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Research article 
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A B S T R A C T   

The Urmia lake in north-west Iran has dried up to perilously low levels in the past two decades. In this study, we 
investigate the drivers behind the decline in lake water level with the help of in-situ and remote sensing data. We 
use total water storage (TWS) changes from the gravity recovery and climate experiment (GRACE) satellite 
mission. TWS from GRACE includes all the water storage compartments in a column and is the only remote 
sensing product that can help in estimating groundwater storage (GWS) changes. The coarse spatial (approx. 300 
km) resolution of GRACE does not allow us to identify local changes that may have led to the Urmia lake disaster. 
In this study, we tackle the poor resolution of the GRACE data by employing three machine learning (ML) 
methods including random forest (RF), support vector regression (SVR) and multi-layer perceptron (MLP). The 
methods predict the groundwater storage anomaly (GWSA), derived from GRACE, as a function of hydro-climatic 
variables such as precipitation, evapotranspiration, land surface temperature (LST) and normalized difference 
vegetation index (NDVI) on a finer scale of 0.25◦ × 0.25◦. We found that i) The RF model exhibited highest R 
(0.98), highest NSE (0.96) and lowest RMSE (18.36 mm) values. ii) The RF downscaled data indicated that the 
exploitation of groundwater resources in the aquifers is the main driver of groundwater storage and changes in 
the regional ecosystem, which has been corroborated by few other studies as well. The impact of precipitation 
and evapotranspiration on the GWSA was found to be rather weak, indicating that the anthropogenic derivers 
had the most significant impact on the GWSA changes. iii) We generally observed a significant negative trend in 
GWSA, having also significant positive correlations with the well data. However, over regions with dam con-
struction significant negative correlations were found.   

1. Introduction 

The Urmia lake is located in a semi-arid region in the North West of 
Iran and is the largest lake in the Middle East. The lake has been losing 
water at a rapid rate for the past two decades (Delju et al., 2013). The 
sharp decline of the lake water level has been attributed to changes in 
the precipitation, temperature and soil moisture (Jalili et al., 2018; 
Siebert et al., 2010), reduction of the surface water inflow due to 
excessive agricultural extraction (Jalili et al., 2018; Siebert et al., 2010), 
and constructing a large number of dams over the rivers that feed the 

lake (JICA, 2019). Most of previous studies focus on monitoring the lake 
water level and only a few have attempted to understand hydrological 
changes in the basin. 

Groundwater, as one of the most precious water resources for agri-
culture, industry and drinking, accounts for over 40% of the global 
consumptive water use in irrigation (Jalili et al., 2018; Li et al., 2019; 
Raju et al., 2015; Siebert et al., 2010). Parts of the Urmia catchment 
experienced a drop in average groundwater level up to 16 m (Zarghami, 
2011). The change in groundwater over the Urmia catchment is chal-
lenging to study because it is driven by both humans intervention and 
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natural variability that are have extremely interconnected and difficult 
to resolve. The groundwater level fell throughout the catchment be-
tween 2004 and 2014 with a minimum decline of 13 m and a maximum 
of 24 m (Valizadeh Kamran and Khorrami, 2018). 

Monitoring groundwater with homogeneous spatiotemporal 
coverage is challenging. However, the launch of GRACE gravity satellite 
mission in 2002 provided first estimates of large-scale groundwater 
changes. The coarse resolution of GRACE limits its applicability to 

investigate the water storage changes for smaller basins. It is therefore 
required to enhance the resolution of the GRACE data at a proper spatial 
scale for regional studies (Vishwakarma, 2020). Downscaling is a 
method that improves poor spatial resolution of an observed quantity by 
integrating higher resolution information obtained from various sour-
ces. The downscaling methods are mainly divided into two categories: 
dynamic downscaling and statistical downscaling (Li et al., 2020; Tang 
et al., 2016; Vishwakarma et al., 2021b; Wang et al., 2016; Wilby and 
Wigley, 1997). For our case, dynamic downscaling assimilates the 
low-resolution total water storage anomaly (TWSA) data to develop a 
numerical model, and then apply it to data at smaller scales in local areas 
(Rahaman et al., 2019). Research is ongoing in dynamic downscaling 
methods to simulate GRACE in land surface models (LSM) for producing 
GWS change data and other hydrological parameters at finer resolutions 
(Sahoo et al., 2013; Shokri et al., 2018, 2019; Zaitchik et al., 2008). 
Although dynamic data assimilation methods remains consistent in 
physical processes, a series of shortcomings must be considered (Cas-
tellazzi et al., 2016a,b). The implementation of data assimilation is 
relatively complicated (Miro and Famiglietti, 2018), and its accuracy is 
subject to the full error covariance matrix of the GRACE observations 
and hydrological models (Khaki et al., 2017; Nie et al., 2019). To address 
these limitations, the statistical methods such as machine learning (ML) 
techniques were introduced, which are superior to dynamic methods 
due to their flexibility, simplicity and computational efficiency (Liu 
et al., 2016). The statistical methods use local observations made over 
longer time periods to establish empirical relationships between 
coarse-scale input data (predictor) and fine-scale target datasets (pre-
dictand) (Vishwakarma et al., 2021a; Yin et al., 2018). Recent de-
velopments in the field of ML have impacted research in environment 
science and hydrology. The ML techniques have been used to downscale 
hydrological variables (Yeganeh-Bakhtiary et al., 2022) and to estimate 
the uncertainty (Chatrabgoun et al., 2020; Donnelly et al., 2022; Ghiasi 
et al., 2022; Noori et al., 2022). Miro and Famiglietti (2018), and Sun 
(2013) applied an artificial neural network (ANN) on GRACE data to 
predict the variations in Groundwater Storage (GWS) in the central 
basin of California (Miro and Famiglietti, 2018; Sun, 2013). They 
concluded that the downscaled product could accurately simulate the 
variations in GWS at high resolutions. The model output could not 
capture spatial variations accurately but changes in the mean GWS were 
predicted well. Ali et al. (2021) developed a random forest (RF) 
ML-based downscaling model and an ANN model to downscale the 
GRACE data from 1◦ to a higher resolution of 0.25◦ over the Indus basin 
(Ali et al., 2021). Seyoum and Milewski (2017) estimated the glacial 
aquifer GWS using ML and observed that the resolution of GWS could be 
improved at a spatial scale despite the high uncertainties in the input 
data (Seyoum and Milewski, 2017). Rahaman et al. (2019) used RF to 
downscale the GRACE-derived GWS of 1◦ to a resolution of 0.25◦ for the 
Northern High Plains aquifer (Rahaman et al., 2019). Chen et al. (2019) 
utilized the hydrologic variables like evapotranspiration, rainfall, soil 
moisture, surface runoff, canopy water and snow water equivalent to 
predict TWS and GWS using an RF model (Chen et al., 2019). Zuo et al. 
(2021) also used RF to establish a model for GWS downscaling using the 
GRACE-derived GWS, vegetation index and temperature in the Tarim 
River Basin (Zuo et al., 2021). 

