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Abstract
The future prospect of healthcare workers in the Netherlands is worrisome, due to stressful working conditions
and large expected personnel shortages. High quality personnel rosters have been shown to be able to alleviate
this problem. The problem of creating personnel rosters that are of high quality in terms of how much they
satisfy constraints regarding labor rules, work demand and personnel preferences, is denoted by the nurse rostering
problem (NRP). This study aims to find an algorithm to solve the NRP that is suitable for implementation in a
general automatic shift scheduler.

Firstly, literature on the NRP is reviewed, from which we conclude that single-solution based meta-heuristics
are most suitable for this purpose. A categorization is made of different algorithm components, that are varied
among different methods, namely construction methods, neighborhood structures, overall frameworks and per-
turbation methods. Secondly, based on the conclusions from the literature review, two construction methods, i.e.
Construction-per-shift and Construction-per-employee, and two overall frameworks, i.e. Simulated Annealing
and Variable Neighborhood Search, are implemented. Experiments are performed on nine data instances from
a Dutch hospital, for which the problem description, in terms of hard and soft constraints, is drawn up to re-
flect real-world target cases. Different variations within the implemented methods are tested, from which general
conclusions are drawn, mostly on the use of neighborhood structures within the overall frameworks.

Overall, Construction-per-shift greatly outperforms Construction-per-employee, Simulated Annealing slightly
outperforms Variable Neighborhood Search, and the performance of the overall frameworks is largely independent
of the preceding construction method. Based on the results, we conclude that both Simulated Annealing and
Variable Neighborhood Search are stable and general methods, that can produce high quality rosters within a
short time, making them suitable for implementation in a general automatic shift scheduler.

Potential future improvements could be found in additional algorithm adjustments, such as adaptive neigh-
borhood probabilities for Simulated Annealing, targeted perturbation for Variable Neighborhood Search, or hard
constraint relaxations.
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1
Introduction

1.1. Societal relevance
The future prospect of healthcare workers in the Netherlands is worrisome. Studies by Statistics Netherlands
(Centraal Bureau voor de Statistiek) have shown that healthcare workers have higher sick leave percentages than
averaged over all sectors (7.3% compared to 5.3% in 2023, even more so in nursing specifically with 8.9% (CBS,
2024)), their job satisfaction is significantly impaired by the amount of stressful work and the lack of influence
on their working hours, and half of them considered the workload too high in 2022 (CBS, 2022). Furthermore, a
shortage of 195,000 healthcare employees is expected for 2033 (Helder, 2023). Together, these different factors
can easily be imagined to form a downward spiral in overall healthcare working conditions.

Results reported by Rosenström et al. (2021), and listed by Xu and Hall (2021) suggest that more balanced and
regular personnel shift schedules can reduce the expected employee sickness absence and fatigue levels. These
findings motivate the development of methods that are able to generate high-quality personnel rosters, thereby
improving the working conditions of healthcare workers.

1.2. Problem description
The problem of creating personnel rosters that are of high quality in terms of how much they satisfy constraints
regarding labor rules, work demand and personnel preferences, is denoted by the nurse rostering problem (NRP).
A roster for a given planning period consists of assignments for each nurse and each day in the planning period,
whether that nurse has to work on that day or has a day off. On an assigned working day, a shift type and a
skill type have to be specified. A shift type is defined by a start and end time. A skill type refers to a specific
skill, qualification or position, that each employee does or does not have, e.g. the position of head nurse. The
work demand is given by the coverage requirements, that specify how many nurses are required for each shift
and skill type on each day of the planning period. The nurses can have both individual and collective contractual
agreements, that specify, for example, minima and maxima of working hours, numbers of weekends worked or
consecutive shifts or days off. Also, the shift types a nurse can be assigned to can be part of an individual contract.
In the ideal case, one could always create rosters that satisfy all the given constraints. However, in practice this
is generally not possible. Therefore, the constraints are typically divided in two categories, i.e. hard constraints
and soft constraints. The hard constraints are those constraints that have to be satisfied in order for a roster to be
acceptable by the user. The soft constraints are then those constraints that may be violated when necessary, as
long as the hard constraints are satisfied.

Mathematically, the NRP can be formulated as a combinatorial optimization problem of assigning nurses to
working days, shift types and skill types. The feasible region is defined as the set of solutions that satisfy all
hard constraints. The objective function, in the context of the NRP also called the roster penalty, is given by the
weighted sum of soft constraint violation penalties, where the weights reflect the relative importance of the soft
constraints.

1.3. Complexity NRP
Den Hartog et al. (2023) showed that an NRP with 4 shift types (including day-off), coverage constraints, day-
off requests and forbidden shift sequences of length 2 is strongly 𝒩𝒫-hard. Here, a forbidden shift sequence of

1
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length 𝑘 is a combination of 𝑘 shift types that may not be assigned on 𝑘 successive days. For example, a forbidden
shift sequence of length 2 could be that a night shift may not be followed by a day shift on the next day. Since
most practical cases have many more shift types and constraints, we can assume that real-world nurse rostering
problems are strongly 𝒩𝒫-hard.

1.4. ORTEC
This study was done in cooperation with, and under supervision of ORTEC. ORTEC is a company aimed at making
a positive societal impact using mathematics, by offering technical consulting services, developing commercially
available optimization software, and by conducting research on the underlying algorithms. This is done in a
variety of sectors, among which transportation, finance, energy and healthcare.

1.5. Typical target cases
Because the performance of an algorithm is highly dependent on its application, it is relevant to state the charac-
teristics of a typical target case. These characteristics are provided by ORTEC, based on their experience with
customers of their scheduling software, and are shown in Table 1.1. The most important hard constraints that are
currently considered are given by labor rules from the Dutch Working Hours Act (Arbeidstijdenwet, 2022, §5.2).

Table 1.1: Characteristics of typical target cases.

Characteristic Typical target case
Number of employees 50-150
Number of shift types 3-10
Number of skill types 5-20
Planning period 1 month

Hard constraints Labor rules
Contractual working hours
Required skill levels met

Soft constraints Coverage requirements
Requested days/shifts on/off
Preferred shift and day-off sequence lengths

1.6. Research questions
Whereas some literature can be found of researchers applying a shift scheduling algorithm to a real-life hospital
case, it is not feasible to supply a wide spread of hospitals with shift scheduling software in this way. In order
to supply a wide variety of potential users, more general and widely available scheduling software is required.
The aim of this research is to find out which algorithm would be most effective in a general, widely applicable
automatic shift scheduler. Such an algorithm should have at least the following characteristics:

• stability: results from different runs on the same instances should not drastically vary, in order to guarantee
its reliability;

• generality: the algorithm is able to handle a wide variety of problem specifics and input data, such as the
objective function, which (hard and soft) constraints are required, the number of shift types and the number
of employees;

• give high quality rosters: most of the scheduling is still done manually, partly because schedulers often
think that they ‘know what is going on’ and an algorithm cannot incorporate that. Previous work by Van
Rooijen (2023) has shown that nurse preferences can be incorporated in the NRP. In order for schedulers
to become convinced of the relevance of an automatic scheduler, it should be able to generate high quality
rosters, while incorporating these employee preferences;

• short computation times: the algorithm is able to generate rosters within a reasonable amount of time.
Note that, in ORTEC’s experience, users can have different views on what is a reasonable amount of time,
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based on how the algorithm is used. Some users run the algorithm once per scheduling period, and therefore,
accept long run times of multiple hours. Others run the algorithm multiple times, to see the effect of changes
in the input, and thus, require a short run time. To account for the latter user group, the algorithm should
be able to generate rosters in the timescale of minutes.

In this context, we formulate the following research question:

What algorithm is suitable for implementation in a commercial automatic shift scheduler?

To answer this question, we first require answers to the following subquestions:

• What is the state-of-the-art in algorithms to solve the NRP?

• How do different combinations of promising algorithm components compare in terms of solution quality,
when applied to real-world target cases?



2
Literature review

2.1. Literature search approach
First, relevant literature reviews on the NRP were sought for, to get an overview of the field. The search en-
gines Scopus and Google Scholar were used. Next, relevant research articles were found in the relevant reviews
and by considering articles referenced by those articles or by which they are cited. Finally, Scopus and Google
Scholar were searched with combinations of search terms including - but not limited to - “nurse rostering”, “shift
scheduling”, “algorithm”, “approach”, “solution method”. Mostly articles published no earlier than 2008 were
considered. Further filtering was done based on the obtained results and how much the applications resembled
the typical target applications.

2.2. Benchmarks
Many algorithms found in literature are tested on sets of benchmark instances. Three benchmarks are found to be
relevant, based on how much they resemble the typical target cases and how much they are used in literature. Two
of them come from the International Nurse Rostering Competitions: INRC-I and INRC-II. The third is the Shift
Scheduling benchmark set. The benchmark sets are described below, and their characteristics are summarized in
Tables 2.1 and 2.2.

2.2.1. INRC-I
In 2010, the first International Nurse Rostering Competition (INRC-I) was written out by Haspeslagh et al. (2010).
The problem to be solved by the competitors was to create rosters that satisfy the hard constraints of single-shift-
per-day and required shift coverage, while minimizing the penalties of soft constraints violations. The competition
consisted of solving sixty instances, divided over three tracks: sprint, medium and long. Time limits of 10 seconds,
10 minutes and 10 hours were set on the respective tracks. See Tables 2.1 and 2.2 for further characteristics and
constraints, and the report by Haspeslagh et al. (2014) for the complete formulation, competition regulations and
results. Also after the competition was concluded, the INRC-I benchmark was often used by authors to test the
performance of their algorithms. Note that this benchmark has coverage requirements as hard constraints, instead
of labor rules, which are typical in the target cases. The instances are available at the INRC-I website1.

2.2.2. INRC-II
The second International Nurse Rostering Competition (INRC-II) was held in 2014-2015, written out by Ceschia
et al. (2015). Competitors were challenged to devise algorithms to solve a multi-stage NRP. The hard constraints
were given by a minimum shift coverage including required skill types, forbidden shift type successions and
single-shift-per-day. The objective was to minimize the total penalty for violations of soft constraints. In the
multi-stage setting, the instances were solved one week at a time, without knowledge on the successive weeks.
In total, 88 instances were used in the competition, and the time limit per week in the planning horizon was
set between 5 and 50 minutes, specified by the number of employees in the instance. Tables 2.1 and 2.2 show
further characteristics of the INRC-II benchmark, and we refer to the report by Ceschia et al. (2019) for the full
description of the competition procedures and results. After the competition, the INRC-II benchmark was used
1https://nrpcompetition.kuleuven-kulak.be/instances-results/

4
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both in its multi-stage formulation, as well as in a static version, which has the same problem formulation, but
leaves out the multi-stage setting by considering the whole planning horizon at once. Note that, similar to INRC-I,
this benchmark has mostly coverage requirements as hard constraints, instead of labor rules, which are typical in
the target cases. The instances are available at the INRC-II website2.

2.2.3. Shift Scheduling
Curtois and Qu (2014) introduced the Shift Scheduling benchmark instances, which were designed for their re-
semblance to real-world cases and ease of use. The underlying problem is to create rosters that minimize penalties
resulting from coverage shortages and surpluses, and ungranted day-on/off requests. The set of hard constraints
consists of single-shift-per-day, fixed days off, forbidden shift type successions and minima and maxima of work-
ing hours, weekends and consecutive shifts and days off. Note that all hard constraints can be checked for each
employee separately. The instances vary greatly in size. The smallest instance has a planning period of two weeks,
with 8 employees and 1 shift type, whereas the planning periods in the largest instances span a full year, with up to
150 employees and 32 shift types. Note that skill types are included in the shift types in this benchmark. Further
characteristics of the Shift Scheduling benchmark are shown in Tables 2.1, 2.2 and A.6. The Shift Scheduling
benchmark is frequently used in recent studies to test and compare algorithm performances. Note that although
the type of hard constraints in this benchmark is similar to those in the typical target cases, the number of soft
constraints is relatively low. The instances are available at the shift scheduling benchmarks website3.

Table 2.1: Hard and soft constraints of the problem formulations used in the INRC-I, INRC-II and Shift Scheduling benchmarks.

INRC-I INRC-II Shift Scheduling
Hard constraints Hard constraints Hard constraints
Single shift per day Single shift per day Single shift per day
Required shift coverage Minimal shift coverage Forbidden shift type successions

Required skill levels met Max # of shifts
Soft constraints Forbidden shift type successions Min/max # of working hours
Required skill levels met Min/max # of consecutive working days
Min/max # of shifts Soft constraints Min/max # of consecutive days off
Min/max # of consecutive working days Desired shift coverage Fixed days off
Min/max # of consecutive days off Min/max # of shifts
Max # of working weekends Min/max # of consecutive working days Soft constraints
Max # of consecutive working weekends Min/max # of consecutive days off Coverage shortage
Complete weekends Max # of working weekends Coverage surplus
Identical weekend shifts Complete weekends Day-on/off requests
Min # of days off after night shift Day-on/off requests
Day-on/off requests Shift-on/off requests
Shift-on/off requests
Alternative skills
Unwanted shift patterns

Table 2.2: Characteristics of the INRC-I, INRC-II and Shift Scheduling benchmark instances.

Characteristic INRC-I INRC-II Shift Scheduling
Number of employees 10-50 30-120 8-150
Number of shift types 3-5 4 1-32 (incl. skill types)
Number of skill types 1-2 4 -
Planning horizon 4 weeks 4-8 weeks 2-52 weeks
Setting Single-stage Multi-stage Single-stage

2https://mobiz.vives.be/inrc2/?page_id=20
37http://www.schedulingbenchmarks.org/nrp/
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2.3. Algorithms
The NRP is a widely studied problem, and many different approaches for obtaining high-quality rosters have been
developed. Comprehensive reviews are given by Burke et al. (2004) and, more recently, by Ngoo et al. (2022).
Other recent reviews that (partly) cover the NRP are drawn up by, Özder et al. (2020), Lan et al. (2021) and Xu
and Hall (2021). Here, we summarize the main contributions found in literature, divided over the categories of
meta-heuristics, hyper-heuristics and mathematical optimization.

2.3.1. Meta-heuristics
Variable Neighborhood Search Variable Neighborhood Search (VNS) is a meta-heuristic framework, where
solutions are iteratively improved by applying moves sampled from various neighborhood structures. In the con-
text of the NRP, an example of a neighborhood structure can be all moves where a single shift assignment of
one nurse is swapped with the shift assignment of another nurse on the same day. In most cases, a perturbation
mechanism is activated after a number of iterations without improvement, in order to escape from local optima.
Many different variants of VNS have been applied to the NRP. Lü and Hao (2012) developed an adaptive VNS,
which focused more on diversification as opposed to intensification, if there have been few improvements in re-
cent iterations, and vice versa. Tassopoulos et al. (2015) implemented a two-phase approach. First, the working
days and days off were determined for all employees, followed by the assignment of specific shift types to the
fixed working days. Zheng et al. (2017) developed a randomized VNS, where in each iteration, first one of two
neighborhoods is chosen randomly, followed by a move in the chosen neighborhood. Meignan and Knust (2019)
introduced a neutrality-based Iterative Local Search (ILS) variant. The authors state that in the NRP, local optima
are often part of plateaus of neighboring solutions of similar quality. Thus, a plateau exploration is proposed
after the local search, in order to escape local optima without significantly degrading the solution. When applied
to the INRC-I benchmark, Lü and Hao (2012), Tassopoulos et al. (2015), Zheng et al. (2017) and Meignan and
Knust (2019) obtain comparable, and competitive results. Notably, the randomized VNS produces the most stable
results among these approaches, in terms of standard deviation after multiple runs.

Abdelghany et al. (2021a) combined a VNS with a dynamic programming method within a ruin-and-recreate
perturbation framework. In another approach, Abdelghany et al. (2021b) proposed a two-stage VNS approach,
using the same neighborhoods. The first stage aims to minimize the coverage shortages and surpluses, using
coverage-focused neighborhoods. In the second stage, the solution is further improved with respect to all soft
constraint violations. Applied to the Shift Scheduling benchmark, both approaches produce competitive results,
with the single-stage method outperforming the two-stage version. Goh et al. (2022) developed an ILS method,
in which a Monte Carlo Tree Search is implemented to quickly find an initial feasible solution, which is then
improved in the ILS. On the Shift Scheduling benchmark, strong results are obtained.

Deviating from standard VNS approaches, Burke et al. (2013) proposed a Variable Depth Search (VDS)
variant. In the VDS, multiple neighborhood swaps are chained together, in order to find compound moves that
collectively improve the solution. Applied to the INRC-I and Shift Scheduling benchmarks, reasonably good
results are obtained.

Simulated Annealing Ceschia et al. (2020) developed a two-stage Simulated Annealing approach to solve the
NRP. In the first stage, moves are applied until a feasible solution is found, allowing moves to infeasible solutions.
The second stage aims to improve the solution with respect to the soft constraint penalties, while remaining
feasible. Their approach is applied to the static INRC-II benchmark, and achieves competitive results. A single-
stage variant of the algorithm was later applied by Ceschia et al. (2023) to 34 real-world instances from Italian
hospitals, where it was able to obtain good results.

Population-based local search Abuhamdah et al. (2021) introduced a population-based local search method.
First, an initial population of solutions is initialized, each with a direction value, which tracks the amount of
improvement and degradation of the solution quality. In each iteration, a local search is applied to the solution
with the highest direction value, i.e. the solution which has been improved the most. If a solution has not been
improved over a specified number of local search iterations, it is replaced by the best solution found so far, and
perturbed for diversification. A Multi-Neighborhood Particle Collision Algorithm combined with an Adaptive
Randomized Descent Algorithm (MPCA-ARDA) is used as the local search technique. MPCA-ARDA can accept
worsening solutions, but only up to a certain threshold, which is determined by an average of recently accepted
solution qualities. Very competitive results are reported for the INRC-I benchmark, albeit under relaxed time
limits.
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Harmony Search Algorithms Harmony search algorithms are population-based methods that imitate the pro-
cess of musical improvisation. First, a population of solutions is initialized, the so-called harmony memory. Then,
new solutions are created in an iterative framework, built up from parts of the solutions in the harmony memory
and random assignments. Such a newly created solution is then improved by pitch adjustment, i.e. a local search.
Finally, the harmony memory is updated, by adding the newly created solution, and subsequently removing the
worst solution. Hadwan et al. (2013) implemented a harmony search algorithm for the NRP, and obtained rea-
sonably good results on a set of old benchmark cases. Awadallah et al. (2014, 2017) developed several variants of
harmony search. In the best performing variant, the pitch adjustment was replaced by an intensive hill climbing
local search method. Reasonably good results are obtained on the INRC-I benchmark instances.

Bee Colony Optimization Inspired by the foraging strategy employed by bee colonies, bee colony optimization
algorithms are population-based methods where a parallelized local search is combined with global information
sharing. First, a population of solutions is initialized, the so-called food source memory. Then, in an iterative
process, first all solutions in the food source memory are improved by the employer bees, i.e. a local search for
each solution. Among the improved solutions by the employer bees, the onlooker bees probabilistically choose a
solution from the food source memory, with higher probability for high quality solutions, to which an extra round
of improvements is applied. Awadallah et al. (2015) implemented bee colony optimization, where the employer
bees were replaced by a hill climbing local search. Applied to the INRC-I benchmark, reasonably good results
are obtained.

Ant Colony Optimization Ant Colony Optimization algorithms follow the behavior that ants exhibit in their
collective search for food. The ants perform individual explorations in search for food, and report their find-
ings by secreting pheromones on the way back to the colony: the better the quality of the food source, the
more pheromones are secreted. Subsequent ants are more likely to explore paths with more pheromones. The
pheromones evaporate over time, ensuring continued diversification of the search. Jaradat et al. (2019) proposed
an ant colony optimization approach, where the exploration is guided not only by the pheromones, but also by a
memory of elite solutions. Applied to the INRC-I benchmark, competitive results are obtained.

2.3.2. Hyper-heuristics
Hyper-heuristic algorithms are characterized by employing a procedure that iteratively selects low-level heuristics
to be applied to the solution. Kheiri et al. (2021) implemented a hidden Markov model to select effective sequences
of different swapping neighborhoods and ruin-and-recreate mechanisms. Their approach came in third place in
the INRC-II competition, and ranked first among both the methods without an IP solver and those that produced
a feasible solution in each run.

2.3.3. Mathematical optimization
In the category of mathematical optimization (MO), we consider all algorithms which are based mainly on integer
programming (IP) techniques. This includes both methods that solely use IP, and so-called matheuristics, that
combine an MO technique with a heuristic or meta-heuristic approach.

Several MO approaches have been shown to be able to generate high quality solutions to nurse rostering
problems. Burke and Curtois (2014) developed a branch-and-price method that was able to obtain the optimal
solution in many of the instances of the INRC-I. However, when applied to the Shift Scheduling benchmark, it
finds good solutions for the smaller instances, but does not manage to find a feasible solution for most medium
sized and large instances before it runs out of memory.

Valouxis et al. (2012) developed a two-phase approach, where first the employees are assigned to working
days, and subsequently, with the working days fixed, to specific shift types. Their algorithm was the winner of
the INRC-I. Both Römer and Mellouli (2016) and Legrain et al. (2020b) formulate the NRP as a (network-)flow
model. Römer and Mellouli (2016) solved it directly with an IP solver, whereas Legrain et al. (2020b) applied
a branch-and-price approach. Römer and Mellouli (2016) and Legrain et al. (2020b) obtained first and second
place in the INRC-II, respectively. However, even though they received the best scores in the competition, both
algorithms did not succeed in finding a feasible solution in each run.

Other approaches hybridize mathematical optimization techniques with other heuristic or meta-heuristic meth-
ods. Burke et al. (2010) combined IP with variable neighborhood search, such that a feasible solution is generated
by an IP solver, which is then improved by a VNS. Rahimian et al. (2017) integrated the IP solver in a ruin-and-
recreate framework within a VNS. Finally, the best solution obtained in the VNS is fed into the IP solver, in order
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to improve the overall solution. This allowed their approach to obtain very good results for most of the instances in
the Shift Scheduling benchmark. Only for the largest instances, the results were poor. Chen et al. (2023) used an
approach similar to Rahimian et al. (2017), including an IP-based ruin-and-recreate framework. However, instead
of a traditional VNS, they employed a deep neural network to choose the neighborhood used in each iteration.
Good results were obtained when applied to the Shift Scheduling benchmark. Turhan and Bilgen (2020) presented
a combination of fix-and-relax, Simulated Annealing and fix-and-optimize. An initial solution is generated by
decomposing the problem and solving the sub-problems with the fix-and-relax mechanism. Simulated Annealing
iterations and fix-and-optimize were then applied in an alternating fashion to improve the solution. Both the fix-
and-relax and the fix-and-optimize mechanisms used an IP solver to construct the solution. Applied to the small
and medium sized instances of the Shift Scheduling benchmark, competitive results are obtained.

2.3.4. Comparison of experimental results
Experimental results on the INRC-I and Shift Scheduling benchmarks are shown in Appendix A. Note that for
the many instances in the INRC-I benchmark, best known solutions are obtained more often than not by compet-
itive methods. Therefore, performances are often compared based on the number of instances on which the best
known solution is found. As can be seen in Table A.5, the population-based methods by Jaradat et al. (2019) and
Abuhamdah et al. (2021) performed very well on the INRC-I benchmark. However, it is hard to estimate how
much this was influenced by their time limits, which were unreported and relaxed, respectively. Furthermore, the
VNS variants by Lü and Hao (2012), Tassopoulos et al. (2015), Zheng et al. (2017) and Abdelghany et al. (2021a)
obtained good results. Compared to the other methods, the VDS by Burke et al. (2013), the IP-based approach by
Valouxis et al. (2012) and the population-based methods by Awadallah et al. (2015) and Awadallah et al. (2017)
were not competitive. Meignan and Knust (2019) are not included in the tables for the INRC-I benchmark, since
they only reported their average results and standard deviations. They obtained a better average result in only one
instance, compared to Zheng et al. (2017). Standard deviations were reported by Lü and Hao (2012), Tassopou-
los et al. (2015), Awadallah et al. (2015), Awadallah et al. (2017), Zheng et al. (2017), Jaradat et al. (2019) and
Meignan and Knust (2019), among which Zheng et al. (2017) generally obtained the lowest standard deviation.

Regarding the INRC-II benchmark in the multi-stage formulation, the results by the IP-based methods of
Römer and Mellouli (2016) and Legrain et al. (2020b) led them to first and second place in the competition,
respectively. However, they both did not manage to find a feasible solution in each run for every instance. Con-
versely, the hyper-heuristic approach by Kheiri et al. (2021), awarded with the third place in the competition, had
competitive results compared to Römer and Mellouli (2016) and Legrain et al. (2020b), and found a feasible so-
lution in each run. No methods were found that generally outperformed these methods in this setting. In the static
version of this benchmark, both Legrain et al. (2020a) and Ceschia et al. (2020) obtained competitive results.
The branch-and-price-based method by Legrain et al. (2020a) outperformed the Simulated Annealing approach
by Ceschia et al. (2020) in most cases. However, Ceschia et al. (2020) gained an advantage in cases with a longer
planning period and shorter computation time.

Table A.7 shows the results of several algorithms on the Shift Scheduling benchmark with a time limit of 60
minutes, which is the most commonly used time limit for this benchmark. The best known solutions were obtained
from the shift scheduling benchmark website4. Results by the Gurobi IP solver, as reported by Burke and Curtois
(2014) and Goh et al. (2022) were added for comparison. It is clear that the IP-based methods by Rahimian et al.
(2017), Turhan and Bilgen (2020) and Chen et al. (2023) perform very well in this setting, of which the IP +
VNS approach by Rahimian et al. (2017) in particular. Among the other methods, the VNS/ILS approaches by
Abdelghany et al. (2021a) and Goh et al. (2022) obtain good results, and generally outperform those by Burke
and Curtois (2014) and Abdelghany et al. (2021b).

Several methods were also tested on the Shift Scheduling benchmark using a time limit of 10 minutes, see Table
A.8. We find that also in this case, the IP-based methods by Rahimian et al. (2017) and Turhan and Bilgen (2020)
perform well. However, their advantage with respect to Goh et al. (2022) is smaller, and they are outperformed
on the larger instances under this reduced time limit.

2.4. Conclusion & discussion
Among the meta-heuristics with competitive performance, the single-solution-based methods are most prevalent.
Thus, it appears that their advantage in terms of exploitation often outweighs the benefit that population-based
methods have in terms of exploration / diversification. In contrast, most population-based methods manage to ob-
tain good results, but their performance in terms of exploitation seems to suffer too much from the computational
4http://www.schedulingbenchmarks.org/nrp/

http://www.schedulingbenchmarks.org/nrp/
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costs of managing and improving a population of solutions to outperform the single-solution-based methods.
However, the question remains whether the same would be observed in cases which are more highly constrained
than the benchmark instances.

