Assume by contradiction that we have a pair
of points u1, u2, and 0 < α < 1 such that, defining u =
αu1 + (1− α)u2, we have

H(u) > αH(u1) + (1− α)H(u2). (37)

On the other hand, from the convexity assumption −Hj(u)+
αHj(u1)+(1−α)Hj(u2) ≥ 0, ∀j. Taking the limit, we have
H(u) ≤ αH(u1) + (1 − α)H(u2), which contradicts (37).

Consider the sequence {Hn(u)} of Hamiltonian convex
functions, such that the value of the co-state λ0 determines
every element of the sequence. Thus, if λ0 converges using
the bisection algorithm then, from Theorem 3.1, the sequence
of Hamiltonian functions converges to a convex function
H(u).

Each time the grid is refined according to (36) a new
pair of optimal control brackets u− and u+ will be in-
cluded within it for the next iteration. Then, two sequences
{u−n },{u+n } are defined, where the subscript n stands for the
number of refinements in the grided set. For a specific n in
the sequence, two cases might occur:

1) u−n = u−n−1 and u+n =
u−n−1+2u+n−1

3
.

1447

Authorized licensed use limited to: TU Delft Library. Downloaded on August 25,2021 at 09:08:42 UTC from IEEE Xplore.  Restrictions apply. 



2) u−n =
2u−n−1+u+n−1

3
and u+n = u+n−1.

The convergence of the improved algorithm toward the
optimal solution is then guaranteed by the Theorem 3.2.

Theorem 3.2: Let {u−n }, {u+n } be a pair of bounded se-
quences in the interval [a, b], with u−1 < u+1 and defined by
the following rule

u−n=


u−n−1 H

(
2u−

n−1+u
+
n−1

3

)
>H

(
u−
n−1+2u+

n−1

3

)
2u−n−1+u+n−1

3
otherwise

u+n=


u+n−1 H

(
u−
n−1+2u

+
n−1

3

)
>H

(
2u−

n−1+u
+
n−1

3

)
u−n−1+2u+n−1

3
otherwise

for any n > 2 and any convex function H . Then the
sequences {H(u−n )}, {H(u+n )} converge, moreover, they
converge to the same limit.

Proof: Suppose that H

(
2u−

n−1+u
+
n−1

3

)
<

H

(
u−
n−1+2u+

n−1

3

)
holds, then

H(u−n ) = H(u−n−1) and H(u+n ) = H

(
u−n−1 + 2u+n−1

3

)
.

Considering that

H

(
2u−n−1 + u+n−1

3

)
< H(u+n ) ⇐⇒

H(u+n ) < 2H(u+n )−H

(
2u−n−1 + u+n−1

3

)
.

Since H is convex the following holds:

H
(
u+n
)
≤2H

(
u+n
)
−H

(
2u−n−1+u

+
n−1

3

)
≤ 2

3
H
(
u−n−1

)
+

4

3
H
(
u+n−1

)
−
(

2

3
H
(
u−n−1

)
+

1

3
H
(
u+n−1

))
=H

(
u+n−1

)
.

Thus, H (u+n ) ≤ H
(
u+n−1

)
. The proof is analogous in the

other case. Since the sequences {H(u−n )} and {H(u+n )} are
monotonically decreasing and bounded, then they converge
to a minimum and, H being convex, they converge to its
global minimum.

IV. EXAMPLE

In this section, the classical and the improved algorithms
are applied to a CTV vessel in operation over two days. In
order to focus on the algorithm performances, a simplified
model is considered. The relation between the number of
Hamiltonian evaluations required by the classical algorithm
against the improved one for different values of accuracy is
presented for comparison.

