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Abstract

This thesis studies the application of the Canonical Polyadic Decomposition (CPD) in un-
supervised transfer learning methods for cardiac arrhythmia detection. Unsupervised learning
methods have become more prevalent in the healthcare sector due to the abundance of unlabeled
data. Labeling of medical data is often non-trivial as it is labor-intensive and requires expert
knowledge. Transfer learning can utilize the large number of unlabeled data by extracting rele-
vant features, which can in turn be used for a smaller supervised learning part. Furthermore, in
the medical field, AI models are often deployed on embedded systems, requiring efficient model
architectures while maintaining high diagnostic performance.

The unsupervised transfer learning method was designed with an autoencoder for the unsuper-
vised part and a linear network for the supervised part. The first experiment explored four
models to select the most optimal architecture to apply the CPD to. These models include an
autoencoder adaptation of the ResNet and ConvNeXt models, the U-Net autoencoder and a
basic implementation of a convolutional autoencoder. In the second experiment, the autoen-
coder model is decomposed using the CPD and evaluated at various compression ratios on its
reconstruction capabilities, classification accuracy and computational performance. The CPD
implementation is also tested on its convergence speed and data efficiency as compared to its
uncompressed counterpart.

The first experiment found that the basic implementation of a convolutional autoencoder per-
formed best overall. The U-Net model had high reconstruction quality, however lacked the
predictive accuracy. The ResNet model was found to have slightly worse reconstruction and
prediction capabilities while having a larger parameter count. The ConvNeXt model failed to
accurately reconstruct the images.

The second experiment showed the CP-decomposed model approached the uncompressed model
in terms of predictive capabilities, while having lower reconstruction qualities. This is likely
due to the regularization effect of the CPD, suggesting significant redundancy in the uncom-
pressed model. Despite the reduction in forward pass FLOPs for the CP-decomposed model, it
was found that both the computational complexity of the backpropagation process was higher
than the uncompressed model at the lower compression ratios and that the memory alloca-
tion suffered a significant increase. This resulted in longer and less efficient training of the
CP-decomposed models. It was furthermore found that the CP-decomposed models converged
faster and had higher data efficiency as compared to the uncompressed model.
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Chapter 1

Introduction

Artificial Intelligence (AI) has rapidly evolved from a futuristic concept to a technology reshap-
ing countless industries. One notable area that has experienced a transformation due to AI in
recent years is the healthcare sector. The advantage of AI in the medical world lies in its ability
to process large amounts of data quickly and accurately, making it a valuable tool for improving
diagnostic accuracy.

The advancement of AI in medical diagnosis has been achieved through the application of deep
learning methods. These algorithms analyze large datasets to recognize patterns and make
predictions accordingly. Deep learning algorithms can analyze medical data, such as medical
imaging, genetic information and health records, to detect diseases with greater precision than
traditional methods. For example, AI has demonstrated success in the field of radiology, where
it assists in interpreting imaging studies like X-rays, CT scans, and MRIs.5 The detection of
abnormalities such as tumors or fractures in these medical images is achieved with high accu-
racy, sometimes even surpassing medical experts.6

Another area where AI shows potential is in electrocardiography (ECG) analysis, which is essen-
tial for diagnosing various cardiac arrhythmia. ECGs are among the most widely used methods
in diagnosing heart diseases due to their low usage costs and limited impact on the patient.7

ECGs monitor the amplitude and direction of the electrical signal during a contraction cyclus
of the heart, which contains valuable information about the functioning of the heart. A valid
classification is often crucial in determining the next course of action, whether that is sending
the patient to the correct hospital or to do further research in a specific area.8

Despite the promising developments, the implementation of AI in ECG analysis and other
medical fields faces several challenges. One major issue is the abundance of unlabeled data
in the healthcare sector due to the labeling process being labor-intensive and requiring expert
knowledge. This makes it a time-consuming and costly process. There is however a necessity
of labeled data for the training of AI.9

Additionally, for AI models to be effective in medical environments, they must be able to gener-
alize well to new patients who were not included in the training set. For this purpose, training
data is often split inter-patiently, meaning data is sorted based on the patient.10
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2 Introduction

To address these challenges, transfer learning methods are being explored, which split models
up into the subsequent optimization of two different deep learning models. For the purpose of
ECG classification it would be beneficial to extract features from the ECG using only unlabeled
data in the first part, which can in turn be used by the second part to do the classification using
a smaller set of labeled data.

1-1 Problem formulation

For the first part of the transfer learning method, an autoencoder will be used to extract fea-
tures from the ECG images. These features will then be subsequently used as the input to a
conventional neural network for the classification part.
Autoencoders are unsupervised neural networks that consist of an encoder and a decoder part.
The encoder takes an input x and compresses the data to a lower dimensional latent space z.
The decoder then attempts to reconstruct the original input vector, denoted by x′. The model
is optimized by backpropagation where the loss function is based on the difference between
the reconstructed and original input vector.11 This approach enables us to extract meaningful
features from large sets of unlabeled data.

The goal of the autoencoder is to optimize both networks over a loss function,

arg min
θ,ϕ

L(θ, ϕ)

where the loss function is defined as,

L(θ, ϕ) = 1
n

n∑
i=1

(∆ (xi, Dθ (Eϕ(xi))))2 .

Here ∆ is the difference operator and θ and ϕ represent the parameters of the encoder and
decoder network respectively.4

For both the encoder and decoder, sequences of convolutions will be implemented to obtain
the relevant filters. Convolutions are operations that involve applying a kernel (or filter) to an
input image to obtain a feature map. This kernel can learn to extract the most relevant spatial
features and patterns within the input image for it to be reconstructed. There are various
well-known models that utilize convolutions for the purpose of image classification, achieving
substantial results, such as VGG12, ResNet13 and ConvNext14. However, these models require
a large number of parameters and significant computational resources to obtain their results.
For example, ConvNext requires 101 · 109 Floating point operations (FLOPs) for a single image
forward pass.

Model training and inference can thus be costly and time-consuming, especially given the need
for large datasets and the required computational resources for the training process. Further-
more, most deployed electrocardiographs are not digitized and print the ECG recording on a
piece of paper. A tool that can be run on a mobile device or workstation allows cardiologists
to implement the latest models without the need of acquiring the newest hardware. However,
mobile devices and workstations are often limited in their computational power and storage
capacity. Both these constraints require the development and deployment of the model to be
efficient, without sacrificing accuracy.

One promising approach to improve the efficiency of AI models are tensor decompositions.
By breaking down large, complex tensors into simpler components, tensor decompositions can
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1-2 Thesis outline 3

significantly reduce the computational load, making the models more suitable for deployment
on embedded devices with limited computational resources. Besides making the models more
efficient, this technique can also maintain or potentially increase model accuracy by reducing
overfitting and improving generalization to new data.

The primary objective of this thesis is to answer the following:

Can the Canonical Polyadic Decompositoon reduce the computational complexity
of ECG classification models while maintaining diagnostic performance?

This research question will be answered by testing the following three hypotheses:

• CP-decomposed autoencoders intended for ECG classification can maintain a similar level
of accuracy compared to uncompressed autoencoders.

• CP-decomposed autoencoder networks will lead to faster convergence compared to un-
compressed autoencoder networks.

• Superior results can be achieved with CP-decomposed autoencoders when limiting the
number of training samples compared to uncompressed autoencoder networks.

The paper of Wang et al. 15 presents a one dimensional unsupervised pre-training method using
the ConvNeXt architecture for the autoencoder. This results of this thesis will be compared to
theirs, where they achieve an accuracy of 94.39%. The same datasets are used to provide a fair
comparison.

1-2 Thesis outline

Chapter 2 introduces the topics of electrocardiography, tensors, the CPD and convolutional au-
toencoders. The first section provides an explanation of the cardiovascular system, cardiac cycle
and the electrocardiography process. The tensor section introduces the concept of tensors, their
basic operations and the CPD, which will be the tensor decomposition applied throughout this
thesis. In the last section the convolutional autoencoder will be described, what a convolution
is and how the CPD can be applied to the autoencoder.

The methodology will be presented in Chapter 3. The methodology includes the data collection
process, the various preprocessing steps and its distribution. Furthermore, it gives an overview
of the various autoencoder models tested in the first experiment, the application of tensor de-
compositions and the evaluation metrics used to compare performance. This chapter details
the step-by-step process followed to perform the experiments.

In Chapter 4 the results of the conducted experiments are presented. It includes a comparison
of the different autoencoder models, the impact of tensor decompositions on model performance
and an analysis of convergence speed and data efficiency. For each experiment the results are
discussed in the context of the research hypotheses.

Finally, in Chapter 5 the findings of this thesis will be summarized along with recommendations
for future work.

The glossary with a list of acronyms and a list of symbols can be found at the end of the thesis.
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1-3 Implementation

All model design, data generation, training and evaluation was done in Python. The machine
learning functionality was obtained from Pytorch16. The Tensorly17 library was furthermore
used to implement the various Tensor Decompositions throughout this thesis.

All of the experiments were run on a server provided by the TU Delft. The server consisted of
4 NVIDIA RTX A5000 each with 24GB of VRAM and a 12-core CPU with 128GB of RAM.

The full implementation of the model can be found on Github at: https://github.com/
frederikhogenbosch98/MScThesis. These scripts are designed to be deployed on NVIDIA
GPU’s.
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Chapter 2

Background

2-1 Electrocardiography

First discovered by the Dutch researcher Willem Einthoven, ECGs have been a fundamental tool
in medical treatment since the early 19th century. Einthoven’s research laid the groundwork
for the current extensive use of ECG in monitoring cardiac health.18 An ECG is a recording of
the electrical activity of the heart over time as it goes through its cardiac cycles. The electrical
activity is captured by placing various electrodes over the body and measuring the potential
between these nodes. The standard in modern medicine practices is a 12-lead ECG, where
electrodes are placed on the limbs and around the heart of the patient.
The core function of the cardiac muscle lays in its contraction, triggered by electric signals.
These signals generate a complex electrical pattern that travels through the heart, captured as
a potential movement over time by the ECG. The data collected from these various measurement
points are critical as they can reveal various cardiac issues, such as arrhythmia. References for
this chapter include Herring and Paterson 1 and Garcia 19 .

2-1-1 Cardiovascular system

The cardiovascular system is one of the most complex organs in the human physiology. Its main
function is to provide oxygen, nutrients and water to the other organs in the body. The heart also
distributes hormones to tissues, regulates the body temperature and provides the mechanism for
reproduction. It does this by circulating blood through the cardiovascular system. Figure 2-1
gives an overview of the anatomy of the heart.
The heart consists of two sides, left and right, each with an atrium and ventricle. The right side
receives deoxygenated blood from the body and pumps it through the lungs where it releases
carbondioxide and receives oxygen. The left side receives the oxygenated blood from the lungs
and pumps it to the rest of the body. The ventricles are located at the bottom of the heart. Its
function is to fill up with blood after which it contracts and pumps the blood into the arteries.
The atria are located at the top of the heart. They ensure the ventricles are filled completely
before contraction.
The aortic arch provides the blood to the rest of the organs, whereas the vena cava receives the
deoxygenated blood. The left pulmonary artery distributes the blood to the lungs, after which
they are returned to the left atrium via the pulmonary veins.
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Figure 2-1: Overview of the heart indicating its most essential components. Located at the top
of the heart are the left and right atria. On the bottom are the left and right ventricles. Obtained
from Herring and Paterson 1 .

2-1-2 Cardiac cycle

The cardiac cycle consists of two periods. When the atria and ventricles are filling up with
blood it is called the diastole. The atria push blood into the ventricles for the part that it is
not able to fill up passively. The other period is called systole and represents the contraction.
This cycle is guided by an electrical signal travelling through the heart. It is initiated by the
pacemaker, which is the ’spark plug’ of the heart. This sets off an action potential that follows
a complex system throughout the heart where various parts of the cardiac muscle contract.

Cardiac conduction system

To pump the blood out of the atria and ventricles, the cardiac muscles must contract. The
contraction relies on the distribution of ions within the cardiac muscles, myocytes. These
myocytes have a varying potential within their cell through the distribution of ions.
The electrical signal starts at the Sinoatrial (SA) node. This node is located at the top of the
right atrium. Its cells can spontaneously change potential, setting of an action potential to
neighbouring cells. This change in potential is called the depolarization of a cell. This signal
first travels to the Atrioventricular (AV) node. This node adds a delay to the signal before it
continues into the Bundle of His. From the Bundle of His the signal splits into the right and
left bundle branch which move all the way around both ventricles, depolarizing this area. As
the potential moves through the myocytes, they contract and thereby control the size of the
four chambers.
Figure 2-2 shows the location of all relevant parts in this process. The signal thus starts at the
top of the right atrium where it moves down towards the gap between the atria and ventricles.
It then moves around the ventricles and makes its way up again. The cycle ends with the areas
polarizing again. The cycle takes about 0.9s for an average adult, which is equivalent to 67
BPM.
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Figure 2-2: Overview of the cardiac conduction system. The signal originates at the top of the
right atria in the SA node, after which it follows the AV node towards the bundles of His, dissipating
via the bundle branches. Obtained from Herring and Paterson 1 .