Overall, IP techniques have been shown to perform very well on small to medium sized instances. Further-
more, IP techniques that are hybridized with another (meta)heuristic framework perform better than ‘simple’ IP
methods, because they can combine their strengths of diversification and convergence, respectively. However,
IP techniques cannot always guarantee to find good solutions or solution improvements or even feasible solu-
tions within a reasonable time, especially once the (sub-)problems become large. This generally causes poor
performance of IP-based methods on large instances, and reduces general reliability in terms of finding a feasible
solution. Combined with the fact that most IP techniques rely on third-party software, they are deemed unsuitable
for implementation in a general automatic shift scheduler.

Drawing further conclusions on the performance of different algorithms is made difficult by several issues:

• Not all methods are applied to the same model. The formulation of the NRP, in terms of its hard and soft
constraints can have a large impact on the effectiveness of the algorithms. Different benchmarks are used
in literature, which all have different problem formulations, and most algorithms are tested on only one of
them, or only on instances obtained from a specific application that is not considered by others.

• The experimental setups vary among different studies. Most algorithms are tested using specified time
limits. However, differences in hardware and software implementations can have a large impact on the
computation speed, and because of that on the overall performance within those time limits. Thus, when
algorithms have differences in performance, it is hard to estimate how much of that difference can be as-
cribed to the algorithms themselves.

• The algorithms require a large number of design choices. Between any two algorithms found in litera-
ture, multiple differences in their methodologies can be identified, e.g. different construction mechanisms,
neighborhood structures or move acceptance criteria. Thus, when algorithms have differences in perfor-
mance, it is hard to estimate which part(s) of the methodology these differences can mostly be ascribed
to.

The issues described above motivate a comparative study of different combinations of algorithm components,
applied to a well-defined, representative model with corresponding data sets, on a fixed experimental setup.



3
Categorization of algorithm components

In order to conduct a structured comparative study on combinations of parts of different solution methodologies,
we categorize the different components that can typically be identified. In each category, several different de-
sign choices are listed, limited to those that were deemed the most promising based on the results in literature.
Ultimately, all well-performing algorithms are built around local search techniques, and the specific algorithm
components used are tailored to the considered problem formulation.

3.1. Overall framework
In most studies, an overall framework of the algorithm can be identified that characterizes the method as a whole.
Those used by well-performing algorithms are listed below. Note that all of them are ultimately built upon local
search techniques.

• Variable Neighborhood Search (VNS): in VNS, solutions are iteratively improved by applying moves sam-
pled from various neighborhood structures. Different variants of VNS can be applied (Abdelghany et al.,
2021a, 2021b; Goh et al., 2022; Zheng et al., 2017).

• Hidden Markov model-based hyper-heuristic: in this hyper-heuristic framework, a random sequence of
low-level heuristics is chosen in each iteration. The low-level heuristics can use both applications of normal
neighborhood structures or perturbation mechanisms. The probabilities of the choice of low-level heuristics
are updated after each iteration, based on whether the chosen sequence managed to improve the solution
(Kheiri et al., 2021).

• Simulated Annealing (SA): SA is a well-known method that is widely applicable. It iteratively chooses
random moves in the neighborhood of the current solution, and accepts each move with a probability that
is determined by the effect it has on the solution quality. If the move improves the solution, it is always
accepted. Otherwise, the probability of acceptance becomes smaller, the larger the negative effect on the
solution (Ceschia et al., 2020, 2023).

• Population-based local search: in a population-based local search, a population of solutions is kept in
memory. In each iteration, a local search is applied to one of the solutions. The effects of the local searches
on the solution qualities, which can be positive or negative, are tracked cumulatively in a so-called direction
value. In each iteration, the solution with the highest direction value is chosen. Additionally, solutions
which have not improved over a specified number of iterations are replaced by a newly generated solution
in the neighborhood of the best solution found thus far (Abuhamdah et al., 2021).

3.2. Construction of initial solution
By far the most algorithms found in literature apply some form of greedy heuristic to generate an initial solution
(population), which is then fed into the main method. Additionally, the focus of these methods mostly lies on
finding a feasible solution, rather than a solution which is already of high quality. Consequently, the choice
of construction method is mostly determined by which hard constraints are present in the model to which the
algorithms are applied. In the case of hard coverage requirements, usually all necessary shifts are assigned to

10
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employees one by one, either randomly (Ceschia et al., 2020, 2023; Kheiri et al., 2021; Lü and Hao, 2012;
Meignan and Knust, 2019; Tassopoulos et al., 2015), greedily (Burke et al., 2013) or via a heuristic ordering of
shifts and/or employees (Awadallah et al., 2015, 2017; Burke et al., 2008). In contrast, building an initial solution
from feasible rosters for each employee individually is more common in the case of hard constraints concerning
labor rules (Abdelghany et al., 2021a, 2021b; Goh et al., 2022; Rahimian et al., 2017). Rahimian et al. (2017)
report that both a high-quality, and a completely randomized initial solution lead to worse overall performance
than a mediocre one constructed by a simple greedy heuristic. Furthermore, Goh et al. (2022) accredit their
algorithm’s good performance partly due to the speed of their Monte Carlo Tree Search construction method,
leaving more time for the rest of the algorithm to improve the solution. These observations motivate the use of
a fast construction algorithm that can find initial solutions that are at least better than a completely randomized
roster.

3.3. Neighborhood structures
Most methods require the use of neighborhood structures in their search for solution improvements. A neighbor-
hood structure is characterized by a specific type of operation, e.g. swapping the shifts of two nurses on the same
day. The neighborhood of a solution can then be defined as the set of solutions that can be reached by applying the
specified operation exactly once, somewhere in the current solution. Several different neighborhood structures
are used in well-performing methods, characterized by the operations listed below.

• Vertical swaps: the shift assignments of two nurses are swapped on the same day or block of days. A special
case of this operation can be to swap the complete weekends of two nurses.

• Horizontal swaps: one or more shift assignments of a nurse are swapped with shift assignments that come
earlier or later in the planning period.

• Change operations: change the shift assignment of one nurse into another shift assignment on one or more
days.

• Coverage-focused operations: specifically assign currently under-covered shifts to nurses who are free on
the corresponding days. As a variant of this, such an assignment can be combined with unassigning the
same nurse on another working day, which could be necessary to comply with working hours constraints.
Note that these operations are special cases of the change operation.

As was the case for the construction methods, the choice of neighborhood structures often depends on the con-
sidered hard constraints. In the case that only coverage requirements constitute the hard constraints, vertical
operations will never cause a solution to turn infeasible, as the number of assigned shifts on the corresponding
days does not change. Thus, most methods applied to such a scenario only use vertical operations (Abdelghany
et al., 2021a; Burke et al., 2013; Lü and Hao, 2012; Meignan and Knust, 2019; Tassopoulos et al., 2015; Zheng
et al., 2017), and thereby never have to check feasibility of the neighborhood moves. Horizontal and change op-
erations are more common in cases with hard constraints concerning working hours instead (Abdelghany et al.,
2021a, 2021b; Ceschia et al., 2023; Goh et al., 2022).

Move acceptance criteria Closely related to the choice of neighborhood structures are the move acceptance
criteria, i.e. how the choice is made to accept or reject a move in a solution’s neighborhood. A first design choice
in this sense is whether a neighborhood structure is exhaustively searched, to find and accept the best possible
move in the neighborhood, or to accept the first improving move that is encountered. Although an exhaustive
search can result in larger improvements per accepted move, it does come with an additional computational cost,
which can become extensive in the case of large neighborhoods. Note that this choice is not applicable to methods
that already have inherent move acceptance criteria, such as Simulated Annealing.

A second design choice is whether to accept moves toward solutions that are infeasible with respect to the
hard constraints. Obviously, an infeasible solution cannot be returned as the final output. However, theoretically,
accepting intermediate infeasible solutions can possibly lead to better final feasible solutions that are otherwise
hard or even impossible to reach when only allowing moves to other feasible solutions. On the other hand, in a
highly constrained solution space, it might be hard to escape from an infeasible region. In practice, most methods
maintain feasibility throughout the complete algorithm (Abdelghany et al., 2021a, 2021b; Awadallah et al., 2015,
2017; Burke et al., 2010, 2013; Goh et al., 2022; Jaradat et al., 2019; Kheiri et al., 2021; Lü and Hao, 2012;
Meignan and Knust, 2019; Tassopoulos et al., 2015; Zheng et al., 2017). Ceschia et al. (2020) initialize their
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Simulated Annealing approach with a solution that is not guaranteed to satisfy all hard constraints, and allow for
moves to other infeasible solutions in the first stage of their algorithm. Once a feasible solution is found, it is
improved while maintaining feasibility. In their later version, Ceschia et al. (2023) allow for moves to infeasible
solutions throughout their whole method. In both cases, the ‘degree of infeasibility’ is incorporated into the
objective function, in the form of hard constraint violation penalties, similar to those used for the soft constraints.
Weights for the hard constraint violations were chosen to reflect their large relative importance.

3.4. Perturbation / improvement methods
One of the challenges in optimizing over highly constrained solution spaces is to not get stuck in local optima.
Therefore, many algorithms contain some mechanism to perturb the current solution (population), often activated
after a certain number of iterations without improvement. For some methods, perturbation simply consists of
accepting several non-improving neighborhood moves, that would otherwise not be accepted (Abdelghany et al.,
2021b). Others apply slight variations of the regular neighborhoods (Goh et al., 2022; Tassopoulos et al., 2015), or
a special perturbation neighborhood (Zheng et al., 2017). An addition to the perturbation by Meignan and Knust
(2019) is to only accept moves that at least perturb a part of the solution that causes a soft constraint violation.
Furthermore, Goh et al. (2022) apply perturbation moves until the solution quality has been changed by at least
5%.

Other methods apply a ruin-and-recreate framework to both perturb and improve the solution (Abdelghany
et al., 2021a; Rahimian et al., 2017). Rahimian et al. (2017) apply a ruin-and-recreate framework where a part of
the solution is removed, and recreated using an IP solver. The choice of which part of the solution is destroyed was
made probabilistically, based on how much was contributed to the total solution penalty. Each time the ruin-and-
recreate was applied, either several nurses, days, weeks or cells were selected. Abdelghany et al. (2021a) randomly
chose several nurses to destroy their rosters, and recreated them using a dynamic programming approach.



4
Problem description

In this chapter, we give a description of the problem to be addressed in this study. In Section 1.2, a general
description of the NRP was given. Here, we further specify the objective function and constraints considered in
the target applications.

4.1. Definition of consecutive shifts
Several constraints concern consecutive shifts, and thus a definition for consecutiveness of shifts is required.
However, such a definition is not provided in the Dutch Working Hours Act, from which most hard constraints
originate. In this problem, we consider two shifts to be consecutive if and only if there is at most 32 hours
between the end of the first shift and the beginning of the second shift, and there is no other shift in between.
This definition is used for consistency with other methods used within ORTEC, and is related to the weekly
rest constraint described in Section 4.2, where a rest period of 32 hours is the shortest possible period that can
contribute to satisfying the constraint.

4.2. Hard constraints
First, we consider the hard constraints, i.e. those constraints that determine whether a solution is feasible.

Dutch Working Hours Act The main hard constraints are the rules that come from the Dutch Working Hours
Act (Arbeidstijdenwet, 2022, §5.2). A complete list of the rules that are considered can be found in Appendix B.
Note that rules about breaks and shift lengths are assumed to be incorporated in the definitions of the shift types,
which are considered as fixed input in this problem. By a cutting plane reduction, it was previously determined
at ORTEC that in most cases in practice, all rules from the working hours act are satisfied, if the subset of rules
listed below is satisfied. Therefore, only these rules are taken into account in the model. Feasible solutions that
result from applying an algorithm to the model could then afterwards be checked if they also satisfy the remaining
rules. Note that we do not do this in this study, because of the additional time required to implement the remaining
rules.

• Daily rest: in every 24-hour period beginning at the start of an assigned shift, an employee must have a
minimum of 11 hours of consecutive rest. An exception to this rule can be made once every 7 days, where
the minimum is lowered to 8 hours.

• Weekly rest: an employee must have a minimum consecutive rest time of either

– 36 hours every 7-day period beginning at the start of an assigned shift, or
– 72 hours every 14-day period beginning at the start of an assigned shift. In this case, the rest time

may be split into two periods of at least 32 hours each.

• Working Sundays: in every 52-week period, an employee must have a minimum of 13 non-working Sun-
days. For a scheduling period of a month, the allowed number of working Sundays is determined by the

13
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number of worked Sundays in the previous 11 months. Note that to check if an employee works on a Sun-
day, we need to consider both shifts that start on Sunday, and shifts that start on the Saturday before and
spill over to Sunday.

• Night shift related: a working shift is considered a ‘night shift’ if at least 1 hour is worked between the
hours of midnight and 6 am. The following rules apply specifically to night shifts:

– Following a sequence of at least 3 consecutive night shifts, an employee must have a minimum rest
time of 46 consecutive hours.

– If a sequence of consecutive shifts for an employee contains at least one night shift, then that sequence
may contain at most 7 shifts.

– An employee is allowed to work at most 36 night shifts that end after 2 am in every 16-week period.
For a scheduling period of a month, the allowed number of night shifts is determined by the number
of worked night shifts in the previous 12 weeks.

Maximum workload Each employee has an individual contract, which includes their contractual working hours
per time period. This time period is typically a year, and the monthly workload limit used in our target application
is based on it. To maintain some flexibility for the planners and employees, a buffer of 10 hours is added to the
employees’ workload limits, such that they can work some overtime if necessary. It is considered a hard constraint
that employees should not work more than this increased workload limit.

Required skill levels Each employee has an individual set of skills, and each shift type can have one or more
skill requirements. A roster is only considered feasible if no employees are assigned to shifts for which they lack
the required skills. Note that in our problem, the skill types are incorporated into the shift types, such that a shift
type is defined by the start and end times and the used skills.

Fixed assignments Employees can have predefined fixed assignments to shifts or days off. It is not allowed to
alter a fixed assignment. Note that if an employee has a fixed day off on day 𝑑, no shift may be assigned to that
same employee that starts on day 𝑑 − 1 and ends on day 𝑑.

4.3. Soft constraints
The soft constraints considered in the model are listed below. For the description of the corresponding penalty
calculations, we introduce the used notation: the rostering period is defined by the set of employees, 𝐸, the set
of days, 𝐷, and the set of shift types, 𝑆. The binary decision variables are denoted by 𝑥𝑒,𝑑,𝑠: 𝑥𝑒,𝑑,𝑠 equals 1, if
employee 𝑒 ∈ 𝐸 is assigned to shift type 𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷, and 0 otherwise. We denote a day-off assignment
by 𝑜, and let 𝑥𝑒,𝑑,𝑜 be equal to 1 if employee 𝑒 is assigned to a day off on day 𝑑, and 0 otherwise. An overview of
the notation is given in Tables C.1 and C.2.

Shift coverage To fulfill the work demand, shift coverage constraints provide a minimum number of employees
required for each shift type on each day. A distinction is made between regular and priority shifts by the height
of the penalty they cause if they remain unplanned. Given the coverage requirement of shift type 𝑠 ∈ 𝑆 on
day 𝑑 ∈ 𝐷 in number of employees, denoted by input parameter 𝑎𝑑,𝑠, we calculate the corresponding coverage
shortage, denoted by auxiliary variable 𝑦𝑑,𝑠, as follows: we count the number of employees that are assigned to
shift type 𝑠 on day 𝑑, i.e. we sum over the values of 𝑥𝑒,𝑑,𝑠 for all employees 𝑒 ∈ 𝐸. This number is then subtracted
from the required number of employees, 𝑎𝑑,𝑠. Because coverage surpluses are not penalized or rewarded, we let
𝑦𝑑,𝑠 be equal to the maximum of this difference and zero. The given penalty for shift type 𝑠 on day 𝑑 is then
proportional to the coverage shortage 𝑦𝑑,𝑠. The weight of the penalty is 500 if shift type 𝑠 is a priority shift type,
and 100 otherwise. This is indicated by binary input parameter 𝛽𝑠, which is 1 if shift type 𝑠 is a priority shift
type, and 0 otherwise. By summing these penalties over all days 𝑑 ∈ 𝐷 and shift types 𝑠 ∈ 𝑆, we obtain the total
coverage penalty, as shown in Table 4.2.

Shift coverage spread To spread coverage shortages evenly over the scheduling period, an additional penalty
is given, that is greater if the same amount of undercoverage is distributed less evenly over the days. The penalty
is only given if the undercoverage on a day is greater than 1, because a single shift cannot be distributed more
evenly over different days. We let 𝑦𝑑 denote the sum of the coverage shortages 𝑦𝑑,𝑠 of all shift types 𝑠 ∈ 𝑆 on day
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𝑑 ∈ 𝐷. The coverage spread penalty is then illustrated as follows: if 𝑦𝑑 is 1, the penalty equals 0. If 𝑦𝑑 is 2, the
penalty equals 100, if 𝑦𝑑 is 3, the penalty equals 100 plus 200, i.e. 300. If 𝑦𝑑 is 4, the penalty equals 100 plus
200 plus 300, i.e. 600, etc. The total coverage spread penalty is then calculated as shown in Table 4.2.

Overtime hours spread To prevent an unfair division of the shifts over the employees, a penalty is given for each
employee for the amount of worked overtime. The penalty is quadratic in the number of hours of overtime, such
that the same amount of overtime, but distributed less evenly over the employees, results in a higher penalty. The
durations of shifts of different types are given by input parameter 𝑓𝑠 for all shift types 𝑠 ∈ 𝑆, and the contractual
working hours of the employees by 𝑐con

𝑒 for all employees 𝑒 ∈ 𝐸. The worked overtime of employee 𝑒 ∈ 𝐸,
denoted by auxiliary variable 𝑢𝑒, is then calculated as the contractual working hours 𝑐con

𝑒 , subtracted from the
sum of the durations 𝑓𝑠 of all shifts worked by employee 𝑒, over all days 𝑑 ∈ 𝐷 and shift types 𝑠 ∈ 𝑆, as given
by decision variables 𝑥𝑒,𝑑,𝑠. Because we do not reward negative overtime, we let 𝑢𝑒 be equal to the maximum
of this difference and zero. The total overtime hours spread penalty is then calculated as the sum of the squared
overtime hours 𝑢𝑒 over all employees 𝑒 ∈ 𝐸, as shown in Table 4.2.

Employee preferences Employee preferences are incorporated into the model by soft constraints for day-on/off
requests, shift-on/off requests and preferred shift and day-off sequence lengths, as described below. In view of
fairness among the employees, the weights of these constraints are determined for each employee both by the
number of requests and the contractual working hours. This is done such that the sum of the weights of all
preference constraints is higher for employees who have a higher number of contractual working hours, and this
total weight of an employee is evenly distributed over all its preference constraints. Thus, the same weight 𝑗𝑒
is given to all requests and the preferred sequence length constraints of employee 𝑒 ∈ 𝐸. The total weights of
employees, based on the contractual working hours per week, are shown in Table 4.1. As an example, suppose that
an employee has 30 contractual working hours per week, one day-off request, one shift-on request, and preferred
shift and day-off sequence lengths. Then, this employee receives a total weight of 80. The total number of
constraints for this employee is four, so each request and preferred sequence length constraint receives a weight
𝑗𝑒 of 20 (i.e. 80

4 ).

• Day-on/off requests: employees can request to work or have a day off on specific days in the planning
horizon. A penalty is given for each request that is not fulfilled. The requests are indicated by binary input
parameters 𝑔on

𝑒,𝑑 and 𝑔off
𝑒,𝑑, which are 1 if employee 𝑒 ∈ 𝐸 has requested to work or have a day off on day

𝑑 ∈ 𝐷, respectively, and 0 otherwise. A penalty of weight 𝑗𝑒 is given if employee 𝑒 has requested to work
on day 𝑑, but is assigned to a day off, i.e. 𝑔on

𝑒,𝑑 equals 1 and 𝑥𝑒,𝑑,𝑜 equals 1, or if employee 𝑒 has requested a
day off on day 𝑑, but is not assigned to a day off, i.e. 𝑔off

𝑒,𝑑 equals 1 and 𝑥𝑒,𝑑,𝑜 equals 0. The sum of all day
requests penalties is shown in Table 4.2.

• Shift-on/off request: employees can request to work or not having to work specific shift types on specific
days. A penalty is given for each request that is not fulfilled. The requests are indicated by binary input
parameters ℎon

𝑒,𝑑,𝑠 and ℎoff
𝑒,𝑑,𝑠, which are 1 if employee 𝑒 ∈ 𝐸 has requested to work or not work shift type

𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷, respectively, and 0 otherwise. A penalty of weight 𝑗𝑒 is given if employee 𝑒 has
requested to work shift type 𝑠 on day 𝑑, but is not assigned to it, i.e. ℎon

𝑒,𝑑,𝑠 equals 1 and 𝑥𝑒,𝑑,𝑠 equals 0,
or if employee 𝑒 has requested not to work shift type 𝑠, but is assigned to it, i.e. ℎoff

𝑒,𝑑,𝑠 equals 1 and 𝑥𝑒,𝑑,𝑠
equals 1. The sum of all shift requests penalties is shown in Table 4.2.

• Preferred shift sequence length: employees can specify that they prefer to work sequences of a specific
number of consecutive shifts. A penalty is given that is proportional to the fraction of sequences of consecu-
tive shifts that are not of the preferred length. For each employee 𝑒 ∈ 𝐸, the sequences of consecutive shifts
and their lengths are determined based on the shift assignments, specified by decision variables 𝑥𝑒,𝑑,𝑠, the
shift start and end times, and the definition of consecutive shifts, as described in Section 4.1. We then let
auxiliary variables 𝜂on

𝑒 be equal to the number of sequences of consecutive shifts in the roster of employee
𝑒. Auxiliary variables 𝜁on

𝑒 indicate the number of these sequences of consecutive shifts that are of the length
that was preferred by employee 𝑒. Then, the fraction of sequences of consecutive shifts that are not of the
preferred length is (1 − 𝜁on

𝑒
𝜂on𝑒

). The penalty given for employee 𝑒 is then equal to this fraction multiplied by
the weight 𝑗𝑒 for employee 𝑒.
For example, suppose that employee 𝑒 ∈ 𝐸 prefers to have sequences of consecutive shifts of length 2, and
that their roster contains three sequences of consecutive shifts: one of length 1, one of length 2 and one of
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length 3. Then, the number of sequences of consecutive shifts of the preferred length is 1, i.e. 𝜁on
𝑒 = 1, and

the total number of sequences of consecutive shifts is 3, i.e. 𝜂on
𝑒 = 3. Then, the fraction of sequences of

consecutive shifts that are not of the preferred length is (1 − 𝜁on
𝑒

𝜂on𝑒
) = (1 − 1

3 ) = ( 2
3 ). The corresponding

penalty is equal to this fraction, multiplied by the preference constraints weight for employee 𝑒, 𝑗𝑒: 𝑗𝑒 ( 2
3 ).

The total preferred shift sequence length penalty is shown in Table 4.2.

• Preferred day-off sequence length: employees can specify that they prefer sequences of consecutive days
off to have a specific length. A penalty is given that is proportional to the fraction of sequences of consec-
utive days off that are not of the preferred length, similar to the penalty related to the preferred number of
consecutive shifts, as described above. For each employee 𝑒 ∈ 𝐸, the sequences of consecutive days off
and their lengths are determined based on the shift assignments, specified by decision variables 𝑥𝑒,𝑑,𝑠, the
shift start and end times, and the definition of consecutive shifts, as described in Section 4.1. The length
of a sequence of consecutive days off is calculated as the number of hours between two shifts, divided by
24 hours and rounded to the nearest integer. Note that such a sequence is only counted if the time between
two shifts is more than 32 hours, as otherwise it is only the rest between two consecutive shifts. We then let
auxiliary variables 𝜂off

𝑒 be equal to the number of sequences of consecutive days off in the roster of employee
𝑒. Auxiliary variables 𝜁off

𝑒 indicate the number of these sequences of consecutive days off that are of the
length that was preferred by employee 𝑒. Then, the fraction of sequences of consecutive days off that are
not of the preferred length is (1 − 𝜁off

𝑒
𝜂off

𝑒
). The penalty given for employee 𝑒 is then equal to this fraction

multiplied by the weight 𝑗𝑒. The total preferred day-off sequence length penalty is shown in Table 4.2.

Table 4.1: This table shows the total weight of all preference constraints of an employee, i.e. the day/shift-on/off requests and the constraints
for preferred shift and day-off sequence lengths, based on the contractual working hours of that employee.

Contractual working hours 𝜆 per week Total weight
𝜆 ≥ 32 100

32 > 𝜆 ≥ 24 80
24 > 𝜆 ≥ 16 60

16 > 𝜆 40

4.4. Objective function
The objective function is to minimize the sum of all soft constraint penalties. The soft constraint penalty calcula-
tions are shown in Table 4.2.
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Table 4.2: Soft constraint penalty calculations, as described in Section 4.3. The used notation is clarified in Tables C.1 and C.2.

Soft constraint Penalty

Shift coverage ∑
𝑑∈𝐷

∑
𝑠∈𝑆

𝑦𝑑,𝑠 (500𝑏𝑠 + 100(1 − 𝑏𝑠))

Shift coverage spread ∑
𝑑∈𝐷

𝑦𝑑

∑
𝑚=2

100(𝑚 − 1)

Overtime hours spread ∑
𝑒∈𝐸

𝑢2
𝑒

Day-on/off requests ∑
𝑒∈𝐸

∑
𝑑∈𝐷

𝑗𝑒 (𝑥𝑒,𝑑,𝑜𝑔on
𝑒,𝑑 + (1 − 𝑥𝑒,𝑑,𝑜)𝑔off

𝑒,𝑑)

Shift-on/off requests ∑
𝑒∈𝐸

∑
𝑑∈𝐷

∑
𝑠∈𝑆

𝑗𝑒 ((1 − 𝑥𝑒,𝑑,𝑠)ℎon
𝑒,𝑑,𝑠 + 𝑥𝑒,𝑑,𝑠ℎoff

𝑒,𝑑,𝑠)

Preferred shift sequence length
⎧{
⎨{⎩

∑
𝑒∈𝐸

𝑗𝑒 (1 − 𝜁on
𝑒

𝜂on𝑒
) , 𝜂on

𝑒 > 0

0, 𝜂on
𝑒 = 0

Preferred day-off sequence length
⎧{
⎨{⎩

∑
𝑒∈𝐸

𝑗𝑒 (1 − 𝜁off
𝑒

𝜂off
𝑒

) , 𝜂off
𝑒 > 0

0, 𝜂off
𝑒 = 0



5
Solution methods

Following the conclusion drawn in Section 2.4 and the categorization of algorithm components in Chapter 3, the
research methodology is to first build and test different algorithm components, tailored to the problem formulation,
and then evaluate the performance of different combinations/configurations of those components. The different
solution methods that are implemented are described in this chapter.

5.1. Construction methods
The purpose of construction methods is to generate an initial feasible solution that is of sufficient quality for the
subsequent overall framework to function properly. A construction method starts from an empty roster, where
no shifts are assigned to employees, and builds up the initial solution by assigning shifts one by one. Since the
coverage requirements are by far the most important soft constraints in the problem formulation, it is a logical
construction approach to try to satisfy these as much as possible. However, since all hard constraints are specific
to the employees, a construction method that is oriented on (required) shifts might not be able to assign the
same number of shifts as a method that is oriented firstly on the employees. In this study, we consider two
different approaches for construction methods, which reflect these different orientations, and which are based on
the methods encountered in literature, see Section 3.2.

