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When redistributing the light emitted by a source into a prescribed irradiance distribution, it is not guaranteed
that, given the source and optical constraints, the desired irradiance distribution can be achieved. We analyze the
problem by assuming an optical black box that is shift-invariant, meaning that a change in source position does
not change the shape of the irradiance distribution, only its position. The irradiance distribution we can obtain is
then governed by deconvolution. Using positive-definite functions and Bochner’s theorem, we provide conditions
such that the irradiance distribution can be realized for finite étendue sources. We also analyze the problem using
optimization, showing that the result heavily depends on the chosen source distribution. © 2023 Optica Publishing

Group

https://doi.org/10.1364/JOSAA.488849

1. INTRODUCTION

Optical designers and researchers have extensively studied the
problem of designing an optical element that redistributes the
light emitted by a source into a prescribed irradiance distribu-
tion. Numerous optical elements can be used to achieve this
redistribution of light, such as freeform refractive and reflective
optics [1–3], freeform gradient index lenses [4,5], micro-optics,
and/or diffractive optical elements [6]. One common assump-
tion to solve the problem is to design for zero-étendue sources,
such as point sources or highly collimated sources, e.g., lasers.
This assumption in most practical applications is too strict, as
the size or divergence of the actual source is not negligible, and
hence we have to design for a finite étendue source [7–10].

However, when solving this problem for finite étendue
sources, there is no guarantee that the desired irradiance distri-
bution is realizable with the given source. The issue of realizing
an irradiance distribution with high spatial details with a finite
étendue source can be discussed in terms of the resolution limits
of freeform optical elements [11,12]. We further investigate
whether a given finite étendue source can realize a specific
irradiance distribution.

We assume an optical black box system that is shift-invariant,
meaning that a shift in source position does not affect the shape
of the distribution, only its position. Using this assumption,
we can express the irradiance obtained from a finite étendue
source as the convolution between the source and the zero-
étendue response of the illumination system. Previous work has
proposed formulating the design problem of a freeform for an
extended source as a zero-étendue problem by deconvolving

the desired irradiance with the blurring caused by the source
[13–16]. However, the source extent’s effect on the quality of
the obtainable irradiance distributions has received limited
attention. We investigate this relationship by taking inspira-
tion from deblurring images in astronomy and microscopy
[17] where prior information of the system response, such as
nonnegativity and finite support, are used in an attempt to find
a physically feasible blur kernel [18]. We use the definitions
of positive definiteness and Bochner’s theorem to analyze the
problem and highlight the issues in realizing the desired irra-
diance distribution for simple sources. Furthermore, we show
that restricting the point sources to be located in a grid with
equal intensities can simplify the problem and help find analytic
solutions. To conclude, we propose a method of approximating
the irradiance with a basis of nonnegative functions and show
that the approximation’s quality of the desired irradiance distri-
bution heavily depends on the chosen source for optimization.
These results are then compared to regularization methods
commonly used in the deblurring of images.

2. SHIFT-INVARIANT RESPONSE

To analyze the problem of which irradiance distributions can
be realized with a finite étendue source, we consider an optical
black box system that redirects the light emitted by a source on
the optical axis into an irradiance distribution E p , as seen in
Fig. 1, which we call the optical impulse response of the system.

We assume that the system is shift-invariant, meaning that a
source at position rs in the source plane illuminating the optical
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Fig. 1. Optical black box system redirects the light emitted by a
point source on the optical axis located in the source plane to generate
an irradiance distribution E p , called the impulse response.

Fig. 2. Light emitted by a point source located at rs in the source
plane is redirected by the optical black box system to generate E p ,
which is shifted by an amount ξ s with ξ s

∝ rs .

black box system will shift the impulse response by an amount
ξ s in the target plane directly proportional to rs , as depicted in
Fig. 2.

Now consider a set of Ns mutually incoherent monochro-
matic sources emitting the same wavelength in the source plane
at rs

n each with a different intensity an . Then the total irradiance
at the target plane E tot is the incoherent sum of the contribution
of each point source:

E tot(ξ)=

∫∫
E p(ξ − ξ

s )G(ξ s )dξ s , (1)

where G is the blurring caused by the source and is defined as

G(ξ)=
Ns∑

n=1

anδ(ξ
s
− ξ s

n). (2)

Under this assumption, we can analyze the problem as a
deconvolution problem where we want to find the impulse
response E p using a predefined irradiance distribution E tot and
source blurring G as depicted in Fig. 3.