2-1-3 Electrocardiography

Standard ECG leads

Electrocardiography is the recording of the electrical activity over a period of time by the use
of electrodes placed over the body. These electrodes are placed such that various angles of the
heart can be inspected. Most modern ECG recordings use 10 electrodes placed over the body of
which 12 angles or leads are then inspected. Figure 2-3 shows the placement of the 10 electrodes
and the corresponding axis on which the activity is recorded.
One lead is the sum of the action potentials between two electrodes. This can be visualized by
looking from the positive measuring electrode to the negative measuring electrode and observing
the sum of the vector field of action potentials over time. The leads can be separated into two
distinct categories, 6 originate from the limb electrodes and 6 originate from the chest electrodes.
Leads I, II and III are combinations of axes between the positive and negative poles of the limb
electrodes. Furthermore, you have various augmented leads, aVR, aVL and aVF, which point
in the direction of the right arm, left arm and foot respectively. These are a combination of the
the three limb electrodes to create extra perspectives of the heart.
The chest electrodes result in a close up view of the heart from various perspectives. These
leads are denoted by V1, V2, V3, V4, V5 and V6. V1 is close to the right ventricle and V6
is rotated about 90 degrees towards the side of the left ventricle as is visualized in Figure 2-3.
They are all pointed at the center of the heart.

Excitation sequence

The typical heart cycle contains three deflections; the P-wave, the QRS complex and the T-
wave. Figure 2-4 shows one cardiac cycle with all three wave types from the lead I angle. Please
refer to Figure 2-1 for an overview of the heart anatomy.
The P-wave comes from the electrical activity of the firing of the SA node that creates a mean
vector towards the AV node. The AV node acts as a delay on the signal, which can be seen in
the short interval after the P-wave. This interval is called the PQ-interval and is measured as
the time between the beginning of the P-wave to the beginning of the Q-wave.
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Figure 2-3: On the left the placement of the three limb and six chest electrodes is shown. On the
right the resulting angles and ECG examples are given. Obtained from Herring and Paterson 1 .

The interval is followed by the QRS complex, which corresponds to the ventricular depolariza-
tion. The QRS complex is intialized by the depolarization of the area between the left and right
bundle branch. Here the action potential moves from the left bundle branch towards the right
bundle branch as the electrical activity moves down the bundle branches. The mean vector
points from the left bundle branch towards the right ventricle. The R-wave is the result of a
more complex composed mean vector as the posterior and anterior depolarize outward. The
vector points towards the positive electrode as the left ventricle is larger than the right ventri-
cle and thus contributes more charge to the mean. Finally, the S-wave is the electrical signal
moving to the end of the bundles branches to the top of the heart. After the QRS complex
there is a final T-wave, which is the repolarization of the ventricles, where the left ventricle
again contributes the most to the mean vector. The corresponding interval commonly used is
the QT-interval.

Figure 2-4: Electrical activity of one cardiac cycle showing the P- and T-wave and the QRS complex.
Obtained from Herring and Paterson 1 .

2-1-4 Arrhythmia

Arrhythmia are irregularities in the heart’s rhythm that can arise from various physiological
abnormalities. Although there are many classes of arrhythmia, this thesis will focus only on the
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Supraventricular Ectopic Beat (SVEB), the Ventricular Ectopic Beat (VEB), and the Fusion
of Ventricular and Normal Beat (F). The arrhythmia descriptions in this section were obtained
from ECGpedia 20 .

Supraventricular Ectopic Beat (SVEB)

Ectopic beats are the result of spontaneous depolarization from cells that are not in the sinus
node. The sinus node generally dominates because it has the fastest pacing rate. However,
any healthy cardiomyocyte can act as an ectopic pacemaker. These ectopic depolarizations can
arise from the atria (60-80 bpm), AV node (40-60 bpm) or ventricles (20-40 bpm). In the case
of Supraventricular Ectopic Beats, the depolarization happens in the atria or AV node.
Ectopic beats are premature and disrupt the regular rhythm of the heart. They can be charac-
terized in the ECG by:

• P-wave: Often abnormal in shape or direction when compared to previous P-waves.

• QRS complex: Generally follows the normal conduction pathway. However, if the pre-
mature beat is very early, the AV node is not able to conduct. This results in the absence
of a QRS complex.

• Timing: Occurs earlier than expected if following the normal rhythm, causing a prema-
ture beat.

Ventricular Ectopic Beat (VEB)

A ventricular ectopic beat, also known as a ventricular premature beat (VPB), originates from
the ventricles. VEBs are conducted through the specialized conduction system of the heart,
resulting in broad QRS complexes. The VEB can be recognized from the width of the QRS
complex which is at least > 0.12s, but often in the range of 0.16s to 0.2s. VEBs can be caused
by a variety of factors, including ischemia, hypoxia, old scar tissue or may occur idiopathically.

Cardiac conditions such as structural heart disease, ischemia, congenital arrhythmia, and pul-
monary disease are often linked with VEBs. However, they may also occur in individuals
without known heart disease.

Fusion of Ventricular and Normal Beat (F)

A fusion beat occurs when a normal beat from the atria coincides with a ventricular ectopic
beat, resulting in a hybrid complex. This beat contains features of both normal and ectopic
beats. They can be characterized in the ECG by:

• QRS complex: Intermediate in width and shape between normal and ectopic QRS
complexes, as it represents a combination of both pathways of depolarization.

• Timing: Occurs at a point where the atrial and ventricular beats overlap, leading to a
fusion of electrical activity.
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2-2 Tensors and the Canonical Polyadic Decompostion

The objective of this section is to first introduce the concept of tensors, giving their definition,
basic properties and their usefulness in representing multidimensional data. In the following
part their various operations will be introduced, such as the outer product and rank. Finally,
the Canonical Polyadic Decomposition (CPD) will be explored to determine how this method
obtains more efficient approximations of tensors.
For a more in-depth introduction on tensors it is recommended to read Cichocki et al. 3 .

Tensors provide a framework for representing and manipulating multi-dimensional data. Fa-
miliar forms of tensors are the zero-dimensional scalar, the one-dimensional vector and the
two-dimensional matrix. In this thesis the number of dimensions of a tensor is denoted by N .
A simple example of a three-dimensional tensor is the description of the spatial dimensions, x, y
and z. This can be extended to four dimensions when the time dimension is considered as well.
Each point in space at a specific timestep is represented by an element in the four-dimensional
tensor.

2-2-1 Preliminaries

To distinguish between the common data types, a tensor is denoted by a bold capital letter with
an underline, X, a matrix as a capital bold letter, X, a vector is denoted as a lowercase bold
symbol x and a scalar as a lower- or uppercase letter, a or A. A tensor with N dimensions is
defined as X ∈ RI1×I2×···×IN . Here Ii is the size of the i-th dimension. An element of a tensor
X at index i1, i2, ..., iN is expressed as xi1,i2,...,iN . For a vector element this is denoted as xi,
for a matrix element as Xi,j . Indices typically range from 1 to In as, in = 1, 2, ..., In.
It can be useful to distinguish between the fibers of a tensor, which are analogous to columns
and rows of a matrix. A visual representation of the fibers of a third-order tensor can be found
in Figure 2-5. For such a third-order tensor the columns, rows and tubes are denoted as x:,j,k,
xi,:,k and xi,j,: respectively.2

Figure 2-5: Graphical representation of the fibers of a tensor over mode-1 in (a), mode-2 in (b)
and mode-3 in (c). Obtained from Kolda and Bader 2 .

Another useful method of describing tensors is by its slices. Compared to fibers, here you fix
all but two indices, as opposed to one. Figure 2-6 shows the graphical representations of sllices
within a third-order tensor. The slices are denoted as, Xi,:,:, X:,j,:, X,:,k.
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2-2 Tensors and the Canonical Polyadic Decompostion 11

Figure 2-6: Graphical representation of the horizontal (a), lateral (b) and frontal(c) slices of a
tensor. Obtained from Kolda and Bader 2 .

2-2-2 Tensor Properties

Outer product

The outer product is a fundamental operation in tensor decomposition methods as it is often
used to express complex tensor structures into simpler vector representations. The outer product
of two vectors, u and v is defined as,

u ◦ v =


u1v1 u1v2 . . . u1vn

u2v1 u2v2 . . . u2vn
...

... . . . ...
umv1 umv2 . . . umvn

 . (2-1)

The result is a matrix where each element (i, j) is the product of ui and vj .
The outer product can be expanded to higher dimensions. Consider tensors X ∈ RI1×...×IN and
Y ∈ RJ1×...×JM . The outer product is then defined as,

Z = X ◦Y. (2-2)

Each element of the resulting tensor Z, denoted by zi1,...,iN ,j1,...,jM , is derived by multiplying
the corresponding elements from X and Y . This forms a new tensor whose dimensionality is
the sum of the dimensions of the original tensors,

zi1,...,iN ,j1,...,jM =
1∑

r=1
xi1,...,iN ,r · yr,j1,...,jM . (2-3)

Tensor Multiplication

For this research only the multiplication of a tensor with a matrix will be considered. This is
called the mode-n product of a tensor with a matrix. For a tensor X ∈ RI1×I2×···×IN and a
matrix A ∈ RJ×In , the mode-n product is defined as21,

(X ×n A)i1,···in−1,j,in+1···iN
=

In∑
in=1

xi1,i2,···iN aj,in . (2-4)
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Rank-one Tensors

An important property of a tensor is its rank. For matrices this is simply defined as the
maximum number of linearly independent columns (or row) vectors. For tensors the definition
is more complex as it represents the minimum number of rank-one tensors needed to generate
the original tensor as their sum. A tensor X ∈ RI1×I2×···×IN of dimension N , is considered to
be rank-one if it can be expressed as the outer product of N vectors,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) (2-5)

where a(i) represents a first-order tensor.
Figure 2-7 shows a third-order rank-one tensor X = a ◦ b ◦ c.

Figure 2-7: Rank one tensor visualization. Tensor X is decomposed into three vectors a, b and c.
Modified image with original from Kolda and Bader 2 .

Rank-one tensors are an important concept in tensor decompositions as they represent the
most fundamental form of a tensor from which more complex tensors can be constructed. If a
complex data tensor can be reduced to a sum of rank-one tensors, its most important structures
are captured within the rank-one tensors.

2-2-3 Canonical Polyadic Decomposition

Just as matrices can be broken down into products of smaller matrices through methods like
Singular Value Decomposition, tensors can similarly be expressed through decomposition into
smaller tensors. Decomposition methods allow data to be mapped to smaller representations
while maintaining the most important information. This can be useful when working with very
large tensors, which are becoming more prevalent in fields such as machine learning.22

The concept of tensor decompositions was introduced by Hitchcock in 1927, where he showed a
tensor can be expressed in a polyadic form.23 This polyadic form is a sum of the outer product
of a finite number of rank-one tensors. The concept of tensor decompositions was not developed
much further until the work of Tucker24 in the 1960s. Since then it has gained much attention
in a wide range of fields such as quantum mechanics, data science and machine learning.2

Tensor decompositions are generally applied in either of two ways. It can reduce tensor storage
by decomposing the structure to keep only the most vital information. However, this thesis
will focus on the other application, which is to decompose a structure with undefined elements
to use in an optimization problem. In for example machine learning, a data structure contain-
ing random weights is optimized according to some loss function. Tensor decompostions could
reduce the training and inference computational complexity when applied to the weights tensor.
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The Canonical Polyadic Decomposition (CPD) stands as one of the most straightforward and
commonly used methods for decomposing tensors. This technique is also known under the names
PARAFAC25 and CANDECOMP26. The fundamental concept behind CPD is to express the
original tensor as a sum of R rank-one tensors. In this context, R is the only parameter of the
CPD and is referred to as the CP-rank.

To decompose a tensor X ∈ RI1×I2×···×IN using CPD, it can be represented as in equation 2-6.

X ∼=
R∑

r=1
λrb(1)

r ◦ b(2)
r ◦ · · · ◦ b(N)

r = Λ×1 B(1) ×2 B(2) . . .×N B(N) (2-6)

The first part consists of a sum of rank-one tensors, each denoted as b(i)
r , which are multiplied

by a corresponding scalar λr. These scalars, λr, are the non-zero diagonal entries of the core
tensor Λ, which has dimensions RR×R×···×R. This core tensor essentially scales each rank-one
component, influencing the contribution of each component to the overall tensor structure.
The latter part uses factor matrices to express the CPD. Here, B(i) =

[
b(i)

1 , b(i)
2 , . . . , b(i)

R

]
are

termed as factor matrices, which organize the vectors of each mode into columns of a matrix. The
entire decomposition can also be neatly expressed using the notation JΛ; B(1), B(2), . . . , B(N)K.