5.1.1. Construction-per-shift
The first approach is to list all shifts that arise from the coverage requirements, and then assign as many of those
shifts to employees as possible, while maintaining the feasibility of the solution. In general, this method finishes
with a set of shifts that cannot be assigned anymore without violating the hard constraints. The feasibility of
assigning an additional shift to an employee depends on the previously assigned shifts. Therefore, the order in
which the shifts are considered determines which shifts can be assigned by this method. In order to maximize
the number of shifts that are assigned, the shifts are sorted beforehand based on different criteria, see Section
5.1.3. The idea is to try to assign the ‘most difficult’ shifts first. For each shift to be assigned, we go through all
employees and try to assign it to employees until either we have reached the coverage requirement of the shift, or
we have gone through all employees. A shift is assigned to a considered employee if it does not cause any hard
constraint violation. If a shift is assigned to none of the employees, the shift is left unassigned, and we move to the
next shift. Similar to the ordering of the shifts, the order in which the employees are considered also determines
which shifts can be assigned. Thus, also the employees are sorted based on several criteria, see Section 5.1.3.
Note that for each shift, only those employees are considered that are available, i.e. those that have the required
skills for the shift and do not already have a fixed shift or day-off assignment on the corresponding day. The
pseudocode for this approach is shown in Algorithm 1.

5.1.2. Construction-per-employee
In the second approach, feasible rosters are constructed for all employees separately, which are then combined
into a complete roster. For each employee, we go through the days of the scheduling period from start to end. For
each day, we collect the valid shifts, i.e. those shifts for which the considered employee has the required skills,
and for which the coverage requirement on that day is at least one. This last condition is to ensure that employees
are not assigned to shifts which are not required at all on the considered day. The valid shifts are then sorted

18
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Algorithm 1 Construction-per-shift
Input: empty roster

1: Collect requiredShifts from coverage requirements for roster
2: Set shiftSortingCriteria and employeeSortingCriteria
3: Sort requiredShifts by shiftSortingCriteria
4: for each shift in requiredShifts do
5: Collect availableEmployees for shift
6: Sort availableEmployees by employeeSortingCriteria
7: Set currentCoverage = 0, employeeIndex = 0
8: while currentCoverage < requiredCoverage AND employeeIndex < numberOfAvailableEmployees do
9: employee = availableEmployees[employeeIndex]

10: if employee is not yet assigned to a shift on day shift.day then
11: Assign shift to employee
12: if roster is still feasible then
13: currentCoverage++
14: else
15: Unassign shift from employee
16: end if
17: end if
18: employeeIndex++
19: end while
20: end for
Output: constructed roster

based on several sorting criteria, see Section 5.1.3. We then go through all valid shifts and try to assign them
to the employee until either we have assigned one of the shifts, or we have gone through all valid shifts. A shift
is assigned to the considered employee if it does not cause any hard constraint violation. If none of the valid
shifts is assigned, the considered day is left as a day off for the employee, and we move to the next day. To also
take the coverage requirements into account in this construction method, one of the sorting criteria for the valid
shifts is the difference between the required coverage and the coverage achieved by the employee rosters that are
already constructed. The resulting combined roster is then affected by the order in which the employee rosters
are constructed. Therefore, we sort the employees beforehand, based on criteria explained in Section 5.1.3. The
pseudocode for this approach is shown in Algorithm 2.

5.1.3. Sorting criteria
Both construction methods described above apply sorting of shifts and employees. This is done based on several
criteria that indicate either how difficult a shift or employee is to assign, such as the number of available employees
for a shift, or how beneficial an assignment is to the roster penalty, such as the current shift coverage or day-off
requests. The different criteria are applied hierarchically, such that the objects are sorted first by the most important
criterion. Those objects that are equal in this first criterion are then sorted by the second most important criterion,
etc., up to the last used criterion. Objects that are equal in the final criterion are sorted randomly. The hierarchy
of the sorting criteria thus determines the ordering of the objects.

Shift sorting criteria The criteria used for sorting shifts are listed below.

• Number of available employees: available employees for a shift are those employees that have the required
skills and who do not have a fixed shift or day-off assignment. A shift with fewer available employees is
given a higher priority, in order to reduce the probability that all available employees are already assigned
to another shift, once we try to assign this shift.

• Night shifts: a higher priority is given to night shifts, since they are specifically involved in several hard
constraints, which makes it more difficult to assign them later on in the process.

• Sunday shifts: the number of working Sundays per employee is restricted by a hard constraint, which
makes Sunday shifts more difficult to assign when more shifts are already assigned. Thus, Sunday shifts
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Algorithm 2 Construction-per-employee
Input: empty roster

1: Set shiftSortingCriteria and employeeSortingCriteria
2: Sort employees in roster by employeeSortingCriteria
3: for each employee in employees do
4: for each day in days do
5: Collect validShifts for employee on day
6: Sort validShifts by shiftSortingCriteria
7: Set shiftIndex = 0, shiftAssigned = false
8: while shiftIndex < numberOfValidShifts AND shiftAssigned = false do
9: shift = validShifts[shiftIndex]

10: Assign shift to employee
11: if roster is still feasible then
12: shiftAssigned = true
13: else
14: Unassign shift from employee
15: shiftIndex++
16: end if
17: end while
18: end for
19: end for
Output: constructed roster

are given a higher priority. Note that a Sunday shift can be either a shift that starts on Sunday or a shift that
starts on Saturday and ends on Sunday.

• Priority shifts: priority shifts that remain unplanned result in a higher penalty than unplanned regular
shifts. Therefore, priority shifts are considered before regular shifts.

• Date: shifts which are earlier in the scheduling period are given a higher priority, because they are affected
by the planning history the most, which might make them harder to assign.

• Coverage requirements: shifts for which more employees are required are given a higher priority. Note
that for Construction-per-employee, the required number of employees of a shift is recalculated after each
completed employee roster, based on the employees that are already assigned.

• Shift-on/off requests: satisfying shift-on/off requests reduces the roster penalty. Therefore, for an em-
ployee, a shift with a shift-on or a shift-off request is given a higher or a lower priority, respectively. Note
that this criterion can only be used in Construction-per-employee.

Employee sorting criteria The criteria used for sorting employees are listed below. Criteria marked with **
are only relevant for Construction-per-shift.

• Number of valid shift types: valid shift types are those shift types for which an employee has the required
skills. Employees that have fewer valid shift types are given a higher priority, to reduce the probability that
later on there are no shifts left anymore that can be assigned to them.

• Available working time: the more shifts an employee has to work, the harder it is to assign them such
that they do not violate any hard constraints. Therefore, a higher priority is given to employees with more
available working hours. Note that for Construction-per-shift, the available working time is recalculated
after each assigned shift, such that for each shift, this criterion becomes the available working time left.

• Shift-on/off requests**: satisfying shift-on/off requests reduces the roster penalty. Therefore, for a shift,
an employee with a shift-on or a shift-off request for the same shift is given a higher or a lower priority,
respectively.

• Day-on/off requests**: satisfying day-on/off requests reduces the roster penalty. Therefore, for a shift,
an employee with a day-on or a day-off request for the same day is given a higher or a lower priority,
respectively.
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5.2. Neighborhood structures
Both overall frameworks that we apply, further explained in Section 5.3, use a set of neighborhood structures. A
neighborhood structure is characterized by a specific type of operation, e.g. swapping the shifts of two employees
on the same day. The neighborhood of a current solution is then defined as the set of solutions that can be
reached by applying the corresponding operation exactly once, somewhere in the current solution. The different
neighborhood structures that we use are listed below, and Figures 5.1-5.6 show examples of the corresponding
operations. Abbreviations for the neighborhood structures are shown in Table 5.1.

Vertical swapping neighborhood structures (V𝑥) The vertical swapping operation is applied to a pair of em-
ployees on 𝑥 consecutive days, where 𝑥 is a property of the neighborhood. This property is called the block length
and indicates the number of consecutive days for which the shift assignments of the two employees are swapped.
Thus, vertical swapping operations with different block lengths result in separate neighborhood structures, such
that a neighborhood structure V𝑥 only contains vertical swapping operations with block length 𝑥. Note that within
this operation, a day-off assignment is swapped in the same way as a regular shift assignment. Examples of vertical
swapping operations are shown in Figure 5.1.

Figure 5.1: Examples of vertical swapping operations with block lengths 1 and 2: swapping the early shift E on Tuesday for employee 𝑒1 with
the night shift N on the same day for employee 𝑒4, and swapping the late shifts L on Friday and Saturday for employee 𝑒1 with the E and N
shifts on the same days for employee 𝑒3.

Horizontal swapping neighborhood structures (H𝑥) The horizontal swapping operation swaps the shifts for
one employee of two non-overlapping blocks of 𝑥 consecutive days. Similar to the vertical swapping neighborhood
structures, different block lengths result in separate horizontal swapping neighborhood structures, and day-off
assignments may be part of swapping operations. Examples of horizontal swapping operations are shown in
Figure 5.2.

Figure 5.2: Examples of horizontal swapping operations with block lengths 1 and 3: swapping the early shift E on Monday for employee 𝑒1
with the late shift L on Wednesday for the same employee, and swapping the shift and day-off assignments of Monday up to Wednesday for
employee 𝑒3 with those of Friday up to Sunday for the same employee.

Change neighborhood structures (C𝑥) The change operation changes the shift assignments for an employee
on a block of 𝑥 consecutive days, by unassigning the currently assigned shifts, and replacing them by other shifts
on the same days. For the change neighborhood structure, a day-off is considered as a possible shift assignment,
such that changing a day-off to any other shift assignment, and changing any shift assignment to a day-off are also
part of this neighborhood structure. To reduce the size of this neighborhood for block lengths larger than 1, the
same shift assignment is applied to all days in the block. Thus, for example, a change operation with block length
3 can assign three consecutive day shifts, but not two day shifts followed by a night shift. Similar to the swapping
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neighborhood structures, different block lengths result in separate change neighborhood structures. Examples of
change operations are shown in Figure 5.3.

Figure 5.3: Examples of change operations with block lengths 1, 2 and 3: changing the early shift assignment of employee 𝑒1 on Monday
into a late shift assignment, the day-off and night shift assignment of employee 𝑒2 on Saturday and Sunday into two early shift assignments,
and the late and early shift assignments of employee 𝑒4 on Thursday, Friday and Saturday into three day-off assignments.

Coverage-focused neighborhood structures Coverage requirements are the most important soft constraints
in our problem. Therefore, we adopt the following three coverage-focused neighborhoods, of which UC1 and
UC2 are the same as those used by Abdelghany et al. (2021a, 2021b). These neighborhood structures require the
generation of a list of currently undercovered shifts, before they can be applied. Note that these neighborhoods
are special cases of the change neighborhood structure.

1. UC1: the operation of the first neighborhood structure is to assign a currently undercovered shift to an
employee that currently has a day-off on the corresponding day. An example of a UC1 operation is shown
in Figure 5.4.

2. UC2: for the second neighborhood structure, the operation is to assign a currently undercovered shift to
an employee that currently has a day-off on the corresponding day, and simultaneously unassign any of the
shifts for the same employee on another day. An example of a UC2 operation is shown in Figure 5.5.

3. UC3: for the third neighborhood structure, the operation is to assign a currently undercovered shift to an
employee who is already assigned to another shift on the same day. Thus, the previously assigned shift is
unassigned. This operation is very similar to that of UC2, but differs in that it replaces the undercovered
shift for a shift on the same day, instead of one on another day. An example of a UC3 operation is shown
in Figure 5.6.

Figure 5.4: Example of a UC1 operation. The undercovered early shift on Saturday is assigned to employee 𝑒2.

Neighborhood restrictions The neighborhood structures described above are defined by their characterizing
operations. However, the neighborhoods for a given solution are restricted further by several criteria:

• Identical neighbors: a neighbor is not considered if it is identical to the current solution, for example, if
it is formed by swapping two identical shift assignments between two employees.
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Figure 5.5: Example of a UC2 operation. The undercovered early shift on Saturday is assigned to employee 𝑒2, while also the night shift of
Thursday is unassigned for employee 𝑒2.

Figure 5.6: Example of a UC3 operation. The late shift assigned to employee 𝑒2 on Sunday is replaced by the undercovered early shift on the
same day.

• Required skills: a neighbor is not considered if it contains an assignment of a shift to an employee who
does not have the required skills.

• Fixed assignments: a neighbor is not considered if it involves altering a fixed shift or day-off assignment.

• Non-required shifts: a change or swap operation is not considered if it involves assigning a shift on a day
on which no shift of that type is required, i.e. where the corresponding coverage requirement is equal to
zero. This restriction was added because it was seen as undesirable that employees are assigned to shifts
that do not exist in practice. Note that this restriction implicitly adds a hard constraint to the problem.

• Equivalent neighbors: for the swapping neighborhood structures with a block length greater than 1, op-
erations where the first or the last shift assignment of the two blocks are identical are not considered, since
they are equivalent to swaps of a smaller block length. Similarly, for the change neighborhood structures
with a block length greater than 1, operations where the current first or last shift assignment of the block is
already equal to the new shift assignment are not considered. In practice, swapping and change neighbor-
hoods with smaller block lengths are always applied too. Therefore, this restriction reduces the number of
duplicate neighbors considered in separate neighborhoods, without completely removing neighbors from
consideration.
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Table 5.1: Neighborhood structures with abbreviations

Neighborhood structure Abbreviation
Vertical swapping with block length 𝑥 V𝑥
Horizontal swapping with block length 𝑥 H𝑥
Change operations with block length 𝑥 C𝑥
Assign undercovered shifts neighborhood structure UC1
Replace undercovered shifts for shifts on other days UC2
Replace undercovered shifts for shifts on the same day UC3

5.3. Overall frameworks
The purpose of the overall framework of an algorithm is to improve the initial solution generated by the applied
construction method, and output a final feasible solution that constitutes the result of the algorithm as a whole.
The two overall frameworks used in this study, explained below, can be characterized as local search methods that
apply different neighborhood structures in an attempt to reach a globally ‘good’ local optimum. This requires the
ability to descend towards local optima, as well as the ability to escape them. Note that unless we already know
an optimal solution, we cannot know how good a local optimum really is compared to the global optimum. The
use of different neighborhood structures enables the frameworks to find better local optima, since a local optimum
with respect to one neighborhood structure is not necessarily a local optimum with respect to another. A local
optimum with respect to all applied neighborhood structures combined is then at least as good as the local optima
with respect to any of the individual neighborhood structures on its own.

5.3.1. Variable Neighborhood Search
The Variable Neighborhood Search framework consists of two phases, namely Variable Neighborhood Descent
and Perturbation, which are alternated repeatedly, until a specified time limit is reached. The Variable Neighbor-
hood Descent steers the solution towards a local optimum, by sequentially going through the set of neighborhood
structures in search of improving changes and swaps. Within this descent phase, a move is accepted only if the
solution will remain feasible, and the roster penalty will be at least as good as before. The different neighbors
within a neighborhood are considered in a random order. If, after going through a neighborhood completely, at
least one improving move is found, we go back to the first neighborhood, otherwise we go to the next one. This is
repeated until we have gone through all neighborhoods without having found an improving move, meaning that a
local optimum with respect to the combined set of neighborhoods has been reached. The purpose of the following
perturbation phase is then to escape the local optimum, by relocating to a different point in the solution space,
from which the next descent phase can potentially lead to a different local optimum, which might be better than
the previous one. Here, moves are chosen from a set of neighborhoods at random, and are accepted independent
of their effect on the roster penalty, as long as the solution will remain feasible. This is done until a limit is reached
of a minimum number of accepted moves and/or a minimum amount of relative change in the roster penalty. Note
that the sets of neighborhoods used in Variable Neighborhood Descent and Perturbation do not have to be equal.
The pseudocode for Variable Neighborhood Search is shown in Algorithms 3, 4 and 5.

Algorithm 3 Variable Neighborhood Search
Input: initial solution 𝑥 ∈ 𝑋 and objective function 𝑓 ∶ 𝑋 → ℝ for solution space 𝑋

1: Initialize 𝑥best as 𝑥
2: Set end time 𝑡end

3: Set 𝑡 to current time
4: while 𝑡 < 𝑡end do
5: Variable Neighborhood Descent
6: Perturbation
7: Set 𝑡 to current time
8: end while

Output: 𝑥best
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Algorithm 4 Variable Neighborhood Descent

Input: current solutions 𝑥 and 𝑥best, end time 𝑡end and objective function 𝑓
1: Define search neighborhoods 𝑁 search

1 , ..., 𝑁 search
𝑘max

2: Set 𝑘 = 1
3: Set 𝑡 to current time
4: while 𝑘 ≤ 𝑘max AND 𝑡 < 𝑡end do
5: Set 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔𝑀𝑜𝑣𝑒𝐹𝑜𝑢𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒
6: Generate neighbors in 𝑁 search

𝑘
7: Set 𝑡 to current time
8: while neighbors left in 𝑁 search

𝑘 AND 𝑡 < 𝑡end do
9: Select next neighbor 𝑥′ randomly from 𝑁 search

𝑘
10: if 𝑥′ is feasible AND 𝑓(𝑥′) ≤ 𝑓(𝑥) then
11: if 𝑓(𝑥′) < 𝑓(𝑥) then
12: Set 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔𝑀𝑜𝑣𝑒𝐹𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒
13: end if
14: Set 𝑥 = 𝑥′

15: end if
16: Remove 𝑥′ from 𝑁 search

𝑘
17: Set 𝑡 to current time
18: end while
19: if 𝑓(𝑥) < 𝑓(𝑥best) then
20: Set 𝑥best = 𝑥
21: end if
22: if 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔𝑀𝑜𝑣𝑒𝐹𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒 then
23: Set 𝑘 = 1
24: else
25: 𝑘 + +
26: end if
27: Set 𝑡 to current time
28: end while
Output: improved solutions 𝑥 and 𝑥best

Algorithm 5 Perturbation

Input: current solutions 𝑥 and 𝑥best, end time 𝑡end and objective function 𝑓
1: Define perturbation neighborhoods 𝑁 perturbation

1 , ..., 𝑁 perturbation
𝑞max

2: Set perturbation penalty limit 𝐿𝑃 and perturbation moves limit 𝐿𝑀
3: Set starting penalty 𝑃start = 𝑓(𝑥) and perturbation moves counter 𝑚𝑜𝑣𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0
4: while |𝑓(𝑥) − 𝑃start| < 𝐿𝑃 AND 𝑚𝑜𝑣𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑒𝑟 < 𝐿𝑀 AND 𝑡 < 𝑡end do
5: Select 𝑞 ∈ {1, ..., 𝑞max} randomly
6: Select random solution 𝑥′ from 𝑁 perturbation

𝑞
7: if 𝑥′ is feasible then
8: Set 𝑥 = 𝑥′

9: if 𝑓(𝑥) < 𝑓(𝑥best) then
10: Set 𝑥best = 𝑥
11: end if
12: 𝑚𝑜𝑣𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +
13: end if
14: Set 𝑡 to current time
15: end while
Output: updated solutions 𝑥 and 𝑥best
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5.3.2. Simulated Annealing
The idea of the Simulated Annealing framework is to try to improve the solution over many iterations, where
in each iteration a move is randomly chosen from one of the neighborhood structures, and the choice to accept
it or not is made probabilistically based on its effect on the roster penalty, while maintaining roster feasibility.
Moves towards infeasible neighbors are rejected. If a move towards a feasible neighbor improves the roster, it is
always accepted. For moves towards feasible neighbors that increase the roster penalty, a larger increase in the
penalty results in a lower probability of acceptance. The acceptance probability is given by 𝑃(Δ) = 𝑒−Δ/𝑇 ,
where Δ is equal to the difference between the new penalty and the current penalty, and 𝑇 is a parameter known
as the temperature. Furthermore, the probability of accepting solution worsening moves decreases over time, such
that the algorithm starts with a wide search across the solution space, easily escaping local minima, and finally
converges to a single local minimum, in which it can descend with more and more precision. This behavior is
achieved by applying a so-called cooling schedule, that decreases the temperature 𝑇 over time. We use the same
cooling schedule as Ceschia et al. (2023), where the temperature is decreased by a factor 𝛼, known as the cooling
ratio, every time either a number 𝑀𝑠 of moves have been sampled, or a number 𝑀𝑎 of moves have been accepted,
whichever comes first. By choosing 𝑀𝑎 to be a fraction of 𝑀𝑠, the temperature is decreased faster when many
moves are accepted. Effectively, this mostly speeds up the start of the algorithm, when many moves are accepted
due to the high temperature and relative abundance of improving moves. The pseudocode for the Simulated
Annealing framework is shown in Algorithm 6.

Algorithm 6 Simulated Annealing
Input: initial solution 𝑥 ∈ 𝑋 and objective function 𝑓 ∶ 𝑋 → ℝ for solution space 𝑋

1: Initialize 𝑥best as 𝑥
2: Set temperature 𝑇 , cooling rate 𝛼, temperature limit 𝑇 min, and end time 𝑡end

3: Set limits 𝑀𝑠 and 𝑀𝑎 for the numbers of sampled and accepted neighbors before cooling
4: Define neighborhoods 𝑁1, ..., 𝑁𝑘
5: Set 𝑚𝑠 = 0 and 𝑚𝑎 = 0
6: Set 𝑡 to current time
7: while 𝑡 < 𝑡end AND 𝑇 > 𝑇 min do
8: Select neighborhood 𝑁 randomly from 𝑁1, ...𝑁𝑘
9: Select solution 𝑥′ randomly from 𝑁

10: if 𝑥′ is feasible then
11: if 𝑓(𝑥′) ≤ 𝑓(𝑥) then
12: Set 𝑥 = 𝑥′

13: if 𝑓(𝑥) < 𝑓(𝑥best) then
14: Set 𝑥best = 𝑥
15: end if
16: 𝑚𝑎 + +
17: else
18: Set Δ = 𝑓(𝑥′) − 𝑓(𝑥)
19: Calculate acceptance probability 𝑃 = 𝑒−Δ/𝑇

20: Draw random number 𝑟 ∈ [0, 1]
21: if 𝑟 < 𝑃 then
22: Set 𝑥 = 𝑥′

23: 𝑚𝑎 + +
24: end if
25: end if
26: end if
27: 𝑚𝑠 + +
28: if 𝑚𝑠 ≥ 𝑀𝑠 OR 𝑚𝑎 ≥ 𝑀𝑎 then
29: Set 𝑇 = 𝛼𝑇
30: Set 𝑚𝑠 = 0 and 𝑚𝑎 = 0
31: end if
32: Set 𝑡 to current time
33: end while
Output: 𝑥best



6
Evaluation methods

In this chapter, we elaborate on how the solution methods, described in Chapter 5, are evaluated. Overall, the strat-
egy is to first find the best performing construction method configuration, which we then fix in order to evaluate the
following overall frameworks and their variations. Secondly, different combinations of overall frameworks and
construction methods are tested. Finally, the algorithms are tested with slightly modified problem formulations,
to compare with lower bounds and ORTEC’s algorithms.

6.1. Experimental setting
The solution methods are evaluated based on their performance in the setting of a Dutch hospital that is a client
of ORTEC. Data was gathered from three different departments over the months April, May and June of 2023.
Characteristics of the resulting nine instances are shown in Table 6.1. In the remainder of this report, the instances
will be referred to by their abbreviations, as denoted in the same table. The only data that were not available
for these instances were the preferred shift and day-off sequence lengths. Therefore, for the corresponding soft
constraints, fictional preferences were generated, based on the contractual working hours of the employees, as
shown in Table 6.2. All tests are run on a machine with an Intel Xeon Gold 3.20GHz processor and 8GB RAM.
Tests including an overall framework are executed with a time limit of 10 minutes.

Table 6.1: Characteristics of the client instances: numbers of required shifts (S), priority shifts (PS), night shifts (NS), shift types (ST),
employees (E), average maximum working hours per employee (MH), average required working hours per employee (RH), requests (R,
sum of the following four request types), day-on requests (DOnR), day-off requests (DOffR), shift-on requests (SOnR) and shift-off requests
(SOffR). Note that the required shifts include the priority and night shifts, and that the maximum and required working hours are counted for
the whole month.

Dept. Month Abbr. S PS NS ST E MH RH R DOnR DOffR SOnR SOffR
Obstetrics April O4 951 80 242 15 85 88.0 86.7 186 76 88 22 0

May O5 992 86 252 15 85 92.1 93.7 104 86 18 0 0
June O6 956 92 240 15 84 90.4 91.4 98 85 13 0 0

Trauma April T4 429 36 60 10 38 114.0 90.8 108 27 62 6 13
May T5 447 40 62 10 37 120.7 97.2 154 41 90 10 13
June T6 438 44 60 10 36 116.2 97.7 65 11 40 0 14

Vascular April V4 441 33 60 10 46 121.6 77.5 56 0 51 1 4
surgery May V5 443 38 62 12 45 127.9 79.6 33 1 31 1 0

June V6 563 47 60 12 45 124.1 100.9 24 0 24 0 0

6.2. Construction methods
The first step is to determine the shift and employee sorting criteria and corresponding hierarchies that lead to
the best performance of the construction methods. Because the total number of possibilities in terms of chosen

27
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Table 6.2: This table shows the fictional preferred shift and day-off sequence lengths, based on the contractual working hours of that employees,
as they were used in the problem instances.

Contractual working
hours 𝜆 per week

Preferred shift
sequence length

Preferred day-off
sequence length

𝜆 ≥ 32 4 2
32 > 𝜆 ≥ 24 3 3
24 > 𝜆 ≥ 16 3 4

16 > 𝜆 2 5

criteria and corresponding hierarchies is enormous, is it practically impossible to evaluate them all. Therefore,
we form the sets of shift and employee sorting criteria and the corresponding hierarchies heuristically.

The candidate sorting criteria for shifts and employees, as described in Section 5.1.3, are placed in the sets
𝐶𝒮 and 𝐶ℰ, respectively. We let 𝒮 and ℰ denote the ordered sets of sorting criteria for shifts and employees,
respectively, to be used in the construction methods shown in Algorithms 1 and 2. 𝒮 and ℰ are initialized as
empty sets, which means that shifts and employees are sorted completely randomly in the construction method.
The performance of the construction method in this setting is considered as the baseline. Criteria from 𝐶𝒮 and
𝐶ℰ are then added iteratively to 𝒮 and ℰ, based on their effect on the performance of the construction method. For
this, for each criterion in 𝐶𝒮 and 𝐶ℰ separately, we test the performance of the construction method after adding
only this criterion to either 𝒮 or ℰ. The criterion that results in the best performance, in terms of the objective
function value, over most of the tested instances is then permanently added to either 𝒮 or ℰ and removed from
𝐶𝒮 or 𝐶ℰ. After adding this best criterion, the addition of the remaining criteria in 𝐶𝒮 and 𝐶ℰ is tested in the
same way, after which again the best criterion is added to either 𝒮 or ℰ. This process is repeated until either both
𝐶𝒮 and 𝐶ℰ are empty or the addition of none of the remaining criteria leads to better performance than already
obtained in the previous iteration (or the initial baseline, in case of the first iteration). Pseudocode of this method
is shown in Algorithm 7. Note that in each iteration, either a shift or an employee sorting criterion can be added.
Furthermore, when a criterion is added to 𝒮 or ℰ, it is placed lowest in the ordering, such that the criterion that
is added first in either of the sets will be highest in the hierarchy. Finally, because shifts or employees that score
equally on all criteria in 𝒮 or ℰ are sorted randomly, different runs with the same 𝒮 and ℰ can have different
outcomes. Therefore, for each instance, we consider the averaged result over multiple runs, to account for this
randomness.

