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Abstract

The resource theory approach is a recently developed framework used in the

study of thermodynamics for finite sized quantum systems. A simple way to de-

scribe how a quantum system evolves under energy-preserving unitaries while in-

teracting with thermal reservoirs, has been formulated in the framework of thermal

operations. Despite the conceptual simplicity of these operations, much is still un-

known about their mathematical structures. In this work, we studied these math-

ematical structures, in an attempt to better understand how these operations, and

some variants, describe quantum thermodynamics.

One of the interesting phenomena that occurs in quantum thermodynamics, is

something that we call super-activation. In this phenomenon, we make multiple for-

bidden transitions possible by combining them together. This phenomenon could,

for example, be used to extract more work from two systems, while it is impossible

to extract any work from the individual systems. We found conditions for when

this phenomenon can occur. As a result of this, we found that qubits with trivial

Hamiltonians cannot super-activate each other. On the other hand, we found a way

to construct infinitely many examples of super-activation.

We also investigated what happens if we combine multiples of the same for-

bidden transitions together. We found necessary conditions which each have to

satisfy in order for this joint transition to be possible. In particular, these condi-

tions show that this special case of super-activation can only occur in one direction.

Another topic that we studied in this work is smoothed Rényi divergences. In

an attempt to give an operational meaning to these quantities, we studied two

special states that allow us to clarify the relation between the smoothed Rényi di-

vergences with the possibility of a transition. These special states are the steepest

state and the flattest state. For a given state ρ, the steepest state is a state that

is ε-close to ρ in terms of trace distance and can be transformed, in the presence

of a thermal bath and while conserving the total energy, to any other state that is

also ε-close to ρ. The flattest state is a state that is also ε-close to ρ in terms of

trace distance, but all ε-close states of ρ can be transformed to it. We found a way

to construct this steepest state for limited values of ε, and the flattest state for any ε.
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1 Introduction

Present-day technology is focusing a lot on reducing the size of systems, such as pro-

cessors and cooling devices [8]. As these systems keep getting smaller, knowledge about

thermodynamics on a small-scale level is becoming increasingly important. However,

thermodynamics cannot properly be applied to these systems; it assumes that systems

consist of infinitely many particles, which is no longer a good approximation for some

extremely small systems.

A simple way to describe how a quantum system evolves under energy-preserving uni-

taries while interacting with thermal reservoirs, has been formulated in the framework of

thermal operations. By allowing the use of ancillary states as catalysts in these processes,

a more general set of thermodynamical operations is obtained, called catalytic thermal

operations. Only recently, it was shown that in the quantum regime, the second law

of thermodynamics takes a different form. Instead of just one law, a family of general-

ized second laws hold, with the original law being one instance of this infinite family of

laws [2]. These laws govern the transitions that catalytic thermal operations can perform.

Despite the conceptual simplicity of these two types of thermodynamical operations,

much is still unknown about their mathematical structures. In this work, we further

investigate these operations and their properties, in order to better understand how they

describe thermodynamics in the quantum regime. The main focus will be on super-

activation. This is a phenomenon where we combine forbidden transitions, such that the

combined transition is possible. The reason this phenomenon could be useful, is that in

particular work could be super-activated. Even though we might be unable to draw more

work from two individual systems, by combining them we could possibly draw more work

from the joint system. This could make many processes, such as quantum computing,

more efficient.

One of the goals of this project is to better understand this phenomenon. We will

search for restrictions on when we cannot super-activate systems, and look for ways to

construct examples. We will also investigate a special case of super-activation that we

call self-activation. Here, instead of combining two arbitrary transitions, we will combine

multiple of the same transition.

Another question that is of interest, arises from the fact that many of the relevant

quantities that are important in quantum thermodynamics find their origin in information

theory [7]. Examples of these quantities are the Rényi entropy and Rényi divergences. In

particular, smoothed Rényi divergences bring up questions. These are defined in such a
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way that it is unclear what their physical meaning is, despite their importance in quantum

thermodynamics. We will try to find out more about these divergences. Furthermore, we

will investigate the steepest and flattest states, that turn out to be relevant when looking

at these divergences.

This thesis consists of five chapters. In chapter 2 we discuss the background knowl-

edge that this work relies on. We first discuss the basics of quantum mechanics, and after

that we define the thermodynamical operations of interest.

Chapter 3 includes the results regarding super-activation, which is a phenomenon

where combining forbidden state transitions can make both transitions possible. In the

first section of this chapter we focus on the case where the Hamiltonians are fully de-

generate. We show that qubits cannot super-activate each other, and we give a way

to construct examples of the phenomenon. We also find necessary conditions for self-

activation, which is the special case of super-activation where multiples of the same

transition are combined. In the second section of chapter 3, we turn to more general

Hamiltonians. In chapter 4, we investigate the smoothed Rényi divergences, as well as

steepest and flattest states. We provide a way to construct these states, and give condi-

tions for when the steepest state exists. We also show that the flattest state always exists.

Finally, in chapter 5 we give a summary of our results, as well as some suggestions

for further research.
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2 Preliminaries

In this chapter, we discuss the background knowledge that is needed to understand the

used methods and the results. First, we explain some terminology and notation for

quantum mechanical systems. This section is mainly based on [9,10]. Secondly, we

discuss different types of thermodynamical operations and their properties. Lastly we

give some criteria that govern state transitions. These criteria will be used extensively in

most of the results.

2.1 Quantum systems

2.1.1 Pure states

Quantum mechanics revolve around the properties of tiny particles. These properties

define the state of a quantum system. An example of such a property is the spin of an

electron. To describe the state of these particles, we use vectors in Hilbert spaces. We

generally denote these quantum states by |ψ〉, which is called the bra-ket notation. The

complex conjugate transpose of |ψ〉 is given by |ψ〉† = 〈ψ|. Sometimes this is also written

as |ψ〉∗.

Quantum states can be either pure or mixed. A quantum state is called pure when

one can say with certainty that the quantum system is in that particular state. Because

these states are solutions of the Schrödinger equation, we can add them together to form

superpositions of states, which are also solutions of the Schrödinger equation. These

superpositions of states are pure states as well. For qubits, which are two dimensional

systems, superposition takes the form |ψ〉 = c1 |0〉+ c2 |1〉, where |c1|2 + |c2|2 = 1.

Before moving on to mixed states, we will first explain the basics of Hamiltonians.

2.1.2 Hamiltonians

The time-independent Schrödinger equation is given by

Ĥ |ψ〉 = E |ψ〉 . (1)

Here, Ĥ is the Hamiltonian operator, which corresponds with the total energy of a

quantum state. Hamiltonians are Hermitian linear operators on states. They determine

how states evolve with time. This evolution is given by the unitary operator U = e−iĤt,

such that

|ψ〉′ = U |ψ〉 . (2)
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Unitary operators preserve the energy of the system, and satisfy U−1 = U †.

Hamiltonians determine the energy eigenstates, and how much energy these would

have: these eigenstates are the eigenvectors of the Hamiltonian, and the corresponding

energy levels are the eigenvalues. Because Hamiltonians are Hermitian operators, their

eigenvalues are always real. We will give a brief example to illustrate these operators.

Example 2.1. Consider the d-dimensional system with the Hamiltonian given by

Ĥ = Id, (3)

where Id is the d-dimensional identity matrix. Such a Hamiltonian is called a trivial

or fully-degenerate Hamiltonian. Then, the Schrödinger equation becomes

Ĥ |ψ〉 = cId |ψ〉 = c |ψ〉 = E |ψ〉 . (4)

The only solution of this equation, is E = c for any |ψ〉. Thus, all states of this system

have the same amount of energy.

This has many consequences. First of all, any unitary would commute with such a

Hamiltonian. This means that any unitary operator would be energy preserving for such

a system. Another consequence is that one of the criteria that govern state transitions

reduces to a much simpler variant for trivial Hamiltonians. We will discuss this later. The

latter is the main reason we will start out by examining systems with trivial Hamiltonians.

2.1.3 Mixed states

As we stated before, not all quantum states are pure states. Often, rather than being

certain about the state of a quantum system, the state is a probabilistic mixture of pure

states. This simply means that for every pure state, we have a probability to find the

system in this pure state.

A special case of a mixed state is the thermal state. This state is also called the

maximally mixed state, or the Gibbs state. The probability that the thermal state is

found in an eigenstate with energy Ei is given by

pi =
e−βEi

Z
. (5)

Here, β = 1
T

is the inverse temperature and Z is the partition function, defined as

Z =
d∑
i=1

e−βEi . (6)
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2.1.4 Density matrices

Clearly, mixed states cannot be expressed with state vectors like pure states can. Instead,

we use density matrices to express states. Density matrices can be used to express both

pure and mixed states, which makes them very convenient. The density matrix of a

quantum state, pure or mixed, is given by

ρ =
∑
i

pi |ψi〉 〈ψi| , (7)

where pi is the probability that the quantum system is found in the state |ψi〉. When

|ψ〉i are orthogonal, these probabilities are the eigenvalues of the density matrix. From

this definition, it becomes clear that density matrices are Hermitian. As a result, the

eigenvalues of density matrices are real. Furthermore, the eigenvalues are non-negative

and sum up to 1. This means that the eigenvalues of a density matrix form a discrete

normalized probability distribution.

The eigenvalues of a density matrix play an important role when calculating the trace

of the matrix. The trace of a square matrix is defined as

tr(ρ) =
∑
i

ρii, (8)

where ρii denotes the ii-th entry of ρ. The trace of a matrix is invariant under basis

transformation. Since density matrices are hermitian, we can diagonalize them, which

results in the eigenvalues appearing on the diagonal. As a direct result, the trace of a

density matrix is is also equal to the sum of the eigenvalues. This yields

tr(ρ) = 1. (9)

2.2 Joint systems

So far we have only considered single systems. However, often we are interested what

happens if we combine multiple systems. Therefore, having a way to describe the state

of multiple systems at the same time would be very useful.

2.2.1 Tensor products

Let |ψA〉 and |ψB〉 be states of two different dA- and dB-dimensional systems. Then, if

there is no interaction between the systems, the joint state can be expressed as

|ψAB〉 = |ψA〉 ⊗ |ψB〉 . (10)
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Here, ⊗ is the tensor product, which acts on two matrices A with entries aij and B

with entries bij, such that

A⊗B =


a11B a12B . . . a1dAB

a21B a22B
...

. . .

adA1B adAdAB

 . (11)

Tensor products can also be used to combine many of the same states together. This

leads to the usage of the tensor power, which is defined as

A⊗n = A⊗ . . .⊗ A. (12)

Notice that tensor products quickly inflate the dimension of the density matrices;

combining even a few systems together can result in huge dimensions.

2.2.2 Partial trace

The trace operator can be generalized to the partial trace. For a bipartite state ρAB, and

an orthonormal basis of HB given by {|l〉B}, the partial trace over B is defined as

trB(ρAB) =
∑
l

(IA ⊗ 〈l|B) ρAB (IA ⊗ |l〉B) . (13)

For a product state ρAB = ρA ⊗ ρB, this yields

trB(ρAB) = ρA. (14)

We call ρA the reduced state on A.

2.2.3 Joint Hamiltonians

For the joint state as described above, we would also like to define the joint Hamiltonian.

Let ĤA be the Hamiltonian of system A, and ĤB the Hamiltonian of system B. Let{
|ψAi 〉

}
be the eigenstates of ĤA, with corresponding eigenvalues

{
EA
i

}
, and let

{
|ψBi 〉

}
be

the eigenstates of ĤB, with corresponding eigenvalues
{
EB
i

}
. As we mentioned earlier, we

assume that there is no interaction between the systems. In other words, the Hamiltonian

of system A does not act on system B, and neither does the Hamiltonian of system B

act on system A. The joint Hamiltonian becomes

ĤAB = ĤA ⊗ IdB + IdA ⊗ ĤB. (15)

We can verify that the eigenstates and corresponding energy levels of the individual

systems remain unchanged, such that |ψABij 〉 = |ψAi 〉 ⊗ |ψBj 〉 is an eigenstate of the joint

Hamiltonian. We have that
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ĤAB |ψABij 〉 =
(
ĤA ⊗ IdB + IdA ⊗ ĤB

) (
|ψAi 〉 ⊗ |ψBj 〉

)
(16)

=
(
EA
i |ψAi 〉

)
⊗ |ψBj 〉+ |ψAi 〉 ⊗

(
EB
j |ψBj 〉

)
(17)

=
(
EA
i + EB

j

)
|ψAi 〉 ⊗ |ψBj 〉 (18)

= Eij |ψABij 〉 , (19)

where Eij = EA
i + EB

j is the energy of this eigenstate. We will denote this joint

Hamiltonian as

ĤAB = ĤA + ĤB. (20)

2.3 Thermodynamical operations

2.3.1 Quantum channels

Since we are interested in the thermodynamical interactions between a system and its

surroundings, it is not just the quantum states that we are interested in. We are especially

interested in the state transitions that occur as the system interchanges information with

the thermal bath.

In quantum mechanics, state transitions can be described by quantum channels.

Quantum channels are completely positive trace-preserving maps, that map density ma-

trices onto density matrices. The time evolution of a state that we gave earlier, can also

be expressed as a quantum channel, such that

ρ′ = UρU †. (21)

The reason that quantum channels must be trace preserving, is that when we apply a

quantum channel to a density matrix, the output should still be a density matrix. Since

all density matrices have trace 1, both the input and the output of the quantum channel

have the same trace. Another important restriction to the linear maps that are allowed

in quantum channels, is that the maps need to be completely positive. This ensures that

even when dealing with entangled states, the output of the channel is a physical state.

