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ABSTRACT

Stress gradients at the root of a notch are significant for the notch
effect and the size effect on fatigue properties. Usually the gradient

of the stress distribution in the minimum section .is considered. In the
present paper the variation of the tensile stress along the edge of the
notch is considered. Calculations are made for a variety of notches.

The results indicate a remarkable conformity of stress distributions at
the notch root if the same peak stress and notch root radius (p) apply. .
Consequently Kt and p are high]y'characteristic for the stress
distribution around the notch. Along the edge of the notch the stress
decreases at a much slower rate than in the minimum section going away
from the material surface. For the stress along the edge of the notch a
stress gradient coefficient is defined. The variation of this coefficient
is fairly small for several notches and Kt values. A 5 percent lower
stress as compared to the peak stress at the notch root is obtained at
about 0.02 p below the material surface and at a distance of about

0.18 p to the critical point along the material surface.



~ NOTATIONS

a semi axis of ellips, hole radius

a material constant

b semi axis of ellips

dl’ d2 co-ordinates for a certain decrease of stress (Fig. 3)
Kt theoretical stress concentration factor

Kf fatigue strength reduction factor

N fatigue 1life

q notch sensitivity factor

S nominal stress

S1 main principal stress

Sf1 fatigue limit of unnotched material

SfK fatigue Timit of notched element

o stress gradient coefficient (Eq. 11)

B second stress gradient coefficient (Eg. 23)

Y 51/%eak

p notch root radius

peak peak stress at notch root

X relative stress gradient in minimum section (Eq. 12)
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1 INTRODUCTION

Discussions of "notch effect" and "size effect" on the fatigue limit
usually include some reference to the significance of the stress gradient
at the notch root. The stress gradient is generally associated with a
fairly steep decrease of stress below the material surface. However,
along the surface of the material at the root notch the stress is also
decreasing. Even more, this decrease occurs much slower. This aspect
is the main subject of the present paper. First some general comments
are made on the significance of stress gradients for the notch effect.
Then calculated results on stress gradients are presented. Finally

the meaning of the results for considering notch and size effects is
briefly discussed.

THE NOTCH EFFECT AND STRESS GRADIENTS

The prediction of the fatigue limit (N = =) of a notched element
under zero mean stress is a wellknown problem discussed in all
textbooks on fatigue (e.g.[1]). The usual procedure is to derive the
fatigue 1imit of the notched e]ement‘(SfK) from the fatigue 1imit of
the qnnotched material (Sfl)' The fatigue strength reduction factor
Kf (also referred to as fatigue notch factor, dynamic notch factor
or effective notch factor) is defined as:

S

ey
Ke = =— (1)
f Se

The most simple assumption is:
¢ (2)

which can be physi?ally Jjustified under some restrictive conditions,

which are:



- (a) The material behaviour is fully elastic and hence the peak stress
at the notch will be:

Opeak = Kt S : (3)

where S is the nominal stress in the notched element.

(b) Fatigue failure of the notched element will occur is %peak P Sfl'
With this condition Eq. (3) can be written as:

S K., S

f1 - "t °fK
Combining Eqs. (1) and (4) gives Eq. (2). (4)

It is frequently observed, especially for ductile materials and high

Kt values that:
S

Ke < Ky or Sg > Kfl (5)

This means: that either condition (a) or (b) or both are not satisfied.

Since the prediction of the fatigue limit is a technical problem it
‘ should not be surprising that several equations have been'proposed for
relations between Kf and Kt or, which is the same, between SfK and Sfl'
Some formulas, partly wellknown, are summarized in table 1. In all
the equations of the table p is the notch root radius (Fig. 1), a is
the stress gradient coefficient, defined by (see Fig. 1):

do o
- k 11
<3x_y>x=0 s )

and & is a material property with the dimension of length. The value
of a should be characteristic for the fatigue notch sensitivity of a
material. For o.-> 0 all equations (6) - (10) reduce to Sex = Sfl/Kt
or to Kf = Kt’ which implies maximum theoretical notch sensitivity.

The same result is obtained for all equations if p becomes very large.