3. REGULARIZED DECONVOLUTION OF
TARGET DISTRIBUTION

Given a desired irradiance distribution E tot and a source blur
G , we want to find the impulse response of the optical black box
system such that when illuminated with the given source, the
desired irradiance distribution is obtained. All these functions
are measures of radiometric energy. Hence they are nonnegative:

E tot(ξ), E p(ξ), G(ξ)≥ 0 for all ξ ∈R2.

To find an E p for a given source blur, the following minimiz-
ing problem has to be solved:

Fig. 3. Multiple point sources in the source plane give an irradiance
distribution E tot.

min
E p
‖ E tot(ξ)− E p(ξ) ∗ G(ξ) ‖2

2, (3)

where ‖ · ‖2 is the L2-norm. We use the Fourier transform,
which we define as

F{ f }(̂ξ)=
∫∫

f (ξ)e−2π iξ ·̂ξdξ , (4)

where ξ̂ is the reciprocal coordinate of ξ , and f̂ (ξ)=F{ f }(ξ).
The inverse Fourier transform is defined as

F−1
{ f }(ξ)=

∫∫
f (̂ξ)e2π iξ ·̂ξ d̂ξ . (5)

A solution for E p can then be found in Fourier space [19]:

E p(ξ)=F−1

{
Ĝ (̂ξ)Ê tot(̂ξ)

|Ĝ (̂ξ)|2 + ε

}
(ξ), (6)

where ε prevents division by zero. Using Eq. (6), let us look at the
solution obtained when using the 1D rectangle function as the
desired irradiance distribution:

E tot(ξ)= rect

(
ξx

α

)
with rect

(
ξx

α

)
≡

{
1 if |ξx | ≤ α,

0 if |ξx |>α,
(7)

with two sources of equal strength. Figure 4(a0) shows the
desired irradiance distribution E tot(ξx )= rect(ξx/0.5) with
a source blur G(ξx )= δ(ξx + 0.25)+ δ(ξx − 0.25). E p(ξx )

obtained from Eq. (6) with ε= 10−14 is shown in Fig. 4(b0).
It is a nonnegative function with bounded support. However,
when we slightly change the width of E tot to α = 0.51 while
keeping G unchanged, the obtained impulse response as seen
in Fig. 4(b1) has negative values and does not have bounded
support anymore. Something similar happens when leaving E tot

unchanged, and the source positions are slightly changed. As
seen in Fig. 4(b2), this results in an E p which oscillates rapidly,
has no finite support, and has negative values.

From these results, it is clear that this problem is ill posed
and is very sensitive to perturbations of the desired irradiance
distribution and the a source blur. To better understand when
a nonnegative E p is obtained and what requirements should
be imposed on E tot and G to assure this, we can make use of
positive-definite functions (Definition 1) and Bochner’s theorem
(Theorem 2).

Definition 1 (positive-definite functions) A continuous
function8 :Rn

→C is positive definite on Rn if for every N ≥ 1
and every x1, . . . , xN ∈Rn , there holds
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Fig. 4. Results from applying regularized deconvolution to a rectangular function when ε= 10−14: (a0) E tot(ξx )= rect(ξx/0.5) and
G(ξx )= δ(ξx + 0.25)+ δ(ξx − 0.25); (b0) E p(ξx ); (a1) E tot(ξx )= rect(1.02ξx/0.51) and G(ξx )= δ(ξx + 0.25)+ δ(ξx − 0.25); (b1) E p(ξx );
(a2) E tot(ξx )= rect(ξx/0.5) and G(ξx )= δ(ξx + 0.25)+ δ(ξx − 0.2501); (b2) E p(ξx ). Results are obtained using linear sampling of ξx on the
domain [−5, 5]with N = 1000001 points.