Figure 2-8 visually illustrates the block diagram of the CPD for a third-order tensor. In this
diagram, the tensor X is approximated by the sum of the outer products of vectors ar, br, and
cr, each scaled by λr.

Figure 2-8: Block diagram of a CPD of a third order tensor. The original tensor X on the left is
decomposed in a sum of rank R outer product of vectors a, b and c. On the right the factor matrix
representation is given. Obtained from Cichocki et al. 3 .

Furthermore, the uniqueness of the CPD under certain conditions is an important characteris-
tic that differentiates it from other tensor decompositions, like the Tucker decomposition. Its
uniqueness implies that the tensor can be decomposed in a way that the factor matrices involved
are determined uniquely, except for some trivial variations such as the scaling and permutation
of their columns.27

There are various algorithms to compute the CPD, where the Alternating Least Squares (ALS)3

method is among the most frequently used. The method works by iteratively fixing all but one
factor matrix at a time, and then solving the least squares problem to update the unfixed factor
matrix. This process repeats, alternating between fixing the factor matrix until a stopping
criterion is met or when it reaches the maximum number of iterations.

Limitations of the CPD can be determining the optimal number of components (CP-rank)
which can be non-trivial, but is essential to achieve an optimal decomposition. Furthermore,
algorithms to obtain the CPD, such as ALS, can converge to local minima, resulting in a non-
optimzed decomposition.
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2-3 Convolutional Autoencoders

This section introduces the fundamental aspects of autoencoders, their integration with convo-
lutional networks and the application of the CPD in convolutional networks.

2-3-1 Autoencoders

An autoencoder is a type of artificial neural network used for unsupervised learning of efficient
encodings. The objective of an autoencoder is to learn a compressed representation of input
data, which can then be reconstructed back to its original input. The architecture of an au-
toencoder consists of two main components, an encoder network and a decoder network.

The encoder network is defined as E : Rn → Rm. The goal of the encoder is to compress the
input data of dimension n into a lower-dimensional latent space of dimension m. This process
involves mapping the input data x to a latent representation z. The purpose of this compression
is to capture the most relevant features of the input data while discarding noise.

The decoder network then decompresses the latent space z to a reconstruction x′. This can be
denoted by D : Rm → Rn. The objective here is to minimize the error between the input image
x and the reconstruction x′. The network is optimized by backpropagation using a loss function
that measures the difference between the input and the reconstruction. This is formulated as,

arg min
θ,ϕ

L(θ, ϕ) (2-7)

where the loss function used is the Mean Squared Error (MSE) given by,

L(θ, ϕ) = 1
n

n∑
i=1

(∆ (xi, Dθ (Eϕ(xi))))2 . (2-8)

The parameters of the encoder and decoder are denoted by ϕ and θ respectively.4

Figure 2-9 shows an example of the reconstruction of an MNIST28 number using an autoencoder
network.

Figure 2-9: Example of MNIST autoencoder architecture. The original input image is compressed
by the encoder to a lower dimensional latent space representation, after which it is reconstructed
back to its original image by the decoder. Obtained from Bank et al. 4 .

Autoencoders have a wide array of applications in the fields of image processsing. One applica-
tion is data denoising, where autoencoders are trained to remove noise from images or signals.
By introducing noise to the input data and training the autoencoder to reconstruct the original
noise-free data, the model learns to filter out noise.29
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Variational Autoencoders (VAEs) are another variation of the autoencoder, where the network
learns to generate new data samples similar to the training data. VAEs are mainly used in
generative tasks such as image synthesis and data augmentation.30

In the context of transfer learning, which will be the application of autoencoders in this thesis,
autoencoders are used to pre-train networks. The encoder part of a pre-trained autoencoder
can be used to initialize other models, such as classifiers, making use of the learned features as
an input. This approach is particularly useful in scenarios with limited labeled data, where pre-
training of an unsupervised task can provide an increase in performance for supervised learning
tasks.

2-3-2 Convolutional neural networks

Introduced in 1989 by LeCun et al. 31 , convolutional neural networks are a type of neural net-
work characterized by their use of kernels that convolve over the input data. Due to their shared
weights, the number of parameters is reduced in comparison to for example a fully connected
layer. This makes CNNs more efficient to train, while minimizing the impact on its performance.

CNNs are composed of a series of convolutional layers, which are the fundamental building
blocks of the network. Each convolutional layer typically consists of three main components: a
convolution operation, a normalization operation and an activation function. The normalization
layer, often a batch normalization layer, standardizes the output of the convolution operation.
This layer helps to stabilize the weights by reducing internal covariate shift. The normaliza-
tion ensures that the distribution of inputs to each layer remains consistent.32 The activation
layer introduces non-linearity into the model, which is necessary for the network to learn more
complex patterns.33

Discrete Convolution

The convolution operations takes two discrete fucntions as input and outputs another function.
The operation is defined as11,

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m]. (2-9)

This can be interpreted as the function g moving itself over function f step by step. At each
step n, all values of f are multiplied with the corresponding values in g. The sum of these
multiplications is the value of the output function at index n.

The focus for this thesis will be on discrete convolutions as the input data is going to be discrete.

1D case

For the one dimensional case the filter is defined as a vector of weights,

w = [w0, w1, w2, . . .] , (2-10)

and the input is a time series vector x,
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x = [x0, x1, x2, . . .] (2-11)

then the convolution for the 1-dimensional case is calculated as,

yj =
∞∑

k=−∞
xj+kwk. (2-12)

Here, yj represents the output of the convolution at position j. This operation slides the filter
w over the input x, calculating the dot product at each step and producing a new sequence
that extracts features of the input data based on the filter used.

2D case

The 1D case can be extended to two dimensions by considering an input signal of X = [xi,j ] ,
which can represent an image or any other grid-like data structure. In this case, the convolution
operation involves a 2D filter or kernel, which is also a grid of weights.

Yi,j =
∞∑

k=−∞

∞∑
r=−∞

Xi+k,j+rWk,r (2-13)

This can be interpreted as a grid structure of weights moving over the image. This grid structure
of weights is often referred to as the kernel or filter. Each position of the kernel on the image
produces a single output value, which is the sum of element-wise multiplications between the
kernel and the corresponding input values. This process produces an output feature map that
highlights certain patterns or features present in the input image.

An example of the convolution of a 2×2 kernel and a 3×3 input matrix is given in Figure 2-10.
In the example the filter on the left of the first arrow is element-wise multiplied with the top
left four elements in the input matrix. The result is shown to the right of the outer most arrow.

Figure 2-10: Example of a 2D convolution operation. The feature map on the left is multiplied by
the upper left quarter of the input, resulting in the top left value in the right most matrix.

Oftentimes channels are considered within each convolution. Channels are used to include
more feature maps per layer, which allows the network to extract more features per layer. For
example, RGB images consist of three input channels: red, green, and blue. These are often
extended to 64 channels after the first convolution to capture more features per input channel.
To include channels, the convolution operation equation of a single feature map multiplication
becomes (in tensor format),

Y t,w′,h′ =
S∑

s=1

D∑
i=1

D∑
j=1

Kt,s,j,iXs,wj ,hi
. (2-14)
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In this equation, Y t,w′,h′ represents the output value at position (w′, h′) and output channel t,
reflecting the result of the convolution operation for a specific output feature map. The term
S denotes the total number of input channels. The input value Xs,wj ,hi

corresponds to the
element at position (wj , hi) and input channel s. The weight Kt,s,j,i refers to the kernel weight
at position (j, i), input channel s, and output channel t, representing the filter weight applied
to the input element for a particular input and output channel.

In addition to the basic convolution operation, two important concepts are stride and padding.
Stride refers to the number of pixels the kernel moves over the input image after each application,
which can affect the size of the output feature map. Padding adds extra pixels around the border
of the input image, such that the kernel can cover edge areas more effectively. Padding is also
used to control the spatial dimensions of the output.

This is implemented as,

wj =
(
w′ − 1

)
∆ + j − p and hi =

(
h′ − 1

)
∆ + i− p,

where ∆ is the stride and p is the padding size.

2-3-3 Convolutional Layer

The convolutional layer usually consists of a convolution operation, normalization step and
activation function. This section introduces the concepts of batch normalization and the GELU,
which are the chosen normalization method and activation function for this thesis.

Batch normalization

Normalizing the output of the convolution layer is necessary to stabilize the training process.
This happens by scaling the weights based on the statistics a training batch. This helps to
maintain the output in a stable range, which reduces the risk of vanishing or exploding gradi-
ents. A common method of normalization in CNNs, which will be used in this thesis, is batch
normalization. The batch normalization process is defined by,

x̂ = x− E[x]√
Var[x] + ϵ

(2-15)

where E[x] is the mean, Var[x] is the variance of the input batch, and ϵ is a constant to prevent
division by zero.34

GELU (Gaussian Error Linear Unit)

Following normalization, an activation function is applied to introduce non-linearity into the
model. The GELU activation function is defined as,35

GELU(x) = x · P (X ≤ x) = x · 1
2[1 + erf( x√

2
)] (2-16)

where erf is the Gauss error function. GELU combines properties of both ReLU and sigmoid
functions, which results in a smooth non-linear curve. The GELU is plotted in Figure 2-11.
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Figure 2-11: GELU activation function. For values below 0 the GELU function approaches 0 with
a slight drop before the value of 0. For values higher than 0 the function returns the input. This
introduces a nonlinearity in the model.

2-3-4 Convolutional Autoencoder Network

A typical CNN consists of multiple convolutional layers, with max pooling and upsampling op-
erations in between. The spatial dimensions of the image are often reduced, while the number of
channels increases. The diagram of an example of a simple convolutional autoencoder is given
in Figure 2-12. This diagram indicates the feature extraction in the encoder E : Rn → Rm and
the image reconstruction in the decoder D : Rm → Rn with the intermediate latent space z.
The numbers on top of the convolution objects are the number of channels produced by the
convolution. The number of input channels can be deducted from the previous objects.

This simple example compresses an input image of 128×128 in the spatial dimension, to a 32×32
representation, after which it gets reconstructed. The encoder contains max pooling layers,
which extracts the maximum value from a subset of the input feature map. This reduces the
dimensionality while retaining the most important features. The decoder contains upsampling
layers which use bilinear interpolation to increase the spatial dimension of the intermediate
image.

Max pooling

The pooling step is implemented to reduce the complexity of the training process. The most
used pooling operation is max pooling36, where only the maximum value of a α × α matrix
within the feature map is extracted. An example of this operation is given in Figure 2-13.

Bilinear upsampling

Bilinear upsampling is a technique used to increase the spatial resolution of an image by applying
linear interpolation on all surrounding pixels to estimate new pixel values. This provides a
smoother result than for example nearest-neighbours upsampling, where the value of the nearest
pixel is selected for the new pixel.
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Figure 2-12: Example diagram of a simple implementation of a CNN. The input image of size
128 × 128 is compressed by three convolutional layers to a latent space representation z. The
decoder reconstructs the lower dimensional representation through a sequence of upsampling and
convolutional layers back to its original size.

Figure 2-13: Example of a 2 × 2 max pooling operation. The maximum value of the upper left
quarter is selected for the downsampled feature map.

2-3-5 The Canonical Polyadic Decomposition in CNNs

When tensor decomposition are applied to a convolutional layer, they decompose the kernel
weights such that the convolution executes in four subsequent steps. Figure 2-14 gives a visual-
ization of the convolution operation, whereas Figure 2-15 gives the decomposed operation. The
convolution happens over one of the four dimension in each step.

Figure 2-14: Visualization of a convolution operation with a kernel size of S × T × d× d.
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Figure 2-15: Tensor decomposed convolutional operation into four subsequent steps. The input
channels dimension S is firstly mapped to R, which is later mapped to the number of output channels
T . The spatial dimensions are mapped separately instead of combined. In the illustration d is used
to indicate the kernel size, instead of D used in the thesis.

The convolution operation equation of a single feature map multiplication was defined in equa-
tion 2-14. It is repeated here for readability of the derivation,

Y t,w′,h′ =
S∑

s=1

D∑
i=1

D∑
j=1

Kt,s,j,iXs,wj ,hi
.