In conclusion, machine learning algorithms are used in a wide range 
of applications in geoscience in general (Dramsch, 2020) and GRACE 
data downscaling in particular (Ali et al., 2021; Miro and Famiglietti, 
2018; Rahaman et al., 2019; Seyoum et al., 2019; Zuo et al., 2021). 
These algorithms build a model based on sample training data to make 
predictions using input variables. The strength of ML techniques relies 
on capturing unknown non-linear relationships between predictand and 
predictor variables. Moreover, machine learning methods make 
data-driven recommendations and decisions based on only the input 
data. Among the ML methods, RF, as a supervised learning algorithm 
that uses the ensemble-learning method, has some unique advantages: 
(1) it can handle thousands of input variables without overfitting; (2) it 

Fig. 1. a) Map of the main catchments of Iran including Caspian Sea, Persian 
Gulf, Central, Hamoon, Sarakhs and Urmia (IWRMC, 2019), b) Location of 
Urmia catchment (our study area) and c) Digital elevation map (DEM) of the 
Urmia catchment. 
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has high accuracy and can run efficiently on large datasets; (3) it can 
detect the interaction and importance of variables; and (4) it provides an 
effective method to estimate missing data with acceptable accuracy 
(Chen et al., 2019). Although three ML methods will be tested, the use 
and application of RF is central in the present contribution. 

The goal of this research is to downscale GWSA by employing one of 
the widely used land surface models, the Famine early warning systems 
network (FEWS NET) land data assimilation system (FLDAS) which is 
designed particularly to produce multi-model and multi-forcing esti-
mates of hydro-climate states and fluxes over semi-arid and food- 
insecure regions of Africa (McNally et al., 2017). Seven environmental 
variables including soil moisture, snow water equivalent, runoff, NDVI, 
LST, evapotranspiration and precipitation were used as inputs to the 
algorithm. Google Earth Engine (GEE), as a cloud computing platform 
that extracts parameters from satellite imagery, was used to provide all 
the required variables for downscaling over the Urmia catchment. The 
Urmia catchment is a complicated aquifer to study because the signals 
from human intervention and natural variability are intertwined. In 
other words, the environmental system has been severely impaired by 
human activities and it is hard to separate human-driven hydro-climatic 
changes from the nature-driven. Parsinejad et al. (2022) showed that 
expansion of irrigated agriculture, dam construction and mismanage-
ment impacted the lake more than the temperature increase and pre-
cipitation decrease (Parsinejad et al., 2022). 

The objectives of this study are three-fold. We use the best method 

among three ML methods to downscale GWSA obtained from GRACE 
and LSM. The downscaled results are also validated with the in-situ well 
observations. We then assess the significance of trends in the mean 
monthly NDVI, precipitation and evapotranspiration over the Urmia 
catchment between 2003 and 2016. Finally, we implement the trend 
analysis of the downscaled GWSA (GWSA-D), wells’ GWSA (GWSA-W) 
and NDVI anomaly using the Mann-Kendall test at the grid scale. 

2. Study area and data 

2.1. Description of study area 

The Urmia catchment (35.5◦–38.5◦ N and 44◦–48◦E), having a semi- 
arid continental climate, has an area of 51,676 km2 in the north-west of 
Iran (Fig. 1). The Urmia lake has attracted lots of attention due to a 
significant decrease in its water level over the last two decades. The 
drying up of Urmia lake has been one of the largest anthropogenic 
environmental problems in this region and to address this problem, it is 
important to first understand the major reasons for deteriorating health 
of the lake. As reported by the Iranian Water Resource Management 
Company (IWRMC), there was significant increase in the number of 
semi-deep wells in East Azerbaijan and West Azerbaijan provinces, and 
an increase in the springs in Kurdistan province during 2003–2016 
(IWRMC, 2019). A significant portion (~84%) of the groundwater 
withdrawal was used for the agricultural irrigation (Fig. 3). 

Fig. 2. Number of deep and semi-deep wells, qanats, and springs in the period of 2003–2016 in three provinces involved in the Urmia catchment (IWRMC, 2019).  