N∑
j=1

N∑
k=1

c j c̄ k8(x j − xk)≥ 0

for all complex numbers [c 1, . . . , c N]
T
∈C. Hence the matrix

with elements8(x j − xk) is hermitian and nonnegative.
Theorem 1 (properties of positive-definite functions [20])

(a) Any nonnegative finite linear combination of a positive-
definite function is positive definite, i.e., if 81, . . . 8m are
positive definite on Rn and w j ≥ 0 for all j = 1, . . . ,m,
then

8(x)=
m∑

j=1

w j8 j (x), x ∈Rn

is also positive definite onRn .
(b) For any positive-definite function,8(0)≥ 0.
(c) For any positive-definite function,8(−x)=8(x).
(d) Any positive-definite function is bounded. In fact,

|8(x)| ≤8(0) for all x ∈Rn .

(e) If 8 is positive definite with8(0)= 0, then8= 0.
(f ) The product of positive-definite functions is positive definite.

Theorem 2 (Bochner’s theorem [20]) A (complex-valued)
function8 ∈C(Rn) is positive definite onRn if and only if it is the
Fourier transform of a bounded Borel measureµ onRn , i.e.,

8(x)= µ̂(x)=
1√
(2π)n

∫
Rn

e−ix·ydµ(y), x ∈Rn .

Since functions E tot, K , and E p are nonnegative, Bochner’s
theorem implies that Fourier transforms Ê tot, Ĝ , and Ê p are
all positive definite. When applying regularized deconvolution
of Eq. (6), we can use Property 1f: positive definiteness is pre-
served under multiplication. This property guarantees that Ê p

is positive definite if 1/Ĝ is also positive definite but is not a nec-
essary condition. It is simple to show that this cannot be the case
because Ĝ(0)≥ |Ĝ (̂ξ)| for all ξ̂ ∈R2 implies that 1/Ĝ(0)≤
|1/Ĝ (̂ξ)| for all ξ̂ ∈R2. Hence if 1/Ĝ were positive definite,
1/Ĝ(0)≤ |1/Ĝ (̂ξ)| ≤ 1/Ĝ(0), requiring |Ĝ| to be con-
stant, which is possible only when only a single source is used.
Therefore, if multiple sources are used, it is not possible for
|Ĝ (̂ξ)| to be constant. Thus, 1/Ĝ is in general not positive def-
inite, and hence Ê tot/Ĝ is in general also not positive definite,
and hence Ê p is not positive definite. Besides the single source
solution, a second trivial case exists where G(ξ)= E tot(ξ) with
E p(ξ)= δ(ξ). This case is realized by choosing the distribution
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E tot as the source and projecting it to the desired target plane
using an imaging system.

One can view these two trivial solutions as two extreme solu-
tions to the problem of realizing the desired irradiance using a
combination of source and optical systems. The first solution
corresponds to putting all the information into the optical
system and using only a single source. In contrast, the second
solution corresponds to shaping the source distribution and
imaging it. The challenge is to find useful solutions between
these two extremes. Therefore, we could reformulate the min-
imization described in Eq. (3) by treating both the blur and
impulse response as variables leading to a blind deconvolution
problem given by

min
E p ,G
‖E tot(ξ)− E p(ξ) ∗ G(ξ)‖2

2 . (8)

Algorithms such as iterative blind deconvolution [21] and
Richardson–Lucy deconvolution [22–24] can then be used
to find both the source and impulse response of the system.
However, despite our efforts in applying these methods, they
have yet to produce significant results. Therefore, we limit our
analysis to cases where the source is given.

A. Analytic Example

To be able to analyze the problem with an analytic example,
we impose a couple of restrictions on the source blur, given by
Eq. (2) of which the Fourier transform is

Ĝ (̂ξ)=
Ns∑

i=0

|ai |
2 exp(i ξ̂ · ξ i ). (9)

The sum of complex exponentials can be rewritten as a com-
plex function:

Ĝ (̂ξ)=
∣∣Ĝ (̂ξ)∣∣ exp(i8Ĝ (̂ξ)), (10)

where 8Ĝ is the phase of the complex function, and |Ĝ| is the
modulus, which can be written as

|Ĝ (̂ξ)| =

√√√√ Ns∑
n=0

a2
n +

∑
n 6=m

2anam cos(̂ξ · (ξ n − ξm)), (11)

8Ĝ (̂ξ)= arctan


Ns∑

n=0
an sin(̂ξ · ξ n)

Ns∑
n=0

an cos(̂ξ · ξ n)

 . (12)

