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Abstract

This work is on the extension of the SWIFT method to option pricing problems where the sum of log-
normals occurs. The SWIFT method (Shannon Wavelet Inverse Fourier Technique) is extended to the
valuation of geometric Asian options and arithmetic Asian options with a Lévy process as underly-
ing price process and the valuation of European options under SABR dynamics. In both applications
a sum of lognormals (or sum of increments) occurs. The main result in this thesis is the SWIFT-SIA
method (SWIFT sinc integral approximation), which is applied to the valuation of arithmetic Asian
options as well as to the valuation of European options under the SABR model. Within the SWIFT-SIA
method the recovery of the probability density function is obtained by an approximation, instead of a
numerical integration method, which results in a very fast method compared to an alternative method
based on cosine expansions as well as high accuracy in the option values.

Keywords: Option pricing, Asian options, Lévy processes, SABR model, Shannon wavelets, Fourier
transform.
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1

Introduction

In the field of Computational Finance, options often need to be priced at high speed with high ac-
curacy since the resulting prices are used to calibrate financial models and determine a price to a
complex financial product. Option pricing has been introduced by Merton, Black and Scholes [4] and
their Black-Scholes formula has been popular ever since. The Black-Scholes formula is an analyti-
cal solution of the price of an European option under the Geometric Brownian Motion (GBM) asset
price process. The simplest example of an option is the European option, which under the correct
assumptions results in an analytical solution, for example under GBM dynamics as computed by the
Black-Scholes formula. Nowadays, there are a lot of different types of derivative contracts on the mar-
ket, each type of contract requires its own method in order to compute the fair price of this contract.

The start of each option pricing problem is the risk neutral pricing formula, which states that the fair
price of an option is determined by the discounted expectation of the payoff function under the risk
neutral measure. In order to apply this formula, one needs the probability density function corre-
sponding to the underlying stochastic process. For some underlying stochastic processes the prob-
ability density function is not known, which makes option pricing involved. Therefore, option pric-
ing techniques have been developed that approximate the probability density function. Option pric-
ing methods can be divided into three categories: partial differential equation pricing methods (PDE
methods), Monte Carlo methods and Fourier and numerical integration methods.

In this thesis we focus on the class of Fourier and numerical integration methods. This class of meth-
ods is known for its computational efficiency, since these methods rely on recovering the characteristic
function instead of the probability density function. For several log-asset price processes the charac-
teristic function does exist, whereas the probability density function is not known in closed-form. The
characteristic function of a stochastic process coincides with the Fourier transform of the probability
density function, thus the computation takes place in Fourier space.

The Fourier pricing methods have become more popular after the publication of the Carr-Madan
method, [5]. Nowadays, the COS method is a state-of-the-art pricing method, which is based on a
cosine expansion of the probability density function. The COS method has been applied to several
types of options and is a highly efficient method to compute European option prices and the method
has been extended to the valuation of path dependent options, such as Asian options [25].

Another way to approximate the probability density function is by applying wavelet functions. The
first method to introduce a wavelet expansion to price options was the WA[a,b] method [19]. In [19]
the recovery of the probability density function is done by Haar wavelets and B-spline wavelet approx-
imations. Shannon wavelets, which are based on the cardinal sine (sinc) function can also be used to
approximate the probability density function of the underlying, which results in the method known as
the SWIFT method [20]. The SWIFT method has shown great results in terms of accuracy and speed

1



2 1. Introduction

compared to the COS method in the valuation of European options [20] and has been extended to the
valuation of Bermudan options [17].

This thesis extends the applications of the SWIFT method to option pricing problems where the sum
of lognormals is present. The sum of lognormals (in the case of a GBM underlying process) or the
sum of independent increments (in the case of general Lévy processes) occurs in the valuation of
Asian options. Therefore the SWIFT method will be applied to the valuation of Asian options and in
particular we will focus on the arithmetic Asian options. The same techniques developed for Asian
options can be applied to the Stochastic Alpha Beta Rho (SABR) model.

The SABR model is a stochastic volatility model which is often used to price interest rate derivatives,
since the model tries to mimic the volatility smile in the market. The SABR model consists of one
forward St with volatility σt , both St and σt are random variables. Due to the stochastic volatility of
the SABR model, option pricing under SABR dynamics is quite involved. Hagan et al. [14] have de-
veloped the model, and provided an approximation for the implied volatility, which is often used by
practitioners to calibrate their market parameters. Unfortunately, the approximation is not always as
accurate as desired, for example in pricing long maturity options. Leitao et al. [15] have developed a
Monte Carlo method which shows high accuracy for contracts up to two years. In their work a sum of
lognormals occurs, which shows a good opportunity to test the SWIFT method under SABR dynam-
ics. The method shows great similarity with the recovery of the price of an arithmetic Asian option,
thus the application of the SWIFT density approximation could result in a more robust and efficient
method to compute European options under SABR dynamics.

1.1. Outline

The thesis is organized as follows. Chapter 2 provides the mathematical and financial background
that will be used in this work, such as the definition of the characteristic function and the class of Lévy
processes. With all the mathematical and financial background discussed, Chapter 3 will introduce
the SWIFT method. First an introduction to wavelet theory will be given, then the SWIFT method to
recover the probability density function of the underlying will be introduced. Chapter 3 discusses one
application of an option pricing problem to illustrate the method in practice.

Chapters 4 and 5 form the heart of the thesis. In these two chapters the SWIFT method will be applied
to the two aforementioned option pricing problems. Chapter 4 focuses on the pricing of arithmetic
Asian options with different underlying Lévy processes. The chapter will conclude with numerical
results. To check the performance of the SWIFT method in terms of CPU time and accuracy in arith-
metic Asian option pricing, experiments will be conducted for three different underlying processes
and compared to the COS method.

The paper by Leitao et al.[15] offers another way to analyze the performance of the SWIFT method.
Therefore Chapter 5 illustrates in what way the one time-step Monte Carlo method can benefit from
the SWIFT density approximation. At first, the method will be explained, where the focus is on Sec-
tion 5.2.1. The application of SWIFT will be dealt with and the chapter concludes with numerical
results.

In Chapter 6 we will draw conclusions and the results on the difference between the COS method and
the SWIFT method will be discussed. Finally we will give recommendations for future research on this
subject.
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The Sum of Lognormals Problem

This thesis focuses on derivative pricing problems in which a sum of lognormals occurs. A derivative is
a security which price depends on, or derives from, one or more underlying assets. The most common
underlying assets of derivative contracts are stocks, interest rates, commodities and foreign exchange
rates. Most known derivative contracts are bonds, futures, swaps, credit derivatives and options. If the
price of a future or an option depends on a stock at the stock exchange, that stock will be denoted as
the underlying asset of the derivative here.

The motivation in this thesis are option pricing problems, therefore let us further develop our knowl-
edge of options. Options can basically be divided in two types: call options and put options. A call
option gives the holder (buyer) of the option the right to sell the underlying asset for a fixed price to
the writer of the option (seller). A put option gives the holder the right to buy the underlying asset for
a fixed price from the writer. The fixed price is known as the strike price, K . Note that in both cases the
holder has the right to exercise the option, not the obligation, which results in a non-negative payoff.
The payoff functions of European options (vanilla options) are given by

VC all (S(T ),T ) = max{S(T )−K ,0} & VPut (S(T ),T ) = max{K −S(T ),0} ,

with S(·) the price of the underlying and T the maturity date of the contract. We have discussed the
difference between call and put options, but options come in different shapes and sizes. Another
way to categorize options is by their allowed exercise date. The holder of an European option is only
allowed to exercise the option at maturity T , whereas the holder of an American option may exercise
the option from the day of the purchase up to and including the maturity day T . Any option that
differs from the European or American option is denoted as an exotic option. These options are more
involved, which is implied by the name ’exotic’. The Asian option is an example of an exotic option,
where the payoff is dependent on the average of the underlying stock process. The path-dependency
of the option results in a more complicated pricing procedure compared to European options.

For each derivative security that is being traded, the right price has to be determined. The starting
point for an option pricing problem is the risk neutral pricing formula, which states that the price of
the option is the discounted expectation of the payoff-function, i.e.

V (S0, t0) = e−r (T−t0)EQ [V (S(T ),T )] , (2.1)

where r the risk neutral interest rate and E is the expectation with respect to the risk neutral measure
Q.

3



4 2. The Sum of Lognormals Problem

As mentioned, this thesis focuses on option pricing problems in the presence of a sum of lognor-
mals. The sum of lognormally distributed random variables (lognormals) occurs in several option
pricing problems. Unfortunately, the distribution of the sum of lognormals is not known in closed-
form, therefore numerical approximation techniques are necessary to compute the distribution. This
work consists of an approximation technique for the probability density function by means of its char-
acteristic function.

This chapter provides the necessary background in order to apply the SWIFT method. The sum of log-
normals will be defined, as well as the class of Lévy processes, which will be used throughout this work
as the class of stochastic processes for the underlying. The characteristic function plays an important
role in the approximation of the distribution, therefore we will define the characteristic function, the
Fourier transform and state some useful properties of the two.

2.1. Sum of Lognormals

Intuitively one might expect that the sum of lognormally distributed random variables has a closed
form distribution as in the case of the sum of normal random variables and squared normal random
variables. Let us define N ∈ N independent normal random variables Xi , i = 1, . . . , N , with mean µi

and variance σ2
i , i.e. Xi ∼N (µi ,σ2

i ).

Lemma 2.1. The sum X =∑N
i=1 Xi ∼N

(∑N
i=1µi ,

∑N
i=1σ

2
i

)
.

Lemma 2.1 will be proven for N = 2, but the extension to N ∈N follows by repeating the same proce-
dure.

Proof. Let us define two normal random variables X1, X2 with mean and variance µ1,σ2
1 and µ2,σ2

2
respectively. Then let us define the sum of the two by Z , Z = X1+X2. The probability density function
of the random variable Z can be computed by the convolution

fZ (z) =
∫
R

fX2 (z −x1) fX1 (x1)d x1.

Since X1 and X2 are normally distributed, it follows that

fZ (z) =
∫
R

1p
2πσ2

exp

(
− (z −x1 −µ2)2

2σ2
2

)
1p

2πσ1
exp

(
− (x1 −µ1)2

2σ2
1

)
d x1

=
∫
R

1p
2π

p
2πσ1σ2

exp

(
−σ

2
1(z −x1 −µ2)2 +σ2

2(x1 −µ1)2

2σ2
1σ

2
2

)
d x1

=
∫
R

1p
2π

p
2πσ1σ2

exp

(
−σ

2
1(z2 +x2

1 +µ2
2 −2x1z −2zµ2 +2x1µ2)+σ2

2(x2
1 +µ2

1 −2x1µ1)

2σ2
2σ

2
1

)
d x1

=
∫
R

1p
2π

p
2πσ1σ2

exp

(
−x2

1(σ2
1 +σ2

2)−2x1(σ2
1(z −µ2)+σ2

2µ1)+σ2
1(z2 +µ2

2 −2zµ2)+σ2
2µ

2
1

2σ2
1σ

2
1

)
d x1.

(2.2)

Let us define σZ =
√
σ2

1 +σ2
2, such that
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fZ (z) =
∫
R

1p
2πσZ

1p
2πσ1σ2

σZ

exp

−x2
1 −2x1

σ2
1(z−µ2)+σ2

2µ1

σ2
Z

+ σ2
1(z2+µ2

2−2zµ2)+σ2
2µ

2
1

σ2
Z

2
(
σ1σ2
σZ

)2

d x1

=
∫
R

1p
2πσZ

1p
2πσ1σ2

σZ

exp

−
(

x1 − σ2
1(z−µ2)+σ2

2µ1

σ2
Z

)2

−
(
σ2

1(z−µ2)+σ2
2µ1

σ2
Z

)2

+ σ2
1(z−µ2)2+σ2

2µ
2
1

σ2
Z

2
(
σ1σ2
σZ

)2

d x1

=
∫
R

1p
2πσZ

exp

(
−σ

2
Z

(
σ2

1(z −µ2)2 +σ2
2µ

2
1

)− (
σ2

1(z −µ2)+σ2
2µ1

)2

2σ2
Z (σ1σ2)2

)
1p

2πσ1σ2
σZ

exp

−
(

x1 − σ2
1(z−µ2)+σ2

2µ1

σ2
Z

)2

2
(
σ1σ2
σZ

)2

d x1

= 1p
2πσZ

exp

(
− (z − (µ1 +µ2))2

2σ2
Z

)∫
R

1p
2πσ1σ2

σZ

exp

−
(

x1 − σ2
1(z−µ2)+σ2

2µ1

σ2
Z

)2

2
(
σ1σ2
σZ

)2

d x1.

(2.3)

Note that the integral in (2.3) is the integral over the real line for a normal random variable x1, which
by definition is equal to 1, such that

fZ (z) = 1p
2πσZ

exp

(
− (z − (µ1 +µ2))2

2σ2
Z

)∫
R

1p
2πσ1σ2

σZ

exp

−
(

x1 − σ2
1(z−µ2)+σ2

2µ1

σ2
Z

)2

2
(
σ1σ2
σZ

)2

d x1

= 1p
2πσZ

exp

(
− (z − (µ1 +µ2))2

2σ2
Z

)
.

(2.4)

As a result Z is a normal random variable with mean µZ =µ1 +µ2 and variance σ2
Z =σ2

1 +σ2
2.

Lemma 2.1 states that the sum of independent normal random variables follows again a normal dis-
tribution and is easily obtained. Another example is the distribution of the sum of squared standard

normal random variables. Let us define Yi = Xi−µi
σi

, i = 1, . . . , N , such that Yi is a standard normal
random variable.

Lemma 2.2. The sum Y =∑N
i=1 Y 2

i ∼χ2
N .

Instead of giving a full proof, an illustrative proof of Lemma 2.2 will be provided, which can easily be
extended to a formal proof.

Proof. Let X = Y 2, where Y ∼N (0,1), then the cumulative distribution function of X is defined as

FX (x) =P (X ≤ x)

=P
(
Y 2 ≤ x

)=P
(−px ≤ Z ≤p

x
)

.
(2.5)

Since X is the square of a random variable it only admits non-negative values, thus FX (x) = 0 for x < 0
and by the Leibniz rule for integration it follows that
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fX (x) =dFX (x)

d x
=

d
(∫ p

x
−px

fZ (z)d z
)

d x

= fZ (
p

x)
d

(p
x
)

d x
− fZ (

p
x)

d
(p

x
)

d x

= 1p
2π

exp

(
−1

2
x2

)
1

2
x− 1

2 − 1p
2π

exp

(
−1

2
x2

)
·−1

2
x− 1

2

= 1p
2π

exp

(
−1

2
x

)
x− 1

2

= 1

2
1
2 Γ

( 1
2

) exp

(
−1

2
x

)
1

2
x

1
2 −1,

(2.6)

for x < 0 it must hold that fX (x) = 0, such that the density of X equals the density of a χ2(1) density
with 1 degree of freedom,

fX (x) =


1

2
1
2 Γ

( 1
2

) exp
(− 1

2 x
) 1

2 x
1
2 −1, x ≥ 0

0, x < 0.
(2.7)

The χ2(1) distribution has the extra property that the sum of N ∈ N independent χ2(1) distributed
random variables is a χ2(N ) random variable. Thus by combining the previous results, the lemma
holds.

Thus, a sum of squared normal variables follows a Chi-Squared distribution with N degrees of free-
dom. Lemmas 2.1 and 2.2 illustrate two examples where the sum of Gaussian random variables is
available in closed form. This is not the case for the sum of lognormally distributed random variables.

Definition 2.1. A random variable Y is lognormally distributed if the random variable X = logY has
a normal distribution, thus the pdf of X is defined as

fX (x) = 1√
2πσ2

X

exp

(
− (x −µ)2

2σ2
X

)
, (2.8)

such that the probability density function of Y is given by

fY (y) = 1

yσX
p

2π
exp

(
− (y −µ)2

2σ2
X

)
. (2.9)

Figure 2.1 illustrates the probability density function of lognormally distributed random variables. As
the figure shows, depending on the parameters µ and σ the distribution is a heavy-tailed distribution
with positive skewness.

Let us define Y as the sum of N ∈N lognormal random variables

Y =
N∑

i=1
Yi = Y1 + . . .+YN ,

with logYi normally distributed with mean µi and varianceσ2
i , logYi ∼N (µi ,σ2

i ), in that case the dis-
tribution of Y is difficult to determine. Since the probability density function of the sum of lognormals
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Figure 2.1: Probability density function fX (x) of lognormal random variable X , for several µ and σ.

is not known in closed form, numerous numerical techniques have been proposed to approximate the
distribution function, for example in [3] and [23]. One way to approximate the distribution of the sum
of lognormals Y is by determining the characteristic function of Y .

2.2. Characteristic function

If a random variable admits a probability density function, the probability density function can be
defined by its characteristic function. In that way recovering the probability density function is equiv-
alent to the recovery of the characteristic function. The inverse Fourier transform of the characteristic
function results in the probability density function. The characteristic function approach allows us
to approximate the probability density function of an underlying stochastic model without a closed-
form expression for the probability density function.

Having defined the distribution of a single lognormally distributed random variable we can now turn
to the determination of the characteristic function of a lognormally distributed random variable. The
following definitions will be used throughout this work.

Definition 2.2. A function f :R→C is said to be Lebesgue-integrable if

∫
R
| f (x)|d x <∞. (2.10)

The space of all integrable functions is defined as L1(R).

Furthermore, L2(R) is the space of square integrable functions defined by all functions that satisfy

∫
R
| f (x)|2d x <∞. (2.11)

The L2(R) space is equipped with the inner product

〈 f , g 〉 =
∫
R

f ḡ d x, (2.12)
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where ḡ denotes the complex conjugate of g . Next, let us define the Fourier transform of an integrable
function f .

Definition 2.3. The Fourier transform of an integrable function f :R→C denoted by f̂ is defined as

f̂ (ω) :=
∫
R

f (x)e−ıωx d x, (2.13)

for ω ∈R and ı the complex unit.

In practice, different definitions of the characteristic function are being used, we have chosen to use
the one in definition 2.4.

Definition 2.4. Let X be a random variable with probability density function fX , its characteristic
function is defined as

f̂X (ω) :=E[
e−ıωX ]

=
∫
R

fX (x)e−ıωx d .x
(2.14)

We can conclude that the Fourier transform of a probability density function coincides with the char-
acteristic function of the random variable corresponding to that probability density function. Since
we are interested in the characteristic function of the sum of lognormals, we propose the use of
Lemma 2.3.

Lemma 2.3. For independent random variables X and Y with characteristic functions f̂X (ω) and f̂Y (ω)
and a,b ∈R, it follows that

f̂aX+bY (ω) = f̂X (aω) · f̂Y (bω). (2.15)

Proof. Since X and Y are independent random variables, by the definition of the characteristic func-
tion it follows that

f̂aX+bY (ω) =E
[

e−ıω(aX+bY )
]

=E
[

e−ıωaX e−ıωbY
]

=E[
e−ıωaX ]

E
[

e−ıωbY
]

= f̂X (aω) · f̂Y (bω)

(2.16)

and the lemma holds.

Let us assume that Y is the sum of N independent lognormally distributed random variables Y1, . . . ,YN ,
then by Lemma 2.3 its characteristic function can be written as

f̂Y (ω) = f̂∑N
i=1 Yi

(ω),

=
N∏

i=1
f̂Yi (ω).

(2.17)

Furthermore if the Y1, . . . ,YN are identically distributed, we can write
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f̂Y (ω) = (
f̂Yi (ω)

)N
. (2.18)

These results show that the recovery of the probability density function fY (y) can rely on the recovery
of the characteristic function of the individual random variables Yi . The stochastic processes dealt
with in this work are in the class of Lévy processes. The next section will define this class.

2.3. Lévy processes

The class of Lévy processes is a particular class of stochastic processes. Before defining the character-
istics of Lévy processes, let us start with the definition of a stochastic process.

Definition 2.5. Let (Ω,F ,P ) be a probability space and let X :Ω→Rbe a random variable. A stochas-
tic process is the set of real random variables on the sample space Ω indexed by the ordered time set
T ,

X = {X t : t ∈ T } .

The time set is then defined by
{

t0, t1, . . . , tMd

}
, with 0 = t0 and tMd = T .

Definition 2.6. The stochastic process X is stable if for each N ∈ N, X1, . . . , XN independently and
identically distributed copies of X , it holds that

bX + c
d= X1 + . . .+XN ,

with b ∈RN
>0, c ∈RN

≥0 constants.

The normal distribution, the Lévy distribution and the Cauchy distribution satisfy definition 2.6 and
are special cases of Lévy stable distributions. Lévy processes have shown to be a better fit for the
financial market compared to Gaussian processes, since Lévy processes can model jumps, skewness
and excess kurtosis.

Definition 2.7. A stochastic process X = {X t : t ≥ 0} with X0 = 0 a.s. is said to be a Lévy process if it
satisfies the following properties:

• X has independent increments, i.e. for 0 ≤ t1 < . . . < tN <∞, X t2 − X t1 , X t3 − X t2 , . . . , X tN − X tN−1

are independent.

• X has stationary increments, i.e. for any s < t , X t −Xs has the same distribution as X t−s .

• X is continuous in probability, i.e. for any ε> 0 and t ≥ 0, limh→0 P (|X t+h −X t | > ε) = 0.

Having stated the definition of a Lévy process, we can introduce infinitely divisible distributions. It
turns out that Lévy processes are generated by infinitely divisible distributions.

Definition 2.8. A real valued random variable X , with probability density function fX (x) is said to be
infinitely divisible if there exist independently and identically distributed random variables X1, . . . , XN

for all N ∈N, such that X has the same distribution as the sum of the Xi , i = 1, . . . , N , i.e.

X
d= X1 + . . .+XN .

