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Propositions

1.

Two equally dense systems may have different total small-angle scat-
tering cross sections depending on the mutual arrangement of particles.

. The counterintuitive rule of thumb for anisotropic objects with a long

and a short axis:
long axis parallel to the beam: more scattering
long axis perpendicular to the beam: less scattering.

. Correlation functions can be defined per (sub)system, per particle, per

unit volume, with dimensionless variables, normalized and combina-
tions of those, which usually creates a mess in notations. Therefore
it is best to leave those definitions up to the reader and stress the
understanding of ideas.

. Real space compared to reciprocal space techniques can not have nei-

ther advantages nor disadvantages. There are only bad and good ap-
plications.

. SESANS is really a correlometer, rather than a diffractometer. !

. The statement “SESANS measures interparticle interference more ac-
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curately than the form factor of an individual particle”" is not true.

. Bilateral integration is not necessarily equal to two unilateral ones. It

is untrue in odd cases. The same applies to social integration.

. Wave interference does not necessarily produce a constructive effect.

The same applies to interference of scientists.

. Application of SESANS to lunar rocks and other fantastic objects may

eventually attract a lot of money and the interest of laymen.

These propositions are considered opposable and defendable and as such have
been approved by the supervisor, Prof. Dr. .M. de Schepper.

1D.W. Schaefer & M.M. Agamalian, Curr.Opin.Sol.State and Mat.Sci. 8, (2004), 39-47
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Stellingen

1.

Deze

Twee systemen met gelijke dichtheid kunnen verschillende totale kleine
hoek verstrooiingsdoorsnedes hebben, afhankelijke van de onderlinge
rangschikking van de deeltjes.

De vuistregel voor anisotrope objecten met een korte en lange as gaat
tegen het gevoel in:

lange as parallel aan de bundel: meer verstrooiing

lange as loodrecht op de bundel: minder verstrooiing.

Correlatiefuncties kunnen worden gedefinieérd per (sub)systeem, per
deeltje, per volume, met dimensieloze variabelen, genormaliseerd en in
combinaties hiervan, wat gewoonlijk een chaos in notaties genereert.
Daarom is het beter deze definities aan de lezer over te laten en het
begrip van de ideeén erachter te benadrukken.

. Reeéle ruimte- vergeleken met de reciproke ruimtetechnieken hebben

geen voordelen of nadelen. Er zijn slechts goede en slechte toepassingen.

. SESANS is eerder een correlometer, dan een diffractometer.!

. De bewering: "SESANS meet veeleer de interferentie tussen deeltjes

dan de vormfactor van een afzonderlijk deeltje”! is niet waar.

. Tweezijdige integratie is niet noodzakelijkerwijs gelijk aan twee eenzij-

dige integraties. Hetzelfde geldt voor sociale integratie.

. Interferentie van golven is niet noodzakelijkerwijs constructief. Het-

zelfde geldt voor interferentie tussen wetenschappers.

. Het toepassen van SESANS op maanstenen en dergelijke fantastische

monsters kan op de lange duur de belangstelling van de leken opwekken
en daarmee veel geld aantrekken.

stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zo-

danig goedgekeurd door de promotor, Prof. Dr. .M. de Schepper.

| 1D.W. Schaefer & M.M. Agamalian, Curr. Op. Sol.State and Mat.Sci. 8, (2004),

39-47.
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Statement of Purpose

A new technique has its value as long as it is known what is measures, not
only how it measures. Paradoxically the actual development [24, 26] and ap-
plication of SESANS [2] started before its measured quantities were fully inter-
preted. This thesis provides a manual on the methodology and interpretation
of the SESANS measurements. Chapter “Theory” could have been named
also “What SESANS actually measures”. Chapter “Experiment” could have
been named “What SESANS is actually able to measure”. The subject of this
thesis both theoretical and experimental is focused on isotropic particles (solid
spheres, shells and gaussian coils) and structures formed by spherical particles.

While developing my PhD project I kept in mind the following reasons to
pursue the case of spherical particles:

o A biggest class of colloidal systems is formed by spherical particles. Ster-
ically stabilized (hard sphere) and charge stabilized colloids are most
notorious of them. Plenty of well-characterized ones are avaliable [23].
Those were naturally the first candidates to be probed with the new
technique.

o Tt appeared to be possible (even though not easy) to handle analytically
functions involved in a description of spherical particles (see chapters
3,5 and 9). They can be found in the numerous appendices in this the-
sis. These allow people who are not experts in numerical recipies and
programming to use these functions with any fitting software.

o Spherical shapes (for particles themselves and for potentials) are good
approzimation in many cases where they are not exactly spherical (chap-
ter 7). Tt is a matter of future development of SESANS interpretation
methodology to find more advanced solutions.

e Many structures can very well be approximated by a set of spheres with
special arrangement. This is known as the sphere subparticles method[6].



This approach is ready to be developed since all necessary correlation
functions are presented in this thesis.

Additionally to the above reasons for applications of SESANS to colloids
composed of spherical particles, there are also reasons why colloids in general
are one of the best fit applications for SESANS:

o Length scale. Ranges from 10nm to 15pm, which is essentially the same
as the size range where the term colloid is defined.

o Multiple scattering. Colloids, especially concentrated ones, exhibit mul-
tiple scattering, which is extremely easy to handle in SESANS’ real space
domain (sec.1.3) compared to the reciprocal space of conventional scat-
tering techniques.

o Real space. SESANS benefits from real space not only in terms of easy-
to-handle-multiple-scattering. The interpretation in real space is much
more straightforward, especially when the local structure is concerned
(see part II).



Part 1

Theory






Fourier Transform 5

Fourier Transform

Major parts of chapters 1 and 2 rely heavily on Fourier transform, so we precede
those with a short summary of Fourier transform properties.
The normalization factors in Fourier transforms are based on the following

integral:
+oo
/ e*edy = 276 (k) (1)
-2
If we define a Fourier images of a one dimensional function in a following
way:
s = [ e 2)
1ot
) = — T f(k)dk
fa) =gz [ e )

By performing forth and back transforms of a function it is easy to show
that this definition is normalized:

+oo
f) = [ e fayaa

o0

1 +co " +o0 . ,
= — e e~ f(K"dk'dx
o [ [ e )
]. 400 +00 N g
=5 F(Kdk' / elk=k)T gy
T J - —oC
1 +00
=5 F(Edk2mo(k — k)
us -0

= f(k)

In case of n-dimensional function it is obvious that the normalization is
given by (each dimension gives a factor 27w (see (1)) upon forth and back
transform):

ﬁm=[mwwmmr (4)

o)




1 +o0 iqr
f&%:@B;[me f(@d™q (5)

where q and r are n-dimensional vectors.
If n=2and q = (gy,¢:) and r = (y, ) then

f@=[ e 6)
0=15 [ e )

or in case of isotropic functions in polar coordinates

+o0
flg)=2n / () f(ryrdr (8)
1 +oo .
10 =5 [t f@ada ©)
where
2
wﬂ=%LeWWW=Mm (10)

where Jo(gr) is a Bessel function.
Thus the transforms will take the following form

s=2n [ dtan) i )
10 = [ e @ada (12)

better known as Hankel transform. It is normalized as well.



Chapter 1

Scattering in real space

SESANS being a real space scattering technique relies on the real space de-
scription of the scattering media in terms of correlation function. Conventional
scattering techniques operate in the reciprocal space, where the scattering cross
section is measured. This chapter provides the connection between these two
spaces in the most general case.

1.1 Reciprocal versus real space

Let V is the volume of the sample illuminated by the neutron beam. The
sample is described by the spatial distribution of the scattering length density
p(r). The scattering takes place on the scattering length density difference or

contrast
Ap(r) = p(r) — (p}

The amplitude of elastic neutron scattering F'(q) of such a sample is:

F(q) = /V dre'™ Ap(r) (1.1)

The differential scattering cross section of the sample is then expressed as:

d<

If we define the vector:

G AR K VIV ISR e

r=r -1’ (1.3)




8 Scattering in real space

we can rewrite (1.2) as:

ggdjgi) = /‘ dre’“i‘"/vdr’Ap(r + 1) Ap(r') (1.4)

The correlation function of a sample defined as [32]:

(r) = /‘ A Ap(E)Ap(r +1) (15)

s0 we can rewrite (1.4) as:

dz(q) ' ~iqr ..
—~a = /‘ dre " (r) (1.6)

1.2 Small-angle approximation in real space

Let z-axis be the direction of the neutron beam and S is the beam cross section.
In the small angle approximation we put the component of a scattering vector
along the beam ¢, = 0. Then a cumulative scattering probability of a sample
would be

dE(O, qy1 Qz) _ 1

==/ d Hayy+0:2)n (2 1 2)d: 1.
40 5/, ydze v(z,y, z)dx (1.7)

Here we define a small-angle correlation function

22 +oc
G2 =% [ wy s (1.8

where A is a neutron wavelength. It is a projection of the conventional c.f.
along a neutron beam. Now (1.7) can be rewritten as

b)) 2 1 i
dX(gy, q:) _/ dydze’(qy“q‘z)G(y,Z) (1.9)
yz

Sdy X

This is the cumulative differential scattering probability at the angle (gy. g.).
The z-component is excluded from both sides, so we are dealing with two di-
mensional functions in the plane perpendicular to the beam. As can be im-
mediately inferred from (1.9), ) 54 G.(y, z) are Fourier images of each

Sd)
other in yz-plane. Both functions are dimensionless.
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1.3 Multiple scattering in real space

Following the approach taken '1n [27] we will distinguish cumulative ! EL and
true scattering probability 3 dQ ) which is actually observed for a Sample with

an arbitrary multiplicity of scattering.
It was shown that those two probabilities in a small-angle approximation
are connected in a following way:

dE* . giko e [ dz@]" (1.10)

SdQ

n=1
where [* dszjﬂ)] stands for n-fold convolution of d;:;g .

According to (1.9)

1 2 025(qy- g,
Gely,2) = k—g/ dg,dq.e” ilayy+a:z) é;ﬁ ) (1.11)
Q=

Let us define the quantity G*(y, z)

* 1 —1(Qy z dz* b &3
G*(y,2) = !?3/ dg,dq.e wvte: ’—S(f;;)i) (1.12)
qyq=

It was shown [27] that those quantities relate to each other as

G*(yz) _ ch(y,z)—Gc(0,0) _ e“Gc(O‘O) (113)
where G.(0,0) = Z is the total cumulative scattering probability, e~ Ge(00)

is the transmission and
G*(0,0) =1 — ¢ %00 (1.14)

is the total true scattering probability. In case of single scattering

G*(ya Z) = Gc(y, Z)

If we had a hypothetic real-space small-angle scattering device it would
have measured G*(y, z) instead of %&‘—).

Yin [27] referred to as apparent
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Chapter 2

SESANS

Partly based on

Timofei Krouglov, Ignatz M. de Schepper, Wim G. Bouwman and M. Theo
Rekveldt.

Real-space interpretation of spin-echo small-angle neutron scattering.

Journal of Applied Crystallography, (2003), 36, 117-124.

2.1 Concept and measured quantities

Here we give a brief overview of SESANS measured quantities and relate them
to the ones introduced in the previous sections. In SESANS neutrons un-
dergo Larmor precession in magnetic fields before and after scattering on a
sample[26]. The final precession phase is different for neutrons scattered by
different angles. As a result of this precession, the initially polarized neutron
beam becomes depolarized. In general case (including multiple scattering) the
polarization measured by SESANS is given by [25]:

P(z) = e0clz)=Ge(®) (2.1)

where the SESANS correlation function is:

1 +oo +00 dz
G =g [ dn [ a5 cos(anr) (22)

with q = (0, gy, ;). Apparently this expression is a particular case of the
generic small-angle correlation function given by (1.11) with y = 0. SESANS
is a particular implementation of real-space small-angle scattering technique
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measuring correlations only in one direction. Therefore the formalism from
the previous sections is applicable to SESANS with y = 0. Apparently

=
Ge(0) = Ge(0,0) = 5
gives the total cumulative scattering probability.
Now we relate P(z) defined by (2.1) to the true scattering probability
G*(y, z) defined by (1.12).
The quantity

(2.3)

Ploo)=e W =e3S=T

represents the remaining fraction of polarization (transmission) and lies within
the range 0 > T > 1 for any .
The depolarization

AP(z) = P(z) — P(oc) = G*(0, 2)

is the fraction of polarization that is lost due to scattering at a given z and is
equal to the true scattering probability G*(0, z) as defined by (1.13}.