2.3.2 Thermal operations

The most basic type of quantum channel we will be looking at is the thermal opera-

tion. Thermal operations describe the thermodynamical interactions between a quantum

system and an equilibrated environment. They are defined as

ETO(ρ) = trB

[
USB (ρ⊗ τB)U †SB

]
. (22)
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Here, τS is the thermal state, and USB is a unitary operation. Since we are looking

at energy preserving operations, the quantum channel is restricted such that the unitary

commutes with the joint Hamiltonian. This can be expressed as

[USB, ĤS + ĤB] = 0. (23)

This restriction will ensure that no energy will be added or removed from the joint

system by the thermal operation. This is why the presence of the thermal bath is so

important. Without it, the energy of the system could never change.

Despite the conceptual simplicity of this type of quantum channel, much is still un-

known about the properties thereof. We will give a quick overview of what is known right

now.

First of all, it is known that the set of thermal operations forms a convex set. This

means that any convex combination of two arbitrary thermal operations, is again a ther-

mal operation. This gives us that

αE1TO(ρ) + βE2TO(ρ) = E3TO(ρ). (24)

Another property that thermal operations have, is that they cannot generate coherent

superpositions starting from an energy eigenstate.

Finally, thermal operations preserve the thermal state if the system has the same

temperature as the bath. This means that for all thermal operations,

ETO(τS) = τS. (25)

The conditions that determine whether or not state transitions are possible, are known

as thermo-majorization, which we will discuss in section 2.4.1.

2.3.3 Catalytic thermal operations

Catalytic thermal operations are very similar to thermal operations. The difference be-

tween the two is that with catalytic thermal operations we may use a catalyst, which is

simply an additional finite-dimensional quantum system, that is returned exactly. These

operations are defined as

ECTO(ρ) = trBC

[
USBC (ρ⊗ ωC ⊗ τB)U †SBC

]
. (26)

Here, τS is again the thermal state, and USBC is a unitary operation. Since we are

still looking at energy preserving operations, the unitary USBC has to commute with the

joint Hamiltonian, just as for thermal operations. We have that

8



[USBC , ĤS + ĤB + ĤC ] = 0. (27)

Furthermore, the catalyst has to be returned exactly, and has to be uncorrelated with

the system, such that

trB

[
USBC (ρ⊗ ωC ⊗ τB)U †SBC

]
= ECTO(ρ)⊗ ωC . (28)

We will list some of the properties of catalytic thermal operations that are currently

known.

First of all, the set of catalytic thermal operations includes the set of thermal opera-

tions. That this is the case, can be seen by looking at an arbitrary thermal operation. We

can add a catalyst and return it, while leaving it untouched by the unitary. This defines

a catalytic thermal operation that performs the same transition as the thermal operation.

Just like thermal operations, they preserve the Gibbs state, such that

ECTO(τS) = τS. (29)

Both sets are not the same, however. The presence of a catalyst enables us to perform

transitions that we would not be able to perform without it.

As we stated in the previous section, the set of thermal operations is convex. It was

not clear if the same was true for catalytic thermal operations. Similar to how it was

proved that the set of thermal operations is convex in [6], we proved that the set of

catalytic thermal operations is convex. We give the proof below.

Theorem 1. The set of catalytic thermal operations is convex.

Proof. Let E1 and E2 be catalytic thermal maps acting on a system ρS, such that

E1(ρS) = trC1B1

[
USB1(ρS ⊗ ωC1 ⊗ τB1)U

†
SB1

]
(30)

E2(ρS) = trC2B2

[
USB2(ρS ⊗ ωC2 ⊗ τB2)U

†
SB2

]
. (31)

The thermal states are given by

τB1 =
e−βHB1

Z1

, τB2 =
e−βHB2

Z2

. (32)

Notice that they have the same temperature. First, we introduce a d-dimensional

ancillary bath state τA with Hamiltonian HA = Id. Define the controlled unitary

9



U := Π1 ⊗ USB1 + Π2 ⊗ USB2 . (33)

Where Π1 and Π2 are rank k and rank d−k projectors onto the degenerate bath system

of the ancilla A respectively, and Π1 + Π2 = Id. We check if this operator commutes with

the shared Hamiltonian:

[U,H] = [
2∑
i=1

Πi ⊗ USBi , HS +HA +
2∑
j=1

HBj +HCj ] (34)

=
2∑
i=1

(
[Πi ⊗ USBi , HS +HA] +

2∑
j=1

Πi ⊗ [USBi , HBj +HCj ]

)
. (35)

Note that USBi leaves τBj and ωCj unchanged if i 6= j. In other words, USBi commutes

with HBj and HCj . Also notice that everything commutes with HA, which means that

HA can be ignored. We have that

[U,H] =
2∑
i=1

(Πi ⊗ [USBi , HS] + Πi ⊗ [USBi , HBi +HCi ]) (36)

=
2∑
i=1

Πi ⊗ [USBi , HS +HBi +HCi ]. (37)

By definition, uSBi commutes with HS +HBi +HCi . This yields

[U,H] = 0. (38)

Thus, U commutes with the total Hamiltonian. Next, we compute the state of ρS

after applying U to it. We have that

ρ′S = trAC1C2B1B2

[
U(ρS ⊗ ωC1 ⊗ ωC2 ⊗ τA ⊗ τB1 ⊗ τB2)U

†] (39)

=
1

d
trAC1C2B1B2

[
U(ρS ⊗ ωC1 ⊗ ωC2 ⊗ Id ⊗ τB1 ⊗ τB2)U

†] (40)

=
1

d

2∑
i=1

2∑
j=1

trAC1C2B1B2 [Πi ⊗ USBi(ρS ⊗ ωC1 ⊗ ωC2 ⊗ Id ⊗ τB1 ⊗ τB2)Πj ⊗ U †SBj ] (41)

=
1

d

2∑
i=1

2∑
j=1

trA[ΠiΠj]trC1C2B1B2 [USBi(ρS ⊗ ωC1 ⊗ ωC2

⊗τB1 ⊗ τB2)U
†
SBj

]. (42)

Using the fact that Π1 and Π2 are projectors onto the degenerate bath system, such

that Π1+Π2 = I, we can simplify this expression. Namely, we have that the ii-th element
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of Π1Π2 equals 0 for all i. Therefore, we have that trA[ΠiΠj] = 0 if i 6= j. Furthermore,

we have that trA[ΠiΠi] = trA[Πi]. Thus, we have that

ρ′S =
1

d

2∑
i=1

trA[Πi]trC1C2B1B2 [USBi(ρS ⊗ ωC1 ⊗ ωC2 ⊗ τB1 ⊗ τB2)U
†
SBi

] (43)

=
1

d

2∑
i=1

trA[Πi]trCiBi [USBi(ρS ⊗ ωCi ⊗ τBi)U
†
SBi

] (44)

=
k

d
E1(ρS) +

(
1− k

d

)
E2(ρS). (45)

Here, we used that Π1 is a rank k projector, and Π2 is a rank d−k projector onto the

degenerate bath system. We only have to verify that the catalyst remains unchanged.

We determine the final state of ωC1 ⊗ ωC2 , which is given by

ω′1 ⊗ ω′2 = trASB1B2

[
U(ρS ⊗ ωC1 ⊗ ωC2 ⊗ τA ⊗ τB1 ⊗ τB2)U

†] (46)

=
1

d
trASB1B2

[
U(ρS ⊗ ωC1 ⊗ ωC2 ⊗ Id ⊗ τB1 ⊗ τB2)U

†] (47)

=
1

d

2∑
i=1

2∑
j=1

trASB1B2 [Πi ⊗ USBi(ρS ⊗ ωC1 ⊗ ωC2 ⊗ Id ⊗ τB1 ⊗ τB2)Πj ⊗ U †SBj ]

(48)

=
1

d

2∑
i=1

2∑
j=1

trA[ΠiΠj]trSB1B2 [USBi(ρS ⊗ ωC1 ⊗ ωC2 ⊗ τB1 ⊗ τB2)U
†
SBj

] (49)

=
1

d

2∑
i=1

tr(Πi)trSBi

[
Ui(ρS ⊗ ωC1 ⊗ ωC2 ⊗ τBi)U

†
i

]
(50)

=
k

d
(ωC1 ⊗ ωC2) +

(
1− k

d

)
(ωC1 ⊗ ωC2) (51)

= ωC1 ⊗ ωC2 . (52)

Thus, the catalyst is returned to its original state. Therefore (U, τA ⊗ τ1 ⊗ τ2, ω1 ⊗
ω2) defines a catalytic thermal map equivalent to any rational convex combination of

(USB1 , τ1, ω1) and (USB2 , τ2, ω2). Irrational combinations are approached with arbitrary

accuracy. Thus, the set of catalytic thermal maps is convex.

2.3.4 Gibbs-preserving maps

Gibbs-preserving maps form an even more general class of thermodynamical operations.

A quantum channel is called Gibbs-preserving simply if it preserves the Gibbs state, such

that

EGP (τS) = τS. (53)
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From the definition it becomes clear that this set includes all catalytic thermal op-

erations, and therefore all thermal operations as well, since they too preserve the Gibbs

state. However, this set is bigger than the previous sets of thermodynamical opera-

tions. Namely, Gibbs-preserving maps can outperform thermal operations; for example,

Gibbs-preserving maps can generate coherent superpositions starting from an energy

eigenstate [5].

Another property that Gibbs-preserving maps satisfy, is that they form a convex set.

This can be seen by considering any convex combination of Gibbs-preserving maps: this

combination would also preserve the Gibbs state.

Because Gibbs-preserving maps can do anything thermal operations or catalytic ther-

mal operations can do, and more, they may seem like the most interesting set of quantum

channels to study. It is, however, unclear if it is possible to actually create all Gibbs-

preserving maps, unlike thermal and catalytic thermal operations. Being able to realize

these quantum channels is of great importance. Therefore, we will mainly focus on ther-

mal operations and catalytic thermal operations in this work.

2.4 Transition conditions

2.4.1 Thermo-majorization

One way to find out if a certain transition ρ→ σ is possible, would be to explicitly find the

corresponding thermal operations, though this can be very difficult. Fortunately, there

is a very powerful criterion that tells us whether or not a transition between two states

is possible by thermal operations. This criterion is called thermo-majorization. Thermo-

majorization compares two curves that correspond to the states in question. A thermal

operation can perform the transition ρ→ σ if and only if the thermo-majorization curve

of ρ lies above the thermo-majorization curve of σ [1].

The thermo-majorization curve of a state ρ that is block diagonal in its energy eigen-

basis is constructed as follows. Let the eigenvalues of ρ be given by {pi}, and let the

corresponding energy levels be given by {Ei}. We start by putting these eigenvalues in a

specific order called the β-order, which we define below.

Definition 2.1. Let ρ be a state that is block diagonal in its energy eigenbasis, with

eigenvalues {pi} and corresponding energy levels {Ei}. The eigenvalues of ρ are said to

be β-ordered if p1e
βE1 ≥ p2e

βE2 ≥ . . . , where β = 1
T

.
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The thermo-majorization curve of ρ is then given by the straight lines connecting the

points
{(∑k

i=1 e
−βEi ,

∑k
i=1 pi

)}
. We will give an example of thermo-majorization for

different states.

Example 2.2. Let ρ, σ and τ be 4-dimensional quantum systems. Let the eigenval-

ues of ρ, σ and τ be given by respectively {0.6, 0.3, 0.08, 0.02}, {0.7, 0.15, 0.1, 0.05} and

{0.1558, 0.2598, 0.1948, 0.3896}. For the sake of simplicity, we will define the values of

{eβEi} rather than defining the energy levels themselves. Let {eβEi} of ρ, σ and τ be

given by {5, 3, 4, 2}. Notice that the eigenvalues of all three states are β-ordered. We

give the thermo-majorization diagram of all three states in figure 1.

Figure 1: The majorization diagram of three different states, ρ, σ and the ther-

mal state τ . Here, Z =
∑d

i=1 e
−βEi denotes the partition function. The points{(∑k

i=1 e
−βEi ,

∑k
i=1 pi

)}
have been marked for each state. Notice that the curves for ρ

and σ intersect, meaning that these states cannot be transformed to each other. Also,

notice that both ρ and σ can be transformed to the thermal state.

The states ρ and σ are said to be incomparable; neither of the two can be transformed

to the other.

Because the eigenvalues of the states are β-ordered before the curve is constructed,
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all thermo-majorization curves are concave. This β-order does not have to be the same

for different states of the same system, like it was in the example. This can make it much

more difficult to compare the curves of two states, or to construct states with a specific

curve. Fortunately, when the Hamiltonians are trivial, this problem vanishes. We will

explain this more in depth.

Consider the d-dimensional systems ρ and σ with trivial Hamiltonians. As we showed

earlier, because the Hamiltonian is trivial, all energy levels have the same amount of

energy. Let pi and qi be the β-ordered eigenvalues of ρ and σ respectively. Because

the Hamiltonian is trivial, we have that e−βEi = c, with c a constant. This means that

the β-order reduces to p1 ≥ p2 ≥ . . . ≥ pd. We will proceed to construct the thermo-

majorization curves for both states.

For ρ, the thermo-majorization curve is therefore given by the set of points{(∑k
i=1 c,

∑k
i=1 pi

)}
, and the thermo-majorization curve of σ is given by the set of

points
{(∑k

j=1 c,
∑k

j=1 qj

)}
.