Lévy processes are related to the class of infinitely divisible distributions, the relationship between the
two has been defined by Sato in [22] and is stated here as Theorem 2.4
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Theorem 2.4. If {X t }t∈[0,T ] is a Lévy process on probability space (Ω,F ,P ), then X t has an infinitely
divisible distribution ∀t ∈ [0,T ].

Proof. Let t0 = 0 < t1 < . . . < tN = t be a realization of the stochastic process {X t }t∈[0,T ], then we can
define X t as the sum of its increments,

X t = (X t1 −X t0 )+ (X t2 −X t1 )+ . . .+ (X t −X tN−1 ), (2.19)

Since the increments are independent and statistically identical for increments with the same length
ti − ti−1,

(
{X t }t∈[0,T ] is a Lévy process

)
, we can write for the characteristic function of X t ,

f̂X t (ω) = f̂∑N
i=1

(
X ti −X ti−1

)(ω)

=
N∏

i=1
f̂(

X ti −X ti−1

)(ω)

=
(

f̂(
X ti −X ti−1

)(ω)

)N

.

(2.20)

If we define new random variables Yi = X ti −X ti−1 , it follows from Lemma 2.3 that

X t
d= Y1 + . . .+Yn . (2.21)

As a result the Lévy process is infinitely divisible.

Another way to determine whether a distribution belongs to the Lévy family is by its characteristic
function, which is known from the Lévy-Khinchine formula. The Lévy-Khinchine formula gives an
analytical expression for the characteristic function of an infinitely divisible distribution. Since each
Lévy process admits an infinitely divisible distribution, the characteristic function is known for each
Lévy process.

Theorem 2.5 (Lévy-Khinchine formula). Let {X t }t∈[0,T ] be a Lévy process defined on probability space
(Ω,F ,P ), then there exists a triplet (b,c, v) uniquely determined by X t , such that for allω ∈R and x ≥ 0
the characteristic function of X can be written as,

f̂X t (ω) =E[
e−ıωx]

=E[
exΨω

]
,

(2.22)

withΨω defined as

Ψω =−1

2
ω2c − ıωb +

∫
R

(
e−ıωy −1+ ıωy

)
v(d y), (2.23)

where b ∈R,c ∈R≥0 and v the Lévy measure satisfying

v({0}) = 0 and
∫
R

min
{|x|2,1

}
v(d x) <∞.
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The triplet (b,c, v) uniquely defines the Lévy process and is known as the Lévy triplet and the exponent
Ψω is known as the Lévy (or characteristic) exponent. Lévy processes can be categorized in several
ways. One way is to consider (in)finite variation, another way is to check whether a Lévy process
admits (in)finite activity. To be able to distinguish between infinite and finite activity, we need to
provide for more explanation on the Lévy measure v .

Definition 2.9. Let {X t }t∈[0,T ] be a Lévy process defined on probability space (Ω,F ,P ) with Lévy
triplet (b,c, v). The Lévy measure is a unique positive measure v on R which counts the expected
number of jumps per unit time interval, [0,1], i.e.,

v(c) = E [#{t ∈ [0,1] :∆X t = X t −X t− 6= 0}] . (2.24)

Although the number of jumps is important, the size of the jump matters too. A jump is considered
large if the jump size is greater than 1, thus if |∆X t | > 1, which results in the following important
property of a Lévy measure,

∫
R

min
{|x|2,1

}
v(d x) <∞. (2.25)

For a large jump equation (2.25) reduces to∫
|x|>1

v(d x) <∞

and for a small jump the condition can be written as

∫
|x|<1

|x|2v(d x) <∞.

Equation (2.25) tells us that for a Lévy process the expected number of large jumps must be finite in
[0,1]. But the expected number of small jumps may be infinite, which leads to the distinction between
Lévy processes of finite- or infinite activity.

Definition 2.10. A Lévy process {X t }t∈[0,T ] is a finite activity Lévy process with triplet (b,c, v) if for the
Lévy measure v it holds that

∫
R

v(d x) <∞,

thus if the measure has a finite integral.

In other words, a finite activity Lévy process has a finite amount of expected small jumps in the interval
[0,1]. An infinite activity Lévy process has an infinite number of expected jumps in the unit interval
and its formal definition is stated as follows.

Definition 2.11. A Lévy process {X t }t∈[0,T ] is an infinite activity Lévy process with triplet (b,c, v) if for
the Lévy measure v it holds that

∫
R

v(d x) =∞,

thus if the measure has infinite integral.
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We have covered the definitions of Lévy processes with finite and infinte activity, but we did not dis-
cuss the zero activity Lévy process. If a Lévy process has zero activity, its measure v equals 0. An
example of a zero activity Lévy process is the Brownian Motion (with drift). The Brownian Motion
is a continuous process, there are no jumps present in the process. The characteristic function of a
Brownian motion is given by

f̂ (ω, t )GBM = exp

(
−ıωµt − 1

2
σ2ω2t

)
.

By the Lévy-Khinchine formula, Theorem 2.5, indeed implies that v = 0. As mentioned another way to
categorize Lévy processes is to check their level of variation. A Lévy process can have finite or infinite
variation, but in order to distinguish between these two, the definition of total variation of a stochastic
process is given.

Definition 2.12. The total variation of a stochastic process {X t }t∈[0,T ], with the partitioning of the
interval [0,T ] given by

0 = t0 < t1 < . . . < tN = T,

is defined by

T (X ) = sup
N∑

i=1
|X ti −X ti−1 |.

By this definition we can define (in)finite variation for Lévy processes.

Definition 2.13. Let {X t }t∈[0,T ] be a Lévy process with triplet (b,c, v) on the interval [0,T ]. The process
is said to be a Lévy process of finite variation if

P

(
T (X ) = sup

N∑
i=1

|X ti −X ti−1 | <∞
)
= 1.

Thus a Lévy process is of finite variation if the total variation on the interval [0,T ] is finite with prob-
ability one. The Lévy process is of infinite variation if the total variation on a sample path in [0,T ] is
infinite with probability one.

Definition 2.14. Let {X t }t∈[0,T ] be a Lévy process with triplet (b,c, v) on the interval [0,T ]. The process
is said to be Lévy process of infinite variation if

P

(
T (X ) = sup

N∑
i=1

|X ti −X ti−1 | =∞
)
= 1.

Another way to distinguish between finite and infinite variation Lévy processes is with help of Theo-
rem 2.5 and the corresponding triplet (b,c, v). If a Lévy process is of finite variation, it holds that

c = 0 and
∫
|x|<1

|x|v(d x) <∞.

If the process admits infinite variation, the process satisfies

c 6= 0 or
∫
|x|<1

|x|v(d x) =∞.
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Figure 2.2: Approximated probability density functions of the GBM, NIG and CGMY processes and the modulus of the
corresponding characteristic functions.

GBM NIG CGMY

Variation ∞ ∞ ∞ if Y ∈ [1,2)

Activity 0 ∞ ∞ if Y ∈ [0,2)

Table 2.1: Three Lévy processes categorized by their activity and variation.

Concluding the section on the Lévy process, three different Lévy processes will be stated which will
act as underlying stochastic processes for the option pricing problems. The first is the well-known
Geometric Brownian Motion (GBM), a continuous Lévy process. The second process is the Normal
Inverse Gaussian process (NIG) and finally the CGMY process will be introduced. Table 2.1 categorizes
the three Lévy processes based on the variation and activity.

2.3.1. GBM process

The Geometric Brownian Motion is the asset price model which is used in the Black-Scholes setting.
Due to assumptions made in the Black-Scholes model, calculating standard European option prices
under GBM dynamics are straightforward and admit an analytical solution. A stochastic process S =
{St : t ≥ 0} follows a Geometric Brownian Motion if it satisfies the following stochastic differential
equation

dSt =µSt d t +σSt dWt ,

with µ the drift, σ the volatility and Wt a Wiener process. The characteristic function of the GBM
process is defined as

f̂ (ω, t )GBM = exp

(
−ıωµt − 1

2
σ2ω2t

)
. (2.26)

2.3.2. NIG process

One of the more modern processes of the Lévy processes is the NIG process, which is short for the
Normal Inverse Gaussian process. The process was introduced in 1977, but found its application in
financial mathematics in 1997 [2]. The Normal Inverse Gaussian process is mixture of a Gaussian
distribution and an Inverse Gaussian process. The process is controlled by four parameters α, β, ∂
and µ. α controls the steepness of the density, β is the skewness parameter, ∂ is the scale parameter
and µ represents the percentage drift of the process.
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dSt =µd t +dWh(t ), (2.27)

where Wt is a Wiener process, h(t ) an Inverse Gaussian process with parameters IG
(
ν
γ ,ν2

)
, with

ν= ∂d t and γ=
√
α2 −β2.

The characteristic function of the NIG process is defined by

f̂ (ω, t ,α,β,∂)NIG = f̂ (ω, t )GBM ·exp

[
∂t

(√
α2 −β2 −

√
α2 − (

β+ ıω
)2

)]
. (2.28)

2.3.3. CGMY process

The Carr-Geman-Madan-Yor (CGMY) process is inspired by jump diffusion models, which describe
assets as jump diffusions. Diffusion models capture small moves, while in financial markets large
jumps could also occur. The CGMY process can capture both small jumps as well as large moves
in the underlying process. The model is named after the four writers of [6], which have developed
the model. The CGMY process is a Lévy process defined by four parameters, C , G , M and Y , where
C ,G , M > 0 and Y ∈ (−∞,2). The CGMY model allows both infinite and finite activity as well as infinite
and finite variation, depending on the parameter Y . The CGMY process has infinite activity if and only
if Y ∈ [0,2) and paths of the CGMY process have infinite variation if and only if Y ∈ [1,2). Parameter C
represents the kurtosis of the distribution, where G controls the exponential decay on the right tail of
the density function and M the exponential decay on the left tail of the density function.

The process admits a closed-form expression for the characteristic function, but unfortunately not for
the probability density function. Nevertheless, by means of the SWIFT method and the COS method
an approximation to the density function will be obtained. The characteristic function of the CGMY
process is defined by

f̂ (ω, t ,C ,G , M ,Y )CGMY = f̂ (ω, t )GBM ·exp
[
C tΓ(−Y )

(
(M − ıω)Y −M Y + (G − ıω)Y −GY )]

(2.29)

2.4. Sum of increments of a Lévy process

This chapter has defined the sum of lognormals, of which we will approximate the distribution by
means of the SWIFT method. Previously we have stated three Lévy processes, the GBM process, the
NIG process and the CGMY process. In the application of SWIFT for the arithmetic Asian option valu-
ation and European option valuation under SABR dynamics, we will define a new state variable which
is related to the increment process of the underlying stochastic process S(ti ) at [0,T ],

R(ti ) = log

(
S(ti )

S(ti−1)

)
.

If the underlying stochastic process has GBM dynamics, the increments are lognormally distributed
and the sum of increments is equivalent to the sum of lognormals. However, if the underlying stochas-
tic process has NIG or CGMY dynamics, the increments are not lognormally distributed. Luckily the
SWIFT method is applicable to both the sum of lognormals as the sum of independent increments.
Because the NIG and the CGMY process are Lévy processes, they have independent and identically
distributed increments.
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The SWIFT Method

SWIFT is short for Shannon Wavelet Inverse Fourier Technique, which implies that the SWIFT method
is a Fourier method combined with a Shannon wavelet approximation. Wavelet bases to approximate
density functions have found their way to the field of computational finance recently. Different types
of wavelet bases have been proposed for different financial problems. Haar wavelets have been used
to quantify credit portfolio losses [18] and have been applied to the computation of market risk mea-
sures, such as the VaR and the Expected Shortfall [9]. The use of a Shannon wavelet base, which relies
on the cardinal sine function, has shown to result in a robust numerical method to compute European
option prices [20]. The SWIFT method has shown exponential convergence for European option valu-
ation, for heavy-tailed distributions and for long maturity options. One benefit of the SWIFT method
is that the method is robust, compared to other Fourier methods, such as the COS method. A priori
the integral does not need to be truncated, since the scale of approximation, m, results automatically
in the number of terms in the wavelet expansion needed to give an accurate approximation of the
density function.

This chapter will introduce the SWIFT method, first of all we will explain the basics of wavelet theory
and define multiresolution analysis with the Shannon wavelet basis. For this explanation we follow
the theory presented by Ingrid Daubechies in [10]. Having looked at the theory, the SWIFT method
to approximate the probability density function will be addressed. We are interested in the numeri-
cal benefits of the SWIFT method, therefore we will compare the SWIFT method to a state of the art
method for option pricing: the COS method. Both the SWIFT method abd the COS method relies on a
Fourier expansion of the probability density function based on the characteristic function. Section 3.5
will give a short introduction to the COS method. To gain full insight in the SWIFT method in practice,
we will apply the SWIFT method as well as the COS method to European option pricing.

3.1. Introduction to wavelet theory

The aim is to approximate the probability density function by a finite number of Shannon scaling
functions. This is all based on multiresolution analysis.

3.1.1. Multiresolution analysis

A multiresolution analysis includes a family of closed nested subspaces in L2(R),

. . . ⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂ . . .

15
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with the following properties

⋂
j∈Z

V j = {0} and
⋃
j∈Z

V j = L(R)2. (3.1)

Multiresolution results from the two extra properties:

f (x) ∈V j ⇔ f (2x) ∈V j+1,

f (x) ∈V j ⇔ f (x −2− j k) ∈V j ,∀k ∈Z.
(3.2)

As a result we can write the following

f (x) ∈V0 ⇔ f (2 j x) ∈V j ,

thus all spaces V j are scaled versions of the space V0. At this point a multiresolution analysis can
be defined. The core of a multiresolution analysis is that if a collection of subspaces V j satisfy the
aforementioned properties, then there exists an orthonormal wavelet basis

{
ψm,k

}
m,k∈Z.

Definition 3.1. Let us defineφ ∈ L2(R) the generator of the family
{
φm,k

}
m,k∈Z withφm,k (x) = 2

m
2 φ(2m x−

k), furthermore let us define the space Vm as

Vm := closureL2(R)

({
φm,k

}
k∈Z

)
.

If Vm satisfies the aforementioned properties (3.1) and (3.2) and φ0,k forms an orthonormal basis of
V0, then we call φ the scaling function or father wavelet.

For any f ∈ L2 (R) a projection of L2 (R) onto Vm , Pm : L2 (R) →Vm is defined as

Pm f (x) = ∑
k∈Z

〈 f ,φm,k〉φm,k (x). (3.3)

If φ is a scaling function (father wavelet) then there exists an orthonormal wavelet basis
{
ψ j ,k

}
j ,k∈Z of

L2(R), ψ j ,k (x) = 2
j
2ψ

(
2 j x −k

)
, such that, for all f ∈ L2(R),

P j f (x) = P j+1 f (x)+ ∑
k∈Z

〈 f ,ψ j ,k〉ψ j ,k (x). (3.4)

The function ψ is called the mother wavelet and can be determined explicitly. In order to derive the
mother wavelet, let us define subspaces W j , with the following properties

V j+1 =V j
⊕

W j and L2(R)
∑
j∈Z

⊕
W j , (3.5)

such that
{
ψ j ,k

}
m,k∈Z forms an orthonormal basis for W j and it follows that the projection map can

be written as
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Pm f (x) =
m−1∑

j=−∞

∑
k∈Z

d j ,kψ j ,k (x) = ∑
k∈Z

cm,kφm,k (x), (3.6)

where d j ,k = ∫
R f (x)ψ j ,k (x)d x are the wavelet coefficients and cm,k = ∫

R f (x)φm,k (x)d x the scaling co-
efficients. The projection map can be expressed in both the scaling functions as well as the wavelet
functions. The higher the scale of approximation m, the more accurate the truncated series represen-
tation becomes.

3.1.2. Shannon Wavelets

In this thesis we will consider the Shannon scaling function or the Sinc function to be the scaling
function. The Shannon wavelet father function is defined as

φ(x) = sinc(x) =


sin(πx)

πx
, x 6= 0,

1, x = 0.
(3.7)

The Shannon mother wavelet is defined as

ψ(x) = sinc

(
x − 1

2

)
−2sinc(2x −1) . (3.8)
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Figure 3.1: Shannon mother (ψ) and father wavelet (φ) functions.

Figure 3.1 illustrates the Shannon mother and father wavelet functions. The corresponding basis ∀k ∈
Z for subspaces for Vm and Wm are the following,

φm,k (x) =2
m
2 φ

(
2m x −k

)
=2

m
2

sin(π (2m x −k))

π (2m x −k)
,

(3.9)

ψm,k (x) =2
m
2

sin
(
π

(
2m x −k − 1

2

))− sin
(
2π

(
2m x −k − 1

2

))
π

(
2m x −k − 1

2

) . (3.10)
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Figure 3.2: The Fourier transform of the Shannon scaling function, φ̂(ω).

The Fourier transforms are given by

φ̂m,k (ω) =
∫
R
φm,k e−ıωx d x

=e−ı k
2m ω

2m/2
· rect

( ω

2m+1π

)
,

(3.11)

and

ψ̂m,k (ω) =
∫
R
ψm,k e−iωx d x

=e−ı
k+ 1

2
2m ω

2
m
2

(
rect

(
ω

2mπ
− 3

2

)
+ rect

(
− ω

2mπ
− 3

2

))
,

(3.12)

with rect(·) the rectangular function

rect(x) =


1 if |x| < 1

2 ,
1
2 if |x| = 1

2 ,

0 if |x| > 1
2 .

(3.13)

Since the father wavelets φ are rather-straightforward, the focus is on the father wavelet instead of the
mother wavelet. Furthermore, the Shannon wavelet function has a slow decay in the time domain,
but a sharp decay in the Fourier (frequency) domain. Figure 3.2 illustrates the compact support of the
Fourier transform of the wavelet scaling function.

At this stage, we have all the tools to use Shannon wavelets to approximate the probability density
function f (·) by means of the SWIFT method.
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3.2. The approximation of the probability density function

The density function fX will be expanded by Shannon scaling functions with approximation level m
and the coefficients cm,k in (3.6) will be determined by the Fourier transform. The computation of the
coefficients cm,k is the core of the SWIFT method and we will determine the coefficients with the help
of Vieta’s formula.

The probability density function of a continuous random variable X , fX (·), is defined on L2 (R) and its
projection Pm f (x) (3.3) is defined as

fX (x) ≈ Pm fX (x) = ∑
k∈Z

cm,kφm,k (x), (3.14)

with m the scale of approximation. By Lemma 1 in [20], i.e. the assumption that the density function
fX tends to zero at plus and minus infinity, the infinite summation can be truncated to a finite summa-
tion without loss of significant density mass. We will truncate the infinite sum (3.14) by k = k1, . . . ,k2,
such that

Pm fX (x) ≈ f ∗
X (x) =

k2∑
k=k1

cm,kφm,k (x), (3.15)

for well-chosen k1 and k2. The scaling (or density) coefficients are defined by

cm,k =〈 fX ,φm,k〉 =
∫
R

fX (x)φm,k (x)d x

=
∫
R

fX (x)2
m
2 φ(2m x −k)d x

=2
m
2

∫
R

fX (x)sinc(2m x −k)d x.

(3.16)

3.2.1. Vieta’s formula

In order to obtain the density coefficients in (3.16), we use Vieta’s formula to write the cardinal sine
function as a product of cosine functions. By [13] it follows that

sinc(x) =sin(πx)

πx

=cos
(
π

x

2

) sin
(
π x

2

)
π x

2

=cos
(
π

x

2

)
sinc

(
π

x

2

)
= . . .

=
∞∏

n=1
cos

(
π

x

2n

)
.

(3.17)

We truncate this infinite product by a finite product, with N ∈N and apply the known trigonometric
relation

cos(x)cos(y) = 1

2

(
cos(x + y)+cos(x − y)

)
, (3.18)
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and obtain

sinc(x) =
∞∏

n=1
cos

(
π

x

2n

)
≈

N∏
n=1

cos
(
π

x

2n

)
= 1

2N−1

2N−1∑
n=1

cos

(
2n −1

2N
πx

)
=:sinc∗(x).

(3.19)

Substituting (3.19) to (3.16), we obtain the following expression for the density coefficients

cm,k =2
m
2

∫
R

fX (x)sinc(2m x −k)d x

≈ 2
m
2

2N−1

2N−1∑
n=1

∫
R

fX (x)cos

(
2n −1

2N
π

(
2m x −k

))
d x

=:c∗m,k .

(3.20)

Let us define the error resulting from Vieta’s formula approximation as

εV i et a = sinc(x)− sinc∗(x),

then Lemma 1 in [20] states that for c ∈R>0 and x ∈ [−c,c] the error εV i et a is bounded by

|εV i et a | ≤ (πc)2

22(N+1) − (π)2
, (3.21)

if N ≥ log2(πc). This lemma allows us to choose a sufficiently large N . Let us consider N ≥ log
(
πMm,k

)
,

where Mm,k = max(|2m a −k| , |2m a +k|) for a constant a > 0 such that

FX (−a)+1−FX (−a) < ε,

for an ε> 0 and FX the distribution of the random variable X , then by Theorem 1 in [20] it follows that

lim
N→+∞

c∗m,k → cm,k .