AP(0) = G*(0,0) : 1—e GO (2.4)

is the total true scattering probability, which lies between 0 and 1 (compare
to (1.14)). The total cumulative scattering probability can take any value.
The next step is to relate G(z) to y(r). The simpliest way is to put y =0
in (1.8):
)\2 o0

Gelz) =% |

dzy(z, 0, 2) (2.5)
Otherwise it can be obtained by substituting (1.7) to (2.2) with subsequent
elimination of reciprocal components [15]. This expression is the key which
allows a direct real space interpretation of G.(z) in terms of conventional cor-
relation function.

Switching from z and z to r = vz? + 02 + 22 and z coordinates gives the
explicit analytical expression:

)\2 +o0 ,.y(,r),r
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If we use dimensionless real and reciprocal space variables the above two
equations cast into

G(z):[ ooda:fy(alc,O,z) (2.7)
G(z) =2 g2 (2.8)

N Ny
This equation is of Abel type and can be resolved with respect to v(r) (see
app.2.2.3):

11d [f*>  G(2)z
W=w ] Frae

For an isotropic case (2.2) becomes

+oo +00o
G.(z) = k2/ / dqz SdQ cos(qzz)

k2 TS’E(ST)/ cos(gz cos )dy
0 —
_ 2 X(q)
_k(?/,oo Jo(gz )qqud
_AP e Z(q)
=2 | Jo(g )qdq 00

where Jy(gz) is 0**-order Bessel function of the 1% kind. This transformation
is better known as Hankel transform. It is symmetric making G(z) and %ﬂl
mutual Hankel images. The same holds for AP(z) and %éq).

2.2 Appendices

2.2.1 Direct reciprocal space elimination

This appendix shows how reciprocal space can be directly eliminated from the
equation ( 2.2). Substituting (1.6) in_(2.2) we get:

" 1 +0o0 dqy +00 dq,z iar—g.2)
GC(Z)_gfvdr./—oo T/;m — ¢ y(r)
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First, we decouple cartesian coordinates in the exponent:

+o0 +o0

Integration over g, gives:

+oo
=12 [ i [ gt e

Integration over z gives:

192 +0o +o0 +00
Ge(z) SkZ/ d«“ﬁ/ dy/ dgye ’("m““”)'y(z y,2)

Now we can change z' back to z

12 +oo +00 +oo
Ge(2) SkZ/ / dy/ dgye™ =Ty (2, y, 2)

Integration over g, gives:

1 f2m\? [+ LEa
Gc(z)=§(%)/ do [ aye w50 0,,2)

Integration over y gives:

Ge(z) = dze™=%y(z,0, 2)

S
Then we put ¢, = 0:
)\2

G.(z) ==

+00
s/ dzvy(z,0, z)

This shows that the SESANS correlation function is a 2D projection of
correlation function.
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2.2.2 Alternative representation of G(z)

This section shows that G(z) being a 2D projection of ¥(r) can be alternatively
presented as a convolution of 2D projection of scattering density.

According to (2.7) the SESANS correlation function can be represented as
a 2D projection of the conventional correlation function:

G(2) = /+°° dzv(z, 0, 2) (2.10)
where
0) = [ destone-+v) (2.11)

where r = (x,y,2) and r' = (', ¢/, 2').
Substitution of ( 2.11) in ( 2.10) gives:

-+00 +00 +oo +0
G(z) = / da f da’ f dy' / 42 p(x')p(x’ + 1) (2.12)

Returning from r and r’ introduced by ( 1.3) back to r and r' we have:
" =r'+r (2.13)

Applying (2.13) to (2.12) we have:

+oo +co —+00 +o0
G(2) :/ dz" / d:v'/ . dy’/ d2'p(r") p(r"

After change of function arguments according to (1.3) we have:

+o0 +00 +00 +00
G(2) :/ dy’/ dz'/ dx'p(r')/ d2"p(r") (2.14)

Putting

+o0
puely.2) = / dzp(e,y, )

o

we can rewrite (2.14) as

400 —+00
Gt = [y / 42,5 (4 ) pyel, ") =

+oo +c0
/ dy' / dz'py (Y’ 2 ) py=(y + 1,2 + 2)
—00 —oc
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which is a convolution of 2D projections of p(r).
Equation 2.14 can also be represented as:

G(s) = / dspy(s)ps(s + S) (2.15)

Putting y = 0 we get

—+00 +oo
= / dy'/ Az py (Y, 2 ) py. (¥, 7' + 2) (2.16)
—o0 —00

This shows that G(z) can be equally presented either as a projection of cor-
relation function given by(2.7) or a convolution of 2D projections of scattering

denstties given by (2.15).

2.2.3 From G(z) back to v(r)

This section solves the integral equation 2.8 with respect to v(r).

G ‘2/ \/——z_

The first step is to multiply both sides of the above equation above by

Z

where s is an auxiliary variable, and integrate the product over z from s to D:

K m‘Q/dZ\/‘TS‘Q‘/ e

Swapping integration order we have:

/D dz% = Q/D dry(r)rdr /T dz :
s V22— 52 s s VrE— 22/t =2

x
2

D
dr(r)rdr
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Differentiation of both sides by % gives

D .
ii dz G(Z),c,

() =
V() msds J, 22— g2

Now we have formula that allows us to recalculate the SESANS correlation
function into the conventional correlation function.
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Chapter 3

Noninteracting particles

Based on

Timofei Krouglov, Ignatz M. de Schepper, Wim G. Bouwman and M. Theo
Rekveldt.

Real-space interpretation of spin-echo small-angle neutron scattering.

Journal of Applied Crystallography, (2003), 36, 117-124.

3.1 Integral parameters

3.1.1 Scattering length

Suppose we have a system of N paricles and each particle has a scattering

b= /1 drp(r)

Equation (1.4) at ¢ = 0 gives:
dx(q)
dQ

length

= / dry(r) = Nv? (3.1)
q=0 v

Now we want to express total scattering length in terms of G(z). The right
hand side of (2.7) is integration along x axis. Our goal is to complement this
integration to get [, d®ry(R). Let us consider this projection as an integration
along the main axis, z, in cylindrical coordinate system (see fig.3.1.1).

In order to get the integral over a 3D volume we have to compliment the
integration along X axis by the integration over the cylindrical layer 27mzdz in
both sides of (2.7)
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G(z) ¥(r)

Figure 3.1: Projection of 3D function ¥(r) along z-axis onto yz plane resulting
in 2D function G(y)

o} +oc oc
271'/ G(2)zdz = / dx/ 2rxdry(Vz? + 0% + 2?) (3.2)
0 -J—o0 0

or
27r/ G(z)zdz = N/ y(r)dr = Nb? (3.3)
0 v

3.1.2 (Guinier radius

The Guinier radius can be expressed via the distance distribution function:

_ f0°° pl(r)ridr

By = 2f0°° p(r)dr

(3.4)

where:

p(r) = ~(r)r’

First we recalculate denominator in terms of G(z). Using

/‘/'y(r)d:‘r = /v y(r)drridr = 4n /Vp(r)dr
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equation ( 3.2) can be rewritten as:

/000 G(2)zdz = 2/006 p(r)dr

which is a normalization factor for distance distribution function.
We also need to recalculate the numerator of (3.4) in terms of G(z) (see
app.3.1.4):

/ p(r)rzdr=§/ G(2)*dZ
0 4 Jo

and after normalization we have the Guinier radius expressed directly
through G(z):

3 [y G2)Pdz )
4 fo (2)z

Ry =

3.1.3 Total cumulative scattering cross section

G.(0) is a total cumulative scattering probability of a sample. Since parti-
cle are noninteraction for the whole sample it will be a sum of independent
contibutions of N particles:

/\2
G.(0) = gNG(O) (3.5)
It follows from (2.8) that:
G(0) = 2 / dry(r) (3.6)
0
and
)\2 [=5]
G.(0) = 2o N / dry(r) (3.7)
S Jo

This value allows us to calculate the intensity of SESANS signal.
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3.1.4 Appendix: Moments calculation

Equation (2.8) can be rewritten in terms of p(r):

Glz) = / A(r)rdr . * p(r)dr

: TVT? =22

Using < 2" >oc< 7™ > we multiply both sides of the equation on 23 and
integrate over dz:

/ G(2)2%dz = 2/ 2dz / 5%

After swap of integration order we have:

/oo G(2)Pdz =2 /oo p(r)dr / i
0 0 o Jo Vi 22

Using:

we finally have:

/ G(z)zadz:il/ p(r)ridr
0 3Jo

In a similar way the other moments of z and r can also be calculated.

3.2 Shapes

3.2.1 [Eigenfunction and Gaussian coil

With respect to y(r) equation ( 2.8) is an Abel integral equation and its solu-
tion (see App. 2.2.3) is:

11d G(2)z
(T) 7r’r‘d7'/ dZ\/ﬁ (38)
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This permits us to recalculate measured G(z) into ¥(r), but this approach to
the treatment of experimental data is not very useful since this transforma-
tion includes divergent integral and differentiation. It is more convenient to
fit experimental data by an analytically known G(z). For most conventional
isotropic particles an analytical representation of G(z) is discussed below.

Forward ( 2.8) and backward ( 3.8) transformations involve the same pro-
jection integral operator 2:

>

{ G =y (3.9)

,—114d 5
Y= nrdrmG

The eigenfunction of integral operator # should also be an eigenfunction of
differential operator:

1d
rdr
The eigenfunction is Gaussian:

22

G(z) =e 585

This correlation function corresponds to the unperturbed Gaussian coil

model for polymers.

3.2.2 Sphere

For uniform homogeneous spherical particles the conventional correlation func-
tion is known analytically [8]:

w(r) = pPoy(r) (3.10)
where:
3 1 .
(N=1—=r4+—r° .
¥(r) 4r+16r (3.11)

where r is a reduced radius of a sphere,
Substituting (3.11) into (2.8) we get SESANS auto correlation function for
a homogeneous sphere:
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1.6 T T T
GY(")
14F @
12 -

Figure 3.2: Conventional auto correlation function (solid line) and SESANS
auto correlation function (dotted line) for a homogeneous sphere.

6= y1- () (1+32) + 2 (1- () ) (3 =s)

(3.12)
and the total cumulative scattering probability is:
Np*viRN? 3
G.(0) = —’i—%’—m = SortNtR (3.13)

3.2.3 Hollow sphere

The hollow sphere is an important practical model describing a wide range
of colloids. Let us consider a dimensionless case and characterize our hollow
sphere by reduced parameters. The hollow sphere has an outer radius, 74, = 1,
and inner radius, r;, < 1 (both reduced to the outer radius R). The reduced
thickness 1s:

A = Tout — Tin

Tout
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Figure 3.3: Hollow sphere

The reduced inner radius is:

Tin = OTout

The volume of a spherical layer is:

4 4
Av= gﬂ(riut - r?n) = —ﬂ—rgut(l - 03) = ‘U(l - 03)

3

where V' = %W'rgut is the volume of the whole particle.