Authors _Kf - Kt relations Corresponding SfK' Sfl
relation
- a
Neuber [2] q:Kf 1: 1 (6a)] =;__1(1+\/;) (6)
k-1 14z LS Y AV
p t p
Siebel and K — : S -
' t. - oa _Ofl aay  (7)
Stieler [3] K;‘“\/X"“‘/: »SfK_Kt—(“' P
(7a)
: S 1+8
f-1__1 S Rt N
Peterson [4]| q = — = 8a Soy = S
Ke -1 1+2 (8a) K rt—\1+11z5
p tp
S
Peterson (4] E£.= | . aa (92)] S Rfl ( 1a > (9)
K 0 t  \1-24
t D
Heywood [51]
(10a)
ranray s = (1+2VE) o)
t 1+2\/§ )

The rational background of the formula's in table 1 is rather meagre.
Neuber. [2] argued that the peak stress itself is not conclusive with
respect to the notch effect, especially so far sharp notches with
steep stress gradients. With reference to the "non-homogenous,
granular structure" of the material he proposed to adopt an average
tensile stress in a small "elementary block" of dimension ¢ (Fig. 1).
However, equation (6) can not be obtained from this assumption and the



equation apparently has a heuristic nature. Kuhn and Hardrath [6, 7]

found Neuber's equation to be in good agreement with empirical
evidence. They also found that o is material dependent. For steels o
decreased for increasing tensile strength, thus illustrating the ,
increased notch sensitivity.

Peterson [4] considered the stress oy at a small constant depth (§ =a)
below the material surface at the notch root. This stress should be
equal to the unnotched fatigue limit (Sfl) to arrive at the fatigue
Timit of the notched element (st)' Peterson approximated oy {x)

(Fig. 1) for small values of x by a linear relation with a slope given
in Eq. (11). Then equation (9) is easily obtained. In spite of this
background Peterson prefers his Eq. (8) which was simply based on
matching empirical evidence. The latter equation has some similarity
to Neuber's equation. Replacing v&p in Eq. (8) by ¢t/p gives Eq. (6).
Also Peterson recognized that a should depend on the type of material
and its tensile strength.

Heywood [5] associated o in his Eq. (10) with the length of an
"equivalent inherent flaw". Nevertheless also his equation should be
considered to be of an empirical nature. Heywood compared the
applicabilities of his equation and Neuber's equation to empirical
evidence also used by Kuhn and Hardrath. It is interesting that he
found both equations to be equally useful.

‘Siebel and Stieler [3] fully recognized the significance of both the
peak stress and the stress gradient. They defined the relative stress

gradient

- [d(cy/cpeak)]

: (12)

x=20
For a certain peak stress y gives a direct indication on the gradient
of the stress below the material surface. It seems reasonable that a
steep gradient is more favourable than a low gradient. Siebel and



Stieler then postulate that the allowable peak stress (Kt SfK) as
reTated to the unnotched fatigue strength (Sfl) is a function of y:

Ke See/Sp1 = Ke/Ke = () (13)

This function should depend on the material and the relation given in
Eq. (7a) was proposed for this purpose. The material constant et was
associated with a dimension of slip lines. Once again, there are no
rational arguments to arrive at Eq. (7a), but they were in good
agreement with empirical evidence. For tgnsion and bending the
variability of the stress gradient coefficient o is fairly small. It is
noteworthy that for a constant a Eq. (7) becomes essentially equal to
Heywood's equation (10). Apparently different formula's indicate the
trends of effects of Kt and p on the fatigue limit reasonably well.
However, the arguments why this is true are not very clear.

NOTCH EFFECT, SIZE EFFECT AND DIFFERENT STRESS GRADIENTS

It is easily recognized that the stress gradient at the notch root
should be significant} A sharp g}adient will imply a less severe
situation than a low gradient. Physical explanations can be based on
two different types of arguments:

(1) Plasticity effects

(2) Volume of highly stressed material with potential crack nuclei.
Plastic deformations will depend'on the stress gradient, but this
question will not further be considered here, since it seems less
applicable to high strength material and notches with generous radii.
However, the second type of argument is of great interest, because

it is also associated with size effects apart from the notch effect.
Tests on hole notched specimens [8, 9] showed a systematic size effect
for a constant Kt value. For unnotched material the picture about
size effects is less clear [10].



An analysis of size effects and stress gradient effects on the fatigue

1imit should start with the question: what are the potential crack nuclei,
the weak spots for fatigue? Two statements often heard in this respect
are:

(a) fatigue cracks always start at the material surface

(b) fatigue cracks usually start at some kind of an inclusion.

There is evidence for both which illustrates that the answer will depend
on the type of material and the surface conditions including surface
roughness. If cracks start at inclusions, they will do so in a notched
element rather close to the surface in view of the higher stress. The
stress gradient in Figure 1 (Eq. 11) will be important. However, if

cracks start at the free surface or at inclusions close to surface the
area of the highly stressed surface along the notch should be more
significant. In other words stress gradients along the material surface

at the notcH root should be of interest. Stress distributions along the
material surface will show a real maximum at the notch root, see

Figure 2, with a zero stress gradient, contrary to the picture in

Figure 1. In order to define the highly stressed area it will be necessary
to indicate a y-coOrdinate where the stress along the edge of the notch
has dropped a certain amount still to be specified. In Figure 3 a line of
constant maximum principal stress (Sl) is schematically indicated:

1= Y %peax (¥ < 1) (14)
The line intersects the x-axis at x = d1 and the notch edge at a point
for which y = d2. The x-value of the latter point will be much smaller

than d2 as long as vy is still fairly close to one, as will be shown
later. The ratio

d, .
T - £ (y) (15)

will give an indication in which of the two directions (x-axis or



notch edge) the stress will drop more rapidly. Calculated results

presented in chapter 5 will show that d2/d1 is much larger than one
for vy = 0.95 and v = 0.90. Consequently the stress variation along the
notch surface may be more significant than the decrease of stress away
from the surface. It is remarkable that this was hardly recognized in
the literature on size effects and stress gradient effects. Papers by
McClintock [11, 12] are a noteworthy exception. He studied the variation.
of the y-co-ordinate of the crack initiation site along the edge of a
notch, and he pointed out that the variability of this co-ordinate in
similar tests should have some relation to the variability of fatigue
1ife. The meaning of the variation of the position of crack initiation
for size and notch effects is obvious.

In the following chapters calculated results for d, d2/d1 and Sl'
contours are presented for a variety of notches. Although such results
do not solve the problem of obtaining improved Kf - Kt relations it
still can shed some Tight on the significance of certain variables
involved, which ars Kt’ root radius p, the stress gradient away from the
notch and the stress variation along the notch surface.



4 THE STRESS GRADIENT COEFFICIENT o

Notches for which calculations were made are shown in Figure 4.

The stress gradient coefficient a, as defined in Eq. (11} and
Figure ‘1, was previously calculated by Leven [13] for hyperbolic
notches in flat bars and in round shafts. The equations were
derived from the work of Neuber [2]. A recapitulation of the
equations for both o and Kt is given in Appendix A. Leven produced
a graph showing a as a function of p/d where p is the notch root
radius and d is either the width or the diameter at the minimum
section (d = 2a in Fig. 4). Leven's graph gives the impression

that o is highly variable, but this is true only if p/d values are
considered yielding Kt values ranging from very low (close to 1) to
very high (say Kt > 5). A more relevant picture is obtained if o is
plotted as a function of Kt’ which has been done here in Figure 5.

For an elliptical hole in an infinite sheet the well known Kt
formula is (see Appendix D):

- a
|<,C-1+2/p ~ (16)

For the stress gradient coefficient the formula is also very simple
(Appendix A)

1

a=2+ (17)
Kt

With these equations a line in Figure 5 for elliptical holes was
obtained.

Howland [14] calculated stress distributions around a circular hole
in a finite width strip and Schulz [15] did the same for an infinite
sheet with an infinite row of equally spaced circular holes. In both
publications data on the stress distributions in the minimum section
and along the edge of the hole are presented in tabular form. From
these data stress gradients were derived in Appendix B. The results
are also plotted in Figure 5. The results of Howland are not fully



systematic which may be due to a limited accuracy of his calculated

values. Since the stress gradient is obtained by differentation the
inaccuracy can be augmented.

Figure 5 shows that o for Kt > 2.5 is about 2 or slightly 1arger. This
trend was known for a long time [e.g. 16]. For smaller Kt values
larger deviations from o ~ 2 occur. The Howland data suggest that a
goes to a very high value if Kt goes to its lower limit, which is

Kt = 2 as shown by Koiter [17]. He obtained the latter value if the
hole diameter (2a) approaches the width of the strip (W). For

2a > W there is still bending in the small ligaments at both sides of
the hole. Consequently a high gradient in a narrow ligament should be
present.

An opposite trend appears from Schulz's data where Kt +~ 1 for 2a +>b
(Fig. 4). For reasons of symmetry there is no bending in the small
1igaments and an uniform stress distribution will be obtained (a = 0).

THE GRADIENT RATIO d2/d1

The coordinates d1 and d2 as defined before (Figure 3) were calculated
for the same types of notches shown in Figure 4. This requires
equations for the stress distributions in the minimum section and along
the edge of the notch. For hyperbolic notches and elliptical holes
exact equations are available which are récapitulated in Appendix C

and D respectively. From the equations d2 can be solved, whereas d1

has to be obtained by iteration. For a hole in a strip (Howland [14])
and a row of holegin a plate (Schulz [15]) values of d1 and d2 were
derived from the numerical data on stress distributions presented in
[14] and [15] and summarized in Appendix B.

Calculations were made for y = 0.95, vy = 0.90 and y = 0.80

respectively, i.e. for the locations where the main principle stress
S, has dropped to 95%, 90% and 80% of Gpeak'
Appendix B, C and D have been plotted in Figure 6 for v = 0.95 and

The results given in



vy = 0.90 as a function of Kt’
practically constant for Kt > 2, whereas significantly deviating

values require Kt < 1.5. Apparently there is a large confirmity between
‘the various notches, independent of the severity of the notch.