After applying the described procedure on both construction methods, the method that leads to the best per-
formance for most instances is chosen as the fixed construction method for following evaluations.

6.3. Overall frameworks
6.3.1. Selection of neighborhoods
Given the fixed construction method, the next step is to determine which neighborhood structures should be used
in the overall frameworks to obtain the best performance. Again, we cannot test all possible combinations of
neighborhood structures, especially since multiple vertical and horizontal swapping and change neighborhood
structures with different block lengths can be applied. To select the neighborhoods, we apply a similar method
as in Section 6.2: the candidate neighborhoods, as described in Section 5.2, are placed in an ordered set 𝐶𝒩.
We let 𝒩 denote the set of neighborhoods to be used in the overall frameworks shown in Algorithms 3-6. 𝒩 is
initialized as an empty set, and since the overall frameworks cannot function with an empty set 𝒩, this means
that the baseline for this method is the performance of the previously fixed construction method. Neighborhoods
from 𝐶𝒩 are then added iteratively to 𝒩, based on their effect on the performance of the overall framework.
For this, for each neighborhood in 𝐶𝒩 separately, we test the performance of the overall framework after adding
only this neighborhood to 𝒩. The neighborhood that results in the best performance, in terms of the objective
function value, over most of the instances is then permanently added to 𝒩. After adding this best neighborhood,
the addition of the other neighborhoods in 𝐶𝒩 is tested in the same way, after which again the best criterion is
added to 𝒩. This process is repeated until either 𝒩 is equal to 𝐶𝒩 or the addition of none of the remaining
neighborhoods leads to better performance than already obtained in the previous iteration (or the initial baseline,
in case of the first iteration). Pseudocode of this method is shown in Algorithm 8. To reduce the number of
possible combinations of neighborhoods, Algorithm 8 is only applied with a block length of 1 for the horizontal
swapping, vertical swapping and change neighborhood structures.
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Algorithm 7 Determine shift and employee sorting criteria for construction methods
Input: sets of candidate shift and employee sorting criteria, 𝐶𝒮 and 𝐶ℰ, test instances 𝐽1, ..., 𝐽𝑀 , and objective

function 𝑓 ∶ 𝑋 → ℝ for solution space 𝑋
1: Initialize ordered sets of shift and employee sorting criteria to be used in the construction method, 𝒮 and ℰ,

as empty sets
2: Set the number of runs per instance to 𝐾
3: Apply the construction method with sorting criteria sets 𝒮 and ℰ 𝐾 times on each instance 𝐽1, ..., 𝐽𝑀 ,

resulting in solutions 𝑥1
1, ..., 𝑥𝑘

1, 𝑥1
2, ...𝑥𝑘

2, ..., 𝑥1
𝑀 , ..., 𝑥𝑘

𝑀 ∈ 𝑋
4: Save the average objective function values over the 𝐾 runs for all 𝑀 instances as

y0 = [∑𝐾
𝑘=1 𝑓(𝑥𝑘

1)/𝐾, ..., ∑𝐾
𝑘=1 𝑓(𝑥𝑘

𝑀)/𝐾]
5: Set 𝑛𝑜𝑀𝑜𝑟𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐺𝑎𝑖𝑛𝑒𝑑𝐵𝑦𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑓𝑎𝑙𝑠𝑒
6: while (𝐶𝒮 ≠ ∅ OR 𝐶ℰ ≠ ∅) AND 𝑛𝑜𝑀𝑜𝑟𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐺𝑎𝑖𝑛𝑒𝑑𝐵𝑦𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑓𝑎𝑙𝑠𝑒 do
7: for each shift sorting criterion 𝑐𝒮 in 𝐶𝒮 do
8: Set 𝒮′ = 𝒮 ∪ {𝑐𝒮}, with 𝑐𝒮 last in the ordering of 𝒮′.
9: Apply the construction method with sorting criteria sets 𝒮′ and ℰ 𝐾 times on each

instance 𝐽1, ..., 𝐽𝑀 , resulting in solutions 𝑥1
1, ..., 𝑥𝑘

1, 𝑥1
2, ...𝑥𝑘

2, ..., 𝑥1
𝑀 , ..., 𝑥𝑘

𝑀 ∈ 𝑋
10: Save the average objective function values over the 𝐾 runs for all 𝑀 instances as

y𝑐𝒮 = [∑𝐾
𝑘=1 𝑓(𝑥𝑘

1)/𝐾, ..., ∑𝐾
𝑘=1 𝑓(𝑥𝑘

𝑀)/𝐾]
11: end for
12: for each employee sorting criterion 𝑐ℰ in 𝐶ℰ do
13: Set ℰ′ = ℰ ∪ {𝑐ℰ}, with 𝑐ℰ last in the ordering of ℰ′.
14: Apply the construction method with sorting criteria sets 𝒮 and ℰ′ 𝐾 times on each

instance 𝐽1, ..., 𝐽𝑀 , resulting in solutions 𝑥1
1, ..., 𝑥𝑘

1, 𝑥1
2, ...𝑥𝑘

2, ..., 𝑥1
𝑀 , ..., 𝑥𝑘

𝑀 ∈ 𝑋
15: Save the average objective function values over the 𝐾 runs for all 𝑀 instances as

y𝑐ℰ = [∑𝐾
𝑘=1 𝑓(𝑥𝑘

1)/𝐾, ..., ∑𝐾
𝑘=1 𝑓(𝑥𝑘

𝑀)/𝐾]
16: end for
17: Let 𝑍 = {0} ∪ 𝐶𝒮 ∪ 𝐶ℰ
18: for each 𝑧 ∈ 𝑍 do
19: Create binary array u𝑧 = [𝑢𝑧

1, ..., 𝑢𝑧
𝑀 ], where 𝑢𝑧

𝑗 equals 1, if 𝑦𝑧
𝑗 = min𝑧∈𝑍𝑦𝑧

𝑗 , and 0 otherwise,
for each 𝑗 = 1, ..., 𝑀

20: end for
21: Let 𝑧∗ = argmax𝑧∈𝑍 ∑𝑀

𝑗=1 𝑢𝑧
𝑗

22: if multiple elements 𝑧 ∈ 𝑍 attain max𝑧∈𝑍 ∑𝑀
𝑗=1 𝑢𝑧

𝑗 then
23: Let 𝑧∗ = argmin𝑧∈𝑍 ∑𝑀

𝑗=1 𝑦𝑧
𝑗 /𝑀

24: if multiple elements 𝑧 ∈ 𝑍 attain min𝑧∈𝑍 ∑𝑀
𝑗=1 𝑦𝑧

𝑗 /𝑀 then
25: Choose 𝑧∗ randomly among elements 𝑧 ∈ 𝑍 that attain min𝑧∈𝑍 ∑𝑀

𝑗=1 𝑦𝑧
𝑗 /𝑀

26: end if
27: end if
28: if 𝑧∗ ∈ 𝐶𝒮 then
29: Set 𝒮 = 𝒮 ∪ {𝑧∗}, with 𝑧∗ last in the ordering of 𝒮
30: Set 𝐶𝒮 = 𝐶𝒮\{𝑧∗}
31: Set y0 = y𝑧∗

32: else if 𝑧∗ ∈ 𝐶ℰ then
33: Set ℰ = ℰ ∪ {𝑧∗}, with 𝑧∗ last in the ordering of ℰ
34: Set 𝐶ℰ = 𝐶ℰ\{𝑧∗}
35: Set y0 = y𝑧∗

36: else
37: 𝑛𝑜𝑀𝑜𝑟𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐺𝑎𝑖𝑛𝑒𝑑𝐵𝑦𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒
38: end if
39: end while
Output: resulting sets 𝒮 and ℰ
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In order to test the use of different neighborhoods in Variable Neighborhood Search, we need to place the
applied neighborhoods in some order. During the execution of Algorithm 8, we fix the ordering of the neighbor-
hoods in 𝐶𝒩, based on the ordering of neighborhoods of Abdelghany et al. (2021b) for Variable Neighborhood
Search, i.e. first the coverage-focused neighborhoods, followed by the horizontal and vertical swapping neigh-
borhoods. The change neighborhood, which Abdelghany et al. (2021b) did not apply, is placed at the end, as it
contains all possible alternative shift assignments for each employee on every day. The used order is shown in
Table 6.3. Additionally, the set of perturbation neighborhoods has to be defined. For this, we apply a setup similar
to Abdelghany et al. (2021b) and Goh et al. (2022): we let the set of perturbation neighborhoods consist of both
horizontal and vertical swapping neighborhoods with block lengths of 2 up to 6, as well as the change neighbor-
hood. This way, the perturbation mostly swaps around the existing shifts in the roster, and sometimes it adds
or removes a shift or changes it to another shift type. A perturbation limit of 5% is used, such that perturbation
operations are applied until the roster penalty is changed by at least 5%.

Table 6.3: Fixed order of neighborhood structures used for Variable Neighborhood Search in Algorithm 8

Rank Neighborhood structure
1 UC1
2 UC2
3 UC3
4 H1
5 V1
6 C1

Similarly, to test Simulated Annealing, we need to set a probability for each applied neighborhood to be
sampled in every iteration (line 8 in Algorithm 6). Because we do not have a basis on which to determine these
probabilities a priori, we fix them to be equal for all applied neighborhoods during the execution of Algorithm 8.
Note that the ordering of the neighborhood structures in 𝐶𝒩 and 𝒩 is irrelevant for Simulated Annealing. Finally,
the algorithm parameters for Simulated Annealing, described in Section 5.3.2, have to be fixed to some value.
Firstly, we set 𝑀𝑠 to 100 and 𝑀𝑎 to 𝜌𝑀𝑠 with 𝜌 = 0.2, similar to Ceschia et al. (2023). The initial and minimal
temperatures were chosen by trial and error with different orders of magnitudes, until values were found for which
the penalty did not initially increase to values as high as multiples of the penalty after construction, and finally
roughly converged to a single value. An additional condition for the initial temperature was that even a penalty
increase of 500, i.e. the equivalent of one unassigned priority shift, could still be accepted with a probability that
is not negligible. The values 𝑇 start = 50 and 𝑇 min = 0.1 satisfied these conditions, and thus, were fixed. During
this process, it was noted that the overall performance did not vary greatly with different values for 𝑇 start and 𝑇 min,
within reasonable orders of magnitude. An expected number of iterations 𝐼 was determined by some initial tests,
where the number of iterations that could be executed within 10 minutes was counted for all nine instances. The
smallest number, thus coming from the instance where an iteration requires the most computation time on average,
was roughly 15 million, so 𝐼 was set to 15,000,000. The cooling rate 𝛼 is calculated from the other parameters
as follows: 𝛼 = (𝑇 min/𝑇 start)𝑀𝑠/𝐼 . Note that the time limit of 10 minutes is not reached for instances where the
average computation time of a single iteration is smaller, and in cases where the limit for accepted moves before
cooling, 𝑀𝑎, is frequently reached earlier than the limit for sampled moves, 𝑀𝑠.

Block lengths After applying Algorithm 8, it is tested whether adding neighborhood structures with greater
block lengths improves performance. This is done by iteratively adding horizontal swapping, vertical swapping
and change neighborhood structures of increasing block lengths, until adding neighborhood structures of a greater
block length does not improve the performance of the overall framework anymore. In Variable Neighborhood
Search, the neighborhood structures with greater block lengths are added directly after the same type of neigh-
borhood structure with preceding block length. For example, given the ordering shown in Table 6.3, H2 is added
after H1 and before V1.

6.3.2. VNS: neighborhood orderings
For Variable Neighborhood Search, also the order in which the neighborhoods are placed is relevant for its per-
formance. Although some logic can be applied to devising the ordering, based on for example the sizes of the
neighborhoods and the types of corresponding operations, this is not guaranteed to lead to the best performing
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Algorithm 8 Method to select neighborhood structures to use in one of the overall frameworks
Input: ordered set of candidate neighborhood structures 𝐶𝒩, instances 𝐽1, ..., 𝐽𝑀 , fixed construction method

and its averaged results on the instances y0 = [𝑦0
1, ..., 𝑦0

𝑀 ], obtained in the execution of Algorithm 7,
where 𝑦0

𝑗 is the averaged result of the fixed construction method on instance 𝐽𝑗,
and objective function 𝑓 ∶ 𝑋 → ℝ for solution space 𝑋

1: Initialize ordered set of neighborhoods 𝒩, to be used in the overall framework, as an empty set
2: Set the number of runs per instance to 𝐾
3: Set 𝑛𝑜𝑀𝑜𝑟𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐺𝑎𝑖𝑛𝑒𝑑𝐵𝑦𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 𝑓𝑎𝑙𝑠𝑒
4: while 𝒩 ≠ 𝐶𝒩 AND 𝑛𝑜𝑀𝑜𝑟𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐺𝑎𝑖𝑛𝑒𝑑𝐵𝑦𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 𝑓𝑎𝑙𝑠𝑒 do
5: for each neighborhood structure 𝑐𝒩 in 𝐶𝒩 AND not in 𝒩 do
6: Set 𝒩′ = 𝒩 ∪ {𝑐𝒩}, following the same ordering as 𝐶𝒩
7: Apply the fixed construction method and the overall framework with set of neighborhood

structures 𝒩′ 𝐾 times on each instance 𝐽1, ..., 𝐽𝑀 , resulting in solutions
𝑥1

1, ..., 𝑥𝐾
1 , 𝑥1

2, ...𝑥𝐾
2 , ..., 𝑥1

𝑀 , ..., 𝑥𝐾
𝑀 ∈ 𝑋

8: Save the average objective function values over the 𝐾 runs for all 𝑀 instances as
y𝑐𝒩 = [∑𝐾

𝑘=1 𝑓(𝑥𝑘
1)/𝐾, ..., ∑𝐾

𝑘=1 𝑓(𝑥𝑘
𝑀)/𝐾]

9: end for
10: Let 𝑍 = {0} ∪ (𝐶𝒩\𝒩)
11: for each 𝑧 ∈ 𝑍 do
12: Create binary array u𝑧 = [𝑢𝑧

1, ..., 𝑢𝑧
𝑀 ], where 𝑢𝑧

𝑗 equals 1, if 𝑦𝑧
𝑗 = min𝑧∈𝑍𝑦𝑧

𝑗 , and 0 otherwise,
for each 𝑗 = 1, ..., 𝑀

13: end for
14: Let 𝑧∗ = argmax𝑧∈𝑍 ∑𝑀

𝑗=1 𝑢𝑧
𝑗

15: if multiple elements 𝑧 ∈ 𝑍 attain max𝑧∈𝑍 ∑𝑀
𝑗=1 𝑢𝑧

𝑗 then
16: Let 𝑧∗ = argmin𝑧∈𝑍 ∑𝑀

𝑗=1 𝑦𝑧
𝑗 /𝑀

17: if multiple elements 𝑧 ∈ 𝑍 attain min𝑧∈𝑍 ∑𝑀
𝑗=1 𝑦𝑧

𝑗 /𝑀 then
18: Choose 𝑧∗ randomly among elements 𝑧 ∈ 𝑍 that attain min𝑧∈𝑍 ∑𝑀

𝑗=1 𝑦𝑧
𝑗 /𝑀

19: end if
20: end if
21: if 𝑧∗ ∈ (𝐶𝒩\𝒩) then
22: Set 𝒩 = 𝒩 ∪ {𝑧∗}, following the same ordering as 𝐶𝒩
23: Set y0 = y𝑧∗

24: else
25: 𝑛𝑜𝑀𝑜𝑟𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐺𝑎𝑖𝑛𝑒𝑑𝐵𝑦𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 𝑡𝑟𝑢𝑒
26: end if
27: end while
Output: resulting set 𝒩
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ordering. Therefore, several different orderings are tested, varying from the ordering described in the previous
section. Firstly, should neighborhood structures with block lengths greater than one be used, it is tested to place
all neighborhood structures in order of increasing block length, instead of sorting by block lengths separately for
horizontal swapping, vertical swapping and change neighborhood structures. For example, instead of the ordering
{H1, H2, V1, V2}, we would test the ordering {H1, V1, H2, V2}. Secondly, recall that during the execution of
Algorithm 8, we use a fixed predetermined ordering of the neighborhoods, as shown in Table 6.3. Alternatively,
we now test whether the order in which the neighborhood structures were added during the execution of Algorithm
8, as shown in Table 7.3, results in better performance. Finally, should any undercoverage-focused neighborhood
structure be part of the outcome of Algorithm 8, it is tested to place it at the end of the ordering. This might reduce
the number of futile attempts to assign additional undercovered shifts, if only very few additional undercovered
shifts can be assigned in practice, leaving more computational time for other types of neighborhood operations.

6.3.3. SA: neighborhood probabilities
The probabilities with which the neighborhoods are chosen in each Simulated Annealing iteration influence the
performance of the algorithm as a whole, and applying equal probabilities for all neighborhoods does not neces-
sarily lead to the best performance. Ideally, the probabilities are adjusted such that each neighborhood is sampled
frequently enough to add value and not so frequent that it results in many unproductive roster operations. In
this context, a productive roster operation is a feasible operation that either improves the solution or causes a
potentially useful perturbation. However, a priori it is not clear which neighborhoods should receive a higher,
and which a lower probability. Additionally, since the number of possible sets of probabilities is very large, even
when only large variations in individual probabilities are considered, it is not possible to test all variations in
reasonable time.

Therefore, we test several different sets of neighborhood probabilities, based on observations made in the case
of equal probabilities. In particular, three cases are tested: one where the probabilities are based on the number
of accepted operations for each neighborhood, another based on the number of penalty improving operations, and
a third based on the sum of improvements made to the roster penalty over all improving operations. Note that
we consider an operation as penalty improving if it results in a lower penalty compared to the current solution.
To obtain the probabilities from the accepted operations statistic, the number of accepted operations for each
neighborhood is divided by the total number of accepted operations. The resulting ratios are then averaged over
all nine instances, with 10 runs per instance, to obtain a single ratio for each neighborhood that can function as
its probability. The probabilities based on the number of penalty improving operations and based on the sum of
penalty improvements are obtained in the same way. Here, the sum of penalty improvements is the sum of the
improvements to the roster penalty that was made by improving moves.

Specifically, suppose we first tested Simulated Annealing with equal probabilities for all 𝑁 neighborhood
structures on 𝑀 instances, with 𝐾 runs per instance. Let 𝐼𝑚,𝑘 denote the number of Simulated Annealing itera-
tions that were executed in run 𝑘 on instance 𝑚. Furthermore, let 𝐴𝑚,𝑘,𝑖 be 1 if the considered move in iteration
𝑖 in run 𝑘 on instance 𝑚 was accepted, and 0 otherwise. Similarly, let 𝐵𝑚,𝑘,𝑖 be 1 if the considered move in iter-
ation 𝑖 in run 𝑘 on instance 𝑚 was accepted and improved the current roster penalty, and 0 otherwise. Let 𝐶𝑚,𝑘,𝑖
be the amount by which the roster penalty was improved in iteration 𝑖 in run 𝑘 on instance 𝑚. Note that 𝐶𝑚,𝑘,𝑖
can be negative, but it is always positive for iterations for which 𝐵𝑚,𝑘,𝑖 is equal to 1. Finally, let 𝐷𝑚,𝑘,𝑖,𝑛 be 1 if
iteration 𝑖 in run 𝑘 on instance 𝑚 was executed by neighborhood structure 𝑛, and 0 otherwise. Then, for the cases
of accepted moves (AM), improving moves (IM) and improved penalty (IP), the probabilities for neighborhood
structure 𝑛 are calculated as follows:

Probability by accepted moves: 𝑃 AM
𝑛 =

∑𝑀
𝑚=1 ∑𝐾

𝑘=1
∑𝐼𝑚,𝑘

𝑖=1 𝐴𝑚,𝑘,𝑖𝐷𝑚,𝑘,𝑖,𝑛

∑𝐼𝑚,𝑘
𝑖=1 𝐴𝑚,𝑘,𝑖

𝐾𝑀 (6.1)

Probability by improving moves: 𝑃 IM
𝑛 =

∑𝑀
𝑚=1 ∑𝐾

𝑘=1
∑𝐼𝑚,𝑘

𝑖=1 𝐵𝑚,𝑘,𝑖𝐷𝑚,𝑘,𝑖,𝑛

∑𝐼𝑚,𝑘
𝑖=1 𝐵𝑚,𝑘,𝑖

𝐾𝑀 (6.2)

Probability by improved penalty: 𝑃 IP
𝑛 =

∑𝑀
𝑚=1 ∑𝐾

𝑘=1
∑𝐼𝑚,𝑘

𝑖=1 𝐵𝑚,𝑘,𝑖𝐶𝑚,𝑘,𝑖𝐷𝑚,𝑘,𝑖,𝑛

∑𝐼𝑚,𝑘
𝑖=1 𝐵𝑚,𝑘,𝑖𝐶𝑚,𝑘,𝑖

𝐾𝑀 (6.3)
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6.3.4. Dependency on construction method
The role of the construction methods is to provide a reasonably good initial solution for the following local search
algorithm to improve. To test how essential the quality of the initial solution is, both local search algorithms are
tested with both construction methods. Additionally, the local search algorithms are tested without a preceding
construction method, i.e. with an empty roster as initial solution.

6.4. Obtaining lower bounds
Because we do not employ an exact method to solve the complete model, the optimal solutions to the problem
instances are unknown. To gain some insight in the absolute quality of solutions obtained by our algorithms, we
solve a simplified model with an exact solver, resulting in lower bounds for the problem instances.

The simplified model contains those hard and soft constraints that are not related to weekly rest or sequences
of consecutive shifts or days off. An attempt was made to formulate the complete model as a mixed-integer
program. However, especially due to the multiple possible ways to satisfy the weekly rest constraint, and the used
definition of consecutive shifts or days off, as described in Chapter 4, it was expected that a very large number of
additional constraints and auxiliary variables, and a considerable amount of time would be required to formulate
these constraints. This would also make it less likely that a commercial solver could solve the problem instances
within a reasonable amount of time and memory. Therefore, only a simplified model was solved exactly. An
overview of the constraints in the original and simplified problem is given in Table 6.4. Descriptions of the hard
and soft constraints can be found in Chapter 4. The mixed-integer program formulation of the simplified model is
shown in Equations (6.5)-(6.32). The corresponding notation is clarified in Tables C.1 and C.2. The program is
solved using the Gurobi commercial solver. Note that the coverage spread and overtime spread penalties are the
only non-linear elements in the formulation.

Simplified problem formulation The rostering period is defined by the set of employees, 𝐸, the set of days,
𝐷, and the set of shift types, 𝑆. The binary decision variables are denoted by 𝑥𝑒,𝑑,𝑠: 𝑥𝑒,𝑑,𝑠 equals 1, if employee
𝑒 ∈ 𝐸 is assigned to a shift of type 𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷, and 0 otherwise. We denote a day-off assignment by 𝑜 and
let 𝑥𝑒,𝑑,𝑜 be equal to 1 if employee 𝑒 is assigned to a day off on day 𝑑, and 0 otherwise. The objective function is
shown in Equation (6.5): to minimize the sum of the soft constraint penalties, which are further described below.

Equation (6.6) is the expression for the coverage penalty, as described in Section 4.3. Constraints (6.7) and
(6.8) force auxiliary variable 𝑦𝑑,𝑠, which denotes the coverage shortage for shift type 𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷, to be
equal to the maximum of zero (Constraints (6.8)) and the difference between the numbers of required and assigned
employees for shift type 𝑠 on day 𝑑 (Constraints (6.7)).

The coverage spread penalty is expressed in Equation (6.9). In Section 4.3, the calculation of this penalty
was shown, based on the coverage shortages 𝑦𝑑 for all days 𝑑 ∈ 𝐷. Here, we rewrite the penalty as a quadratic
and a linear term of continuous auxiliary variable 𝑧𝑑, where 𝑧𝑑 represents the number of unplanned shifts on day
𝑑 ∈ 𝐷 minus one, see Equation (6.4). Constraints (6.10) and (6.11) force 𝑧𝑑 to be equal to the maximum of zero
(Constraints (6.11)) and the sum of the unplanned shifts of all shift types on day 𝑑 minus one (Constraints (6.10)).

∑
𝑑∈𝐷

𝑦𝑑

∑
𝑚=2

100(𝑚 − 1) = ∑
𝑑∈𝐷

100 (1 + 2 + ... + (𝑦𝑑 − 2) + (𝑦𝑑 − 1)) = ∑
𝑑∈𝐷

100 (1 + 2 + ... + (𝑧𝑑 − 1) + 𝑧𝑑)

= ∑
𝑑∈𝐷

100 (1
2 (𝑧2

𝑑 + 𝑧𝑑)) = ∑
𝑑∈𝐷

50 (𝑧2
𝑑 + 𝑧𝑑) . (6.4)

Equation (6.12) expresses the overtime hours spread penalty, as described in Section 4.3. Constraints (6.13)
and (6.14) force continuous auxiliary variable 𝑢𝑒, which denotes the worked overtime of employee 𝑒 ∈ 𝐸, to
be equal to the maximum of zero (Constraints (6.14)) and the difference between the total duration of all shifts
worked by employee 𝑒 and its contractual working hours, specified by input parameter 𝑐con

𝑒 (Constraints (6.13)).
Here, the duration of shifts of type 𝑠 ∈ 𝑆 in hours is given by continuous input parameter 𝑓𝑠 for all shift types,
and the shifts worked by employee 𝑒 are specified by the decision variables 𝑥𝑒,𝑑,𝑠 over all days 𝑑 ∈ 𝐷 and shift
types 𝑠 ∈ 𝑆.

The requests penalties are expressed in Equation (6.15), as described in Section 4.3: for each employee 𝑒 ∈ 𝐸,
a penalty is given for each time that employee 𝑒 requested to work on day 𝑑 ∈ 𝐷, but is assigned to a day off,
requested a day off on day 𝑑, but is not assigned to a day off, requested to work shift type 𝑠 ∈ 𝑆 on day 𝑑, but is
not assigned to it, or requested not to work shift type 𝑠 on day 𝑑, but is assigned to it. The weight of the penalty
is specified by input parameter 𝑗𝑒.
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Constraints (6.16) ensure that each employee 𝑒 ∈ 𝐸 can be assigned to at most one shift per day 𝑑 ∈ 𝐷.
Note that we sum over all 𝑠 ∈ 𝑆+, where 𝑆+ includes all shift types 𝑠 ∈ 𝑆, as well as the day-off assignment 𝑜.
Thus, by this constraint, for each employee 𝑒 and day 𝑑, either 𝑥𝑒,𝑑,𝑠 equals 1 for some 𝑠 ∈ 𝑆, i.e. employee 𝑒 is
assigned to shift type 𝑠 on day 𝑑, or 𝑥𝑒,𝑑,𝑜 equals 1, i.e. employee 𝑒 is assigned to a day off on day 𝑑.