Calculations of G(z) for such a hollow sphere can be found in Appendix
3.2.4

G(z) for a hollow sphere has two distinct regions. We have two characteris-
tic sizes. At distances 2 > r > 2—A hollow sphere behavior is indistinguishable
from those of solid sphere (see Figs.3.5 and 3.6 in Appendix 3.2.4). All auto-
correlations of course are limited by 2 radii. For A > r > 0 we have initial

decay due to disappearance of ” A-layer” correlation.
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Figure 3.4: Conventional auto correlation function (solid line) and SESANS
auto correlation function (dotted line) for a hollow sphere with A = 0.3
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3.2.4 Hollow sphere auto correlation function

The conventional auto correlation function of a hollow sphere is known ana-
lytically (Glatter,1979): ‘

(r) = pPux
1—3r 4 Ly 2>2x>2-4
3(1—52)2_Us+%02r_%r3 2—-A>r>2-2A
s{te) 2-2A>r>A
(1-0*) =31 +0H)x+3r* A>r>0

or in a short notation:

y(r) = pPox
~o(r) 2> xr2—A
T(r) — o*ye(L) 2-A>r>2-2A
7 (r) 2-2A>r>A

Yo(r) + o3 {70(5) - 2] A>r>0
where ~vo(r) is a correlation function of a homogeneous sphere (see equation
( 3.10)) and

3(1-02)°

n(r) = 3 ;

2
(r)r
G zZ) = 2/ dr—
B=2) =
Since in four different r regions y(r) is defined by different analytical ex-
pressions, we decompose integration in four corresponding regions. Further

procedure is trivial. As a result of four different regions we have "layer pro-
jections” for b > r > a:

b

1)
G(z,a,b) =2 | dr———
(2,a,b) /a Sy~

Or in short notation used below:

b
G(z,a,b):/ ¥
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This operation is schematically depicted in Fig 3.6.
After integration we have the following set of functions:

2—-A>z>2-2A
==
= féz—A’Y"’fz?gz?\AV =
= Jooaot fy0a (r(r) = a®x (5)) =
=Gp(z,2 - A,2) + G1(2,2 — 24,2 - A) — G,(2,2 — 2A,2 — A)

2—2AZTZA
*f22A7+f 2A7 f2 m
—fz A70+f2 2A (71(7)_0 /0( ))“’IZQAZA%(""):

{ =Go(2,2 — A, 2) — Gy(2,2 - 27,2 — A) + G1(2,2,2 - A)

(A>2z>0

G() = [y =fav+[r=Jav+ [P =

= [27+ 7 [n) + 0% [n(z) -2]] =

=Go(2,2 - A,2) — Gs(2,2 — 24,2 = A) + G1(2,A,2 — A) + Go(z, 2, A)+
| +Go(2,2,A) — 20°V/ A2 — 22

where

5Go(2) —2/ dr 7“ = 2(0(b,2) ~ T(a, )
where

1 3
[(a,z) = =Va? — 22 [16 + % + §a(z2 - 16)] +

16 8

e’ #2(2® — 16) In(a + Va2 — 2?)

b 42
16ole) = o G(0)

=Go(2,2 —A,2) + G1(2,2 —2A,2 — A) — G,(2,2 — 2A,2 = A) + Gi(2,2,2 — 2A) =
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Gi(€,a,b) _2R/ \;%— (3.14)

b+¢bz_—zz]
ot Va2

These explicit functions can be directly used for fitting experimental data.

= 2%(1 —0%)?1In [
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r=c+A+A+c=2

r= rout+ rin
=0+A+0=2-A

r=2r_
=0+0=2-2A

Figure 3.5: Geometrical interpretation of conventional auto correlation func-
tion y(r) for a hollow sphere.
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runs from 3 to « covering the region where a hollow sphere and its ghost

?

|

|

|

Figure 3.6: Projection of autocorrelation function of hollow sphere, where r
interfere as solid spheres.
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Chapter 4

Correlation function of the
excluded volume

Based on

Timofey Kruglov.

Correlation function of the excluded volumne.
Journal of Applied Crystallography, (2005), in press.

This chapter introduces a correlation function of the excluded volume nec-
essary for a real-space description of scattering from dense systems of spherical
particles.

4.1 Correlation function of the excluded vol-

ume

We consider a system of homogeneous spherical particles. Let the total number
of particles N occupy the volume V. The center of i-th sphere is located at a
position r; and is described by a scattering density p(r — r;):

v Jeiflr <1
plri) = { 0 otherwise (41)

where p is a scattering length density of a homogeneous sphere. Spatial vari-
ables r and further a are in units of a sphere radius. The system of N particles
is described by the contrast
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where

(o) = 117 [ drp(r)

A spatial correlation function is defined as:

() = [ Aplr)apte’ = v (43)
If we substitute (4.2) to (4.3) we get:
ww) = [ Z o =50 = ()] Yo lol — 1 =) = )] & (4)

The diagonal terms in the summation describe correlations within a single
particle, while the off-diagonal terms describe correlations between the parti-
cles. Separating the two types of correlations, we get:

yn(r) = Z/ )p(x’ —r)d’r’ +
ZZ/ p(r’ —r)p(r' —r; —r)d’r — (p)*V (4.5)

]

The first term gives N times the auto correlation function of a single particle
[ Pl = R = NP
v

where Yauro(r) is normalized. The second term in (4.5) gives the cross corre-
lation function between all particles depending on their relative coordinates
r,—r;=a.

After ensemble averaging (4.5) can be rewritten as:

1le) = N6 | [ e~ ) 6(a) + nia) - m)a]  46)

where n(a) is the number density of the particles. It can be expressed via
the pair correlation function g(a)
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where
N

n

< |6

is the average number density of the particles, v is the volume of one particle
and ¢ is the volume fraction of the particles.
Here we introduce the normalized “per particle” correlation function

) = \V;JU) (4.7)

In normalized form (4.6) can be rewritten as
(r) = / Yauto (T — @) (3(a) +n(a) — n) d*a (4.8)
v

If the system is isotropic then (4.8) can be rewritten in a spherically sym-

metric form:
Y1) = Yauto (1) + 90/ Yeross(T: @) [9(a) — 1] 3a’da (4.9)
0

Equations (4.8) (Cartesian coordinates) and (4.9) (spherical coordinates) are
real space equivalents of the classical Zernike and Prins equation [36]. The
integration in (4.9) can be can be decomposed in two regions, 0 < a < 2 and
2 < a < oo (see fig.d.1):

2
y(r) = Yauto(T) — 99/ You (7 a)3(12da +
0
@ / Yeross(Ts @) [g(a) — 1] 3a*da (4.10)
2

where eross(, @) is a spherically averaged cross correlation function of a
dumbbell [7]. The region 0 < a < 2 corresponds to the overlapping spheres.
A correlation function for such structure was unknown until now. The deriva-
tion and the analytical form of correlation function of overlapping spheres
Youi (7, @) can be found in the app.4.3.1 It is represented in fig.4.6. Appearance
of the nonexisting structure of overlapping spheresis the consequence of the
subtraction of the average density in (4.2). Upon subtraction of the average
density, the probability to find a sphere inside the excluded volume formally
charges from zero to —1. Therefore we have to count all overlapping spheres
for 0 < ¢ < 2 and subtract them from the total correlation function The corre-
lation function of overlapping spheres is integrated over the excluded volume
vielding the correlation function of excluded volume (second term in (4.10}):
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2
Vezel(T) 2/ Yout (7, @)3a2da (4.11)
0

In analytical form it is presented in the app.4.3.2 and it is plotted in fig.4.2.
This function is nonzero at 0 < r < 4. Apparently spheres within the ex-
cluded volume affect correlations covering the maximum size of two overlap-
ping spheres, which is the same as the minimum size of two touching spheres:
4R. The last term in (4.10) is defined as structural correlation function:

A/struct(r) = ‘/200 ’)ICTOSS(ry a) [g(a) - 1] 3a?da (412)

This correlation function depends on mutual arrangement of the particles and
depends implicitly (via g(a)) on their density.
Combining (4.11) and (4.12) in (4.10) one gets:

'Y(T) = %wto(r) - W“{'ezcl(r) + 99'7/strucz('r) (413)

The first term is independent on structure. The second term is a first
approximation of structure and is proportional to the density. The structural
correlation function can be calculated for a given pair correlation function
using (4.12). A set of these functions for a hard-sphere liquid is presented on
fig. 4.2.

4.2 Conclusion

Introduction of the correlation function of overlapping spheres and conse-
quently, correlation function of the excluded volume allowed to complete a
real-space description of scattering from dense systems. Both functions are
calculated andlytically for spherical particles. The excluded volume correla-
tions are separated from the rest of the structure. The correlation function
of the excluded volume gives the first approximation of structure, which is
proportional to the particles’ concentration.

4.3 Appendices

4.3.1 Correlation function of overlapping spheres

The auto correlation function of a sphere is given by:

3 1
'Yauto(r) =1- ZT + ETS (414)
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Figure 4.1: Origin of the correlation function of overlapping spheres
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Figure 4.2: Correlation functions by (9.1) for a hard-sphere liquid at a volume
fraction ¢ = 0.4. Percus-Yevick pair correlation function was used for g(a) in
(4.12).
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where p is a scattering density of a sphere and v = %’“ is its volume (assum-
ing the radius R = 1). The normalized correlation function is defined as a

convolution
1 [oe)
() = == [ plr = P)pts e (4.15)
0

In general for homogeneous particles c.f is proportional to the intersection
! volume of particle p(r’) and its host, shifted by a distance r.

For futher consideration we put p = 1.

A cross correlation function of a system of two particles equals to the
intersection volume of a second particle with the ghost of the first one (see fig.
4.3). )

If a ghost is shifted to the vector r with respect to its native sphere (first
sphere), it appears to be shifted to the vector ' = r — a with respect to the
second real sphere, shifted to the vector a with respect to the first real sphere.
The intersection volume of first-ghost and second-real sphere is then given by:

Yeross (T) = Yauto (7'/)

The above intersection is realized at a single triplet of vectors r, r' and a,
having a specific orientation in space. The distance between the second sphere
and the ghost image of the shifted first one (see fig 4.3):

2
" =712+ a® — 2ar cosf

If ' and € are fixed we can rotate r' around a axis to count all possible
directional realizations of r’ to make the function isotropic:

chross('r) = / '}/autg(rl)d(COS 0) = (416)

08 fmax

1
/ Yauto (\/T2 +a? — 2ar cos 9) d(cos )
C

08 Omax

where &in = €05(00,) determines the widest angle at which spheres still
intersect,. .

At an arbitrary 0p,e, three terms of (4.14) evaluate to the following expres-
sions:

1
/ d(ﬁ) =1- COS(Omin) =1—=&min
Em.in

!The term overlap is used for two real spheres. Here the term intersect applied to the
ghost-real sphere combination to avoid confusion with overlap meant for real-real combina-
tion.
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3 1
_Z/ V12 +a? - 2arédé =

g‘min

1 .
o (|r —aff —y/r2+a? - 2ar£m,-n3>
1
L Vri+a?-— 2ar§3d§ =

16 Emin
. 5
(|r —al’ - \/’r2 + a? — 2ar&n )

80ar

Youl ('T: (l) =1~ Emin
1 3
+m <|r —af* = 2+ a? — 2aré, )
1 5
(|r —al® — 72+ a? — 2ar&n ) (4.17)

~ 80ar
For the interpenetrating spheres there are two regimes of intersection. If
r < 2—a spheres intersect at any cos @ (see fig 4.4). For that regime &, = —1

and (4.17) reduces to

Your(r;a) =2+ — (Ir — af’ = |r +af*)

dar
1

80ar

If 2—a <7 < a+2then § < 7 the touching condition is given by (see

fig.4.5):

(Ir —al’ = |r +af?) (4.18)

4=a%4+7% - 2ar& i

a®+r?—4

2ar
and after substitution to {4.17) yields the same functional form as the cross
correlation function (calculated earlier in [7]):

(4.19)

fmin =

a?+rt—-4 1
Tou(r,0) =1 = —5 o+ g (Ir = o’ = %)
1
" 80ar (Ir —af = 2) (4.20)

If a — 0 then (4.18) covers the whole region 0 < r < 2 reduces to the well
known auto correlation function of a sphere (4.14).
If @ > 2 then (4.18) disappears and (4.20) is now a cross correlation function
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Figure 4.3: The correlation function of two overlapping spheres. The cross
correlation function of such system is proportional to the overlapping volume
of the left-ghost with right real sphere. The left-ghost particle being shifted
by the distance r from its real counterpart stays at a distance r' = r + a so
the overlap volume is given by vu:,(r)
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r=2(1-a)
6. =7
¥ o .
F / a
r=r+a

Figure 4.4: The geometry of unconditional overlap. If the left-ghost is shifted
to the distance r < 2—a it intersects with the right real sphere at any 8, which
makes the lower limit of integration in (4.17) cos(fmee) = —1.
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Figure 4.5: The touching condition by (4.19) defines the maximum angle # at
which the left ghost and the right real spheres still intersect.
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Yeross(fi2) -
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Figure 4.6: Correlation functions for spherical particles: solid line - auto cor-
relation function (reduced by factor 10) by (4.14), dashed line - correlation
function of overlapping spheres by (4.18) (a=1.5), dotted line is a cross corre-
lation function by (4.20) with a=2.

4.3.2 Correlation function of the excluded volume

\ 8 _

0.1
0.08 |
0.06
0.04

2
h/ea:cl(r) = / ’Yovl('r) a)3a2da (421)
0
7e:ccl(r) = (422)
3 9 78
1— =4 ot —— f0<r<2
6" T 160’ 230 10STS
144 18  5r*  9rt 70
= . — i <7r <
35 5 16 160 map "2STsd
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Chapter 5

Interacting particles

Based on

Timofey Kruglov.