In order to speed up the computation of the density coefficients and to allow the use of the Fast Fourier
Transform (FFT), we choose (following [20]) a constant N for each k. Recall that for the Fourier trans-
form of fX (·), f̂X (·), it follows that
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f̂X (ω) =
∫
R

e−ıωx fX (x)d x

⇔
f̂X (ω) ·e

−ıkπ 2n−1
2N =e

−ıkπ 2n−1
2N ·

∫
R

e−ıωx fX (x)d x

⇔
f̂X (ω) ·e

ıkπ 2n−1
2N =

∫
R

e
ıωx+ıkπ 2n−1

2N fX (x)d x,

(3.22)

and using Euler’s identity, we obtain

Real
{

f̂X (ω)
}= ∫

R
cos(ωx) fX (x)d x. (3.23)

Applying the results of (3.23), (3.22) and the substitution ω= 2n−1
2N π2m at (3.20), we obtain the follow-

ing approximation of the probability density coefficients cm,k

cm,k ≈ 2
m
2

2N−1

2N−1∑
n=1

Real

{
f̂X

(
2n −1

2N
π2m

)
e

ıkπ(2n−1)
2N

}
. (3.24)

To be able to apply the Fast Fourier Transform algorithm, we need to make an extra adjustment
to (3.24),

cm,k ≈ 2
m
2

2N−1

2N−1∑
n=1

Real

{
f̂X

(
2n −1

2N
π2m

)
e

ıkπ(2n−1)
2N

}

= 2
m
2

2N−1

2N−1−1∑
n=0

Real

{
f̂X

(
2n +1

2N
π2m

)
e

ıkπ(2n+1)
2N

}
,

(3.25)

with the extra assumption that f̂X

(
2n+1

2N π2m
)
= 0 from 2N−1 to 2N −1, we obtain

cm,k ≈ 2
m
2

2N−1

2N−1∑
n=0

Real

{
f̂X

(
2n +1

2N
π2m

)
e

ıkπ(2n+1)
2N

}
. (3.26)

3.2.2. Probability density function

Equation (3.15) results in a way to approximate the probability density function. If the density coeffi-
cients are computed, the probability density function can be recovered in one step. Let us recall the
wavelet approximation to the density function (3.15),

fX (x) ≈
k2∑

k=k1

cm,kφm,k (x)

=
k2∑

k=k1

cm,k 2
m
2 sinc

(
π

(
2m x −k

))
.

(3.27)
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If we set x = k
2m , for k = k1, . . . ,k2, it follows that

fX

(
k

2m

)
=

k2∑
k=k1

cm,k 2
m
2 sinc

(
π

(
2m

(
k

2m

)
−k

))

=2
m
2

k2∑
k=k1

cm,k ·1,

(3.28)

such that the approximation to the probability density function is the cumulative sum of the density
coefficients cm,k scaled by 2

m
2 .

3.3. Scale of approximation m

In this section we will derive a method to choose the scale parameter m a priori. From Lemma 2.2
in [17] we can state that if a function f is bandlimited with B < 2m , then there exists an ω value such
that | f̂X (ω)| < T OL for all |ω| > 2mπ.

Definition 3.2. A function f is bandlimited if there exists a constant B < ∞, such that the Fourier
transform is zero for |ω| > Bπ, i.e.

f̂ (ω) =
∫ Bπ

−Bπ
f (x)e−ıωx d x. (3.29)

The variable B is called the bandwidth of the function. In our application in financial mathematics the
most common density functions are not bandlimited, however their characteristic functions do tend
to zero for |ω|→∞. Thus we can assume that the density function is ’close’ to a bandlimited function
and we can choose the scale of approximation m such that the density coefficients are negligibly small
for |ω| > Bπ. If we define a tolerance level T OL a priori, we can search for the value m ∈ Z, such that
| f̂X (ω)| < T OL. Let us define the projection error εp as

εp := ∣∣ f (x)−Pm
(

f (x)
)∣∣

=
∣∣∣∣∣ f (x)− ∑

k∈Z
cm,kφm,k (x)

∣∣∣∣∣ .
(3.30)

In the case of the GBM process as underlying an analytical expression to compute m is available,
however in the case of the CGMY process there is no analytical inversion available and the proper
parameter m is obtained by plugging in m = 1,2, . . . until we find | f̂ (2mπ)| < T OL.

3.3.1. Computation of m under the GBM model

The characteristic function of an asset, X t , driven by the GBM model is given by (2.26), i.e.,

f̂X t (ω) = exp

(
−ıωµ− 1

2
σ2ω2t

)
. (3.31)

Where we look for the value m such that | f̂X t (ω)| < T OL for all |ω| > 2mπ. By [17] the following analyt-
ical solution is obtained

m(T OL) = log

(
1

π

√
−2log(T OL)

(tσ2)

)
. (3.32)
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The appropriate scale of approximation is then given by m = dm(T OL)e.

3.3.2. Computation of m under the NIG and CGMY model

Since there is no analytical solution available in the case of the NIG process or the CGMY process, the
scale of approximation at tolerance level T OL, m(T OL), is obtained with Algorithm 3.1 in which ωm

is defined as ωm = 2mπ, with 2m the ’bandwidth’ of the density function fX .

Initialization:

• Define ωm = 2mπ.

Main loop: for m = 1 to 10

• Compute f̂X (−ωm), f̂X (ωm).

• Compute εm = 1
2π

∣∣ f̂X (−ωm)+ f̂X (ωm)
∣∣.

• If εm < T OL Break

Final Step:

• Scale of approximation m.

Algorithm 3.1: A priori computation of scale of approximation m.

3.4. The SWIFT method applied to European option pricing

The starting point in option pricing methods is the risk neutral option valuation formula,

V (S0, t0) = e−r (T−t0)EQ
[
V (y,T )|S0

]
(3.33)

with V (S0, t ) the option value at time t with initial asset price S0, V (·, ·) the payoff function, maturity
of the option T , risk neutral interest rate r and EQ the expectation under the risk neutral measure Q.
We can express(3.33) in terms of the transitional density function fy |S0 , we obtain

V (S0, t0) =e−r (T−t0)EQ
[
V (y,T )|S0

]
=e−r (T−t0)

∫
R

V (y,T ) fy |S0 d y.
(3.34)

The integral on R will be truncated by [a,b] and the density function can be approximated by the
SWIFT wavelet approximation, it follows that

V ∗(S0, t0) =e−r T
k2∑

k=k1

(
cm,k

∫ b

a
V (y,T )φm,k (y |S0)d y

)

=e−r T
k2∑

k=k1

cm,kVm,k (S0)

(3.35)

with the payoff coefficients Vm,k (S0) defined as:
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Vm,k (S0) =
∫ b

a
V (y,T )φm,k (y |S0)d y. (3.36)

The coefficients k = {k1, . . . ,k2} can be directly computed from the truncated interval [a,b], with

k1 := ⌊
2m a

⌋
and k2 := ⌈

2mb
⌉

.

3.4.1. Integration range [a,b]

The real line on which the probability density function is approximated is truncated by an arbitrary
interval or by use of the cumulant generating function, following [12]. For the underlying GBM, NIG
and CGMY processes the cumulants are available in closed-form, such that truncation will be based
on the cumulant generating function to obtain the finite interval [a,b]. Let us define

[a,b] :=
[

x0 +η1 −L
√
η2 +p

η4, x0 +η1 +L
√
η2 +p

η4

]
, (3.37)

where x0 = log
(

S0
K

)
, default value L = 10 and ηt represents the t−th cumulant of log

(
ST
K

)
. Table 3.1

shows the accuracy of the cumulant approach to truncate the integration range of a Normal random
variable X , X ∼N (µ,σ2). The cumulant approach results in the smallest error, which shows that the
area under the density function is very close to the value 1.
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Figure 3.3: Probability density of a Normal random variable
with the cumulant interval [a,b] shown.

a b Error (area)

−4 15 0.105

−6 20 6.241e −03

−8 25 9.181−05

−10 30 5.733e −07

Table 3.1: Absolute error of the area under the probability
density function with on the truncated interval [a,b],

cumulant approach gives a =−10 and b = 30. Parameters:
µ= 10, σ= 4.

Let us define the cumulant generating function

ηX
t := logE

[
e t X ]

, (3.38)

where ηX
t denotes the t-th cumulant of the random variable X . Table 3.2 summarizes the formulas for

the first, second and fourth cumulants of the GBM, the NIG and the CGMY process.

η1 η2 η4

GBM
(
µ− 1

2σ
2
)

T σ2T 0

NIG
(
µ− 1

2σ
2 + vN IG

)
T + ∂Tβp

α2−β2
∂Tα2

(
α2 −β2

)− 3
2 3∂Tα2

(
α2 +4β2

)(
α2 −β2

)− 7
2

CGMY µT +C TΓ(1−Y )
(
M Y −1 −GY −1

)
σ2T +C TΓ (2−Y )

(
M Y −2 +GY −2

)
C TΓ (4−Y )

(
M Y −4 +GY −4

)
Table 3.2: First, second and fourth cumulants of three Lévy processes.

The drift correction terms for the NIG and the CGMY processes, such that e−vT = f̂ (−ı), respectively
vN IG and vCGMY , are defined by
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vN IG =−∂
(√

α2 −β2 −
√
α2 − (

β+1
)2

)
,

vCGMY =−CΓ (−Y )
[
(M −1)Y −M Y + (G +1)Y −GY ]

.

Throughout this thesis the value of L in (3.37) will be fixed to L = 10. To illustrate the dependence
of the interval on the parameter L, Table 3.3 shows the absolute error of the area under the density
function of a normal random variable. L = 8 already gives a very accurate approximation of the density
function, such that L = 10 is sufficient. Furthermore the increase of L, does not affect the absolute
error, it will only increase the CPU time.

8 10 12 14 16 18

Abs. error 3.2196e −15 8.8818e −16 1.1102e −15 1.2212e −15 1.5543e −15 1.2212e −15

Table 3.3: The absolute error of the area under the normal density dependent on the value of L. Parameters: µ= 3, σ= 0.5.

3.4.2. Payoff coefficients

The payoff coefficients are defined by (3.36),

Vm,k :=
∫ b

a
V (y,T )φm,k (y |x0)d y

=K 2
m
2

∫ b

a

(
e y −1

)
sinc

(
2m y −k

)
d y

≈K
2

m
2

2N−1

2N−1∑
n=1

[
I 1

n,k

(
k̄1

2m ,
k2

2m

)
− I 2

n,k

(
k̄1

2m ,
k2

2m

)]
,

(3.39)

with ωn = 2n−1
2N π and

I 1
n,k (a,b) =

∫ b

a
e y cos

(
ωn

(
2m y −k

))
d y

= ωn2m

1+ (ωn2m)2

[
eb sin

(
ωn

(
2mb −k

))−ea sin
(
ωn

(
2m a −k

))
+ 1

ωn2m

(
eb cos

(
ωn

(
2mb −k

))−ea cos
(
ωn

(
2m a −k

)))]
,

I 2
n,k (a,b) =

∫ b

a
cos

(
ωn

(
2m y −k

))
d y

= 1

ωn2m

(
sin

(
ωn

(
2mb −k

))− sin
(
ωn

(
2m a −k

)))
.

(3.40)

We can compute the payoff coefficients by means of the FFT algorithm available in Matlab, which will
result in an efficient and fast implementation. For the details we will refer the reader to [20].

3.4.3. Density coefficients

In order to retrieve the probability density function, we will start with (3.26)

cm,k ≈ 2
m
2

2N−1

2N−1∑
n=0

Real

{
f̂y |S0

(
2n +1

2N
π2m

)
e

ıkπ(2n+1)
2N

}
. (3.41)
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Thus in order to determine the price of the option, we need the characteristic function of the un-
derlying process. Section 2.3 contains the details of the characteristic function for each of the three
processes considered.

3.5. Alternative: the COS Method

An alternative Fourier method to price European options is the COS method, [25]. The COS method
relies on the Fourier cosine expansion of the transitional density function fy |S0 , which is given by

fy |S0 (y) ≈ 2

b −a

N−1∑
k=0

Real

{
f̂y |S0

(
kπ

b −a

)
exp

(
−ı

akπ

b −a

)}
cos

(
kπ

y −a

b −a

)
, (3.42)

with N the number of expansion terms, f̂y |S0 (ω) the characteristic function of fy |S0 and the truncated
domain [a,b] is based on the cumulants of the underlying distribution. If we apply this substitution
in the risk neutral pricing formula (3.34) and after interchanging the summation and integration, we
obtain

VCOS(S0, t0) =e−r (T−t0)
∫
R

V (y,T ) fy |S0 (y)d y

≈e−r (T−t0)
∫
R

V (y,T )
2

b −a

N−1∑
k=0

Real

{
f̂y |S0

(
kπ

b −a

)
exp

(
−ı

akπ

b −a

)}
cos

(
kπ

y −a

b −a

)
d y

=
N−1∑
k=0

Real

{
f̂y |S0

(
kπ

b −a

)
exp

(
−ı

akπ

b −a

)}
V COS

k ,

(3.43)

where V COS

k are defined as the payoff coefficients for the COS method,

V COS

k := 2

b −a

∫ b

a
V (y,T )cos

(
kπ

y −a

b −a

)
d y, (3.44)

which are the Fourier cosine coefficients of the payoff function V (y,T ), such that we can simplify (3.43)
with the definition of the density coefficients Dk ,

Dk (S0) := 2

b −a
Real

{
f̂y |S0

(
kπ

b −a

)
exp

(
−ı

akπ

b −a

)}
, (3.45)

and the approximation to the option price becomes

VCOS(S0, t0) = b −a

2
e−r (T−t0)

N−1∑
k=0

Dk (S0)V COS

k . (3.46)

3.5.1. COS Payoff coefficients of the European call option

If we consider the log-asset prices, the payoff at maturity T of a plain vanilla call option (with strike
price K ) is defined by

V (y,T ) = K ·max
{
e y −1,0

}
. (3.47)
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This result applied to the definition of the payoff coefficients (3.44) yields

V COS

k := 2

b −a

∫ b

0
K (e y −1)cos

(
kπ

y −a

b −a

)
d y

= 2

b −a
K

(
χk (0,b)−ψk (0,b)

)
,

(3.48)

with

χk (x1, x2) := 1

1+
(

kπ
b−a

)2

[
cos

(
kπ

x2 −a

b −a

)
ex2 −cos

(
kπ

x1 −a

b −a

)
ex1

+ kπ

b −a
sin

(
kπ

x2 −a

b −a

)
ed + kπ

b −a
sin

(
kπ

x1 −a

b −a

)
ex1

]
,

(3.49)

ψk (x1, x2) :=
{

b−a
kπ

[
sin

(
kπ x2−a

b−a

)− sin
(
kπ x1−a

b−a

)]
, k 6= 0

(x2 −x1), k = 0.
(3.50)

3.6. Numerical results

In order to test the SWIFT method for European option pricing, we will compute the absolute error of
the option value and the CPU time 1 for short and long-maturity contracts. The results are presented
in Table 3.4 and Table 3.5. Table 3.4 shows the performance of the SWIFT method for several scales of
approximation m. We can conclude exponential convergence (in accordance with [20]) of the SWIFT
method and a competitive method in terms of CPU time required. In less than a millisecond, the
European option (T = 1) can be computed with an absolute error of 10−14.

T = 1 T = 10 T = 100

m = 0
Abs. error 7.4465 137.1936 5.3350e −05

CPU time 1.38 1.06 3.67

m = 2
Abs. error 0.0887 5.4499e −12 4.7785e −07

CPU time 0.89 0.66 0.72

m = 4
Abs. error 5.6843e −14 2.8990e −12 9.6864e −07

CPU time 0.79 0.64 1.74

Table 3.4: Absolute error and CPU time (milliseconds) of the price of an European call option with several scales of
approximation m. Reference values are 10.160052368788676 (T = 1), 62.533054649055678 (T = 10), and 99.995013366508417

(T = 100), which are computed by the well known Black-Scholes pricing formula. Parameters: S0 = 100, K = 110, σ= 0.25,
r = 0.1.

The next example illustrates the performance of the SWIFT method for long maturity options. Ta-
ble 3.5 lists the absolute error and the required CPU time of the valuation of a European call option
under GBM dynamics for both the SWIFT and the COS method. We can conclude that the SWIFT
method is a robust method, since it can price the long-maturity option accurately at low scales of
approximation m. The payoff function of an European option is not bounded, which could result to
round off errors that decrease the level of accuracy. If we use a Shannon wavelet approximation, the
large payoff coefficients are compensated by really small density coefficients. This results in accurate
option prices for contracts with long maturity.

1All programs in this thesis were coded in Matlab R2017b and run on a MacBook Pro with 2,4 GHz Intel Core i5 processor and
8GB RAM.
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T = 50 T = 100

SWIFT m = 0
Abs. error 6.6451e −01 5.7711e −05

CPU time 0.67 0.65

COS N = 35
Abs. error 1.3007 4.6391e +02

CPU time 0.39 0.38

SWIFT m = 1
Abs. error 6.7814e −09 4.1550e −06

CPU time 0.68 0.70

COS N = 70
Abs. error 1.5282e −08 2.7067e −05

CPU time 0.59 0.61

Table 3.5: Absolute error and CPU time (milliseconds) corresponding to the valuation of a European call option with the GBM
price process for the underlying, for both the COS and the SWIFT method. Reference values are 99.202592852553181 (T = 50)

and 99.995013366508417 (T = 100), which are computed by the well known Black-Scholes pricing formula. Parameters:
S0 = 100, K = 120, σ= 0.25, r = 0.1.
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Asian Option Valuation

In this chapter the SWIFT method will be applied to the valuation of Asian options under Lévy pro-
cesses. This chapter contains both the pricing of the geometric Asian option and the computation of
the arithmetic Asian option price. First of all the definition of an Asian option will be given in the next
section, after which the risk neutral pricing formula will be the starting point of the SWIFT method to
price Asian options. Zhang et al. [25] have extended the general COS framework to the valuation of
Asian options. The COS method for Asian option, known as the ASCOS method, will provide reference
values for the SWIFT method. The chapter will conclude with a numerical comparison between the
ASCOS and the SWIFT implementation for several underlying Lévy processes.

4.1. Asian Options

Asian options can basically be divided into two types: fixed strike and floating strike Asian options.
The difference is best illustrated by their payoff functions.

• Payoff function of a fixed strike Asian call option:

V (S(T ),T ) = max{A(0,T )−K ,0} , (4.1)

• Payoff function of a floating strike Asian call option:

V (S(T ),T ) = max{S(T )− A(0,T ),0} , (4.2)

where V (S(T ),T ) represents the option value at maturity T , S(T ) the price of the underlying at matu-
rity T , K the predetermined fixed strike price and A(0,T ) the average price of the underlying in [0,T ].
For the fixed strike options, the strike is set in advance, whereas for the floating strike options the strike
is path dependent by means of the average price of the underlying A(0,T ). The average price of the
underlying can be determined in several ways. Let us define the geometric average and the arithmetic
average:

• Geometric average:

Ag eo(0,T ) =
(

Md∏
i=0

S(ti )

) 1
Md +1

=exp

[
1

Md +1

Md∑
i=0

logS(ti )

]
,

(4.3)

29
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• Arithmetic average:

Aar i (0,T ) = 1

Md +1

Md∑
i=0

S(ti ). (4.4)

The price process of the underlying is discretely monitored at Md monitoring dates, such that 0 =
t0,T = tMd and ti = i · T

Md
. In this thesis we will focus on the fixed strike Asian option, for both the

geometric average and the arithmetic average. The pricing of an floating strike Asian options fol-
lows immediately from a symmetry relation between the floating strike and fixed strike Asian option.
Papantoleon and Eberlein [11] have proposed a symmetry relationship between the fixed strike and
floating strike Asian option under Lévy asset price processes, based on a change of numeraire and the
Lévy triplet.

Figure 4.1 illustrates the difference between the geometric running mean and the arithmetic running
mean. The figure shows that the arithmetic mean is here higher than the geometric mean.

r= 0.5 and σ = 0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

100-step geometric Brownian motion and its Geometric and Arithmetic mean

Stock process

Geometric mean

Arithmetic mean

Figure 4.1: 100-step Geometric Brownian Motion with its running geometric and arithmetic mean. Parameters: T = 1, r = 0.5
and σ= 0.8.

One of the benefits of trading in Asian options is that the payoff function is less volatile compared to
the payoff function of a plain vanilla option, since averaging decreases the impact of volatility. How-
ever, the computation of Asian option values can be cumbersome and expensive. Common methods
to price Asian options are based on Monte Carlo simulations, which may be expensive ways to obtain
accurate option prices. For continuously monitored geometric Asian options under GBM dynamics
an analytical solution is available. For this analytical solution the reader is referred to Appendix A.
Since the Asian options in this thesis are discretely monitored, with Md monitoring dates, we propose
the SWIFT method to compute the value of an discretely monitored geometric Asian option and we
show fast convergence of the SWIFT method, with the GBM as underlying asset price process. The
SWIFT method will be applied to geometric Asian options under NIG and CGMY dynamics as well.

In the case of an arithmetic Asian option, there is no closed-form solution available and we will rely
on the characteristic function of the density to obtain the option value with the SWIFT method. To
approximate the probability density function of the option price, we have to deal with a sum of asset
prices, that for Lévy asset price processes results in a sum of lognormals or sum of independent in-
crements. The results obtained by the SWIFT method will be compared to the results of the ASCOS
method, which admits as well satisfactory results in terms of speed and accuracy.
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4.2. Pricing formula for Asian options

The risk neutral pricing formula forms again the starting point for the valuation of Asian options. Let
us consider an arithmetic Asian option with Md monitoring dates, t0 < t1 < . . . < tMd , with t0 = 0,
maturity tMd = T and fixed strike K . The time between monitoring dates is assumed to be constant,
thus ∆t = T

Md
. The payoff function of a geometric Asian call option is given by

V (S(T ),T ) = max

{
exp

[
1

Md +1

Md∑
i=0

logS(ti )

]
−K ,0

}
. (4.5)

The payoff function of an arithmetic Asian call option is given by

V (S(T ),T ) = max

{
1

Md +1

Md∑
i=0

S(ti )−K ,0

}
. (4.6)

By the risk neutral pricing formula we can evaluate the value of the option with underlying stochastic
process {S(t )}t≥0 as the discounted expected value of the payoff function at time T under the risk
neutral measureQ, i.e.,

V (S0, t0) =e−r (T−t0)EQ [V (S(T ),T )|S(0), t0]

=
{

e−r (T−t0)
∫
RV (y,T ) f Ag eo (0,T )(y)d y, geometric average

e−r (T−t0)
∫
RV (y,T ) f Aar i (0,T )(y)d y, arithmetic average

(4.7)

where V (y,T ) represents the payoff function, f Ag eo (0,T ) denotes the probability density function of the
geometric average underlying and f Aar i (0,T ) is the probability density function corresponding to the
arithmetic average of the underlying price process.