Fig. 3. Groundwater consumption based on agricultural (irrigation), drinking and industrial in three provinces including: West Azerbaijan, East Azerbaijan, and 
Kurdistan during 2003–2016 (IWRMC, 2019). 
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2.2. Data sources 

A summary of the data used is presented in Table 1. Further details 
on GRACE and ground based measurements go as follows. 

2.2.1. Gravity recovery and climate experiment (GRACE) 
The GRACE mission’s (2002–2017) primary objective was to esti-

mate the temporal variations of the gravitational field (Tapley et al., 
2004). It comprised of two identical spacecraft separated by about 220 
km and placed in a near polar orbit at an altitude of 500 km. The initial 
goal was to monitor monthly scale temporal variations in the gravity 

field of the Earth due to mass redistribution (Ramillien et al., 2008; 
Tapley et al., 2019; Vishwakarma, 2020; Wouters et al., 2014). The 
initial expectation was to monitor changes at continental, however, 
several developments in post-processing of GRACE data has helped in 
studying large-catchment scale mass changes. 

The GRACE solutions include i) level 2, spherical harmonic co-
efficients, ii) level 3, gridded the equivalent water height (EWH) fields 
and mass concentration blocks (mascons) and iii) level 4, time series 
products (Vishwakarma, 2020). The spatial resolution and accuracy of 
the first two cases depend on the filter and correction method used 
(Vishwakarma et al., 2018). Mascons use different processing strategies 

Table 1 
A summary of the data used in order to extract GWSA and to downscale it with machine learning methods.   

Variable Name 
Resolution Source Website 

LST 1 km× 1km 
(0.009̊ × 0.009̊)

MODIS (Wang et al, 2015) https://lpdaac.usgs.gov/products/mod11a1v006/ 

NDVI 250 m× 250m 
(0.0023̊ ×

0.0023̊)

MODIS (Didan.,2015) https://lpdaac.usgs.gov/products/mod13q1v006/ 

Evapotranspiration (ET) 500 m× 500 m 
(0.0045̊ ×

0.0045̊)

MODIS (Running et al.,2017) https://lpdaac.usgs.gov/products/mod16a2v006/ 

Soil moisture, Snow water equivalent, and 
Runoff 

0.1̊× 0.1̊ FLDAS (McNally, 2018) https://disc.gsfc.nasa.gov/datasets?keywords=FLDAS 

Precipitation 0.1̊× 0.1̊ GPM IMERG (Huffman et al.,2019) https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM 
_06/summary 

GRACE 0.25̊× 0.25̊ CSR RL06 Mascons solutions Save et al., 
2016 

http://www2.csr.utexas.edu/grace  

Fig. 4. MODIS normalized difference water index (NDWI) indicating surface water extent from January 2003 to January 2016 over Urmia catchment.  
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to predict mass changes (in terms of EWH) in concentrated blocks on the 
surface of the Earth (Luthcke et al., 2013; Vishwakarma, 2020). There is 
no need for additional filtering method and the method can tackle signal 
leakage better than other approaches (Luthcke et al., 2013; Save et al., 
2016; Vishwakarma, 2020; Watkins et al., 2015). The mascon solutions 
have a series of properties expressed as follows. 1) Advances in GRACE 
processing from traditional spherical harmonics to recent mascon solu-
tions have increased the signal-to-noise ratio and therefore reduced its 
uncertainties (Scanlon et al., 2016; Watkins et al., 2015). 2) The GRACE 
mascon solutions do not require Gaussian smoothing or decorrelation 
filtering and truncation (Save et al., 2012, 2016; Watkins et al., 2015). 3) 
Evaluation of long-term trends from GRACE is of great interest and 
usage for hydrologists. The users should be cautious as the native res-
olution of GRACE is around 65,000 km2 (Vishwakarma, 2020; Vishwa-
karma et al., 2017) and therefore downscaling is an essential step in the 
water-storage monitoring of small basins (Bhanja et al., 2020; Fami-
glietti et al., 2015). 

The mascon products are available from three centers: JPL, CSR, and 
GSFC, at a grid sampling of ≤1◦. The RL06 CSR mascon solution is based 
on the regularization method and derived entirely from the GRACE in-
formation without any input from external models, and, unlike the JPL 
solution, is independent from TWS and other geophysical models (Chen 
et al., 2017; Save et al., 2016). The solutions are computed on an equal 
area geodesic grid composed of hexagonal tiles, approximately 120 km 
wide or 1◦ × 1◦ at the equator (Chen et al., 2017). The spatial resolution 
of CSR RL06M v01 (hereinafter abbreviated as CSR v01) for the equiv-
alent water height (EWH) is 0.25◦ × 0.25◦(Save et al., 2016), whereas its 
temporal resolution is monthly from January 2003 to December 2016. In 
this research, the EWH missing data (gaps) were interpolated using a 
2nd degree polynomial. 

2.2.2. Ground based measurements 
Monthly time series of processed groundwater level (GWL) from 

1161 observation wells distributed among the three provinces East 
Azerbaijan, West Azerbaijan and Kurdistan were obtained from IWRMC. 
Data pre-processing of the in-situ observations is an important step, 
which aims to remove unwanted variation such as irregular jumps, 
missing data, outliers and the data span less than 6 years. We will thus 

focus on the analysis of selected 723 (out of 1161) well time series. The 
well data captures fluctuations in the groundwater level but cannot be 
compared directly with the GRACE-derived GWSA (Sun et al., 2010). 
Therefore, we use the groundwater level anomalies as 

GWLA=GWL − GWLbaseline (1)  

where GWLA is the groundwater level anomalies and GWLbaseline is a 
long-term mean of GWL (from 2004 to 2009). The groundwater levels 
anomalies were then converted to the groundwater storage anomalies as 
(Strassberg et al., 2007; Sun et al., 2010). 