In CP-decomposition the kernel tensor is approximated by a sum of R rank-one tensors. This
can be represented as37,

Kt,s,j,i =
R∑

r=1
Kt

t,rKh
i,rKw

j,rKs
s,r. (2-17)

where Ka are factor matrices with a ∈ [t, h, w, s]. This is an element wise multiplication as
the kernel element Kt,s,j,i is approximated by a sum of R element-wise products. Substituting
equation (2-17) into equation (2-14) results in the following convolution operation,

Y t,w′,h′ =
R∑

r=1
Kt

t,r

 D∑
i=1

Kh
r,hi

 D∑
j=1

Kw
r,wj

(
S∑

s=1
Ks

r,sXs,wj ,hi

) , (2-18)

from which four separate kernel steps can be established,

X
(1)
r,wj ,hi

=
S∑

s=1
Ks

r,sXs,wj ,hi
, (2-19)

X
(2)
r,w′,hi

=
D∑

j=1
Kw

r,wj
X

(1)
r,wj ,hi

, (2-20)

X
(3)
r,w′,h′ =

D∑
i=1

Kh
r,hi

X
(2)
r,w′,hi

, (2-21)

and

Y t,w′,h′ =
R∑

r=1
Kt

t,rX
(3)
r,w′,h′ . (2-22)

Here X
(1)
r,wj ,hi

, X
(2)
r,w′,hi

and X
(3)
r,w′,h′ are the intermediate filter tensors.

This decomposition alters the storage complexity from TSD2 number of parameters to R (2D + T + S),
where R is the CP-rank.38 The number of FLOPs for the convolution operation changes from
2TSD2W ′H ′ for the uncompressed convolution to 2R

(
SWH + D2W ′H ′ + TW ′H ′) for the CP-

decomposed convolution.
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2-3-6 Optimization methods

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is an optimization algorithm which calculates the gradient
based on a small batch instead of the entire dataset. This makes the algorithm faster and
more scalable for large datasets. The algorithm computes the gradient of the loss function with
respect to the parameters, giving the direction in which the parameters should be adjusted to
reduce the error. The learning rate, denoted by α, controls the size of the steps taken in this
direction.

The algorithm takes the learning rate α, the loss function L(θ, ϕ), and the initial parameter
vectors θ and ϕ as inputs. At each iteration, a randomly selected mini-batch is used to compute
the gradient. The parameters are then updated by moving them in the direction of the negative
gradient, scaled by the learning rate. This process is repeated until the algorithm converges to
a minimum of the loss function or a predefined number of iterations is reached.

Algorithm 2-3.1 gives each of the steps for the parameter optimization process using SGD. The
parameters of the encoder and decoder are both considered in θ.

Algorithm 2-3.1 SGD: Stochastic Gradient Descent
Require: α, L(θ), θ0

1: t← 0 (Initialize timestep)
2: while θt not converged do
3: t← t + 1
4: gt ← ∇θLt(θt−1) (Compute gradients w.r.t. loss function at timestep t)
5: θt ← θt−1 − α · gt (Parameter update)
6: end while
7: return θt (Resulting parameters)

Adam

The Adam optimizer39 is a widely used optimization algorithm in the field of machine learn-
ing. The name Adam is derived from adaptive moment estimation, referring to the variable
learning rate it uses. The Adam method combines two variations of stochastic gradient descent:
Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp). The
algorithm computes adaptive learning rates for each parameter by maintaining first and second
moment estimates of the gradients. The first second moment representing the mean and vari-
ance of the gradients, respectively. Using the first and second moments, Adam calculates the
learning rate for each individual weight.

The algorithm build from the SGD, using the hyperparameters, learning rate α, loss function
L(θ, ϕ) and initial parameter vectors θ and ϕ as inputs, while adding two new hyperparameters
β1, β2 ∈ [0, 1). The variables β1 and β2 introduced by the Adam optimizer, determine the in-
fluence of gradients from previous iterations on the current update step. Typically they are set
to values of β1 = 0.9 and β2 = 0.999. Additionally, there is a constant of ϵ to safeguard against
division by zero.
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Algorithm 2-3.2 gives each of the steps for the parameter optimization process using Adam.
The parameters of the encoder and decoder are both considered in θ.

Algorithm 2-3.2 Adam: A Method for Stochastic Optimization
Require: α, β1, β2 ∈ [0, 1), L(θ), θ0

1: m0 ← 0 (Initialize first moment vector)
2: v0 ← 0 (Initialize second moment vector)
3: t← 0 (Initialize timestep)
4: while θt not converged do
5: t← t + 1
6: gt ← ∇θLt(θt−1) (Calculate gradients w.r.t. loss function at timestep t)
7: mt ← β1 ·mt−1 + (1− β1) · gt (First moment update)
8: vt ← β2 · vt−1 + (1− β2) · g2

t (Second moment update)
9: m̂t ← mt

1−βt
1

(Compute bias-corrected first moment estimate)
10: v̂t ← vt

1−βt
2

(Compute bias-corrected second raw moment estimate)
11: θt ← θt−1 − α · m̂t√

v̂t+ϵ
(Update parameters)

12: end while
13: return θt
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Chapter 3

Methodology

This chapter introduces the data used in this thesis, defines two experiments and gives the
experimental setup. The data section gives an overview of the various datasets used, what the
preprocessing steps are and how the data is distributed among the various datasets. Two ex-
periments are defined: the first focuses on selecting the most suited model for the classification
of ECG images. The second experiment implements the CPD in the selected model to see how
well the network performs at various compression ratios. Finally, a general experimental setup
is given.

The first experiment focuses on selecting the most optimal uncompressed model for the purpose
of ECG classiciation. The second experiment will implement the CPD and seek to test the
hypothesis given in Table 3-1.

Hypothesis 1
CP-decomposed autoencoders intended for ECG classification can
maintain a similar level of accuracy compared to uncompressed
autoencoders.

Hypothesis 2 CP-decomposed autoencoder networks will lead to faster conver-
gence compared to uncompressed autoencoder networks.

Hypothesis 3
Superior results can be achieved with CP-decomposed autoen-
coders when limiting the number of training samples compared
to uncompressed autoencoder networks.

Table 3-1: Hypotheses for the second experiment.

3-1 Data

This section introduces the datasets used in this thesis, what preprocessing steps were taken
and gives an insight into the distribution of the data. In order to be able to compare the results
from this thesis with the results of Wang et al. 15 , the same data sources were used for the
training, validation and testing steps.
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3-1-1 Datasets

The datasets used in this thesis were obtained from the PhysioNet platform40, specifically from
the Computing in Cardiology Challenge 2020.41 An overview of these datasets is provided in
Table 3-2. Due to its relatively small number of samples, the PTB dataset was excluded.

Given the two-step structure of the model, the datasets were categorized into unlabeled and
labeled sets accordingly. The unlabeled datasets were used to train the autoencoder, whereas
the labeled sets were used to train the classifier. Specifically, the PTB-XL, CPSC, and G12EC
datasets were used for the unsupervised training phase, whereas the INCART and MIT-BIH
datasets were used for the supervised training phase.

Table 3-2: Number of beats of selected datasets.

Dataset Number of beats
PTB-XL 130,794
CPSC 41,262
G12EC 60,021
INCART 175,580
MIT-BIH 100,604

Here is a brief overview of the datasets used in this thesis:

• PTB-XL: The PTB-XL ECG dataset consists of 21,799 clinical 12-lead ECG 10 sec-
ond recordings from 18,869 patients. The dataset is annotated by two cardiologists and
includes 71 different ECG annotations.42

• CPSC: The 4th China Physiological Signal Challenge 2021 (CPSC 2021) was introduced
to promote the development of algorithms for detecting paroxysmal atrial fibrillation
(PAF). The dateset includes ECG recordings with Artial Fibriliation (AF) rhythms, non-
AF rhythms, and their transitions.43

• G12EC: The Georgia ECG Database provides a dataset from the Southeastern United
States, including 10,344 12-lead ECG recordings, each with a duration of 10 seconds.40

• INCART: The INCART Database contains 75 annotated recordings from 32 sessions,
each lasting 30 minutes with 12 standard ECG leads. The data was collected from patients
tested for coronary artery disease, with a focus on ischemia and conduction abnormali-
ties.40

• MIT-BIH: The MIT-BIH Arrhythmia Database consists of 48 half-hour two-channel
ECG recordings from 48 subjects. The database includes both common and rare arrhyth-
mias, annotated by multiple cardiologists to ensure its accuracy.44

For the annotated datasets INCART and MIT-BIH the beats were categorized in a set of 5
classes: Normal beat (N), Supraventricular Ectopic Beat (S), Ventricular Ectopic Beat (V),
Fusion beat (F) and Unknown beat (Q). This division of heartbeats is compliant with the AN-
SI/AAMI EC57:1998 standard.45 Both datasets contain annotations for 15 different arrhythmia,
of which the allocated classes can be found in Table 3-3.

To be able to test the model’s capacity to generalize to new patients, the training and test
set was split inter-patiently for the MIT-BIH dataset. The split in patients is equal to the
one found in de Chazal et al. 45 , where a comparable division of arrhythmias was maintained
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Table 3-3: Heartbeat classes

Class Symbol Members
Normal N N Normal

L Left bundle branch block
R Right bundle branch block
e Atrial escape beat
j Nodal (junctional) escape beat

Supraventricular Ectopic Beat S A Atrial premature beat
a Aberrated atrial premature beat
J Nodal (junctional) premature beat
S Supraventricular premature or ectopic beat
(atrial or nodal)

Ventricular Ectopic Beat V V Premature ventricular contraction
E Ventricular escape beat

Fusion beat F F Fusion of ventricular and normal beat

Unknown Q / Paced beat
f Fusion of paced and normal beat
Q Unclassifiable

between the training and test set. For the validation set four patients were chosen randomly
from the training set.
The division of patients over the training, validation and test set can be found in Table 3-4.
The four patients with pacemakers, 102, 104, 107 and 217, were excluded from the data.

Table 3-4: MIT-BIH dataset inter-patient division.

Database Patient numbers
DS1 DS11 (training set) 101, 106, 108, 109, 112, 114, 115, 116, 119, 122,

124, 203, 205, 208, 209, 215, 220, 223

DS12 (validation set) 118, 201, 207, 230

DS2 (test set) 100, 103, 105, 111, 113, 117, 121, 123, 200, 202,
210, 212, 213, 214, 219, 221, 222, 228, 231, 232,
233, 234

It was not necessary to split the INCART database inter-patiently as it was only used as a
training set. For this purpose it was concatenated with the DS11 training set.
Table 3-5 shows the data distribution of the labeled datasets.

Table 3-5: Data distribution for the labeled MIT-BIH and INCART datasets.

Dataset N S V F Q
DS11 (training) 38,217 613 3,362 412 8
DS12 (val) 7,591 328 425 2 0
DS2 (test) 44,198 1,835 3,218 388 7
INCART (training) 153,478 1,957 19,994 219 6
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The arrhythmia distribution of the unlabeled dataset can found in Figure 1 of Alday et al. 46 .
Important to note is the abundance of normal samples including normal sinus rhythm, sinus
bradycardia and sinus tachycardiam, which all result in the same isolated beat ECG signal.

3-1-2 Preprocessing

Before data can be used to train and evaluate a model, it must be subjected to some preliminary
processing steps. The pipeline of data processing can be divided into four subsequent steps:
filtering, peak detection, segment extraction and normalization. Since not all datasets have 12-
leads, only lead I will be considered for consistency. This section uses data from the PTB-XL
dataset to illustrate the preprocessing steps, which are applied uniformly across all datasets to
generate the input images.

Filtering

It is common to filter ECG data with a bandpass filter that has a cutoff frequency at the low
end of 0.1 Hz and a high cutoff frequency of 100 Hz.15 45 Figure 3-1 shows the Fourier transform
of a randomly selected signal, showing no significant peaks at frequencies higher than 100 Hz,
indicating that little information is present in that range. Additionally, frequencies lower than
0.1 Hz generally do not provide relevant information about the heart’s electrical activity as the
high intensity in this range often correlates with patient movements, such as breathing.

Figure 3-1: Fourier transform of random selected input signal before filtering. The bandpass filter
will use a lower cutoff of 0.1Hz and a high cutoff of 100Hz. Frequencies over 100Hz contribute less
to the signal due to their have low magnitudes.

Figure 3-2 shows the overlap of the filtered signal over the unfiltered signal. Resampling was
not necessary in this case as the signals are interpolated when converted to images.
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Figure 3-2: Bandpass filtered signal overlayed on unfiltered signal. The effect of the highpass filter
can be seen by smaller deviations from the mean. The lowpass filter reduces the noise.

Peak detection and segment extraction

As the input to the model are isolated beat images, the heartbeat segments will have to be
extracted from the signal. For this purpose the peaks of the R-waves are detected to then
isolate an area around the R-wave, which will be considered as one beat. In Figure 3-3 the
detected peaks locations are plotted over the processed signal.
After the peaks are detected from a signal, the center most beat is located. From this point
four beats to the left and four beats to the right are selected and cut at 200 samples after and
150 samples before their respective R waves. The selection of the 8 center most beats ensures
no artefacts that are commonly found at the beginning and end of a recording, are used in
the training process. If two subsequent beats fall within the cut off range of 200 samples, the
cutoff range is updated to ignore the samples towards the next beat. This is to ensure extracted
segments contain no double beats.