The characteristic functions of f Ag eo (0,T ) and f Aar i (0,T ) will be computed recursively, where we can ben-
efit from the properties of Lévy processes. The computation of these characteristic functions differs
for the two cases, thus the two types of Asian options are dealt with separately. Section 4.3 computes
the value of a geometric Asian option and Section 4.4 contains the SWIFT method applied to arith-
metic Asian options. This chapter concludes with numerical results for both the geometric and the
arithmetic Asian option valuation.

4.3. Geometric Asian option valuation

Geometric Asian options under Lévy processes benefit from the fact that their characteristic function
is analytically available, thus the SWIFT method can be applied easily. In order to compute the char-
acteristic function, let us define the new state variable x

x := log

(
Md∏
i=0

S(ti )

) 1
Md +1

− log(K )

=
(

1

Md +1

Md∑
i=0

logS(ti )

)
− log(K ).

(4.8)

Let us define an increment process
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Rti := log

(
S(ti )

S(ti−1)

)
= log(S(ti ))− log(S(ti−1)),

for i = 1,2, . . . , Md . Since the increments of a Lévy process are independent and with constant time
interval ∆t the increments are statistically identical, it follows that for each i , j = 1, . . . , Md with i 6= j

Rti

d= Rt j :
d= R.

Substituting the increment process for the underlying price process, it follows that

x =
(

1

Md +1

Md∑
i=0

logS(ti )

)
− log(K )

=
(

Md∑
i=0

Md − i +1

Md +1
Rti

)
+ log

S0

K

=
(

Md∑
i=0

Md − i +1

Md +1
Rti

)
+x0,

(4.9)

where x0 = log S0
K . With help of Lemma 2.3 we obtain the characteristic function for the state variable

x,

f̂x (ω; x0) =E
[

e
−ıω

((∑Md
i=0

Md −i+1
Md +1 Rti

)
+x0

)]
=e−ıωx0

Md∏
i=1

f̂R

(
Md − i +1

Md +1
ω

)
.

(4.10)

Substituting characteristic function expression (4.10) to the definition of the density coefficients cm,k ,
it follows that

cm,k ≈ 2
m
2

2N−1

2N−1∑
n=1

Real

{
f̂y

(
2n −1

2N
π2m

)
e

ıkπ(2n−1)
2N

}

= 2
m
2

2N−1

2N−1∑
n=1

Real

{
e−ıωn 2m x0

Md∏
i=1

f̂R

(
Md − i +1

Md +1
ωn2m

)
e

ıkπ(2n−1)
2N

}
,

(4.11)

with ωn = 2n−1
2N π. Equation (4.11) will be modified in the same way as (3.26) such that we can apply

the Fast Fourier Transform to compute the density coefficients in an efficient way.

4.3.1. Integration range [a,b]

The integration range is based on the cumulants of the underlying random variable. Since the under-
lying in this case is the state-variable y , we have to determine the cumulants of the geometric average
in (4.9). The cumulant generating function is defined by (3.38) and applied to the geometric average
results in,
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η
y
t := logE

[
e t y]

= logE

[
e

t
(∑Md

i=1
Md −i+1

Md +1 Rti

)]
= logE

[
exp

(
t Md

Md +1
Rt1

)]
+ logE

[
exp

(
t (Md −1)

Md +1
Rt2

)]
+ . . .+ logE

[
exp

(
2t

Md +1
RtMd −1

)]
+ logE

[
exp

(
t

Md +1
RtMd

)]
=

(
Md

Md +1

)t

η
Rt1
t +

(
Md −1

Md +1

)t

η
Rt2
t + . . .+

(
2

Md +1

)t

η
RtMd −1

t +
(

1

Md +1

)t

η
RtMd
t

=
∑Md

i=1 (Md − i +1)t

(Md +1)t ηR
t ,

(4.12)

where we have used the properties of the cumulant generating function and the fact that for Lévy
processes the increments are independent identically distributed, with cumulants ηR

t . We apply the
same integration range as in the European case (3.37), i.e.,

[a,b] :=
[

x0 +ηy
1 −L

√
η

y
2 +

√
η

y
4 , x0 +ηy

1 +L

√
η

y
2 +

√
η

y
4

]
. (4.13)

As a result of (4.12), the following cumulants are necessary to compute the integration range [a,b]

• t = 1 :

η
y
1 =

∑Md
i=1 Md − i +1

Md +1
ηR

1 = Md

2
ηR

1 ,

• t = 2 :

η
y
2 =

∑Md
i=1 (Md − i +1)2

(Md +1)2 ηR
2 = 2M 2

d +Md

6Md +6
ηR

2 ,

• t = 4 :

η
y
2 =

∑Md
i=1 (Md − i +1)4

(Md +1)4 ηR
4 = Md

(
6M 3

d +9M 2
d +Md −1

)
30(Md +1)3 ηR

4 ,

The cumulants of the increment process
{
Rti

}
i=1,...,Md

are known and stated in Section 3.4.1.

4.3.2. Payoff coefficients

The payoff coefficients are defined by (3.36) and for the European-style geometric Asian call option
result in

Vm,k (x0) =
∫ b

a
V (y,T )φm,k (y |x0)d y

=K 2
m
2

∫ b

a

(
e y −1

)
sinc

(
2m y −k

)
d y

≈K
2

m
2

2N−1

2N−1∑
n=1

[
I 1

n,k

(
k̄1

2m ,
k2

2m

)
− I 2

n,k

(
k̄1

2m ,
k2

2m

)]
,

(4.14)

with (3.40)
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I 1
n,k (x1, x2) = ωn2m

1+ (ωn2m)2

[
ex2 sin

(
ωn

(
2m x2 −k

))−ex1 sin
(
ωn

(
2m x1 −k

))
+ 1

ωn2m

(
ex2 cos

(
ωn

(
2m x2 −k

))−ex1 cos
(
ωn

(
2m x1 −k

)))]
,

(4.15)

I 2
n,k (x1, x2) = 1

ωn2m

(
sin

(
ωn

(
2m x2 −k

))− sin
(
ωn

(
2m x1 −k

)))
, (4.16)

where ωn = 2n−1
2N π.

With the computation of the payoff coefficients we can conclude this section. The necessities for the
SWIFT application to the valuation of geometric Asian options are the density coefficients and the
payoff coefficients, stated in (4.11) and (4.14) respectively. We have as well determined the integration
interval [a,b] by the cumulant approach, such that we will capture the mass of the density function
with the SWIFT method. The next section is devoted to the valuation of arithmetic Asian options by
the SWIFT method.

4.4. Arithmetic Asian option valuation

For the arithmetic Asian option let us again denote the increment process R(ti ) of the underlying
process as

Rti = log

(
S(ti )

S(ti−1)

)
= log(S(ti ))− log(S(ti−1)), (4.17)

for i = 1, . . . , Md . As already stated in the valuation of geometric Asian options, the increments of a

Lévy process are identically and independently distributed and the characteristic function of Rti

d= R
is the same for all i = 1, . . . , Md . We can apply the Carverhill-Clewlow-Hodges [7] factorization scheme
to a newly defined stochastic process Yi ,

Yi :=RMd+1−i + log
(
1+exp(Yi−1)

)
=RMd+1−i +Zi−1,

(4.18)

for i = 2, . . . , Md , we define Zi−1 = log
(
1+exp(Yi−1)

)
and Y1 = RtMd

. In this case we obtain

Yi = log

(
S(tMd+1−i )

S(tMd−i )
+ S(tMd+2−i )

S(tMd−i )
+ . . .+ S(tMd )

S(tMd−i )

)
, (4.19)

and it follows that

1

Md +1

Md∑
i=0

S(ti ) =
(
1+exp(YMd )

)
S0

Md +1
. (4.20)

We will recover the characteristic function of YMd by a recursive procedure and will use f̂YMd
to de-

termine the approximation to the probability density function fYMd
. Since a new variable Yi (i =

1, . . . , Md ) has been defined, the payoff function (4.6) has changed accordingly. The option value is
defined as the expected discounted payoff of the price process YMd with
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V (YMd ,T ) = max

{
S0

(
1+exp(YMd )

)
Md +1

−K ,0

}
, (4.21)

and the price of the option is given by the risk neutral pricing formula

V (S0, t0) =e−r (T−t0)
∫
R

V (y,T ) fYMd
(y)d y

≈e−r (T−t0)
∫
R

V (y,T )
k2∑

k=k1

cMd
m,kφm,k (y)d y

(4.22)

4.4.1. Characteristic function

In the previous section we defined the new variable YMd by a recursive scheme. The aim is to recover
the characteristic function of YMd in a recursive way as well. Let us first start with Y1,

Y1 = RMd = R ⇔ f̂Y1 (ω) = f̂R (ω). (4.23)

For Lévy processes the characteristic function of the increment process R is available in closed-form.
The approximation of f̂YMd

is more involved. By equation (4.18) it follows that the characteristic func-
tion of Yi , for i = 2, . . . , Md , can be recovered by

f̂Yi (ω) = f̂RMd +1−i+Zi−1 (ω)

= f̂RMd +1−i (ω) · f̂Zi−1 (ω)

= f̂R (ω) · f̂Zi−1 (ω),

(4.24)

where we have used that for Lévy processes RMd+1−i and Zi−1 are independent. The characteristic
function of Zi−1 = log

(
1+exp(Yi−1)

)
is given by

f̂Zi−1 (ω) = E
[

e−ıω log(1+exp(Yi−1))
]
=

∫
R

(
1+e y )−ıω fYi−1 (y)d y. (4.25)

The probability density function fYi−1 in (4.25) will be approximated by the ASCOS and the SWIFT
method. Within the ASCOS method the integral will be computed by a numerical integration method.
The computation of the integral within the SWIFT method can be replaced by an approximation.

4.5. SWIFT method: arithmetic Asian options

The SWIFT method provides a wavelet approximation function for a probability density function of a
random variable. In order to arrive at the characteristic function of YMd , the characteristic function
of Yi for each monitoring date, i = 1, . . . , Md , has to be computed. In this section we will apply the
wavelet approximation. For i = 2, . . . , Md

fYi (y) ≈
k2∑

k=k1

c i
m,kφm,k (y), (4.26)

such that the characteristic function of f̂Zi−1 (4.25) can be approximated as
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f̂Zi−1 (ω) =
∫
R

(
1+e y )−ıω fYi−1 (y)d y

≈
∫
R

(
1+e y )−ıω

k2∑
k=k1

c i−1
m,kφm,k (y)d y.

(4.27)

In this section we will define the pricing formula for arithmetic Asian options by SWIFT, with the com-
putation of the payoff coefficients and the density coefficients.

4.5.1. Payoff coefficients

The payoff coefficients are defined by (3.36), such that we obtain for arithmetic Asian options

Vm,k :=
∫ b

a
V (y,T )φm,k (y)d y

=2
m
2

∫ b

a

(
S0 (e y +1)

Md +1
−K

)
sinc

(
2m y −k

)
d y

=2
m
2

∫ b

a

(
S0

Md +1
e y +

(
S0

Md +1
−K

))
sinc

(
2m y −k

)
d y.

(4.28)

The application of Vieta’s formula and the truncation of the summation according to (3.19) gives

Vm,k =2
m
2

∫ b

a

(
S0

Md +1
e y +

(
S0

Md +1
−K

))
sinc

(
2m y −k

)
d y

≈2
m
2

∫ b

a

S0

Md +1
e y 1

2N−1

2N−1∑
n=1

cos

(
2n −1

2N
πx

)
d y +2

m
2

∫ b

a

(
S0

Md +1
−K

)
1

2N−1

2N−1∑
n=1

cos

(
2n −1

2N
πx

)
d y

= 2
m
2

2N−1

2N−1∑
n=1

[
S0

Md +1

∫ b

a
e y cos

(
2n −1

2N
π

(
2m y −k

))
d y +

(
S0

Md +1
−K

)∫ b

a
cos

(
2n −1

2N
π

(
2m y −k

))
d y

]
.

(4.29)

The definite integrals in (4.29) have analytical solutions, which results in the following payoff coeffi-
cients Vm,k

Vm,k ≈ 2
m
2

2N−1

2N−1∑
n=1

[
S0

Md +1
I 1

n,k (a,b)+
(

S0

Md +1
−K

)
I 2

n,k (a,b)

]
, (4.30)

with ωn = 2n−1
2N π and
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I 1
n,k (a,b) =

∫ b

a
e y cos

(
ωn

(
2m y −k

))
d y

= ωn2m

1+ (ωn2m)2

[
eb sin

(
ωn

(
2mb −k

))−ea sin
(
ωn

(
2m a −k

))
+ 1

ωn2m

(
eb cos

(
ωn

(
2mb −k

))−ea cos
(
ωn

(
2m a −k

)))]
,

I 2
n,k (a,b) =

∫ b

a
cos

(
ωn

(
2m y −k

))
d y

= 1

ωn2m

(
sin

(
ωn

(
2mb −k

))− sin
(
ωn

(
2m a −k

)))
.

(4.31)

Equations (4.30) and (4.31) allow us to implement the Fast Fourier Transform, which reduces the CPU
time of the computation of the payoff coefficients. Let us define

An = ωn2m

1+ (ωn2m)2ω
and Bn = 1

ωn2m ,

if we expand (4.31) by the trigonometric relations

sin(x + y) = sin(x)cos(y)−cos(x)sin(y) and cos(x + y) = sin(x)sin(y)+cos(x)cos(y),

we obtain for I 1
n,k (a,b)

I 1
n,k (a,b) =An

(
cos(ωnk)

[
eb sin(ωn2mb)−ea sin(ωn2m a)+Bneb cos(ωn2mb)−Bnea cos(ωn2m a)

]
+ sin(ωnk)

[
eb cos(ωn2mb)−ea cos(ωn2m a)−Bneb sin(ωn2mb)+Bnea sin(ωn2m a)

])
.

(4.32)

For I 2
n,k (a,b) it follows that

I 2
n,k (a,b) =Bn

(
cos(ωnk)

[
sin(ωn2mb)− sin(ωn2m a)

]+ sin(ωnk)
[
cos(ωn2mb)−cos(ωn2m a)

])
. (4.33)

Let us substitute (4.32) and (4.33) in (4.30),

Vm,k ≈ 2
m
2

2N−1

2N−1∑
n=1

cos(ωnk)

(
S0

Md +1

[
An

(
eb sin(ωn2mb)−ea sin(ωn2m a)+Bneb cos(ωn2mb)−Bnea cos(ωn2m a)

)]
+ S0

Md +1

[
Bn sin(ωn2mb)−Bn sin(ωn2m a)

]−K
[
Bn sin(ωn2mb)−Bn sin(ωn2m a)

])

+ 2
m
2

2N−1

2N−1∑
n=1

sin(ωnk)

(
S0

Md +1

[
An

(
eb cos(ωn2mb)−ea cos(ωn2m a)−Bneb sin(ωn2mb)+Bnea sin(ωn2m a)

)]
+ S0

Md +1

[
Bn cos(ωn2mb)−Bn cos(ωn2m a)

]−K
[
Bn cos(ωn2mb)−Bn cos(ωn2m a)

])
.

(4.34)

Equation (4.34) allows us to compute the payoff coefficients with the Fast Fourier Transform. The FFT
has to be applied twice, once for the cosine terms and once for the sine terms.



38 4. Asian Option Valuation

4.5.2. Integration range [a,b]

We will depart from equation (3.37) with the integration range [a,b] which holds for the European
option valuation and was modified for the geometric Asian option valuation. For Yi , i = 1, . . . , Md , it
follows that the integration range [ai ,bi ] is given by

[ai ,bi ] =
[
η

Yi
1 −L

√
η

Yi
2 +

√
η

Yi
4 ,ηYi

1 +L

√
η

Yi
2 +

√
η

Yi
4

]
. (4.35)

Unfortunately, this implies that for each monitoring date i = 1, . . . , Md the corresponding cumulants
have to be computed, which is rather expensive and could slow down the method. In [25] a different
(cheap) method to compute one single interval [a,b] for all monitoring dates was proposed. For i =
1, . . . , Md it holds that

0 ≤ i
S(tMd−i+1)

S(tMd−i )
≤eYi ≤ S(tMd )

S(tMd−i )

⇔

0 ≤ log

(
i

S(tMd−i+1)

S(tMd−i )

)
≤ Yi ≤ log

(
S(tMd )

S(tMd−i )

)
.

(4.36)

By the properties of the cumulant generating function, it follows that

η

log

(
i S

(
tMd −i+1

)
S
(
tMd −i

)
)

1 ≤ ηYi
1 ≤ η

log

(
i S

(
tMd

)
S
(
tMd −i

)
)

1 ⇔ log(i )+ηR
1 ≤ ηYi

1 ≤ log(i )+ iηR
1 ,

(4.37)

0 ≤ ηYi
2 ≤ η

log

(
i S

(
tMd

)
S
(
tMd −i

)
)

2 ⇔ 0 ≤ ηYi
2 ≤iηR

2 ,
(4.38)

0 ≤ ηYi
4 ≤η

log

(
i S

(
tMd

)
S
(
tMd −i

)
)

4 ⇔ 0 ≤ ηYi
4 ≤ iηR

4 .
(4.39)

Thus, the interval [ai ,bi ] is bounded by

ai =ηYi
1 −L

√
η

Yi
2 +

√
η

Yi
4

≥ log(i )+ηR
1 −L

√
iηR

2 +
√

iηR
4 ,

(4.40)

and

bi =ηYi
1 +L

√
η

Yi
2 +

√
η

Yi
4

≤ log(i )+ iηR
1 +L

√
iηR

2 +
√

iηR
4 .

(4.41)
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The cumulants of the increment process are available, therefore the integration range [ai ,bi ] for i =
1, . . . , Md can be computed. In order to speed up the method, the same integration range [a,b] is
chosen for all 1 ≤ i ≤ Md by a maximization of the interval, i.e.,

[a,b] :=
[

min
1≤i≤Md

ai , max
1≤i≤Md

bi

]

≈
[
ηR

1 −L

√
ηR

2 +
√
ηR

4 , log(Md )+Mdη
R
1 +L

√
Mdη

R
2 +

√
Mdη

R
4

]
.

(4.42)

4.5.3. Density coefficients

The density coefficients are defined by equation (3.26). Instead of state variable X , we have defined by
the increment process the new state variable YMd , thus the adjustment to equation (3.26) is as follows

cMd
m,k ≈ 2

m
2

2N−1

2N−1∑
n=0

Real

{
f̂YMd

(
2n +1

2N
π2m

)
e

ıkπ(2n+1)
2N

}
. (4.43)

Following the Carverhill-Clewlow-Hodges factorization scheme, the characteristic function f̂Md has to
be obtained recursively. For each monitoring date i = 1, . . . , Md we have to compute the characteristic
function of Yi , such that the density coefficients at monitoring date i , c i

m,k , can be computed. Follow-

ing (4.24), f̂Yi (ω) = f̂R (ω) · f̂Zi−1 (ω), therefore we have to iteratively compute the characteristic function
of Zi−1, which is given by equation (4.25).

f̂Zi−1 (ω) =
∫
R

(
1+ex)−ıω fYi−1 (x)d x

≈
∫
R

(
1+ex)−ıω

k2∑
k=k1

c i−1
m,kφm,k (x)d x

=
k2∑

k=k1

c i−1
m,k

∫
R

(
ex +1

)−ıω
φm,k (x)d x

=
k2∑

k=k1

c i−1
m,k

∫
R

(
ex +1

)−ıω 2
m
2 sinc

(
2m x −k

)
d x

=
k2∑

k=k1

c i−1
m,k 2

m
2

∫
R

(
ex +1

)−ıω sinc
(
2m x −k

)
d x.

(4.44)

Equation (4.44) illustrates the application of the SWIFT wavelet approximation of the probability den-
sity function of Yi−1, i.e. fYi−1 . To summarize the result, we have obtained characteristic function f̂Zi−1 ,
as

f̂Zi−1 (ω) ≈
k2∑

k=k1

c i−1
m,k 2

m
2

∫
R

g (x)sinc
(
2m x −k

)
d x, (4.45)

where g (x) = (ex +1)−ıω, and thus we find for the characteristic function f̂Yi
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f̂Yi (ω) = f̂R (ω) f̂Zi−1 (ω)

≈ f̂R (ω)
k2∑

k=k1

c i−1
m,k 2

m
2

∫
R

g (x)sinc
(
2m x −k

)
d x,

(4.46)

with the density coefficients c i
m,k from equation (3.26) given by

c i
m,k ≈ 2

m
2

2N−1

2N−1∑
n=0

Real

{
f̂Yi

(
2n +1

2N
π2m

)
e

ıkπ(2n+1)
2N

}
, (4.47)

withωn = 2n+1
2N π2m the vector of length 2N , n = 0,1, . . . ,2N −1. To decrease the CPU time of the compu-

tation of the density coefficients, we implement a matrix-vector multiplication. Let us define matrix
M(n,k), as

M(n,k) = 2
m
2

∫
R

(
ex +1

)−ıωn sinc
(
2m x −k

)
d x, (4.48)

with n = 0, . . .2N −1, k = k1, . . . ,k2 and substituting the matrix M(n,k) in (4.45) yields

f̂Zi (ω) ≈ M(n,k)c
i
m,k . (4.49)

Algorithm 4.1 summarizes the recovery of the density coefficients cMd
m,k by the SWIFT method. In the

computation of the density coefficients at every monitoring date we can benefit from the Fast Fourier
Transform (FFT) in the same way as in the European option valuation by SWIFT. Note that the matrix
M(n,k) does not change over time, which allows us to compute the matrix only once.

Initialization:

• Compute M(n,k) as in (4.48).

• Compute f̂R (ω).

• Set f̂Y1 (ω) = f̂R (ω).

Loop to recover f̂Ymd
: for i = 1, . . . , Md

• Compute c i
m,k from (5.19).