GWSA=GWLA× SY (2)  

where GWSA is the groundwater storage anomalies (GWSA) and SY is 
the average specific yield. To compute the in-situ GWSA, the average 
specific yield was set to be Sy = 0.15 over the entire Urmia catchment 
(JICA, 2019), which is regarded as a source of uncertainty (Henry et al., 
2011). 

3. Methods 

3.1. Groundwater storage anomaly 

The equivalent water height (EWH) fields, obtained from GRACE, 
represents the total hydrological mass change in a region. This is also 
referred to as total water storage anomaly (TWSA) that includes all 
components of water along the vertical profile, such as soil moisture, 
surface water, groundwater, snow and canopy (Castellazzi et al., 2016a, 
b; Chen et al., 2010; Tian et al., 2017). The GRACE data can be used to 
monitor changes in the terrestrial water storage compartments that are 
usually missing in most LSMs, such as GWS (Anyah et al., 2018; Felfelani 
et al., 2017; Feng et al., 2013; Seyoum and Milewski, 2016; Wang et al., 
2011; Yi et al., 2017; Zhong et al., 2018). The GWSA can be expressed as 
(Khorrami and Gunduz, 2021; Zhong et al., 2018): 

GWSA= TWSA − (SMSA+ SWEA+QsA+CWSA) (3)  

where SMSA, SWEA, QsA, and CWSA represent soil moisture storage 

Fig. 5. Steps used in random forest regression algorithm based on the Bagging method.  
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anomaly (SMSA), snow water equivalent anomaly (SWEA), surface 
runoff anomaly (QsA) and canopy water storage anomaly (CWSA), 
respectively. These variables can be acquired directly from LSMs. To 
investigate the total catchment area, a normalized difference water 
index (NDWI) was utilized to remove the Urmia lake (Fig. 4). The NDWI 
is a remote sensing based indicator, a sensitive index to monitor and 
detect changes in water content of leaves and water bodies (Gao, 1996). 
Previous works revealed that TWS is associated with SMS (most 
dependent) and CWS (least dependent) in arid and semi-arid lands 
around the world (Khorrami and Gunduz, 2021; Yin et al., 2020). The 
anomalies of SMS, SWE and Qs at time t (XA) is determined as 

XA(t)=X(t) − X04− 09 (4)  

where X, for notation convenience, represents either SMS, SWE or Qs 
and X04− 09 represents the average X from 2004 to 2009. 

3.2. Machine learning techniques 

Before applying machine learning algorithms, it is required to specify 
independent (X) and dependent (y) variables. We consider an input 
matrix X that includes k features (year, month, geographical location, 
ET, NDVI, LST, runoff, soil moisture, SWE and precipitation) and an 
output vector y that includes m GWSA observations. They are of the form 

X =

⎡

⎢
⎣

x11 x12 … x1m

x21 x22

⋮

xk1 xk2

⋯ x2m

⋮

… xkm

⎤

⎥
⎦, y =

⎡

⎢
⎣

y1

y2

⋮
ym

⎤

⎥
⎦ (5) 

The dataset was randomly divided into training (70%) and testing 
(30%) parts. Three machine learning methods, including random forest 
(RF), support vector regression (SVR) and multi-layer perceptron (MLP) 
were used to predict the GWSA using the above-mentioned input 

Fig. 6. Pearson correlation map for feature selection. Green and red colors 
indicate positive and negative correlations, respectively. 

Fig. 7. Flow chart of the downscaling algorithm used in the study.  
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variables. The details of each of the above methods go as follows. 

3.2.1. Random forest (RF) regression 
The RF regression is a supervised ensemble-learning technique that 

was proposed by Breiman (2001). Ensemble learning is a technique that 
aims to improve the predictive performance from multiple machine 
learning models compared to the case of a single model. RF generates 
hundreds or even thousands of decision trees, which act as regression 
functions on their own, and the final RF output is the average of outputs 
from all decision trees (Fig. 5). The user determines the number of trees 
and predictive variables. A decision tree is a nonparametric statistical 
model represented as a set of leaf nodes and decision nodes. We used 
1000 trees in RF and the mean squared error (MSE) criterion in its de-
cision tree. 

3.2.2. Support vector regression (SVR) 
SVR is based on the support vector machine (SVM) whose purpose is 

to model and predict the complex relationship between the input and 
output variables through mapping the data into a high-dimensional 
feature space (Shi et al., 2021). A regression model with an input ma-
trix X and its target vector y can be expressed as follows: 

y=wTφ(X) + b (6)  

where φ, w and b represents the feature map, the weight vector and the 
bias, respectively. In addition, selection of the kernel function has a 
significant impact on the final model performance. The commonly used 
kernel function is the Gaussian radial basis function (GRBF), see (Shi 
et al., 2021) for further details. 

3.2.3. Multi-layer perceptron (MLP) 
Artificial neural network (ANN) models, compared to the mathe-

matical models, can learn the complex relationship between dependent 
and independent variables, or when there is no a-priori knowledge about 
the model structure (Hill et al., 1994; Mittal and Zhang, 2000; Sabzehee 
et al., 2018). MLP is a type of fully connected class of feedforward ANN 
(Hui et al., 2020), consisting of an input layer, an output layer and at 
least one hidden layer. The neurons in each hidden layer are called 
hidden neurons. MLP neural networks using a back propagation algo-
rithm are used to model nonlinear, multivariate, nonparametric and 
complex phenomena due to their ability to approximate non-linear 
functions (Hill et al., 1994; Mittal and Zhang, 2000; Rumelhart et al., 
1986; Sabzehee et al., 2018). A trial-and-error approach is usually 
applied to determine which architecture better supports the problem at 
hand (Simpson, 1990). For many applications, one hidden layer is 
enough, while for more complicated applications the analysis can usu-
ally be performed using two hidden layers (Ezugwu et al., 2005; Feng 
et al., 2006; Tsai and Wang, 2001). The output vector is determined as: 

y= f (WX+ b) (7)  

where W, b and f are respectively the weights of the input data X, the bias 
components and a given activation function. 