In order to find out if the transition is possible, we need to compare the height of these

two diagrams. Fortunately, because the Hamiltonian is trivial, the horizontal position of

the points of both diagrams line up perfectly, and thus it is sufficient to check that at

every vertex of the curves, ρ lies above σ. We only have to compare
∑k

i=1 pi and
∑k

i=1 qi,

for all 1 ≤ k ≤ d. If for each of these k, we have that
∑k

i=1 pi ≥
∑k

i=1 qi, the transition is

possible. In addition, because the states are normalized we have that
∑d

i=1 pi =
∑d

i=1 qi,

this means that ρ majorizes σ. We denote this by ρ � σ.

When comparing the thermo-majorization curves of states, it is possible that neither

ρ→ σ nor σ → ρ. In this case, we say that the states are incomparable. Incomparability

will be an important quality, as we will explain in the results.

As we stated before, catalytic thermal operations can perform more transitions than

thermal operations. The reason for this, is that catalysts affect the thermo-majorization

curves. Clearly, thermo-majorization cannot be used to obtain information about cat-

alytic thermal operations, other than the possibility of a transition with a certain catalyst.

To find out if catalytic thermal operations can perform a transition, we need different

tools.
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2.4.2 Rényi entropies and divergences

Fortunately, a similar tool exists to find out if catalytic thermal operations can perform

certain transitions. In information theory, two very important quantities are the Rényi

entropies and Rényi divergences, and as it turns out, these quantities are important in

quantum thermodynamics as well.

In the case that the Hamiltonians are trivial, a transition ρ → σ is possible if and

only if for α ∈ R [2],

Hα(ρ) ≤ Hα(σ) (54)

Here, Hα is the Rényi entropy, which is defined as

Hα(ρ) =
sgn(α)

1− α
log
∑
i

pαi . (55)

For states with nontrivial Hamiltonians that are block diagonal in the energy eigen-

basis, we have to compare the Rényi divergences instead. A transition is possible if and

only if α ∈ R,

Dα(ρ||τ) ≥ Dα(σ||τ). (56)

Here, the Rényi divergences are defined as

Dα(ρ||τ) =
sgn(α)

α− 1
log
∑
i

pαi q
1−α
i . (57)

Unfortunately, for states that are not block diagonal, these conditions are only nec-

essary, but insufficient. In this work, we will not consider states like these.

2.4.3 Super-activation

As we mentioned before, a transition that is impossible to achieve by thermal operations,

may not be impossible if we add a catalyst to the system that is returned exactly. This

leads to the question if other resources, that are by themselves not useful, could be

added to make a transition possible. As it turns out, sometimes we can combine multiple

forbidden transitions to make them possible. This is what we call super-activation. It

can be expressed as

ρ1 ⊗ ρ2 → σ1 ⊗ σ2, (58)

while ρ1 6→ σ1 and ρ2 6→ σ2. Clearly, super-activation can be very useful; it allows

us to potentially extract more work from two systems, that we cannot extract work

from individually. In [3,4] they show that a transition ρ → σ can be superactivated if
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H(ρ) > H(σ), but the condition might not be necessary. Apart from examples, much is

still unknown about the phenomenon, however.

2.4.4 Self-activation

Self-activation is a special case of super-activation, where we combine multiple of the

same forbidden transitions in order to make them possible. This can be expressed as

ρ⊗n → σ⊗n, (59)

while ensuring that ρ 6→ σ. Notice that when catalysts are allowed, self-activation

cannot happen. Due to the additive nature of the Rényi divergences, adding multiple

copies of the same state together only multiplies the divergences by n, and thus this will

never make the transition possible. This means that transitions that can be self-activated,

can also be made possible by adding a catalyst.

2.4.5 Smoothing

Sometimes, rather than comparing two states we would like to say something about

transitions of ‘close’ states. This leads to the use of the smoothed Rényi divergences. For

ε > 0, the smoothed Rényi divergences are defined as

Dε
α(ρ||τ) =


minρ̃Dα(ρ̃||τ) if α < 0

maxρ̃Dα(ρ̃||τ) if 0 ≤ α ≤ 1

minρ̃Dα(ρ̃||τ) if α > 1,

(60)

where optimization occurs over all states ρ̃ within the an ε-ball around ρ. These states

satisfy

ρ̃ :
1

2
Tr
[√

(ρ− ρ̃)†(ρ− ρ̃)
]
≤ ε. (61)

For states that are diagonal in the same basis, this becomes

ρ̃ :
1

2

∑
i

|pi − p̃i| ≤ ε. (62)

Because the smooth Rényi divergences are defined differently for different regions,

they do not, as a whole, correspond to the Rényi divergence of a single state. This

removes any physical meaning of the quantity; it seems to be merely a tool. In this work,

we investigate this physical meaning.
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3 Super-activation

In this chapter, we will give all the results that are related to super-activation. In section

3.1 we analyze super-activation with trivial Hamiltonians. First, we show that qubits

with trivial Hamiltonians cannot super-activate each other. Then, we show that we

can always combine possible transitions, which will allow us to construct examples of

super-activation. Lastly, we give necessary conditions for self-activation, as well as some

consequences.

In section 3.2 we turn to nontrivial Hamiltonians. We give several examples that

show that some of the theorems for the trivial case cease to hold for nontrivial Hamilto-

nians. These examples also hint at other theorems that we think can be extended for the

nontrivial case.

3.1 Trivial Hamiltonians

In this section, we will give all the results that are related to super-activation with trivial

Hamiltonians. Recall that a transition is super-activated if ρ1 ⊗ ρ2 → σ1 ⊗ σ2, while at

the same time ρ1 6→ σ1, and ρ2 6→ σ2.

We start by analyzing the simplest cases; as we showed in chapter 2, when looking

at systems with trivial Hamiltonians, we only have to check majorization, rather than

thermo-majorization, which makes things much easier.

3.1.1 2-dimensional systems

We will first analyze super-activation in 2-dimensional systems. For higher dimensional

systems, see sections 3.1.2-3.1.4. To determine if the 2-dimensional system ρ, with eigen-

values pi, majorizes the 2-dimensional system σ, with eigenvalues qi, we have to check

that for k = 1, 2,

k∑
i=1

pi ≥
k∑
i=1

qi. (63)

However, for k = 2 this is always true, because the eigenvalues are normalized. Thus,

majorization reduces to the comparison of p1 and q1. ρ � σ if and only if p1 ≥ q1. From

this, it also follows that if ρ 6� σ, then p1 < q1. Thus, we have that σ � ρ instead. Notice

that p1 = q1 does not necessarily mean that both states are the same; they could still

have a different spectral decomposition.
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Using this information, we can show that single-qubit state transitions with trivial

Hamiltonians can never super-activate each other.

Lemma 1. If ρ1, ρ2, σ1 and σ2 are 2-dimensional quantum states with trivial Hamilto-

nians, such that ρ1 6� σ1 and ρ2 6� σ2, then it follows that ρ1 ⊗ ρ2 6� σ1 ⊗ σ2.

Proof. Let {p1i } be the ordered eigenvalues of ρ1, {p2i } be the ordered eigenvalues of ρ2,

{q1i } be the ordered eigenvalues of σ1 and {q2i } be the ordered eigenvalues of σ2, all in

decreasing order. Furthermore, let {pi} be the ordered eigenvalues of ρ1⊗ρ2, and let {qi}
be the ordered eigenvalues of σ1 ⊗ σ2, again in decreasing order. Then, as we explained

before, it follows from ρ1 6� σ1 that p11 < q11. Similarly, it follows from ρ2 6� σ2 that p21 < q21.

In order to show that ρ1 ⊗ ρ2 6� σ1 ⊗ σ2, we will compare
∑k

i=1 pi with
∑k

i=1 qi for

k = 1. Because pi and qi are products of the form p1i p
2
j with i, j = {1, 2}, it is easy to

see that the largest eigenvalue of the joint system is given by p11p
2
1. Similarly, the largest

eigenvalue of σ1 ⊗ σ2 is given by q11q
2
1. This gives us that

1∑
i=1

pi = p1 = p11p
2
1 (64)

< q11q
2
1 =

1∑
i=1

qi. (65)

Thus, it follows that ρ1⊗ρ2 6� σ1⊗σ2, which means that a transition is impossible.

With this we conclude our analysis on 2-dimensional states.

3.1.2 Combining transitions

In order to find examples of super-activation, it will be useful to have some knowledge

on which states not to combine. The following theorem will be useful in that respect.

Theorem 2. Let ρ1 and σ1 be n-dimensional quantum states with trivial Hamiltonians,

and let ρ2 and σ2 be m-dimensional quantum states with trivial Hamiltonians. If ρ1 � σ1

and ρ2 � σ2, then ρ1 ⊗ ρ2 � σ1 ⊗ σ2.

Proof. Let p1i be the ordered eigenvalues of ρ1, such that p1 ≥ . . . ≥ pn. Similarly, let

p2i be the eigenvalues of ρ2, q
1
i the eigenvalues of σ1 and q2i the eigenvalues of σ2, all in

decreasing order. Assume that ρ1 � σ1, and that ρ2 � σ2. Then, for every 1 ≤ k ≤ n,

we have that
∑k

i=1 p
1
i ≥

∑k
i=1 q

1
i . For ρ2 and σ2, the same holds:

∑k
i=1 p

2
i ≥

∑k
i=1 q

2
i for

every 1 ≤ k ≤ m.
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The eigenvalues of ρ1 ⊗ ρ2 are given by p1i p
2
j for i = 1, . . . , n and j = 1, . . . ,m, and

the eigenvalues of σ1⊗σ2 are given by q1i q
2
j fori = 1, . . . , n and j = 1, . . . ,m. For ρ1⊗ ρ2,

we will denote the k-th biggest eigenvalue by pk, and for σ1⊗ σ2, we will denote the k-th

biggest eigenvalue by qk. We need to show that for every 1 ≤ k ≤ nm,
∑k

i=1 pi ≥
∑k

i=1 qi

holds. To show this, we first define

wρ(i, j, k) =

{
1 : p1i p

2
j is one of the k largest eigenvalues of ρ

0 : otherwise
(66)

wσ(i, j, k) =

{
1 : p1i p

2
j is one of the k largest eigenvalues of σ

0 : otherwise
. (67)

These functions tell us which p1i p
2
j and q1i q

2
j are included in the summation. This will

allow us to rewrite majorization, such that

k∑
i=1

pi =
n∑
i=1

m∑
j=1

p1i p
2
jwρ(i, j, k) (68)

≥
n∑
i=1

m∑
j=1

p1i p
2
jwσ(i, j, k). (69)

(70)

The first equation sums over the k largest eigenvalues of ρ1⊗ ρ2. In the second equa-

tion, we substitute some of these eigenvalues for different eigenvalues of ρ1⊗ ρ2. Because

these different eigenvalues are smaller, the value of the sum can only decrease.

Next, we define

fσ(j, k) =
n∑
i=1

wσ(i, j, k) (71)

gσ(i, k) =
m∑
j=1

wσ(i, j, k). (72)

Notice that if p1i p
2
j is one of the k largest eigenvalues of ρ1⊗ ρ2, then for all m,n ≥ 0,

p1i−mp
2
j−n is one of the k largest eigenvalues of ρ1 ⊗ ρ2 as well. Using this fact combined

with the previously defined functions, we can rewrite the summation in a more convenient

way, such that
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n∑
i=1

m∑
j=1

p1i p
2
jwσ(i, j, k) =

n∑
i=1

gσ(i,k)∑
j=1

p1i p
2
j (73)

=
n∑
i=1

p1i

gσ(i,k)∑
j=1

p2j (74)

≥
n∑
i=1

p1i

gσ(i,k)∑
j=1

q2j . (75)

(76)

Here, the inequality follows from the fact that ρ2 majorizes σ2. We can now switch

back to using wσ(i, j, k), and swap the order of the summation. This yields

n∑
i=1

p1i

gσ(i,k)∑
j=1

q2j =
n∑
i=1

m∑
j=1

p1i q
2
jwσ(i, j, k) (77)

=
m∑
j=1

n∑
i=1

p1i q
2
jwσ(i, j, k). (78)

We can now do the same as we did before, but with fσ(j, k) instead of gσ(i, k). This

gives us that

m∑
j=1

n∑
i=1

p1i q
2
jwσ(i, j, k)s =

m∑
j=1

fσ(j,k)∑
i=1

p1i q
2
j (79)

=
m∑
j=1

q2j

fσ(j,k)∑
i=1

p1i (80)

≥
m∑
j=1

q2j

fσ(j,k)∑
i=1

q1i . (81)

The inequality holds because ρ1 majorizes σ1. We can express this in terms of qi, such

that

m∑
j=1

q2j

fσ(j,k)∑
i=1

q1i =
n∑
i=1

m∑
j=1

q1i q
2
jwσ(i, j, k) (82)

=
k∑
i=1

qi. (83)

The result is that for all 1 ≤ k ≤ nm,
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k∑
i=1

pi ≥
k∑
i=1

qi, (84)

and thus ρ1 ⊗ ρ2 majorizes σ1 ⊗ σ2.

This theorem can be particularly useful when trying to construct examples of super-

activation, as we will show in the next section.

3.1.3 Constructing examples of super-activation

So far we have only found some restrictions on super-activation. It would be nice if we

could also say something about the possibility of super-activation. In this section, we

will give a way to construct examples of super-activation for some states with trivial

Hamiltonians in any dimension.

The goal is to find for a given ρ1 and σ1 such that ρ1 6→ σ1, ρ2 and σ2 such thatρ2 6→ σ2

and ρ1 ⊗ ρ2 → σ1 ⊗ σ2. As we showed in theorem 2, combining the transitions ρ1 → σ1

and ρ2 → σ2 yields ρ1⊗ρ2 → σ1⊗σ2. However, this cannot directly be used to construct

examples of super-activation.