To obtain a valid solution, Ê tot/Ĝ should, according to
Property 4.d, be bounded, which is the case when all the zeros of
|Ĝ| are also zeros of Ê tot. However, |Ĝ| is a cosine polynomial
of which only a lower bound can be given for the number of
zeros [25,26] making it extremely challenging to ensure that
all the zeros are found. Two assumptions can be made to sim-
plify Eqs. (11) and (12). The first assumes that all sources have
the same intensity an = a for all n = 1, . . . , Ns . The second
restricts the source positions to be equidistant with some separa-
tion 1ξ = [1ξx , 1ξy ]

T , such that 1ξ n = n1ξ . Combining
these assumptions gives the following expression for Eq. (9):

Ĝ (̂ξ)= a
Ns∑

n=0

exp
(
i ξ̂ · n1ξ

)
, (13)

which can simplified to

Ĝ (̂ξ)= a
sin(Ns ξ̂ ·1ξ/2)

sin(̂ξ ·1ξ/2)
exp(i Ns ξ̂ ·1ξ/2). (14)

This expression is closely linked to the Dirichlet kernel [27],
and it enables the analytical analysis of specific desired irradiance
distributions.

Again consider the 1D rectangle function of Eq. (7) as the
desired irradiance distribution; then its Fourier transform is

Ê tot(̂ξx )=
1

a
sinc

(
πξ̂x

a

)
=

sin(πξ̂x/a)

πξ̂x
. (15)

We can calculate E p using the simplified kernel Eq. (14):

Ê p (̂ξx )=
sin(πξ̂x/a)

πξ̂x

sin(̂ξx1ξ/2)

sin(Ns ξ̂x1ξ/2)

× exp(−i ξ̂x1ξ(Ns − 1)/2). (16)

By setting1ξ = 2π/Ns a , the sine in the denominator is can-
celed by the fist sinus in the numerator, leaving us with

Ê p (̂ξx )=
1

πξ̂x
sin

(
πξ̂x

Ns a

)
exp(−i ξ̂x 1̃ξ), (17)

where 1̃ξ =1ξ(Ns − 1)/2 is used to simplify the expression.
We can rewrite this expression as a sinc function:

Ê p (̂ξx )=
1

Ns a
sinc

(
πξ̂x

Ns a

)
exp(−i ξ̂x 1̃ξ). (18)

The inverse Fourier transform of Eq. (18) then gives the solu-
tion for the impulse response:

E p(ξx )= rect
(
a Ns ξx − 1̃ξ

)
, (19)

which is depicted in Fig. 5(b0). This expression shows that as the
number of sources increases, an equal amount of rectangles can
be placed next to each other to get back the original rectangle.

It should be noted that Eq. (19) is one of many solutions we
can obtain. By rewriting Eq. (16) using the sine double angle for-
mula, we can find

Ê p (̂ξx )=
2

πξ̂x
sin

(
πξ̂x

2a

)
cos

(
πξ̂x

2a

)
sin(̂ξx1ξ/2)

sin(Ns ξ̂x1ξ/2)

× exp(−i ξ̂x1ξ(Ns − 1)/2).
(20)

By choosing1ξ = π/(Ns a), the sinus in the denominator is
canceled by the first sinus on the right-hand side of Eq. (20), and
an alternative solution for the impulse response is obtained:

E p(ξx )= rect
(
2Ns aξx − 1̃ξ

)
∗

[
δ

(
ξx +

1

4a

)
+ δ

(
ξx −

1

4a

)]
.

(21)
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Fig. 5. Visualization of results obtained by applying Eqs. (19), (21), and (23) with Ns = 2: (a0) desired irradiance distribution; (b0) impulse
response obtained using Eq. (19); (a1) impulse response obtained using Eq. (21); (b1) impulse response obtained using Eq. (23) with M = 3.

This solution can be understood as dividing the rectangle into
2Ns rectangles. The impulse response equals the combination of
the first and the (Ns + 1)th rectangle, as seen in Fig. 5(a1).

The double angle formula can be applied an arbitrary number
of times, and gives the general expression for when it is applied
M times:

Ê p (̂ξx )=
2M

πξ̂x
sin

(
πξ̂x

2Ma

)
sin(̂ξx1ξ/2)

sin(Ns ξ̂x1ξ/2)

× exp(−i ξ̂x1ξ(Ns − 1)/2)
M∏

m=1

cos

(
πξ̂x

2m

)
.