Normalization

After beat extraction, the signal is normalized to ensure consistency across all data samples.
This normalization process is necessary such that each beat is comparable and that the model
can learn effectively from the patterns present in the data without being influenced by amplitude
variations. Normalization involves scaling the amplitude of the ECG signal so that it fits within
a standard range, typically between 0 and 1, which is required to transform the signal to an
image. Figure 3-4 shows a normalized and isolated beat. This signal will be converted to a
128×128 image to function as the input to the model. Figure 3-5 shows four randomly selected
input images.
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Figure 3-3: Peak indication after the detection algorithm.

Figure 3-4: Normalized segment with a cutoff of 100 samples to the left of the R-peak and 200
samples to the right.
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(a) Input image 1. (b) Input image 2.

(c) Input image 3. (d) Input image 4.

Figure 3-5: Random sample of input images. Each sample has varying amounts of noise and
defects.

Master of Science Thesis Frederik Hogenbosch



30 Methodology

3-2 Experiment 1: Autoencoder model comparison

The primary objective of the first experiment in this thesis is to find the most suitable model
for ECG feature extraction. Four different models will be evaluated: a basic implementation
of an autoencoder, ResNet, ConvNeXt, and U-Net. As ResNet and ConvNeXt were originally
designed to only be an encoder, the architectures were adapted to autoencoder format.

The basic CNN autoencoder architecture functions as a benchmark for comparison to a simple
convolutional layer structure. ResNet introduces residual connections, which are particularly
useful in handling vanishing or exploding gradients that often occur in deep networks. The
ConvNeXt architecture takes some techniques from Vision Transformers (ViTs) and combines
it with conventional structures of CNNs. Finally, U-Net is evaluated, which is known for its
architecture to maintain high-resolution features throughout the model.

The performance of each model will be evaluated based on the mean squared error (MSE)
between the original and reconstructed images. This metric is a measure of reconstruction
accuracy, with lower MSE values indicating better performance. To ensure a fair comparison,
training parameters such as learning rate, batch size, and the number of epochs were kept as
consistent as possible across all models.

The aim of this experiment is to determine which architecture is most effective in the extraction
of the most optimal features for the purpose of ECG classification. This experiment does not
include the optimization of the model’s accuracy on ECG classification, it is merely to choose
an optimal architecture to use in subsequent experiments where tensor decompositions will be
applied.

3-2-1 Model introductions

The models that are compared in this thesis were chosen each based on their performance,
typical applications and complexity. The depth and dimensions of the models were chosen to
be as similar as possible such that the comparison was fair. However, it must be taken into
account that some models have different requirements to perform well.

The following sections give brief introductions on the models that were compared for this thesis,
including diagrams of the corresponding architectures. In these diagrams the blue rectangles
indicate a convolutional layer. This layer consists of a convolution operation, a batch normal-
ization and a GELU activation layer, unless indicated otherwise. The number on top of the blue
rectangles indicates the number of output channels of the convolution operation, the number of
input channels can be derived from the operation prior. Furthermore, the red arrows indicate
a max pooling layer and a green arrow indicates an upsampling layer. Both these operations
scale with a factor of 2 unless specified otherwise.

Basic CNN

The basic CNN model illustrated in Figure 3-6 features three dimensions for both the encoder
and decoder, each with two convolutional layers. The channels are increased in steps from 1 in
the input image to 128 in the latent space. The three max pooling layers result in a compression
of the 128 × 128 input image to 16 × 16 feature maps. The decoder then increases the spatial
dimension via upsampling operations and uses the extracted features to reconstruct the image.
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Figure 3-6: Basic model architecture consisting of three layers for both the encoder and decoder.
Each layer consists of two convolutions and a down- or upsampling operation.

ResNet

Originally, ResNet only consists of an encoder part that is directly attached to a fully connected
layer. For this thesis the ResNet architecture was converted to also include a decoder such that
the model could be used in the reconstruction of the images. ResNet was primarily chosen to
test the impact of residual layers on the reconstruction, while maintaining a relatively simple
architecture.47

The architecture is comparable to the basic CNN introduced earlier in this section. However,
instead of conventional convolutional layers, this includes residual blocks. ResNet’s residual
blocks are designed to address the vanishing and exploding gradient problem. Each residual
block includes shortcut connections that skip one or more layers. Figure 3-7 gives the architec-
ture of such a residual block.

Figure 3-8 shows how these blocks are placed throughout the autoencoder network. The max-
pool operations are performed with a kernel size of 3, a stride of 2 and a padding size of 1.
Furthermore, the first convolution in the encoder increases the spatial dimensions by a factor
of 2, whereas the last convolution in the decoder reduces the spatial dimensions by a factor of
2.

ConvNeXt

The ConvNeXt model was designed to improve on the performance of CNNs by using certain
aspects of new architectures like Vision Transformers (ViTs)48. The techniques applied from
ViTs include larger kernel sizes, layer normalization, depthwise separable convolutions and in-
verted bottlenecks.14

The architecture of ConvNeXt starts with a ResNet-like structure, but gradually implements
several changes. The ConvNeXt block is designed to mimic the multi-head self-attention mech-
anism of transformers but implemented entirely with convolutions. Figure 3-9 gives an overview
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Figure 3-7: Overview of the Residual Block from the ResNet architecture containing two convolu-
tions. These are followed by a skip connection and an activation layer.

Figure 3-8: ResNet architecture featuring three layers per encoder and decoder, where the second
and third layer contain two ResNet Blocks each.

of the ConvNeXt block, which features depthwise convolutions and a series of 1×1 convolutions
that mix spatial and channel information.

Figure 3-10 shows the architecture of the autoencoder adaption of the ConvNeXt network. The
depth ratio for the ConvNeXt model is commonly chosen in the ratio of 1 : 1 : 3 : 1. To keep the

Frederik Hogenbosch Master of Science Thesis



3-2 Experiment 1: Autoencoder model comparison 33

ConvNeXt model comparable to the others, the minimal depth was chosen to be [1, 1, 3, 1]. As
the ConvNeXt model already uses a high number of parameters, this minimal depth maintains
the accuracy of the comparison. This is indicated in the figure by a 3x for the third layer.

Figure 3-9: Overview of the ConvNeXt Residual Block. The input is first normalized over its
layers, after which it is subjected to a high kernel size convolution, followed by an activation layer.
An expanding pointwise convolutions maps the intermediate image to 4 times the number of input
channels. The GELU activation function is applied before it is convoluted back to its original number
of input channels. Finally, the skip connection adds the original input image to the output.

U-Net

The U-Net architecture was designed with the need for accurate biomedical image segmentation
in mind, where annotated training samples are limited. U-Net is an autoencoder by original de-
sign, which includes skip connections between corresponding layers in the encoder and decoder.
These skip connections transfer feature maps from the encoder to the decoder, such that it re-
tains the high level spatial features in the reconstruction part. The U-Net has shown promising
results in various challenges, such as neuronal structure segmentation in electron microscopy
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Figure 3-10: ConvNext autoencoder architecture. The model consists of ConvNeXt block in each
layer of the encoder and decoder. Instead of max pooling in the encoder, the architecture used
downsampling layers to reduce the spatial dimensions.

images, significantly outperforming previous methods in both speed and accuracy.49

Figure 3-11 illustrates the U-Net architecture. Each layer in the encoder includes concatenation
with the corresponding layer in the decoder, indicated by the white boxes attached to the blue
convolutions, with the corresponding feature map from the encoder. The U-Net encoder/de-
coder layers include three convolutional layers compared to the typical two layers found in
ResNet and ConvNeXt.

Classifier model

The classifier model is a simple multi-layer perceptron model, consisting of an input layer,
hidden layer and output layer. The first layer is followed by a one dimensional batch norm and
a GELU activation function. The input to the classifier model is the output of the encoder.
During the training and inference process the encoder is prepended to the classifier. Figure 3-12
shows the setup of the encoder classifier combination.
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Figure 3-11: The UNet architecture uses three convolutions per layer instead of the regular two.
It furthermore employs skip connections between the respective layers in the encoder and decoder.
the concatenated feature maps are indicated by the white boxes.

Figure 3-12: Classifier architecture with latent space input. The network consists of an input layer
with dimension 16× 16×T , a single hidden layer with dimension 256 and output layer with the five
classes: F, N, Q, S and V. Example shows only a few connections for readability, but each neuron
is connected.

Evaluation metric

Mean Squared Error (MSE) was chosen as the evaluation metric for the performance of the
autoencoders in this thesis. MSE measures the average squared difference between the input
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values and the reconstructed values,

MSE = 1
n

n∑
i=1

(xi − x̂i)2 (3-1)

where xi represents the original input values, x̂i denotes the reconstructed values, and n is the
number of data points.
Besides the MSE, the reconstructed images will also be compared visually with the input images.

Frederik Hogenbosch Master of Science Thesis



3-3 Experiment 2: Tensor decomposed autoencoder 37

3-3 Experiment 2: Tensor decomposed autoencoder

This experiment is designed to evaluate the change in model performance after the application
of the CPD in the autoencoder layers. The decomposition will be applied to the convolution
operations within each of the layers. Various compression ratios will be tested to determine
their effect on model accuracy and computational efficiency. The objective is to find an optimal
balance between model complexity and performance.

Tensor decompositions add a range of benefits to the optimization process of training neural
nets, for example reduced computational load, faster training times and regularization. This
experiment will highlight the effects of regularization in particular. Regularization is important
to address in training deep neural nets as it prevents overfitting, which occurs when a model
learns noise and non-extendable features from the training data. This can especially be of im-
portance when handling datasets with a disbalanced class distribution, due to a tendency to
overfit on the abundant classes.

Familiar forms of regularization are L1 and L2, which add a penalty term to the loss function,
or Dropout layers, which randomly set weights to zero in the backpropagation process.50 51

The application of tensor decompositions can also be seen as a form of regularization, where a
number of parameters are eliminated from the kernel tensors. The main difference between the
use of tensor decompositions as regularization and the conventional techniques, is that L1, L2
and Dropout do not reduce the total number of parameters in the model and can even increase
the computational complexity. Besides regularization, tensor decompositions can also improve
convergence speed due to a reduction in the total number of parameters. Faster convergence
often implies more stable updates during the training process, resulting in a smoother optimiza-
tion landscape. This stability can prevent the model from oscillating and overfitting to specific
patterns in the training data, which in turn can be seen as a form of regularization.

The number of parameters in a kernel for a CP model of rank-R is given by R(2D + S + T ),
where D represents the dimension of the input, S the dimension of the output, and T the size
of the tensor. For uncompressed kernels the dimensions are represented as T ×S×D×D. The
compression ratio per convolutional layer is then calculated as,

compression ratio = TSD2

R(2D + S + T ) . (3-2)

The kernels in the uncompressed model from experiment 1 all have a kernel size of 3 × 3, re-
sulting in a maximum kernel dimension in the final layer of 512 · 256 · 3 · 3 = 1, 179, 648. The
decomposed kernel would then exist of R(2 · 3 + 256 + 512) = 774R elements.
For the entire network the compression ratio is calculated as the ratio between the number of
parameters in the uncompressed network and the number of parameters in the tensor decom-
posed network. For this model configuration, a rank of R = 5 would result in a compression
ratio of 210×.
The weights of the kernels were initialized randomly after the decompositions were applied.
This reduces the computational load as the original random convolution weights were not ap-
proximated.
This experiment is divided into three parts: an accuracy comparison per compression ratio, a
training convergence comparison with the uncompressed model and an evaluation on the data
efficiency.
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3-3-1 Experiment 2.1: Accuracy comparison over various compression ratios

The first part of this experiment focuses on the effect the CPD has on the accuracy of the ar-
rhythmia classification. The following hypothesis will be tested: CP-decomposed autoencoders
intended for ECG classification can maintain a similar level of accuracy compared to uncom-
pressed autoencoders.

The network is evaluated for various compression ratios: 210.5×, 118.8×, 82.7×, 63.5×, 51.5×,
37.4×, 26.5×, 17.8×, 13.4×, 10.7× and 8.5×, which are a result from evenly distributed rank
values. Each ratio will be trained three times and averaged to account for the randomness of the
model optimization process. This ensures the results are not based on a local minimum reached
by some random set of initial weights. The average epoch duration, number of FLOPs for a
forward pass, average accuracy, average MSE and various performance metrics will be collected.

The secondary goal of this experiment is to find an optimal compression ratio that balances
between predictive accuracy and computational complexity. This compression ratio will then
be used in the following experiments.

3-3-2 Experiment 2.2: Convergence speed comparison

Due to the relatively large set of normal beats in the datasets, there are expected to be a lot of
redundancies in the network. The regularization introduced by tensor decompositions may lead
to a faster convergence of tensor decomposed networks as opposed to uncompressed networks
by relieving the model of these redundancies.