Instead, we can combine two different transitions ρ1 → σ2 and ρ2 → σ1. This gives

a new transition ρ2 ⊗ ρ1 → σ1 ⊗ σ2. Because switching the order of the tensor products

does not change the ordered eigenvalues, this also means that ρ1 ⊗ ρ2 → σ1 ⊗ σ2. If in

addition ρ1 6→ σ1 and ρ2 6→ σ2, this would be an example of a super-activated transition.

To use this information to construct examples of super-activation, we will need to

slightly restrict ρ1: if σ1 � ρ1, then we have that ρ2 � σ1 � ρ1 � σ2 which would mean

that this is not an example of super-activation. Thus, we will restrict ρ1 and σ1 to be

incomparable.

Theorem 3. Let ρ1 and σ1 be d-dimensional quantum states with trivial Hamiltonians,

such that ρ1 6� σ1 and σ1 6� ρ1. Then we can find ρ2 and σ2 such that ρ1 ⊗ ρ2 � σ1 ⊗ σ2.
In particular, we can find ρ2 6� σ2 for which the joint transition is possible.

Proof. To prove that this is always possible, we will try to construct ρ2 and σ2 such that

ρ2 � σ1 and ρ1 � σ2, while ensuring that ρ2 6� σ2.

Let d be the dimension of ρ1 and σ1, and let {p1i } and {q1i } be the ordered eigenvalues

of ρ1 and σ1 respectively. Then, because σ1 6� ρ1, there exists at least one k ∈ N for

which it holds that
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k∑
i=1

p1i >
k∑
i=1

q1i . (85)

Using this information, we can determine the eigenvalues of ρ2 and σ2. First, we

define

ε ≡ 1

3
max
k∈N

(
k∑
i=1

p1i −
k∑
i=1

q1i

)
=

1

3

(
N∑
i=1

p1i −
N∑
i=1

q1i

)
, (86)

where we will denote the index for which this maximum occurred by N . Next, we

determine M ∈ N such that

d∑
i=M+1

q1i < ε ≤
d∑

i=M

q1i . (87)

This M tells us how many eigenvalues at the tail of σ1 we have to adjust in order to

create a normalized ρ2. With knowledge of M , we can define the eigenvalues of ρ2 to be

p2i =



q1i + ε if i = 1

q1i if 1 < i < M

q1i − ε+
∑d

j=M+1 q
1
i if i = M

0 otherwise.

(88)

This gives us the normalized state ρ2 for which we have that

k∑
i=1

p2i ≥
k∑
i=1

q1i ,∀k ∈ N. (89)

And thus, ρ2 � σ1.

We will define σ2 in a similar way. We will take the eigenvalues of ρ1, and change

them in such a way that ρ1 � σ2. We do need to be slightly more careful, however, in

order to make sure that the order of the eigenvalues does not change. First, we determine

N1 ∈ N such that

N1−1∑
i=1

(
p1i − p1N1

)
< ε ≤

N1∑
i=1

(
p1i − p1N1+1

)
. (90)

and N2 ∈ N such that

d∑
i=N2+1

(
p1N2
− p1i

)
< ε ≤

d∑
i=N2

(
p1N2−1 − p

1
i

)
. (91)
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Then, N1 and N2 tell us how many eigenvalues we have to adjust to avoid changing

the order of the eigenvalues. We can now determine the eigenvalues of σ2. We define

these by

q2i =


1
N1

(
−ε+

∑N1

i=1 p
1
i

)
if i ≤ N1

1
d+1−N2

(
ε+

∑d
i=N2

p1i

)
if i ≥ N2

p1i otherwise.

(92)

This gives us another normalized state for which we have that

k∑
i=1

p1i ≥
k∑
i=1

q2i ,∀k ∈ N. (93)

And thus, ρ1 � σ2. Because also ρ2 � σ1, the joint transition is possible. Next, we will

show that ρ2 6� σ2, by looking at majorization at index N . To do this, we first determine

the relation between M,N1, N2 and M .

Recall that at index N , we have that

3ε =
N∑
i=1

p1i −
N∑
i=1

q1i . (94)

We start by considering M and N . Because the eigenvalues are normalized, we have

that

d∑
i=N+1

q1i =
d∑
i=1

q1i −
N∑
i=1

q1i (95)

= 1−
N∑
i=1

q1i . (96)

Combining this with equation 94 yields

d∑
i=N+1

q1i = 3ε+ 1−
N∑
i=1

p1i (97)

> ε. (98)

If we compare this to our choice of M , which was

d∑
i=M+1

q1i < ε ≤
d∑

i=M

q1i , (99)

we get that N < M . We can do something similar for N1 and N2. We have that
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N∑
i=1

(
p1i − p1N+1

)
=

N∑
i=1

p1i −Np1N+1 (100)

= 3ε+
N∑
i=1

q1i −Np1N+1, (101)

where we again used the fact that the eigenvalues are normalized. Combining this

with equation 94 yields

N∑
i=1

(
p1i − p1N+1

)
> 3ε+

N∑
i=1

q1i −Nq1N+1 (102)

= 3ε+
N∑
i=1

(
q1i − q1N+1

)
(103)

> ε. (104)

Comparing this to our choice of N1, which was

N1−1∑
i=1

(
p1i − p1N1

)
< ε ≤

N1∑
i=1

(
p1i − p1N1+1

)
, (105)

we see that, N1 − 1 < N , such that N1 ≤ N . Finally, for N2 we have that

d∑
i=N+1

(
p1N − p1i

)
=

d∑
i=1

(
p1N − p1i

)
−

N∑
i=1

(
p1N − p1i

)
(106)

= (d−N)p1N − 1 +
N∑
i=1

p1i , (107)

because of normalization. Combining this with equation 94 gives us that

d∑
i=N+1

(
p1N − p1i

)
= (d−N)p1N − 1 + 3ε+

N∑
i=1

q1i (108)

> (d−N)q1N − 1 + 3ε+
N∑
i=1

q1i (109)

= 3ε+
d∑
i=1

(
q1N − q1i

)
−

N∑
i=1

(
q1N − q1i

)
(110)

= 3ε+
d∑

i=N+1

(
q1N − q1i

)
(111)

> ε. (112)
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If we compare the result with our definition of N2, which was

d∑
i=N2+1

(
p1N2
− p1i

)
< ε ≤

d∑
i=N2

(
p1N2−1 − p

1
i

)
, (113)

We get that N < N2. Thus, we have that N < M and N1 ≤ N < N2. With this in

mind, we can consider majorization at index N . We have that

N∑
i=1

q2i −
N∑
i=1

p2i =

(
N1∑
i=1

q2i +
N∑

i=N1+1

q2i

)
−

(
1∑
i=1

p2i +
N∑
i=2

p2i

)
(114)

=

(
N1∑
i=1

1

N1

(
N1∑
j=1

p1j − ε

)
+

N∑
i=N1+1

p1i

)
−

(
q1i + ε+

N∑
i=2

q1i

)
. (115)

Here, we have substituted q2i and p2i with their definitions. Moving ε out of the

summations and swapping the order of the first summation yields

N∑
i=1

q2i −
N∑
i=1

p2i =

(
N1∑
j=1

1

N1

N1∑
i=1

p1j +
N∑

i=N1+1

p1i

)
−

(
q1i +

N∑
i=2

q1i

)
− 2ε (116)

=

(
N1∑
j=1

p1j +
N∑

i=N1+1

p1i

)
−

N∑
i=1

q1i − 2ε (117)

=
N∑
i=1

p1i −
N∑
i=1

q1i − 2ε (118)

= ε > 0, (119)

This means that ρ2 6� σ2, and thus we have successfully constructed an example of

super-activation for the initial transition ρ1 → σ1.

We will give an example to illustrate the procedure.

Example 3.1. Let ρ1 and σ1 be 4-dimensional quantum systems with trivial Hamiltoni-

ans. Let the eigenvalues of ρ1 be given by {0.5, 0.2, 0.15, 0.15}, and let the eigenvalues of

σ1 be given by {0.4, 0.35, 0.15, 0.1}. Then, the first question that has to be answered, is

if ρ1 � σ1, or if σ1 � ρ1. If neither are true, then we can apply our method to construct

an example of super-activation.
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We give the majorization-diagram of ρ1 and σ1 in figure 2.

Figure 2: The majorization diagram of ρ1 and σ1. Since the diagrams intersect, the states

are incomparable.

Clearly, ρ1 and σ1 are incomparable, and thus we can proceed with using our method.

We start by finding the value of ε. Notice that the maximum difference of the two curves

occurs at k = 1, such that ε = 1
3

(p11 − q11) = 1
30

.

Next, we determine the values of M,N1 and N2. We find that M = 4, N1 = 1 and

N2 = 3. Thus, for ρ2 we only have to modify the first and the last eigenvalues of σ1. For

σ2 we have to modify the first and the last two eigenvalues of ρ1. We have that

p2 = {0.4333, 0.3500, 0.1500, 0.0667} (120)

q2 = {0.4667, 0.2000, 0.1667, 0.1667}. (121)

In figure 3, we give the majorization diagram of the four individual states to illustrate

how the new curves compare to the old.
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Figure 3: The majorization diagram of ρ1, ρ2, σ1 and σ2. The diagrams of ρ2 and σ2

intersect, which means that the states are incomparable. A transition from ρ2 to σ2 is

therefore not possible by thermal operation.

finally, we verify that ρ1⊗ ρ2 � σ1⊗ σ2. In figure 4 we give the majorization diagram

of these states.
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Figure 4: The majorization diagram of ρ1 ⊗ ρ2 and σ1 ⊗ σ2. It is clear that the diagram

of the former lies above the diagram of the latter, such that a transition between the two

is possible.

Since neither ρ1 → σ1 nor ρ2 → σ2, while the joint transition ρ1 ⊗ ρ2 → σ1 ⊗ σ2 is

possible, we have successfully constructed an example of super-activation.
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3.1.4 Self-activation

As we explained in the background section, self-activation is the special case of super-

activation, where we combine multiple instances of the same transitions. When the

Hamiltonians are trivial, a transition is self-activated if ρ 6� σ, but there exists an n ∈ N
such that ρ⊗n � σ⊗n. In this subsection, we will give the results that are related to this

phenomenon.

To analyze self-activation, we will start by giving some general constraints on the

states. Let ρ and σ be d-dimensional quantum systems, such that ρ 6� σ. Since we are

looking at the case where ρ⊗n � σ⊗n, we can already find a restriction to ρ and σ: σ 6� ρ

has to hold. Otherwise, we can simply apply theorem 2 to the system multiple times,

and find that σ⊗n � ρ⊗n. As we explained before, this implies that ρ⊗n and σ⊗n have

the same ordered eigenvalues. However, since ρ is unequal to σ, this cannot be the case.

Thus, ρ and σ have to be incomparable.

This brings up a new question. Since ρ and σ are assumed to be incomparable, it

is no longer clear what differentiates the two. Maybe we could find some N1 ∈ N such

that ρ⊗N1 → σ⊗N1 , and maybe we can find a N2 ∈ N such that σ⊗N2 → ρ⊗N2 . Maybe

we can even find both N1 and N2 for the same ρ and σ, though that would have strange

consequences.

In order to examine this question further, we will first try to find some necessary

conditions for self-activation.

Theorem 4. Let ρ and σ be d-dimensional systems, with eigenvalues pi and qi re-

spectively, such that ρ 6� σ. If
∑N

i=1 pi <
∑N

i=1 qi for some N , then the existence of

n1 < N < n2, with n1, n2 ∈ N such that
∑n1

i=1 pi >
∑n1

i=1 qi and
∑n2

i=1 pi >
∑n2

i=1 qi is

necessary for self activation to occur.

Proof. We will prove this by contradiction. We first choose n, the number of copies of ρ,

arbitrarily. This already defines the eigenvalues of both ρ⊗n and σ⊗n. We will denote the

ordered eigenvalues of ρ⊗n and σ⊗n by p̂i and q̂i respectively, such that p̂1 ≥ . . . ≥ p̂dn

and q̂1 ≥ . . . ≥ q̂dn . Each of these eigenvalues can be written as a product of pi or qi. In

order to write them as products, we will use the following notation.

p~a =
n∏
i=1

pai (122)

q~a =
n∏
i=1

qai (123)

29



Here, ~a is an n-dimensional vector with entries ai ∈ {1, . . . , d}. Furthermore, we

will define sums over vectors of indices
∑~y

~a=~x f(~a) to iterate over all ~a such that ai ∈
{xi, . . . , yi} for all i.

First, we assume that no n1 < N exists for which
∑n1

i=1 pi >
∑n1

i=1 qi. If we then

consider majorization for the index k for which pd−11 pN is the k-th largest eigenvalue of

ρ⊗n, we will find that the transition is impossible. Since ρ⊗n has n eigenvalues with the

value pd−11 pN , there are multiple k that satisy our needs. We will choose k such that

p̂k+1 < p̂k, which means we consider all eigenvalues equal to pd−11 pN .