3.2.4. Downscaling model design 
There are many potential benefits of feature selection such as 

improving the prediction performance, understandability, scalability 
and generalization capability of the classifier (Ang et al., 2016). 

Feature selection method detects linear dependencies between the 
input variables and target. The significantly contributed variables are 
the ones that correlate well with the variations in the GRACE TWS. A 
weak correlation between TWS and precipitation can likely be due to a 
time lag in aquifer response to precipitation (Seyoum and Milewski, 
2017). An increase in soil moisture will increase its GRACE TWS values, 
whereas an increase in LST will probably decrease its TWS values 
(Sahour et al., 2020). The LST is the only variable that does not have a 
significant correlation with TWS values (R = − 0.08). In a decreasing 
order, soil moisture, ET, runoff, SWE, precipitation and NDVI are 
strongly correlated with GRACE TWS as shown in Fig. 6. 

After feature selection, the downscaling is the next step. The flow-
chart used in this study is illustrated in Fig. 7, which includes the 
following three main steps.  

i) Data preparation. The GWSA data were extracted as the difference 
between TWSA from GRACE and other vertical water storage 
components from FLDAS. The time span is from January 2003 to 
December 2016. Input variables such as NDVI, LST and ET are 
resampled to 0.25◦ and 0.1◦ resolutions, by pixel averaging.  

ii) Model selection. The RF, SVR and MLP were used to estimate 
relation between GWSA, soil moisture, snow water equivalent, 
runoff, NDVI, LST, ET and precipitation variables at a spatial 
resolution of 0.25◦. To train the network, the residual errors 

Fig. 8. a) Monthly time series of GWSA-W (black), annual signals (cyan), and 
semi-annual (red) along with trend (blue) estimated by LS-HE over Urmia 
catchment for the period of 2003–2016. b) Monthly time series of GWSA 
(black), annual signals (green), and semi-annual (red) along with trend (blue) 
estimated by LS-HE over Urmia catchment for the period of 2003–2016. c) 
Phasor diagrams of annual GWSA-W (cyan vector) and GWSA (green vector). 
The reference epoch is January 2003 while the reference vector is GWSA-W. 
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(difference between the output predicted values and observed 
values) are minimized at a spatial resolution of 0.25◦. The model 
that provides the highest correlation coefficient with the original 
GWSA is then selected as the best model. We found RF was the 
best method to downscale the GWSA from 0.25◦ to 0.1◦. 

iii) Downscaling. The selected model is then applied to the indepen-
dent variables at a higher resolution of 0.1◦ to predict GWSA. This 
will then result in the downscaled GWSA with a spatial resolution 
of 0.1◦, which is the basis for further analysis and comparison in 
the subsequent sections. The results are also validated with the in- 
situ water level (wells) data. 

3.3. Performance measures and statistical tests 

3.3.1. Model performance measures 
To select the best model, the performance of each of the three ma-

chine learning models are investigated by comparing the predicted 
values (yip,i = 1,…,n) with the observed values (yio,i = 1,…,n) on a test 
set using Pearson’s correlation coefficient (R), Nash-Sutcliffe efficiency 
(NSE) (Nash and Sutcliffe, 1970), root mean squared error (RMSE) ac-
cording to the following equations: 

R=

∑n

i=1
(yio − yo)

(
yip − yp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yio − yo)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(
yip − yp

)2
√ (8) 

and 

NSE= 1 −

∑n
i=1

(
yio − yip

)2

∑n

i=1
(yio − yo)

2
(9) 

and 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
yio − yip

)2

n

√
√
√
√
√

(10)  

where n is the number of testing data and yo and yp represent the average 
and predicted values of observations, respectively. Finally, the best 
model involves the highest R and NSE and the lowest values of RMSE, all 
indicating a better fit. 

3.3.2. Least squares harmonic estimation 
The least squares harmonic estimation (LS-HE) is applied to monthly 

mean of GWSA, and GWSA-W time series to simultaneously extract 
multiple parameters such as linear trend, annual and semi-annual signal 
using the following equation (Amiri-Simkooei, 2013; Amiri-Simkooei 
et al., 2014): 

y(ti)= y0 + vti +
∑2

k=1
ak sin(ωkti)+ bk cos(ωkti)+ ε(ti) (11)  

where y0 is the intercept, v is a constant velocity, ti is the time at the 
epoch i, ak and bk are the coefficients of periodic terms, ωk (k = 1, 2) are 
the given annual and semi-annual frequencies, and ϵ(t) is the observa-
tion noise. The least squares method is used to estimate the unknown 
parameters as below: 

x= [y0 v a1 b1 a2 b2 ]
T (12) 

The annual amplitude (Am) and phase (φ) for the time series can be 
expressed as: 

Am =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
, φ = tan− 1b

a
(13) 

The in-situ wells observations are considered as reference, for com-
parison with other time series. 