It is remarkable that d2/d1 values are

A second observation is that d2/d1 is fairly large, the average being

8.3 for vy = 0.95 and 5.6 for vy 0.90. In other words the decay of stress
along the notch is considerably slower than in the direction perpendicular
to the surface of the material at the notch root.

STRESS DISTRIBUTIONS FOR THREE DIFFERENT HOLES

In view of the conformity noted before, lines of constant maximum
principal stress (Sl) were calculated for three holes with highly
different Kt values. E1liptical holes with major to micro axis ratio
3, 1 and 1/3 were adopted for which Kt is 7, 3 and 1.67 respectively.
Equations are compiled in Appendix D, where the calculated results
are presented in tabular form. The data are plotted in Figure.7a - C.
The similarity is obvious already from comparing these Figures, but

a more easy comparison can be made in Figure 8, where the same lines
of constant maximum principal stress are shown. In Figure 8 the
scales adopted where chosen to have the same absolute p value in all
three cases. The line for y = 0.95 has been dropped in Figure 8 for
clarity. It is surprising to see the similarity between the constant
v-lines for v = 0.90 and y = 0.80 for three highly different notch
severities.

DISCUSSION

7.1 Evaluation of the calculated results

At the root of a notch the highest stress Opeak occurs at a single
point only (or a single line). The stress decreases away from the
material surface (Fig. 1), while it also decreases along the surface

away from the point where opeak applies (Fig. 2). However, in the




latter direction the decrease does not start with a steep gradient,

and it requires a larger distance for a 5 or 10 percent decrease of
stress. This fact is easily observed from photo-elastic pictures, but
its significance for notch and size effects was not generally
recognized.

The present calculations confirm that d2/d1 (Fig. 3) for Sl/opeak =
0.95 or 0.90 is fairly large (Fig. 6), while it turns out to be
approximately constant for a considerable variation of Kt' The
distance d1 away form the notch surface is obviously related to the
stress gradient as expressed in Eq. (8) (see also Fig. 1):

do N
(=5 - o md_j._dl_pea (18)

The latter equality follows from the definition of y in Equation (14)
Combining Eqs (11) and (18) gives

dl " 0 il,é;ll (19)

For K, > 2 the variation of o is rather small (Fig. 5) and Eq. (19) then
implies that dl/p is approximately constant, irrespective of the
severity of the notch. A characteristic value of o is in the order of
2.3, ignoring both very small Kt values and large Kt values.
Consequently a 5 percent drop of stress (y = 0.95) is then obtained
according to Eq. (19) at:

dy/p ~ 2.2 percent _ - (20)

In other words: At a distance of about 2 percent of the root radius
below the notch root surface the stress has decreased with 5 percent
as compared to the peak stress at root surface. This result is
independent of the Kt factor within certain limits mentioned before.



The tendency for a constant d2/d1 (Fig. 6) implies that d2/p will also
be approximately constant. With an average value of d2/d1 of 8.3 for
y = 0.95 '

dz/p n 18 percent (21)

In other words: a 5 percent decrease of stress along the surface of the
root notch material occurs at a distance to the minimum section of
about 18 percent of the root radius, irrespective of the severity of the
notch within limits mentioned before.
‘Similar to Eqs (18) we can write for the stress variation along the
surface

bo _ _ EE_:_ZE_EEEEE (22)

3 9 |
In analogy to Eq. (11) a second stress gradient coefficient can be
defined by

o}
Ao - _ peak (23)
H——Bp

which gives:

B=%§ (1-v) (24)
The tendency for a constant p/d2 should also appear form 8 values
calculated with Eq. (24). Such values are plotted in Figure 9 for

v = 0.95. Although systematic effects are apparent it turns out that
the variation of 8 for Kt > 2 is relatively small.

7.2 Characterisation of the notch severity

The peak stress is obtained as the product of Kt and the normal stress,
where Kt is depending on the shape of the component. Kt gives no
information about stress distributions around the notch. Stress gradients
in this area are closely related to the notch root radius. Relative
gradients can be written as:
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Ao/o eak

X = —g== (25)

which is approximately equal to - a/p away from the material surface
and to - B/p along the surface. For Kt from 2 to 5 both o and R show

a small variation only. Consequently the absolute size of the root
radius gives a first and predominant impression of the stress gradients.
This is also illustrated by Figure 8. The implication is that the same
p gives approximately the same relative stress gradient x. The highly
stressed region is therefore characterized by Fwo factors: Kt and p

or Kt and y.

Some limitations of the present calculations should be mentioned here.
Torsion as a loading mode has not been analysed. It is known that o
values usually are much smaller than for tension. For bending only a few
results were calculated here which show similar results as for tension.
It s expected that the small variability of o and 8 will be apply to
bending in general.