The required skills constraint is shown in Constraints (6.17). Binary input parameter 𝑘𝑒,𝑠 equals 1 if employee
𝑒 ∈ 𝐸 has the required skills to be assigned to shifts of type 𝑠 ∈ 𝑆, and 0 otherwise. We can only have that
employee 𝑒 is assigned to a shift of shift type 𝑠 on any day 𝑑 ∈ 𝐷, i.e. 𝑥𝑒,𝑑,𝑠 equals 1, if employee 𝑒 has the
required skills for it, i.e. 𝑘𝑒,𝑠 equals 1.

Constraints (6.18) express the maximum workload constraint. The duration of shifts of type 𝑠 ∈ 𝑆 in hours
is given by continuous input parameter 𝑓𝑠 for all shift types. Furthermore, the maximum workload of employee
𝑒 ∈ 𝐸 in hours is given by continuous input parameter 𝑐max

𝑒 . The total duration of all worked shifts by employee
𝑒, which are specified by binary decision variables 𝑥𝑒,𝑑,𝑠, must be smaller than 𝑐max

𝑒 , for each employee 𝑒 ∈ 𝐸.
The fixed assignments constraints are shown in Constraints (6.19) and (6.20). Constraints (6.19) ensure that

the shift assignment of employee 𝑒 ∈ 𝐸 on day 𝑑 ∈ 𝐷 complies with any predetermined fixed assignment of
type 𝑠 ∈ 𝑆+ for that employee on that day. The fixed assignments are specified by binary input parameter 𝑚𝑒,𝑑,𝑠,
which is 1 if employee 𝑒 has a fixed assignment of shift type 𝑠 on day 𝑑, and 0 otherwise. Note that if an employee
is assigned to a night shift starting on day 𝑑, that shift will end somewhere during day 𝑑+1. Thus, to fully comply
with fixed day-off assignments, Constraints (6.20) ensure that an employee is not assigned to a night shift on day
𝑑, if it has a fixed day-off assignment on day 𝑑 + 1, i.e. 𝑚𝑒,𝑑+1,𝑜 equals 1. The binary input parameter 𝛽𝑠 is equal
to 1 if shift type 𝑠 is a night shift, and 0 otherwise.

In Constraints (6.21), the daily rest constraint is expressed: an employee 𝑒 ∈ 𝐸 can only work both shift type
𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷 and shift type 𝑡 on day 𝑑 + 1, i.e. both 𝑥𝑒,𝑑,𝑠 equals 1 and 𝑥𝑒,𝑑+1,𝑡 equals 1, if either there
is at least 11 hours of rest in between, or there is at least 8 hours of rest in between and the daily rest exception is
used on day 𝑑 for employee 𝑒. Binary input parameter 𝑛𝑠,𝑡 equals 1 if there is at least 11 hours of rest in between
shift type 𝑠 on day 𝑑 and shift type 𝑡 on day 𝑑 + 1, and 0 otherwise. Similarly, binary input parameter 𝑝𝑠,𝑡 equals
1 if there is at least 8 hours of rest in between, and 0 otherwise. Binary auxiliary variable 𝑣𝑒,𝑑 equals 1 if the daily
rest exception, which allows a rest period of between 8 and 11 hours once every 7 days, is used by employee 𝑒 on
day 𝑑, and 0 otherwise. Constraints (6.22) ensure that the daily rest exception is used at most once every 7 days.

The worked Sundays constraint is shown in Constraints (6.23): for each employee 𝑒 ∈ 𝐸, the number of
worked Sundays must be at most the maximum allowed number for that employee, which is given by input pa-
rameter 𝑟𝑒. Constraints (6.24) ensure that binary auxiliary variable 𝑤𝑒,𝑑 equals 1 if employee 𝑒 ∈ 𝐸 works any
shift 𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷 and day 𝑑 is a Sunday, i.e. 𝑥𝑒,𝑑,𝑠 equals 1 and 𝑞𝑑 equals 1. Constraints (6.25) ensure
that 𝑤𝑒,𝑑 also equals 1 if employee 𝑒 works a shift of type 𝑠 on day 𝑑 − 1, shift type 𝑠 is a night shift, and 𝑑 is a
Sunday, i.e. 𝑥𝑒,𝑑−1,𝑠 equals 1, 𝛽𝑠 equals 1 and 𝑞𝑑 equals 1.

Constraints (6.26) show the worked night shifts constraint: for each employee 𝑒 ∈ 𝐸, the total number of
worked night shifts, i.e. the number of cases where 𝑥𝑒,𝑑,𝑠 equals 1 and 𝛽𝑠 equals 1 for any shift type 𝑠 ∈ 𝑆 and
day 𝑑 ∈ 𝐷, must be lower than the maximum allowed number of night shifts for that employee 𝑒 ∈ 𝐸, which is
denoted by input parameter 𝛾𝑒.

The domains for the decision and auxiliary variables are shown in Constraints (6.27)-(6.32).

Objective function:
min (6.6) + (6.9) + (6.12) + (6.15) (6.5)
Coverage penalty:
∑
𝑑∈𝐷

∑
𝑠∈𝑆

𝑦𝑑,𝑠 (500𝑏𝑠 + 100(1 − 𝑏𝑠)) (6.6)

𝑦𝑑,𝑠 ≥ 𝑎𝑑,𝑠 − ∑
𝑒∈𝐸

𝑥𝑒,𝑑,𝑠 ∀𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆 (6.7)

𝑦𝑑,𝑠 ≥ 0 ∀𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆 (6.8)
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Coverage spread penalty:
∑
𝑑∈𝐷

50(𝑧2
𝑑 + 𝑧𝑑) (6.9)

𝑧𝑑 ≥ (∑
𝑠∈𝑆

𝑦𝑑,𝑠) − 1 ∀𝑑 ∈ 𝐷 (6.10)

𝑧𝑑 ≥ 0 ∀𝑑 ∈ 𝐷 (6.11)
Overtime hours spread penalty:
∑
𝑒∈𝐸

𝑢2
𝑒 (6.12)

𝑢𝑒 ≥ (∑
𝑑∈𝐷

∑
𝑠∈𝑆

𝑥𝑒,𝑑,𝑠𝑓𝑠) − 𝑐con
𝑒 ∀𝑒 ∈ 𝐸 (6.13)

𝑢𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 (6.14)
Requests penalties:
∑
𝑒∈𝐸

∑
𝑑∈𝐷

𝑗𝑒 (𝑥𝑒,𝑑,𝑜𝑔on
𝑒,𝑑 + (1 − 𝑥𝑒,𝑑,𝑜)𝑔off

𝑒,𝑑)

+ ∑
𝑒∈𝐸

∑
𝑑∈𝐷

∑
𝑠∈𝑆

𝑗𝑒 ((1 − 𝑥𝑒,𝑑,𝑠)ℎon
𝑒,𝑑,𝑠 + 𝑥𝑒,𝑑,𝑠ℎoff

𝑒,𝑑,𝑠) (6.15)

Single shift per day constraint:
∑
𝑠∈𝑆+

𝑥𝑒,𝑑,𝑠 = 1 ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 (6.16)

Required skills constraint:
𝑥𝑒,𝑑,𝑠 ≤ 𝑘𝑒,𝑠 ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆 (6.17)
Maximum workload constraint
∑
𝑑∈𝐷

∑
𝑠∈𝑆

𝑥𝑒,𝑑,𝑠𝑓𝑠 ≤ 𝑐max
𝑒 ∀𝑒 ∈ 𝐸 (6.18)

Fixed assignments constraint:
𝑥𝑒,𝑑,𝑠 ≥ 𝑚𝑒,𝑑,𝑠 ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆+ (6.19)
𝑥𝑒,𝑑,𝑠𝛽𝑠 ≤ 1 − 𝑚𝑒,𝑑+1,𝑜 ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 ∶ 𝑑 < |𝐷|, 𝑠 ∈ 𝑆 (6.20)
Daily rest constraint:
𝑥𝑒,𝑑,𝑠 + 𝑥𝑒,𝑑+1,𝑡 ≤ 1 + 𝑛𝑠,𝑡 + 𝑣𝑒,𝑑𝑝𝑠,𝑡 ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 ∶ 𝑑 < |𝐷|, 𝑠, 𝑡 ∈ 𝑆 (6.21)

6
∑
𝑖=0

𝑣𝑒,𝑑+𝑖 ≤ 1 ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 ∶ 𝑑 ≤ |𝐷| − 6 (6.22)

Worked Sundays constraint:
∑
𝑑∈𝐷

𝑤𝑒,𝑑 ≤ 𝑟𝑒 ∀𝑒 ∈ 𝐸 (6.23)

𝑤𝑒,𝑑 ≥ 𝑞𝑑(1 − 𝑥𝑒,𝑑,𝑜) ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 (6.24)

𝑤𝑒,𝑑 ≥ 𝑞𝑑 ∑
𝑠∈𝑆

𝑥𝑒,𝑑−1,𝑠𝛽𝑠 ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 ∶ 𝑑 > 1 (6.25)

Worked night shifts constraint:
∑
𝑑∈𝐷

∑
𝑠∈𝑆

𝑥𝑒,𝑑,𝑠𝛽𝑠 ≤ 𝛾𝑒 ∀𝑒 ∈ 𝐸 (6.26)

Variable domains:
𝑥𝑒,𝑑,𝑠 ∈ {0, 1} ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆+ (6.27)
𝑦𝑑,𝑠 ∈ ℝ ∀𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆 (6.28)
𝑧𝑑 ∈ ℝ ∀𝑑 ∈ 𝐷 (6.29)
𝑢𝑒 ∈ ℝ ∀𝑒 ∈ 𝐸 (6.30)
𝑣𝑒,𝑑 ∈ {0, 1} ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 (6.31)
𝑤𝑒,𝑑 ∈ {0, 1} ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷 (6.32)
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6.5. Comparison with ORTEC’s algorithms
After testing the different variations of the two construction methods and the two overall frameworks, the best
working combinations are compared to the performance of the AutoRoster local search algorithm and the solver
incorporated in the ORTEC for Workforce Scheduling (OWS) software product.

AutoRoster The AutoRoster algorithm is located in the same C# implementation as the methods developed in
this thesis, and thus, can easily be used on our problem description. However, the AutoRoster local search algo-
rithm allows for assigning shifts of which the shift type is not required on that day, i.e. the coverage requirement
of that shift type is zero on that day. Therefore, we also test our overall frameworks such that this is allowed, for
fair comparison. Table 6.4 gives an overview of the resulting problem description. The AutoRoster local search
algorithm consists of a construction method and a local search method that considers horizontal swaps and shift
assignment changes. AutoRoster is a solution method that is owned by Staff Roster Solutions1, and for which
ORTEC has a license to use it for research purposes.

OWS solver Since the OWS solver is incorporated in a large software product, it cannot be easily adjusted
to use our problem description. To obtain a fair comparison, we omit the coverage spread and preferred shift
and day-off sequence length penalties. Additionally, since the OWS solver does not allow for assigning more
shifts than required by the coverage requirements, we add a hard maximum coverage constraint. The maximum
shift coverage of each shift type on each day is set to be equal to the corresponding desired shift coverage, as
specified in the shift coverage soft constraint. An overview of the resulting problem description is given in Table
6.4. Also, because of differences in how the coverage penalty is handled, both in terms of shift types of different
priorities, and compared to the other penalties, all shifts are given the same priority and a weight of 10,000.
Finally, all day and shift requests receive the same penalty of 100, and the numbers of overtime hours are rounded
up before calculating the overtime hours spread penalty. Because the process of aligning the data instances used
by Gurobi, Simulated Annealing and AutoRoster with the data used by OWS is elaborate and time-consuming,
only the trauma instances are prepared, to obtain a first illustration of mutual differences in performance. The
OWS solver consists of a construction method, a population-based meta-heuristics, a local search method and a
ruin-and-recreate framework.

Table 6.4: Overview of modifications to the original problem described in Chapter 4, as used for comparison with Gurobi, the AutoRoster
local search algorithm and the OWS solver. *Note that disallowing non-required shifts is an implicit hard constraint, resulting from the
neighborhood restrictions described in Section 5.2, and that the corresponding constraints form a subset of the maximum shift coverage
constraints.

Model used by
Constraints Original model Gurobi AutoRoster OWS
Hard constraints Daily rest x x x x

Weekly rest x x x
Worked Sundays x x x x
Rest after consecutive night shifts x x x
Consecutive shifts with night shifts x x x
Worked night shifts x x x x
Maximum workload x x x x
Required skills x x x x
Maximum shift coverage x
Disallow non-required shifts* x x

Soft constraints Shift coverage x x x x
Shift coverage spread x x x
Overtime hours spread x x x x
Day-on/off and shift-on/off requests x x x x
Preferred shift sequence length x x
Preferred day-off sequence length x x

1https://www.staffrostersolutions.com/



7
Results

This chapter displays the results that were obtained after applying the evaluation methods described in Chapter 6.
All tests were executed on the nine instances described in Section 6.1. However, in view of readability, only the
figures for results on the April instances are shown in this chapter. The figures for the May and June instances can
be found in Appendix D. Note that the results differ greatly between different instances, in terms of the size of
the total penalties, and that differences between different methods or settings are often relatively small compared
to the total penalties. Therefore, the y-axis in the presented figures does not start at zero, and the figures do not
share the same scale for different instances.

7.1. Construction methods
Algorithm 7 for determining the shift and employee sorting criteria was applied to both construction methods,
shown in Algorithms 1 and 2. The number of runs per instance, 𝐾, was set to 25. The resulting sets of shift and
employee sorting criteria, including their corresponding hierarchies, are shown in Table 7.1.

Table 7.1: Shift and employee sorting criteria resulting from applying Algorithm 7 to both construction methods. The order in which the
criteria were added to the sets is indicated by the numbers in brackets.

Construction-per-shift Construction-per-employee
Rank Shift sorting criteria Employee sorting criteria Shift sorting criteria Employee sorting criteria

1 Coverage requirements (1) Available working time (2) Night shifts (2) Available working time (1)
2 Priority shifts (5) Day-on/off requests (3) Coverage requirements (3)
3 Shift-on/off requests (4) Number of available employees (4)

It was noted that for Construction-per-shift, the criteria of priority shifts, day requests and shift requests were added
after the criteria of coverage requirements and available working time. This means that the former criteria caused
a smaller performance gain than the latter ones. However, the former criteria only affect a relatively small part of
the shifts or employees. Therefore, it might be the case that these criteria are, in fact, very effective for the shifts or
employees they affect, but their overall impact is relatively low due to the small number of shifts or employees they
affect. For this reason, an additional test was done where the order of the former and latter criteria was reversed.
The resulting order is shown in Table 7.2. This alternative ordering resulted in better performance for 8 out of 9
instances, mostly due to smaller numbers of unplanned priority shifts and unsatisfied requests, and was therefore
considered as the final ordering of the criteria for Construction-per-shift. Construction-per-employee did not have
a similar situation in its resulting sorting criteria. Still, based on the improved performance of the alternative
ordering for Construction-per-shift, additional tests were done where the priority shifts and shift requests criteria
were added at the top of the hierarchy of the shift sorting criteria for Construction-per-employee. This lead to
slightly improved performance for 7 out of 9 instances, so the criteria shown in Table 7.2 were considered as the
final criteria for Construction-per-employee.

Results of both construction methods with their final sorting criteria are shown in Figures 7.1 and D.1. Ap-
pendix D contains the results in numerical values of both the sorting criteria obtained by the execution of Algo-
rithm 7, shown in Table 7.1, and the final sorting criteria, shown in Table 7.2, in Tables D.1 and D.2, as well as

37
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Table 7.2: Alternative ordering of the sorting criteria for Construction-per-shift and Construction-per-employee

Construction-per-shift Construction-per-employee
Rank Shift sorting criteria Employee sorting criteria Shift sorting criteria Employee sorting criteria

1 Priority shifts Day-on/off requests Shift-on/off requests Available working time
2 Coverage requirements Shift-on/off requests Priority shifts
3 Available working time Night shifts
4 Coverage requirements
5 Number of available employees

the breakdown of the total roster penalties into the different penalty categories in Tables D.3 and D.5, and the run
times and the roster properties related to the different penalty categories in Tables D.4 and D.6.

It is clear that Construction-per-shift outperforms Construction-per-employee, as it significantly scores better
in terms of the objective function value for all nine instances. This is also the case for almost all penalty cate-
gories individually. Only in terms of the overtime spread penalty and the preferred shift sequence length penalty,
Construction-per-employee scores better on 3 and 2 out of 9 instances, respectively. With respect to the run times,
both methods finish well within 1 second for all instances, and neither method holds a significant advantage over
the other.

Based on the results described above, Construction-per-shift with the sorting criteria shown in Table 7.2 was
fixed for the following tests with the overall frameworks.

(a) (b) (c)

Figure 7.1: Box plots of the results of Construction-per-shift (CPS) and Construction-per-employee (CPE), using the sorting criteria shown
in Table 7.2, on the April instances over 25 runs per instance.

7.2. Overall frameworks
7.2.1. Selection of neighborhoods
Algorithm 8 was applied to both Variable Neighborhood Search and Simulated Annealing. The number of runs
per instance, 𝐾, was set to 10. The resulting sets of neighborhood structures are shown in Table 7.3. These sets
of neighborhood structures were thus used in further tests.

Block lengths After having obtained the different neighborhood structures for Variable Neighborhood Search
and Simulated Annealing, it was tested whether the addition of C𝑥, H𝑥 and V𝑥 neighborhood structures with
block lengths 𝑥 greater than 1 could improve performance. Note that the maximum block lengths of C𝑥, H𝑥 and
V𝑥 neighborhood structures were incremented simultaneously. The results are shown in Figures 7.2, D.2 and D.3.
For Simulated Annealing, a general trend can be observed where the performance increases with the addition of
C𝑥, H𝑥 and V𝑥 up to a block length 𝑥 of around 4, after which the performance decreases again with the addition
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Table 7.3: Sets of neighborhood structures resulting from applying Algorithm 8 to Variable Neighborhood Search (VNS) and Simulated
Annealing (SA), shown in the order by which they were added to the sets. The neighborhood structures and their abbreviations are introduced
in Section 5.2.

Neighborhood structures
Rank VNS SA

1 UC2 C1
2 C1 H1
3 V1 V1
4 H1
5 UC1

of neighborhood structures with greater block lengths. Therefore, from this point forward, Simulated Annealing
was applied with the C𝑥, H𝑥 and V𝑥 neighborhood structures with block lengths 1, 2, 3 and 4.

For Variable Neighborhood Search, maximum block lengths up to 20 were tested, and the general trend is
that a larger maximum block length results in increased performance. Note that H𝑥 neighborhood structures
with block lengths 𝑥 greater than 15 were not added, because in a scheduling period of a month there are no
two non-overlapping blocks of 16 or more days that can be swapped for an employee. Because the performance
appeared to stabilize at the largest tested maximum block lengths, no tests were executed with maximum block
lengths greater than 20. When looking more specifically to the average performance at different maximum block
lengths, a maximum block length of 19 appeared to have the best performance by a small margin compared to
similar maximum block lengths. Afterwards, it was observed that C𝑥 and H𝑥 neighborhood structures with block
lengths 𝑥 larger than roughly 7 and 10, respectively, did not result in any penalty improving moves (see Table D.9).
Thus, for further tests, we applied Variable Neighborhood Search with C𝑥, H𝑥 and V𝑥 neighborhood structures
with block lengths 1 through 7, 1 through 10, and 1 through 19, respectively.

7.2.2. VNS: neighborhood orderings
Table 7.4 shows the neighborhood orderings that were tested for Variable Neighborhood Search, as described in
Section 6.3.2. The results of these orderings are shown in Figures 7.3 and D.4. It can be observed that the differ-
ences between the performance with the different orderings are relatively small. Overall, none of the orderings
appears to generally yield better results than the original ordering. Especially between the original ordering (O)
and the ordering with overall increasing block length (IBL), the results are very close. The distinction between
these two was finally based on the averaged differences over the nine instances, where the original ordering scored
slightly better (see Table D.10). Therefore, the original ordering is used in further tests.

7.2.3. SA: neighborhood probabilities
Table 7.5 shows the neighborhood probability distributions, that were calculated as described in Section 6.3.3,
and tested for Simulated Annealing. General trends in these distributions are that the V𝑥 neighborhood structures
receive higher probabilities than H𝑥 and C𝑥, and that the neighborhood probabilities decrease with increasing
block lengths. The results of these distributions, compared to the case of equal probabilities for all neighborhoods,
are shown in Figures 7.4 and D.5. Firstly, it can be observed that the differences between the performance with
the different distributions are relatively small. Still, the setting based on the number of improving moves yields
somewhat better results on most instances, and thus, this setting is used in further tests.

7.2.4. Dependency on construction method
The results of the different pairs of overall frameworks and construction methods are shown in Figures 7.5 and
D.6. Although Construction-per-shift results in initial solutions with much smaller penalties than those obtained
with Construction-per-employee, and much more so compared to empty rosters, the performance of Simulated
Annealing and Variable Neighborhood Search does not appear to be significantly affected when preceded by
Construction-per-employee or no construction method at all, instead of Construction-per-shift. This indicates
that the neighborhood structures used for Simulated Annealing and Variable Neighborhood Search contain the
necessary types of roster operations to both construct a roster and further improve it.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Box plots of the results of Simulated Annealing (a)-(c) and Variable Neighborhood Search (d)-(f) with different maximum block
lengths on the April instances over 10 runs per instance.
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(a) (b) (c)

Figure 7.3: Box plots of the results of Variable Neighborhood Search with different neighborhood orderings on the April instances over 10
runs per instance. The tested orderings are displayed in Table 7.4. Two high-valued outliers for ordering UCFL on instance O4 were omitted
from Subfigure (a) for clarity.

(a) (b) (c)

Figure 7.4: Box plots of the results of Simulated Annealing with different neighborhood probability distributions on the April instances over
10 runs per instance. The shown settings are equal probabilities (EP) and probabilities by accepted moves (AM), improving moves (IM) and
improved penalty (IP), and the corresponding probabilities are shown in Table 7.5.
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Box plots of the results of different pairs of overall frameworks (OF), i.e. Simulated Annealing (SA) and Variable Neighborhood
Search (VNS), and construction methods (CM), i.e. Construction-per-shift (CPS), Construction-per-employee (CPE) and no construction
(none), on the April instances over 10 runs per instance.
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Table 7.4: Tested neighborhood orderings for Variable Neighborhood Search: the original ordering (O), as described in Section 6.3.1, as well
as the ordering with overall increasing block length (IBL), the ordering following the results from the execution of Algorithm 8 (WNR), and
the ordering with the undercoverage focused neighborhoods last (UCFL), as described in Section 6.3.2.

Neighborhood ordering
O IBL WNR UCFL

UC1 UC1 UC2 H1
UC2 UC2 C1 ...
H1 H1 ... H10
... V1 C7 V1

H10 C1 V1 ...
V1 ... ... V19
... H7 V19 C1

V19 V7 H1 ...
C1 C7 ... C7
... H8 H10 UC1
C7 V8 UC1 UC2

...
H10
V10
V11
...

V19

Table 7.5: Tested neighborhood probability distributions, based on the numbers of accepted moves (AM), improving moves (IM) and the
improved penalty (IP) of the neighborhood structures obtained from the case where all neighborhood probabilities are equal. Also the aggregate
probabilities of neighborhoods of the same operation type, i.e. H𝑥, V𝑥 or C𝑥, and of the same block length 𝑥 are shown. The case of equal
probabilities (EP) is displayed for comparison.

Probability by
Neighborhood structure(s) EP AM IM IP

H1 0.0833 0.118199 0.154385 0.207851
H2 0.0833 0.019165 0.027736 0.051106
H3 0.0833 0.011059 0.016471 0.031208
H4 0.0833 0.006701 0.009870 0.019286

V1 0.0833 0.256920 0.157966 0.115742
V2 0.0833 0.146636 0.195767 0.136398
V3 0.0833 0.093488 0.139979 0.106827
V4 0.0833 0.070068 0.116519 0.097278

C1 0.0833 0.214583 0.133434 0.166114
C2 0.0833 0.043728 0.029915 0.038309
C3 0.0833 0.014081 0.012157 0.018924
C4 0.0833 0.005371 0.005801 0.010957

H𝑥 0.333 0.155124 0.208462 0.309451
V𝑥 0.333 0.567112 0.610231 0.45245
C𝑥 0.333 0.277764 0.181307 0.234304

𝑥 = 1 0.25 0.589702 0.445784 0.489706
𝑥 = 2 0.25 0.209529 0.253418 0.225813
𝑥 = 3 0.25 0.118629 0.168607 0.156959
𝑥 = 4 0.25 0.082140 0.132190 0.127522
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7.2.5. Simulated Annealing vs. Variable Neighborhood Search
For the tests with Simulated Annealing to this point, the stopping criterion of the minimum temperature could be
reached before the time limit of 10 minutes, as described in Section 6.3.1. For a fairer comparison with Variable
Neighborhood Search, which always reaches the time limit, we did additional tests with Simulated Annealing,
without the minimum temperature stopping criterion. Note that this can give at most a very small increase in
performance, as Simulated Annealing will have roughly converged when the minimum temperature is reached.
Additional tuning of the Simulated Annealing parameters for each instance could let the algorithm use the given
time more effectively. The results of Simulated Annealing and Variable Neighborhood Search are shown in Fig-
ures 7.6 and D.8. The corresponding run times are shown in Figures 7.7 and D.9. The numerical values for
Simulated Annealing without minimum temperature stopping criterion and Variable Neighborhood Search, and
the resulting roster properties are shown in Tables D.11 and D.12. The breakdown of the total penalty into the
different penalty categories can be found in Tables 7.7, 7.8 and 7.9 (columns SA (2) and VNS (2)). From this
comparison, we conclude that Simulated Annealing generally outperforms Variable Neighborhood Search, al-
though the differences are relatively small. Note that this also holds for Simulated Annealing with the minimum
temperature stopping condition, which generally uses less time. Additionally, we observe that the standard devi-
ations over the nine instances are relatively small for both methods: between 0.0093% and 0.14% of the mean for
Simulated Annealing (0.077% on average), and between 0.011% and 0.23% for Variable Neighborhood Search
(0.085% on average).

(a) (b) (c)

Figure 7.6: Box plots of the results of Simulated Annealing, with and without the minimum temperature stopping criterion (SA and SA-
10mins, respectively), and Variable Neighborhood Search (VNS) on the April instances over 10 runs per instance. Note that SA-10mins and
VNS always reach the time limit of 10 minutes, whereas SA can be stopped earlier by the minimum temperature stopping conditions, see
Figures 7.7 and D.9.