3.3.3. Mann-Kendall test 
The non-parametric Mann-Kendall test is widely used to quantify the 

significance of trends in hydro-environmental (Bian et al., 2020; Ma 
et al., 2019; Nourani et al., 2018) and hydro-meteorology time series 
(Douglas et al., 2000; Gocic and Trajkovic, 2013; Modarres and Da Silva, 
2007; Partal and Kahya, 2006; Pickson et al., 2020; Tabari and Marofi, 
2011; Tabari et al., 2011; Yue and Hashino, 2003). The test is based on 
the assumption that the samples are independent (Nourani et al., 2015). 
In this test, the null (H0) and alternative hypotheses (H1) are equal to the 
non-existence and existence of a trend in the time series of the 

Fig. 9. Performance of the three machine learning algorithms on test data including Random Forest model (green color), multi-layer perceptron (cyan color), and 
support vector regression (blue color). 

Table 2 
Statistics R, NSE, and RMSE obtained to test the performance of three machine 
learning methods.   

MLP SVR RF 

R 0.96 0.90 0.98 
NSE 0.93 0.81 0.96 
RMSE 26.51 43.77 18.36  
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Fig. 10. a) Spatial variations of GWSA-D (0.1◦) and b) GWSA (0.25◦) in August 2007 over the Urmia catchment. The black triangles denote the selected locations to 
plot the time series. 1–8) Time series of long-term variability in GWSA-D (blue) and GWSA-W (black). Correlation coefficients (R) between time series were calculated 
with time lags ranging from − 3 to 3 months. 
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observational data, respectively. We should calculate the standard 
normal test statistic ZS to investigate the above-mentioned hypothesis 
(Gocic and Trajkovic, 2013). When |ZS| > Z1− α/2 , the null hypothesis is 
rejected and a significant trend exists in the time series. Z1− α/2 is the 
critical value obtained from the standard normal distribution at a given 
significant level (α = 0.05). The value of Z0.975 is 1.96. The null hy-
pothesis of having no significant trend is rejected if the absolute value of 
Z is larger than 1.96. 

4. Results and discussions 

4.1. Comparison of GWSA and GWSA-W 

Voss et al. expressed that hydrological models do not parameterize 
surface and groundwater reservoir storage and extraction, irrigation, 
and other human uses of water (Voss et al., 2013). Consequently, the 
models cannot capture the decreasing water storage trend observed by 
GRACE (Voss et al., 2013). 

We first investigate the linear trend and the annual and semi-annual 
variations of GWSA and GWSA-W using LS-HE to have a better under-
standing of the hydrological status in the Urmia catchment (Fig. 8). Both 
time series indicate downward trends for about 14 years, although the 
amplitudes of GWSA-W are larger than those of GWSA. Our study also 
uses phasor diagrams of annual variations of GWSA and GWSA-W. The 
length and direction of vector on a phasor diagram demonstrates the 
amplitude and the phase, respectively. The reference epoch and refer-
ence vector are January 2003 and GWSA-W, respectively. The corre-
sponding time difference ΔT is defined as ΔT = ΔΦ T

2π, where T = 12 
months (annual cycle). As a result, the annual phase difference is equal 
to 46.9◦ indicating that the time series of GWSA has roughly a delay of 
one and a half month with respect to the wells (Fig. 8, lower panel). This 
phase difference reveals uncertainties that can include uncertainties 
related to the FLDAS model, specific yield, etc. 

4.2. Downscaling training network 

The model performance mainly depends on the selection of input 
variables that correlate with GRACE data strongly. A comparison be-
tween SVR, MLP, and RF model-predicted GWSA and GRACE-derived 
GWSA is provided in Fig. 9. In the training process, the learning algo-
rithm minimizes the error between the target and output (predicted by 
model) according to the error back-propagation algorithm. The RF has 
the best performance because it provides the highest R (0.98) and NSE 
(0.96) and the lowest RMSE (18.36 mm) compared with the other two 
methods (see Table 2). The SVR model has the lowest performance, 
having the lowest R (0.9) and NSE (0.81) and the highest RMSE (43.77 
mm). RF is therefore selected as the best model for further analysis in the 
subsequent sections. The same conclusion can be made from the results 
presented in Fig. 9. 

4.3. Spatio-temporal and seasonality of downscaled GWSA 

This subsection discusses the quality of the downscaled GWSA 
(GWSA-D). Fig. 10 presents the spatial and temporal variations of GWSA 
in August 2007. After downscaling, the spatial variations in GWSA can 
be identified more effectively at the high spatial resolution of 0.1◦. The 
variability in the trends of GWSA and GWSA-D is almost the same, 
showing a declining pattern in the study area. The trends of GWSA at 
grid cells, during 2003–2016, almost decreased all over the area. The 
variability in the trends of GRACE-derived GWSA-D and in-situ well 
observations are almost the same, showing a declining pattern in the 
study area. 

The yearly spatial GWSA-D maps were generated at a high resolution 
from 2003 to 2016 within the Urmia catchment (Fig. 11). A significant 
groundwater depletion can be observed in the Urmia catchment in 2015. 
The variations of GWSA are nearly uniform throughout the study area 
during 2003–2006. From 2007 to 2016, the GWSA was continuing to 
fall, which is due to the climatic factors (drought period) and anthro-
pogenic activities. The mean values of GWSA represent changes in 
groundwater abstraction and recharge impacted by climatic variations 
and anthropogenic activities. These spatial variations in GWSA can be 
utilized to find the regions with excessive groundwater depletion for 
developing groundwater management strategies. With the establish-
ment of the Lake Urmia Rehabilitation Headquarters in 2015, several 

Fig. 11. Spatial distribution of GWSA-D [m] on a yearly basis in 
Urmia catchment. 

Fig. 12. a) Variations in averaged GWSA-D in the Urmia catchment, b) annu-
ally averaged GWSA-D from 2003 to 2016. 