So, we are to compare
∑k

i=1 p̂i and
∑k

i=1 q̂i for the fixed value of k. In order to write

these sums in terms of products of pi and qi, we will define the following functions.

wρ(~a, k) =

1 : p~a is one of the k largest eigenvalues of ρ⊗n

0 : otherwise
(124)

wσ(~a, k) =

1 : q~a is one of the k largest eigenvalues of σ⊗n

0 : otherwise
(125)

These functions are very similar to the functions we used in an earlier proof. They

tell us which eigenvalues are among the k largest, allowing us to rewrite majorization as

follows. We have that

k∑
i=1

p̂i =

(d,...,d)∑
~a=(1,...,1)

wρ(~a, k)p~a (126)

=

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

n∏
i=1

pai

)
. (127)

Next, we will multiply this expression by
∏0

l=1 qal = 1, which yields

k∑
i=1

p̂i =

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

n∏
i=1

pai

)
(128)

=

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

0∏
l=1

qal

n∏
i=1

pai

)
. (129)

We do this, because we want to eliminate all pai from the expression. Having the

equation in this form, will allow us to apply the following equation to it, repeatedly. We

will use that for all 0 ≤ m < n,
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(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

m∏
l=1

qal

n∏
i=m+1

pai

)
<

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

m+1∏
l=1

qal

n∏
i=m+2

pai

)
. (130)

To show that this is the case, we will define a new function,

fρ(i,~a, k) =
n∑
j=1

wρ((a1, . . . , ai−1, j, ai+1, . . . , an), k), (131)

where in the argument of w we changed the i-th entry of ~a to be equal to j. This

function will tell us how many eigenvalues have all but the i-th index in common with

the vector ~a. it will help us to rewrite majorization further, giving us

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

m∏
l=1

qal

n∏
i=m+1

pai

)
=

(d,...,1,...,d)∑
~a=(1,...,1)

fρ(m+1,~a,k)∑
j=1

pj

m∏
l=1

qal

n∏
i=m+2

pai

 . (132)

Here, the upper bound for ~a in the first summation on the right hand side is (d, . . . , 1, . . . , d).

All but the (m + 1)-th entry of this vector equal d, and the (m + 1)-th entry equals 1.

The summation on the left hand side iterates over far more vectors. On the right hand

side, these vectors are taken into account by the second summation.

On the right hand side, we have a sum over products multiplied by pj. Since these

products are independent of j, we can move them outside of the sum, which yields

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

m∏
l=1

qal

n∏
i=m+1

pai

)
=

(d,...,1,...,d)∑
~a=(1,...,1)

 m∏
l=1

qal

n∏
i=m+2

pai

fρ(m+1,~a,k)∑
j=1

pj

 . (133)

Because of our assumption that no n1 < N exists for which
∑n1

i=1 pi >
∑n1

i=1 qi, and

because fρ(m+ 1,~a, k) ≤ N , we have that

fρ(m+1,~a,k)∑
i=1

pi ≤
fρ(m+1,~a,k)∑

i=1

qi. (134)

For several ~a, a strict inequality occurs: we chose k such that all pd−11 pN are present

in the summation, which means that fρ(m + 1,~a, k) reaches N at least once. For these

~a, we have
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fρ(m+1,~a,k)∑
i=1

pi =
N∑
i=1

pi (135)

<

N∑
i=1

qi (136)

=

fρ(m+1,~a,k)∑
i=1

qi. (137)

Combining this fact with equation 133, yields

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

m∏
l=1

qal

n∏
i=m+1

pai

)
<

(d,...,1,...,d)∑
~a=(1,...,1)

 m∏
l=1

qal

n∏
i=m+2

pai

fρ(m+1,~a,k)∑
j=1

qj

 . (138)

Now we only need to move the product back into the summation, and go back to

using wρ. This gives us that

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

m∏
l=1

qal

n∏
i=m+1

pai

)
<

(d,...,1,...,d)∑
~a=(1,...,1)

fρ(m+1,~a,k)∑
j=1

qj

m∏
l=1

qal

n∏
i=m+2

pai

 (139)

=

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

m+1∏
i=1

qai

n∏
i=m+2

pai

)
. (140)

We can now repeatedly apply this to equation 129, increasing the value every single

time. Then, we find that

k∑
i=1

p̂i =

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

0∏
l=1

qal

n∏
i=1

pai

)
(141)

<

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

1∏
l=1

qal

n∏
i=2

pai

)
(142)

< . . . (143)

<

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

n∏
l=1

qal

n∏
i=n+1

pai

)
(144)

=

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

n∏
l=1

qal

)
. (145)

Using the fact that the qi are the ordered eigenvalues of σ, we can see that
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k∑
i=1

qi ≥
k∑
i=1

qj(i), (146)

where j(i) is an arbitrary bijection between {1, . . . , d} and {1, . . . , d}. For an explicit

proof of this, we refer to lemma 1.

Since the order of pi and qi might be different, we are essentially dealing with such a

bijection. Thus, we have that

k∑
i=1

p̂i <

(d,...,d)∑
~a=(1,...,1)

(
wρ(~a, k)

n∏
l=1

qal

)
(147)

≤
(d,...,d)∑

~a=(1,...,1)

(
wσ(~a, k)

n∏
l=1

qal

)
(148)

=
k∑
i=1

q̂i, (149)

and thus, ρ⊗n 6� σ⊗n, rendering a transition impossible. As a direct result, the exis-

tence of n1 is a necessity.

We can use a similar method to prove that the existence of n2 is necessary; we first

assume that n2 does not exist. We then consider majorization for the index k for which

pdN is the k-th largest eigenvalue of ρ⊗n. From here on, all previous equations hold, though

some do for different reasons.

First of all, we no longer have that fρ(m + 1,~a, k) ≤ N . Instead, for all ~a, fρ(m +

1,~a, k) ≥ N . Fortunately, because of our assumption that no n2 > N exists for which∑n1

i=1 pi >
∑n1

i=1 qi, this means that equation 134 still holds.

Secondly, because the eigenvalue pdN is the k-th largest eigenvalue, we still have that

fρ(m+1,~a, k) = N for some ~a. Therefore, the strict inequality of equation 138 is still true.

This means that all equations untill 149 also still hold, and thus, ρ⊗n 6� σ⊗n, rendering

a transition impossible. As a direct result, the existence of n2 is a necessity as well.

We leave a few remarks before discussing the consequences of the theorem. First of

all, since ρ can fail to majorize σ at multiple indices, we can apply the theorem to each of

those indices separately. This means that, when N1 and N2 are the smallest and largest

indices for which majorization fails respectively, the existence of n1 < N1 ≤ N2 < n2 such
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that
∑n1

i=1 pi >
∑n1

i=1 qi and
∑n2

i=1 pi >
∑n2

i=1 qi is necessary for self-activation to occur.

This gives some mathematical meaning to the theorem. The conditions mean that

both the ‘head’ and ‘tail’ of the thermo-majorization curve of ρ need to be above the

curve of σ. Figure 5 illustrates this.

The theorem has some very important consequences, even though the conditions are

not sufficient for self-activation to occur. First of all, these conditions are quite strin-

gent. If two states are incomparable, they can still fail to meet the conditions, possibly

in both directions: there exist ρ and σ that are incomparable, for which ρ⊗n 6� σ⊗n and

σ⊗n 6� ρ⊗n for all n ∈ N.

Another result of this theorem, is that we can say something about the dimension of

the states for which self-activation occurs.

Corollary 1. Let ρ and σ be d-dimensional systems with trivial Hamiltonians. Further-

more, let ρ 6� σ. Then, if ρ⊗n � σ⊗n for some n ∈ N, it must hold that d > 3.

Proof. Since ρ 6� σ and ρ⊗n � σ⊗n, this is a self-activated transition. Thus, the necessary

conditions given in theorem 4 are met by ρ and σ.

Let N be an index for which ρ fails to majorize σ, such that
∑N

i=1 pi <
∑N

i=1 qi. Then,

according to the necessary conditions, there must exist n1 < N for which
∑n1

i=1 pi >∑n1

i=1 qi, and N < n2 for which
∑n2

i=1 pi >
∑n2

i=1 qi. Because these indices are positive, we

also have that n1 > 0. Furthermore, because the states are normalized,
∑d

i=1 pi >
∑d

i=1 qi

can never hold. Thus, we have that n2 < d. This yields

0 < n1 < N < n2 < d. (150)

This is only possible if d ≥ 4. In 2- and 3-dimensional systems, self activation can not

happen.

We will give an example to illustrate the conditions.

Example 3.2. Let ρ and σ be 4-dimensional systems with a trivial Hamiltonians. Let

their eigenvalues be given by p = {0.53, 0.25, 0.2, 0.02} and q = {0.4, 0.4, 0.1, 0.1} respec-

tively.

First of all, since the systems are 4-dimensional, self activation might be possible.

We can apply the conditions of theorem 4 to the system, so we can possibly rule out

self-activation. If the conditions are met, however, we will have to check majorization for
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multiple copies. In figure 5, we give the majorization diagram of ρ and σ. We will assess

the conditions graphically.

Figure 5: The majorization diagram of ρ and σ. it is clear that majorization fails at

k = 2.

From the majorization-diagram of ρ and σ, it becomes clear that ρ fails to majorize

σ at k = 2. Clearly, for n1 = 1 and n2 = 3 we have that
∑n1

i=1 pi >
∑n1

i=1 qi and∑n2

i=1 pi >
∑n2

i=1 qi. Thus, the conditions given in theorem 4 are met.

We can try to check for arbitrary values of n, the number of copies, if ρ⊗n � σ⊗n. We

give the majorization diagram for n = 2 in figure 6.
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Figure 6: The majorization diagram of ρ⊗n and σ⊗n. It is clear that the diagram of the

former lies above the diagram of the latter.

Since the majorization diagram of ρ⊗2 lies above the diagram of σ⊗2, we have that the

transition is possible, and thus this is an example of self-activation. Take in mind, how-

ever, that just because the conditions of theorem 4 were met by ρ and σ, self-activation

did not necessarily have to occur; the conditions are only necessary.

Finally, we will show that there exists a catalyst that performs the transition ρ→ σ,

as expected. If we consider the 2-dimensional system ω with a trivial Hamiltonian and

eigenvalues {0.65, 0.35}, then the majorization diagram of ρ ⊗ ω and σ ⊗ ω is given in

figure 7.
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Figure 7: The majorization diagram of ρ ⊗ ω and σ ⊗ ω. Clearly, the diagram of the

former lies above the diagram of the latter.

Since the majorization diagram of ρ⊗ω lies above the diagram of σ⊗ω, the transition

is possible. This concludes the example.

The last consequence of theorem 4 is that we can answer the question we posed earlier:

we cannot find both N1 ∈ N and N2 ∈ N such that ρ⊗N1 � σ⊗N1 and σ⊗N2 � ρ⊗N2 . We

explain this further in the next theorem.

Theorem 5. Let ρ, σ be d-dimensional states with trivial Hamiltonians, such that there

exists an n ∈ N for which ρ⊗n � σ⊗n, while ρ 6� σ. Then σ⊗m 6� ρ⊗m for all m ∈ N.

Proof. Because ρ⊗n � σ⊗n is possible, we have that the necessary conditions given by

theorem 4 are met by ρ and σ.

Let N1 and N2 be the smallest and largest index for which ρ fails to majorize σ re-

spectively. Then, because the necessary conditions are met, we have that there exist

n2 < N1 ≤ N2 < n3, with n2, n3 ∈ N such that
∑n2

i=1 pi >
∑n2

i=1 qi and
∑n3

i=1 pi >
∑n3

i=1 qi.
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Because N1 was the smallest index for which ρ failed to majorize σ and N2 was the

largest, there can not exist n1 < n2 < n3 < n4, with n1, n4 ∈ N such that
∑n1

i=1 qi >∑n1

i=1 pi and
∑n4

i=1 qi >
∑n4

i=1 pi. Thus, by theorem 4, ρ⊗m → σ⊗m can not happen for any

m ∈ N.

3.2 Non-trivial Hamiltonians

In this section, we will give all the results that are related to super-activation with non-

trivial Hamiltonians. We are again interested in transitions of the form ρ1⊗ρ2 → σ1⊗σ2,
while at the same time ρ1 6→ σ1, and ρ2 6→ σ2. We will assume that all states are block

diagonal.

Some of the theorems we proved for the cases with trivial Hamiltonians, can most

likely be extended to also hold for nontrivial cases. However, because comparing the

thermo-majorization curves is far more complicated when the Hamiltonians are nontriv-

ial, extending these theorems will probably not be easy. Instead of doing this, we will

be giving some examples of the things that do change, while hinting at the extensions of

these theorems.

In the previous section, we showed that when the Hamiltonians are trivial, qubits

cannot super-activate each other. However, when the Hamiltonians are nontrivial, this is

no longer the case. We will give an example to show this.

Example 3.3. let ρ1, ρ2, σ1 and σ2 be qubits with a nontrivial Hamiltonian. Let the

exponent of the energy levels divided by the temperature, eβEi , of these systems be given

by {1, 2}. Let the eigenvalues of the four states be given by {0.35, 0.65}, {0.85, 0.15},
{0.95, 0.05} and {0.45, 0.55} respectively. Notice that these eigenvalues are not β-ordered.
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Figure 8: The thermo-majorization diagram of ρ1, ρ2, σ1 and σ2.

The thermo-majorization diagram of the four states is depicted in figure 8. The way

these curves compare to each other may seem familiar. We actually applied our method

of constructing examples of super-activation here to find an example: we picked the eigen-

values of ρ2 and σ2, such that the transitions ρ1 → σ2 and ρ2 → σ1 are both possible.

Therefore, the joint transitions should also be possible.

To confirm that this is the case, we will also give the thermo-majorization diagrams

of the joint systems. These can be seen in figure 9.
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Figure 9: The thermo-majorization diagram of ρ1 ⊗ ρ2 and σ1 ⊗ σ2. Clearly, the former

thermo-majorizes the latter.

Thus, we have found an example of super-activation in qubits.

For self-activation something similar changes. When the Hamiltonians are nontrivial,

we can find examples of 3-dimensional states that can self-activate. We will again show

this by giving such an example.
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Example 3.4. Let ρ and σ be 3-dimensional quantum states. Let the exponent of the

energy levels divided by the temperature, eβEi , of these systems be given by {1, 2, 8}. Let

the eigenvalues of ρ and σ be given by {0.55, 0.1, 0.35} and {0.35, 0.45, 0.2} respectively.