7.2.6. Construction-per-shift vs. Simulated Annealing
To gain insight in the quality of an initial solution, obtained by our best performing construction method, i.e.
Construction-per-shift, we compare the results of Construction-per-shift with the results of our best performing
overall framework, i.e. Simulated Annealing. The results are shown in Tables 7.6, D.13 and D.14. We observe
that, on all instances, the worst solution found by Simulated Annealing is still significantly better than the best
solution found by Construction-per-shift. Thus, Simulated Annealing can significantly improve the constructed
initial solution. Specifically, most of the improvement is gained in the coverage spread penalty and the preferred
shift and day-off sequence length penalties. Note that Construction-per-shift does not take these penalties into ac-
count. In contrast, for most instances, only few additional required shifts can be assigned by Simulated Annealing
compared to the initial solution constructed by Construction-per-shift, which is reflected in relatively small dif-
ferences in the coverage penalty. Additionally, the deviation between the outcomes of different runs is far smaller
for Simulated Annealing than for Construction-per-shift. Although it may be counterintuitive that a construction
method, such as Construction-per-shift, is less stable than a probabilistic local search method, such as Simulated
Annealing, this can be explained by the fact that Construction-per-shift does not take all soft constraints into ac-
count and also contains a degree of randomness in the sorting of shifts and employees that score the same on all
sorting criteria.
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(a) (b) (c)

Figure 7.7: Box plots of the run times of Simulated Annealing, with and without the temperature stopping criterion (SA and SA-10mins,
respectively), and Variable Neighborhood Search (VNS) on the April instances over 10 runs per instance.

Table 7.6: Results of Construction-per-shift (CPS) and Simulated Annealing (SA) on all nine instances. The mean, standard deviation (SD),
minimum and maximum are shown of the total roster penalties over 25 runs for CPS and 10 runs for SA. The values are rounded somewhat
for clarity.

Construction-per-shift Simulated Annealing
Instance Mean SD Min Max Mean SD Min Max

O4 76,812 1,823 73,442 80,287 64,854 11.3 64,830 64,869
O5 110,178 2,517 106,452 115,643 98,624 15.1 98,604 98,649
O6 93,302 2,167 89,553 98,335 82,309 7.6 82,298 82,324
T4 7,815 383 7,186 8,420 5,862 7.1 5,848 5,874
T5 8,708 299 7,979 9,266 6,647 8.8 6,630 6,661
T6 13,183 468 12,481 14,238 10,656 4.1 10,650 10,661
V4 8,493 69 8,409 8,664 7,501 7.0 7,484 7,510
V5 6,414 82 6,246 6,565 5,304 6.4 5,293 5,314
V6 19,672 755 18,209 20,922 13,987 19.8 13,946 14,013

7.3. Lower bounds
The mixed-integer program, described in Section 6.4, was solved using Gurobi 11.0. The results are shown in
Tables 7.7, 7.8 and 7.9. In terms of the soft constraints, the program solved by Gurobi only contains the coverage,
coverage spread, overtime hours spread and requests penalties. We refer to the sum of these four penalties as the
partial objective. The remaining two soft constraints, i.e. the preferred shift sequence length and preferred day-off
sequence length penalties, are referred to as the additional objective. The partial and additional objective together
form the complete objective. The program solved by Gurobi contains a subset of the hard constraints and the
partial objective. The corresponding results are compared to Simulated Annealing and Variable Neighborhood
Search in the case with all hard constraints and the partial objective (SA (1) and VNS (1) in the tables), and in
the case with all hard constraints and the complete objective (SA (2) and VNS (2) in the tables). Note that for
the Gurobi, SA (1) and VNS (1) results, the additional objective was not taken into account during the execution
of the algorithms, but was calculated afterwards for the resulting rosters, together with the total penalty. Because
Gurobi was used on a model with fewer hard constraints, the results it obtained on the partial objective form
lower bounds on the partial objective for the complete model with all hard constraints. Therefore, as the objective
function value of any feasible solution forms an upper bound on the optimal objective value, any feasible solution
that attains the lower bound on the partial objective is optimal with respect to the partial objective.

We find that Simulated Annealing and Variable Neighborhood Search, when applied without the additional
objective (SA (1) and VNS (1) in the tables), obtain the same result as Gurobi for the partial objective in each run
on 7 out of 9 instances, and are thus optimal with respect to the partial objective on those instances. Note that here
only the additional objective is omitted from the original model. When we applied Simulated Annealing on the
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same model as Gurobi (see Table 6.4), by also omitting the hard constraints on weekly rest, rest after consecutive
night shifts, and consecutive shifts with night shifts, and the non-required shifts neighborhood restrictions, it also
found the optimal values on the partial objective for each run on the O6 and V6 instances. In this case, Variable
Neighborhood Search found the optimal values for each run on the O6, and for some runs on the V6 instance.
Therefore, it is likely that in the case of SA (1) and VNS (1), the remaining hard constraints, that were not in the
Gurobi model, made it impossible to find a feasible solution that attains the lower bound on the partial objective.

Comparing the results from SA (1) to SA (2), and from VNS (1) to VNS (2), we find that the addition of the
additional objective to the model only causes at most a small increase in the partial objective value, whereas it
causes a significant improvement in the performance with respect to the additional objective, and thereby also
with respect to the complete objective. However, from these results, we cannot draw absolute conclusions on the
performance with respect to the complete objective, as we do not have a lower bound greater than zero on the
additional objective.
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Table 7.7: Results obtained by Gurobi (G), compared with results of Simulated Annealing (SA) and Variable Neighborhood Search (VNS), applied both on the partial objective (1) and the complete objective
(2), averaged over 10 runs per instance. The partial objective contains the coverage, coverage spread, overtime hours spread and requests penalties. The complete objective contains the partial objective and the
additional objective, which consists of the preferred shift sequence length and preferred day-off sequence length penalties. For Gurobi, SA (1) and VNS (1), the additional objective and the total penalty were
calculated afterwards for the resulting rosters. Note that the results from Gurobi form a lower bound for the partial objective. Asterisks (*) indicate that the SA or VNS result was equal to the value found by Gurobi
for each run.

Total penalty Partial objective
SA VNS SA VNS

Instance G (1) (2) (1) (2) G (1) (2) (1) (2)
O4 65,949.49 65,940.66 64,854.36 65,949.79 64,859.19 63,574.79 * 63,576.22 * 63,581.12
O5 100,087.30 100,079.06 98,624.09 100,095.41 98,646.05 97,308.96 * 97,311.65 * 97,318.03
O6 83,364.75 83,337.16 82,309.05 83,338.63 82,307.28 81,342.40 81,352.40 81,355.04 81,352.40 81,356.43
T4 6,549.13 6,498.46 5,862.14 6,487.54 5,871.50 4,805.07 * 4,811.67 * 4,810.57
T5 7,325.02 7,320.72 6,646.82 7,354.02 6,658.26 5,719.02 * * * 5,719.03
T6 11,366.86 11,365.04 10,656.46 11,347.35 10,670.41 9,785.63 * * * 9,785.64
V4 8,412.29 8,300.73 7,501.00 8,400.83 7,508.14 6,601.94 * * * 6,601.97
V5 6,309.91 6,197.50 5,303.90 6,345.45 5,313.94 4,382.31 * 4,383.61 * 4,383.57
V6 14,815.06 14,867.84 13,986.70 14,980.30 14031.96 12,680.48 12,936.67 12,958.86 12,964.82 13,000.75

Table 7.8: See the caption of Table 7.7.

Coverage penalty Coverage spread penalty Overtime hours spread penalty
SA VNS SA VNS SA VNS

Instance G (1) (2) (1) (2) G (1) (2) (1) (2) G (1) (2) (1) (2)
O4 17,700 * * * * 43,500 * * * * 2,203.79 * 2,205.22 * 2,210.12
O5 22,800 * * * * 72,800 * * * * 1,488.96 * 1,491.65 * 1,498.03
O6 20,300 * * * * 58,800 * * * * 2,074.40 * 2,077.04 * 2,078.43
T4 3,600 * * * * 0 * * * * 1,205.07 * * * *
T5 5,400 * * * * 0 * * * * 319.02 * * * *
T6 8,000 * * * * 600 * * * * 1,185.63 * * * *
V4 6,500 * * * * 0 * * * * 62.94 * * * 62.98
V5 4,200 * * * * 0 * * * * 105.31 * 106.61 * 106.56
V6 11,200 * * * * 1,300 * * * * 103.48 319.67 323.06 334.22 354.65
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Table 7.9: Results obtained by Gurobi (G), compared with results of Simulated Annealing (SA) and Variable Neighborhood Search (VNS), applied both on the partial objective (1) and the complete objective
(2), averaged over 10 runs per instance. The partial objective contains the coverage, coverage spread, overtime hours spread and requests penalties. The complete objective contains the partial objective and the
additional objective, which consists of the preferred shift sequence length and preferred day-off sequence length penalties. For Gurobi, SA (1) and VNS (1), the additional objective and the total penalty were
calculated afterwards for the resulting rosters. Note that the results from Gurobi form a lower bound for the partial objective. Asterisks (*) indicate that the SA or VNS result was equal to the value found by Gurobi
for each run.

Requests penalty Preferred shift sequence length penalty Preferred day-off sequence length penalty
SA VNS SA VNS SA VNS

Instance G (1) (2) (1) (2) G (1) (2) (1) (2) G (1) (2) (1) (2)
O4 171 * * * * 1,332.98 1,317.08 747.08 1,324.91 737.02 1,041.73 1,048.79 531.06 1,050.09 541.06
O5 220 * * * * 1,563.87 1,573.63 786.99 1,578.74 791.45 1,214.46 1,196.47 525.44 1,207.71 536.56
O6 168 178 178 178 178 1,163.60 1,148.27 588.81 1,153.06 585.30 858.75 836.49 365.20 833.17 365.55
T4 0 * 6.6 * 5.5 1,005.12 981.33 561.98 977.44 576.01 738.94 712.05 488.49 705.03 484.92
T5 0 * * * * 996.26 985.90 532.17 995.60 544.63 609.74 615.79 395.62 639.40 394.60
T6 0 * * * * 994.81 989.24 519.73 980.99 531.47 586.42 590.17 351.10 580.73 353.30
V4 39 * * * * 1,024.83 1,007.42 454.32 1,013.41 467.39 785.52 691.38 444.74 785.48 438.78
V5 77 * * * * 1,084.96 1,103.56 484.05 1,113.89 492.20 842.64 711.63 436.24 849.24 438.18
V6 77 117 135.8 130.6 146.1 1,186.66 1,187.48 606.64 1,218.38 614.41 947.13 743.69 421.20 797.10 416.80
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7.4. Comparison with ORTEC’s algorithms
AutoRoster Figures 7.8 and D.10 and Tables D.15, D.16 and D.17 show the results of Simulated Annealing and
Variable Neighborhood Search, compared to the AutoRoster local search algorithm, when applied to the problem
described in Section 6.5. It can be seen that Simulated Annealing and Variable Neighborhood Search outperform
AutoRoster on each instance. Note that the AutoRoster local search algorithm is mostly deterministic, and thus, no
deviation can be observed among the results of different runs. In terms of penalty categories, AutoRoster mainly
scores worse in the requests and preferred shift and day-off sequence length penalties.

(a) (b) (c)

Figure 7.8: Box plots of the results of Simulated Annealing (SA) and Variable Neighborhood Search (VNS) compared to the AutoRoster (AR)
local search algorithm on the modified model, shown in the AutoRoster column of Table 6.4, on the April instances over 10 runs per instance.

OWS solver Results of Gurobi, Simulated Annealing, AutoRoster and the OWS solver on the simplified model,
as described in Section 6.5, on the trauma instances are shown in Tables 7.10 and 7.11. Because of the small
differences in performance between Simulated Annealing and Variable Neighborhood Search, compared to their
differences compared to AutoRoster, Variable Neighborhood Search was not included in this comparison. Simu-
lated Annealing found the optimal solution on all three instances, AutoRoster on two out of three instances, and
OWS on none of the instances. Specifically, all methods found the optimal values for the coverage penalty, Au-
toRoster had a higher overtime hours spread penalty once, and OWS had a higher overtime hours spread penalty
twice, and a higher requests penalty once. Note that the differences are small. However, since the model was
highly simplified, the qualitative difference in whether the methods were able to find the optimal solution gives
some indication that Simulated Annealing could outperform OWS.

Table 7.10: Comparison of the results of Gurobi (G), Simulated Annealing (SA), the AutoRoster local search algorithm (AR) and the OWS
solver on a simplified model for the trauma instances. Note that the results from Gurobi form a lower bound for the total penalty. Asterisks
(*) indicate that the SA, AR or OWS result was equal to the value found by Gurobi.

Total penalty Coverage penalty Overtime hours spread penalty
Instance G SA AR OWS G SA AR OWS G SA AR OWS

T4 240,649 * 240,662 240,662 240,000 * * * 649 * 662 662
T5 320,820 * * 320,891 320,000 * * * 720 * * 791
T6 441,385 * * 441,685 440,000 * * * 1,285 * * *
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Table 7.11: Comparison of the results of Gurobi (G), Simulated Annealing (SA), the AutoRoster local search algorithm (AR) and the OWS
solver on a simplified model for the trauma instances. Note that the results from Gurobi form a lower bound for the total penalty. Asterisks
(*) indicate that the SA, AR or OWS result was equal to the value found by Gurobi.

Requests penalty Unplanned shifts Overtime hours per employee Unsatisfied requests
Instance G SA AR OWS G SA AR OWS G SA AR OWS G SA AR OWS

T4 0 * * * 24 * * * 2.55 * 2.58 2.58 0 * * *
T5 100 * * * 32 * * * 3.30 * * 3.43 1 * * *
T6 100 * * 400 44 * * * 4.86 * * * 1 * * 4
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Discussion

In this chapter, we discuss some possible explanations of the obtained results, as well as the most important
research limitations.

8.1. Differences between construction methods
For most of the instances, the difference in the obtained total penalty between Construction-per-shift and Construction-
per-employee is explained for the largest part by the difference in the coverage spread penalty. We observed that
in rosters generated by Construction-per-employee, the unplanned shifts are largely concentrated at the end of
the scheduling period, which can be ascribed to the chronological order in which the employee rosters are con-
structed: once the final few days of the scheduling period are encountered, most employees will have already
reached their maximum workload limit, due to their shift assignments on previous days, and cannot be assigned
to any shift in those last few days. Consequently, the large number of unplanned shifts on only a small number of
days results in a large coverage spread penalty. A similar observation was made during the process of determin-
ing the sorting criteria for Construction-per-shift, where applying the date criterion for sorting shifts resulted in
worse performance than random sorting. Note that for both observations, the performance with assigning shifts in
chronological order did not only lead to increased coverage spread penalty, but also for example more unplanned
shifts and unsatisfied requests. From this, we conclude that constructing a roster in chronological order generally
seems to have a negative effect on the quality of the solution.

In light of this conclusion, Construction-per-employee might perform better if it were adjusted, such that it goes
through the days in a non-chronological manner for each employee. However, it was noted that Construction-per-
shift, in the case where the shifts were only sorted by date and the employees were sorted completely randomly, still
outperformed the best found variant of Construction-per-employee on 8 out of 9 instances. This is an indication
that constructing a roster per employee generally leads to worse solutions than constructing it per shift. Therefore,
no additional tests were performed with a non-chronological version of Construction-per-employee.

8.2. Effect of different neighborhood structures
In the iterations of Algorithm 8, most clearly in the first iteration, it was noted that the different neighborhood
structures contributed to improvements in different aspects of the objective function. Firstly, the coverage spread
penalty was improved the most by UC2 and H1. This can be explained by their ability to alter the distribution of
the existing shifts over the different days, without adding new shifts, and such that the employee workloads remain
the same. Secondly, the overtime hours spread penalty was improved the most by V1. This can be explained by its
ability to move shifts between employees, such that the worked overtime is distributed more evenly among them,
without altering shift coverage. Finally, since UC1 and C1 are the only neighborhood structures that are able to
increase the total number of shifts in the roster, the lowest found values for the coverage penalty were reached only
after adding either one of them. By design of the construction methods and UC1, UC1 on itself cannot improve
the coverage penalty of the initial solution, as all unplanned shifts in the initial solution cannot be directly assigned
to any employee without causing a hard constraint violation. Therefore, UC1 can only improve the roster penalty
if combined with other neighborhood structures, whereas C1 could find the lowest found coverage penalty values
on its own both for Variable Neighborhood Search and Simulated Annealing.

51



8.3. Overplanned shifts 52

The observations described above explain the results shown in Table 7.3, namely that horizontal swapping,
vertical swapping and shift assignment changing operations are all necessary to reach the best overall performance.

8.3. Overplanned shifts
During the execution of Algorithm 8, it was observed that the addition of C1 caused a great increase in the number
of overplanned shifts in the final roster for the instances of the obstetrics and vascular surgery departments. In
these instances, employees can be identified who only have the required skills for shifts for which the coverage
requirements are relatively low. When those coverage requirements are met, such employees have sufficient time
left within their maximum workload limit to be assigned to additional shifts. Although these additional shifts
are redundant with respect to the coverage requirements, they may improve the solution with respect to employee
preference constraints. Note that due to the overtime hours penalty, it is not beneficial to plan much overtime
using redundant shifts. In the instances of the trauma department, there are no employees with time left for
additional redundant shifts, and thus, no overplanned shifts are assigned. Beforehand, it was expected that the
problem instances would not allow for the assignment of many non-required shifts, as understaffing is generally
more common in healthcare than overstaffing. Therefore, no maximum shift coverage constraints were added to
the problem. However, it can be viewed as undesirable if many redundant shifts are planned. To account for this,
neighborhood restrictions were added that prevent assigning shifts of which the coverage requirement is zero on
the day in question, as described in Section 5.2. Resultingly, overcoverage could only occur for shifts for which
the coverage requirement is at least one. We would advise to let maximum shift coverage constraints be optional in
practice, such that it can be used or not, depending on whether overcoverage is likely and/or desirable to happen.

8.4. Effect of maximum block length
The difference between Simulated Annealing and Variable Neighborhood Search in their results with variable
maximum block lengths, shown in Section 7.2.1, is noteworthy. For both frameworks, increasing the maximum
block lengths initially improved performance. However, this trend reversed for Simulated Annealing around a
maximum block length of 4, whereas it continued for Variable Neighborhood Search for greater maximum block
lengths, until it eventually stagnated. For Simulated Annealing, it was observed that operations sampled from
neighborhood structures with greater block lengths typically have a lower acceptance rate than those sampled
from neighborhood structures with smaller block lengths, as is expressed in the probabilities shown in Table 7.5.
For Variable Neighborhood Search, similar observations were made. Thus, operations with greater block lengths
are more likely to be ineffective, i.e. cause infeasibility and/or increase the roster penalty.

Recall that for Simulated Annealing, all neighborhood structures had equal sampling probabilities in the ex-
periments with different maximum block lengths. For Simulated Annealing, this likely means that, for increasing
maximum block lengths, the disadvantage of increasing the number of ineffective operations eventually outweighs
the benefit of expanding the set of possible operations that can be sampled. The results with different neighbor-
hood probability settings, as described in Section 7.2.3, show that assigning smaller probabilities to neighborhood
structures with greater block lengths results in increased performance. This suggests that the addition of neigh-
borhood structures with block lengths greater than 4 could still improve performance, if the sampling probabilities
are adjusted accordingly.

For Variable Neighborhood Search, the addition of neighborhood structures with greater block lengths results
in a longer search for a local minimum in the descent phase. Although a neighborhood with a very large block
length might contain only very few improving operations, every time that such a neighborhood contains at least
one improving operation triggers a restart of the descent phase as a whole, potentially resulting in a better local
minimum. A consequence of a longer descent phase is that fewer perturbations to escape local minima can be made
within the same time limit. The results described in Section 7.2.2 showed that, generally, a larger maximum block
length leads to improved performance for Variable Neighborhood Search. Thus, this likely means that the benefit
in terms of exploitation, through a longer descent phase with relatively more ineffective operations, outweighs
the benefit in terms of diversification, through more perturbations to escape local minima. Note however, that
the addition of neighborhood structures with greater block lengths also leads to improved diversification within
the descent phase, as more different solutions can be reached by expanding the set of considered operations. In
conclusion, these results suggest that the perturbation is not very effective, potentially because there are not many
different local minima or the existing local minima have very similar objective function values, which would
reduce the relevance of diversification, or the used perturbation method does not manage to jump to significantly
different locations in the solution space.
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8.5. Effect of overall framework
The results of the comparison of Simulated Annealing and Variable Neighborhood Search, shown in Section 7.2.5,
show that Simulated Annealing generally outperforms Variable Neighborhood Search. However, the differences
are relatively small. Thus, additional adjustments to and/or parameter tuning for the algorithms could still change
this relation to some extent. Also, when we compare the results on the different penalty categories, the differences
remain small, and no tradeoff can be observed, where Simulated Annealing scores better on some categories, and
Variable Neighborhood Search on others. Note that the algorithms are quite different in how they use their sets
of neighborhood structures, as Simulated Annealing is mostly probabilistic, and Variable Neighborhood Search
is much more structured. However, the sets of used neighborhood structures of both methods largely overlap.
Thus, these results suggest that the used types of roster operations have a much greater influence on the overall
performance than the framework in which they are applied.

8.6. Lower bounds
The results shown in Section 7.3 show that Simulated Annealing and Variable Neighborhood Search could attain
the lower bounds on the partial objective obtained by Gurobi in each run for 7 out of 9 instances, even though
Gurobi used a model where the hard constraints on weekly rest, rest after consecutive night shifts and consecutive
shifts with night shifts were relaxed. This shows that the addition of these hard constraints that were relaxed for
Gurobi did not increase the optimal partial objective values of the problem instances. Thus, although these hard
constraints are necessary to ensure that solutions satisfy the Dutch Working Hours Act, in most cases they do not
reduce the extent to which the soft constraints from the partial objective can be satisfied.

When we compare the standard deviation of the results of Simulated Annealing and Variable Neighborhood
Search, shown in Table D.11, with the differences between the lower bounds on the partial objective and the
results of Simulated Annealing and Variable Neighborhood Search on the partial objective, as shown in Table 7.7
(columns G, SA (2) and VNS (2) for the partial objective), we find that for most instances, the standard deviation
is greater than this difference in partial objective. Additionally, we observe that for both Simulated Annealing and
Variable Neighborhood Search, the standard deviations in the preferred shift and day-off sequence length penalties
were significantly higher than the standard deviations in the coverage, coverage spread, overtime hours spread and
requests penalties for most instances. This suggests that the greatest part of the standard deviation in the results
of Simulated Annealing and Variable Neighborhood Search can be ascribed to the preferred shift and day-off
sequence length penalties. This could mean that the differences in quality of different local minima originate
mostly from these soft constraints. We can at least partly explain this by the fact that there are often multiple ways
to improve these soft constraint penalties. For example, both penalties can be decreased by either changing at
least one shift/day-off sequence into the preferred length, or by merging two shift/day-off sequences that are not
of the preferred length into one, as illustrated in Figure 8.1. Note that the latter option can give counterintuitive
results, as the creation of sequences, that deviate even more from the preferred length than the current sequences,
can improve the penalty. As illustrated in Figure 8.1, changing one sequence into the preferred length improves
the penalty more than merging two sequences into one. However, our methods do not employ a steepest-descent
principal, and thus, it is possible to improve the penalty by repeatedly merging sequences, resulting in rosters with
very long sequences. This phenomenon could cause the existence of many different local minima, with different
combinations of very long sequences and sequences of the preferred length, which could at least partly explain
the relatively large deviation in the preferred shift and day-off sequence length penalties.

8.7. Comparison with ORTEC’s algorithms
The results of the comparison with the AutoRoster local search algorithm and OWS suggest that Simulated An-
nealing and Variable Neighborhood Search outperform both AutoRoster and OWS. However, the comparison with
OWS was limited to a simplified model on only three instances. Therefore, more extensive comparisons on the
complete model are required for more strongly founded conclusions.

8.8. Research limitations
In this study, different variations of several components of the used methods were tested, such as the shift sort-
ing criteria for the construction methods, or the maximum block lengths of the neighborhoods for the overall
frameworks. Because the total number of combinations of all variations of these components was too large to
test them all, the components were varied one at a time, and the best variation of one component was fixed before
testing variations of the next component. However, the different algorithm components are likely interdependent
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Figure 8.1: Example of possible ways to improve the preferred shift sequence length penalty. Suppose employee 𝑒 has some assignments of
shift type 𝑠, and prefers shift sequences of length 1. Then, in the starting roster on the left, there is one shift sequence of the preferred length,
and two not of the preferred length. Thus, the ratio of shift sequences that are not of the preferred length is 2

3 . On the right, two possible ways
to improve the corresponding penalty are shown. In the top case, one shift is removed, which results in one additional shift sequence to attain
the preferred shift sequence length, thereby decreasing the ratio of sequences not of the preferred length to 1

3 . In the bottom case, one shift is
added, which results in the reduction of the number of shift sequences by one, while keeping the number of shift sequences of the preferred
length the same. Thereby, the ratio of sequences not of the preferred length is decreased to 1

2 .

to some extent, such that variations in one component can affect the influence of variations in another component.
Therefore, there might be combinations of component variations that would result in better performance than the
combinations that were the result of this study. An example could be the relation between the maximum block
length and the neighborhood probability distribution for Simulated Annealing, as described in Section 8.4.

Furthermore, we aimed for methods that are general, such that they can perform well under various problem
setting and data instances. However, only one problem setting and data instances from one hospital were used.
Although these were chosen to be representative, still, the generality of the methods would have to be validated
by testing them in different contexts.

Additionally, the conclusions on some experiments had to be made based on very small differences among
the results of different algorithm component variations. Altogether, to draw more strongly founded conclusions
on which specific algorithm configurations perform best, tests should be done with more variations in problem
descriptions and data instances, with more runs per instance, and with more finely tuned components, based on
the general trends that our results exhibit.
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Conclusion

This study was aimed at finding an algorithm that is suitable for implementation in a commercial automatic shift
scheduler. Firstly, the state-of-the-art in algorithms to solve the nurse rostering problem was identified: literature
on the nurse rostering problem was reviewed, algorithms presented in literature were identified, and their results
on different benchmarks were compared. In general, single-solution based meta-heuristics were deemed the most
suitable for the target cases, based on their performance in terms of solution quality and reliability in terms of
finding feasible solutions. A categorization was made of the components that such algorithms typically consist
of, such as a construction methods, neighborhood structures, overall frameworks and perturbation methods.

Based on the conclusions from the literature review, we chose to implement two construction methods, namely
Construction-per-shift and Construction-per-employee, and two overall frameworks, namely Simulated Annealing
and Variable Neighborhood Search. Variations of several components of these methods were tested: different
shift and employee sorting criteria for the construction methods, different types of neighborhood structures for the
overall frameworks, different maximum block lengths of the used neighborhood structures, different neighborhood
probabilities for Simulated Annealing and different neighborhood orderings for Variable Neighborhood Search.

Experiments were performed under a time limit of 10 minutes using nine data instances from a Dutch hospital,
originating from three departments over three months. The considered hard and soft constraints were drawn up
to reflect real-world target cases.

The best performing construction method was Construction-per-shift, where shifts were sorted based on the
shift type priority and coverage requirements, and employees were sorted based on day and shift requests, and
the amount of available working time. Construction-per-shift greatly outperformed the best performing variant
of Construction-per-employee.