7.3 Kf - Kt relations

Obviously the previous discussion does not solve the problem of a

Ke - Kt relation, because the basic model fqr such a relation is still
Tacking. However, from the small variability of a and B it can be
concluded that Kt and p are characterising the severity of the local
stress level, the stress gradient and the volume of highly stress-
material. In Kf - Kt relations no more than these two dimension-
parameters seem to be required. The problem is how to include the
fatigue resistance of the material. From the work of McClintock it
follows that both the fatigue resistance per se and its statistical
nature should be introduced in a model for obtaining a rational

Kf - Kt relation. Unfortunately with the present knowledge about crack
initiation sites there is 1ittle hope to arrive at a generally
applicable model. For the time being empirical rules have to be used.
Forthermore, due consideration should be given to the relevance of '
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the basic fatigue data for the fatigue problem for which predictions
have to be made. In particular similar surface quality and material
structure should be aimed at.

8 CONCLUSIONS

1. Stress gradients.at the root of a notch are significant for the
notch effect and the size effect on the fatigue Timit. Usually
the gradient of the stress distribution in the minimum section is
considered. However, calculations have shown that the stress is
decreasing much slower along the surface of the material at the
notch root. Below the surface of the notch the stress in the

minimum section has dropped to 95 percent of o at a distance

of about 2 percent of the notch root radius. A?igg the material
surface the distance for the same reduction in stress is about
18 percent of the notch root radius. These percentages turn out
to be fairly independent of Kt in the range of Kt values from

2 to 5.

2. For the same Kt and root radius p there is a striking quantitative
similarity between the stress distributions around the notch root.
This conslusion was borne out by calculations for several notches
loaded in tension and one notch loaded in bending. It probably will
apply to bending in general. No calculations were made for torsion.

3. Since Kt and p fairly well characterize the stress conditions of
the notch root both variables should enter in prediction rules
for the fatigue 1imit of a notched element. In view of lack of
knowledge about crack nucleation sites and the variability of the
sites it is difficult to arrive at rational prediction rule.
Existing empirical rules have to be adopted.
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APPENDIX A: THE STRESS GRADIENT COEFFICIENT o AND K. FOR HYPERBOLIC

NOTCHES AND AN ELLIPTICAL HOLE

Hyperbolic notches: .
Kt—equations are given by Neuber in his book [2] while o values are

easily derived from equations in that book.

Flat bar tension:

()
<1+%> arc tg @+@

% %+1+(O.5+v)%+(1+v)<\/%+1+1)

Ky =
a a
—+2vV—-+1+2
p p

4%-(1-2\)) 1+%+5

Cx:

2%-(1-2v)\/1+%+3

(A3)

(A4)

(A5)

(A6)



Shaft, bending:

3 a a a
_Z (. ot 1+ 1) [3 o (1 - 2v) i 1+4+ v]

Ky (A7)
3 (% + 1) + (1 + 4v) %—+ 1+ 1+

1+ %—+ 1
6—(1—2v)\/~g——\/1+§+(4+\))% -
a=(1+9)] ] (A8)

3-(1-2v) \/E—\/1+9-+(4+\))9

a a a

E11iptical hole:

Kt=1+2%=1+2\/% (A9)

The stress gradient coefficient o is obtained by differentiation of
Eq. (C4) which leads to: \

3+432 :
- bo2s b (A10)

a—_—_
1+2§- t
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APPENDIX B: STRESS GRADIENTS AROUND CIRCULAR HOLES ACCORDING TO THE
STUDIES OF HOWLAND AND SCHULZ

The results of Howland

Howland [14] calculated stress distributiohs in a finite width strip
with a central circular hole. Relevant data of [14] are reproduced here
in table Bl. The Tower figure in the table did not occur in Howland's
original paper, but it was added later (see [14] page 82) because he was
suggested to do so. It is surprising that this figure is not a very
accurate representation of table Bl. Stress gradients will be derived
here from the data in the table.

For a circular hole (radius a) in an infinite plate the exact solution
for Gy alorg the X-axis is [18]: '

o 2 4
y _ 1/a 3 /a
§"1+z(y) +7<§> (B1)
It is assumed that for a finite width a relation of the same type can be
used to approximate the stress distribution:

:_Y - A+ B (;)2 +C (;)4 | (B2)

The stress gradient at the edge of the hole is:

d(Oy/S) _ _ (2B + 4C) (83)
dx _ a :
X=a
A, B and C were obtained by using three Oy values from table Bl as close
to the edge of the hole as possible, which includes one point on the
edge of the hole. The results are presented in table Bl including a and
Kt values. The coefficient o was defined before by: '



do o
() - lpeak . (A+BO)S (50)
edge of hole P

where the root radius p = a. The value of Kt follows from

W

Kt - 0peak/cnomina1 with %nominal ~ W - a S (B5)
Combining Eqs. (B4) and (B5) gives:
_ 2B + 4C (B6)

CTRFB+C

The distance d1 (= ay - a) where oy along the X-axis has dropped to
YOpeak (y < 1, Gpeak/s = A+ B+ C) is easily obtained from Eq. (B2):-

y(A+B+C)=A+B<2—1)2+C<:—1>4 (B7)

Calculated results are given in table B3.