• Compute f̂Zi with matrix-vector multiplica-
tion f̂Zi (ω) = Mc i

m,k .

• Compute f̂Yi+1 (ω) = f̂R (ω) · f̂Zi (ω).

Final Step:

• Compute the option value V (S(0), t0) by in-

serting cMd
m,k in the pricing formula (4.22).

Algorithm 4.1: The recursion procedure to determine the density coefficients.
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4.6. Computation of the matrix M(n,k)

The matrix M(n,k) defined in (4.48) is constant, therefore it can be computed in advance and stored
for later use. Unfortunately, the computation of M(n,k) itself can be quite expensive, because a numer-
ical integration method is used to obtain the values for the integral of each combination (n,k). The
numerical integration method used is a Clenshaw-Curtis quadrature rule, which admits exponential
convergence, like other numerical integration methods do, but is cheaper.

The integral (4.45) consists of the function g (x) = (ex +1)−ıω and the Shannon scaling function. If
the function g is bandlimited, with exponential decay of the Fourier transform, ĝ (ν), [24] provides an
accurate approximation to the integral.

Both methods to compute the matrix M(n,k) will be implemented and will be compared for the accu-
racy of the resulting option price and the CPU time required.

4.6.1. Clenshaw-Curtis quadrature rule

In order to use the Clenshaw-Curtis quadrature with Nq integration points, we will truncate the inte-
gral in (4.45) for [a,b] and by a variable transformation, we will change the integration interval from
[a,b] to [−1,1]. The following integral results

M(n,k) =
∫ b

a

(
ex +1

)−ıωn 2
m
2 sinc

(
2m x −k

)
d x

=
∫ 1

−1
2

m
2

b −a

2

(
exp

[
b −a

2
x + a +b

2

]
+1

)−ıωn

sinc

(
2m

[
b −a

2
x + a +b

2

]
−k

)
d x.

(4.50)

This integral can be approximated as following by a Clenshaw-Curtis quadrature rule,

M(n,k) =
∫ 1

−1
2

m
2

b −a

2

(
exp

[
b −a

2
x + a +b

2

]
+1

)−ıω

sinc

(
2m

[
b −a

2
x + a +b

2

]
−k

)
d x

≈(
DT d

)T
y

=:wT y,

(4.51)

with D an
(

Nq

2 +1
)
×

(
Nq

2 +1
)

matrix with elements

D(i , j ) = 2

Nq

(
π j i
Nq

2

)
·
{

1
2 , if j =

{
0,

Nq

2

}
1, otherwise.

(4.52)

The vectors d and the elements y j , j = 0,1, . . . ,
Nq

2 , are defined as

d :=
(

1,
2

1−4
,

2

1−16
, . . . ,

2

1− (Nq −2)2 ,
1

1−N 2
q

)

y j := h

(
cos

(
jπ

Nq

))
+h

(
−cos

(
jπ

Nq

))
,

(4.53)

where
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h(x) = 2
m
2

b −a

2

(
exp

[
b −a

2
x + a +b

2

]
+1

)−ıωn

sinc

(
2m

[
b −a

2
x + a +b

2

]
−k

)
.

The computation of the matrix DT d is O
(
Nq log(Nq )

)
, since it is a Discrete Cosine Transform of type

1. Furthermore the coefficients yn need to be calculated for each pair (n,k), which costs O
(
Nq

)
op-

erations. Since n = 0,2N−1 and k = k1, . . . ,k2 it follows that the total complexity of the computation of
yn is given by O

(
Nq 2N (k2 −k1)

)
. For each monitoring date the matrix vector product in (4.49) requires

O
(
2N (k2 −k1)

)
operations and O (2N ) computations to find f̂Yi , which gives a total of O

(
Md 2N (k2 −k1)

)
.

The recovery of the characteristic function by means of the Clenshaw-Curtis quadrature rule sums up
to

O
(
Nq 2N (k2 −k1)

)+O
(
22N (k2 −k1)

)+O
(
Md 2N (k2 −k1)

)
.

We will refer to the SWIFT-CC method if we apply the SWIFT method with the numerical integration
of matrix M(n,k).

4.6.2. Sinc integral approximation

Next we will state a very interesting and helpful theorem to approximate the integral in (4.48). This
theorem originates from [24].

Theorem 4.1. If f defined on R and its Fourier transform f̂ are such that for a constant d > 0,
∣∣ f̂ (ω)

∣∣=
O

(
e−d |ω|) for |ω|→∞. Then as h → 0,

1

h

∫
R

f (x)S j ,h(x)d x − f (h · j ) =O
(
e−

πd
h

)
, (4.54)

where S j ,h(x) = sinc
( x

h − j
)

for j ∈Z.

If the function g in (4.48) satisfies the assumptions of Theorem 4.1 it allows us to approximate the inte-
gral in (4.45). We have to determine whether the Fourier transform of g = (ex +1)−ıωn has exponential
decay. Thus we have to show that

∣∣ĝ (v)
∣∣=O

(
e−d |v |

)
. (4.55)

The Fourier transform of g for a fixed ωn is given by

ĝ (v) :=
∫
R

(
ex +1

)−ıωn e−ıv x d x. (4.56)

Figure 4.2 shows the modulus of the Fourier transform of the function g for fixed ωn = {0,50,100} 1.
The figure illustrates the decay of the characteristic function with two Dirac delta functions. Clearly
this function is bandlimited, since the Fourier transform of the function will be zero except at the
peaks in the Dirac delta functions, δ(·). Therefore, we are allowed to approximate (4.45) by Theo-
rem 4.1.

Let us define h = 1
2m , j = k for k = k1, . . . ,k2. By Theorem 4.1 it follows that

1These particular values for ωn are considered, since they represent the lowest, the middle and the highest value of ωn in the
pricing of an arithmetic Asian call option by the SWIFT-SIA method at scale m = 4 under GBM dynamics.
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Figure 4.2: The modulus of the Fourier transform of g , for ωn ∈ {0,50,100}.
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∫
R

g (x)sinc
(
2m x −k

)
d x ≈hg (h ·k)

⇔∫
R

(
ex +1

)−ıωn sinc
(
2m x −k

)
d x ≈ 1

2m

(
e

k
2m +1

)−ıωn
,

(4.57)

such that the matrix M(n,k) defined in (4.48) can be approximated by

M(n,k) ≈ 2−
m
2

(
e

k
2m +1

)−ıωn
. (4.58)

Substituting (4.58) in (4.45) yields,

f̂Zi−1 (ωn) ≈
k2∑

k=k1

c i−1
m,k 2

m
2

∫
R

(
ex +1

)−ıωn sinc
(
2m x −k

)
d x

≈
k2∑

k=k1

c i−1
m,k 2−

m
2

(
e

k
2m +1

)−ıωn
.

(4.59)

Recall (4.24) where the characteristic function f̂Yi was stated. When we apply the previous result, we
find

f̂Yi (ωn) = f̂R (ωn) f̂Zi−1 (ωn)

≈ f̂R (ωn)
k2∑

k=k1

c i−1
m,k 2−

m
2

(
e

k
2m +1

)−ıωn
,

(4.60)

where the density coefficients, defined in (3.26) are given by

c i
m,k ≈ 2

m
2

2N−1

2N−1∑
n=0

Real

{
f̂Yi

(
2n +1

2N
π2m

)
e

ıkπ(2n+1)
2N

}
. (4.61)

The computation of the matrix M(n,k) is no longer an expensive procedure. The numerical integration
method required a total of O

(
Nq 2N (k2 −k1)

)+O
(
22N (k2 −k1)

)
computations, whereas the entries of

matrix M(n,k) are now found by one single function evaluation, which reduces the computational com-
plexity tremendously. The SWIFT method with the sinc integral approximation implemented will be
denoted as the SWIFT-SIA method.

4.7. Alternative: the ASCOS method

The ASCOS method (ASian COSine) is a Fourier based method proposed by B. Zhang and C.W. Ooster-
lee [25]. The ASCOS method was proposed for the valuation of geometric Asian options and arithmetic
Asian options under Lévy asset price processes. This section will explain the alternative approach for
both the geometric Asian option and the arithmetic Asian option. The COS method approximates the
density function of a random variable by its Fourier cosine expansion, as explained in Section 3.5.
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4.7.1. ASCOS method: valuation of geometric Asian options

For the valuation of a geometric Asian option by the SWIFT method, the state variable x was defined
in (4.8), such that the characteristic function of this variable resulted in (4.10), i.e.

f̂x (ω; x0) = e−ıωx0
Md∏
i=1

f̂R

(
Md − i +1

Md +1
ω

)
. (4.62)

Substituting (4.62) in the COS pricing formula, (3.43), results in the ASCOS pricing formula for European-
style geometric Asian call options,[25],

VASCOS(S0, t0) =
N−1∑
k=0

Real

{
f̂x

(
kπ

b −a

)
exp

(
−ı

akπ

b −a

)}
V ASCOS

k ,

=
N−1∑
k=0

Real

{
e−ı kπ

b−a x0
Md∏
i=1

f̂R

(
Md − i +1

Md +1

kπ

b −a

)
exp

(
−ı

akπ

b −a

)}
V ASCOS

k .

(4.63)

The ASCOS payoff coefficients, V ASCOS

k are defined by

V ASCOS

k = 2

b −a

(
χk

(
log(K ),b

)−Kψk
(
log(K ),b

))
, (4.64)

with

χk (x1, x2) =
∫ x2

x1

e y cos
(
kπ

y −a

b −a

)
d y

and

ψk (x1, x2) =
∫ x2

x1

cos
(
kπ

y −a

b −a

)
d y,

which admit analytical solutions.

4.7.2. ASCOS method: valuation of arithmetic Asian options

In the ASCOS method, the characteristic function of state variable YMd was obtained recursively by
means of a Fourier cosine expansion, after which the Clenshaw-Curtis quadrature rule was applied to
compute the integral (4.25).

For each monitoring date i = 2, . . . , Md the probability density function fYi will be approximated by its
characteristic function. The probability density function of Yi is approximated by its Fourier cosine
expansion (3.42), with N expansion points, i.e.,

fYi (y) ≈ 2

b −a

N−1∑
k=0

Real

{
f̂Yi

(
kπ

b −a

)
exp

(
−ı

akπ

b −a

)}
cos

(
kπ

y −a

b −a

)
. (4.65)

This approximation applied to (4.25) results in
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f̂Zi−1 (ω) ≈ 2

b −a

N−1∑
k=0

Real

{
f̂Yi

(
kπ

b −a

)
exp

(
−ı

akπ

b −a

)}∫ b

a

(
e y +1

)−ıω cos

(
(y −a)

kπ

b −a

)
d y. (4.66)

The integral in (4.66) reads,

∫ b

a

(
e y +1

)−ıω cos

(
(y −a)

kπ

b −a

)
d y

and will be computed with the Clenshaw-Curtis quadrature rule with Nq integration points. The ap-
proach is similar to the computation of matrix M(n,k) in the SWIFT method, but it evaluates (4.66)
instead of (4.48). So,

∫ b

a

(
e y +1

)−ıω cos

(
(y −a)

kπ

b −a

)
d y

=
∫ 1

−1

b −a

2

(
exp

(
b −a

2
y + a +b

2

)
+1

)−ıω

cos

([(
b −a

2
y + a +b

2

)
−a

]
kπ

b −a

)
d y.

(4.67)

Following [25] the integral can be approximated by

∫ 1

−1

b −a

2

(
exp

(
b −a

2
y + a +b

2

)
+1

)−ıω

cos

([(
b −a

2
y + a +b

2

)
−a

]
kπ

b −a

)
d y

≈(
DT d

)T
y

=wT y,

(4.68)

with D a
(

Nq

2 +1
)
×

(
Nq

2 +1
)

matrix with elements

D(l , p) = 2

Nq

(
πl p

Nq

2

)
·
{

1
2 , if p =

{
0,

Nq

2

}
1, otherwise.

(4.69)

The vectors d and the elements yp ,
(
p = 0,1, . . . ,

Nq

2

)
, are defined as

d :=
(

1,
2

1−4
,

2

1−16
, . . . ,

2

1− (Nq −2)2 ,
1

1−N 2
q

)

yp := h

(
cos

(
pπ

Nq

))
+h

(
−cos

(
nπ

Nq

))
,

(4.70)

where

h(x) = b −a

2

(
exp

[
b −a

2
x + a +b

2

]
+1

)−ıω

cos

([(
b −a

2
x + a +b

2

)
−a

]
kπ

b −a

)
.

By the ASCOS method, the price of the arithmetic Asian call can be written as
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V (S(0), t0) = e−r (T−t0)
N−1∑
k=0

Real

(
f̂YMd

(
kπ

b −a

)
exp

(
−ıkπ

a

b −a

))
·V ASCOS

k , (4.71)

with V ASCOS

k the payoff coefficients of the ASCOS method, given by

V ASCOS

k := 2

b −a

[
S(0)

Md +1
χ(x∗,b)+

(
S(0)

Md +1
−K

)
ψ(x∗,b)

]
, (4.72)

in which χ,ψ satisfy equations (3.49), (3.50) and x∗ = log
(

K (Md+1)
S(0)

)
.

Summarizing, the previous sections have extended the SWIFT method to the pricing of geometric
Asian options and arithmetic Asian options. The valuation of geometric Asian options was straight-
forward, whereas the valuation of arithmetic Asian options have shown to be more involved. We have
found two ways to determine the matrix M(n,k). A numerical integration technique (Clenshaw-Curtis
quadrature) resulted in the SWIFT-CC method and an integral approximation (Theorem 4.1) resulted
in the SWIFT-SIA method. In the next section numerical results will be stated for both determinations
of M(n,k) and will be compared in terms of speed and accuracy.

4.8. Numerical results

This section contains several numerical examples of Asian option pricing with the SWIFT method.
With these examples we can show robustness and high accuracy of the SWIFT method, while the nec-
essary CPU time to compute the option values remains small. The performance of the SWIFT method
will be compared to the ASCOS method, for European-style Asian options under GBM, NIG and CGMY
dynamics. First of all the SWIFT method will be applied to price geometric Asian options, after which
arithmetic Asian options prices will be computed.

4.8.1. Geometric Asian option pricing

The test cases for geometric Asian options with the GBM process, the NIG process and the CGMY
process as underlying have the following data sets and reference values dependent on the number of
monitoring dates Md . The reference values of the valuation of geomtetric Asian call options under
GBM dynamics are obtained by the ASCOS method with N = 4096 cosine expansion terms. In the case
of an geometric Asian option with NIG or CGMY dynamics, we have used a reference value obtained
by the SWIFT method with a high scale of approximation m = 10. Figure 4.3 illustrates the probability
density functions of the three test cases. As the figure shows are the NIG and the CGMY processes
more heavy tailed compared to the Geometric Brownian Motion.

• Data set GBM test case and reference values:

S0 = 100,K = 110,r = 0.0367,σ= 0.17801,T = 1

– Md = 12: VGB M (S0,0) = 1.251141891921760

– Md = 50: VGB M (S0,0) = 1.299030113811593

– Md = 100: VGB M (S0,0) = 1.307126980801588

• Data set NIG test case and reference values:

S0 = 100,K = 110,r = 0.1,σ= 0.25,T = 1,α= 6.1882,β=−3.8941,∂= 0.1622.

– Md = 12: VN IG (S0,0) = 5.181988525438173,
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– Md = 50: VN IG (S0,0) = 5.296683183954018,

– Md = 100: VN IG (S0,0) = 5.316056485053149.

• Data set CGMY test case and reference values:

S0 = 100,K = 110,r = 0.1,σ= 0,T = 1,C = 1,G = 5, M = 5,Y = 0.1,

– Md = 12: VCGMY (S0,0) = 3.774380007547238,

– Md = 50: VCGMY (S0,0) = 3.859060576648810,

– Md = 100: VCGMY (S0,0) = 3.873409411006411.
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Figure 4.3: The approximated probability density functions of the three parameter sets for the GBM process, the NIG process
and the CGMY process.

First we will show exponential convergence of the SWIFT method under GBM dynamics. Figure 4.4
confirms exponential convergence, since for increasing m-values the error decreases exponentially
up to m = 6. Table 4.1 shows that the SWIFT method is an excellent method, since it computes the
option value in 0.53 milliseconds up to basis points accuracy at scale of approximation m = 4. If the
number of monitoring dates increases, the accuracy of the SWIFT method remains excellent, however
the time required to compute the option value increases significantly.
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Figure 4.4: Convergence of the geometric Asian options for the GBM test case with
Md = 12,S0 = 100,K = 110,r = 0.0367,σ= 0.17801,T = 1.
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SWIFT

Md Time and error m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

12
Abs error 7.182 2.509 7.464e −02 4.111e −06 2.819e −14 2.331e −14

CPU time 0.45 0.42 0.53 0.68 0.85 0.93

50
Abs error 7.195 2.571 8.060e −02 2.483e −06 1.332e −14 1.576e −14

CPU time 0.39 0.41 0.56 0.73 0.89 1.75

100
Abs error 7.190 2.573 8.061e −02 2.178e −06 3.996e −15 5.329e −15

CPU time 0.43 0.58 0.66 0.94 1.41 3.33

Table 4.1: The absolute error and the CPU time (in milliseconds) of the European style geometric Asian option under GBM
dynamics by the SWIFT method. The reference values are obtained by the ASCOS method with N = 4096.

Table 4.2 shows that the SWIFT method is comparable to the ASCOS method. However, in the ASCOS
method to obtain an option value with absolute error up to thirteen digits accurately we need only
N = 64 Fourier expansion terms. To obtain such accurate option values by the SWIFT method, the
scale of approximation needs to be m = 6, which corresponds to 134 approximation terms for the
aforementioned GBM test case. This means that the SWIFT density approximation requires more
than double the amount of terms in the expansion compared to the ASCOS method to reach basis
point accuracy. In terms of CPU time the ASCOS method also beats the SWIFT method, especially if
the number of monitoring dates increases. The CPU time required for the ASCOS method remains
of the same order (< 1 millisecond), whereas the necessary CPU time of the SWIFT method increases
drastically. If we consider Md = 100, the SWIFT method is ten times slower than the ASCOS method.
On the other hand, the scale of approximation m is the only parameter that needs to be chosen in
advance, which underwrites the robustness of the SWIFT method.

ASCOS SWIFT

Md Time and error N = 64 m = 4 m = 5 m = 6

12
Abs error 2.220e −16 4.111e −06 2.819e −14 2.331e −14

CPU time 0.26 0.68 0.85 0.93

50
Abs error 1.443−14 2.483e −06 1.332e −14 1.576e −14

CPU time 0.23 0.73 0.89 1.75

100
Abs error 5.107e −15 2.178e −06 3.996e −15 5.329e −15

CPU time 0.33 0.94 1.41 3.33

Table 4.2: The absolute error and the CPU time (in milliseconds) of the European style geometric Asian option under GBM
dynamics by the ASCOS method and the SWIFT method. The reference values are obtained by the ASCOS method with

N = 4096.

The performance of the SWIFT method for the NIG and CGMY examples is presented in Table 4.3
and Table 4.4. The geometric Asian call prices are shown for Md = 12,50,100 monitoring dates and
increasing scale of approximation m. Due to the confirmed exponential convergence, we will compare
the resulting option values to the reference value obtained by the SWIFT method with m = 10. In less
than a millisecond we can price the value of an European-style geometric Asian option by means of
SWIFT for both Md = 12 and Md = 50. Table 4.3 reveals that increasing the number of monitoring
dates, increases the CPU time significantly. If we compare our results for NIG and CGMY dynamics to
the results in [25], we see that our methods gives the same option prices up to basis point accuracy,
but our method is slower compared to the ASCOS method. To reach basis point accuracy by the SWIFT
method, the valuation takes more than two milliseconds. Similar to the valuation of geometric Asian
options under GBM dynamics, the SWIFT method is outperformed by the ASCOS method in the case
of NIG and CGMY underlying price processes.
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SWIFT

Md Time and error m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

12
Abs error 2.868 0.6866 1.114e −03 2.970e −05 7.708e −07 2.945e −06

CPU time 0.44 0.85 0.52 0.59 1.26 1.29

50
Abs error 3.326 0.565 6.224e −04 4.182e −06 5.681e −06 1.231e −06

CPU time 0.48 0.60 0.73 0.99 1.73 2.96

100
Abs error 3.433 0.547 5.502e −04 7.942e −06 4.800e −06 3.738e −07

CPU time 0.90 1.03 0.94 2.51 6.50 7.05

Table 4.3: The absolute error and the CPU time (in milliseconds) of the European style geometric Asian option under NIG
dynamics by the SWIFT method. The reference values are obtained by the SWIFT method with m = 10.

SWIFT

Md Time and error m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

12
Abs error 2.598 2.737 0.1006 1.267e −02 4.134e −03 2.769e −04

CPU time 0.50 0.91 1.19 1.10 1.32 2.21

50
Abs error 0.9877 3.195 0.3507 5.309e −02 5.176e −03 3.1705e −04

CPU time 0.91 1.10 1.41 2.41 4.14 7.26

100
Abs error 0.7112 3.2250 0.3850 5.337e −02 5.377e −03 4.1758e −04

CPU time 1.69 2.63 2.74 4.05 7.28 14.81

Table 4.4: The absolute error and the CPU time (in milliseconds) of the European style geometric Asian option under CGMY
dynamics by the SWIFT method. The reference values are obtained by the SWIFT method with m = 10.

4.8.2. Arithmetic Asian option pricing

In this section we present several numerical examples of the valuation of arithmetic Asian options by
the SWIFT method. We present three Lévy processes for the underlying: the GBM process, the NIG
process and the CGMY process. All reference values are obtained by the ASCOS method with N = 1000
Fourier expansion terms and Nq = 1500 points in the numerical integration by the Clenshaw-Curtis
quadrature rule.