The load w(t), is computed using a model that relates the
propeller power as a function of the ship speed profile, see
Fig. 3, and the vessel characteristics [16]. The load value is

Fig. 3. Ship speed profile (above) and the effective power profile (below)

w(t) = 2πnpQp; where np is the propeller speed, and Qp
is the propeller torque. For the sake of simplicity, a squared
resistance-speed function is considered, and it is assumed
that the wake factor is constant. Moreover, the relationship
between the shaft speed and propeller speed is established
as follows:

np =
1− fw
JD

vs, (38)

where fw is the wake factor, D is the propeller diameter, J is
the advance ratio, and vs is the vessel speed. Considering that
the ship uses a fixed-pitch propeller with a constant operation
point, then the advance ratio J remains constant, and the
propeller speed is proportional to the speed of the ship. Then,
the propeller torque is established using the equation

Qp = KQρn
2
pD

5, (39)

where KQ is the torque coefficient, which can be expressed
as a polynomial in terms of J and since J is a constant,
KQ is a constant. The vessel and energy storage system
parameters are presented in Table I. The bisection algorithm
parameters are λ = −500 and λ = 0, with the boundary
conditions x0 = xT = 0.5. The simulation time step size
for the ship model is s = 56s while N = 1382. To make
a fair comparison of both algorithms, the solutions must be
computed with the same accuracy εN . So, first, for a given
final state of charge accuracy ∆, the improved algorithm
is executed, and the final optimal control accuracy εN is
obtained. Then the classical bisection algorithm is run using
εN as a control grid accuracy in (24). 40 values of the
final state of charge tolerance ∆ linearly spaced within the

Symbol Description Value Units
D Propeller Diameter 0.5 m
ρ Density of sea water 1024 kg/m2

J Advance ratio 0.73 -
fw Wake factor 0.19 -
KQ Propeller torque coefficient 0.0199 -
Q Battery capacity 150 CAh

TABLE I
MODEL PARAMETERS
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Fig. 4. Number of Hamiltonian evaluation: classical approach vs improved
approach.

interval [0.005 0.2] are considered. The accuracy achieved
by the improved algorithm ranges from εN = 42.2 (kW)
down to εN = 0.7 (kW), depending on the tolerance value.
Fig. 4 shows the number of Hamiltonian evaluations that
were performed with both algorithms for different tolerance
values. The computed costate for the optimal solution that
matches the boundary condition with a tolerance ∆ =
0.5% is λ = −2.573 for both algorithms. Let us define
the improvement factor µ(εN ) as the ratio of Hamiltonian
evaluations between the classical and improved algorithm.
The effectiveness of the improved algorithm is illustrated
in Fig. 5, showing that even for a very sparse control grid,
generated using εN = 42.2 kW , the improvement factor is
greater than 473. For a very refined grid the improvement
factor can reach values greater than four orders of magnitude.
It is important to notice that as long as εN tends to 0 the
ratio tends to grow exponentially, making it clear that the
more accurate the solution is required, the more efficient the
improved algorithm is. The optimal solution which matches
the boundary condition with a tolerance ∆ = 0.5% with
λ = −2.573, the running time for the classical algorithm
is 827.4459 seconds, whereas, for our proposal it is 9.4249
seconds.

V. CONCLUSION

An improvement of the classical implementation of an
algorithm used for solving hybrid powertrain optimal energy
management has been presented. It has been shown that the
number of computations of the Hamiltonian is significantly
reduced using the proposed algorithm, even in the cases
where the required accuracy is low. The methodological
improvement has been demonstrated over a simplified series
hybrid case and a recorded mission profile. Future work
will be devoted to the extension to more complex vessel
architectures encountered in maritime applications.
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[15] L. V. Pérez, C. H. De Angelo, and V. Pereyra, “Determination of the
adjoint state evolution for the efficient operation of a hybrid electric
vehicle,” Mathematical and Computer Modelling, vol. 57, no. 9-10,
pp. 2257–2266, 2013.

[16] H. K. Woud and D. Stapersma, Design of propulsion and electric
power generation system. IMAREST, 2002.

1449

Authorized licensed use limited to: TU Delft Library. Downloaded on August 25,2021 at 09:08:42 UTC from IEEE Xplore.  Restrictions apply. 