Notice that these eigenvalues are not β-ordered. The thermo-majorization diagram of ρ

and σ is given in figure 10.

Figure 10: The thermo-majorization diagram of ρ and σ. Clearly, a transition ρ → σ is

not possible.

From the thermo-majorization diagram it can be seen that the states are incompara-

ble. Furthermore, the thermo-majorization curve of ρ exceeds the curve of σ both before

and after the curve of σ exceeds the curve of ρ. This is very similar to the necessary

conditions that we proved for trivial Hamiltonians.
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Figure 11: The thermo-majorization diagram of ρ and σ. Clearly, a transition ρ⊗2 → σ⊗2

is possible.

The thermo-majorization diagram of ρ⊗2 and σ⊗2 is given in figure 11. Clearly,

the transition ρ⊗2 → σ⊗2 is possible. This shows that self-activation can occur in 3-

dimensional states, if the Hamiltonians are nontrivial.

With this we conclude the results on nontrivial Hamiltonians. In the two examples

we showed, we proved that two of the theorems we proved for trivial Hamiltonians, do

not hold for nontrivial Hamiltonians. Furthermore, these examples suggest that theorem

2 and theorem 4 can be extended to the nontrivial case without too many problems.
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4 Smoothing

Sometimes, one is interested in transitions where a small probability of failure is allowed.

In other cases, getting into any state close to the target state is sufficient. This leads to

the use of smoothing. Smoothing also allows us to verify if an infinite families of condi-

tions on the Rényi entropies and divergences are met, by considering only two conditions

on the smoothed entropies and divergences [2].

In this chapter, we give all the results related to the smoothed Rényi divergences.

We first show that if these divergences decrease from a state ρ to a state σ, then the

transition between two special states close to ρ and σ is possible. These special states are

the steepest and flattest state, which we analyze after. We show that the steepest state

exists for certain values of ε, and we show that the flattest state always exists.

4.1 Rényi Divergences

In this section, we will look at smoothing of the Rényi divergences. To recap, the

smoothed Rényi divergences are defined as

Dε
α(ρ||τ) =


minρ̃Dα(ρ̃||τ) if α < 0

maxρ̃Dα(ρ̃||τ) if 0 ≤ α ≤ 1

minρ̃Dα(ρ̃||τ) if α > 1,

(151)

where optimization occurs over the states within an ε-ball around ρ. These states are

given by

Bε(ρ) =

{
ρ̃ :

1

2

∑
i

|pi − p̃i| ≤ ε

}
. (152)

Because these functions are defined differently for different regions, these smoothed

divergences do not collectively correspond with the Rényi divergences of a particular

state. However, in some scenarios we are still able to say something about transitions if

we are given information about the smoothed divergences.

Recall that a transition ρ→ σ between the block diagonal states ρ and σ is possible

if and only if for α ∈ R,

Dα(ρ||τ) ≥ Dα(σ||τ). (153)

For the given ε-ball, we will define two special states: the steepest state and the

flattest state.
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Definition 4.1. The steepest state of ρ, ρεsteep, is the state that can be transformed via

thermal operations to any other state that is ε-close to ρ, such that for any ρ̃ ∈ Bε(ρ),

ρεsteep → ρ̃.

Definition 4.2. The flattest state of ρ, ρεflat, is the state that all other states that are

ε-close to ρ can be transformed into via thermal operations, such that for any ρ̃ ∈ Bε(ρ),

ρ̃→ ρεflat.

Notice that these states may not exist; we are just introducing the concept here. We

will look at the existence of these states later.

These states lead to the following observation. If the steepest state ρεsteep exist for

some ε, then we have that for all ρ̃ within the ε-ball,

Dα(ρεsteep||τ) ≥ Dα(ρ̃||τ). (154)

Similarly, if the flattest state exists, we have that for all ρ̃ ∈ Bε(ρ),

Dα(ρ̃||τ) ≥ Dα(ρεflat||τ). (155)

These observations lead to the following theorem.

Theorem 6. If for two states ρ and σ we have that Dε
α(ρ||τ) ≥ Dε

α(σ||τ) for all α ∈ R,

then the steepest state of ρ, if it exists, can be transformed to the flattest state of σ.

Proof. It is sufficient to show that Dα(ρεsteep||τ) ≥ Dα(σεflat||τ) for all α ∈ R. Assume

that Dε
α(ρ||τ) ≥ Dε

α(σ||τ). Then, for α < 0 and for α > 1 we have that

min
ρ̃
Dα(ρ̃||τ) = Dε

α(ρ||τ) ≥ Dε
α(σ||τ) = min

σ̃
Dα(σ̃||τ), (156)

from which it follows that

Dα(ρεsteep||τ) ≥ Dα(ρεflat||τ) (157)

= min
ρ̃
Dα(ρ̃||τ) (158)

≥ min
σ̃
Dα(σ̃||τ) (159)

= Dα(σεflat||τ). (160)

For 0 ≤ α ≤ 1 we have that

max
ρ̃
Dα(ρ̃||τ) = Dε

α(ρ||τ) ≥ Dε
α(σ||τ) = max

σ̃
Dα(σ̃||τ). (161)

Thus, it follows that
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Dα(ρεsteep||τ) = max
ρ̃
Dα(ρ̃||τ) (162)

≥ max
σ̃

Dα(σ̃||τ) (163)

= Dα(ρσsteep||τ) (164)

≥ Dα(σεflat||τ). (165)

Thus, for all α ∈ R we have thatDα(ρεsteep||τ) ≥ Dα(σεflat||τ). Therefore, the transition

ρεsteep → σεflat is possible by a catalytic thermal operation.

This brings up an obvious question: when do these steepest and flattest states exist?

We know that when the Hamiltonians are trivial, both the steepest and the flattest state

exist for any ε > 0. However, when the Hamiltonians are nontrivial, it is not clear if and

how these states could be constructed. We will analyze this by looking at the thermo-

majorization diagrams of states within the ε-balls.

4.2 Thermo-majorization

First, we will introduce a function that will be useful when the β-order of the eigenvalues

are not preserved within the ε-ball.

For a d-dimensional state ρ that is diagonal in the energy eigenbasis, let p = {p1, . . . , pd}
be the vector containing the eigenvalues according to an ordered energy eigenbasis E =

{E1, . . . , Ed}. Then, we define the curve c(p, E) which connects the points given by{∑k
i=1 e

−βEi/Z,
∑k

i=1 pi

}
with straight line segments. This curve depends on the order

of the eigenvalues. If we have that the eigenvalues are β-ordered, such that p1e
βE1 ≥

. . . ≥ pde
βEd , then this curve lines up with the thermo-majorization diagram of ρ.

Lemma 2. Let ρ be a d-dimensional system, with d ∈ {N,∞}. Let {p̂i} be the β-ordered

eigenvalues of ρ, with {Êi} the corresponding energy levels. Let {pi} be the eigenvalues of

ρ in an arbitrary order, with corresponding energy levels {Ei}. Then, c(p, E) ≤ c(p̂, Ê).

Proof. Since the order of p and E was arbitrary, there are two possible scenarios. It is

possible that p1e
βE1 ≥ . . . ≥ pde

βEd . In this case, we have that p̂i = pi, and Êi = Ei for

all i. Thus, the curves c(p, E) and c(p̂, Ê) are the same, such that we clearly have that

c(p, E) ≤ c(p̂, Ê).

The other case is that p1e
βE1 ≥ . . . ≥ pde

βEd does not hold. This means, that we can

find an index n such that pne
βEn < pn+1e

βEn+1 . We will look at this index more closely.
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We define

p̃i =


pn+1 if i = n

pn if i = n+ 1

pi otherwise

(166)

and

Ẽi =


En+1 if i = n

En if i = n+ 1

Ei otherwise.

(167)

If we then compare c(p, E) with c(p̃, Ẽ), we see that the curves are identical be-

fore the point (
∑n−1

i=1 e
−βEi/Z,

∑n−1
i=1 pi) and after the point (

∑n+1
i=1 e

−βEi/Z,
∑n+1

i=1 pi).

Between those two points, the curves differ. Notice that both curves have one kink

between the two points. We will compare these kinks with the straight line through

(
∑n−1

i=1 e
−βEi/Z,

∑n−1
i=1 pi) and (

∑n+1
i=1 e

−βEi/Z,
∑n+1

i=1 pi).

To make this easier, we will redefine the origin to be located at (
∑n−1

i=1 e
−βEi/Z,

∑n−1
i=1 pi).

The straight line through the two points is then given by

y =
(pn + pn+1)

e−βEn/Z + e−βEn+1/Z
x (168)

=
(pn + pn+1)Z

e−βEn + e−βEn+1
x. (169)

The kink of c(p, E) is located at (e−βEn/Z, pn). The height difference between the

straight line and the kink is given by

y − pn =
(pn + pn+1)Z

e−βEn + e−βEn+1
e−βEn/Z − pn (170)

=
(pn + pn+1)

e−βEn + e−βEn+1
e−βEn − pn

e−βEn + e−βEn+1

e−βEn + e−βEn+1
(171)

=
e−βEn(pn + pn+1)− pn(e−βEn + e−βEn+1)

e−βEn + e−βEn+1
(172)

=
e−βEnpn+1 − e−βEn+1pn

e−βEn + e−βEn+1
(173)

=
eβ(En+En+1)(e−βEnpn+1 − e−βEn+1pn)

eβ(En+En+1)(e−βEn + e−βEn+1)
(174)

=
eβEn+1pn+1 − eβEnpn

eβ(En+En+1)(e−βEn + e−βEn+1)
(175)

> 0. (176)
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Thus, in the region of interest, c(p, E) lies below the straight line. For c(p̃, Ẽ), which

has it’s kink located at (e−βEn+1/Z, pn+1), we find the opposite.

y − pn+1 =
(pn + pn+1)Z

e−βEn + e−βEn+1
e−βEn+1/Z − pn+1 (177)

=
(pn + pn+1)

e−βEn + e−βEn+1
e−βEn+1 − pn+1

e−βEn + e−βEn+1

e−βEn + e−βEn+1
(178)

=
e−βEn+1(pn + pn+1)− pn+1(e

−βEn + e−βEn+1)

e−βEn + e−βEn+1
(179)

=
e−βEn+1pn − e−βEnpn+1

e−βEn + e−βEn+1
(180)

=
eβ(En+En+1)(e−βEn+1pn − e−βEnpn+1)

eβ(En+En+1)(e−βEn + e−βEn+1)
(181)

=
eβEnpn − eβEn+1pn+1

eβ(En+En+1)(e−βEn + e−βEn+1)
(182)

< 0, (183)

which means that in the region of interest, c(p̃, Ẽ) lies above the straight line, and

therefore also above c(p, E). Thus, if we perform a swap between neighbouring elements

of p, such that after swapping the elements n and n+1 we have that pne
βEn ≥ pn+1e

βEn+1 ,

then the height of the curve does not decrease anywhere, and increases at least somewhere.

Using this, we can define a sequence of distributions {qn}mn=1 with corresponding en-

ergy levels {En}mn=1, with m ∈ {N,∞}. We define q1 = p and E1 = E. Furthermore, we

define qn+1 by performing a swap between neighbouring elements on qn at index k, such

that for qn+1 we have that pke
βEk ≥ pk+1e

βEk+1 . En+1 is defined by performing the same

swap on En. Lastly, we pick m such that qm = p̂ and Em = Ê.

It may not be straightforward to see that p̂ is always reached. Notice however, that p̂

is the only vector for which no swaps can be made that increase the height of the curve.

Thus, for as long as the β-order has not been reached, we can continue to perform swaps.

For this sequence, we have that c(qn, En) ≤ c(qn+1, En+1). Thus, it follows that

c(p, E) = c(q1, E1) ≤ . . . ≤ c(qm, Em) = c(p̂, Ê). The β-order is the order for which the

height of the curve is maximized.

This lemma will help us to prove some general constraints on thermo-majorization

diagrams of states within ε-balls. These bounds will be useful when we are looking at

steepest and flattest states, since the thermo-majorization curves of those states may

have to reach the bounds. Otherwise, the thermo-majorization curves of other states

might surpass the curves of the steepest and flattest states.
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Theorem 7. Let ρ be a d-dimensional system, with d ∈ {N,∞}, and let ρ′ be a d-

dimensional system within an ε-ball around ρ. Furthermore, let both ρ and ρ′ be diagonal

in the energy eigenbasis. Then, the height difference between the thermo-majorization

curves of ρ and ρ′ can never exceed ε. This is depicted in figure 12.

Figure 12: The thermo-majorization diagram of ρ together with the two bounds.

Proof. Let p = {pi} be the β-ordered eigenvalues of ρ with corresponding energy levels

E = {Ei}, such that p1e
βE1 ≥ . . . ≥ pde

βEd . Let p′ = {p′i} be the eigenvalues of ρ′, in the

same order as {pi}. Notice that the energy levels E also correspond to the eigenvalues

p′. Then, because ρ′ is within an ε-ball around ρ, we have that

1

2

d∑
i=1

|pi − p′i| ≤ ε. (184)

Furthermore, because both states are normalized, we have that

d∑
i=1

(pi − p′i) = 0. (185)

This means that
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d∑
i=1

(pi − p′i) =
∑
i:pi>p′i

(pi − p′i) +
∑
i:pi<p′i

(pi − p′i) = 0 (186)

And thus

∑
i:pi>p′i

(pi − p′i) = −
∑
i:pi<p′i

(pi − p′i) (187)

Combining these equations yields

1

2

d∑
i=1

|pi − p′i| =
1

2

∑
i:pi>p′i

(pi − p′i)−
1

2

∑
i:pi<p′i

(pi − p′i) (188)

=
∑
i:pi>p′i

(pi − p′i) (189)

= −
∑
i:pi<p′i

(pi − p′i) ≤ ε (190)

Because p′ and p are different, it might occur that the β-orders of p′ and p are also

different. We will first consider the case where both systems have the same β-order.