The primary objective of this experiment is to test the hypothesis: CP-decomposed autoencoder
networks will lead to faster convergence compared to uncompressed autoencoder networks. This
will be tested by comparing the validation loss progress over a three run average. The model is
said to be converged after no significant improvements on the validation loss are made and the
standard deviation is low.

3-3-3 Experiment 2.3: Data efficiency comparison

The workings of the regularization effect of tensor decompositions that was explained in the
introduction of this section, could also result in an increase in data efficiency. Data efficiency
learning increases the capability of a model to understand complex relations without the need
of a high number of training samples. The regularization effect is expected to increase the
model’s ability to generalize to new data. By implementing a lower-rank representation, CPD
can potentially prevent overfitting, which allows the model to achieve better performance with
fewer training samples.

The primary objective of this third sub-experiment is to test the hypothesis: Superior results
can be achieved with CP-decomposed autoencoders when limiting the number of training sam-
ples compared to uncompressed autoencoder networks.

Given the large number of data samples available in the datasets, the reduction in parameters
has to be significant to see an effect. This experiment was done at various percentages of
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the original number of data samples, at [2.5%, 5%, 10%, 20%]. The uncompressed and CP-
decomposed models are optimized three times and averaged to obtain its results. To test the
hypothesis, the performance decrease is considered with regards to the optimization of the
complete dataset for each respective model. The performance is defined by the MSE on the test
set and the validation loss decline.

3-3-4 Evaluation Metrics

To assess the performance of transfer learning model in classifying ECG images, several evalu-
ation metrics are used:

Accuracy

Accuracy is the most straightforward metric, representing the proportion of correctly identified
classes. It gives a general measure of how well the model is performing overall.

Accuracy = correct predictions
number of samples

Confusion Matrix

A confusion matrix maps the true values to the predicted values, allowing to observe the dis-
tribution of prediction per class. The structure of the matrix is as follows,

Class 1 Class 2 · · · Class n
Class 1 TP1 FP1,2 · · · FP1,n

Class 2 FN2,1 TP2 · · · FP2,n
...

...
... . . . ...

Class n FNn,1 FNn,2 · · · TPn

(3-3)

where TPi are the number of true positives for class i, FPi,j denote the false positives for class
i identified as class j and FNj,i denote the false negatives for class j identified as class i.
The confusion matrix gives a better understanding of the underlying distribution of mistakes
for misclassification.

3-4 Experimental setup

This section gives an overview of the general setup for the experiments implemented with
PyTorch. The overview includes data preparation, model training, validation, and testing.

Data preparation

The first step in the data preparation process is resizing and transforming the ECG images.
Each image is transformed into a tensor suitable for model input, ensuring that the inputs are
uniform across all datasets.

Following the transformations, the datasets are split into training, validation, and test sets.
The unsupervised datasets from PTB-XL, G12EC, and CPSC are combined and then divided
into training, validation, and test subsets, following a ratio of roughly 80 : 10 : 10 for the
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training, test and validation set respectively. The labeled datasets, MIT-BIH and INCART, are
prepared separately for supervised training. The split ratio for the labeled sets is described at
the beginning of this chapter in the datasets section.

Autoencoder training

The models are trained on four CUDA devices, which requires a slightly different setup than
CPU training. To speed up the training process for example, half precision (float16) is chosen
over single precision (float32). For CUDA devices the automated mixed precision package52

has to be incorporated in the model in order to use half precision. Furthermore, the model has
to be wrapped in a parallel programming object to ensure the GPUs can perform optimally
during training.

The training criterion used is the Mean Squared Error (MSE) for the autoencoder and Cross
Entropy Loss for the classifier. Both are standard methods for evaluating autoencoders and
classifiers. Futerhmore, the Adam optimizer is chosen due to its efficiency and effectiveness in
handling sparse gradients, making it suitable for this application. Stochastic Gradient Descent
(SGD) was also tested as an optimizer. However, the Adam optimizer converged to a much
lower MSE than the SGD optimizer was able to do. Figure 3-13 shows a comparison between
the two optimizers for the same set of model parameters.

Figure 3-13: Loss function for both the SGD and Adam optimizer. The SGD loss has a smoother
optimization landscape, but converges to a much higher MSE. The Adam optimizer has a much
steeper decline, but is less smooth.

To dynamically adjust the learning rate during training, a StepLR scheduler is implemented.
This scheduler reduces the learning rate at predefined intervals, helping to avoid overfitting.

During training, the model processes the data in batches. For each batch, the model’s pre-
dictions are compared against the actual data using the loss function. The gradients of the
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loss with respect to the model’s parameters are computed using autograd, and the optimizer
updates the parameters to minimize the loss. This process is repeated for a specified number
of epochs, with the learning rate being adjusted periodically by the scheduler.

To prevent potential data loss, the model’s state is saved every 5 epochs. This periodic saving
allows for possible recovery and evaluation of the model at intermediate training steps.

Validation of the model is conducted in a manner similar to training but without computing
gradients. The validation loss is tracked to monitor the model’s progress and to ensure it is not
overfitting on the training data.

Testing the model involves evaluating its performance on the test set, also without gradient
computation.

Classifier training

Post-training, the encoder part of the autoencoder, which has learned to compress and recon-
struct ECG images, is used as a feature extractor for a classifier. The encoder is prepended to a
classifier layer, with its parameters frozen to retain the learned features without further updates.

The classifier follows a similar training process to the autoencoder, consisting of a training,
validation and testing phase. For the classifier the same learning rate scheduler is used, which
is a step function. Furthermore, the accuracy is calculated by applying a maximum function on
the output of the classifier.
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Chapter 4

Results and discussion

4-1 Experiment 1: Autoencoder model comparison

The results for experiment 1 can be divided into four comparisons: an error comparison, a vi-
sual comparison, a performance comparison and a predictive accuracy comparison between the
uncompressed network and the CP-decomposed networks. The error comparison will look at
the training and validation loss progression over the epochs, while also looking at the averaged
MSE and accuracy on the test set for each of the models over each of its three runs. The visual
comparison is done to ensure the model is able to reconstruct the input images well enough for
the classification step. Finally, the performance is taken into account to compare metrics such
as epoch duration and total number of FLOPs.

In Appendix A an overview of all training settings for the first experiment can be found.

4-1-1 Error comparison

Figure 4-1 shows the validation loss of the basic, ResNet, ConvNeXt and U-Net models over a
25 epoch run on a logarithmic scale. Additionally, the MSE on the test set is given in Table
4-1.
The U-Net model clearly outperforms the rest of the models with a 10× improvement on its
validation and test set MSE. The validation loss converges slightly slower compared to the other
models, however it converges to a much lower final MSE value. The validation loss of the basic
model converges slightly worse than the U-Net model. It is however more stable in its decline.
The ResNet model converges relatively quickly to a higher MSE than the U-Net and basic mod-
els. It is however important to note that the MSE on the test set of the ResNet model gives
a comparable result to the basic model. Finally, the ConvNext model has the highest MSE on
the test set and validation set of all four models.

4-1-2 Image reconstruction comparison

Figure 4-2 shows the input image that is to be reconstructed by each of the trained models. The
image contains a normal ECG signal with some high frequenciy oscillations around the P-wave.

Master of Science Thesis Frederik Hogenbosch



44 Results and discussion

Figure 4-1: Three run averaged validation loss for the basic, ResNet, ConvNeXt and U-Net models
with error bars. The U-Net model has the lowest convergence point. The ConvNeXt and ResNet
model both convergence quickly.

Table 4-1: Averaged MSE on the test set of each of the models.

Model MSE
Basic 2.2e−4
ResNet 2.4e−4
ConvNeXt 3.6e−3
U-Net 3.0e−5

Figure 4-3 displays the reconstructed images for the basic model (a), the U-Net model (b), the
ResNet model (c) and the ConvNeXt model (d).

The ConvNeXt model is only able to reconstruct the general direction of the ECG signal, cap-
turing the lowest frequencies. It is furthermore unable to reconstruct the white background. As
any higher frequencies are missing in the reconstructed area of the image, it is most likely not
suitable to use for any classification purposes.

The ResNet model captures the signal relatively well, the P-wave, QRS-complex and T wave
are all clearly present. The higher frequency activity in the input image in for example the
P-wave is not reconstructed. This may be an issue for the classification step as it could be the
abnormalities can be identified by only lower frequencies.

Both the basic and U-Net model are able to reconstruct the input image well, capturing both
the higher and lower frequencies of the signal. U-Net performs slightly better in the detailed re-
construction, however this will likely not be a significant difference for the arrhythmia detection.
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Figure 4-2: Input image

(a) Basic (b) U-Net (c) ResNet (d) ConvNeXt

Figure 4-3: Reconstructed images for the basic, U-Net, ResNet and ConvNeXt model. The basic
and U-Net model are able to reconstruct the high frequencies of the singal. The ResNet model
has more trouble with the higher frequencies. The ConvNeXt model is only able to reconstruct the
general contours of the signal.

4-1-3 Performance comparison

Table 4-2 gives the total number of parameters, duration of an epoch and the number of FLOPs
for a single image forward pass. The number of parameters between the Basic, U-Net and
ConvNeXt models are similar, where ResNet has about double the number of parameters. The
duration of an epoch and number of FLOPs are considerably higher for the ConvNeXt model
compared to the others. This is likely due to the use of expanding pointwise convolutions,
meaning a kernel size of 1. This small kernel size will not increase the number of parameters
by much, however it does increase the number of calculations.

The inconsistency in the relation of FLOPs and epoch duration is due to FLOPs containing only
the forward pass operations, where epoch duration also includes the backpropagation process.
The reason ResNet has the largest number of parameters and the lowest number of FLOPs can
be explained by an early reduction of spatial dimensions leading to a reduction in FLOPs. The
residual blocks contain however a large number of filters, resulting in more parameters.

Table 4-2: Number of parameters, epoch duration and FLOPs for the basic, ResNet, ConvNeXt
and U-Net models.

Model Parameters Epoch duration (s) GFLOPs
Basic 2.36 · 106 251 1.84
ResNet 4.22 · 106 251 1.27
ConvNeXt 2.01 · 106 645 4.11
U-Net 3.12 · 106 242 1.56
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4-1-4 Classification comparison

Table 4-3 presents the classification accuracies of each of the models. First of all, the differences
between the accuracies are relatively small. This is probably due to the relatively low amount
of data samples for the S, F and Q classes. Table 3-5 shows the S class contains only 2570
samples, the F class only 631 and the Q class 14 samples in the training set. Table 4-4 gives the
confusion matrix of the basic model. The beats that are classified well by the model are the N
and V classes. The S class can be identified by a defect in the RR-interval of subsequent beats.
Due to the data being a single beat image, this is difficult for the model to learn. The S class
can also be identified by a small defect in the P-wave. This defect is however harder to detect
due to its subtleness. Both these issues complicate the identification process for the network.
The confusion matrix also shows the F and Q classes being classified almost always as the N class.

The conclusion from these findings is the increasing difficulty of classification after the N and
V classes have converged. To increase the accuracy, the model must mostly learn to classify the
S class, which is difficult given the aforementioned observations.

ConvNeXt has the lowest classification performance. This can be explained by the results
encountered earlier in this section where it became clear the reconstructed image does not
contain enough detail to make accurate predictions. Despite U-Net’s low MSE, its accuracy
on classification is not performing as expected considering its ability to reconstruct the input
images well. ResNet still has a considerably high accuracy given the absence of the higher
frequencies in the reconstructed image and relatively high MSE. The basic model performed
best with an accuracy of 94.39%.

Table 4-3: Classification accuracy for the basic, ResNet, ConvNeXt and U-Net models.

Model Accuracy
Basic 94.39%
ResNet 93.98%
ConvNeXt 92.9%
U-Net 93.57%

Table 4-4: Confusion matrix for basic model.

F N Q S V
F 0.0077 0.91 0 0 0.08
N 0.0007 0.98 0 0.006 0.0093
Q 0 0.43 0 0 0.57
S 0.006 0.8 0 0.11 0.09
V 0.0047 0.062 0 0.011 0.92

4-1-5 Model recommendations

The ConvNext model showed lowest predictive accuracy and image reconstruction capabilities
while being most computationally heavy. In other classification tasks such as the ImageNet
problem, ConvNeXt is able to achieve high accuracies. This is however only for an encoder
classifier combination. Its low performance for this particular task could be due to the type of
data it is applied to, but it is most likely due to the conversion to an autoencoder network. The
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fundamental architecture of the ConvNeXt model may not have been transferable for image
reconstruction from a compressed representation.

The U-Net model achieved great results in image reconstruction, however failed to predict the
corresponding classes accurately. This is probably due to the use of skip connections, which
work particularly well for image reconstruction, but does not result in the most optimal latent
space for classification. Skip connections transfer feature maps from the encoder to the cor-
responding layer in the decoder. With the use of skip connections the model is not forced to
learn the most important features for reconstruction as hierarchical information is also passed
between the encoder and decoder, skipping the lower layers.