• Data set GBM test case and reference values:

S0 = 100,K = 90,r = 0.0367,σ= 0.17801,T = 1

– Md = 12: V (S0,0) = 11.904915748797190

– Md = 50: V (S0,0) = 11.932938204587398

– Md = 100: V (S0,0) = 11.937676122149343

• Data set NIG test case and reference values:

S0 = 100,K = 110,r = 0.0367,σ= 0,T = 1,α= 6.1882,β=−3.8941,δ= 0.1622

– Md = 12: V (S0,0) = 1.013550867167349

– Md = 50: V (S0,0) = 1.037700798283591

– Md = 100: V (S0,0) = 1.041904347350710

• Data set CGMY test case and reference values:

S0 = 100,K = 100,r = 0.1,σ= 0.25,T = 1,C = 1,G = 5, M = 5,Y = 0.1

– Md = 12: V (S0,0) = 11.502766525425102
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– Md = 50: V (S0,0) = 11.592233230967537

– Md = 100: V (S0,0) = 11.607481902427793

Let us recall the matrix M(n,k) in equation (4.48):

M(n,k) = M(n,k) = 2
m
2

∫
R

(
ex +1

)−ıωn sinc
(
2m x −k

)
d x, (4.73)

Matrix M(n,k) has to be computed once, however the computation of this matrix is the bottleneck in
the speed of the method, since numerical integration is expensive to perform. Section 4.6 contains
two different approaches to compute the matrix. The first computation is done by the numerical inte-
gration technique stated in Section 4.6.1 and denoted by the SWIFT-CC method, the second method
to recover the characteristic function is by the SWIFT-SIA mehtod, which is based on the sinc integral
approximation resulting from Theorem 4.1, Section 4.6.2. The performance of both SWIFT methods
will be stated and the results will be compared to the ASCOS method.

SWIFT-CC method

The convergence of the SWIFT-CC method is shown in Figure 4.5. We can conclude that the SWIFT
method shows rapid convergence in the scale of approximation m. Since the matrix M(n,k) is com-
puted by the Clenshaw-Curtis quadrature rule, it is very important to select a sufficient amount of
integration points Nq . Table 4.5 shows that the increase in the number of integration points Nq re-
sults in a smaller absolute error in the option price, as expected. However, if we select more than
Nq = 400 integration points, the absolute error remains of the same order, whereas the CPU time re-
quired to compute the option value increases drastically. Therefore the choice has been made to set
Nq ≤ 400 integration points for each scale m and we can conclude from the results in Table 4.5 that
we do not lose significant accuracy in the final option value.
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Figure 4.5: Convergence of SWIFT-CC method of the valuation of an European-style arithmetic Asian options under GBM
dynamics with Md = 12,S0 = 100,K = 90,r = 0.0367,σ= 0.17801,T = 1.

Comparing the results of the valuation of arithmetic Asian options by the SWIFT-CC method to the
ASCOS method, we can see that the SWIFT method is outperformed by the ASCOS method in terms of
speed and accuracy. Table 4.6 states that where the ASCOS method computes a six decimals accurate
option value in less than two seconds, the SWIFT-CC method needs approximately thirty seconds to
reach the same level of accuracy for Md = 12.

Another difference between the ASCOS method and the SWIFT-CC method we can conclude from
Table 4.6 is that for the ASCOS method the CPU time does not depend much on the number of moni-
toring dates Md . The speed of the method for Md = 12 is of the same order as the speed of the method
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Nq = 100 Nq = 200 Nq = 400 Nq = 600

m = 4
Abs error 0.0022 1.5477e −04 1.5477e −04 1.5477e −04

CPU time 4.33 5.27 7.18 8.95

m = 5
Abs error 0.0688 2.8267e −08 3.2320e −08 3.2320e −08

CPU time 20.18 20.84 28.71 35.79

m = 6
Abs error 0.0688 3.6680e −09 2.7711e −13 1.9007e −13

CPU time 77.98 95.89 118.89 147.28

Table 4.5: Absolute error and the required CPU time (in seconds) for the arithmetic Asian call option with several scales of
approximation m of the SWIFT-CC with several number of integration points Nq . The underlying process is GBM with M = 12.

at Md = 100. The speed of the SWIFT-CC method is affected by the number of monitoring dates con-
sidered, the computation of Md = 100 is approximately twice as slow as the case is for Md = 12. Since
M(n,k) has to be computed only once outside the for-loop in Algorithm 4.1, we can conclude that the
SWIFT method is (without the integration) slower compared to the COS method. This has also been
shown in the performance of the SWIFT method applied to geometric Asian options.

ASCOS SWIFT-CC

Md Time and error
N = 128 N = 256 N = 384 m = 4 m = 5 m = 6

Nq = 200 Nq = 400 Nq = 600 Nq = 200 Nq = 400 Nq = 400

12
Abs error 8.36e −07 4.68e −13 3.69e −13 1.5477e −04 3.23e −08 1.90e −13

CPU time 1.60 8.64 23.67 8.67 37.21 230.10

50
Abs error 7.42e −06 5.32e −07 1.24e −09 0.0015 0.0011 1.6065e −08

CPU time 1.72 8.45 24.58 15.64 83.40 382.85

100
Abs error 1.139e −05 3.307e −06 1.436e −07 2.029e −02 6.201e −03 2.232e −05

CPU time 1.68 8.94 24.47 17.61 83.33 436.40

Table 4.6: The underlying process is GBM and the reference values are computed by the ASCOS method with N = 1000 and
Nq = 1500.

SWIFT-SIA method

Since the function g (x) = (ex +1)−ıωn is bandlimited and satisfies the property of Theorem 4.1, the
matrix M(n,k) can be approximated, which can speed up the SWIFT method tremendously.

M(n,k) =M(n,k) = 2
m
2

∫
R

(
ex +1

)−ıωn sinc
(
2m x −k

)
d x

≈ 1

2m

(
e

k
2m +1

)−ıωn

=:M∗
(n,k).

(4.74)

The computation of the matrix M∗
(n,k) is no longer expensive and its computational time within the

SWIFT-SIA method is negligible. The most interesting part of this extension of the SWIFT framework
is whether we loose accuracy in the resulting option value due to this integral approximation or not.
Figure 4.6 shows the convergence of the SWIFT-SIA method. As we can see, the convergence remains
in m.

In order to check whether we lose accuracy, Table 4.7 shows the SWIFT-CC method next to the SWIFT-
SIA method. As expected, the CPU time required to compute the value of an arithmetic Asian option
has decreased drastically, for an option with Md = 12 monitoring dates, it takes the SWIFT-SIA method
0.066 seconds to compute the option value at the same accuracy as the SWIFT-CC reaches at 230
seconds. Surprisingly, the SWIFT-SIA method performs in some cases even better than the SWIFT-CC
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Figure 4.6: Convergence of the SWIFT-SIA method of the valuation of an European-style arithmetic Asian options under GBM
dynamics with Md = 12,S0 = 100,K = 90,r = 0.0367,σ= 0.17801,T = 1.

method at the same scale of approximation m. This means that the approximation M∗
(n,k) must be

better than the numerical integration with the Clenshaw-Curtis quadrature rule.

SWIFT-SIA SWIFT-CC

Md Time and error m = 4 m = 5 m = 6
m = 4 m = 5 m = 6

Nq = 200 Nq = 400 Nq = 400

12
Abs error 4.17e −04 9.24e −09 1.82e −13 1.5477e −04 3.23e −08 1.90e −13

CPU time 0.023 0.031 0.066 8.67 37.21 230.10

50
Abs error 1.46e −02 9.35e −05 2.21e −10 0.0015 0.0011 1.6065e −08

CPU time 0.026 0.077 0.28 15.64 83.40 382.85

100
Abs error 1.445e −02 9.335e −05 2.832e −06 2.029e −02 6.201e −03 2.232e −05

CPU time 0.042 0.13 0.45 17.61 83.33 436.40

Table 4.7: The absolute error and CPU time (in seconds) of the SWIFT-CC method and the SWIFT-SIA method. The underlying
process is GBM.

Since the SWIFT-SIA method outperforms the SWIFT-CC method, we will compare the SWIFT-SIA
method to the ASCOS method. Figure 4.7 illustrates the performance comparison. On the x-axis the
CPU time is listed, on the y-axis the absolute error is stated. The SWIFT-SIA method reaches a higher
level of accuracy in less time compared to the ASCOS method, as the red line is always on the left of
the blue line. We can conclude that the SWIFT-SIA method performs better than the ASCOS method
in terms of speed and accuracy. Note that Figure 4.7 represents the valuation of an arithmetic Asian
option value monitored with Md = 12.

So far, in the results stated the underlying process has been the GBM process. The numerical exper-
iments were replicated for the NIG and the CGMY process. Table 4.8 lists the absolute error of the
valuation of arithmetic Asian options under NIG dynamics and Table 4.9 lists the results on the val-
uation of arithmetic Asian options under CGMY dynamics. If we compare the results of the NIG and
CGMY test cases to the GBM test case, we can conclude that the results of the GBM test case appear to
be much better.

Figure 4.8 and Figure 4.9 illustrate the difference between the speed and the accuracy of the methods
for the three underlying processes. The CPU time for the computation of arithmetic Asian options by
means of the SWIFT-SIA method is comparable with the ASCOS method, however the results in terms
of accuracy of the NIG and CGMY underlying test cases are not competitive to the ASCOS method.

We have shown exponential convergence of the SWIFT-SIA method for the valuation of arithmetic
Asian options under GBM dynamics. From Tables 4.8 and 4.9 we see that if we consider m > 4, the
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Figure 4.7: The absolute error and CPU time corresponding to the valuation of an European-style arithmetic Asian option with
GBM dynamics by means of the SWIFT-SIA method (red) and the ASCOS method (blue).

SWIFT-SIA

Md CPU time and Abs.error m = 2 m = 4 m = 6 m = 8

12
Abs error 4.487 2.334e −02 2.904e −04 1.307e −06

CPU time 0.0027 0.014 0.077 1.06

50
Abs error 5.295 0.2307 9.509e −04 8.091e −05

CPU time 0.0087 0.027 0.30 4.23

100
Abs error 10.21 0.1596 1.089e −03 9.872e −05

CPU time 0.015 0.043 0.52 6.75

Table 4.8: Absolute error of the SWIFT-SIA method for an arithmetic Asian call option under the NIG dynamics.

absolute error remains of the same order. This might be due to the accuracy of the reference value
we have taken into consideration. The reference value has been obtained with the ASCOS method
with N = 1500 expansion terms and Nq = 1000 integration points. These reference values result in
the stagnation of the accuracy of the SWIFT-SIA method. If we consider our reference value from the
SWIFT-SIA method with a high scale of approximation (m ∈ {9,10}), it becomes clear that the SWIFT-
SIA method is more accurate than the previously stated comparison might suggest. The reference
value for the valuation of an European-style arithmetic call option under NIG dynamics is obtained at
scale m = 10 and Md = 12. Due to the heavier tails of the CGMY process considered in these numerical
experiments, the program ran out-of-memory if we considered m = 10. The number of approximation
terms became too big considering the cumulant based interval [a,b]. Therefore the reference value of
the CGMY test case is obtained with m = 9.

Table 4.10 and Table 4.11 present the convergence and the CPU time of an arithmetic Asian option
for the NIG and CGMY test case with Md = 12. Increasing the scale of approximation m, results in
option values converging to the reference value obtained with the SWIFT method with m ∈ {9,10}. The
hypothesis that the reference values obtained by the ASCOS method were not representative to the
SWIFT-SIA method appears to be correct for the underlying NIG and CGMY dynamics. The difference
between between the absolute error listed in Table 4.8 and the error presented in Table 4.10 is three
digits at scale m = 8.
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SWIFT-SIA

Md CPU time and Abs.error m = 2 m = 4 m = 6 m = 8

12
Abs error 3.617 9.0869e −05 4.4084e −07 4.679e −07

CPU time 0.0059 0.016 0.18 3.17

50
Abs error 5.689 2.371e −02 3.795e −07 4.219e −07

CPU time 0.012 0.038 0.40 5.71

100
Abs error 11.64 7.573e −02 4.159e −07 4.274e −07

CPU time 0.016 0.057 0.61 8.80

Table 4.9: Absolute error of the SWIFT-SIA method for an arithmetic Asian call option under the CGMY dynamics.
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Figure 4.8: CPU time (in seconds) of the valuation of an arithmetic Asian option under GBM, NIG and CMGY dynamics for
various m.

4.8.3. The put-call parity of arithmetic Asian options

The put-call parity is the relationship between a put and a call option that rely on the same stock price
S(t ), the same strike K and have the same time to maturity T . The relationship originates from the
no-arbitrage principle, which states that two portfolios with the same payoff at t = T , must admit the
same value at t < T . Let us define the difference between the payoff of a fixed strike arithmetic Asian
call option VC (S(T ),T ) and a fixed strike arithmetic Asian put option VP (S(T ),T ). Both options have
the same strike K and maturity T , then it follows,

VC (S(T ),T )−VP (S(T ),T ) =max{A(t0,T )−K ,0}−max{K − A(t0,T ),0}

=A(t0,T )−K .
(4.75)

Applying the risk neutral pricing formula, we obtain

VC (S0, t0)−VP (S0, t0) =e−r (T−t0)EQ [A(t0,T )−K |Ft ]

=e−r (T−t0) S0

Md +1

Md∑
i=0

e i r∆t −e−r (T−t0)K ,
(4.76)

such that we can price the arithmetic Asian call option in terms of the put option price,
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Figure 4.9: Abs. error of the valuation of an arithmetic Asian option under GBM, NIG and CMGY dynamics for various m.

SWIFT-SIA

Md CPU time and Abs.error m = 4 m = 5 m = 6 m = 7 m = 8

12
Abs error 9.710e −02 5.740e −03 2.627e −04 1.892e −05 2.557e −09

CPU time 0.013 0.027 0.077 0.31 1.10

Table 4.10: Absolute error and CPU time (in seconds) of the valuation of an arithmetic Asian option under NIG dynamics.
Reference value is obtained by the SWIFT-SIA method with m = 10, Vr e f (S0,0) = 1.013549562718903.

SWIFT-SIA

Md CPU time and Abs.error m = 4 m = 5 m = 6 m = 7 m = 8

12
Abs error 8.664e −05 1.415e −08 7.305e −09 4.585e −09 1.012e −09

CPU time 0.023 0.059 0.23 0.85 3.14

Table 4.11: Absolute error and CPU time (in seconds) of the valuation of an arithmetic Asian option under CGMY dynamics.
Reference value is obtained by the SWIFT-SIA method with m = 9, Vr e f (S0,0) = 11.502766050995911.

VC (S0, t0) =e−r (T−t0)E [A(t0,T )−K ]

=e−r (T−t0) S0

Md +1

Md∑
i=0

e i r∆t −e−r (T−t0)K +VP (S0, t0).
(4.77)

Since the payoff of a call option is unbounded, the truncation of the interval to [a,b] might lead to
large errors (see [25] for details). Therefore Zhang et al. [25] advised the use of the put-call parity if the
option is deep in-the-money, admits a heavy-tailed underlying density function or if the option has a
long time to maturity T . Since the SWIFT method is a highly robust method and because of the local
Shannon wavelet basis, the resulting density coefficients compensate for the high payoff coefficients
in the tail of the distribution. Figures 4.10 and 4.11 illustrate the density coefficients and the corre-
sponding payoff coefficients of an European style arithmetic Asian call and put option with the same
maturity T and strike K . We can conclude that the the payoff coefficients of the arithmetic put option
are bounded, whereas the payoff coefficients of the arithmetic call option grow exponentially.

The difference between the accuracy of the direct valuation of an arithmetic Asian call option and
application of the put-call parity, will be illustrated by the next numerical example. An European-style
arithmetic Asian call option with maturity T = 10 and strike K = 110 will be priced by the put-call
parity and by the direct method. The underlying price process follows a GBM with S0 = 100, r = 0.1
and σ = 0.25. The arithmetic Asian option is discretely monitored with Md = 100 at [0,T ]. Since we
want to show the application of the put-call parity for options with a long time to maturity, we consider
T = 10. The reference value is obtained by the SWIFT-SIA method with m = 8.
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Figure 4.10: The cm,k and Vk of an arithmetic Asian call option at scale m = 4.
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Figure 4.11: The cm,k and Vk of an arithmetic Asian put option at scale m = 4.
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ASCOS

CPU time Abs. error (direct) Abs. error (put-call parity)

N = 64
0.13 1.694e −02 6.648e −07

Nq = 100

N = 128
0.83 8.747e −03 1.212e −08

Nq = 200

N = 256
5.31 1.516e −05 5.706e −11

Nq = 400

N = 384
12.67 5.749e −08 4.023e −11

Nq = 600

Table 4.12: ASCOS: Put-call parity to obtain European-style arithmetic Asian call option values.

SWIFT-SIA

CPU time Abs. error (direct) Abs. error (put-call parity)

m = 2 0.022 3.162 1.156e −03

m = 3 0.061 0.132 5.637e −05

m = 4 0.18 1.268e −04 4.782e −08

m = 5 0.56 3.344e −11 4.026e −11

Table 4.13: SWIFT-SIA: Put-call parity to obtain European-style arithmetic Asian call option values.

Table 4.12 illustrates the comparison between the put-call parity valuation and the direct valuation
of an arithmetic Asian call option. The put-call parity has a positive effect on the accuracy of the
obtained call option value. The put-call parity approach by the ASCOS method with N = 128 terms
in the expansion and Nq = 200 integration points results in an option value that is five digits more
accurate than the directly obtained option value. Next, the difference between the put-call parity
approach and the direct valuation of an arithmetic Asian option by the SWIFT-SIA method will be
stated. Table 4.13 shows that the influence of the put-call parity in the SWIFT-SIA method is less,
compared to the ASCOS method. Within less than one second (0.56 seconds) the SWIFT-SIA method
obtains directly a call option value which is eleven digits accurate, whereas the ASCOS method reaches
the same level of accuracy by the valuation of the call option through the put-call parity in more than
five seconds. This difference highlights the robustness of the SWIFT-SIA method, since the SWIFT-SIA
method is capable of pricing arithmetic Asian call options with a long time to maturity.



5
Pricing European Options under the

SABR model with SWIFT

In the pricing of European options under the SABR model the method proposed by Leitao et al. [16]
reveals an interesting step in which the application of the SWIFT method could be beneficial in terms
of accuracy and CPU time. The work of Leitao et al. proposes a one time-step Monte Carlo method
to compute European option prices under SABR dynamics. The approach relies on an accurate ap-
proximation of the distribution function of the time-integrated variance, by means of a copula and a
Fourier technique. The Fourier technique proposed in this setting is the COS method. As shown in the
previous chapter, in some cases it is more efficient to replace the COS method by the SWIFT method
(which was the case in the valuation of arithmetic Asian options.).

First, the one time-step SABR model will be defined, after which the SWIFT method will be applied to
recover an approximation to the cumulative distribution function of the time integrated variance. The
performance of the one time-step Monte Carlo method with SWIFT will be compared to the original
method stated in the paper for two test cases, one originating from the literature, [1], and the second
test case is a pure Monte Carlo simulation method.

5.1. The SABR model

The Stochastic Alpha Beta Rho (SABR) model is a stochastic local volatility model which is often used
for modeling interest rates and foreign-exchange rates. The model describes a forward S(t ) by means
of its volatility σ(t ). S(t ) and σ(t ) are stochastic variables with the following system of stochastic dif-
ferential equations (SDEs).

Definition 5.1. The formal definition of the SABR model reads

dS(t ) =σ(t )Sβ(t )dWS (t ), (5.1)

dσ(t ) =ασ(t )dWσ(t ),

S(0) = S0 exp(r T ) and σ(0) =σ0,
(5.2)

where S(t ) = Ŝ(t )exp(r (T − t )) denotes the forward value of the underlying Ŝ(t ), r the interest rate,
S0 the price of the underlying at time t = 0 and T the time of maturity of the contract. σ(t ) denotes
the stochastic volatility, with σ(0) = σ0, WS (t ) and Wσ(t ) are two correlated Brownian motions with

59
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constant correlation ρ, (WSWσ = ρt ). The model parameters are: α the volatility of the volatility (vol-
vol), β the elasticity (0 ≤β≤ 1) and ρ the correlation coefficient.

From equation (5.2) we can see that the local-volatility is of the constant elasticity of variance (CEV)
form. In the work of Leitao et al. [15] an analytical expression for the cumulative distribution function
(cdf) of the SABR conditional process is obtained. With the cdf as in the work of Leitao et al. a one
time-step Monte Carlo method was proposed which is based on inverting the conditional SABR cdf.
This one time-step Monte Carlo method can be divided in three steps:

1. Simulation of SABR’s volatility.

2. Simulation of SABR’s time integrated variance, conditional on the terminal value of the volatility.

3. Simulation of SABR’s forward underlying process.

From the system of SDEs we can conclude that the volatility follows a lognormal distribution, which
yields an analytical solution. Therefore, the simulation of SABR’s volatility (Step 1) is exact.

Lemma 5.1. The analytical solution to the volatility in the SABR model is given by

σ(T ) =σ(0)exp

(
αWσ(T )− 1

2
α2T

)
, (5.3)

Proof. Itô integration results for the SDE of the volatility in the SABR model in

∫ t

0

dσ(t )

σ(t )
=

∫ t

0
αdWσ(t )

⇔∫ t

0

dσ(t )

σ(t )
=αWσ(t ).

(5.4)

Itô’s formula results in

d log(σ(t )) =dσ(t )

σ(t )
− 1

2

1

σ(t )2 dσ(t )dσ(t )

⇔

d log(σ(t )) =dσ(t )

σ(t )
− 1

2
α2d t ,

(5.5)

substituting this result in (5.4) yields∫ t

0
d log(σ(t ))+ 1

2
α2

∫ t

0
d t =αWσ(t ) ⇔ log

(
σ(t )

σ0

)
=αWσ(t )− 1

2
α2t , (5.6)

taking the exponential gives the desired result.