Along the edge of the hole Howland presents the tangential stress o, for
some values of n, which for the Towest n values are reproduced here in
table B2. For a/W = 0 (infinite sheet) o, is given by:

g
§Tl:1+2cos2n=—1+4c052n (B8)

For a finite width an interpolation of the following type is adopted:
¢ 2
§ﬂ =A+Bcosn+Ccos”n (B9)

It satisfies the zero gradient for n = 0. Constants A, B and C were then
calculated from the cn values in table B2. Subsequently the y-coordinate
d2 where % has dropped to YOpeak is obtained as d2 = sin n with n
following from: o
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~

Y(A+B+C)=A+Bcosn+¢C cos? n . (B10)

Calculated values are presented in table B3, where the ratio d2/d1 is
given also.

The results show that the effect of a/W on a, d;, d, and d2/d1'is
sTightly inconsistent, which should be associated with a Tlimited
accuracy of Howland's data. Values of o and»dl/d2 have béen plotted in
Figures 5 and 6.

The resu]ts_of Schulz

Schulz [15] analysed an infinite sheet with an infinite row of co-linear
holes, see the figure in table B4. Since he presented his data in a
similar form as Howland the equations (B2) to (B10) could be adopted
again. The results as compiled in tables B4 to B6 again show some

slight inconsistencies,but to a lesser degree as for Howland's results.
Values of o and dl/d2 have been plotted in Figures 5 and 6.
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Table Bl. Data of Howland and calculated a-values.
x oy/S.
Wla. a _ a_ a . a _
i 0.1 'R 0.2 W 0.3 i 0.4 i 0.5
0.1] 3.03 (%)
0.2} 1.23 (*){3.14 (*
0.3 1.08 (*)}1.57 (*)[3.36 (*)
0.4 1.04 1.26 (%) 1.93 (*)}3.74 (*)
0.5 1.03 1.16 1.47 (*)]2.30 (*)[4.32 (*)
0.6 1.02 1.11 1.28 1.75 ()] 2.75 (%)
0.7 1.01 1.07 1.17 1.48 2.04 (%)
0.8 1.01 1.05 1.07 1.28 1.61
0.9 1.00 1.01 0.96 1.08 1.22
1.0] 0.99 0.97 0.89 0.81 0.73
A | 1.001 1.044 0.968 1.108 1.003
B | 0.544 0.454 0.835 0.494 0.694
C | 1.485 1.642 1.558 2.138 2.623
o | 2.32 2.38 2.35 2.55 2.75
Ke | 2.73 2.51 2.35 2.24 2.16

(*) These values were used to calculate A, B and C.
Underlined values are opeak/S values at edge of hole.

cs
A

-—-/_— ——

e
e

i

AN -
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Table B2. Numerical data of How]ahd. S
Aty
: cn/S
a_ a_ a_ a_ a _ a _
70 [g=0-1fg=0-2|y=0.3]F = 0.4]F = 0.5
T
0 |3.00|3.03|3.1413.3 | 3.74| 4.3
11591 2.73 | 2.74 | 2.85 | 3.03 | 3.32 | 3.72 1
30°] 2.00 | 2.00 | 2.07 | 2.15 | 2.25 | 2.32

A |-0.478; 3.197(-0.302(-0.009| 3.060{ 12.628
B 1-1.124]-9.150|-1.806|-3.169]-11.378(-35.139
C | 4.602| 8.984| 5.248] 6.538| 12.057] 26.831

37T

Table B3. Calculated results derived from Howland's data.

v = 0.95 v = 0.90 vy = 0.80 B(y=0.95)
a/W Kt ~
di/a |dp/a |dp/d1|dy/a |d2/a [d2/d1|di/a [dp/a [dp/d1]| (Eq. 24)
0(%)|3 0.0226 (0.194] 8.6 |0.0480.274] 5.7 |0.10910.387] 3.6 0.257
0.1{2.73{0.0227}0.186| 8.2 |0.048|0.265] 5.5 {0.109{0.378} 3.5 0.269
0.2{2.51(0.0221)0.190| 8.6 |0.047{0.269| 5.7 {0.106|0.382{ 3.6 0.263
0.3(2.35/0.022410.184| 8.2 |0.047|0.261} 5.6 |0.107(0.371] 3.5 0.272
0.4{2.24/0.02060.172{ 8.3 |0.043|0.244| 5.7 [0.097(0.348| 3.6 0.291
0.5(2.16(/0.019010.154| 8.1 |0.040/0.219] 5.5 |0.089/0.313| 3.5 0.325

(*) Exact solution.
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Table B4. Numerical data from Schulz and calculated a-values.