In both image reconstruction and classification, the ResNet model did not achieve high perfor-
mance results, despite having the highest number of parameters of all models. For the image
reconstruction a lot of high frequencies were missing, which probably resulted in the slightly
lower predictive capabilities in the classification step. Like ConvNeXt, the ResNet model orig-
inally consisted of just an encoder. For this thesis its architecture was adapted to create an
autoencoder network. This may have caused issues as its architecture was not designed for
reconstruction purposes.

Finally, the basic model achieved the highest accuracy in the classification process, while having
comparable performance results to ResNet and U-Net. The image reconstruction was on par
with that of U-Net, but without the use of skip connections throughout the network. This likely
resulted in a better feature extractor network and thus the higher accuracy. Furthermore, the
basic model has comparable results to the baseline paper where this thesis was based on. Wang
et al. 15 achieved a similar accuracy of 94.39%. Given these results, the basic model will be used
in the second experiment.
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4-2 Experiment 2: CP-decomposed autoencoder

Experiment 2 was divided into three sub-experiments: a classification performance comparison
for various compression ratios, a convergence speed assessment between an uncompressed net-
work and a decomposed network and a comparison of the performance drop when reducing the
number of training samples for an uncompressed network and a decomposed network.

The configuration of the basic model chosen in experiment 1 was optimized to increase its per-
formance. The number of channels was doubled from [32, 64, 128, 256] to [64, 128, 256, 512]
and an extra layer was added in both the encoder and decoder. The latent space spatial dimen-
sion then becomes 8× 8 instead of 16× 16. These changes will not have resulted in a different
comparison result for experiment 1 as the fundamental structures of the model remains un-
changed. The configuration change resulted in an accuracy increase from 94.39% to 94.51%.

4-2-1 Experiment 2.1: Accuracy comparison over various compression ratios

Figure 4-4 shows the original image in (a) and the uncompressed reconstructed image in image
(b). Figure 4-5 then gives the reconstructed images for the tensor decomposed model at var-
ious compression ratios. For higher compression ratios the high frequencies are more difficult
to reconstruct. In for example image 4-5(b), the general contours of the P- and T-waves and
QRS-complex are present in the reconstruction, however any defects can not be identified from
this level of detail. The limitations for the tensor decomposed networks come from the lower
dimensional vector representations, resulting in an inability to capture higher dimensional func-
tions in the model. As the compression ratio decreases, the parameter space gets more higher
dimensional and the model is able to reconstruct the images with more precision.

Figure 4-6 shows the averaged accuracies of the tensor decomposed networks in comparison
with the uncompressed network. An increase in accuracy can be seen over the compression
ratio scale. For high compression ratios, the accuracy drops below the uncompressed baseline
value. Looking at the reconstructions at these higher compression ratios, it is expected to drop
in accuracy due to the absence of certain ECG features. However, as the compression ratio
decreases, the accuracy improves to the baseline of the uncompressed network, indicating sig-
nificant redundancy in the model. This redundancy is likely due to overfitting on the N and V
classes, which is the consequence of the large amount of samples for these classes. The model
will be biased towards predicting the N and V classes as it has seen many more examples of
those in the training process.

Tensor decompositions can reduce redundancies by limiting the amount of overfitting. The
decomposition will not be applied to the supervised learning step directly. However, given the
abundance of normal samples in the unlabeled dataset, the autoencoder will also suffer from
generalization to normal beats.

When applying CPD to the model, it constraints the network to learn a function within the space
spanned by the lower-dimensional vectors. This means it cannot represent all possible functions
that the original, higher-dimensional tensor could. It is therefore restricted to a subspace of
the original parameter space. This limitation in the complexity is a form of regularization that
reduces the amount of overfitting on the training data. The reduction in overfitting will lead to
more balanced feature extraction, shifting the focus from normal data reconstruction.
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(a) Input
(b) Uncom-
pressed

Figure 4-4: Input image and uncompressed reconstruction.

(a) 210.5× (b) 82.7× (c) 51.5× (d) 26.5×

(e) 17.8× (f) 13.4×

Figure 4-5: Reconstructed images at various compression ratios. Higher compression ratios have
difficulty with reconstructing the high dimensional functions. This gets increasingly better as the
compression ratio is lowered.

The CP-rank, number of parameters, epoch duration and number of FLOPs for the uncom-
pressed and compressed model are given in Table 4-5. The number of FLOPs is significantly
reduced for the compressed models, however not by the same ratio as the number of parame-
ters. This is due to the move from a single convolution operation to four subsequent smaller
convolution operations, which requires more calculations. The added rank dimension of R in
the decomposed convolution adds to the total number of FLOPs, which is absent in the uncom-
pressed convolution.

Notable is the increase in epoch duration for compression ratios lower than 63.5×, which was
expected to decrease, especially given the reduction in total FLOPs. This indicates that the
additional time originates from the backpropagation step. The derivation of the number of
FLOPs for the backpropagation of the CP-decomposed convolution is presented in Appendix
B. The ratio of FLOPs between the CP-decomposed model and the uncompressed model for
the backpropagation step is given by,

ratio = RS + 2DR2 + RT

TSD2 . (4-1)
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Figure 4-6: Triple run average accuracy of tensor decomposed autoencoder models at various
compression ratio compared to the baseline uncompressed autoencoder model.

Using this ratio the number of FLOPs was calculated at various values of R, showing the
expected quadratic increase of the number of FLOPs. It was found the number of FLOPs
for the CP-decomposed backpropagation step is equal to the uncompressed model for a value
of R = 101. This does however not account for the full increase in epoch duration. Upon
inspection of the GPU’s memory usage, it was found that for a CP-decomposed model with
a rank value of R = 100, the process uses 14GB of RAM per GPU to 6GB of RAM for the
uncompressed model, suggesting a significant increase in memory allocation operations.

Table 4-5: CP-rank, number of parameters, epoch duration and forward pass FLOPs for the
uncompressed and compressed models.

Model CP-rank Parameters Epoch duration (s) GFLOPs
Uncompressed 94.1 · 105 308 7.31
210.5× 5 0.45 · 105 294 0.12
118.8× 10 0.79 · 105 294 0.20
82.7× 15 1.14 · 105 296 0.28
63.5× 20 1.48 · 105 307 0.35
51.5× 25 1.82 · 105 314 0.43
37.4× 35 2.52 · 105 325 0.59
26.5× 50 3.55 · 105 345 0.82
17.8× 75 5.28 · 105 378 1.20
13.4× 100 7.01 · 105 413 1.59
10.8× 125 8.73 · 105 454 1.98
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4-2-2 Experiment 2.2: Convergence speed comparison

The compression ratio chosen for this experiment was 13.4× as it provided an optimal balance
between classification accuracy and compression ratio.

Figure 4-7 gives the validation loss average of three runs of the uncompressed and CP-decomposed
model. For the first 8 epochs in the uncompressed model, the loss and its standard deviation
steadily decline to a local minimum. The Adam optimizer bumps the objective function out of
a local minimum to further decline until epoch 15 after which the rate of decline slows down.
It has not reached a convergence point at epoch 15 as the validation loss has not settled yet
and is still improving its parameters. The standard deviations are also relatively large. As the
model converges it would be expected the standard deviation to become smaller.

Similarly, the CP-decomposed model has a steady decline in its validation loss, however it con-
verges faster than the uncompressed model. After 15 epochs there is no more improvement in
the validation loss. The standard deviation is smaller compared to the uncompressed model
as well. The earlier convergence point for the CPD model could be explained by the reduced
parameter space. This minimizes overfitting and speeds up the training process as there are
fewer weights to update and optimize during each iteration. However, the model may not be
complex enough to capture all relevant features for reconstruction. Experiment 2.1 showed
that this does not necessarily lead to a reduction in diagnostic performance when choosing an
appropriate compression ratio.

The hypothesis for this experiment was formulated as: CP-decomposed autoencoder networks
will lead to faster convergence compared to uncompressed autoencoder networks. This was ver-
ified by these results. The faster converges is thought to originate from the reduced parameter
space and regularization effect.

Figure 4-7: Three run average of the uncompressed autoencoder validation loss with error bars.
The CP-decomposed model convergences after 15 epochs, whereas the uncompressed model fails
to converge within the 25 epochs.
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4-2-3 Experiment 2.3: Data efficiency comparison

In this experiment a compression ratio of 13.4× was selected, as it offered an optimal balance
between compression ratio and predictive performance.

Figure 4-8 shows the averaged validation loss during training of both the uncompressed and CP-
decomposed models for ratios of 2.5%, 5%, 10%, and 20% of the complete dataset size. The
scale is logarithmic and equal for all subfigures. At a reduction ratio of 2.5%, the uncompressed
model converges earlier than the complete dataset run. Compared to the CP-decomposed model,
it converges with a larger gap to the complete dataset run as well. For a 5% reduction ratio
both models show an improvement on the gap, however the CP-decomposed model approaches
the complete dataset run better than the uncompressed model. This trend continues at 10%
and 20% reduction ratios, where the CP-decomposed model shows better improvements in the
performance gap.

Figure 4-9 shows the MSE of the test set at each reduction ratio for both the uncompressed
model and the CP-decomposed model, along with dashed lines indicating the test set MSE for
the complete dataset run in red for the uncompressed model and in green for the CP-decomposed
model. At each reduction ratio the CP-decomposed model has a smaller performance gap to
the full training set run than the uncompressed model.

It was hypothesized that the implementation of CPD would force a low-rank constraint on the
model, which would lead to better generalization from fewer data samples. The results suggest
that CP-decomposed models are more data-efficient, indicating better generalization for these
models. The enhanced generalization could be the result of the regularization effect of CP de-
composition. This experiment thus validates the hypothesis that CP-decomposed autoencoders
achieve superior results compared to uncompressed autoencoders when training samples are
limited.

Figure 4-9: MSE of test set for both the uncompressed model and CP-decomposed model at
reduction rates of 0.025, 0.05, 0.1 and 0.2. The full training set test set MSEs for both models are
indicated by the dashed lines.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-8: Validation loss during training for both the uncompressed (left) and CP-decomposed
(right) models at various compression ratios of 0.025, 0.05, 0.1, and 0.2. The full training set
validation loss is given in the orange plots.
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Chapter 5

Conclusion

This thesis investigated whether transfer learning ECG classification models could benefit from
the application of tensor decompositions. In particular, the Canonical Polyadic Decomposition
(CPD) was applied to the convolutional layers of the autoencoder part of the model. The first
part of the research focused on selecting the most optimal model to use for the ECG classification
task, before implementing the tensor decompositions. For this purpose four different models
were tested: a basic implementation of a convolutional autoencoder, an autoencoder adaption of
both the ResNet and ConvNeXt architectures and a U-Net model. These model were evaluated
based on their reconstruction ability, predictive accuracy and various performance metrics such
as total number of FLOPs and epoch duration, after which a recommendation could be made.

It was found that the basic implementation of a convolutional autoencoder performed best over-
all on the evaluation metrics. The U-Net model had high reconstruction capabilities, however
showed worse results on the predictive accuracy. The ResNet model had worse reconstruction
and prediction capabilities, while having the largest parameters count. The ConvNeXt model
failed to accurately reconstruct the images.

The basic model was subsequently used to address the main goal of this thesis:

Can the Canonical Polyadic Decomposition reduce the computational complexity
of ECG classification models while maintaining diagnostic performance?

To answer this research question three hypotheses were formulated:

• CP-decomposed autoencoders intended for ECG classification can maintain a similar level
of accuracy compared to uncompressed autoencoders.

• CP-decomposed autoencoder networks will lead to faster convergence compared to un-
compressed autoencoder networks.

• Superior results can be achieved with CP-decomposed autoencoders when limiting the
number of training samples compared to uncompressed autoencoder networks.

These hypotheses were tested in the second part of the thesis by conducting three separate
sub-experiments.
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To test the first hypothesis, decompositions were applied to the convolution operations within
each layer. The decomposed models were then optimized and tested for various compression
ratios to determine their effect on model accuracy and computational efficiency. The objective
was to find an optimal balance between model complexity and performance, including reduced
computational load, faster training times, and prevention of overfitting. This was particularly
important for training on datasets with imbalanced class distributions.

Higher compression ratios made high frequencies harder to reconstruct due to limitations in the
lower-dimensional vector representations, which reduce the ability to capture higher-dimensional
functions. For lower compression ratios, the parameter space expands which allows for more
efficient reconstructing. Accuracy initially dropped at high compression ratios due to limited
feature extarction, but improved to the uncompressed baseline at lower ratios, indicating signif-
icant redundancy in the data. Tensor decompositions reduced this redundancy by limiting over-
fitting, introducing a form of regularization that increased accuracy. The number of FLOPs was
significantly reduced for compressed models, although epoch duration unexpectedly increased.
This was found to be due by the increase in computational expense of backpropagation through
multiple smaller convolutions and an increase in GPU memory allocation.
Due to the increase in computational expense of the backpropagation step, the training process
did not benefit from the implementation of the CPD in the autoencoder network. The total
FLOPs of the forward pass did however improve significantly when compared to the uncom-
pressed model. The implementation of tensor decomposition thus eases the use of such large
classification models on embedded systems at inference time.