(22)

By choosing1ξ = π/2M Ns a , the sinus in the denominator
is again canceled. By Fourier transformation of the resulting
expression, we get

E p(ξx )= rect
(
2Maξx − 1̃ξ

)
∗~M

m=1

[
δ

(
ξx +

1

2m+1a

)
+ δ

(
ξx −

1

2m+1a

)]
.

(23)

~M
m=1 is used to denote the M times repeated convolution:

f1 ∗ f2 ∗ · · · ∗ fM =~M
m=1 fm . (24)

This solution can be understood as dividing the rectangle
into MNs rectangles. The impulse response equals the com-
bination of the first and every (Ns + 1)th rectangle after that;
in Fig. 5(b2), the result is shown where the double sine angle is
applied three times.

Based on this example, we can see the importance of correctly
choosing the number of sources and the distance between them
because, otherwise, the sines in Eq. (16) do not cancel. However,
even with the assumptions used, finding an analytic expres-
sion for the impulse response E p is possible only for a limited
amount of cases. Therefore, estimating the desired irradiance
distribution using a basis guaranteed to have a solution provides
a more general approach.

4. APPROXIMATING THE IRRADIANCE
DISTRIBUTION THROUGH OPTIMIZATION

As shown in Section 3.A, finding an analytic expression for the
impulse response is possible only for a limited set of desired irra-
diance distributions. In addition, most irradiance distributions
do not have an analytic expression, and we must turn to opti-
mization to find a suitable E p given an irradiance distribution
E tot and source blurring G .

To implement the minimization algorithm to solve Eq. (3),
we formulate the discretized problem. Matrices Etot, Ep , and G
are the discrete counterparts of E tot, E p , and G and are matrices
of dimension N × N. Furthermore, to write Eq. (3) in terms of
matrix and vector multiplications, we use the vectorization vec
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operator, which for the matrix

A=


a1,1 a2,1 . . . am,1

a1,2 a2,2 . . . am,2
...

. . .
. . .

...
a1,n a2,n . . . am,n

 (25)

is defined as

vec(A)=
[

a1,1, . . . , am,1, a1,2, . . . , am,2, a1,n, . . . am,n
]T

.
(26)

In addition, we define the toeplitz operator for the general
vector

a=
[

a1, a2, a3, . . . , an−2, an−1, an
]

(27)

as

toepl(a)=



a1 0 . . . 0 0
a2 a1 . . . 0 0
...

...
. . .

...
...

an−1 an−2
. . . a1 0

an an−1
. . . a2 a1


(28)

and the reshaping operator reshn×m as

reshn×m(a)=


a1 a2 . . . , am

am+1 am+2 . . . , a2m
...

. . .
. . .

...
a(n−1)m+1 a(n−1)m+2 . . . anm

 , (29)

which takes a vector of size NM and reshapes it into a matrix of
size N ×M such that for a square matrix M ∈RN×N , we have
M= reshN×N(vec(M)).

Using these operators, the convolution of two matrices can be
written as a matrix vector multiplication:

vec(G ∗ Ep)= toepl(vec(G))vec(Ep). (30)

We can then formulate the discrete minimization problem as

min
Ep

∥∥vec(Etot)− toepl[vec(G)] vec(Ep)
∥∥2

2 . (31)

While solving Eq. (31), it is crucial to include prior informa-
tion such as nonnegativity and finite support of the solution.
To accomplish this, we describe two approaches: one involves
approximating the desired irradiance distribution using non-
negative basis functions, while the other utilizes regularization
techniques.

A. Approximation Using Nonnegative Basis
Functions

We define a set of nonnegative functions {P1, P2, . . . , Pn}with
coefficientωi > 0 to approximate the distribution

E tot(ξ)≈
∑

i

ωi Pi (ξ) ∗ G(ξ), ωi ≥ 0. (32)

Using this basis, we can then reformulate Eq. (3) as finding
the optimal coefficients, such that the following expression is

minimized:

min
ω1,ω2,...,ωn

∥∥∥∥∥E tot(ξ)−
∑

i

G(ξ) ∗ωi Pi (ξ)

∥∥∥∥∥
2

2

. (33)

Distribution E p is then obtained by summing the weighted
basis functions:

E p(ξ)=
∑

i

ωi Pi (ξ). (34)

A suitable choice for P is any probability distribution with
finite support such as beta distributions, Bates distributions,
Irwin distributions, or Kronecker delta distributions [28].
There are two ways of forming a basis for a chosen distribution.
First, probability density functions defined by shape parameters,
such as the beta distribution with shape parametersα andβ,

P (x )= xα−1(1− x )β−1, α, β ≥ 0 and 0≥ x ≥ 1,
(35)

allow for creating a non-orthogonal basis by choosing a range
over which to define α and β and discretize it. For instance,
select the range α ∈ [0, A] and β ∈ [0, B] and the amount of
functions in the set using Nα and Nβ . Then the following set of
basis functions is obtained:

Pi, j (x )= x i A/Nα−1(1− x ) j B/Nβ−1, with i = 0, 1, . . . , Nα

and j = 0, 1, . . . , Nβ .
(36)

Second, a probability density function P (x ) that does not
have shape parameters, such as Irwan–Hall distributions, can
give a basis by spatially shifting P (x ) over a distance xi by which
the basis function becomes

Pi (x )= P (x ) ∗ δ(x − xi ). (37)

To obtain the discrete optimization problem, we define
matrix P ∈RN2

×M as the concatenation of vectorized basis
functions:

P=
[

vec(P1), vec(P2), . . . , vec(PM)
]
, (38)

and then vec(Ep) can be calculated as

vec(Ep)= Pω, (39)

where ω ∈RM×1 is a vector containing the weights of the
basis functions. Combining Eqs. (31) and (39), the discrete
minimization problem becomes

min
ω

∥∥vec(Etot)− toepl[vec(G)] Pω
∥∥2

2 subject to ω≥ 0,

(40)
which can be solved using nonnegative least squares [29,30].
Once a ω is found that minimizes Eq. (40) or a maximum
number of iterations is reached, Ep can be calculated as

Ep = reshN×N (Pω) . (41)
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B. Regularized Optimization

Using prior information, we can constrain the optimization
using a regularization term R(Ep), which is added to the loss
function and can be added to Eq. (31) giving

min
Ep

∥∥vec(Etot)− toepl[vec(G)]vec(Ep)
∥∥2

2 +µR(Ep), (42)

where µ is a weighting factor indicating the importance of
the regularization term which can be used to enforce smooth-
ness and nonnegativity. The most well known is Thikonov
regularization [31], which sets the regulation factor to

R(Ep)=‖L vec(Ep)‖
2
2, (43)

where L is a filter that penalizes a certain aspect of E p . Often L
is taken as the identity matrix, in which case the optimization is
constrained such that the L2-norm of vec(Ep) does not become
too large. Alternatively, L can be chosen as a discrete approxima-
tion of a derivative operator, in which case the smoothness of the
solution is enforced. An alternative regulation term that is often
used to enforce positivity is maximum entropy regularization
[32,33], in which case the regularization term is given by

R(Ep)=
∑
i, j

Ep(i, j ) log[Ep(i, j )]. (44)

5. RESULTS

We consider the case of two sources with equal intensity, yield-
ing the following source blur:

G(ξ)= δ(ξ)+ δ(ξ +1ξ). (45)

One source is fixed at the center of the source plane such that
ξ s
= 0, while the other can move freely with a position 1ξ . A

schematic representation is shown in Fig. 6.
For all cases, the target irradiance distribution is chosen to be

of size 256× 256, and the basis chosen for optimization consists
of shifted Kronecker delta functions:

δ(ξ , ξ 0)=

{
0, if ξ 6= ξ 0
1, if ξ = ξ 0

. (46)

The position of the second source is incrementally
changed for source positions 1ξ = (m1ξx , n1ξy ) with

Fig. 6. Schematic representation of how the two sources are
defined: the first source is located at the origin (on the optical axis), and
the second has position vector1ξ = (m1ξx , n1ξy ).

m, n ∈ [0, 20] and 1ξx , 1ξy = 1/128. The size of G
becomes very large. However, due to the choice of source blur,
the matrix toepl(vec(G)) has only 2N2 non-zero elements
allowing the use of sparsity. At each position, Eq. (3) is solved
using nonnegative least squares, which is stopped once a maxi-
mum amount of iterations has exceeded or has not decreased
for several iterations, yielding a solution for E p(ξ). The final
L2-norm value is stored in a matrix of size 20× 20, called
the loss matrix, and when plotted, shows a grid of the loss val-
ues, called the loss landscape. The loss landscape visualizes
how well the optimization converges for the different source
configurations.