S
TN T O O
1
s Y N
i i/ |
B -
b
| ' |
% oy/S
a _ _ a _ a _
5= 0. 5= 0.15 |p = 0.20 |p = 0.25
0.10 3.006
0.15 1.543 3.031
0.20 | 1.244 1.819 3.096
0.25 | 1.143 1.441 2.072 3.241
0.30 | 1.099 1.287 1.665 2.357
0.40 | 1.065 1.175 1.380 1.739
0.50 1.057 1.150 1.321 1.612
A 1.022 1.055 1.124 1.327
B 0.523 0.564 0.612 0.505
C 1.461 1.412 1.360 1.409
o 2.29 2.24 2.15 2.05
Kt 2.40 2.12 1.86 1.62




B-7

Table B5. Numerica]idata_from Schulz.

on/S

n

a/b =0.10 |a/b = 0.15 |a/b = 0.20 |a/b = 0.25
0 3.0063 2.0309 3.0962 3.2410
109| 2.8925 2.9199 2.9936 3.1485
2001 2.5540 2.5989 2.6928 2.8686 N
300 2.0387 2.1024 2.2175 2.4068
A -4.686 -1.153 -2.252 -4,734
B 7.897 1.013 3.921 9.890
C -0.205 3.171 1.427 -1.915

Table 6. Ca]cu]ated results derived from Schulz's data.

y = 0.95 oy =0.90 y = 0.80 B(y=0.95)
a/b | K¢

di/a | dp/a |dp/dy| d1/a | dp/a |dp/d1| di1/a | dp/a |d2/d1| (Eq.24)
0(*)|3.00(0.0226 (0.1936| 8.6 {0.0478]0.2739} 5.7 [0.1086{0.3873| 3.6 0.258
0.1012.40(0.0230)0.1993| 8.7 {0.0487(0.2804| 5.8 |0.1110}0.3922] 3.5 0.251
0.15]2.12(0.023610.2029 | 8.6 |0.0501(0.2867| 5.7 {0.1144|0.4048| 3.5 0.246
0.20(1.86|0.02460.2131| 8.7 {0.05220.3003| 5.8 |0.1198|0.4216| 3.5 0.235
0.25(1.62|0.02590.2288| 8.8 [0.0552{0.3201| 5.8 |0.1284/0.4432| 3.5

0.219

(*) exact solution
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APPENDIX C: STRESS DISTRIBUTIONS AROUND HYPERBOLIC NOTCHES IN INFINITE
MATERIAL

The equations for hyperbolic notches were derived by Neuber in his book
"Kerbspannungslehre" [2]. The symbols used in his book are largely -
maintained here.

Flat bar in tension

The elliptical co-ordinates
u and v are related to the
Cartesian co-ordinates by:

>
It

¢ sinh u cos v (Cla)

¢ cosh u sin v (Clb)

~~
A
\
\
\%\/
/
P
<
I

\\ The hyperbolic notch is
S given by v = v, or:
2 2
Yy o (X} -
-6 - @
where
~a=csinvy, b=ccos v, (C3)

In the minimum section and along the edge of the notch the stresses are
given by:

A cosS VO .
(6.), 0 = 1+ ] (c4)
u’u=0 cos v cosz v

2A cosh u cos v0

0 yey = , (C5)
UtvEY, cosh2 u - sin2 Ve

(



where
A p ?in Yo _ (6)
Vo * sin v, cos v,
and
172 - |
cos v, = (1 + 5) (C7)

Note that the notch severity is fully described by the ratio a/p.
Substitution of v = v_ in Eq. (C4) or u = 0 in Eq. (C5) gives:

)
o
_ “peak _ 2A
Ky = p  pcosvV (c8)

0

The distance d; = a -y along the Y-axis where (ou)u=0 has dropped to

cheak then follows from:
' 2
, - (o) y=0 1608 Y, [1 . cos Vo] ()
Opeak 2 cos v cos2 v

Cos v for a specific value of y is found by iteration and the
corresponding value of y follows from Egs. (Clb) (u = 0) and (C3):

sin v

y -
a sinv (€10)
0
Calculated results of dl/a =1 - y/a are presented in table Cl.
Similarly along the edge of the notch (v = vo):
(Gu)v=v cosh u cos2 v
0 _ 0
;YT = 2 > (C11)
peak cosh® u - sin® v,

Cosh u can be solved from this equation and the corresponding x-

coiordinate (= d2) where (ou)v=vo has droppgd to cheak then follows
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from Egs. (Cla) (v = Vo) and (C3):

o

= cot v sinh u (C12)
Calculated resuits are given in table Cl.