Spin-Echo Small-Angle Neutron Scattering for dense systems of spheres.
Journal of Applied Crystallography, (2005), in press.

This chapter presents (Spin-Echo) SANS correlation functions describing
small-angle scattering on dense systems of spherical particles. (Spin-Echo)
small-angle correlation functions and associated correlation lengths for a sin-
gle sphere, a dumbbell, excluded volume and structure are introduced. -It is
shown that the correlation length is proportional to the cumulative scattering
probability. This approach is applied to a hard-sphere liquid.

5.1 SESANS correlation functions

Let us consider a system of N homogeneous spheres with scattering density p
and radius R occupying the volume V. The conventional correlation function
of such system is known [7, 17]. If we substitute a normalized conventional
correlation function in (2.8) and express spacial coordinates in terms of sphere’s
radius we get:

G.(2) = 2¢(A )2/\21,‘}2/+OO drﬂ (5.1)
e\F) = A28 AR/~ '

Here we introduce a reduced correlation function

G(z)

Gle) = e(Ap)PA%tR
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50 (5.1) can be rewritten in a simplier form:

+oc
G(z) =2 d-r————’Y(r)T
N /72 _ 2
The conventional correlation function can be presented as a set of three
contributions [17]:

(5.3)

’)’(T) = 7aut0(r) - Qoﬂy"ezcl(r) + @’}'struct(T) (54)

where 7y,u1, 18 the auto correlation function of a single sphere, e, (r) is the
correlation function of excluded volume and

"/struct('r) = [:o Yeross (T, @) [g(a) - 1] 3a*da (5.5)

is the structural correlation function
The same decomposition can be made for SESANS correlation function:

G(2) = Gauto(2) = $Gerat(2) + ¢Gstruci(2) (5.6)

where Gauto, Gezer a1d G 447uer are projections if their respective conventional
counterparts according to (5.3).
Guto Was calculated in [15], Gez is given in app.5.5.2 and Gy 1S

Gstruer(1) = /200 G eross(2,0) [g(a) — 1) 3a’da (56.7)

where G os5(2, @) given in app.5.5.1

5.2 Correlation length

A projection of a correlation function is a correlation length [6]:

G(0) = 2/ ¥(r)dr =€ (5.8)
0
According to (5.6) it can be decomposed into three contributions:

€ = auto — P&ezel T+ PEstruct (5.9)
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Figure 5.1: G(z) for a hard-sphere liquid at volume fraction ¢ = 0.4. Percus-
Yevick pair correlation function was used for g(a). in (5.7).

where’
? 3
fauto = 2/ 'Yauto(r)dr = E (510)
0

is a correlation length of a single sphere (in terms of its radius).

36

T35

4
ret = 2 / Yesa(r)dr = 20 (9 81n(2)) ~ 3.55 (5.11)
0
is a correlation length of the excluded volume contributes with the minus sign
to the total correlation length. Both &, and & do not depend on the
mutual arrangment of spheres.
The last term is a structural correlation length

§struct =2 /OO (g(a) - 1) Ecross(a)3a2da (512)
2

where we define a cross correlation length of 2 spheres (forming a dumbbell
with a distance a between centers of the spheres):

a+2
fcross(a) = 2/ Yeross (‘T, (l)d’l‘ (513)

—2



48 Interacting particles

T T T 1 T 3
15 3/2 Seross(@ ——
] g@-1 ——--- dos
1L —42
415
05| i 11
— >
\\\ = 0-5
| 4-05
05 & I 1 1 1 1
0 1 2 3 4 5 6
a

Figure 5.2: &.055(a) and g{a) — 1 to be integrated according to (5.12).

The calculations and the analytical expression for £...ss is given in the
app.5.5.3 As an example consider a dumbbell of touching spheres. Additionally

t0 Euto = % we have

13 8
ross(2) = — — -In2~x0.1 .
Eeross(2) 0 5n 0.19 (5.14)

which is due to a correlation of neutrons scattered on different spheres of a
dumbbell. In total we have for a dumbbell Eaumpbenn = 1.50 + 0.19 = 1.69.
If we have an ensemble of particles we apply (5.12), which physically is a
summation of correlation lengths of all dumbbells formed by a central sphere
with neighbours weighted with probability g(a). A general expression for the
correlation length of the system of spheres can be written as:

3 36
{= 37 35 (9 —81In2) ¢ + PEsiruct (5.15)

Taking into account (5.1) the total cumulative scattering probability is
proportional to the correlation length:

G.(0) = p(Ap)°N*tRE (5.16)
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5.3 Hard sphere liquid

Here we use a hard sphere liquid as an example of application of three correla-
tion lengths described in previous section. Since g(a) for a hard-sphere liquid
is determined only by ¢, the correlation length as well as the total scattering
probability is a function of only one variable ¢. Fig.5.3 shows how three cor-
relation lengths depend on . Due to the increasing number of neighbours the
structural correlation length increases with increasing . At the same time
the correlation length of the excluded volume linearly increases (with negative
sign) due to the increase of the number of particles unable to penetrate the
excluded volume. In this “per particle” representation the auto correlation
length is a zeroth order approximation, the correlation length of the excluded
volume is a first order approximation and the structural correlation is the
rest. The corresponding dependencies for G.(0) and AP(0) are presented in
fig.5.4. The parameters are taken for actually measured sample [16]. The to-
tal cumulative scattering probability of a hard-sphere liquid has a maximum
at ¢ ~ 0.33 (see fig. 5.4). The position of this maximum is a property of a
hard-sphere system. The full correlation functions and SESANS signal for any
given ¢ can be calculated using the tools described in the previous sections.
(see fig.5.1).

5.4 Conclusions

SESANS is a particular implementation of a generic real-space small-angle
scattering device measuring correlations in one direction. Unlike reciprocal-
space scattering techniques it is free from the multiple scattering problem.
The total correlation function of a system of spherical particles is a sum of
the correlation function of a single sphere, correlation function of the excluded
volume and the structural correlation function The correlation function of the
excluded volume is a first structural approximation. The same decomposition
holds for correlation length, which is a measure of intensity of scattering on re-
spective structural features. The total depolarization level in SESANS equals
true scattering probability. The logarithm of the saturation level of polariza-
tion equals total cumulative scattering probability, which is proportional to the
correlation length. For a hard-sphere liquid the maximum of the total cumu-
lative scattering probability was found at the volume fraction ¢ ~ 0.33. The
paper presents a complete description of small-angle scattering on a system of
spherical particles in real space.
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0 0.1 0.2 0.3 04 0.5
¢

Figure 5.3: Correlation lengths for a hard-sphere liquid depending on volume
fraction ¢: solid line - correlation length of a sphere, dashed line - correlation
length of the ecluded volume, dotted line - structural correlation length. The
Percus-Yevick pair correlation function was used to calculate &,;pyes.
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1.4 T T T

T T
cumulative

scattering probability

Figure 5.4: Scattering probabilities for a hard sphere liquid as functions of
volume fraction. Solid line - total cumulative scattering probability G.(0),
dashed line - total true scattering probability (or depolarization AP(0) in
terms of SESANS).
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5.5 Appendices

5.5.1

where

(SE)SANS cross correlation function for spherical
particles

G(z,a) =
Gila—2,a,2) +G,(a,a+2,2) ifz<a—2
Gi(z,a,2) +Gr(a,a+2,2) ifa-2<z<a
Gi(z,a+2,2) ifa<z<a+2
0 ifa+2<z

Gilb,c, ) = ﬁ (u(b) — au(c) + Bulb, ©))

Gr(b,c, z) = (o (b) = () + B, (b, 0))

1
9600a

(&) = V& = 22 (fila) + fa(a,€) + f3(a, &, 2))
a(§) = V& = 22 (fil-a) — fol—a,&) + f3(a, £, 2))
/Bl(b, C) -

/Br(ba C) =

—15(fs(=a) — fs(—a) + 15az") In (%)

fi(a) = —600(4 + a)a(—2 + a)?
f2(a, &) = 600(4 — 6a + a®)¢
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Figure 5.5: Conventional and SESANS cross correlation functions for spherical
particles.

5.5.2 (SE)SANS correlation function of the excluded
volume
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5.5.3 Cross correlation length of two spheres

Eoron0) = (0 + 22) (5.18)
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Chapter 6

Hard-sphere colloids

Based on

T. Krouglov, W. G. Bouwman, J. Plomp, M. T. Rekveldt, G. J. Vroege, A. V.
Petukhov and D. M. E. Thies-Weesie.

Structural transitions of hard-sphere colloids studied by spin-echo small-angle
neutron scattering.

Journal of Applied Crystallography, (2003), 36, 1417-1423.

6.1 Correlation functions

Here we consider correlation functions describing the system of hard sphere
particles, which we used to fit the experimental results.

The simplest case is that of isolated particles which experimentally corre-
sponds to the colloid dilute enough to avoid interparticle interaction. In that
case we need only the particle autocorrelation function yau,(7). It has an ana-
lytical representation [9] and the corresponding SESANS correlation function
Glauto(2) as well [15]. The total depolarization level for a dilute solution of
spherical particles is known [2]. The next case is when the concentration of
particles is high enough for the appearance of pair correlations. In that case we
have to take into account pair correlations, described by the cross correlation

function veress(7)

’7(7) = ’Yauto(r) + sttruct(r) (61)

where the cross term is
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atraa(r) = / Yerass(r; @) h(a)ada (6.2)

where h(r) = g(r) — 1, g(r) being the pair correlation function and n = X
the particle number density (see, for instance, [11]). Functions Yeress(7, a) for
spheres are known analytically [7]. The similarity between G(z) and g(r) is
shown in Fig. 6.1.

The last case is a polycrystalline colloid. The structural correlation term

can be represented as:

) = (0 [ (e + ) (63)
v 0
For the crystalline case the pair correlation function for a random hexag-
onal close packed structure was used. It can be represented as a set of delta
functions:

h(r) = Z S(r—ry) (6.4)

where the index 4 runs over all lattice points.
After the cross term is rotationally averaged according to (6.3), the struc-
tural correlation function reads

Y(r) = Yauto(R) + Z M Yeross (T, aj) (6.5)
J

The index j runs over shells located at a distance a; from the central
atom and containing M; spheres. The SESANS counterpart of the cross term
G eross(r, a) is known analytically.

The fitting curves for liquids represented in the figures below use Percus-
Yevick solution with a Henderson-Grundke correction for the structure factor
[30]. They are numerically calculated using the reciprocal space representation
of G(z) by Eq. 2.2. We could have used the real space representation by Eq. 6.2,
but the software which was at our disposal calculated g(r) up to 4 diameters
only. In the crystalline case the real space representation by Eq. 6.5 was used
directly. For all calculations we assumed monodisperse colloids in order to
keep the calculations simple.
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Figure 6.1: The SESANS correlation function G(z) for a colloidal hard sphere
liquid at volume fraction ¢ = 0.3 and the pair distribution function g(r) for
the same system. Variables z and r are normalized to the radius of a sphere.
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6.2 Sample

As a source of particles we used sterically stabilized silica spheres suspended
in cyclohexane. The density of the particle’s material was determined to be
2.02+0.10 g/em® (DMAS5000 densitymeter), which is somewhat smaller than
that of bulk silica. The radius of the particles determined by the dynamic light
scattering was 160 nm. TEM measurements yield the radius of the particles
153 nm and polydispersity 6.2 %. The particles were covered by a sterically
stabilizing layer of Polyisobutene, 4-5 nm nanometers thick. The initial solu-
tion was dried under low (= 0.1 atm) pressure during 12 hours. Dry particles
were then redispersed in deuterated cyclohexane. Directly after redispersion
the sample appeared macroscopically homogeneous. A deuterated solvent was
used in order to maximize the scattering contrast and minimize incoherent scat-
tering. Three concentrations were prepared: 1 - dilute solution (¢ = 0.055)
in a 10 mm thick cell, 2 - semidilute solution (¢, = 0.27) in a 5 mm thick cell,
3 - concentrated solution (¢y = 0.32) in a 1 mm thick cell. (Quoted volume
fractions were known approximately during the preparation. Exact values were
determined as a result of fitting.) All cells were 10 mm wide and 40 mm heigh.
The thicknesses of samples were chosen such as to give considerable depolar-
isation, but not close to zero saturation level. The samples were illuminated
by the neutron beam framed by a cadmium diaphragm 8.5 mm high and 7.5
mm wide which was mounted immediately in front of the cell.