More involved is Step 2, since the conditional distribution of the time integrated variance given the
volatility,

∫ T
0 σ2(s)d s|σ(T ), is not known in closed form. To compute this conditional distribution we

will follow the method proposed by Leitao et al. in which a copula multi-variate distribution is applied
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to simulate
∫ T

0 σ2(s)d s|σ(T ). A simulation with a copula technique requires the two marginal distribu-

tions, thus the distribution of
∫ T

0 σ2(s)d s and the distribution of σ(T ), (5.3). In [15] the approximation

of the distribution of the integrated variance,
∫ T

0 σ2(s)d s, is obtained by the COS method, but an al-
ternative approach is the SWIFT method.

The next sections will elaborate on the method proposed in [15], however we will implement the
SWIFT method instead of the COS method to approximate the cumulative distribution function and
discuss the results in terms of accuracy and speed. The recovery of the distribution of the integrated
variance shows great similarity with the recovery of the density of arithmetic Asian options. For ex-
ample the Carverhill-Clewlow-Hodges factorization scheme will be implemented and the method can
also benefit from the sinc integral approximation, as stated in Theorem 4.1. To gain full insight in the
way the one time-step Monte Carlo method will be adjusted due to the SWIFT implementation, each
step of the method will be briefly explained in the upcoming sections.

5.2. Cumulative distribution function of SABR’s time integrated vari-
ance

This section will elaborate on the method to recover the CDF of the SABR time integrated variance,
i.e.

∫ T
0 σ2(s)d s. First of all, the time integrated variance will be approximated by its discrete analogue

with M ∈N time points:

∫ T

0
σ2(s)d s ≈

M∑
i=1

σ2(ti )∆t := Y (T ), (5.7)

where i = 1, . . . , M ,∆t = T
M and ti = i∆t . In order to find the characteristic function of logY (T ), we will

apply the SWIFT method. For the application of SWIFT, a recursive procedure is developed which is
similar to the recursive procedure to obtain the characteristic function for the valuation of arithmetic
Asian options, as stated in Section 4.4. The definition of a sequence of logarithmic increments is given
first,

Rti = log

(
σ2(ti )

σ2(ti−1)

)
= log

(
σ2(ti )

)− log
(
σ2(ti−1)

)
. (5.8)

As stated previously, the volatility process is distributed lognormally, therefore the increment process

is independent and identically distributed, i.e. Rti

d= R. Furthermore the characteristic function of the
increments is known and reads

f̂Rti
(ω) = f̂R = exp(−ıωα2∆t −2u2α2∆t ), (5.9)

By equation (5.8) we can write

σ2(ti ) =σ2(t0)exp

(
log

(
σ2(ti )

σ2(t0)

))
=σ2(t0)exp

(
log

(
σ2(t1)

σ2(t0)

)
+ log

(
σ2(t2)

σ2(t1)

)
+ . . .+ log

(
σ2(ti )

σ2(ti−1)

))
=σ2(t0)exp

(
Rt1 +Rt2 + . . .+Rti

)
.

(5.10)

With these results we can set up a recursion in terms of R(ti ) to recover the characteristic function
f̂logY (T ). Let us specify the recursion
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Y1 =RtM

Yi =RtM+1−i +Zi−1,
(5.11)

for i = 2, . . . , M and Zi = log
(
1+exp(Yi )

)
. As a result, the time integrated variance can be written as

Y (T ) =
M∑

i=1
σ2(ti )∆t =∆tσ2

0 exp(YM ). (5.12)

From equation (5.12) the characteristic function can be written as

f̂logY (T )(ω) =E[
exp

(−ıω logY (T )
)]

=E[
exp

(−ıω log(∆tσ2
0)− ıωYM

)]
=E[

exp
(−ıω log(∆tσ2

0)
)]
E
[
exp (−ıωYM )

]
=exp

(−ıω log(∆tσ2
0)

)
f̂YM (ω).

(5.13)

The computation of the characteristic function of f̂Y (T ) is reduced to the recovery of the characteristic
function of YM , f̂YM (ω).

5.2.1. Characteristic function

Since YM is defined in a recursive way, so is f̂YM which results in the following recursion relation,

f̂Y1 (ω) = f̂RtM
(ω) = f̂R (ω)

f̂Yi (ω) = f̂R (ω) f̂Zi−1 (ω).
(5.14)

The characteristic function of the increment process, R, in (5.14) is analytically available, because it is
in the class of Lévy processes. Unfortunately, this does not hold for the characteristic function f̂Zi−1 ,
which is, again, defined by

f̂Zi−1 (ω) =
∫
R

(
exp(x)+1

)−ıω fYi−1 (x)d x. (5.15)

Up to this point, the method to obtain the characteristic function coincided with the paper by Leitao et
al. In that work the probability density function of Yi , fYi in (5.15), was computed by its Fourier cosine
expansion. Instead we will approximate the density function fYi by a Shannon wavelet approximation.
Recall the SWIFT density approximation f ∗

Yi
in (3.15), which will be applied to (5.15),

fYi−1 ≈ f ∗
Yi−1

(x) =
k2∑

k=k1

c i−1
m,kφm,k . (5.16)

Substituting (5.16) in (5.15) we obtain
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f̂Zi−1 (ω) =
∫
R

(
exp(x)+1

)−ıω fYi−1 (x)d x

≈
∫
R

(
exp(x)+1

)−ıω f ∗
Yi−1

(x)d x

=
k2∑

k=k1

c i−1
m,k 2

m
2

∫
R

(
ex +1

)−ıω sinc
(
2m x −k

)
d x,

(5.17)

which yields

f̂Yi (ω) = f̂R (ω) f̂Zi−1 (ω)

≈ f̂R (ω)
k2∑

k=k1

c i−1
m,k 2

m
2

∫
R

(
ex +1

)−ıω sinc
(
2m x −k

)
d x,

(5.18)

where ω is defined by the vector ωn = 2n+1
2N π2m and the density coefficients are defined as in equa-

tion (3.26),

c i
m,k ≈ 2

m
2

2N−1

2N−1∑
n=0

Real

{
f̂Yi

(
2n +1

2N
π2m

)
e

ıkπ(2n+1)
2N

}
. (5.19)

Since the recursion relation is necessary to compute the density coefficients c i
m,k , for i = 1, . . . , M , we

recall Algorithm 4.1. This algorithm will be used to compute the density coefficients and to decrease
the CPU time required for this recursive procedure, a matrix-vector multiplication will be used. Let us
recall the matrix defined in equation (4.48) and the resulting matrix-vector multiplication

M(n,k) = 2
m
2

∫
R

(
ex +1

)−ıωn sinc
(
2m x −k

)
d x,

f̂Zi (ωn) ≈ M(n,k)c
i
m,k .

Again the computation of the matrix M(n,k) by numerical integration is rather expensive and in [15] the
integration is done by the Clenshaw-Curtis quadrature rule. However, in this case (equivalent to the
arithmetic Asian option valuation) we can apply Theorem 4.1, and for the computation of the matrix
M(n,k) we refer the reader to Section 4.6. With these results we can conclude the computation of the
characteristic function f̂Y (T ) of the discrete analogue of the integrated variance Y (T ).

5.3. Simulation of
∫ T

0 σ2(s)d s|σ(T )

In this section the copula approach to simulate Y (T )|σ(T ) will be explained. A copula is used to de-
scribe the dependency between random variables. In our case we deal with two random variables,
logY (T ) and σ(T ). By Sklar’s Theorem [21] we know that a multivariate joint distribution can be writ-
ten in terms of univariate marginal distribution functions together with a copula that describes the
dependence between the random variables. Copulas are divided into three categories:

• Fundamental copulas: represent perfect positive dependence, perfect negative dependence or
independence,

• Implicit copulas: copulas based on multivariate distribution without a closed form expression,
for example the Gaussian copula and the Student-t copula,



64 5. Pricing European Options under the SABR model with SWIFT

• Archimedean copulas: copulas with closed form expressions, for example the Gumbel copula,
Frank copula and Clayton copula.

According to Sklar’s Theorem, for every univariate marginal distribution of the random variables
∫ T

0 σ2(s)d s
and σ(T ) there exists a copula CR(·, ·), such that

F∫ T
0 σ2(s)d s,σ(T )(x1, x2) =CR

(
F∫ T

0 σ2(s)d s (x1),Fσ(T )(x2)
)

, (5.20)

where R is the covariance matrix between the two random variables
∫ T

0 σ2(s)d s and σ(T ). In order
to apply a copula model, we thus need to approximate the correlation between the random variables.
In this case we use the Pearson correlation coefficient, since it is directly applicable to the Gaussian
copula and there exists a relation between the Pearson correlation and Kendall’s τ, which is applicable
to the Gumbel copula.

Definition 5.2. The Pearson correlation coefficient of two random variables X and Y , ρX ,Y , is given
by

ρX ,Y = corr[X ,Y ] = cov[X ,Y ]

σ(X ) ·σ(Y )
= cov[X ,Y ]p

var[X ] ·var[Y ]
. (5.21)

In this section, we aim to compute the multivariate joint distribution of Y (T ) = log
∫ T

0 σ2(s)d s and
logσ(T ), therefore we wish the compute the following Pearson correlation coefficient

ρY (T ),logσ(T ) =
cov

[
log

∫ T
0 σ2(s)d s, logσ(T )

]
√

var
[

log
∫ T

0 σ2(s)d s
]
·var

[
logσ(T )

] . (5.22)

Leitao et al. [15] propose an elegant approximation of the Pearson correlation coefficient. In the fol-
lowing section we will step-by-step derive the same approximation as in [15].

First of all, by Jensen’s inequality we know that

Y (T ) = log
∫ T

0
σ2(s)d s ≥

∫ T

0
logσ2(s)d s. (5.23)

We can use the following approximation,

Y (T ) = log
∫ T

0
σ2(s)d s ≈

∫ T

0
logσ2(s)d s = 2

∫ T

0
logσ(s)d s. (5.24)

If we substitute this approximation in equation (5.22), we obtain
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ρY (T ),logσ(T ) =
cov

[
log

∫ T
0 σ2(s)d s, logσ(T )

]
√

var
[

log
∫ T

0 σ2(s)d s
]
·var

[
logσ(T )

]
≈

cov
[

2
∫ T

0 logσ(s)d s, logσ(T )
]

√
var

[
2
∫ T

0 logσ(s)d s
]
·var

[
logσ(T )

]
=

cov
[∫ T

0 logσ(s)d s, logσ(T )
]

√
var

[∫ T
0 logσ(s)d s

]
·var

[
logσ(T )

]

(5.25)

Since the distribution of logσ(T ) is available in closed form, (5.3), we know var
[
logσ(T )

]
. What re-

mains are two other quantities in equation (5.25). First, we will derive the covariance. From the defi-
nition of covariance it follows that

cov

[∫ T

0
logσ(s)d s, logσ(T )

]
= E

[
logσ(T ) ·

(∫ T

0
logσ(s)d s

)]
−E

[∫ T

0
logσ(s)d s

]
·E[

logσ(T )
]

. (5.26)

Recall the distribution of logσ(T ) in equation (5.3),

σ(T ) =σ(0)exp

(
αWσ(T )− 1

2
α2T

)
, (5.27)

which gives

logσ(T ) = logσ(0)+αWσ(T )− 1

2
α2T. (5.28)

The expectation of logσ(T ) can be computed as

E
[
logσ(T )

]=E[
logσ(0)+αWσ(T )− 1

2
α2T

]
= logσ(0)− 1

2
α2T +αE [Wσ(T )]

= logσ(0)− 1

2
α2T,

(5.29)

and by Itô’s formula we obtain for Y (T ) = ∫ T
0 logσ(s)d s,

∫ T

0
logσ(s)d s =

∫ T

0

(
logσ(0)+αWσ(T )− 1

2
α2T

)
d s

=T logσ(0)− 1

4
α2T 2 +α

∫ T

0
W (s)d s

=T logσ(0)− 1

4
α2T 2 +α

∫ T

0
(T − s)dW (s).

(5.30)
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By Itô’s formula the last step in equation (5.30) follows. The expectation yields

E

[∫ T

0
logσ(s)d s

]
=E

[
T logσ(0)− 1

4
α2T 2 +α

∫ T

0
(T − s)dW (s)

]
=T logσ(0)− 1

4
α2T 2.

(5.31)

Finally, the expectation of the product of the two variables is computed,

E

[
logσ(T )

(∫ T

0
logσ(s)d s

)]
= E

[(
T logσ(0)− 1

4
α2T 2 +α

∫ T

0
(T − s)dW (s)

)(
logσ(0)+αŴσ(T )− 1

2
α2T

)]
=

(
T logσ(0)− 1

4
α2T 2

)(
logσ(0)− 1

2
α2T

)
+α

(
T logσ(0)− 1

4
α2T 2

)
E [W (T )]

+α
(
logσ(0)− 1

2
α2T

)
E

[∫ T

0
(T − s)dW (s)

]
+α2E

[∫ T

0
(T − s)dW (s)

∫ T

0
1dW (s)

]
=

(
T logσ(0)− 1

4
α2T 2

)(
logσ(0)− 1

2
α2T

)
+α2E

[∫ T

0
(T − s)dW (s)

∫ T

0
1dW (s)

]
=

(
T logσ(0)− 1

4
α2T 2

)(
logσ(0)− 1

2
α2T

)
+α2E

[∫ T

0
(T − s)d s

]
=

(
T logσ(0)− 1

4
α2T 2

)(
logσ(0)− 1

2
α2T

)
+ 1

2
α2T 2.

(5.32)

The final step is to compute the variance of
∫ T

0 logσ(s)d s, for which we compute

E

[(∫ T

0
logσ(s)d s

)2
]
=E

[(
T logσ(0)− 1

4
α2T 2 +α

∫ T

0
(T − s)dW (s)

)2
]

=
(
T logσ(0)− 1

4
α2T 2

)2

+α
(
T logσ(0)− 1

4
α2T 2

)
E

[∫ T

0
(T − s)dW (s)

]
+α2E

[(∫ T

0
(T − s)dW (s)

)2
]

=
(
T logσ(0)− 1

4
α2T 2

)2

+α
(
T logσ(0)− 1

4
α2T 2

)
E

[∫ T

0
(T − s)dW (s)

]
+α2E

[∫ T

0
(T − s)2d s

]
=

(
T logσ(0)− 1

4
α2T 2

)2

+ 1

3
α2T 3,

(5.33)

so that the variance reads

var

[∫ T

0
logσ(s)d s

]
=E

[(∫ T

0
logσ(s)d s

)2
]
−E

[∫ T

0
logσ(s)d s

]2

=
(
T logσ(0)− 1

4
α2T 2

)2

+ 1

3
α2T 3 −

(
T logσ(0)− 1

4
α2T 2

)2

=1

3
α2T 3.

(5.34)
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At this point we have all the ingredients to compute the Pearson correlation coefficient:

ρY (T ),logσ(T ) ≈
E
[

logσ(T ) ·
(∫ T

0 logσ(s)d s
)]

−E
[∫ T

0 logσ(s)d s
]
·E[

logσ(T )
]

√
var

[∫ T
0 logσ(s)d s

]
·var

[
logσ(T )

]
=

(
T logσ(0)− 1

4α
2T 2

)(
logσ(0)− 1

2α
2T

)+ 1
2α

2T 2 − (
T logσ(0)− 1

4α
2T 2

)(
logσ(0)− 1

2α
2T

)√( 1
3α

2T 3
)(
α2T

)
=

1
2α

2T 2√
1
3α

4T 4

=
p

3

2
.

(5.35)

5.3.1. Sampling Y (T )|σ(T ) by means of a bivariate copula

The copula approach to sample the conditional distribution of Y (T )|σ(T ) consists of the following
steps:

1. Computation of the marginal distributions FlogY (T ) and Flogσ(T ). The first marginal distribution
can be attained as explained in Section 5.2, whereas the marginal distribution of logσ(T ) can be
obtained analytically (5.3).

2. Define the bivariate copula by means of the two marginal distributions and the covariance ma-
trix R.

R =
[

var
[
logσ(T )

]
ρY (T ),logσ(T )

ρY (T ),logσ(T ) var
[
logY (T )

]]≈
[
α2T

p
3

2p
3

2
1
3α

2T 3

]
(5.36)

3. With the previously defined copula, compute correlated uniform samples Ulogσ(T ) and UlogY (T ).

4. Invert the original marginal distributions FlogY (T ) and Flogσ(T ) and take the exponential to ob-
tain the samples of Y (T )|σ(T ).

As Leitao et al. have stated, the Gumbel copula is the most robust copula to use. However if short ma-
turities are considered, the Gaussian copula would be a good choice. In [15] a goodness-of-fit (GOF)
test was proposed to determine which copula was the most appropriate to describe the model. In the
numerical tests, we will only consider the Gumbel and the Gaussian copulas to determine European
option prices.

5.3.2. Simulation of the forward asset price S(T ) conditional on S0

The final step in the one time-step Monte Carlo method is the simulation of the forward asset process
S(T ) conditional on the asset process at t = 0. Chen et al. [8] proposes a forward asset simulation
method based on the combination of moment matching and a direct inversion method. This method
has also been applied by Leitao et al.in [15].

5.4. Numerical results

Having looked at all the components that are required to perform the already existing one time-step
Monte Carlo simulation of the SABR model as well as the method adjusted for SWIFT-SIA, it is time
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to compare the two models in an option pricing problem. We will do so by the valuation of European
call options under the SABR dynamics. The payoff function of a European call option is given by

V (S(T ),T ) = max{S(T )−K ,0} , (5.37)

with expiry T , asset price at expiry S(T ) and the strike K . The strike values Ki are chosen correspond-
ing the work by Leitao et al., which represent both in-the-money, out-of-the-money and at-the-money
European options,

Ki (T ) = S0 exp(0.1T∂i ) ,

∂i =−1.5,0,1.5.
(5.38)

In this section we will compare three methods to obtain European options under SABR dynamics.
The first method is the one time-step Monte Carlo simulation proposed by Leitao et al., the second
method is a pure Monte Carlo simulation based on the Milstein discretization scheme and the third
is the method proposed by Leitao et al, which has been adjusted for the application of SWIFT-SIA
method.

Since each method involves a Monte Carlo simulation, for each path the resulting payoff is calculated,
after which averaging over the number of paths leads to the option price. Table 5.1 lists the two test
cases we will use to compare the results of the three methods. These particular test cases are con-
sidered since they cover different aspects of the SABR model. For Set 1 the reference value is obtained
with help of Antonov et al.[1], in which an analytical solution is obtained for the zero-correlation SABR
model, ρ = 0. In the numerical experiments we can show convergence in m of the SWIFT method,
since we can compute the absolute error of the SWIFT method compared to the analytical solution
obtained by the method proposed in [1]. The second parameter set represents a SABR model with a
high volatility of the volatility (vol-vol,i.e. α). Unfortunately, there is no analytical solution available
for the second test case, therefore we will show convergence of the three methods to the reference
value which has been obtained by the one time-step Monte Carlo method with the SWIFT-SIA method
implemented for a high value of the scale of approximation (m = 8).

S0 σ0 α β ρ T

Set 1 1.0 0.5 0.4 0.7 0.0 2

Set 2 0.04 0.4 0.8 1.0 −0.5 2

Table 5.1: Data sets for the valuation of European option prices under SABR dynamics.

In the previous chapters we have shown that the SWIFT wavelet approximation converges in the scale
of approximation m. This would mean that theoretically if we choose a higher scale of approximation,
the accuracy of the option value should increase simultaneously. In order to show that our method
converges, we choose a reference value by the SWIFT-SIA method with a high scale of approximation
m = 8 and we will show convergence of the pure Monte Carlo method and the one time-step Monte
Carlo method with SWIFT-SIA implemented towards this reference value.

Convergence in NMC , Milstein discretization scheme

First let us show convergence of the Monte Carlo method. The theoretical convergence of a Monte

Carlo method is of order O
(

1p
NMC

)
. From Table 5.2 we can confirm the convergence numerically. The

95% confidence interval of the option value converges by O
(

1p
NMC

)
.



5.4. Numerical results 69

VMC (S0, t0) 95% Confidence Interval Interval size

NMC = 100 0.021258956891641 [1.397e −02, 2.854e −02] 1.456e −02

NMC = 1e03 0.016245321001685 [1.468e −02, 1.780e −02] 3.123e −03

NMC = 1e04 0.015535134875164 [1.507e −02, 1.599e −02] 9.247e −04

NMC = 1e05 0.015699727704500 [1.554e −02, 1.585e −02] 3.032e −04

NMC = 1e06 0.015776985248290 [1.572e −02, 1.582e −02] 9.636e −05

Table 5.2: Convergence in NMC , the mean option value VMC (S0, t0) and its 95% confidence interval.

5.4.1. Set 1: zero-correlation SABR model

The second numerical example is based on the zero-correlation method proposed by Antonov et al.
For the expression of the analytical solution, the reader is refered to Appendix B.1. In this numerical
example we will show that both the SWIFT-SIA method and the ASCOS method applied to the one
time-step Monte Carlo method converge tot the exact reference value. The number of monitoring
dates M is chosen to be fixed to M = 1000. In the original method proposed by Leitao et al., the value
M did not have a significant impact on the CPU time, thus choosing a large value could only result in a
more accurate option value (which resembles a continuously monitored European option value). The
number of Monte Carlo paths is also fixed to NMC = 1e06, to assure that the resulting option value is
accurate.

• Parameter Set 1 (Antonov et al.) reference values:

– ∂1 =−1.5: Vr e f = 0.405630070518358,

– ∂3 = 1.5: Vr e f = 0.172476427794756.

Table 5.3 shows the accuracy of the option value of the one time-step Monte Carlo method with the
SWIFT-SIA method implemented. The results show convergence in the scale of approximation m for
the in-the-money and out-of-the-money option. At m = 7 we obtain an option value accurate up
to basis points in 48.23 seconds. If we compare these results to the results of the original method
(Table 5.4), we see that the SWIFT-SIA approach cannot compete with that method for the zero-
correlation SABR model.