The primary objective of the second experiment was to test the hypothesis that CP-decomposed
autoencoder networks will lead to faster convergence compared to uncompressed autoencoder
networks. This was tested by comparing the average validation loss decline over three runs.

Results showed that the CP-decomposed model converged faster than the uncompressed model.
The uncompressed model’s validation loss failed to convergence within the 25 epochs. The
CP-decomposed model however achieved convergence by 15 epochs. This faster convergence
could be attributed to the reduction in parameters, resulting in a simpler parameter space to
be explored and minimized overfitting.

The third experiment sought to test the hypothesis: Superior results can be achieved with
CP-decomposed autoencoders when limiting the number of training samples compared to un-
compressed autoencoder networks. The results of this experiment indicate that at a 2.5%
reduction ratio, the uncompressed model converges faster but maintains a larger gap to the
complete dataset run compared to the CP-decomposed model. This pattern of convergence
improves with higher reduction ratios [5%, 10%, and 20%], where the CP-decomposed model
closes the performance gap more effectively than the uncompressed model.

This pattern was also visible on the MSE of the test set, where the gap at each ratio was smaller
for the CP-decomposed model than that of the uncompresssed model. This pattern is likely due
to the CPD that imposes a low-rank constraint, improving the model’s generalization ability
with fewer data samples.

To answer the main research question of this thesis: the CPD can not reduce the computational
complexity of ECG classification models while maintaining diagnostic performance. For lower
compression ratios the accuracy approached the baseline, however the backpropagation process
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of the CPD convolution increased the computational complexity. At higher compression ratios,
the overall computational complexity was lower, but the classification accuracy was not on par
with the uncompressed model. Using the CP-decomposed models it was however possible to
outperform the accuracy of the paper of Wang et al. 15 , which was used as a baseline metric,
while maintaining a smaller storage complexity.

5-1 Recommendations for future research

Data

The data quality caused several issues throughout this thesis. First of all, the lack of data
samples for some classes might have caused overfitting on particular classes. It can be expected
of medical data to contain a high number of normal samples. For this dataset however, three
of the four other classes made up only 2.1% of the samples in the labeled datasets. A more
balanced data distribution would reduce overfitting and in turn better classification results.

For future work, using more leads should be explored to provide a more comprehensive view
of the heart. This could help with classifying more complex arrhythmia. These leads could be
presented on a single image, this will however make the reconstruction problem more difficult.
The second option is to use each lead as an input channel to the model. This will increase
kernel sizes by a factor 122, increasing the number of parameters significantly.

Tensor decomposition methods

As the Canoncial Polyadic Decomposition is only one method of tensor decomposition, other
methods could provide improvements on its limitations. One method that could be implemented
is the Tucker decomposition. The Tucker Decomposition gives more flexibility in choosing the
ranks, as each dimension has its own rank value. The separate ranks could then be adjusted
to allow for more higher dimension in for example the spatial dimensions as opposed to the
channel dimensions.

Optimizer

There could be some issues with using the Adam optimizer in combination with a CP-decomposed
network. The Adam optimizer takes into account both the mean of the gradient and its vari-
ance to adaptively update the learning rate parameter during training. When CPD is applied
to a network, it reduces the number of parameters to introduce regularization and remove re-
dundancies. However, the backpropagation process will have a smaller effect on larger network
structures due to the abundance of parameters it can divide the updates over. Smaller networks
have to process these updates with less parameters, resulting in higher variances. As the Adam
optimizer punishes high variance parameter updates, it may fail to reach a global minimum.

Furthermore, the structure of the CP-decomposed convolution into four subsequent convolution
might lead to too complex gradient interactions. The Adam optimizer may fail to recognize
these gradient interactions properly and penalize them wrongfully.
Future work should explore different optimizers and test their optimization performance when
applied to CP-decomposed networks.

Master of Science Thesis Frederik Hogenbosch



58 Conclusion

Medical use

To further develop this research into something that can be employed in the medical setting,
a few changes would have to be made. First of all, as the images would be taken of ECG
prints, introducing significant noise to the input images. The performance of the model should
be tested under these conditions. Furthermore, the diagnostic accuracy should be improved.
With a top accuracy of 94.5%, the CP-decomposed models are not ready to be used in a clinical
setting. This is largely due to the inability of the model to process inter-heartbeat relations
and the above-mentioned lack of data samples for some classes.

Moreover, as only five general classes were taken into account for this thesis, the number of
classified arrhythmia should be increased to improve the diagnostic help of such models.
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Appendix A

Training Settings

A-1 Experiment 1

A-1-1 Autoencoder settings

config value
optimizer Adam
base learning rate 5e−5
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
batch size 256
learning rate scheduler StepLR
scheduler step size/gamma 15/0.1
training epochs 25

Table A-1: Basic model training set-
tings

config value
optimizer Adam
base learning rate 1e−4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
batch size 256
learning rate scheduler StepLR
scheduler step size/gamma 15/0.1
training epochs 25

Table A-2: ResNet training settings

config value
optimizer Adam
base learning rate 1e−4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
batch size 256
learning rate scheduler StepLR
scheduler step size/gamma 15/0.1
training epochs 25

Table A-3: ConvNeXT training set-
tings

config value
optimizer Adam
base learning rate 1e−4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
batch size 256
learning rate scheduler StepLR
scheduler step size/gamma 15/0.1
training epochs 25

Table A-4: U-Net training settings
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A-1-2 Classifier settings

Table A-5: Classifier training settings

Config Value
Optimizer Adam
Base learning rate 1e−4
Weight decay 0.05
Batch size 256
Training epochs 10

A-2 Experiment 2

Table A-6: CP-decomposed autoen-
coder training settings

config value
optimizer Adam
base learning rate 8e−5
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
batch size 256
learning rate scheduler StepLR
scheduler step size/gamma 15/0.1
training epochs 25

Table A-7: Classifier training settings

Config Value
Optimizer Adam
Base learning rate 1e−4
Weight decay 0.05
Batch size 256
Training epochs 10
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Appendix B

Backpropagation Complexity

This chapter derives the total number of FLOPs for the gradient calculation in the backprop-
agation process for both the uncompressed and CP-decomposed convolution. The convolution
in this chapter remains its spatial dimensions, so Hin = Hout and Win = Wout.

B-1 Convolution

In order to optimize the weight parameters during training, the gradients of these weights
with respect to the loss function have to be calculated. The forward pass equation of a single
convolution can be given in tensor format by,

Y = K ∗X (B-1)

with output Y , input X and weights K.

The gradient of the weight parameters with respect to the loss function can then be obtained
using the chain rule11,

∂L

∂K
= ∂L

∂Y
· ∂Y

∂K
, (B-2)

and with respect to the inputs with,

∂L

∂X
= ∂L

∂Y
· ∂Y

∂X
. (B-3)

When calculating convolutions, tensors are often transformed to matrices using the unfold op-
eration, which allows the convolution calculations to be obtained with a single matrix multi-
plication.17 These conversion will be denoted by Xcol, Ycol and Krow. Figure B-1 gives an
example of the unfolding function of X within a convolution operation. After the unfolding the
convolution operation in equation B-1 is simplified to a matrix multiplication,

Ycol = Krow ·Xcol (B-4)

The backpropagation step for a single convolution starts by unfolding tensor into patches of
dimension S ·D ·D for its rows and repeated for each kernel multiplication in its columns with

Master of Science Thesis Frederik Hogenbosch



62 Backpropagation Complexity

Figure B-1: Unfolding process the of X in a convolution operation with a 2× 2 kernel. The blue
shaded elements indicate the unfolding of that specific step.

dimension H ·W , resulting in a dimension of (S ·D ·D ×H ·W ). The dimension of the kernel
becomes (T × S ·D ·D) and for the output, (Cout ×H ·W ).

After unfolding the two gradient equations become,

∂L

∂Krow
= ∂L

∂Ycol
· ∂Ycol

∂Krow
, (B-5)

and,
∂L

∂Xcol
= ∂L

∂Ycol
· ∂Ycol

∂Xcol
. (B-6)

To simplify these expressions, the derivation in Deisenroth et al. 53 is used to obtain,

∂Ycol

∂Krow
= XT

col, (B-7)

and
∂Ycol

∂Xcol
= KT

row . (B-8)

The gradient expressions are then updated as,

∂L

∂Krow
= ∂L

∂Ycol
·XT

col, (B-9)

and
∂L

∂Xcol
= KT

row ·
∂L

∂Ycol
. (B-10)

Table B-1 gives the dimension of Xcol, Krow and Ycol.
The goal here is to calculate the number of FLOPs for the backpropagation process for a single
convolution. The FLOPs for the multiplication of two matrices with dimension (m × p) and
(n× p) is calculated as54,

FLOPs = 2mnp. (B-11)
The FLOPs calculation for equation B-9 is then given by,

FLOPs = 2HWTSD2, (B-12)

and for equation B-10 by,
FLOPs = 2HWTSD2. (B-13)

Note that these expression are equal. The unfold operation does not contribute to the total
number of FLOPs as it is a relocation of memory.
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Table B-1: Dimension for the unfolded matrices.

Matrix Dimension
Xcol S ·D ·D ×H ·W
Krow T × S ·D ·D
Ycol T ×H ·W

B-2 CP-decomposed convolution

The CP-decomposed convolution is separated into four subsequent smaller convolution. First
the input dimension S is mapped to R via a pointwise convolution, then two depthwise convo-
lutions for the horizontal and vertical spatial dimension, and finally the R dimension is mapped
back to T .38 The tensors are unfolded to matrices in the same manner as the previous section.
To calculate the gradient of this process the following set of equations can be followed,

∂L

∂Krt
=
(

∂L

∂Y

)
·XT

h , (B-14)

∂L

∂Kh
=
(

∂L

∂Xh

)
·XT

w, (B-15)

∂L

∂Kw
=
(

∂L

∂Xw

)
·XT

sr, (B-16)

∂L

∂Ksr
=
(

∂L

∂Xsr

)
·XT . (B-17)

As the gradients are calcualted from the last weights to the first, the order of calculation is
reversed.

For the intermediate layers, the output of the convolution is the input for the next. The gradients
of the loss function with respect to the intermediate input matrices are obtained with,

∂L

∂Xh
=
(

∂L

∂Y

)
·KT

rt, (B-18)

∂L

∂Xw
=
(

∂L

∂Xh

)
·KT

h , (B-19)

∂L

∂Xsr
=
(

∂L

∂Xw

)
·KT

w. (B-20)

The dimensions of the S to R convolution step is given in Table B-2, for the depthwise convo-
lutions in Table B-3 and for the R to T convolution step in Table B-4.

Table B-2: Matrix dimension for the R to T convolution step in the CP-decoposed convolution
operation.

Matrix Dimension
Xh,col R×H ·W
Krt,row T ×R
Ycol T ×H ·W
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Table B-3: Matrix dimension for the depthwise convolution steps in the CP-decoposed convolution
operation.

Matrix Dimension
Yw,col/Ysr,col R×H ·W
Kh,row/Kw,row R×R ·D
Yh,col/Yw,col R×H ·W

Table B-4: Matrix dimension for the S to R convolution step in the CP-decoposed convolution
operation.

Matrix Dimension
Xcol S ×H ·W
Ksr,row R× S
Ysr,col R×H ·W

In the previous section it was found that the number of FLOPs for ∂L
∂Krow

was equal to the
number for ∂L

∂Xcol
. For ease of notation, the number of FLOPs is only written down for the

weights and then doubled to arrive at the total number of FLOPs for the backward pass,
which also works in this case. Using equation B-11 the number of FLOPs for each step in the
decomposed convolution is calculated for the S to R step as,

FLOPssr = 4RSHW , (B-21)

for the horizontal depthwise convolution as,

FLOPsw = 4DHWR2, (B-22)

for the vertical depthwise convolution as,

FLOPsh = 4DHWR2, (B-23)

and finally for the mapping of R to T as,

FLOPsrt = 4RTHW . (B-24)
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Glossary

List of Acronyms

N Normal beat
S Supraventricular Ectopic Beat
V Ventricular Ectopic Beat
F Fusion beat
Q Unknown beat
FLOPs Floating point operations
ECG electrocardiography

List of Symbols

∗ Convolution
v Vector
◦ Outer product
M Matrix
Xcol Unfolded column matrix
Xrow Unfolded row matrix
X Tensor
a, A Scalar
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