6.3 Dilute solution

The dilute solution was prepared in order to observe non-interacting parti-
cles. On one hand we should use as low concentration as possible, but on the
other hand we should keep the concentration high enough to keep the scat-
tering probability high. The initially prepared homogeneous dilute solution
completely settles during few days. Measurements were taken in a few steps of
few hours each. Immediately before each measurement the sample was shaken
to develop homogeneous structure. During the few hours of one measurement
step the sample remained homogeneous.

For a dilute solution we can neglect pair correlations and the cross term
drops out. The auto correlation term is nonzero only for distances less than
the diameter of a sphere indicating that there is no correlation beyond the
maximum size of a particle. As can be seen from fig.7.1, there is a saturation
level reached at z = 2R. This constitutes the fact that there is no correlation




6.4 Semidilute solution 61

between particles and they can be considered non-interacting.

The fit determines two parameters independently: R = 149 nm and (1-
ov)dv(Ap)?. The value of R = 149 nm is lower than those given by TEM
(153 nm), which gives the lower bound of the radius due to shrinkage of the
particles upon drying and DLS (160nm), which gives the upper bound of the
radius due to hydrodynamic effects. The fact that SESANS value of the radius
is less than that measured by TEM might be due to an error in determination
of the z values. A systematic error in z value of a few percent can be due to the
uncertainties in determination of the neutron wavelength A (6A/A=0.01, which
gives +3 nm uncertainty in z) and the foil inclination angle fg (%%:0.04,
which gives +6 nm uncertainty in z). In addition there is also an error due
to the counting statistics. Including all mentioned errors the radius of the
particle should be estimated as R = 149+7 nm. So within all the error bars,
the SESANS technique is consistent with the two other methods.

In order to separate (1 — ¢y )¢y from (Ap)? a semidilute solution was used,
which vields ¢y = 0.055. For the ideal monodisperse hard sphere liquid for
the actual value ¢y = 0.055 the first minimum due to the excluded volume
is already supposed to emerge, but in our case we do not see it due to the
polydispersity.

6.4 Semidilute solution

In order to observe the appearance of pair correlations between particles a
semidilute solution was used (see fig.6.4).

Unlike the dilute solution not only the saturation level G(0), but also G(z)
depends on the volume fraction ¢y-. The scattering contrast Ap affects only
the total level of depolarization G(0), but not G(z), which gives the possibility
to determine ¢y and Ap independently, which is not possible in case of the
dilute solution. We fixed the value of the radius R obtained from the fit of
the dilute solution and determined ¢y = 0.27 and Ap = 3.6 - 10%cm 2. The
last value yields the scattering density of silica equal t0 pygice = 3.1+ 10%cm =2
which is consistent with the theoretically expected value pyica = 3.2-101%m 2
(using the measured mass density of silica particles 2.02_%3). In principle, all
three parameters R, ¢y and Ap can be determined independently using the
semidilute solution only.
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Figure 6.2: Dilute suspension of hard spheres. Error bars are approximately
equal to the size of the circles. The same holds for the rest of the figures
where error bars are absent. The solid line is the calculated curve for isolated
spherical particles using Guio(z) by (3.12) with ¢y = 0.055, B = 149nm.
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Figure 6.3: Semidilute suspension of hard spheres. The line is the calculation
for the Percus-Yevick solution for a hard sphere liquid with ¢y = 0.27 and
R = 149nm.
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6.5 Concentrated solution

A concentrated solution was prepared in order to observe the crystallisation
process as a result of sedimentation induced by gravity. The volume fraction
of silica in the initially prepared homogeneous solution was ¢y = 0.32, which
was determined by the fit in fig.6.5. The solution kept a visibly homogeneous
structure for a few days. Measurements for the homogeneous solution pre-
sented in fig.6.5 were taken within several hours while the sample remained
homogeneous. That assured uniformity of the volume fraction along the height
of the sample during measurement. The fitting curve in fig.6.5 does not reach
1 at z=0 because we suspect that P, was not determined very precisely by
measurement and we left Py as a fitting parameter.

Since the difference in mass density of the silica particles and the solvent
was approximately 1.2 _Z3, the particles settled to the bottom of the cell. The
gravitational length of the colloid I, = ¥T/ApgV = 3 cm. The gravitational
length is the ratio of thermal energy to the gravitation (corrected for buoyancy)
force and gives the length on which the work of gravitation (corrected for
buoyancy) force is comparable to the thermal energy. The height of the sample
exposed to the beam (0.85 cm) is of the same order of magnitude as the
gravitational length which suggests a strong influence of gravitation on that
length scale and causes sedimentation of the particles on the bottom of the cell.
On the other hand /, is much larger than the particle size so that the gravity
is not expected to affect the local structure. The suspension after 1 week of
rest showed a macroscopic phase separation into 3 parts with clear boundaries.
The top part was transparent solvent, the middle and the bottom contained
colloidal particles. The middle part was more opaque than the bottom part.
During the first two weeks after preparation the bottom part grew at the
expense of the middle part. Both parts were then measured after two weeks.
Results are presented in Fig. 6.5.

It can be seen from the figure that the saturation level of the middle part is
0.79 and that of the bottom part is 0.84. That is an indication that the average
concentration of those parts of the sample differs by a few percents. Apparently
the sample has gradually increasing concentration of the particles from the
top to the bottom and the measured SESANS signal covers a distribution of
volume fractions within the vertical size of the diaphragm. Calculation of
density profiles for our system using the equation of state of Hall [10] shows
that we might cover the range of volume fractions from 0.22 to 0.54. This
is the highest range estimation since it assumes the equilibrium situation.
Considering that the sample is not at equilibrium the actual concentration
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range is smaller. But even for the highest range estimation the SESANS signal
would be indistinguishable (within actual error bars) from the case of a uniform
concentration corresponding to some effective average of the distribution.

After 5. months of rest the sample became visibly homogeneous within a
single colloidal phase with clear boundary between the colloid and pure solvent
on top. The top part of colloid had blue reflections of visible light. The result
of measurements at this final stage are represented in fig. 6.5. The top and
the bottom curves in fig. 6.5 correspond to the top and the bottom part of the
sediment. Saturation levels being functions of volume fraction are the same for
the top part and the bottom part of the sample, which implies that the volume
fraction of colloid does not change with the height. This fact suggests that
the sample reached its maximum packing fraction of 0.584-0.02, which is less
than the ideal close packed volume fraction 0.74. The sedimentation profile
directly measured by light scattering [3] showed that the maximal experimental
volume fraction of hard sphere colloid is about 0.62 and compressibility at this
concentration goes up much faster than for the ideal hard sphere system. The
calculated curves for random hexagonal close packed structure [33], which is
expected in case of hard spheres [21], and for a glass are superimposed on the
experimental data in both graphs to show the evidence that the top part of the
sample develops much more pronounced crystalline ordering than the bottom
part even being at the same concentration.

We note a significant difference between the nearest-neighbour distance in
the crystalline (2x160 nm = 320 nm) and the glass (2x149 nm = 298 nm)
parts of the sediment, which are obtained from the fit. This difference cannot
be accounted for by gravitational compression of the sediment since the grav-
itational length I, is much larger than the size of the particles R (see above).
We assign this difference to the colloid polydispersity [14, 13], which can dras-
tically reduce the crystal compressibility [34]. In a glass the particle-particle
positional correlations extend only over a few shells formed by the neighbouring
particles. The structure is then mostly determined by the local environment
and the average particle separation is governed by the average particle size. In
the crystal, on the contrary, the positional order runs throughout the whole
crystallite and the lattice period should be the same throughout [20, 22]. To
adapt to the fluctuations in the sphere diameter, the crystal should then accept
a lattice with a period, which is determined by the size of the largest particles.

The discrepancy between the solid line and the experimental data in the
bottom graph of the fig. 6.5 may by attributed to a small fraction of dumbbells,
formed by irreversibly aggregated particles.



66 Hard-sphere colloids

0.95

0.9

0.85

P()

0.8

0.75

07 ] 1 1 1 | |

Figure 6.4: Concentrated suspension of hard spheres. The line is the calcu-
lation for the Percus-Yevick solution for a hard sphere liquid with ¢y = 0.32
and R = 149 nm.
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Figure 6.5: The solution from fig.6.5 after 2 weeks at rest. The top graph
corresponds to the top of the sediment. The lower graph corresponds to the
bottom of the sediment. Lines: Percus-Yevick solution for a hard sphere liquid
with ¢y = 0.4 (top) and ¢y = 0.5 (bottom).R = 149 nm.
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Figure 6.6: The solution from fig.6.5 after 5 months at rest. The top graph
corresponds to the top of the sediment. The lower graph corresponds to the
bottom of the sediment. Solid lines - Percus-Yevick equation with Henderson-
Grundke correction for ¢y = 0.58 and R = 149 nm. Dotted lines - random
hexagonal close packed structure with distance between neighboring spheres
320 nm. Packing of spheres corresponds to ¢y = 0.58.




Chapter 7

Aggregates

Based on

Timofei Krouglov, Wicher H. Kraan, Jeroen Plomp, M. Theo Rekveldt and
Wim G. Bouwman.

Spin-echo small-angle neutron scattering to study particle aggregates.

Journal of Applied Crystallography, (2003), 36, 816-819.

7.1 Sample preparation

Polystyrene uniform micro-spheres with a radius of 25 nm were used to pre-
pare the concentrated colloidal suspension. The source was a solution of such
spheres in H,O, 10 % concentration, manufactured by Bangs Laboratories,
Inc., Indiana, USA (www.bangslabs.com). This solution was dried out and
then again dissolved in D»O. The purpose of using DO as a solvent was
to increase the scattering length contrast of the suspension and to increase
the transmission. After dilution in D,O to 20% solid content by volume the
mixture was intensively shaken and then put in ultrasonic bath for 2 hours.
Immediately after this process phase separation occurred. The mass density
of polystyrene spheres is 1.05 g/ml. The density of D,O is 1.11 g/ml, which is
higher than the density of

polystyrene spheres. The bottom part of the sample was homogeneous
suspension of milky white color while the top part consisted of macroscopic
pieces of solids with sizes visible by naked eye. The solid content was in
equilibrium with homogeneous suspension. This equilibrium was visibly stable
and the boundary between these two phases did not change its position during
2 months. The whole sample was in a rectangular cell made of optical glass and
with a size of 45mm (height) by 12.5mm (width) and thickness of 20mm. For
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Figure 7.1: The symbols present SESANS-signal of a dilute solution of mono-
disperse polystyrene spheres with a radius of R=100 nm. The drawn line is
the calculated signal according to the parameters of the solution.

the scattering length density p of the constituents we took [12] for polystyrene
1.42-10"m™2 and for DO 6.38 - 10'*m~2. The scattering length contrast was
4.96-10"m~2,

7.2 Measurements

The measurements on the dilute solution [2] are shown in Fig. 7.1 as a reference
for the concentrated system. One observes directly the size of the particle from
the measured correlation function G(z). The measurement agrees well with
the calculated signal with (3.12) using the known parameters of the solution.

7.3 Interpretation

The constant level of polarisation of 63 % in Fig 7.2 is reached at length scales
of about 1200 nm. Since the elementary unit in our system is a spherical
particle of 50 nm diameter there must be clusters of such particles with a size
not exceeding 1200 nm. The SESANS signal has a minimum around 700 nm,
which is a sign of a repulsive potential [31] between clusters. Repulsion is a
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Figure 7.2: The symbols present SESANS-signal of a concentrated solution
of mono-disperse polystyrene spheres with a radius of R=25 nm. The drawn
line is the calculated signal for 10% volume solution of spheres of R=450 nm
interacting as hard spheres.
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result of hard-sphere behaviour, which in pure form can be seen at distances
z > 600 nm (see fitting curve in Fig 7.2). But the fitting curve does not follow
the measurement for 2 < 600 nm.

If we have smaller aggregates in addition to bigger ones the SESANS signal
for such aggregates has a steeper slope and is cut off at smaller z values.
Presence of smaller structures leads to faster decay of the resulting SESANS
signal and has as a consequence a more drastic drop in polarization compared
to the case of only large aggregates.

There are 2 peak-like features at about 200 nm and 400 nm which we be-
lieve correspond to internal structure of aggregates. These features reproduced
exactly on our old setup, therefore we are sure that they are not an instrumen-
tal artifact. These maxima suggest that we are dealing with crystalline-like
ordering which is a balance of strong repulsion and attraction. Strong at-
traction balanced by hard sphere repulsion leads to the appearance of peaks
for z < 500 nm which could be due to sticking process which particles might
undergo during drying.