In the previous chapters where we have compared the SWIFT-SIA approach to the COS method, we
have shown that the SWIFT-SIA method is comparable to the COS method. Unfortunately, this is not
the case in the SABR zero-correlation model. The increase in m does result in highly accurate option
values, but CPU time increases tremendously.

CPU time ∂1 =−1.5 ∂3 = 1.5

m = 2 1.48 0.1184 1.562e −02

m = 3 1.56 5.855e −02 7.124e −02

m = 4 2.44 3.113e −03 2.826e −03

m = 5 4.62 1.135e −03 2.292e −04

m = 6 13.42 1.667e −04 9.037e −04

m = 7 48.23 1.036e −05 1.390e −03

Table 5.3: Absolute error and the CPU time of the SWIFT-SIA method to price an European Option under the SABR model,
parameter Set 1, reference values obtained by Antonov et al.

5.4.2. Set 2: high vol-vol SABR model

In this second numerical example there is no analytical solution available, but since we have shown
convergence of the SWIFT-SIA method in the previous chapters, the reference value is obtained by the
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CPU time ∂1 =−1.5 ∂3 = 1.5

N = 50 1.43 8.206e −04 2.117e −03

N = 75 1.61 6.371e −04 2.062e −03

N = 100 1.64 3.748e −04 1.582e −03

N = 125 1.69 1.108e −03 2.685e −03

N = 150 2.03 5.692e −04 1.719e −03

Table 5.4: Absolute error and the CPU time of the ASCOS method to price an European Option under the SABR model,
parameter Set 1, reference values obtained by Antonov et al.

one time-step Monte Carlo method with the SWIFT-SIA method implemented. The reference values
are computed with m = 8, M = 500 and NMC = 1e06. Three strike prices will be considered, resulting
in the valuation of an in-the-money, an out-of-the money and an at-the-money European option.

• Parameter Set 2, SWIFT-SIA method (m = 8, M = 500, NMC = 1e06) reference values:

– ∂1 =−1.5: Vr e f = 0.014512272992185,

– ∂2 = 0: Vr e f = 0.008411970261185,

– ∂3 = 1.5: Vr e f = 0.003656664712094.

With the results listed in Table 5.5 and Table 5.6 we can compare the SWIFT-SIA implementation to the
original method in [15]. For both methods we obtain option values with basis point accuracy in less
than a second (m = 2 in SWIFT-SIA and N = 50 in the original method). The increase in the number of
terms in the Fourier cosine expansion in the original method does not result in more accurate option
values, as shown in Table 5.6. However, the increase of the scale of approximation in the SWIFT-SIA
implementation does improve the accuracy of the resulting option values. Unfortunately, the CPU
time required is also affected by the increase of m.

Nonetheless, the SWIFT-SIA implementation is a competitive approach in the one time-step Monte
Carlo method, since the SWIFT-SIA recovery of the integrated variance is a highly robust method, due
to the single parameter m that needs to be chosen in advance.

CPU time ∂1 =−1.5 ∂2 = 0 ∂3 = 1.5

m = 2 0.55 6.1848e −05 7.656e −05 4.162e −05

m = 3 0.91 9.917e −05 1.766e −04 1.777e −04

m = 4 1.92 5.7049e −05 7.232e −05 7.149e −05

m = 5 5.50 3.035e −05 2.851e −05 3.069e −05

m = 6 18.89 6.3510e −06 8.129e −06 3.768e −06

m = 7 77.29 2.3089e −06 3.049e −06 1.564e −05

Table 5.5: Accuracy and CPU time of the SWIFT-SIA method to price an European Option under the SABR model, parameter
Set 2, reference values obtained by the SWIFT-SIA method with m = 8.
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CPU time ∂1 =−1.5 ∂2 = 0 ∂3 = 1.5

N = 50 0.58 2.327e −06 1.050e −05 1.435e −05

N = 75 0.62 1.0619e −05 1.971e −05 2.339e −05

N = 100 0.69 1.593e −05 3.158e −05 4.724e −05

N = 125 0.84 1.304e −05 3.174e −05 4.228e −05

N = 150 1.00 9.960e −06 2.399e −05 3.842e −05

Table 5.6: Absolute error and the CPU time of the ASCOS method to price an European Option under the SABR model,
parameter Set 1, reference values obtained by the SWIFT-SIA method with m = 8.
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Conclusion

In this thesis we extended the SWIFT method to two option pricing problems in which the sum of
lognormals and sum of increments occur. The sum of lognormals has appeared in the valuation of
arithmetic Asian options under GBM dynamics and in the one time-step Monte Carlo method under
SABR dynamics. We referred to the sum of increments in the valuation of arithmetic Asian options
under NIG and CGMY dynamics.

The SWIFT method relies on a wavelet approximation of the probability density function by means
of its characteristic function. Another Fourier method which has a characteristic function approach
is the COS method. The COS framework was applied to Asian option valuation, which resulted in
the ASCOS method and was used as a reference value to which the comparison between SWIFT and
ASCOS could be made. The COS framework has also been used to obtain reference values for the one
time-step Monte Carlo method under SABR dynamics, where the COS method was applied to find an
approximation to the distribution function of the SABR variance process.

The valuation of arithmetic Asian options was based on the Carverhill-Clewlow-Hodges factorization
scheme, in which an iterative procedure was formed to evaluate the price of the underlying at matu-
rity T . If the underlying is in the class of Lévy processes, the asset price increments are independent
and identically distributed, such that the recovery of the characteristic function of the increment pro-
cess resulted in the computation of the characteristic function of the sum of lognormals. The density
coefficients were obtained recursively for each monitoring date ti = 0, . . . , Md , which could be done
efficiently by a matrix-vector product (with matrix M(n,k)) and could benefit from the FFT transform.

We proposed two ways to compute the matrix M(n,k). First the matrix has been computed by a numeri-
cal integration technique: Clenshaw-Curtis quadrature rule. This approach has resulted in the SWIFT-
CC method. The method has shown great results in terms of accuracy and convergence compared to
the state-of-the-art ASCOS method, however the computational speed of the SWIFT-CC method was
disappointing due to the complexity of the Clenshaw-Curtis quadrature rule.

The SWIFT-SIA (SWIFT Sinc Integral Approximation) method differed from the SWIFT-CC method in
the way the matrix M(n,k) was recovered. Since the cardinal sine function was implemented as the
wavelet basis, the method could benefit from the properties regarding bandlimited functions and the
cardinal sine (sinc) function. The function g present in the matrix formulation has been numerically
shown to be bandlimited and satisfied the assumption made in the theory from [24], such that the
approximation stated in Theorem 4.1 of matrix M(n,k) converged exponentially in the wavelet scale m.
The SWIFT-SIA method has shown great results in the valuation of arithmetic Asian options in terms
of both the accuracy and the speed compared to the ASCOS method. Tests were carried out for three
underlying Lévy processes: the GBM process, the NIG process and the CGMY process. Al three of them
admitted highly satisfactory results for both short and long-maturity options.
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Therefore we will draw the conclusion that the SWIFT-SIA method is a highly efficient method for
the valuation of geometric and arithmetic Asian option under Lévy price processes. Furthermore, the
SWIFT-SIA method appears more robust compared to the ASCOS method, since the only parameter
to fix in advance is the scale of approximation m. Options with long maturities can be evaluated very
efficiently by means of the SWIFT method and there is no need to apply the put-call parity to price
arithmetic Asian call options with long-maturity.

The second option pricing problem in which a sum of lognormals occurred is the valuation of Euro-
pean options under the SABR model. In the method called the one time-step Monte Carlo simulation
of the SABR model [15] the recovery of the distribution of the time-integrated variance in the SABR
model showed similarities with the ASCOS method. The density of the integrated variance was ap-
proximated by the COS method, but in our modifications to the method the SWIFT-SIA method was
applied to the computation of the density of the integrated variance. The modification of the existing
method with the SWIFT approach, led to satisfactory results in terms of accuracy of the method. We
have shown that the the SWIFT-SIA approach has led to highly accurate option values. The SWIFT-SIA
method applied to the SABR model needed approximately as much time as the original method to
compute the option price at the same level of accuracy and was more robust compared to the COS
approach, since the parameter m is the only parameter needed for the density approximation.

6.1. Future Work

• In this thesis we did not compute the Greeks of the resulting option values, this is interesting
and could be a starting point for further research.

• The thesis provided two applications of the SWIFT method in the presence of a sum of log-
normals. The sum of lognormals occur in different settings, for example in the recovery of the
density of the discounted compound Poisson process. Appendix C gives an idea of the problem
in which SWIFT could be applied to recover the density.

• The valuation of European-style Asian options have been studied in this thesis, but different
types of Asian options could be interesting topics for further research. The SWIFT-SIA method
could be extended to the valuation of conditional Asian options or the class of American-style
Asian options.

• The one time-step Monte Carlo method has recently been extended to a multiple time-step
Monte Carlo method (see [16] for details). The extension to multiple time-steps results in more
accurate long maturity option values. Since the SWIFT-SIA method has shown to result in a
highly competitive method, it might be interesting to apply the SWIFT-SIA method in each time-
step in the method discussed in [16].



A
Analytic Pricing Formula for the

Geometric Asian Option under GBM
Dynamics

Let us define the discrete geometric average stock price, G , as

G := 1

Md

Md∑
i=1

log(S(ti )) , (A.1)

with Md ∈N monitoring dates of size ∆t = T
Md

. Furthermore under GBM dynamics, the stock process
is defined by

S(ti ) = S0 exp
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2
σ2

)
ti +σW (ti , )

)
(A.2)

with W a standard Brownian Motion. Then G can be written as,
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(A.3)

with Z j ∼N (0,1). The double summation (A) can be written as
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Md∑
i=1

i∑
j=1

Z j = Md Z1 + (Md −1)Z2 + . . .+ZMd , (A.4)

such that we can find the mean of the variable G ,

E [G] =E
[

log(S0)+
(
r − 1

2
σ2

)
T

(Md +1)

2Md
+ σ

p
∆t

Md

Md∑
i=1

i∑
j=1

Z j

]

= log(S0)+
(
r − 1

2
σ2

)
T

(Md +1)

2Md
,

(A.5)

and the variance is defined by

var(G) =E[
G2]−E [G]2

=E
[(

log(S0)+
(
r − 1

2
σ2

)
T

(Md +1)

2Md
+ σ

p
∆t

Md

Md∑
i=1

i∑
j=1

Z j

)2]

−E
[

log(S0)+
(
r − 1

2
σ2

)
T

(Md +1)

2Md
+ σ

p
∆t

Md

Md∑
i=1

i∑
j=1

Z j

]2

=E
[(
σ
p
∆t

Md

Md∑
i=1

i∑
j=1

Z j

)2]

=E
[
σ2∆t

M 2
d

(
Md Z1 + (Md −1)Z2 + . . .+ZMd

)2

]

=σ
2∆t

M 2
d

(
M 2

d + (Md −1)2 + . . .+12)
=σ2T

(Md +1)(2Md +1)

6M 2
d

.

(A.6)

As a result G can be written as

G = S0 exp

((
r − 1

2
σ2

)
T

(Md +1)

2Md
+σ

p
T

√
(Md +1)(2Md +1)

6M 2
d

Z

)
, (A.7)

where Z ∼N (0,1). Thus G follows a lognormal distribution,

logG ∼N

(
log(S0)+

(
r − 1

2
σ2

)
T

(Md +1)

2Md
,

√
σ2T

(Md +1)(2Md +1)

6M 2
d

)

A.1. Adjustment to the Black-Scholes Pricing formula

By the well-known Black-Scholes formula the price European options under GBM dynamics, given
S(t0) = S0 and t0, is defined by
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V (S0, t0) = S0Φ(d1)−K e−r (T−t0)Φ(d2),

d1 =
log

(
S0
K

)
+ (

r + 1
2σ

2
)

(T − t0)

σ
p

T − t0

d2 = d1 −σ
√

T − t0,

(A.8)

whereΦ(·) defines the standard normal cumulative distribution function.

This formula can be adjusted to price a geometric Asian option, since the geometric average follows a
lognormal distribution. Let us define the mean and the variance of G by

µG = log(S0)+
(
r − 1

2
σ2

)
T

(Md +1)

2Md

σG =
√
σ2T

(Md +1)(2Md +1)

6M 2
d

(A.9)

Then the pricing formula for a geometric Asian option under GBM dynamics is given by

CG (S0, t0) = S0e(µG−r )(T−t0)Φ(dG
1 ) −K e−r (T−t0)Φ(dG

2 ),

dG
1 =

log
(

S0
K

)
σG

p
T − t0

+
(
µG

σG
+ σG

2

)√
T − t0

dG
2 = dG

1 −σG

√
T − t0.

(A.10)





B
Reference values computation of

European options under SABR
dynamics

B.1. Set 1: SABR spreads its wings

The price of an European Call option under the SABR dynamics with zero correlated Brownian mo-
tions (ρ = 0) is given by

C (t ,K )− [S0 −K ]+ = 2

π

√
K S0

{∫ s+

s−

sin
(
ηφ(s)

)
sinh s

G
(
tα2, s

)
d s + sin(ηπ)

∫ ∞

s+

e−ηψ(s)

sinh s
G(tα2, s)d s

}
, (B.1)

with G(t , s) defined as:

G(t , s) = 2
p

2
e−

t
8

t
p

2πt

∫ ∞

s
ue−

u2
2t
p

coshu −cosh sdu (B.2)

η=
∣∣∣∣ 1

2
(
β−1

) ∣∣∣∣
φ(s) = 2arctan

√
sinh2 s − sinh2 s−
sinh2 s+− sinh2 s

ψ(s) = 2arctanh

√
sinh2 s − sinh2 s+
sinh2 s − sinh2 s−

(B.3)

s− = arcsinh

(
α

∣∣q −q0
∣∣

σ0

)
s+ = arcsinh

(
α

(
q +q0

)
σ0

) (B.4)
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with q and q0 defined as

q = K 1−β

1−β and q0 =
S1−β

0

1−β .

B.2. Set 2: Monte Carlo method to price European options under the
SABR model

Another way to compute European Option prices is by a pure Monte Carlo simulation. Monte Carlo
simulation thanks his name to the famous casino in Monaco. A Monte Carlo simulation is an algo-
rithm in which repeated random sampling leads to an broad spectrum of possible outcomes of a vari-
able. Averaging over the set of random outcomes results in an estimate for that variable. In order to
price an European option with an underlying asset price process, the goal is to simulate NMC sample
paths of the price process, with start value S0, such that the estimated price of the asset at maturity,
S(T ), is the average of all the NMC possible outcomes.

The SABR model is the underlying price process in this thesis, with the system of stochastic differential
equations defined in (5.1) and (5.2), i.e.,

dS(t ) =σ(t )Sβ(t )dWS (t ),

dσ(t ) =ασ(t )dWσ(t ),

S(0) = S0 exp(r T ) and σ(0) =σ0.

(B.5)

Discretization of the price and volatility paths is done by the Milstein and Log-Euler discretization
schemes. Let us define Z1 and Z2 two correlated standard normal random variables, with E [Z1Z2] =
ρd t , then the Milstein scheme is defined by,

SMilstein

∆ = S0 +σ0Sβ0 Z1
p
∆+ 1

2
βσ2

0S2β−1
0

(
Z 2

1∆−∆)
,

σMilstein

∆ =σ0 exp

(
−1

2
α2∆+αZ2

p
∆

) (B.6)

The Log-Euler discretization is defined by,

SLog-Euler

∆
= S0 exp

(
−1

2
σ2

0S2β−1
0 ∆+σ0Sβ−1

0 Z1
p
∆

)
σ

Log-Euler

∆
=σ0 exp

(
−1

2
α2∆+αZ2

p
∆

)
.

(B.7)

The step-size ∆ is defined by ∆= T
Md

, with Md the number of monitoring dates of the price process.



C
Compound Poisson Process with

Discounting

As shown in this work, the SWIFT method is a suitable approach for the computation of the probability
density function of a sum of lognormals. The application of SWIFT to Asian option valuation and the
SABR model, resulted in more accurate and fast option prices. Since the Poisson process is a Lévy
process, the question arose if the SWIFT method could be a good way to recover the probability density
function of the compound Poisson process. This appendix gives an idea how the SWIFT method could
be applied to the approximation of the probability density function of such a process. First of all, let
us define the compound Poisson process.

C.1. Problem definition

Let us define the random variable Z (t ) by

Z (t ) =
N (t )∑
k=1

B(Tk )exp

(∫ t

Tk

r (s)d s

)

=
N (t )∑
k=1

B(Tk )
M(t )

M(Tk )

(C.1)

with

• {τk = Tk −Tk−1 : k ∈N} is a sequence of the inter-arrival times between the claims Tk and Tk−1.

• {Tk : k ∈N} is a sequence of the arrival time of the k-th claim and thus are random variables with
T0 = 0.

• {N (t ) : t ≥ 0} is a Poisson process, non-homogeneous and corresponds to the number of claims
present in [t0, t ].

• {B(Tk ) : k ∈N} is a sequence of iid random variables independent of N (t ) and M(t ) and repre-
sents the amount of the claim.

• {M(t ) : t ≥ 0} represents the money-savings account at time t ≥ 0, such that

M(t )

M(Tk )
= exp

(∫ t

Tk

r (s)d s

)
.
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• {r (s) : s ≥ 0} is the underlying interest rate process, in our case we consider the Ho-Lee interest
rate model:

dr (s) = θ(s)d s +σdW (s),

with constant volatility σ> 0 and deterministic θ(·).

The money-savings account M(t ) is a log-normal process, thus the random variable Z (t ) is a sum
of lognormals, which gives the opportunity to use the same approach for recovering the distribution
function as we did in the valuation of arithmetic Asian options, Chapter 4.

The aim is to find a way to recover the probability density function of the random variable Z (t ) in an
efficient way by the SWIFT method. Since the random variable is a sum of lognormals, it is possible to
define a recursion relation and approximate the density function by an algorithm which avoids an ex-
pensive quadrature rule (which coincides with the approximation of the probability density function
of the arithmetic Asian option under a Lévy asset price process).

Let us define the characteristic function as following and let us apply the tower property by condition-
ing on the number of claims, N (t ) = n, that occurred in [t0, t ]. We obtain

f̂Z (t )(ω) =E[
e ıωZ (t )]

=E[
E
[
e ıωZ (t )|N (t ) = n

]]
=E

[
E

[
e

ıω
∑N (t )

k=1 B(Tk ) M(t )
M(Tk ) |N (t ) = n

]]
= ∑

n≥0
P (N (t ) = n)E

[
e

ıω
∑N (t )

k=1 B(Tk ) M(t )
M(Tk ) |N (t ) = n

]

= ∑
n≥0

e−λt (λt )n

n!
E

[
e

ıω
∑N (t )

k=1 B(Tk ) M(t )
M(Tk ) |N (t ) = n

]
.

(C.2)

Let us now assume that ∀k : B(Tk ) = B ∈R>0, then if we define X (Tk ) = M(t )
M(Tk ) it follows that

Z (t ) =
N (t )∑
k=1

B(Tk )exp

(∫ t

Tk

r (s)d s

)

=B
N (t )∑
k=1

M(t )

M(Tk )

=B
N (t )∑
k=1

X (Tk ).

(C.3)

Since it is a sum of N (t ) lognormals X (Tk ) we can apply the Carverhill-Clewlow-Hodges factorization.

Let us define Rk = log
(

X (Tk )
X (Tk−1)

)
, such that Z (t ) can be written as

Z (t ) =B X (T0)

(
1+ X (T1)

X (T0)

(
1+ X (T2)

X (T1)

(
...

X (TN (t )−1)

X (TN (t )−2)

(
1+ X (TN (t ))

X (TN (t )−1)

))))
=B X (T0)

(
1+eR1

(
1+eR2

(
...eRN (t )−1

(
1+eRN (t )

))))
.

(C.4)

With this relation we can define the recursion scheme {Yk : k ∈N}, i.e.,
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Y1 =RN (t )

Yk =RN (t )+1−k + log
(
1+exp(Yk−1)

)
=RN (t )+1−k +Hk−1.

(C.5)

with Hk = log
(
1+exp(Yk )

)
. The returns of the money-savings account are independent and identi-

cally distributed, with the Ho-Lee process as underlying interest rate process, thus we can compute
the characteristic function of YN (t ) for all k = 2, . . . , N (t )

f̂Y1 (ω) = f̂R1 (ω)

f̂Yk (ω) = f̂RN (t )+1−k (ω) · f̂Hk−1 (ω)

= f̂R1 (ω) · f̂Hk−1 (ω).

(C.6)

Thus, if we have recovered the characteristic function of YN (t ), we can compute the density coefficients
by the SWIFT method and approximate the probability density function by SWIFT. In the next section
we will define the dynamics of the Ho-Lee interest rate process.

C.2. Ho-Lee interest rate process

The Ho-Lee interest rate process reads

dr (t ) = θ(t )d t +σdW (t ), (C.7)

with W (t ) a standard Brownian Motion, σ> 0 and θ(t ) a deterministic function. We have

∫ t

0
dr (u) =

∫ t

0
θ(u)du +σ

∫ t

0
dW (u)

⇔

r (t )− r (0) =
∫ t

0
θ(u)du +σ

∫ t

0
dW (u).

(C.8)

Let us compute the expectation and the variance of this interest rate process. The expectation is given
by

E [r (t )] =E
[

r (0)+
∫ t

0
θ(u)du +σ

∫ t

0
dW (u)

]
=r (0)+

∫ t

0
θ(u)du,

(C.9)

and the variance is given by,
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Var(r (t )) =E [r (t )−E [r (t )]]2

=E
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=σ2
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(C.10)

Since the interest rate is contained in the discount factor, we will determine the expectation and the
variance of the integrated Ho-Lee process

∫ T
t r (s)d s.

∫ T

t
r (s)d s =
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(C.11)

Since the discount factor is defined as exp
(
−∫ T

t r (s)d s
)
, we will compute the expectation and the

variance of −∫ T
t r (s)d s. It follows that
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(C.12)
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