F. Sabzehee et al.                                                                                                                                                                                                                               



Journal of Environmental Management 330 (2023) 117180

11

activities on the surface water consumption, morphological manage-
ment of rivers, changes in the irrigation system and water transfer were 
conducted to protect the Urmia lake (Taghilou and Aftab, 2022). 

Groundwater sources, including deep wells, partial deep wells, 
aqueduct and fountains are used for developing irrigated lands in the 
basin. Groundwater resources play an important role for irrigating 
agricultural lands in the basin. The annual discharge water from 
groundwater resources has increased during the last decades. Our results 
show that GWSA-D is being depleted at a rate of − 12.5 mm/yr at a 
regional scale during 2003–2016. Forootan et al. (2014) extracted the 
trend of the groundwater storage changes from GRACE observations, 
altimetry data and outputs of GLDAS in the Urmia catchment as 
− 11.2 mm/yr between the years of 2005–2011 (Forootan et al., 2014). 

A comprehensive perspective can help understanding the general 
behavior of the basin. Overall, a negative trend in GWSA-D is detected 
for the entire catchment during 2003–2016 (Fig. 12a). Clear seasonality 
signal (annual signal) can also be observed in this figure. The annually 
averaged GWSA-D removes the seasonality and shows the decreasing 
trend (Fig. 12b). Moreover, there is a significant negative trend in 
GWSA-D particularly from 2005 until 2015. It is also noted that the 

cropland and cultivated areas significantly increased during this period, 
which contributed to drying up of the lake by increasing the water de-
mand and withdrawal from the nearby aquifers for farmland irrigation 
(Feizizadeh et al., 2022). 

During the drought period, 2007–2008, the agriculture put further 
pressure on the groundwater resources by over-extracting water from 
wells (Saemian et al., 2020). Richey et al. expressed that the over-
exploitation is the reasons for decreasing groundwater trends in many 
regions of the world (Richey et al., 2015). The decline in GWSA is sig-
nificant in West Azerbaijan and Kurdistan provinces, which is mainly 
linked to the unsustainable exploitation of groundwater resources via 
springs, qanats and deep and semi-deep wells causing imbalance in the 
distribution of water resources in these provinces (see Figs. 2 and 3). 

4.4. Validation of downscaled groundwater storage 

To analyze the various components of the GWSA signal, we decom-
pose this signal into long-term component, seasonal (annual and semi- 
annual) cycles and out-of-season variability. The long-term component 
is further separated into a linear trend and inter-annual variations 

Fig. 13. a) Time series of mean GWSA-W (blue color) and combined seasonal and linear trend (orange color), b) time series of inter-annual of GWSA-W (green color), 
c) time series of mean GWSA-D (blue color) and combined seasonal and linear trend (orange color) and d) time series of inter-annual of GWSA-D (green color). 

Fig. 14. Spatial distribution of correlation coefficients between the time series of GWSA-W and GWSA-D inter-annuals for each land grid cell over the 
Urmia catchment. 
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(Humphrey et al., 2016; Scanlon et al., 2019). 

GWSAtotal =GWSAlong− term + GWSAseasonal + GWSAsub− seasonal (14) 

and 

GWSAlong− term =GWSAlinear + GWSAinter− annual (15) 

The linear trend and the seasonal cycle were extracted from the full 
time series using the LS-HE method. After removing the linear trend and 
the seasonal cycles from the original signal, the sum of inter-annual and 
sub-seasonal variations remains. To separate out the two components, 
we use a Butterworth filter with 12 months filter length (Jensen et al., 
2020). The decomposition is performed for the mean value over the 
entire area, which includes both GWSA-W and GWSA-D (Fig. 13). This 
figure shows a comparison between GWSA-W and GWSA-D on a sea-
sonal and inter-annual scale in the Urmia catchment. The mean values of 
both GWSA-W and GWSA-D exhibit a decreasing trend. There is also a 
significant correlation (R = 0.71) between their inter-annual 
components. 

The decomposition is also performed for each of the grid cells 
(Fig. 14). We selected only the grid cells that have the well observations, 

for the sake of comparison. To achieve a comprehensive overview of the 
inter-annual components in the catchment, we calculate the correlation 
coefficients (R) between the GWSA-W and GWSA-D inter-annual signals 
for each grid cell. Results indicate a general consistency in most of the 
grid cells, showing correlations above 50% for a majority of the grid cells 
(Fig. 14). 

Fig. 15 shows a comparison between the original time series of 
GWSA-W and GWSA-D in the Urmia catchment. The lagged correlations 
were computed with the lags ranging from zero to 3 months among the 
135 grid cells of GWSA-D and GWSA-W (Fig. 15). This figure shows high 
correlations (>0.8) between GWSA-D and GWSA-W at most pixels, 
which indicates the reliability of the results. A few pixels having lower 
correlations can be attributed to the anthropogenic activities such as the 
dam constructions, pumping stations and excessive agricultural extrac-
tion. For example, the red pixel in Fig. 15, located at the geographical 
location (Latitude ~ 38◦, Longitude ~ 47.18◦), has a correlation of R =

− 0.3509. This pixel indeed consists of the Ardalan dam, which explains 
the negative correlation. 

Fig. 15. Correlation coefficients between GWSA-D and GWSA-W time series in a spatial resolution of 0.1◦ of Urmia catchment (only areas covered by wells), 
calculated based on the time lags of ±3 months. 