Since we are dealing neither with isolated spheres nor with perfect colloidal
crystals we have a big number of parameters involved in modelling the struc-
ture. A good alternative in that case would be extraction of pair correlation
function. The best approach in the way of interpretation of such systems is
being currently developed.
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Rekveldt.

Application of Spin-echo Small-angle Neutron Scattering to study the structure
of charged colloids.

Physica B, (2005),356, 218-222.

Here we present the measurements on charge stabilized collidal suspensions.
We have observed the local colloidal structure directly in real space. We con-
sider the measurements on charged colloids in the frame of "like-charge attrac-
tion” controversy and show the advantage of SESANS’ real-space domain for
straightforward interpratation of the results.

8.1 The targeted problem

Charge-stabilized colloids consist of colloidal particles having easily dissoci-
atiating surface groups. They release counterions into a solvent and become
macroions. Besides counterions there can be salt ions present in a solvent. The
interaction between such macroions immersed in ionic medium was claimed to
be correctly described by DLVO potential since many years ago [33, 4]. Disre-
garding van der Waals interaction, which does not play a role in our case, this
potential is repulsive and has a screened Coulombic form. However during the
last two decades there were experimental studies on charge stabilized colloids
inconsistent with the DLVO potential. These results suggested the presence
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of attractive interaction between macroins. To explain this attraction a differ-
ent theoretical approach was developed, which resulted in the Sogami potential
(28]. Unlike the DLVO potential, the Sogami potential has a long range attrac-
tive tail (see Fig.1, top graphs). An overview of this problem can be found in
[5]. Depending on the potential, the colloid would develop different structures.
With a purely repulsive potential, such as DLVO, macroions prefer to stay at
a maximum possible distance from each other. Due to steric limitations it is

1

limited by the average distance [ =n"3 = ¢/ g—g between particles. It depends

on the particle’s concentration n (corresponding volume fraction ¢) only. The
DLVO potential yields a structure, which is very similar to that of an ’effective
hard-spere’ structure. The latter is a structure formed by spheres surrounded
by imaginary concentric hard sphere shells of bigger radius, impenetrable for
other shells (see dashed line on fig.8.1). If the macroions interact via Sogami
potential and the condition is such that the position of the minimum R,, of
the potential is smaller than [, the particles prefer to fall in this minimum
rather then to stay at the distance ! from each other. This would result to a
maximum in SESANS correlation function shifted to z &~ R, <! compared to
pure repulsive DLVO case. On a bigger scale it would lead to the development
of the regions with high density coexisting with voids (see bottom graphs on
fig.8.1) [1]. On the SESANS correlation function it would be seen as a "stair-
like” structure, where the probability to find closer particles is higher, and the
correlation with remote particles is lower. Both potentials contain the Debye
length as a parameter representing the characteristic interaction length be-
tween the macroions. The Debye length is due to the shielding effect of simple
ions in the solvent. The increase of salt concentration increases the shielding
effect, decreases the Debye length and shifts R,, towards smaller distances.
The variation of the potential upon salt concentration reflects on the struc-
ture. The real-space domain of SESANS allows straightforward interpretation
of these structures unlike conventional reciprocal space scattering techniques.

8.2 Experimental results and discussion

We used silica spherical particles of a radius R = 118 nm, originally suspended
in regular (nondeuterated) ethanol. To increase the scattering contrast, a part
of the regular ethanol was substituted by deuterated one. The volume fraction
of silica particles was ¢ = 0.086. A part of that suspension with high salt
concentration (sample 1) was used to prepare the other two samples: sample
2 with low salt concentration and a salt free sample 3. As seen on the fig.8.2
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8.2 Experimental results and discussion

the structure of the sample 3 is almost indistinguishable from that of the
‘effective hard-sphere’. This structure is formed by the particles effectively
repulsing each other. If the interaction was of Sogami type then the case
corresponds to the condition R, > I, which is expected in salt-free case for our
colloid. In case of high salt concentration (fig.8.2, sample 1) the interaction is
considerably screened by salt ions. If we had only strongly screened repulsion,
we would expect the structure similar to that of hard spheres at the same
volume fraction (fig.8.2, top, dashed line). The only structural feature would be
the minimum on SESANS curve due to excluded volume. On the experimental
curve (fig.8.2, top) we observe the nearest neighbour at a distance z ~ 300 nm.
The-appearance of such strongly correlated neighbours is most likely due to
attraction. The intermediate sample 2 (fig.8.2, middle) shows the ’stair-like’
structure expected for Sogami potential with the first neighbour at 2 < [.

With SESANS we have shown that the structure of charged colloids is
consistent with the presence of attractive forces.
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sents the maximum average distance { between particles. Middle: G(z) for the
above two potentials as a result MC simulations. The dashed line represents
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Chapter 9

Charged colloids: the role of the
effective excluded volume

Based on

Timofey Kruglov, Wim G. Bouwman and Jeroen Plomp.

Correlation function of the effective excluded volume and its application to
charged colloids studied by Spin-echo Small-angle Neutron Scattering.

in preparation.

We introduce the correlation function and length of the effective excluded vol-
ume and calculate it analytically for spherical particles. We show how structure
of charged colloids measured by Spin-Echo Small-Angle Neutron Scattering can
be interpreted in terms of this function. We compare the role of the excluded
volume for hard sphere and charged colloids. We show that for charged colloids
the effect of the excluded volume greatly overshadows the effect of the rest of
the structure in terms of scattering probability.

9.1. Correlation function, length and scatter-
ing probability

Correlation function of the excluded volume for a system of spherical particles
was introduced in [17]. It was shown that the conventional correlation function
can be decomposed into three components:

"/(T) = "/auta(r) - (pﬂ,"erci(r) + <r’yystruct(r) (91)

where Yaut0(r) is auto correlation function, ¢ is a volume fraction of spheres,
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2
'Yezcl(r) =/ 7'ovl(r:a)3a2da (92)
0

is the correlation function of the excluded volume and

Yetract(7, g) = /2 " reross(r, @) (g(a) — 1)3%da (9.3)

is the structural correlation function, 7e..ss(7, @) is a cross correlation function
calculated in [7]), g(a) is a pair correlation function 7., (r,a) is a correlation
function of two overlapping spheres with a distance 0 < a < 2 between their
centers. The closest distance the two hard spheres can approach each other
is 2 (all spatial variables are measured in spheres’ radius units). Therefore all
possible overlaps at distances 0 < a < 2 are integrated yielding the correlation
function of the excluded volume (9.2). v..0s5(7, @) is a cross correlation func-
tion of two spheres separated by a distance 2 > a < oo between their centers.
Integrated with the probability g(a) — 1 they yield the structural correlation
function The range of validity of v, (7, @) and veress(r, @) is shown in fig.9.1.
Strictly speaking, the excluded volume is also a part of a structure, but here
we separate it as a first approximation. We separate structural correlations
inside and outside of the excluded volume. This is defined by spheres’ diameter
2, which is an upper and lower limits of integration in (9.2) and (9.3) respec-
tively. Now suppose spheres interact via soft repulsive potential, for instance a
screened Coulombic (see fig.9.2). It can be approximated with an effective hard
sphere potential. Instead of a real soft potential each sphere is concentrically
surrounded by an imaginary impermeable shell of a bigger effective diameter
b > 2. While bare spheres still remain hard spheres with the diameter 2, which
is the upper limit of integration in (9.2) and (9.3) the efective hard sphere di-
ameter extends to b > 2. This effective hard sphere effect can be separated
from the rest of the structure by rewriting (9.1) in a following way:

Y(r) = Yauto(T) — @Yezer(r, ) + ©Vstruet (T, 9) (9.4)

where the correlation function of the effective excluded volume is:

b
761751(7'7 b) = "Yezcl(r) + / ’Ycross('r-, a)3a2da (95)
2
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and a structural part becomes (compare to (9.3))
"fstruct(rv g) = / 'Ycross('r: (l)(f}(a) - 1)3a2da (96)
b

Yezet(T, ) now depends on the effective excluded diameter b. The analytical
expression for this function is given in app.9.6.1

If a small-angle approximation is applied one gets a (Spin-Echo) Small-
Angle correlation function, which is a projection of conventional correlation
function along a neutron beam (z-axis) [15, 18]:

G(z) = /‘00 y(Va? 402 + 22)dz =2 /+oo dr% (9.7)

The same decomposition (9.4) can be made for the SESANS correlation
function: '

G(Z) = Guuto(z) - ‘PGez‘cl(zv b) + (PGstruct(Z: Q) (98)
where Gauo(2) is given in [15], Geza(2, D) is given in the app. 9.6.2 and

Gstruet(2,9) = /bso Geross(2, @) (g(a) — 1)3a’da (9.9)

where Gposs(r, @) is calculated in [18].
The same can be done for correlation length:

= [ ’Y(T')dT‘ = G(O) = Eauto — QOf(b) + <P§szmct(g) (9.10)
where

b+2
§ezcl(b) = ‘/0 '}'exct(ra a)dr (9.11)

is given in the app. 9.6.3 and

Eurae(g) = / " forans(@)(g(a) — 1)d(a®) (0.12)

(see ﬁg.9.4‘) where

at+2
gcross(a) = 2/ ’Ycross(T-, a’)dr (913)

-2
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is a cross correlation length of two spheres separated by a distance a between
their centers.

The directly measured quantity in SESANS is polarization of a neutron
beam passed though a sample

P(z) = ¢Gc:)=G0) (9.14)
where for a system of spherical particles
G.(z) = p(Ap)’A\2RG(2) (9.15)

where Ap is a contrast, A is a neutron wavelength, ¢ is a sample thickness, R
is a radius of a spheres. G.(0) is a total cumulative scattering probability and
is proportional to the correlation length

Gc(0) = p(Ap)*N*tRE (9.16)

SESANS measures scattered beam on top of the transmitted part P(oc).
If we subtract it we get only the scattered part

AP(z) = P(z) — P(c<) (9.17)
The total true scattering probability is [18]

AP(0) =1 — €% (9.18)

9.2 Structure versus excluded volume

The correlation length is proportional to the total apparent scattering proba-
bility. It allows us to estimate the contribution to scattering of the effective
excluded volume and the structural arrangement of the particles by comparing
Eezet and Eiruce. If @ volume fraction of particles is ¢ and the effective diameter
is b then the effective volume fraction (volume fraction of impermeable shells)
is werr = ¢ ().

Let us fix the size and volume fraction of the excluded volume and shrink
the size of the spheres inside it as depicted in fig. 9.5. The correlation length
will change accordingly as plotted in fig.9.6. The rightmost limit corresponds
to @ = @epy = 0.27 and b = 2. The ratio éﬁi‘e = 348 equals to the ratio of
the total apparent scattering probabilities (per particle) of those two effects.

If we shrink the real particle size, which will lead to the decrease of their
real volume fraction ¢, we see that the effect of the structural arrangement
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Figure 9.1: Domain of definition of v,,(7, a) and veress(r, @)-
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— U@

Figure 9.2: Screened coulombic potential and its effective hard sphere equiva-
lent.

given by &4 disappears much faster than the effect of the excluded volume
given by ... At ¢ = 0.01 the total scattering probability of the structural
arrangment accounts to only one percent of that of the effect of the effective
excluded volume.
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Figure 9.3: Excluded volume for effective hard spheres with b = 3.
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Figure 9.4: &ero5s(a) and g(a) — 1 to be integrated according to (9.12) with
b=3

9.3 Hard sphere colloids

9.3.1 Sample

As a source of particles we used sterically stabilized silica spheres suspended
in cyclohexane. The initial solution was dried under low (= 0.1 atm) pressure
during 12 hours. Dry particles were then redispersed in deuterated cyclohex-
ane. Directly after redispersion the sample appeared macroscopically homo-
geneous. These particles are known to be redispersed easily after drying. A
deuterated solvent was used in order to maximize the scattering contrast and
minimize incoherent scattering. Wé prepared a solution in a 5 mm thick cell
(the neutron path length), 10 mm wide and 40 mm high. The thicknesses of
samples were chosen such as to give considerable depolarisation, but not close
to zero saturation level. The sample was illuminated by the neutron beam
framed by a cadmium diaphragm 8.5 mm high and 7.5 mm wide which was
mounted immediately in front of the cell.