The optimization was done for two desired irradiance dis-
tributions: a uniform square and a uniform circle, of which the
results can be seen in Figs. 7 and 8, respectively.

The loss landscape of the uniform square distribution,
Fig. 7(b0), shows several positions where good estimation is
achieved, which are situated along the x and y axes. The impulse
responses obtained for two cases are shown in Figs. 7(b1) and
7(b3). These solutions are equivalent to the analytical solutions
found by applying the double sine formula in Eq. (23) in the
x or y direction. Moving the source away from the x or y axis
causes a degradation of the quality of the obtained irradiation
distribution. The obtained distribution is shown in Figs. 7(a2)
and 8(b2), the respective impulse response.

For the uniform circle, we see that the desired distribution
can be accurately estimated when the distance between the two
sources is small compared to the distribution size, as seen in
Fig. 8(a1). As the distance between the sources increases, the
estimation quality further degrades.

In all results, we see that if the shift induced by moving the
source is small with respect to the size of the target irradiation
distribution, an impulse response can be found, which can be
used to approximate the desired distribution accurately.

A. Comparison with Regularization

We compare the results of the nonnegative basis function
approximation with three types of regularization: maximum
entropy, Tikhonov regularization with L the identity opera-
tor, and Tikhonov regularization with L the discrete Laplace
operator, which is commonly used in edge detection [34] and
is chosen to enforce smoothness of the solution and dampen
out the wild oscillation observed in Figs. 4(b1) and 4(b2). We
solved the regularized problems using Regularization Tools
[35] employing different solvers for the regularized problems.
The maxent solver was used to solve for the maximum entropy
regularization, the conjugate gradient algorithm (cgls) for the
Thikonov with identity regularization, and the preconditioned
conjugate gradient algorithm (pcgls) for the discrete Laplace
operator regularization. We compare the results of two sets of
source positions for both square and circular distributions. For
square distribution, we compare the results for source positions
1ξ = (81ξx , 0) (Fig. 9) and 1ξ = (61ξx , 61ξy ) (Fig. 10).
For circular distribution, we compare the results of source posi-
tions1ξ = (01ξx , 41ξy ) (Fig. 11) and1ξ = (131ξx , 41ξy )

(Fig. 12). For both cases of square distribution, the regulariza-
tion parameter used to solve the maximum entropy was set to
µ= 0.4642. Both the preconditioned and regular conjugate
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Fig. 7. (a0) Desired irradiance distribution: square distribution of width 0.5; (b0) loss landscape. (a1), (b1) Total irradiance and impulse response
obtained for1ξ = (0, 81ξy ) (red dot). (a2), (b2) Total irradiance and impulse response obtained for1ξ = (61ξx , 61ξy ) (orange dot). (a3), (b3)
Total irradiance and impulse response obtained for1ξ = (81ξx , 0) (green dot).

gradient algorithms converged in 50 iterations. For circular
distribution, µ= 0.315 was chosen for the maximum entropy
algorithm, and the preconditioned and regular conjugate
gradient algorithms converged in 150 iterations.

In all test cases, the maximum entropy regularization pro-
duced nonnegative impulse responses and total irradiances,

which, upon visual inspection, closely resembled the outcomes
obtained through approximation by nonnegative basis func-
tions. The results obtained using the conjugate gradient
method converge to the known nonnegative solution as seen
in Figs. 9(a1) and 9(b1). However, in all other scenarios, the
obtained impulse response oscillates rapidly between positive
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Fig. 8. (a0) Desired irradiance distribution: uniform circular distribution with radius 0.33; (b0) loss landscape. (a1), (b1) Total irradiance and
impulse response obtained for1ξ = (0, 41ξy ) (red dot). (a2), (b2) Total irradiance and impulse response obtained for1ξ = (81ξx , 41ξy ) (orange
dot). (a3), (b3) Total irradiance and impulse response obtained for1ξ = (131ξx , 41ξy ) (green dot).