The best performing overall framework was Simulated Annealing, using horizontal swapping, vertical swap-
ping and shift assignment changing neighborhood structures with block lengths 1 through 4. Generally, a higher
neighborhood probability was given to vertical swapping neighborhoods than to horizontal swapping and shift
assignment changing neighborhoods, and a lower probability to neighborhoods with a larger block length. In
terms of performance, Simulated Annealing had a small advantage compared to Variable Neighborhood Search,
for which the best performing variant used two undercoverage focused neighborhood structures, and horizontal
swapping, vertical swapping, and shift assignment changing neighborhood structures of block lengths 1 through
10, 1 through 19 and 1 through 7, respectively.

Based on the obtained results, we evaluate the suitability of the implemented methods against the required
characteristics:

• stability: the combined methods of Construction-per-shift and Simulated Annealing, and Construction-
per-shift and Variable Neighborhood Search were able to produce stable results over multiple runs, with
standard deviations of only 0.077% and 0.085% of the mean objective function value, respectively, averaged
over the nine instances.

• generality: Construction-per-shift uses problem information such as the shift type priorities, coverage re-
quirements and employee requests. Therefore, its performance will likely be affected by differences in the
problem formulation. In contrast, Simulated Annealing, of which the performance was shown to be largely
independent of the construction method, only employs basic roster operations of swapping and changing
shift assignments, that do not depend on the specific problem information. For Variable Neighborhood
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Search, only the undercoverage focused neighborhood structures use problem information. Therefore, we
expect these methods to perform well for a wide variety of hard and soft constraints within the nurse ros-
tering problem, although tuning of, for example, temperature parameters and neighborhood probabilities
might still be required in different contexts.

• high quality rosters: with respect to the combined shift coverage, shift coverage spread, overtime hours
spread and requests penalties, Simulated Annealing and Variable Neighborhood Search obtained near-
optimal results. For the preferred shift and day-off sequence length penalties, no lower bound was known,
but significant improvements were made compared to the constructed initial roster. These results indicate
that Simulated Annealing and Variable Neighborhood Search can produce rosters of high quality, in terms
of both coverage requirements and employee preferences.

• short computation times: the results were obtained using a time limit of 10 minutes, which can already
be considered as reasonably short. Further improvements in the implementation efficiency can ensure that
the same solution quality can be obtained in even less time.

We conclude that both Simulated Annealing and Variable Neighborhood Search are suitable methods for imple-
mentation in a general automatic shift scheduler, where Simulated Annealing holds a small advantage in terms of
performance.
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Future research

In this chapter, we discuss several research directions that could be addressed in future studies.

10.1. Algorithm variations
In this study, different variations of several components of the used methods were tested, such as the shift sorting
criteria for the construction methods, or the probability distributions of the neighborhoods for Simulated Anneal-
ing. However, many more algorithm adaptations could be experimented with. We list several suggestions for
possible improvements of the algorithms:

• Non-hierarchichal sorting of shifts and employees: in the construction methods, shift and employee
sorting criteria were used, to try to schedule the most difficult shifts and employees first, and take some soft
constraints into account. We applied these sorting criteria hierarchichally. Thus, if one shift or employee
was ranked as more difficult than another with respect to the first criterion, it was always placed earlier
in the list, independent of how they scored on the other criteria. Only if two shifts or employees were
equal with respect to the first criterion, they were sorted by the second criterion, etc. However, suppose
shift 𝑠1 is ranked as more difficult than shift 𝑠2 on all criteria, except for the first. Then, shift 𝑠2 would
be tried to assign first based on the first criterion, even though the combination of the other criteria might
make shift 𝑠1 more difficult to assign than shift 𝑠2. In order to sort the shift and employees based on all
criteria non-hierarchichally, a difficulty score could be used, equal to a weighted sum of the scores on the
different criteria. The weights would then signify how much the different criteria contribute to the difficulty
of assigning a shift or employee.

• Less randomized perturbation: in Variable Neighborhood Search, the descent and perturbation phases
are alternated repeatedly, where the perturbation phase is started once the descent phase has yielded a local
minimum. In our study, the perturbation phase consisted of applying randomly sampled vertical swapping,
horizontal swapping and shift assignment changing operations, until the roster penalty was changed by at
least 5%. However, this might not be the most effective way to perturb the solution. Firstly, the random
perturbation moves could be replaced by, or combined with a ruin-and-recreate method, where the rosters
on one or more days or employees could be (partially) removed and then reconstructed. The reconstruction
could, for example, be done similarly to the construction methods used in this study. Secondly, the pertur-
bation method could be applied in a targeted fashion, such that, for example, the days or employees with
the highest penalties are perturbed more frequently.

• Adaptive neighborhood probabilities: in Simulated Annealing, each neighborhood structure requires a
specified probability for it to be sampled in each iteration. We tested several different probability distri-
butions for the set of neighborhood structures used in Simulated Annealing, such that the neighborhood
probabilities were the same for every iteration, and we obtained a distribution that resulted in better perfor-
mance than the default of equal probabilities for all neighborhoods. However, it might be the case that some
neighborhood structures are very effective in the early stages of solution improvement, but less effective in
the later stages, and vice versa for other neighborhood structures. Therefore, it could be beneficial to adjust
the neighborhood probabilities adaptively over time. For example, the probabilities could be determined
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based on similar statistics as described in Section 6.3.3, but then adjusted after each iteration. Note that such
adaptive neighborhood probabilities show similarities with the hidden Markov model-based hyper-heuristic
by Kheiri et al. (2021).

• Parallel runs: the overall frameworks of Simulated Annealing and Variable Neighborhood Search were
only tested with a time limit of 10 minutes. It would be insightful to test them also with different time limits,
to find the relation between their performance and the used time limit. For example, suppose that Simulated
Annealing exhibits the potential to reach the same solution quality in half the time, but only reaches it less
frequently within that shorter time limit. Then, it might be beneficial to execute two runs in parallel with
half the available computation time each, and take the best result of the two, than to execute one run with
all available computation time.

10.2. Hard constraint relaxations
The hard constraints of the problem reflect the criteria that a roster must satisfy for it to be acceptable, independent
of its quality in terms of the soft constraints. Therefore, the roster that an algorithm returns as output must
satisfy all hard constraints. However, allowing intermediate solutions to be infeasible may enable an algorithm to
access feasible regions that would otherwise be hard to reach, potentially leading to better final solutions. Such
relaxations can be implemented by changing the hard constraints into soft constraints with specified weights.
The weights should then be sufficiently high, compared to those of the soft constraints, in order for algorithms
to steer towards feasible solutions. This is because too low weights may cause an algorithm to favor satisfying
a few soft constraints over satisfying a hard constraint. On the other hand, if the relaxed hard constraints have
weights that are very high, they can remain unrelaxed in practice, depending on the overall framework. In the
Simulated Annealing framework, weights that are too high will result in negligible acceptance probabilities for
moves towards rosters that violate any of the relaxed hard constraints. In the Variable Neighborhood Search
framework, improving moves that violate any relaxed hard constraints are then unlikely to be found within the
descent phase. However, in the perturbation phase, moves are accepted independent of their effect on the roster
penalty, as long as they are feasible, so in the perturbation phase, the relaxations will be effective independent of
the applied weights.

Hard constraint violations differ in how difficult they are to resolve. For example, if a shift is assigned to an
employee who does not have the required skills, that same shift has to be unassigned again later to resolve the
violation. In contrast, a maximum workload violation can be (partly or completely) resolved by unassigning any of
the currently assigned shifts for the employee in question. Thus, an interesting direction for future research would
be to study if improvements in algorithm performance can be obtained by hard constraint relaxations, where the
weights reflect the difficulty of resolving the corresponding violations.

10.3. Exact methods
In this study, a simplified model was solved using an exact method, in order to obtain lower bounds to a partial
objective, consisting of 4 out of 6 soft constraint penalties. However, solving the complete model using an exact
method was outside of the scope of this project, because of the expected complexity of the problem, both in
terms of the required amount of time to formulate the mixed-integer program, and in terms of the computational
time and memory required to solve it. However, being able to find the exact solutions to problem instances with
respect to the total roster penalty could give additional insight in the optimality gaps that the algorithms can reach.
Note that for the partial objective, omitting the hard constraints on weekly rest, rest after consecutive night shifts,
and consecutive shifts with night shifts hard constraints did not prevent the lower bound being reached for most
problem instances, as described in Section 7.3. Thus, only the addition of the preferred shift and day-off sequence
length penalties to the simplified model could already be enough to obtain strong lower bounds to the total roster
penalty.

10.4. Implementation efficiency
For optimization methods in general, good performance requires not only an effective algorithm, but also an effi-
cient implementation. In the considered problem, calculations of the hard constraint violations and soft constraint
penalties take up most of the computation time. Therefore, reducing the amount of redundant penalty calcula-
tions can significantly reduce the computation time per iteration, thereby improving the solution quality that can
be reached within the same amount of time. Specifically, for each type of roster operation, it should be determined
which constraints have to be recalculated, and which constraints are not affected, after applying it. For example, if
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a horizontal swap is applied within the roster of an employee, the total amount of working time for that employee
cannot have changed, and thus the maximum workload constraint does not have to be recalculated. Similarly, if a
vertical swap is applied on a day in the roster, the total shift coverage on that day cannot have changed, and thus
the coverage and coverage spread penalties do not have to be recalculated.

Thus, although we already obtained good results and drew several conclusions on the performance of different
algorithm components, many more promising developments can be expected for future solutions to the nurse
rostering problem.
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A
Benchmark results

This appendix contains the results of algorithms found in literature, on scientific benchmarks, as described in
Chapter 2.

Table A.1: Overview of algorithms and the abbreviations used in the tables with their experimental results

Authors Method Abbreviation
Abdelghany et al. (2021a) Variable Neighborhood Search + Dynamic Programming ABD21
Abdelghany et al. (2021b) Two-stage Variable Neighborhood Search ABD21b
Abuhamdah et al. (2021) Population-Based Local Search ABU21
Awadallah et al. (2015) Bee Colony Optimization AWA15
Awadallah et al. (2017) Harmony Search AWA17
Burke and Curtois (2014) Variable Depth Search BUR14
Chen et al. (2023) Integer Programming + Neural Network assisted heuristic search CHE23
Goh et al. (2022) Monte Carlo Tree Search + Iterated Local Search GOH22
Jaradat et al. (2019) Elitist Ant Colony Optimization JAR19
Lü and Hao (2012) Adaptive Variable Neighborhood Search LÜ12
Rahimian et al. (2017) Integer Programming + Variable Neighborhood Search RAH17
Tassopoulos et al. (2015) Two-phase Adaptive Variable Neighborhood Search TAS15
Turhan and Bilgen (2020) Fix-and-Relax + Simulated Annealing + Fix-and-Optimize TUR20
Valouxis et al. (2012) Two-phase Integer Programming approach VAL12
Zheng et al. (2017) Randomized Variable Neighborhood Search ZHE17

63



64

Table A.2: Best obtained results to the sprint track of the INRC-I benchmark. Best known solutions (BKS) are shown in bold if they are
known to be optimal. Algorithm results are shown in bold if they equal the BKS. *AWA17 used an iteration number as stopping criterion and
exceeded the allowed time limit in several sprint instances. **JAR19 used an iteration number as stopping criterion and did not report the
used computation time. ***ABU21 reported using relaxed timeout conditions of 1000 seconds for the sprint track.

Instance BKS BUR14 VAL12 LÜ12 TAS15 AWA15 AWA17* ZHE17 JAR19** ABD21 ABU21***

sprint early 01 56 56 56 56 56 56 56 56 57 56 57
sprint early 02 58 58 58 58 58 58 58 58 59 58 58
sprint early 03 51 51 51 51 51 51 51 51 51 51 51
sprint early 04 59 59 59 59 59 59 59 59 59 59 59
sprint early 05 58 58 58 58 58 58 58 58 58 58 58
sprint early 06 54 54 54 54 54 54 54 54 54 54 54
sprint early 07 56 56 56 56 56 56 56 56 56 56 56
sprint early 08 56 56 56 56 56 56 56 56 56 56 56
sprint early 09 55 55 55 55 55 55 55 55 55 55 55
sprint early 10 52 52 52 52 52 52 52 52 52 52 52
sprint late 01 37 37 37 37 37 37 37 37 37 37 37
sprint late 02 42 42 42 42 42 42 42 42 42 42 42
sprint late 03 48 48 48 48 48 48 48 48 48 48 48
sprint late 04 73 75 76 73 73 73 73 73 73 73 73
sprint late 05 44 44 44 44 44 44 44 44 44 45 44
sprint late 06 42 42 42 42 42 42 42 42 42 43 42
sprint late 07 42 42 43 44 44 44 44 43 42 47 42
sprint late 08 17 17 17 17 17 17 17 17 17 17 17
sprint late 09 17 17 17 17 17 17 17 17 17 17 17
sprint late 10 43 43 44 43 43 43 43 43 43 44 43

sprint hidden 01 32 33 32 32 32 32 32 32 34 32
sprint hidden 02 32 33 32 32 32 32 32 32 32 32
sprint hidden 03 62 62 62 62 62 62 62 62 62 62
sprint hidden 04 66 67 66 66 66 66 66 66 67 66
sprint hidden 05 59 60 59 59 59 59 59 59 59 59
sprint hidden 06 130 139 130 130 130 130 130 141 130
sprint hidden 07 153 153 153 153 153 153 153 153 153
sprint hidden 08 204 220 204 204 204 204 204 204 204
sprint hidden 09 338 338 338 338 338 338 338 338 338
sprint hidden 10 306 306 306 306 306 306 306 306 306
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Table A.3: Best obtained results to the medium track of the INRC-I benchmark. Best known solutions (BKS) are shown in bold if they are
known to be optimal. Algorithm results are shown in bold if they equal the BKS. *AWA17 used an iteration number as stopping criterion and
exceeded the allowed time limit in several medium instances. **JAR19 used an iteration number as stopping criterion and did not report the
used computation time. ***ABU21 reported using relaxed timeout conditions of 5000 seconds for the medium track.

Instance BKS BUR14 VAL12 LÜ12 TAS15 AWA15 AWA17* ZHE17 JAR19** ABD21 ABU21***

medium early 01 240 244 240 240 240 245 243 240 241 243 240
medium early 02 240 241 240 240 240 245 242 240 241 241 240
medium early 03 236 238 236 236 236 242 238 236 236 238 236
medium early 04 237 240 237 237 238 240 240 237 237 240 237
medium early 05 303 308 303 303 303 308 305 303 303 303 303
medium late 01 157 187 159 164 161 174 169 158 161 157 161
medium late 02 18 22 20 20 19 31 26 20 18 31 18
medium late 03 29 46 30 30 30 38 34 30 29 29 29
medium late 04 35 49 36 35 35 48 42 35 35 35 35
medium late 05 107 161 113 117 112 134 131 111 107 140 107

medium hidden 01 111 131 122 122 155 143 117 111 111 111
medium hidden 02 219 221 224 221 254 248 225 220 219 220
medium hidden 03 34 38 35 34 54 49 34 34 34 34
medium hidden 04 78 81 80 79 94 87 79 78 78 78
medium hidden 05 118 122 120 124 177 169 122 119 118 119

Table A.4: Best obtained results to the long track of the INRC-I benchmark. Best known solutions (BKS) are shown in bold if they are known
to be optimal. Algorithm results are shown in bold if they equal the BKS. *JAR19 used an iteration number as stopping criterion and did not
report the used computation time. **ABU21 reported using relaxed timeout conditions of 20 hours for the long track.

Instance BKS BUR14 VAL12 LÜ12 TAS15 AWA15 AWA17 ZHE17 JAR19* ABD21 ABU21**

long early 01 197 198 197 197 197 197 197 197 198 197 197
long early 02 219 223 219 222 219 229 226 219 220 221 219
long early 03 240 242 240 240 240 240 240 240 240 240 240
long early 04 303 305 303 303 303 303 303 303 303 303 303
long early 05 284 286 284 284 284 284 284 284 284 284 284
long late 01 235 286 239 237 239 257 253 235 235 240 235
long late 02 229 290 231 229 234 263 256 229 229 229 229
long late 03 220 290 222 222 227 262 256 221 220 220 220
long late 04 221 280 228 227 232 261 263 224 221 221 221
long late 05 83 110 83 83 83 102 98 83 83 89 83

long hidden 01 346 363 346 349 400 380 349 346 346 346
long hidden 02 89 106 89 89 117 110 89 89 89 89
long hidden 03 38 38 38 38 51 44 38 38 38 38
long hidden 04 22 22 22 22 29 27 22 22 22 22
long hidden 05 41 41 45 41 56 53 41 41 41 41
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Table A.5: Summarized results for the INRC-I benchmark. *(AWA17) used an iteration number as stopping criterion and exceeded the
allowed time limit in several sprint and medium instances. **(JAR19) used an iteration number as stopping criterion and did not report the
used computation time. ***(ABU21) reported using relaxed timeout conditions of 1000 seconds, 5000 seconds and 20 hours for the sprint,
medium and long tracks, respectively.

BUR14 VAL12 LÜ12 TAS15 AWA15 AWA17* ZHE17 JAR19** ABD21 ABU21***

Sprint track
Instances tested 20 30 30 30 30 30 25 30 30 30
BKS found 19 21 29 29 29 29 24 27 23 29
Ratio BKS found 0.95 0.70 0.97 0.97 0.97 0.97 0.96 0.90 0.77 0.97

Medium track
Instances tested 10 15 15 15 15 15 15 15 15 15
BKS found 0 5 6 7 0 0 7 10 9 12
Ratio BKS found 0.00 0.33 0.40 0.47 0.00 0.00 0.47 0.67 0.60 0.80

Long track
Instances tested 10 15 15 15 15 15 15 15 15 15
BKS found 0 9 10 10 4 4 12 13 12 15
Ratio BKS found 0.00 0.60 0.67 0.67 0.27 0.27 0.80 0.87 0.80 1.00

All tracks
Instances tested 40 60 60 60 60 60 55 60 60 60
BKS found 19 35 45 46 33 33 43 50 44 56
Ratio BKS found 0.48 0.58 0.75 0.77 0.55 0.55 0.78 0.83 0.73 0.93

Table A.6: Problem size indicators of the Shift Scheduling benchmark instances

Instance Planning period Employees Shift types
1 2 weeks 8 1
2 2 weeks 14 2
3 2 weeks 20 3
4 4 weeks 10 2
5 4 weeks 16 2
6 4 weeks 18 3
7 4 weeks 20 3
8 4 weeks 30 4
9 4 weeks 36 4
10 4 weeks 40 5
11 4 weeks 50 6
12 4 weeks 60 10
13 4 weeks 120 18
14 6 weeks 32 4
15 6 weeks 45 6
16 8 weeks 20 3
17 8 weeks 30 4
18 12 weeks 22 3
19 12 weeks 40 5
20 26 weeks 50 6
21 26 weeks 100 8
22 52 weeks 50 10
23 52 weeks 100 16
24 52 weeks 150 32
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Table A.7: Best obtained results for the Shift Scheduling benchmark instances with a time limit of 60 minutes. Best known solutions (BKS)
are shown in bold if they are known to be optimal. Algorithm results are shown in bold if they equal the BKS. If no algorithm listed here
found the BKS, the best solution among them is underlined. Dash symbols (-) indicate no feasible solution was found within the time limit.
*This result may be incorrect, as Strandmark et al., 2020 reported having found a lower bound higher than this. Therefore, the BKS shown
for this instance does not take this result into account.

Instance BKS BUR14 RAH17 TUR20 ABD21b ABD21 GOH22 CHE23 Gurobi 5.6.3

1 607 607 607 607 607 607 607 607
2 828 837 828 828 835 828 828 828
3 1001 1003 1001 1001 1012 1001 1001 1001
4 1716 1718 1716 1716 1728 1716 1716 1716
5 1143 1358 1143 1143 1257 1237 1150 1145 1143
6 1950 2258 1950 1950 2167 2141 2048 1950 1950
7 1056 1269 1056 1056 1110 1080 1077 1082 1056
8 1300 2260 1344 1322 1443 1452 1374 1322 1323
9 439 463 439 439 456 446 491 440 439
10 4631 4797 4631 4631 4784 4656 4663 4631 4631
11 3443 3661 3443 3443 3661 3512 3457 3443 3443
12 4040 5211 4040 4040 4344 4119 4173 4153 4040
13 1348 3037 1905 2900 2712 2120 3224 2769 3109
14 1278 1847 1279 1280 1465 1344 1324 1297 1280
15 3829 5935 3928 4190 4838 4637 4366 5920 4964
16 3225 4048 3225 3225 3981 3458 3435 3351 3233
17 5746 7835 5750 5848 6420 6190 5913 5748 5851
18 4459 6404 4662 4650 5526 5095 4904 4954 4760
19 3149 5531 3224 3218 5670 4281 3425 4338 5420
20 4769 9750 4913 18876 7274 5063 5905 -
21 21133 36688 23191 58995 26263 21731 22282 -
22 30241 516686 32126 142778 56091 34855 53546 -
23 17428 54384 3794* 206744 51699 18947 38752 -
24 42463 156858 2281440 792331 226490 56001 402049 -
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Table A.8: Best obtained results for the Shift Scheduling benchmark instances with a time limit of 10 minutes. Best known solutions (BKS)
are shown in bold if they are known to be optimal. Algorithm results are shown in bold if they equal the BKS. If for an instance no algorithm
listed here found the BKS, the best solution among them is underlined. Dash symbols (-) indicate no feasible solution was found within the
time limit.

Instance BKS BUR14 RAH17 TUR20 GOH22 Gurobi 5.6.3

1 607 607 607 607 607 607
2 828 923 828 828 828 828
3 1001 1003 1001 1001 1002 1001
4 1716 1719 1716 1716 1716 1716
5 1143 1439 1143 1143 1155 1143
6 1950 2344 1950 1950 2054 1950
7 1056 1284 1056 1056 1080 1056
8 1300 2529 1364 1341 1374 8995
9 439 474 439 439 488 439
10 4631 4999 4631 4631 4664 4631
11 3443 3967 3443 3443 3459 3443
12 4040 5611 4042 4044 4161 4045
13 1348 8707 3109 3200 3201 500410
14 1278 2542 1281 1295 1333 1482
15 3829 6049 4144 4420 4490 78144
16 3225 4343 3306 3253 3453 3521
17 5746 7835 5760 6138 6012 6149
18 4459 6404 5049 5000 4958 7950
19 3149 6522 3974 3809 3635 29968
20 4769 23531 5242 5137 -
21 21133 38294 26977 21833 -
22 30241 - 130107 37227 -
23 17428 - 40543 19926 -
24 42463 - 2829680 62387 -



B
Rules from the Dutch Working Hours Act

The following rules are obtained from the Dutch Working Hours Act (Arbeidstijdenwet, 2022, §5.2). Only those
rules that are relevant for the problem formulation are considered. Article numbers are added in brackets.

• Daily rest (5:3): in every 24-hour period, an employee must have a minimum of 11 consecutive hours of
rest. An exception to this rule can be made once every 7 days, where the minimum is lowered to 8 hours.

• Weekly rest (5:5): an employee must have a minimum consecutive rest time of either

– 36 hours every 7-day period, or
– 72 hours every 14-day period. In this case, the rest time may be split into two periods of at least 32

hours each.

• Working Sundays (5:6.3): in every 52-week period, an employee must have a minimum of 13 non-working
Sundays.

• Night shifts (5:8): a working shift is considered a ‘night shift’ if at least 1 hour is worked between the
hours of midnight and 6 am. The following rules apply specifically to night shifts:

1. A night shift may have a duration of at most 10 hours. (5:8.1)
2. In every 16-week period, where an employee works at least 16 night shifts, a maximum of 40 working

hours per week is allowed. (5:8.2)
3. An employee must have a minimum of 14 consecutive hours of rest, following a night shift that ends

after 2 am. An exception can me made to this rule once every 7 days, where the minimum is lowered
to 8 hours. (5:8.4)

4. Deviating from the first and third rule, at most 5 times in every 14-day period and at most 22 times in
every 52-week period, an employee may (5:8.3):

– work at most 12 hours per night shift,
– have a rest time of at least 12 hours after such a night shift.

5. Following a sequence of at least 3 consecutive night shifts, an employee must have a minimum rest
time of 46 consecutive hours. (5:8.5)

6. If a sequence of consecutive shifts for an employee contains at least one night shift, then that sequence
may contain at most 7 shifts. This limit may be deviated from in a collective labor agreement, given
that the length of such a sequence does not exceed 8 shifts. (5:8.6,5:8.7)

7. An employee is allowed to work at most (5:8.9):
– 140 night shifts that end after 2 am in every 52-week period, or
– 38 hours between the hours of midnight and 6 am in every 2-week period

8. An employee is allowed to work at most 36 night shifts that end after 2 am in every 16-week pe-
riod. This limit may be deviated from in a collective labor agreement, given that the seventh rule is
respected. (5:8.8)
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C
Notation

Table C.1: Notation for the sets and parameters used in the descriptions of the soft constraint penalties in Section 4.3 and in the mixed-integer
program formulation of the simplified model, described in Section 6.4. *Note that 𝛽𝑠 is an indicator for three shift type properties at once:
(1) if it is a night shift by the definition given in Section 4.2, (2) if its end time is after 2 am, and (3) if it ends on the day after the day on which
it starts. However, in our problem instances, each shift type has either all three or none of these properties, and thus, one combined indicator
is used here.