9.3.2 Results

The radius of the particles R = 149 nm was determined using the dilute sus-
pension of the same colloid [16]. The scattering density of silica 2.35 x 10°
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Figure 9.5: Shrinking of real sphere inside impermeable shell.
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Figure 9.6: Eepe and gy as functions of volume fraction for effective hard
sphere liquid with @.rp = 0.27.
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Figure 9.7: Hard sphere colloid at ¢ = 0.27.
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cm~? was determined as a result of fitting, which is almost the same as
the theoretical value 2.4 x 10" cm™2. For deuterated cyclohexane we used
PCspy, = 6.7 x 10° em™2 [12]. In order to calculate the structural part of
G(z) we used Percus-Yevick pair distribution function. The volume frac-
tion of the particles ¢ = 0.27 was determined by fitting the experimental
curve (see fig.9.7, top). G(z) obtained as a result of fitting P(z), consists
of the three components (fig.9.7, bottom). Gguto(0), Gerat(0) and Giiruet(0)
and give the length of respective correlations in terms of the particles’ ra-
dius. Gauio(0) = Equto = % is a single sphere’s correlation length which does
not depend on interactions. In general, it is a function of a particle’s shape
and density. —Gepar(0) = @&z is a linear function of particle’s concentra-
tion, where &z (2) = 22(9 — 81n(2)) ~ 3.55 is the correlation length of the
excluded volume of a single sphere. Gryuer(0) = @Estruct, Where Egpruer (see
(9.12)) is defined by mutual arrangement of the spheres. Multiple scattering
for that sample was very strong, yielding the cumulative scattering probability
G.(0) = 1.2 and true scattering probability AP(0) = 0.7, which is the total
depolarization level in fig.9.7.

The ratio %%Q = 0.2 corresponds to the rightmost point of the fig.9.6
where o = @7y = 0.27. For pure hard-sphere interaction at this concentration
the effect of the structural ordering is comparable to the effect of the excluded
volume.

P(z) bears structural information which allows straightforward interpre-
tation. The initial decay in fig. 9.7 coresponds to the correlations within a
single sphere. The subsequent minimum around 250 nm corresponds to the
excluded volume effect. The maximum at 400 nm corresponds to the first
nearest neighbour. Subsequent correlations are barely visible and the curve
reaches the saturation.

9.4 Charged colloids

9.4.1 Sample

Unlike sterically stabilized hard sphere colloids, charged ones can not be re-
dispersed after complete drying due to the irreversible aggregation (which was
confirmed by SESANS). They were prepared in a following way. The stock
solution [29] of silica spheres with R = 118 nm in CsH;, was left to sediment
for several weeks. Then the sediment was put into CgD19 (sample 3). Part
of the sample 3 was left to sediment for several weeks, then the supernatant
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solvent was removed and substituted again by pure CgDy; (sample 1). Part
of the sample 1 was left to sediment for several weeks again. The supernatant
solvent was removed and substituted by pure CsDis (sample 2). As a result
of these procedures the three samples had characteristics summarized in the
first five columns of the table 9.4.2. Samples 1 and 2 were put into cells 10mm
thick (neutron beam path), 20 mm wide and 40 mm high. The illuminated
area was restricted by a diaphragm 18 mm wide and 8 mm high. Sample 3
was in a cell 10 mm thick, 10 mm wide and 40 mm high, the diaphragm was
7.5 mm wide and 8.5 mm high.

9.4.2 ‘Results-

The screened Coulombic potential [4, 33]

is believed ! to describe interactions in charged colloids. The Debye length
™! defines the characteristic range of the interaction. If we had only pairwise
interactions the excluded diameter would apparently be proportional to the
Debye length b ~ x~!. The Debye length is determined by the concentration of
ions in a solvent. At the same time @ is affected by the presence of neighbours,
which decrease the excluded diameter due to steric limitations. An upper
limit is b ~ (I} = ¢ ;,%: where (I) is the average interparticle distance. The
competition of these two factors defines the resulting &. The ion concentration,
which greatly affects x~!, might differ from sample to sample and was not
controlled precisely. The effects of salinity on the potential and thus on the
structure are outside the scope of this paper.

Estimation of the effects of the excluded volume and mutual ordering can
be made from the comparison of G.;;(0) and Gyt (0). In all three cases
Gtruct(0) is negligibly small compared to G.q(0). This can be understood
looking at lower volume fractions on fig.9.6. The parameters characterizing
the samples are summarized in the table 9.4.2. The effective volume fraction
(volume fraction of the impearmeable shells) is obtained using

b 3
Peff = ¢ 3

Here the real space domain of SESANS demonstrates its advantage in the
ease of result interpretation of local structure. The initial decay corresponds to

Tt is a still debated issue, but it is outside of the scope of this paper
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Figure 9.8: Charged colloid at ¢ = 0.0072:
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Figure 9.9: Charged colloid at ¢ = 0.015:
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Figure 9.10: Charged colloid at ¢ = 0.08:
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Table 9.1: Charged colloids.

smpl ¢ D:H Psolvent Ap <l> <l> b b/2 Peff
N %:% x10°-L; x10"-L; 2R nm 2R nm

1 0.0072 95.3:4.7 5.84 3.44 41 970 3.5 826 031
2 0.015 92.8:7.2 5.67 3.27 3.2 760 2 472 0.12
3 0.08 60:40 3.57 1.17 1.84 435 1.8 425 047

the correlations within a single sphere, the subsequent minimum is the effect
of the excluded volume. In case of the sample 3 it is much more pronounced
than in the case of hard spheres even though the volume fraction is 4.5 times
lower. The nearest neighbour is virtually invisible.

9.5 Conclusion

SESANS allows straightforward interpretation of structure due to its real space
domain. The (SESANS) correlation function and length of the effective ex-
cluded volume is introduced and calculated analytically for spheres as a func-
tion of the excluded radius. The separation of the excluded volume correlations
as a first structural approximation allows to treat the experimental results on
charged colloids regardless of a particular interaction potential. We obtain the
excluded radius by a direct fit. The correlation length is proportional to the
cumulative scattering probability on the corresponding structural features. For
a dilute charged colloid the effect of the excluded volume greatly overshadows
the effect of the rest of the structure.

9.6 Appendices

9.6.1 Correlation function of the effective excluded vol-
ume

1 ifo<r<bp-2
Yo(r,0) + Yu(r,d) fb—2<r<b
Yp(r,0) — Yalr,b) ifb<r <b+2
0 ifbo+2<r

')’emcl(r; b) =

where
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Figure 9.11: ~eu(r,b) for b=2,b=4 and b = 6.
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9.6.2 (SE)SANS correlation function of the effective ex-
cluded volume

Gezcl(z-, b) =

2./(b—2)2 — 22

—Gp(z,b,b — 2) + Gp(z,b,b+ 2)

—Gn(z,b,b— 2) + Gn(z2,0.b)

+Gn(z,b,0) — Gp(z,b,0+2) ifo<z<b-2

—Gy(z,b,2) + Gp{z, 0,0+ 2)
—Galz,b,2) + G, (z,0,b)
+Gn(z,b,0) — Gp(z,b,b+2) ifb-2<2<b

_GP(vav Z) + GP(Zybab + 2)
—Gn(z,b,2) + Gn(2,0,b + 2) ifb<z<b+2

0 ifb+2<2

\

where

1
Gp(z,b,1) = 3940 [7\/'r2 — 22x

(320 + 3206 — 967 — 120b°r + 107° + 1572%) —
3 (384 — 44867 + 280b" + 2242° + 2806°2% — 352") x

In (T + \/77—?)}
and
Gn(z,b,r) = L [iMX
4480 |35
(—88200b" -+ 49006° + 588005°r — 5880b°r — 196006%r*+
4900b*r? — 24506°r® + 1176r* + 5886°r* — 20r° —
39200b%2% + 98006 2% — 3675b%rz* + 1568772 +
784b*r2z? — 24r%2% + 313621 + 1568b%2" — 32r°2" — 642°) —
3b% (—224b + 8b" — 5602% + 56b°2% + 352") x

In (r + M)]
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Figure 9.12: Gopq(z,b) for b=2,b=4 and b = 6.
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Figure 9.13: &4 (b)

9.6.3 Correlation length of the effective excluded vol-
ume

fcmcl(b) -
3

60 [4b(24 + 440° + b*)+
(b—2)*(b(b+2)(b+6) +6)In(b—2) +
(b+2)*(b(b—2)(b—6) — 6) In(b+2) —

2b°(b* — 28) In b]
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Summary

SESANS technique

e Is a real-space small-angle scattering device. It measures correlations in
one direction. The polarization mesured by SESANS is a fourier image
of the true scattering cross section measured by conventional SANS.

o Does not suffer from multiple scattering problem unlike conventional

SANS.
e Gives information about the structure of a sample in real space.
e Allows direct interpretation in terms of correlation functions.

e Due to its accessible size range fits ideally for colloidal systems.
SESANS measured quantities

e The real space formalism for the description of scattering is developed.

e Explicit relations between scattering cross section and conventional cor-
relation function from one hand and small-angle correlation function and
SESANS correlation function from the other hand are established. The
SESANS’ correlation function is a projection of conventional correlation
function along the neutron beam.

e The general parameters such as scattering length, Guinier radius and
scattering probability are calculated using SESANS correlation function.

o SESANS correlation functions are calculated for Gaussian coils, solid and
hollow spheres analytically.

e The complete theory of SESANS correlation functions is developed for
dense systems of spherical particles. In the framework of this formalism
the following quantities are introduced:
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— cross correlation function/length
— structural correlation function/length
— correlation function/length of overlapping spheres

~ correlation function/length of the excluded volume

Experiment

e Measurements on hard sphere colloids show that SESANS correlation

function provides information about correlations for lengths up to 1.5um
and easily takes into account multiple scattering, which was high in all
measured cases. The scattering density, volume fraction and the radius
of particles are determined from SESANS measurements. SESANS mea-
surements on a hard sphere colloid demonstrate very good agreement
with the theoretical curves for non-interacting spheres, a hard sphere
liquid and a random hexagonal close-packed structure.

SESANS is particulary effective to determine local structure, especially
in case of aggregation or attractive interactions. Increase or decrease of
correlations allows straightforward conclusions in those cases.

The structure of charged colloids at certain conditions is consistent with
the presence of attractive forces.

Separation of the excluded volume correlations as a first structural ap-
proximation allowes to treat the experimental results on charged colloids
regardless of a particular interaction potential. This approach allowes to
obtain the excluded volume by direct fit.




Samenvatting

De SESANS techniek

o [s een instrument voor kleine-hoek-verstrooiing in de reeéle ruimte. Men
kan er correlaties in één richting mee meten. De polarisatie gemeten met
SESANS is een Fourier-afbeelding van de ware verstrooiings doorsnede
zoals gemeten wordt met conventionele SANS.

o Heeft niet te lijden van het probleem van meervoudige verstrooiing zoals
conventionele SANS.

o Geeft informatie over de structuur van een sample in de reeéle ruimte.

o Laat rechtstreekse interpretatie toe van de resultaten in termen van cor-
relatiefuncties.

e Is door het bereikbare gebied van correlatielengtes ideaal geschikt voor
colloidale systemen.

Grootheden gemeten met SESANS

e Er is een reeéle ruimte formalisme ontwikkeld voor het beschrijven van
verstrooiing.

e Er zijn expliciete relaties afgeleid enerzijds tussen de verstrooiingsdoorsnede
en de conventionele correlatiefunctie en anderzijds tussen de ”small angle
correlation function” en de SESANS correlatiefunctie. Deze functie is de
projectie van de conventionele correlatiefunctie langs de richting van de
neutronen.

e Uitgaande van de SESANS correlatiefunctie worden de algemene param-
eters berekend, zoals de verstrooiingslengte, de Guinier straal en de ver-
strooiingskans.
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e De SESANS correlatiefuncties voor lichamen in de vorm van Gaussische
kluwen, massieve en holle cylinders worden analytisch uitgerekend.

e De gehele theorie voor de SESANS correlatiefunctie is ontwikkeld voor
dichte systemen van bolvormige deeltjes. In het kader van.dit formalisme
zijn de volgende grootheden ingevoerd:

— de cross correlatie functie/lengte
— de structurele correlatie functie/lengte
— de correlatiefunctie/lengte voor overlappende bollen

— idem voor het uitgesloten volume
Experiment

e Metingen aan harde bollen colloiden laten zien dat de SESANS corre-
latiefunctie informatie geeft over correlaties over afstanden tot 1.5 ym en
dat de meervoudige verstrooiing - die in alle gemeten gevallen hoog was
- gemakkelijk kan worden meegenomen in de analyse. Uit de SESANS
metingen zijn de verstrooiingslengtedichtheid, volumefractie en de straal
van de deeltjes bepaald. SESANS metingen aan harde bollen colloiden
vertonen een zeer goede overeenstemming met de theoretische krommen
voor niet-wisselwerkende bollen, voor een vloeistof van harde bollen en
voor de random hexagonale dichtste stapeling structuur.

e SESANS is uitzonderlijk effectief in het bepalen van lokale structuur,
in het bijzonder in het geval van samenklontering van deeltjes of van
aantrekkende interacties. Een toe- of afname van correlaties laat recht-
streekse conclusies in deze gevallen toe.

e De structuur van geladen colloiden is onder bepaalde voorwaarden con-
sistent met de aanwezigheid van aantrekkende krachten.

e Het concept van correlaties in het uitgesloten volume, als eerste structu-
urbenadering, liet toe om de experimentele resultaten aan geladen col-
loiden te behandelen, ongeacht een specifieke interactie potentiaal. Deze
benadering maakt het mogelijk om door rechtstreeks fitten het uitges-
loten volume te bepalen.