Fig. 16. Time series of a) precipitation, b) evapotranspiration (MODIS), and c) NDVI over the Urmia catchment. Non-parametric Mann-Kendall test shows no 
significant trend. 
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4.5. Trend analysis using Mann-Kendall test 

To make effective decisions on the water resources management over 
the catchment, it is vital to understand the dominant drivers of GWSA. 
Groundwater storage anomalies are mainly associated with the changes 
in climate and anthropogenic activities (Chen et al., 2016; Vishwakarma 
et al., 2021a). The results of the non-parametric tests (Mann-Kendall) 
were also applied to detect significant trends in the monthly precipita-
tion, evapotranspiration and NDVI time series over the Urmia catchment 
from 2003 to 2016 (Fig. 16). The precipitation time series did not show a 
statistically significant trend (ZS = − 0.078) in the original signal. 
ZS-values between − 1.96 and 1.96 indicate no significant trend in the 
time series in the 95% confidence level. This indicates that the precip-
itation was almost moderate from 2003 to 2016. Therefore, precipita-
tion could not be the main driver for the groundwater level decline, 
although it could be an intensifier factor for this problem. Our results 
also show that there were no significant trends in the variations of 
average evapotranspiration and NDVI in the study area. This indicates 
that weather variables such as precipitation and evapotranspiration 
were almost invariant in the entire Urmia catchment. It is therefore 
concluded that the irrigation of farming, development of agriculture, 
dam constructions (AghaKouchak et al., 2015; Alizade Govarchin Ghale 
et al., 2018; Azarnivand and Banihabib, 2017; Banihabib et al., 2015; 
Farajzadeh et al., 2014; Khazaei et al., 2019) and groundwater pumping 
are the main drivers associated with drying the lake (Hosseini-Moghari 
et al., 2020) and hence reducing its groundwater. 

The spatial distribution of NDVI in the study area showed an 
increasing trend (ZS > 1.96), a decreasing trend (ZS < − 1.96) and no 
significant trend (|ZS| ≤ 1.96) (Fig. 17). The magenta and cyan colors in 
this figure show the significant trends, either decreasing or increasing. 
The decreasing trends (magenta color) are associated with the lake area, 
which experiences drying, and the increasing trends (cyan color) are 
observed at most locations in the basin because the irrigated lands were 

expanded and spread all over the Urmia catchment during 2003–2016. 
The significant upward and downward trends of GWSA-D, GWSA-W 

and NDVI anomalies were extracted from the Mann-Kendall test 
(Fig. 18), which are presented at the spatial resolutions of 0.1◦. The blue, 
red and violet colors indicate increasing, decreasing and no trends. The 
GWSA-D and GWSA-W have decreasing trends in most pixels. In 
contrast, the NDVI anomaly trends are mainly increasing or experi-
encing no trends during 2003–2016. These results are in agreement with 
the previous statements, and the results presented in Fig. 18. The find-
ings are also in agreement with the previous studies and reports, which 
indicated that the agricultural activities have been increasing in the 
Urmia catchment in the last two decades (Foroumandi et al., 2021, 
2022). Therefore, the impact of precipitation and evapotranspiration on 

Fig. 17. The spatial distribution of NDVI over the Urmia catchment. ZS-values 
between − 1.96 and 1.96 indicate no significant trend in the time series at the 
95% confidence level. 

Fig. 18. Trends of a) GWSA-D, b) NDVI anomaly and (c) GWSA-W were 
extracted using the Mann-Kendall test in a spatial resolution of 0.1◦ of Urmia 
catchment between 2003 and 2016. 
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the GWSA was found to be rather weak, indicating that the anthropo-
genic derivers had the most significant impact on the GWSA changes. 
This concludes that human intervention has dried up the lake to criti-
cally low levels. 

5. Conclusions 

The need for detailed knowledge of groundwater changes is 
becoming more and more urgent. The GRACE data could provide novel 
insights into groundwater storage changes but only at large-scale. The 
Urmia catchment, as a semi-arid, small, and complicated aquifer due to 
intertwined climatic and human signals, is therefore a challenging re-
gion of study to utilize GRACE. 

We applied machine-learning techniques to utilize GRACE (CSR 
RL06M v01) and seven identified hydro-climatic variables for predicting 
GWSA at high spatial resolution. Unavoidable systematic uncertainty in 
the network training using the machine-learning methods were 
considered while testing three ML methods. However, the resistance of 
RF against overfitting confirmed that its noise immunity capacity is 
superior to other machine learning models such as SVR and MLP. The 
input for an RF downscaling model can be multiple variables, which are 
independent of each other and promote the flexibility of the model. The 
results indicated that there are high correlations (>0.8) between GWSA- 
D and GWSA-W at most pixels, which confirms the reliability of the 
results. The correlation coefficients (R) between the inter-annual com-
ponents of GWSA-D and GWSA-W signals for each grid cells were found 
to be above 50% for most grid cells. 

After achieving a finer resolution by downscaling, we investigated 
the main drivers of the GWSA fluctuations. We investigated NDVI and 
climate variables such as precipitation and evapotranspiration. We 
found that precipitation did not drive the water level changes. The 
increasing trends of NDVI were observed at most locations in the basin 
because the irrigated lands were spread all over the Urmia catchment 
during 2003–2016. Therefore, we concluded that groundwater exploi-
tation was the major driver of Urmia lake depletion. Different human 
activities influence the groundwater depletion over the Urmia catch-
ment such as irrigation of farming, development of agriculture, dam 
construction and groundwater pumping. According to the report of 
IWRMC, a significant portion (~84%) of the groundwater withdrawal 
was used for the agricultural irrigation. The agriculture system in Iran is 
essentially based on the traditional irrigation systems of flood/surface 
irrigation, which require large amounts of water (Feizizadeh et al., 
2022), and hence can be the major cause for drying-up of the Urmia lake. 
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