Sets and indices
𝐸 Set of employees (𝑒 ∈ 𝐸)
𝐷 Set of days (𝑑 ∈ 𝐷)
𝑆 Set of shift types (𝑠 ∈ 𝑆)
𝑆+ Set of shift types, with day-off assignment 𝑜 included (𝑆+ = 𝑆 ∪ {𝑜})
Parameters
𝑎𝑑,𝑠 Coverage requirement on day 𝑑 for shift type 𝑠 in number of employees
𝑏𝑠 Priority shift type indicator: 1 if shift type 𝑠 is a priority shift type, 0 otherwise
𝑐con

𝑒 Contractual workload for employee 𝑒 in hours
𝑐max

𝑒 Maximum workload for employee 𝑒 in hours: 𝑐max
𝑒 = 𝑐con

𝑒 + 10
𝑓𝑠 Duration of shift type 𝑠 in hours
𝑔on

𝑒,𝑑 Day-on request indicator: 1 if employee 𝑒 has requested to be assigned to a shift on day 𝑑, 0 otherwise
𝑔off

𝑒,𝑑 Day-off request indicator: 1 if employee 𝑒 has requested a day off on day 𝑑, 0 otherwise
ℎon

𝑒,𝑑,𝑠 Shift-on request indicator: 1 if employee 𝑒 has requested to be assigned to shift type 𝑠 on day 𝑑, 0 otherwise
ℎoff

𝑒,𝑑,𝑠 Shift-off request indicator: 1 if employee 𝑒 has requested not to be assigned to shift type 𝑠 on day 𝑑, 0 otherwise
𝑗𝑒 Weight for the requests and preferred shift and day-off sequence lengths of employee 𝑒
𝑘𝑒,𝑠 Valid shift indicator: 1 if employee 𝑒 has the required skill to work shift type 𝑠, 0 otherwise
𝑚𝑒,𝑑,𝑠 Fixed assignment indicator: 1 if employee 𝑒 has a fixed assignment of shift type 𝑠 on day 𝑑, 0 otherwise
𝑛𝑠,𝑡 11 hrs rest indicator: 1 if there is at least 11 hrs rest between shift type 𝑠 on day 𝑑, and shift type 𝑡 on day 𝑑 + 1
𝑝𝑠,𝑡 8 hrs rest indicator: 1 if there is at least 8 hrs rest between shift type 𝑠 on day 𝑑, and shift type 𝑡 on day 𝑑 + 1
𝑞𝑑 Sunday indicator: 1 if day 𝑑 is a Sunday, 0 otherwise
𝑟𝑒 Maximum number of Sundays that employee 𝑒 can work in this period
𝛽𝑠 Night shift indicator: 1 if shift type 𝑠 is a night shift, 0 otherwise*
𝛾𝑒 Maximum number of night shifts that employee 𝑒 can work in this period
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Table C.2: Notation for the decision and auxiliary variables used in the descriptions of the soft constraint penalties in Section 4.3 and in the
mixed-integer program formulation of the simplified model, described in Section 6.4

Decision variables
𝑥𝑒,𝑑,𝑠 Working shift indicator: 1 if employee 𝑒 works shift type 𝑠 starting on day 𝑑, 0 otherwise

Auxiliary variables
𝑦𝑑,𝑠 Coverage shortage of shift type 𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷: 𝑦𝑑,𝑠 = max{𝑎𝑑,𝑠 − ∑𝑒∈𝐸 𝑥𝑒,𝑑,𝑠, 0}
𝑦𝑑 Total coverage shortage on day 𝑑 ∈ 𝐷: 𝑦𝑑 = ∑𝑠∈𝑆 𝑦𝑑,𝑠
𝑧𝑑 Coverage shortage on day 𝑑 minus one: 𝑧𝑑 = max{(∑𝑠∈𝑆 𝑦𝑑,𝑠) − 1, 0}
𝑢𝑒 Worked overtime hours for employee 𝑒: 𝑢𝑒 = max{(∑𝑑∈𝐷 ∑𝑠∈𝑆 𝑥𝑒,𝑑,𝑠𝑓𝑠) − 𝑐con

𝑒 , 0}
𝑣𝑒,𝑑 Daily rest exception indicator: 1 if the daily rest exception is used on day 𝑑 for employee 𝑒, 0 otherwise
𝑤𝑒,𝑑 Worked Sunday indicator: 1 if employee 𝑒 works on day 𝑑 which is a Sunday, 0 otherwise
𝜁on

𝑒 Number of sequences of consecutive shifts that employee 𝑒 works and are of the preferred length
𝜁off

𝑒 Number of sequences of consecutive days off for employee 𝑒 that are of the preferred length
𝜂on

𝑒 Total number of sequences of consecutive shifts that employee 𝑒 works
𝜂off

𝑒 Total number of sequences of consecutive days off for employee 𝑒



D
Additional results

In this appendix, the results figures and tables are shown, that were left out of Chapter 7 for readibility.

D.1. Construction methods results
Table D.1: Results of both construction methods on all nine instances, using the sorting criteria shown in Table 7.1. The mean, standard
deviation (SD), minimum and maximum are shown of the total roster penalties over 25 runs. The values are rounded to integers for clarity.

Construction-per-shift Construction-per-employee
Instance Mean SD Min Max Mean SD Min Max

O4 85,109 1,360 83,237 88,537 216,842 3,708 209,693 224,220
O5 122,446 2,471 118,094 129,154 301,589 5,136 291,735 313,082
O6 103,879 1,381 101,862 106,562 249,874 7,719 231,498 264,486
T4 7,945 323 7,402 8,737 20,664 1,487 18,333 24,593
T5 8,730 315 8,299 9,354 23,812 1,496 21,026 26,876
T6 13,551 601 12,429 14,625 36,914 1,376 34,373 39,782
V4 8,818 67 8,695 8,925 10,443 167 10,127 10,740
V5 6,672 104 6,508 6,883 7,810 230 7,377 8,244
V6 19,417 670 18,157 20,920 29,275 850 27,394 30,954

Table D.2: Results of both construction methods on all nine instances, using the sorting criteria shown in Table 7.2. The mean, standard
deviation (SD), minimum and maximum are shown of the total roster penalties over 25 runs. The values are rounded to integers for clarity.

Construction-per-shift Construction-per-employee
Instance Mean SD Min Max Mean SD Min Max

O4 76,812 1,823 73,442 80,287 215,408 3,859 208,932 222,033
O5 110,178 2,517 106,452 115,643 301,224 4,508 293,183 308,840
O6 93,302 2,167 89,553 98,335 248,571 5,187 237,400 259,389
T4 7,815 383 7,186 8,420 20,436 1,392 16,965 23,190
T5 8,708 299 7,979 9,266 23,192 1,377 20,270 26,181
T6 13,183 468 12,481 14,238 36,518 1,311 34,104 39,287
V4 8,493 69 8,409 8,664 10,447 158 10,173 10,733
V5 6,414 82 6,246 6,565 7,806 239 7,474 8,523
V6 19,672 755 18,209 20,922 29,370 883 27,313 30,861
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Table D.3: Results of Construction-per-shift (CPS) and Construction-per-employee (CPE), using the sorting criteria shown in Table 7.1, broken down into the different penalty categories. The values are averaged
over 25 runs and rounded to integers for clarity. The abbreviations of the different penalty categories are clarified in Table D.7.

TP CP CSP OHSP RP PSSLP PDOSLP
Instance CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE

O4 85,109 216,842 29,768 20,864 49,316 189,744 2,531 2,617 1,124 1,106 1,343 1,356 1,027 1,155
O5 122,446 301,589 35,212 26,912 82,128 269,228 1,642 1,658 669 756 1,590 1,555 1,204 1,481
O6 103,879 249,874 32,512 24,080 66,416 220,756 2,413 2,428 563 517 1,147 1,182 827 911
T4 7,945 20,664 3,912 5,940 896 11,568 1,114 861 350 438 975 984 698 874
T5 8,730 23,812 5,640 8,060 736 13,248 543 496 197 253 996 1,016 618 740
T6 13,551 36,914 8,480 11,252 2,264 22,812 1,059 831 172 221 1,001 1,044 574 754
V4 8,818 10,443 6,504 6,984 0 400 190 735 374 464 1,017 1,029 733 830
V5 6,672 7,810 4,204 4,392 100 484 116 507 366 468 1,098 1,103 788 857
V6 19,417 29,275 12,536 13,580 3,876 12,352 725 849 308 360 1,186 1,157 786 977

Table D.4: Run times and roster properties related to the different soft constraint penalties for Construction-per-shift (CPS) and Construction-per-employee (CPE), using the sorting criteria shown in Table 7.1. The
values are averaged over 25 runs and rounded somewhat for clarity. The abbreviations for the different roster properties are clarified in Table D.8.

RT US UPS OHPE UR PSSLR PDOSLR
Instance CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE

O4 0.68 0.87 178 192 30.0 4.2 3.8 4.0 93.9 97.8 0.12 0.12 0.33 0.26
O5 0.65 0.67 228 245 31.0 6.0 3.0 3.0 58.3 66.3 0.12 0.13 0.32 0.21
O6 0.66 0.71 204 209 30.4 7.9 3.9 3.9 57.4 53.8 0.12 0.11 0.34 0.28
T4 0.14 0.18 27 47 3.0 3.0 4.1 3.4 22.1 26.9 0.16 0.15 0.48 0.33
T5 0.15 0.19 28 53 7.0 7.0 2.6 2.2 10.1 12.9 0.13 0.11 0.49 0.37
T6 0.22 0.15 41 69 11.0 11.0 4.1 3.4 8.7 11.3 0.10 0.06 0.50 0.35
V4 0.12 0.18 13 18 13.0 13.0 0.6 2.3 37.3 40.2 0.10 0.10 0.38 0.32
V5 0.12 0.18 10 12 8.0 8.0 0.4 1.9 58.3 67.8 0.09 0.11 0.37 0.32
V6 0.18 0.16 53 64 18.0 18.0 2.3 2.9 23.2 26.1 0.13 0.14 0.43 0.30
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Table D.5: Results of Construction-per-shift (CPS) and Construction-per-employee (CPE), using the sorting criteria shown in Table 7.2, broken down into the different penalty categories. The values are averaged
over 25 runs and rounded to integers for clarity. The abbreviations of the different penalty categories are clarified in Table D.7.

TP CP CSP OHSP RP PSSLP PDOSLP
Instance CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE

O4 76,812 215,408 18,148 20,840 53,412 188,344 2,533 2,624 345 1,096 1,329 1,352 1,045 1,151
O5 110,178 301,224 22,852 26,932 82,600 268,840 1,644 1,655 274 757 1,589 1,560 1,219 1,480
O6 93,302 248,571 20,640 24,072 68,072 219,416 2,410 2,467 208 516 1,148 1,182 825 918
T4 7,815 20,436 4,012 5,928 920 11,352 1,108 859 84 433 979 983 712 880
T5 8,708 23,192 5,712 8,008 832 12,684 523 496 12 249 998 1,015 631 739
T6 13,183 36,518 8,376 11,200 2,068 22,464 1,087 835 67 221 1,003 1,044 581 754
V4 8,493 10,447 6,520 6,980 12 404 168 734 49 473 1,010 1,030 733 826
V5 6,414 7,806 4,200 4,384 120 472 109 500 103 474 1,090 1,107 792 869
V6 19,672 29,370 12,712 13,592 4,180 12,436 730 849 84 365 1,185 1,159 781 969

Table D.6: Run times and roster properties related to the different soft constraint penalties for Construction-per-shift (CPS) and Construction-per-employee (CPE), using the sorting criteria shown in Table 7.2. The
values are averaged over 25 runs and rounded somewhat for clarity. The abbreviations for the different roster properties are clarified in Table D.8.

RT US UPS OHPE UR PSSLR PDOSLR
Instance CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE CPS CPE

O4 0.54 0.58 181 191 0.0 4.4 3.8 4.0 27.4 97.5 0.13 0.12 0.32 0.26
O5 0.57 0.51 229 245 0.0 6.1 3.0 3.0 24.3 66.2 0.12 0.13 0.32 0.21
O6 0.52 0.52 205 209 0.4 7.9 3.9 4.0 20.0 53.6 0.12 0.11 0.34 0.28
T4 0.10 0.12 28 47 3.0 3.0 4.1 3.4 5.3 26.8 0.16 0.15 0.45 0.33
T5 0.12 0.11 29 52 7.0 7.0 2.5 2.2 0.6 12.7 0.13 0.11 0.48 0.38
T6 0.11 0.12 40 68 11.0 11.0 4.3 3.4 3.6 11.4 0.11 0.06 0.49 0.35
V4 0.09 0.12 13 18 13.0 13.0 0.6 2.3 7.3 41.0 0.11 0.10 0.37 0.33
V5 0.08 0.12 10 12 8.0 8.0 0.4 1.8 12.4 69.0 0.11 0.10 0.37 0.31
V6 0.14 0.12 55 64 18.0 18.0 2.4 2.9 6.4 26.4 0.13 0.14 0.43 0.31
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Table D.7: Penalty category abbreviations. The requests penalty is the sum of the day-on, day-off, shift-on and shift-off requests penalties.

Penalty category Abbreviation
Total penalty TP
Coverage penalty CP
Coverage spread penalty CSP
Overtime hours spread penalty OHSP
Requests penalty RP
Preferred shift sequence length penalty PSSLP
Preferred day-off sequence length penalty PDOSLP

Table D.8: Run time and roster property abbreviations. The number of unsatisfied requests is the sum of the numbers of unsatisfied day-on,
day-off, shift-on and shift-off requests. The preferred shift/day-off sequence length ratio for an employee is equal to the number of shift/day-off
sequences of the preferred length, divided by the total number of shift/day-off sequences. These ratios are then averaged over the employees.

Property Abbreviation
Run time in seconds RT
Number of unplanned shifts US
Number of unplanned priority shifts UPS
Average worked overtime hours per employee OHPE
Number of unsatisfied requests UR
Average preferred shift sequence length ratio PSSLR
Average preferred day-off sequence length ratio PDOSLR
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(a) (b) (c)

(d) (e) (f)

Figure D.1: Box plots of the results of Construction-per-shift (CPS) and Construction-per-employee (CPE), using the sorting criteria shown
in Table 7.2, on the May and June instances over 25 runs per instance.
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D.2. Overall frameworks results
Table D.9: Fractions of the total number of improving moves (IMF) of neighborhood structures (NS) for Variable Neighborhood Search with
a maximum block length 𝑥 of 19. Note that H𝑥 neighborhood structures with block lengths 𝑥 greater than 15 were not added, because in a
scheduling period of a month there are no two non-overlapping blocks of 16 or more days that can be swapped for an employee.

NS IMF NS IMF NS IMF
UC1 0.02380 V1 0.28258 C1 0.02710
UC2 0.37228 V2 0.06677 C2 0.00090
H1 0.17608 V3 0.02008 C3 0.00027
H2 0.00376 V4 0.00831 C4 0.00017
H3 0.00093 V5 0.00416 C5 0.00006
H4 0.00022 V6 0.00237 C6 0.00006
H5 0.00014 V7 0.00155 C7 0.00002
H6 0.00005 V8 0.00133 C8 0.00000
H7 0.00003 V9 0.00114 C9 0.00000
H8 0.00000 V10 0.00088 C10 0.00000
H9 0.00000 V11 0.00079 C11 0.00000
H10 0.00001 V12 0.00075 C12 0.00000
H11 0.00000 V13 0.00063 C13 0.00000
H12 0.00000 V14 0.00059 C14 0.00000
H13 0.00000 V15 0.00046 C15 0.00000
H14 0.00000 V16 0.00042 C16 0.00000
H15 0.00000 V17 0.00043 C17 0.00000

V18 0.00046 C18 0.00000
V19 0.00042 C19 0.00000

Table D.10: Results of the total penalty of Variable Neighborhood Search with different orderings, on all nine instances, averaged over 10
runs per instance. The tested orderings are displayed in Table 7.4.

Instance O IBL WNR UCFL
O4 64,859.19 64,854.46 64,865.46 65,119.93
O5 98,646.05 98,642.78 98,644.89 98,699.62
O6 82,307.28 82,312.50 82,313.93 82,324.26
T4 5,871.50 5,867.51 5,869.37 5,879.62
T5 6,658.26 6,660.05 6,662.52 6,673.99
T6 10,670.41 10,665.15 10,668.74 10,675.01
V4 7,508.14 7,507.69 7,510.11 7,507.39
V5 5,313.94 5,316.71 5,321.42 5,320.49
V6 14,031.96 14,040.28 14,061.69 14,100.37
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(a) (b)

(c) (d)

(e) (f)

Figure D.2: Box plots of the results of Simulated Annealing with different maximum block lengths on the May and June instances over 10
runs per instance.
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(a) (b)

(c) (d)

(e) (f)

Figure D.3: Box plots of the results of Variable Neighborhood Search with different maximum block lengths on the May and June instances
over 10 runs per instance.
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(a) (b) (c)

(d) (e) (f)

Figure D.4: Box plots of the results of Variable Neighborhood Search with different neighborhood orderings on the May and June instances
over 10 runs per instance. The tested orderings are displayed in Table 7.4.
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(a) (b) (c)

(d) (e) (f)

Figure D.5: Box plots of the results of Simulated Annealing with different neighborhood probability distributions on the May and June
instances over 10 runs per instance. The shown settings are equal probabilities (EP) and probabilities by accepted moves (AM), improving
moves (IM) and improved penalty (IP).
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(a) (b) (c)

(d) (e) (f)

Figure D.6: Box plots of the results of different pairs of overall framework (OF) Simulated Annealing (SA) and construction methods (CM)
on the May and June instances over 10 runs per instance.
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(a) (b) (c)

(d) (e) (f)

Figure D.7: Box plots of the results of different pairs of overall framework (OF) Variable Neighborhood Search (VNS) and construction
methods (CM) on the May and June instances over 10 runs per instance.



D.2. Overall frameworks results 84

(a) (b) (c)

(d) (e) (f)

Figure D.8: Box plots of the results of Simulated Annealing, with and without the minimum temperature stopping criterion (SA and SA-
10mins, respectively), and Variable Neighborhood Search (VNS) on the April instances over 10 runs per instance. Note that SA-10mins and
VNS always reach the time limit of 10 minutes, whereas SA can be stopped earlier by the minimum temperature stopping conditions, see
Figures 7.7 and D.9.
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(a) (b) (c)

(d) (e) (f)

Figure D.9: Box plots of the run times of Simulated Annealing, with and without the temperature stopping criterion (SA and SA-10mins,
respectively), and Variable Neighborhood Search (VNS) on the April instances over 10 runs per instance.
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Table D.11: Results of Simulated Annealing without temperature stopping criterion (SA) and Variable Neighborhood Search (VNS) on all
nine instances. The mean, standard deviation (SD), minimum and maximum are shown of the total roster penalties over 10 runs. The values
are rounded somewhat for clarity.

Simulated Annealing Variable Neighborhood Search
Instance Mean SD Min Max Mean SD Min Max

O4 64,854 11.3 64,830 64,869 64,859 16.4 64,839 64,889
O5 98,624 15.1 98,604 98,649 98,646 13.0 98,621 98,666
O6 82,309 7.6 82,298 82,324 82,307 9.5 82,287 82,322
T4 5,862 7.1 5,848 5,874 5,872 8.9 5,860 5,887
T5 6,647 8.8 6,630 6,661 6,658 8.0 6,644 6,671
T6 10,656 4.1 10,650 10,661 10,670 7.7 10,656 10,680
V4 7,501 7.0 7,484 7,510 7,508 2.9 7,501 7,511
V5 5,304 6.4 5,293 5,314 5,314 5.4 5,304 5,321
V6 13,987 19.8 13,946 14,013 14,032 32.4 14,002 14,104

Table D.12: Roster properties related to the different soft constraint penalties after application of Simulated Annealing without temperature
stopping criterion (SA) and Variable Neighborhood Search (VNS). The values are averaged over 10 runs and rounded somewhat for clarity.
The abbreviations for the different roster properties are clarified in Table D.8.

US UPS OHPE UR PSSLR PDOSLR
Instance SA VNS SA VNS SA VNS SA VNS SA VNS SA VNS

O4 177 177 0 0 3.38 3.40 16.0 16.0 0.53 0.53 0.71 0.71
O5 228 228 0 0 2.69 2.71 20.0 20.0 0.54 0.54 0.71 0.71
O6 203 203 0 0 3.38 3.39 17.0 17.0 0.52 0.52 0.74 0.74
T4 24 24 3 3 4.49 4.49 0.6 0.5 0.54 0.53 0.64 0.64
T5 26 26 7 7 1.99 1.99 0.0 0.0 0.56 0.54 0.70 0.70
T6 36 36 11 11 4.67 4.67 0.0 0.0 0.55 0.54 0.71 0.71
V4 13 13 13 13 0.17 0.17 6.0 6.0 0.63 0.61 0.66 0.66
V5 10 10 8 8 0.36 0.36 10.0 10.0 0.58 0.57 0.67 0.67
V6 40 40 18 18 1.50 1.57 10.2 10.7 0.52 0.52 0.69 0.69
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Table D.13: Comparison of the results of Construction-per-shift (CPS) and Simulated Annealing (SA) on all nine instances, averaged over 25 runs for CPS and over 10 runs for SA. The numbers are rounded to
integers for clarity. Abbreviations of the penalty categories are shown in Table D.7.

TP CP CSP OHSP RP PSSLP PDOSLP
Instance CPS SA CPS SA CPS SA CPS SA CPS SA CPS SA CPS SA

O4 76,812 64,854 18,148 17,700 53,412 43,500 2,533 2,205 345 171 1,329 747 1,045 531
O5 110,178 98,624 22,852 22,800 82,600 72,800 1,644 1,492 274 220 1,589 787 1,219 525
O6 93,302 82,309 20,640 20,300 68,072 58,800 2,410 2,077 208 178 1,148 589 825 365
T4 7,815 5,862 4,012 3,600 920 0 1,108 1,205 84 7 979 562 712 488
T5 8,708 6,647 5,712 5,400 832 0 523 319 12 0 998 532 631 396
T6 13,183 10,656 8,376 8,000 2,068 600 1,087 1,186 67 0 1,003 520 581 351
V4 8,493 7,501 6,520 6,500 12 0 168 63 49 39 1,010 454 733 445
V5 6,414 5,304 4,200 4,200 120 0 109 107 103 77 1,090 484 792 436
V6 19,672 13,987 12,712 11,200 4,180 1,300 730 323 84 136 1,185 607 781 421

Table D.14: Run time and roster properties for Construction-per-shift (CPS) and Simulated Annealing (SA) on all nine instances, averaged over 25 runs for CPS, over 10 runs for SA. The numbers are rounded
somewhat for clarity. Roster property abbreviations are shown in Table D.8.

RT US UPS OHPE UR PSSLR PDOSLR
Instance CPS SA CPS SA CPS SA CPS SA CPS SA CPS SA CPS SA

O4 0.54 600.16 181 177 0.0 0.0 3.83 3.38 27.4 16.0 0.13 0.53 0.32 0.71
O5 0.57 600.15 229 228 0.0 0.0 2.98 2.69 24.3 20.0 0.12 0.54 0.32 0.71
O6 0.52 600.15 205 203 0.4 0.0 3.88 3.38 20.0 17.0 0.12 0.52 0.34 0.74
T4 0.10 600.06 28 24 3.0 3.0 4.11 4.49 5.3 0.6 0.16 0.54 0.45 0.64
T5 0.12 600.05 29 26 7.0 7.0 2.48 1.99 0.6 0.0 0.13 0.56 0.48 0.70
T6 0.11 600.05 40 36 11.0 11.0 4.26 4.67 3.6 0.0 0.11 0.55 0.49 0.71
V4 0.09 600.06 13 13 13.0 13.0 0.56 0.17 7.3 6.0 0.11 0.63 0.37 0.66
V5 0.08 600.05 10 10 8.0 8.0 0.36 0.36 12.4 10.0 0.11 0.58 0.37 0.67
V6 0.14 600.06 55 40 18.0 18.0 2.36 1.50 6.4 10.2 0.13 0.52 0.43 0.69
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D.3. AutoRoster comparison results

(a) (b) (c)

(d) (e) (f)

Figure D.10: Box plots of the results of Simulated Annealing (SA) and Variable Neighborhood Search (VNS) compared to the AutoRoster
(AR) local search algorithm on the modified model, shown in the AutoRoster column of Table 6.4, on the May and June instances over 10
runs per instance.
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Table D.15: Comparison of the total penalty (TP), coverage penalty (CP) and coverage spread penalty (CSP) results of Simulated Annealing
(SA), Variable Neighborhood Search (VNS) and the AutoRoster local search algorithm (AR) on the modified model, shown in the AutoRoster
column of Table 6.4, on all nine instances, averaged over 10 runs per instance. The numbers are rounded to integers for clarity.

TP CP CSP
Instance SA VNS AR SA VNS AR SA VNS AR

O4 64,813 64,814 64,999 17,700 17,700 17,700 43,500 43,500 43,500
O5 98,602 98,605 98,844 22,800 22,800 22,800 72,800 72,800 72,800
O6 82,295 82,303 82,407 20,300 20,300 20,300 58,800 58,800 58,800
T4 5,598 5,614 5,734 3,600 3,600 3,600 0 0 0
T5 6,351 6,386 6,472 5,400 5,400 5,400 0 0 0
T6 10,400 10,425 10,551 8,000 8,000 8,000 600 600 600
V4 7,252 7,269 7,355 6,500 6,500 6,500 0 0 0
V5 5,015 5,034 5,119 4,200 4,200 4,200 0 0 0
V6 13,993 14,032 14,403 11,200 11,200 11,400 1,300 1,300 1,400

Table D.16: Comparison of the overtime hours spread penalty (OHSP), requests penalty (RP), preferred shift sequence length penalty (PSSLP)
and preferred day-off sequence length penalty (PDOSLP) results of Simulated Annealing (SA), Variable Neighborhood Search (VNS) and the
AutoRoster local search algorithm (AR) on the modified model, shown in the AutoRoster column of Table 6.4, on all nine instances, averaged
over 10 runs per instance. The numbers are rounded somewhat for clarity. Abbreviations of the penalty categories are shown in Table D.7.

OHSP RP PSSLP PDOSLP
Instance SA VNS AR SA VNS AR SA VNS AR SA VNS AR

O4 2,205.41 2,206.93 2,210.32 171.0 171.0 179.0 732 734 864 505 502 545
O5 1,493.89 1,495.73 1,511.60 220.0 220.0 228.0 784 787 968 504 502 537
O6 2,077.41 2,079.24 2,075.72 178.0 178.8 178.0 575 591 687 365 354 367
T4 1,205.20 1,205.20 1,205.28 4.4 6.6 37.0 437 454 524 352 348 368
T5 319.02 319.97 319.02 0.0 0.0 0.0 385 421 488 247 245 265
T6 1,185.63 1,185.63 1,185.63 0.0 0.0 0.0 387 394 496 228 246 269
V4 62.94 63.02 63.06 39.0 39.0 44.0 305 327 371 344 340 377
V5 106.74 107.33 105.95 77.0 77.0 80.0 340 357 439 292 292 294
V6 327.59 355.09 293.60 128.8 143.6 159.0 614 607 727 422 427 423
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Table D.17: Roster properties related to the different soft constraint penalties after application of Simulated Annealing (SA), Variable Neighborhood Search (VNS) and the AutoRoster local search algorithm (AR).
The values are averaged over 10 runs and rounded somewhat for clarity. The abbreviations for the different roster properties are clarified in Table D.8.

US UPS OHPE UR PSSLR PDOSLR
Instance SA VNS AR SA VNS AR SA VNS AR SA VNS AR SA VNS AR SA VNS AR

O4 177 177 177 0 0 0 3.37 3.38 3.40 16.0 16.0 17.0 0.53 0.52 0.42 0.73 0.73 0.70
O5 228 228 228 0 0 0 2.70 2.70 2.75 20.0 20.0 21.0 0.54 0.54 0.44 0.72 0.72 0.69
O6 203 203 203 0 0 0 3.38 3.39 3.37 17.0 17.1 17.0 0.53 0.52 0.44 0.73 0.74 0.73
T4 24 24 24 3 3 3 4.50 4.50 4.50 0.4 0.6 3.0 0.61 0.60 0.54 0.71 0.72 0.70
T5 26 26 26 7 7 7 1.99 2.00 1.99 0.0 0.0 0.0 0.64 0.60 0.54 0.75 0.76 0.72
T6 36 36 36 11 11 11 4.67 4.67 4.67 0.0 0.0 0.0 0.63 0.62 0.52 0.77 0.76 0.74
V4 13 13 13 13 13 13 0.17 0.17 0.18 6.0 6.0 7.0 0.67 0.66 0.60 0.69 0.70 0.66
V5 10 10 10 8 8 8 0.36 0.37 0.34 10.0 10.0 11.0 0.63 0.61 0.54 0.71 0.71 0.70
V6 40 40 42 18 18 18 1.50 1.56 1.33 9.7 10.7 12.0 0.52 0.53 0.44 0.69 0.68 0.69
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