Bibliography

[1] P. V. Rajamani B. V. R. Tata, E. Yamahara and N. Ise. Phys.Rev.Lett,
78:2660, 1997.

[2] W.G. Bouwman, Q. Uca, S.V. Grigoriev, Kraan W.H., J. Plomp, and
M.T. Rekveldt. First quantitative test of spin-echo small-angle neutron
scattering. Applied Physics A Materials Science Processing, A74:115-117,
2002.

[3] V. Degiorgio, R. Piazza, and T. Bellini. Il Nuovo Cimento, 16D:1091-
1101, 1994.

[4] B. V. Derjaguin and L. Landau. Acta Physicochimica, 14:633, 1941.

[5] edited by A.K. Arora and B.V.R. Tata. Ordering and Phase Transitions
in Charged Colloids. VCH,New York, 1996.

[6] L. A. Feigin and D. I. Svergun. Structure analysis by small-angle X-ray
and neutron scattering. Plenum Press, New York, 1987.

[7] O Glatter. Acta Phys. Austr., 52:243-256, 1980.

[8] O. Glatter and O. Kratky, editors. Small-Angle X-ray Scattering. New
York: Academic Press, 1982.

[9] A. Guinier and G Fournet. Small-angle scattering of X-rays. New York:
Wiley, 1935.

[10] K.R Hall. Journal of Chemical Physics, 57:2252-2254, 1970.

[11] J.P Hansen and I.R. McDonald. Theory of Simple Liquids. San Diego:
Academic Press, 1991.

[12] S.M. King. Small-angle Neutron Scattering. John Wiley & Sons Ltd,
1999.



106 BIBLIOGRAPHY

[13] D. Kofke and P. Bolhuis. Phys.Rev.E, 59:618-622, 1999.
[14] W. Kranendonk and D. Frenkel. Molecular Physics, 72:679-697, 1991.

(15] LM. Krouglov, T. de Schepper, W.G. Bouwman, and M.T. Rekveldt.
Journal of Applied Crystallography, 36:117-124, 2003.

[16] T. Krouglov, W.G. Bouwman, J. Plomp, M.T. Rekveldt, G.J. Vroege,
A.V. Petukhov, and D.M.E. Thies-Weesie. J.Appl.Cryst., 36:1417-1423,
2003.

[17] Timofey Kruglov. Correlation function of the excluded volume. 2005.
submitted to Journal of Applied Crystallography.

[18] Timofey Kruglov. Spin-echo small-angle neutron scattering for dense sys-
tems of spheres. 2005. submitted to Journal of Applied Crystallography.

[19] F. Mezei, C. Pappas, and T. Gutberlet, editors. Neutron Spin Echo,
Lecture Notes in Physics, volume 601. Berlin: Springer, 2003.

[20] R. Peierls. Surprises in Theoretical Physics. Princeton University Press,
Princeton, NJ., 1979.

[21] A. Petukhov, L. Dolbnya, D. Aarts, G. Vroege, and H. Lekkerkerker.
Phys.Rev. Lett., 90:028304, 2003.

[22] A. Petukhov, I. Dolbnya, E. de Hoog, K. Kassapidou, G. Vroege, W. Bras,
and H. Lekkerkerker. Phys.Rev.Lett., 88:208301, 2002.

[23] P. N. Pusey. Colloidal suspensions, pages 763-942. Amsterdam: Elsevier,
1991.

[24] M.T. Rekveldt. Nucl. Instrum. Methods Phys. Res. B, 114:366-370, 1996.

[25] M.T. Rekveldt, W.G. Bouwman, Kraan W.H., O. Uca, S. Grigoriev,
K Habicht, and T Keller. Neutron spin echo, lecture notes in physics.
In Mezei et al. [19], pages 87-99.

[26] M.T. Rekveldt, W.G. Bouwman, Kraan W.H., O. Uca, S. Grigoriev, and
R. Kreuger. Neutron spin echo, lecture notes in physics. In Mezei et al.
[19], pages 100-115.

[27) J. Schelten and W. Schmatz. Multiple-scattering treatment for small-
angle scattering problems. Joural of Applied Crystallography, 13:385-390,
1980.




BIBLIOGRAPHY 107

[28] I. Sogami and N. Ise. J. Chem. Phys., 81:6320-6332, 1984.

[29] D. M. E. Thies-Weesie, A. P. Philipse, G. Naegele, B. Mandl, and R. Klein.
J. Colloid Interface Sci., 176:43-54, 1995.

[30] G. J. Throop and R. J. Bearman. Journal of Chemical Physics, 42:2408—
2411, 1965.

[31] O. Uca, W.G. Bouwman, and M.T. Rekveldt. Model calculations. Journal
of Applied Crystallography, 36:109-116, 2003.

[32] Léon van Hove. Correlations in space and time and born approximation
scattering in systems of interacting particles. Physical Review, 95:249-262,
1954.

[33] E. J. Verwey and J. Th. Overbeek. Theory of the Stability og Lyophobic
Colloids. Elsevier, New York, 1948.

[34] S. R. Williams, I. K. Snook, and W. van Megen. Phys. Rev. E, 64:021506,
2001.

[35] A. J. C. Wilson. Proc. Roy. Soc. A, 180:277-285, 1942.

[36] F. Zernike and J.A. Prins. Z.Physik, 41:184 194, 1927.




108 BIBLIOGRAPHY




Acknowledgements

This work could not be accomplished without help of many people.

Wim Bouwman gave me the opportunity to start this project. His scientific
support and friendly personality made me believe in the existence of an “ideal
boss”. I learned a lot from him and my transformation from a student to a
scientist is to a great extent his credit.

SESANS would not exist without Theo Rekveldt, and so the possibility to
write this thesis based on this technique. To set it up and running is an enor-
mous task, which was carried on the shoulders of Jeroen Plomp. I would like to
thank Jeroen for being always supportive in performing measurements. With
Ignatz de Schepper I engaged in numerous controversial discussions, which
helped me clarify many ideas. Wicher Kraan inspired me by his restless atti-
tude which he exerted on me every time we drink coffee.

Of course the measurements in this thesis would not have been done with-
out samples provided by the crew from van’t Hoff lab: Andrei Petukhov, Do-
minique Thies-Weesie and Gert Jan Vroege. Ruben Abellén helped me to use
the facilities in IRI for sample preparation.

A special thank to Serguei Grigoriev and Natasha Grigorieva. Their pres-
ence helped me stay in touch with a spirit of my native scientific community.



110 Acknowledgements




List of Publications

1. Timofei Krouglov, Ignatz M. de Schepper, Wim G. Bouwman and M.
Theo Rekveldt.
Real-space interpretation of spin-echo small-angle neutron scattering.
Journal of Applied Crystallography, (2003), 36, 117-124.

2. Timofei Krouglov, Wicher H. Kraan, Jeroen Plomp, M. Theo Rekveldt
and Wim G. Bouwman.

Spin-echo small-angle neutron scattering to study particle aggregates.
Journal of Applied Crystallography, (2003), 36, 816-819.

3. M.Th.Rekveldt, W.G.Bouwman, W.H.Kraan, T.V.Krouglov, J.Plomp.
Larmor precession applications: magnetised foils as spin flippers in spin-
echo SANS with varying wavelength.

Physica B, (2003), 335, 164-168.

4. W.H.Kraan, J.Plomp, T.V.Krouglov, W.G.Bouwman and M.Th.Rekveldt.
Ferromagnetic foils as monochromatic -flippers for application in spin-
echo SANS.

Physica B, (2003), 335, 247-249.

5. T. Krouglov, W. G. Bouwman, J. Plomp, M. T. Rekveldt, G. J. Vroege,
A. V. Petukhov and D. M. E. Thies-Weesie.
Structural transitions of hard-sphere colloids studied by spin-echo small-

angle neutron scattering.
Journal of Applied Crystallography, (2003), 36, 1417-1423.

6. Wim G. Bouwman, Timofei V. Krouglov, Jeroen Plomp, S.V. Grigoriev,
W.H. Kraan and M. Theo Rekveldt.
SESANS studies of colloid phase transitions, dairy products and polymer
fibers.
Physica B, (2004), 350, 140-146.



112 List of Publications

7. Wim G. Bouwman, Wouter Stam, Timofei V. Krouglov, Jeroen Plomp,
Serguei V. Grigoriev, Wicher H. Kraan, M. Theo Rekveldt.

SESANS with a monochromatic beam or with time-of-flight applied on
colloidal systems.
NIM A, (2004), 529, 16-21.

8. Timofey Kruglov, Wim G. Bouwman, Jeroen Plomp, M. Theo Rekveld,
gert jan Vroege, Andrei V. Petukhov and Dominique M.E.Thies-Weesie.
Structure of hard-sphere colloid observed in real space by Spin-echo Small-
angle Neutron Scattering.

Physica B, (2005),357, 452-455.

9. Timofey V. Kruglov, Wim G. Bouwman, Ignatz M. de Schepper, M.
Theo Rekveldt.

Application of Spin-echo Small-angle Neutron Scattering to study the
structure of charged colloids.
Physica B, (2005),356, 218-222.

10. Wim G. Bouwman, Timofey Kruglov, Jeroen Plomp, M. Theo Rekveldt.
Spin-echo methods for SANS and neutron reflectometry.
Physica B, (2005), 357, 66-72.

11. F.M. Mulder, J. Plomp, H.G. Schimmel, T.V. Krouglov, W.G. Bouwman
and M.T.Rekveldt.
Spontaneous aligned domains of single walled nanotube bundles on pum
length scales
in preparation.

12. S.V.Grigoriev, M.Th.Rekveldt, T. Kruglov, W.H.Kraan, W.G. Bouw-
man.
Spin Echo SANS for magnetic samples.
in preparation.

13. Timofey Kruglov.
Correlation function of the excluded volume.
Journal of Applied Crystallography, (2005), in press.

14. Timofey Kruglov.

Spin-Echo Small-Angle Neutron Scattering for dense systems of spheres.
Journal of Applied Crystallography, (2005), in press.




List of PPublications 113

15. Timofey Kruglov, Wim G. Bouwman and Jeroen Plomp.
Correlation function of the effective excluded volume and its application
to charged colloids studied by Spin-echo Small-angle Neutron Scattering.

in preparation.




114 List of Publications




Curriculum Vitae

Timofey Vladislavovich Kruglov (Timofei V. Krouglov) was born on July 13,
1975 in Narva, Estonia. He graduated in June 1992 with a gold medal (cum
laude) from the Narva’s school N1 with advanced physics and math. During
his scholar years he had participated in all levels of mathematical, physical
and chemical olympiads up to the International Physics Olympiad in Helsinki,
Finland, July 1992. In September 1992 he moved to Saint-Petersburg, Russia
to pursue his study at Saint-Petersburg State University. There he obtained
bachelor (1996) and master (1998) degrees in physics. His bachelor’ project
was devoted to the rotational viscosity of liquid crystals and master’ project
to the optical birefringence induced by the external electric field (Kerr effect)
in solutions of polymers. In 1999 he began a PhD project devoted to the light
scattering in confined liquid crystals at the University of Puerto Rico. He quit
in 2001. In August 2001 he begins his PhD project “Spin-Echo Small-Angle
Neutron Scattering applied to colloidal systems” at Interfacultair Reactor In-
stituut in Delft, Netherlands. The results of this research are presented in this
thesis.