In this case, the kinks of both diagrams line up. This means that we only have to

compare the height of the curves at these points. The height difference between the two

curves is then given by

∣∣∣∣∣
k∑
i=1

pi −
k∑
i=1

p′i

∣∣∣∣∣ =

∣∣∣∣∣
k∑
i=1

(pi − p′i)

∣∣∣∣∣ (191)

=

∣∣∣∣∣∣
∑

i≤k:pi>p′i

(pi − p′i) +
∑

i≤k:pi<p′i

(pi − p′i)

∣∣∣∣∣∣ (192)

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i≤k:pi>p′i

(pi − p′i)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑

i≤k:pi<p′i

(pi − p′i)

∣∣∣∣∣∣
∣∣∣∣∣∣ (193)

≤ max

∣∣∣∣∣∣
∑

i≤k:pi>p′i

(pi − p′i)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∑

i≤k:pi<p′i

(pi − p′i)

∣∣∣∣∣∣
 (194)

≤ ε. (195)

Thus, without changing the β-order of the eigenvalues, the height difference between

the thermo-majorization curves of ρ and ρ′ cannot be larger than ε.
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Next, we assume that the β-order of the eigenvalues is different for ρ and ρ′. We can

use the curve defined earlier to show that the height difference between the two curves

still cannot exceed ε.

To do this, we introduce the eigenvalues q = {qi}, with corresponding energy levels

Ê = {Êi}. First, we define q and Ê to be reordered versions of p′ and E, such that q is

β-ordered. Mathematically, this can be expressed as

qi = p′n(i) (196)

Êi = En(i), (197)

for all i, with n : {1, . . . , d} → {1, . . . , d} a bijection such that p′n(1)eβEn(1) ≥ . . . ≥
p′n(d)eβEn(d).

First of all, we have that the thermo-majorization curve of ρ is given by c(p, E). As

we showed earlier, without changing the order of the eigenvalues, the difference between

the heights cannot exceed ε. Since the order of p′ was assumed to be the same as the

order of p, this yields

c(p′, E) ≥ c(p, E)− ε. (198)

Since q is the β-ordered version of p′, it follows from lemma 2 that c(q, Ê) ≥ c(p′, E).

This gives us that

c(q, Ê) ≥ c(p′, E) ≥ c(p, E)− ε. (199)

However, the thermo-majorization curve of ρ′ is given by c(q, Ê), and thus c(p, E)− ε
is a lower bound for the thermo-majorization curve of any state within the ε-ball.

To prove that c(p, E) + ε is an upper bound for the thermo-majorization curve of

ρ′, we will need to define the eigenvalues q1 = {q1i } and q2 = {q2i }, with corresponding

energy levels Ê = {Êi}.

We define q1 and Ê to be reordered versions of p and E respectively, such that they

are in the β-order of ρ′. Mathematically, this can be expressed as

q1i = pn(i) (200)

Êi = En(i), (201)
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for all i, with n : {1, . . . , d} → {1, . . . , d} a bijection such that p′n(1)eβEn(1) ≥ . . . ≥
p′n(d)eβEn(d).

We define q2 by

q2i = p′n(i), (202)

with n the same bijection. Then, since q1 is a reordered version of p, and p is β-ordered,

we have that

c(q1, Ê) ≤ c(p, E). (203)

Next, we will compare c(q1, Ê) with c(q2, Ê). Because q1 and q2 are in the same order,

comparing the kinks of the curves is sufficient. Notice that both q1 and q2 are normalized.

We also have that

1

2

d∑
i=1

∣∣q1i − q2i ∣∣ =
1

2

d∑
i=1

|pi − p′i| ≤ ε. (204)

Therefore, equations 184 through 195 hold for q1 and q2. Thus the height difference

between c(q1, Ê) and c(q2, Ê) cannot exceed ε. This yields

c(q2, Ê) ≤ c(q1, Ê) + ε (205)

≤ c(p, E) + ε. (206)

Because the thermo-majorization curve of ρ′ is given by c(q2, Ê), we find that c(p, E)+

ε is an upper bound.

The conclusion follows: whether or not the β orders of the eigenvalues are different

for ρ and ρ′, the height difference between the thermo-majorization curves of ρ and ρ′

cannot exceed ε.

This theorem gives us some bounds for the thermo-majorization curves of the states

within the ε-ball. Notice however, that the bounds cannot always be reached; at some

point, one of the bounds becomes negative. At another point, the other bound becomes

larger than 1. Because the eigenvalues form a normalized probability distribution, these

bounds clearly cannot be reached there.

Nevertheless, when looking at the steepest and flattest states, we will try to reach the

bound for as long as possible.
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4.3 The steepest state

We start by analyzing the steepest state. We will do this by looking at thermo-majorization,

while heavily restricting the size of the ε-ball. Notice that, because we are looking at

thermo-majorization, if we cannot find a steepest state for some ρ or some ε, this does

not mean that there exists no steepest state. Maybe with the use of a catalyst, a steepest

state can be found. This is not what we will be looking at, however.

Let ρ be a d-dimensional system, with β-ordered eigenvalues pi and corresponding

energy levels Ei. The steepest state of ρ has slightly modified eigenvalues, such that it is

still within an ε-ball around ρ.

When changing the eigenvalues, we can also change the β-order. This is, however,

something we want to avoid. If, by changing the eigenvalues, we change the β-order, we

effectively waste a small portion of ε. This would likely cause the resulting state to not

be a steepest state. Thus, we will keep the order of the eigenvalues the same for ρ and

the steepest state.

We will first bound ε such that we only have to modify two eigenvalues. When

modifying more than two eigenvalues, it is no longer clear which ones have to be modified.

On one hand, we have to maximize the region where the thermo-majorization curve is

equal to 1. On the other hand, we should avoid changing the β-order. Because it is

unclear if these things can be achieved simultaneously, we will avoid changing more than

two eigenvalues. The resulting bound on ε is given by

ε ≤ min
i:pi>0

(pi) . (207)

Now that we only have to modify two eigenvalues, we need to find out which eigenval-

ues we have to alter. Clearly, since we are not changing the β-order, we have to modify the

first eigenvalue, and the last nonzero eigenvalue. This does not always exactly determine

which eigenvalue we have to change, however, as it can occur that p1e
βE1 = . . . = pme

βEm

for the first m eigenvalues, or that pne
βEn = . . . = pke

βEk , where pk is the last nonzero

eigenvalue.

In these cases, we will want to modify the smallest eigenvalues; it is for these eigen-

values that our adjustment will have the largest impact on the slope. Thus, we will

not only define pi to be β-ordered. We also require that p1 = mini≤m(pi), and that

pk = minn≤i≤k(pi).

This further restricts the states for which we can find a steepest state. If ρ is equal
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to a sharp state, a state for which we have that p1e
βE1 = . . . = pme

βEm and pi = 0 for

all i > m, it is generally not the case that the highest energy eigenstate with a nonzero

eigenvalue is degenerate. This is, however, what we require: we want the smallest eigen-

value to be both the first and the last eigenvalue. For this reason, we will exclude sharp

states from our method.

We already posed one bound for ε so far. Now that we know which eigenvalues we

will modify, we can determine more bounds for ε. These bounds combined will define

when we are able to construct the steepest state.

The second boundary arises when making sure that the slope of the first eigenvalue of

the steepest state is the steepest slope we could possibly create. We will restrict ε such

that (p1 + ε) eβE1 ≥ (pi + ε) eβEi for all 1 < i ≤ n. Notice that this is true by default if

Ei = E1. If Ei 6= E1, We have that

ε
(
eβE1 − eβEi

)
≥ pie

βEi − p1eβE1 . (208)

Depending on the sign of
(
eβE1 − eβEi

)
, this is equivalent with either

ε ≥ pie
βEi − p1eβE1

eβE1 − eβEi
, (209)

or

ε ≤ pie
βEi − p1eβE1

eβE1 − eβEi
. (210)

Notice that by assumption, p1e
βE1 ≥ pie

βEi , and thus in the former case, we require

ε to be larger than some negative number, which it is by default. Restrictions do arise

when Ei > E1. Thus, we have that

ε ≤ min
i 6=1:Ei>E1

(
p1e

βE1 − pieβEi
eβEi − eβE1

)
. (211)

The third and last restriction appears when we make sure that the slope of the last

nonzero eigenvalue of the steepest state is the flattest slope we could possibly create by

changing nonzero eigenvalues.

Recall that k was defined as the largest index for which pke
βEk is minimized while

also pk > 0. We then restrict ε such that (pk − ε) eβEk ≤ (pi − ε) eβEi . Notice that this is

automatically true if Ei = Ek. If Ei 6= Ek, We have that

(pk − ε) eβEk ≤ (pi − ε) eβEi . (212)

Moving all terms with ε to the left hand side yields
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ε
(
eβEi − eβEk

)
≤ pie

βEi − pkeβEk . (213)

Much like before, this gives us two possible restrictions, depending on the sign of(
eβEi − eβEk

)
. We have that either

ε ≤ pie
βEi − pkeβEk
eβEi − eβEk

, (214)

or

ε ≥ pie
βEi − pkeβEk
eβEi − eβEk

. (215)

Because
(
pie

βEi − pkeβEk
)

is always positive, the latter case reduces to requiring ε to

be positive, which it is by default. The bound for ε becomes

ε ≤ min
i 6=k:pi>0,Ei>Ek

(
pie

βEi − pkeβEk
eβEi − eβEk

)
. (216)

For these ε, we define the eigenvalues of the steepest state of ρ such that

p̂i =


pi + ε if i = 1

pi − ε if i = k

pi otherwise.

(217)

We will now show that when these restrictions are met, this state is the steepest state

within the ε-ball.

Theorem 8. Let ρ be a state that is diagonal in the energy eigenbasis. If ε satisfies

ε ≤ min

{
min
i:pi>0

(pi) , min
i:Ei>E1

(
p1e

βE1 − pieβEi
eβEi − eβE1

)
, min
i:pi>0,Ei>Ek

(
pie

βEi − pkeβEk
eβEi − eβEk

)}
, (218)

Then there exists a steepest state ρεsteep ∈ Bε(ρ) that thermo-majorizes all other states

within the ball, with eigenvalues given by equation 217.

Proof. We will divide the thermo-majorization curve up in multiple regions, and show for

each region that no other state within the ε-ball has a thermo-majorization curve that

can surpass it. This is depicted in figure 13.
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Figure 13: The thermo-majorization diagram divided up in four regions.

The first region is the region to the left of (e−βE1 , p̂1). For this region, it is clearly

impossible for any other state to be steeper than the steepest state; we restricted ε such

that this is the case. Notice that the bound given by theorem 7 is exactly reached at the

edge of this region: (e−βE1 , p̂1) lies exactly ε above (e−βE1 , p1).

The second region is the region between (e−βE1 , p̂1) and (
∑k−1

i=1 e
−βEi ,

∑k−1
i=1 p̂i). For

this region, the thermo-majorization diagram of the steepest state lies exactly ε above the

thermo-majorization diagram of ρ. As a result of theorem 7, it is impossible to surpass

this while staying within the ε-ball.

The third region is the region between (
∑k−1

i=1 e
−βEi ,

∑k−1
i=1 p̂i) and (

∑k
i=1 e

−βEi , 1).

Since the thermo-majorization curve of the steepest state reaches 1 at the edge of this

region, it is not possible to surpass it in this region without having a flatter slope than

the curve of the steepest state has. Our restrictions to ε ensure that this is impossible,

however. Thus, in this region, the thermo-majorization curve of the steepest state cannot

be surpassed.
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The last region is the region to the right of (
∑k

i=1 e
−βEi , 1). Clearly, because the states

are normalized, it is impossible for any state to have a thermo-majorization curve that

surpasses 1.

Since for all regions, the thermo-majorization curve of the steepest state cannot be

surpassed, this state thermo-majorizes all other states within the ε-ball.

We will give an example to illustrate this further. In this example we will also show

that when the restrictions to ε are not met, the steepest state as we defined it does not

always thermo-majorize all other states within the ε-ball.

Example 4.1. Let ρ be a 5-dimensional quantum system with eigenvalues given by

{0.25, 0.1, 0.3, 0.2, 0.15}. For the sake of simplicity, we will define the values of eβEi

rather than defining the energy levels themselves. Let eβEi be given by {5, 10, 3, 2, 1}.
Notice that the eigenvalues are β-ordered.

First, we note that this state is not a sharp state. Thus, we can proceed to find the

bounds for ε given in theorem 8. We have that

ε ≤ min

{
min
i:pi>0

(pi) , min
i:Ei>E1

(
p1e

βE1 − pieβEi
eβEi − eβE1

)
, min
i:pi>0,Ei>Ek

(
pie

βEi − pkeβEk
eβEi − eβEk

)}
(219)

= min {0.1, 0.05, 0.0944} (220)

= 0.05. (221)

We will first choose ε = 0.05. The eigenvalues of ρεsteep are then given by {0.3, 0.1, 0.3, 0.2, 0.1}.
We give the thermo-majorization diagram of ρ and ρεsteep in figure 14.
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Figure 14: The thermo-majorization diagram of ρ and ρεsteep. The kinks of both curves

have been marked to them easier to see.

Next, we will consider what happens if ε > 0.05. To do this, we choose ε = 0.1.