and negative values and lacks finite support, as depicted in

Figs. 10(b2), 11(b2), and 12(b2). Furthermore, the impulse

responses obtained using the preconditioned conjugate gra-

dient method with the discrete Laplace operator are much

smoother than the other results, as shown in Figs. 10(b2),

11(b2), and 12(b2). Although both impulse response and total

irradiance become negative, the amount is much less than the

results obtained using the regular conjugate gradient algorithm.
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Fig. 9. Comparison of regularized results and approximation using nonnegative basis functions for square distribution and for1ξ = (81ξx , 0).
Total irradiances (left) and impulse responses (right) obtained using: (a0), (b0) approximation using nonnegative basis functions; (a1), (b1) maxi-
mum entropy regularization; (a2), (b2) conjugate gradient algorithm; (a3), (b3) preconditioned conjugate gradient algorithm and L the discrete
Laplace operator.

Moreover, while the preconditioned conjugated gradient result

extends beyond the desired irradiance domain, the oscillation

appears to be damped towards the edges.

6. CONCLUSION

We have presented a mathematical study of the problem of gen-

erating a desired irradiance distribution under the assumption
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Fig. 10. Comparison of regularized results and approximation using nonnegative basis functions for square distribution and for 1ξ =
(61ξx , 61ξy ). Total irradiances (left) and impulse responses (right) obtained using: (a0), (b0) approximation using nonnegative basis functions;
(a1), (b1) maximum entropy regularization; (a2), (b2) conjugate gradient algorithm; (a3), (b3) preconditioned conjugate gradient algorithm and L
the discrete Laplace operator.

that the irradiance distributions generated by different point
sources are the same except for a translation. This assumption
can be analyzed as a deconvolution problem where the desired
irradiance distribution, illumination, and impulse response

should all be nonnegative. Using positive-definite functions and
Bochner’s theorem, we have shown two trivial solutions: one
uses a single, zero-étendue source; the other shapes the source
to be the desired irradiance distribution and designs an imaging
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Fig. 11. Comparison of regularized results and approximation using nonnegative basis functions for circular distribution and for 1ξ =
(01ξx , 41ξy ). Total irradiances (left) and impulse responses (right) obtained using: (a0), (b0) approximation using nonnegative basis functions;
(a1), (b1) maximum entropy regularization; (a2), (b2) conjugate gradient algorithm; (a3), (b3) preconditioned conjugate gradient algorithm and L
the discrete Laplace operator.

system that projects it to the desired plane. When restricted to
equidistantly spaced sources with equal strength, an analytic
solution for E p can be found in specific cases. However, a more
general approach is obtained through optimization using a set

of nonnegative basis functions. Analysis of the results showed,
for the case of two sources, that if the shift induced by moving
the source is small compared to the size of the irradiance distri-
bution, a good estimation can be obtained. However, once this
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Fig. 12. Comparison of regularized results and approximation using nonnegative basis functions for circular distribution and for 1ξ =
(131ξx , 41ξy ). Total irradiances (left) and impulse responses (right) obtained using: (a0), (b0) approximation using nonnegative basis func-
tions; (a1), (b1) maximum entropy regularization; (a2), (b2) conjugate gradient algorithm; (a3), (b3) preconditioned conjugate gradient algorithm
and L the discrete Laplace operator.

shift becomes too large, the quality by which the desired irradi-
ance distribution can be estimated decreases with the distance
between sources.

We compared these results with various types of regulariza-
tion. The maximum entropy regularization can come close to

the solutions obtained by our proposed method. However, this
approach requires careful selection of the regularization param-
eter to achieve optimal results. The conjugate gradient was able
to converge to the known nonnegative solution. However, for all
other cases, it converges to a solution that is neither nonnegative
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nor has finite support. Finally, the preconditioned gradient
method with a discrete Laplace operator always converges to
a solution that has negative values, but due to the smoothness
constraint imposed by the Laplace operator, it has finite support
but extends beyond the domain on which the desired irradiance
distribution is defined.

Future work will address two crucial aspects. First, the issue
of large matrices required to solve the problem will be tack-
led, enabling the analysis of higher-resolution irradiance and
complex source distributions. Second, the theory should be
extended to accommodate shift-variant impulse responses,
which provide a more realistic representation of what is observed
when moving a source in illumination systems.
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