If we then follow the same procedure to create a steep state, a state that thermo-

majorizes ρ, but is not necessarily the steepest state, we would obtain the eigenvalues

{0.35, 0.1, 0.3, 0.2, 0.05}.

Notice that the bound ε ≤ mini:Ei>E1

(
p1eβE1−pieβEi
eβEi−eβE1

)
is one of the bounds that is being

violated in this scenario. Thus, we can probably find a state that is not thermo-majorized

by our steep state by looking at this bound more closely

In this case, this bound follows from the second eigenvalue, such that

ε >
p1e

βE1 − p2eβE2

eβE2 − eβE1
. (222)

Thus, by increasing the second eigenvalue instead we obtain a new state ρ′ with

eigenvalues {0.25, 0.2, 0.3, 0.2, 0.05}. In figure 15, the thermo-majorization diagram of ρ,

ρεsteep and ρ′ is depicted.
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Figure 15: The thermo-majorization diagram of ρ, ρεsteep and ρ′. The kinks of both

curves have been marked to them easier to see. Here, ρεsteep denotes the steep state that

we constructed, which thermo-majorizes ρ, but not necessarily all other states that are

ε-close to ρ.

It is clear that for the most part, ρεsteep and ρ′ have the same thermo-majorization

curve. However, the first few line segments differ. A more zoomed in thermo-majorization

diagram is given in figure 16.
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Figure 16: The thermo-majorization diagram of ρ, ρεsteep and ρ′. The kinks of both curves

have been marked to them easier to see. Clearly, ρεsteep and ρ′ are incomparable.

Clearly, the thermo-majorization curves of ρεsteep and ρ′ intersect. Thus, the states

are incomparable. This means that the steep state cannot be transformed into all other

states within the ε-ball around ρ by thermal operations. This does not, however, exclude

the possibility that there exists a steepest state. Also, it might be the case that ρεsteep
can be transformed to all other states when catalysts come into play. We will not answer

these questions in this work, however.
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4.4 The flattest state

In this section, we will analyze the flattest state. We will first provide a way to construct

it, and after that we give an example.

Theorem 9. Unlike the steepest state, for any ε-ball we can find a state that is thermo-

majorized by all states within the ball.

Proof. Let ρ be an d-dimensional system and let pi be the β-ordered eigenvalues of ρ with

corresponding energy levels Ei. We will attempt to find ρflat, the flattest state of ρ with

eigenvalues p̂i.

We will consider two cases. If ε is large enough, such that

1

2

n∑
i=1

∣∣∣∣∣pi − e−βEi∑n
j=1 e

−βEj

∣∣∣∣∣ ≤ ε, (223)

then the flattest state is equal to the thermal state, which is thermo-majorized by all

other states. Thus, for large ε, the flattest state clearly exists.

if ε is not that large, it is not as straightforward to see that the flattest state ex-

ists. However, we will present a way to construct this state, and prove that this state is

thermo-majorized by all other states within the ε-ball.

Assume that ε is large enough that we cannot reach the thermal state. Even though

we can change the eigenvalues almost freely, we will avoid changing the β-order of the

eigenvalues. We do this, because changing the β-order effectively wastes small portions

of ε, resulting in smaller changes with respect to the thermo-majorization curve. We will

first try to lower the first M1 eigenvalues, such that p̂1e
βE1 = p̂2e

βE2 = . . . = p̂M1e
βEM1 .

These eigenvalues satisfy

p̂ie
βEi = (pi − εi) eβEi ≥ pM1+1e

βEM1+1 , (224)

from which it follows that

εi ≤
pie

βEi − pM1+1e
βEM1+1

eβEi
. (225)

Using this information, we can determine M1 such that:

ε =

M1∑
i=1

εi ≤
M1∑
i=1

(
pie

βEi − pM1+1e
βEM1+1

eβEi

)
, (226)

while making sure that this does not hold for M1 − 1, such that
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ε >

M1−1∑
i=1

(
pie

βEi − pM1e
βEM1

eβEi

)
. (227)

This value will tell us how many eigenvalues we have to change in order to fully use up

ε. In a similar way, we can also determine M2 ∈ N, which tells us how many eigenvalues

we have to increase. For M2 we have that

p̂ie
βEi = (pi + εi) e

βEi ≤ pM2−1e
βEM2−1 , (228)

from which it follows that

εi ≤
pM2−1e

βEM2−1 − pieβEi
eβEi

. (229)

Using this information, we can determine M2 such that

ε =
n∑

i=M2

εi ≤
n∑

i=M2

(
pM2−1e

βEM2−1 − pieβEi
eβEi

)
, (230)

while making sure that this does not hold for M2 + 1, such that

ε >
n∑

i=M2+1

(
pM2e

βEM2 − pieβEi
eβEi

)
. (231)

Notice that it might happen that the eigenvalue with which we calculated these bounds

changes as well. This is, however, not a problem; if we were to change the (M1 + 1)-th

and the (M2 − 1)-th eigenvalues further than would be allowed without changing the

β-order, then it is possible to reach the thermal state. That means that our assumption

about ε is violated, which yields a contradiction.

We can now determine the eigenvalues of the flattest state. Consider the first M1

eigenvalues. For these eigenvalues we have that

p̂1e
βE1 = p̂2e

βE2 = . . . = p̂M1e
βEM1 = c1, (232)

where c1 is an unknown constant. Furthermore, we know that

p̂i = pi − εi. (233)

Summing over the first M1 eigenvalues of the flattest state gives us that
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M1∑
i=1

pi − εi =

M1∑
i=1

p̂i (234)

=

M1∑
i=1

p̂ie
βEie−βEi (235)

=

M1∑
i=1

c1e
−βEi (236)

= c1

M1∑
i=1

e−βEi (237)

and

M1∑
i=1

pi − εi =

(
M1∑
i=1

pi

)
− ε. (238)

Combining these results yields

c1 =
c1
∑M1

i=1 e
−βEi∑M1

i=1 e
−βEi

(239)

=

(∑M1

i=1 pi

)
− ε∑M1

i=1 e
−βEi

. (240)

This gives us the first M1 eigenvalues. We have that

p̂i = e−βEi

(∑M1

i=1 pi

)
− ε∑M1

i=1 e
−βEi

. (241)

We can determine the last n+1−M2 eigenvalues in a similar way. For these eigenvalues

we find that

p̂i = e−βEi
ε+

∑n
i=M2

pi∑n
i=M2

e−βEi
. (242)

All other eigenvalues are left unchanged. Thus, the flattest state is given by

p̂i =


e−βEi

(
∑M1
i=1 pi)−ε∑M1
i=1 e

−βEi
if i ≤M1

e−βEi
ε+

∑n
i=M2

pi∑n
i=M2

e−βEi
if i ≥M2

pi otherwise.

(243)

Now we just need to show that this state is thermo-majorized by all other states

within the ε-ball. To do this, we will divide the thermo-majorization curve up into three
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different regions, similar to what we did earlier. These regions are depicted in figure 17.

Figure 17: The thermo-majorization diagram of the flattest state divided up into three

regions.

First, consider the region to the left of (
∑M1

i=1 e
−βEi ,

∑M1

i=1 p̂i). For this region, the

thermo-majorization curve of the flattest state is a straight line. The only way a state

could possibly have a curve that lies below it, is when that curve lies below the thermo-

majorization curve of the flattest state at (
∑M1

i=1 e
−βEi ,

∑M1

i=1 p̂i). Notice that this is true

because thermo-majorization curves are concave. However, by theorem 7 this is impossi-

ble, since at that location the thermo-majorization curve of the flattest state lies exactly

ε below the curve of the initial state.

Next, we consider the region between (
∑M1

i=1 e
−βEi ,

∑M1

i=1 p̂i) and (
∑M2

i=1 e
−βEi ,

∑M2

i=1 p̂i).

For this entire region, the curve of the flattest state lies ε below the curve of the initial

state. For the same reason as before, no state can have a curve that lies lower than the

curve of the flattest state in this region.

For the last region, the region to the right of (
∑M2

i=1 e
−βEi ,

∑M2

i=1 p̂i), the thermo-
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majorization curve of the flattest state is, again, a straight line. For a state to have

a curve that lies below it, this curve needs to lie below the point (
∑M2

i=1 e
−βEi ,

∑M2

i=1 p̂i),

again because thermo-majorization curves are concave. By theorem 7 this is impossible.

Since the thermo-majorization diagram of the flattest state cannot surpass the dia-

gram of any other state at any point, the flattest state is thermo-majorized by all other

states. This completes the proof, as we have successfully found a state that is thermo-

majorized by all other states within an ε-ball, for any value of ε.

We will give an example to illustrate this.

Example 4.2. Let ρ be a 5-dimensional quantum system with eigenvalues given by

{0.25, 0.1, 0.3, 0.2, 0.15}. For the sake of simplicity, we will define the values of eβEi

rather than defining the energy levels themselves. Let eβEi be given by {5, 10, 3, 2, 1}.
Notice that the eigenvalues are β-ordered. Furthermore, let ε = 0.15.

We will first determine the values of M1 and M2. We find that M1 = 3 and M2 = 5.

Thus, we need to decrease three different eigenvalues, but we only have to increase a

single eigenvalue.

Figure 18: The thermo-majorization diagram of ρεflat and ρthermal.
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The resulting eigenvalues are then given by {0.1579, 0.0789, 0.2632, 0.2, 0.3}. The

thermo-majorization diagram of ρ, ρεflat and ρthermal is depicted in figure 18.

With this we end the discussion on Rényi divergences. We have successfully found a

region for ε for which the inequality Dε
α(ρ||τ) ≥ Dε

α(σ||τ) for all α ∈ R is equivalent with

a transition from ρεsteep to σεflat being possible. Unfortunately, this region is quite small,

depending on the states at question. Especially for states of infinite dimension, where

generally the energy levels are unbounded, this becomes a problem. Thus, it is desirable

to find an extension, or to look further at the impact of a catalyst on this steepest state.

Another option would be to define new smoothed divergences. In more recent work,

we defined new divergences by

D̂ε
α(ρ||τ) =


Dα(ρεflat||τ) if α < 0

Dα(ρεsteep||τ) if 0 ≤ α ≤ 1

Dα(ρεflat||τ) if α > 1,

(244)

where ρflat is the flattest state, and ρsteep is a steep state. We construct this steep

state by cutting the smallest β-ordered eigenvalues of ρ, and adding ε to the largest β-

ordered eigenvalue. In that work, we showed that these new divergences also satisfy the

asymptotic equipartition property, such that for all α ∈ R and for any 0 < ε < 1,

lim
n→∞

1

n
D̂ε
α(ρ⊗n||τ⊗n) = D(ρ||τ). (245)
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5 Conclusion

A simple way to describe how a quantum system evolves under energy-preserving uni-

taries while interacting with thermal reservoirs, has been formulated in the framework

of thermal operations. By allowing the use of ancillary states as catalysts in these pro-

cesses, a more general set of thermodynamical operations is obtained, called catalytic

thermal operations. Despite the conceptual simplicity of these types of thermodynamical

operations, much is still unknown about their mathematical structures. In this work,

we studied these mathematical structures, in an attempt to better understand how these

operations describe quantum thermodynamics.

One of the phenomena that we studied, is super-activation. We found that, when

the Hamiltonians are trivial, qubits cannot super-activate each other. Furthermore, we

found a way to construct examples of super-activation, both for trivial and nontrivial

Hamiltonians. We also investigated a special instance of super-activation that we call

self-activation. We found necessary conditions for self-activation to occur. These condi-

tions show that self-activation can only happen in one direction.

We have also studied Rényi divergences. We have found that for certain ε-balls, the

smoothed Rényi divergences decrease from a state ρ to a state σ if and only if a transition

from the steepest state of ρ to the flattest state of σ is possible. These restrictions for

ε arise because the steepest state does not always seem to exist. In contrary, we found

that the flattest state can always be found.

For further research, it would be very useful if we could find sufficient conditions for

self-activation to occur. Self-activation seems to be a rare phenomenon, and despite the

fact that the necessary conditions that we found can be used to narrow down the set

of states that can self-activate, it can be difficult to find examples. Having examples of

this phenomenon would be useful to discover more about its properties. It would also

be interesting if we could say something about the number of copies that is required to

make the transition possible.

In this work we focused mainly on thermal operations. Catalysts can have a huge

impact on the possibilities, however. It would be interesting to know more about their

interaction with super-activation, so that we can more effectively combine transitions.

Our study of the smoothed Rényi divergences also brought up new questions. Even

though we managed to find a region for ε for which there exists a steepest state, this re-

gion is still quite small in some scenarios. Especially when dealing with states of infinite
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dimension, this can become a problem. For such states, this means that no steepest state

can be found. Thus, it is desirable that these restrictions are made less stringent.

As we showed in one of the examples, however, when the restrictions on ε are not met,

we can possibly find examples of states that are incomparable with the steepest state.

Thus, the most feasible way to solve this problem, is probably to take catalysts into

account. Using catalysts, we can possibly make these incomparable states comparable.

In the ideal case, this could then be used to define a steepest state that is, when taking

catalysts into account, the steepest state for any ε.

Another solution strategy could be to define a new smoothed divergence based on

these steepest and flattest states. Instead of maximizing and minimizing the Rényi di-

vergences for states within an ε-ball, we could instead use the Rényi divergences of the

steepest and flattest states respectively. Then, these quantities might share a lot of the

useful properties with the smoothed Rényi divergences.

This does create new problems, though these might be easier to solve than the original

problem. It seems that this strategy would require a steepest state to be defined for all ε.

This is not necessary, however. Instead, we could approximate the steepest state outside

of the region for which we can find one.
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