Flat bar in bending

From Neuber's book one easily obtains:
Along the y-axis:

cos” v
= ___©°
(6,) 4o = %A tg v (1 r—p ) | (C13)
where:
-p s1'n2 vy
A (C14)

3(sin 2v, - 2v  cos ZVOT

Here p is the nominal bending stress, related to the bending moment by:

3M
P = (C15)
2ad .
From Eq. (C13) the peak stress is obtained by putting v = Vo'
o}
_ peak _ o A
Ky = 5 - 8 o tg v, (Cls6)
Instead of Eq. (C9) the result now is:
Y = % Eg z [(1 + cos2 vo) + cos2 Vo tg2 v] (C17)
0

For a specific vy value the corresponding tg v is obtained by iteration,
and the value of d1 where Yq applies then follows from Eq. (Cl0).
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Along the edge of the notch:

8A sin v_ cos v

i 0 o
= > — ‘ (C18)
o cosh® u sin Vo

(Ou)v=v

and:

vy, cos2 Vo '
e o (c19)
cosh“u-sin Vo

After solving cosh u for a specific value of vy Eq: (C12) applies to find
the corresponding d2 value.
Numerical data are presented in table Cl.

Round bar in tension

Equations (C1) - (C3) and (C7) still apply. Stresses in the minimum
section and along the edge of the notch are:

C o , cos v, 2
(OU)U=O = m [COS VO - (1 - 2\)) cos V0 + 1+ (EB—S-——V—> ] (CZO)

2 L2
. [cos vo{cos Vo~ (1-2v) cos vo+2} -(1-2v-3cos Vo) sinh u]

(0)yey = .
U=y (1+s1'nh2 u) (sinh2 u+cos2 Vo)
(C21)
where:
1 +cosv
c--5 ° ] (c22)
1+ 2v cos v, + cos™ v

Substitution of v = v, in Eq. (C20) or u = 0 in Eq. (C21) leads to:

K, = “peak _ C/p [cos2 v, = (1 -2v) cos v_+ 2] (C23)

t " p T cosv 0 . )

0



C-5

Further in the minimum section:

. COS V \2
(9y)y=0 _ 5 Y [1 N (cos v ) -1

Y - IC

%peak SV cos? Vo = (1 - 2v) cos v, +2

and along the notch edge:

(o) yey

y = wvEY, - 1 [1 _ 2(cosh? u - 1)
Ypeak cosh2 u cosh2 u - sin2 Vo
(1- cos2 Vo)
. > ] (C25)
{cos Vo " (1 - 2v) cos Vo * 2}

For a specific vy value cos v has to be obtained from Eq. (C24) by
iteration, whereas cosh u can be solved from Eq. (C25) directly.
Corresponding values of d1 and d2 are then obtained with Egs. (C10)
and (C11). Numerical results are given in table Cl. Calculations were
made for v = 0.3,

Calculated results

Values of d1 and d2 were calculated for a drop of the stress from the
Ipeak ='Kt S) with an amount of 5%, 10%
and 20% respectively, corresponding to y = 0.95, v = 0.90 and vy = 0.80.
The results are presented in table Cl, while d2/d1 values are plotted

peak value at the notch root (

in Figure 6. Apparently dz/d1 is fairly constant, except for values at
Tow Kt' For. Tow Ky values (obtained by Vo 0) the ratio dl/d2 + = for
bending because dz/a goes to infinity and dl/a < 1. For tension and
Tow Kt values d2/d1 is decreasing, but an asymptotic value cannot be
indicated. For low Kt values and tension, the stress in the minimum
section does not drop enough to-give real d1 ya]ues and d2/d1 becomes
non-existent.
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APPENDIX D: STRESS DISTRIBUTIONS AROUND ELLIPTICAL HOLES IN AN INFINITE

SHEET

Equations presented below were derived from the general solution
presented in a textbook by Timoshenko and Goodier [18]. The solution
in that book was based on the work of Stevenson.

Elliptical hole with g = 90°

TS U

The stress at infinity (S) is under an angle B = 90° with the X-axis.
Elliptical co-ordinates are related to the Cartesian co-ordinates by:

>
n

¢ cosh £ cos n (Dla)

<
1]

¢ sinh & sin n (D1b)
!
For the semi-axes:

a = ¢ cosh £y » b = ¢ sinh £ (D2)



D-2

The relations for the stress components are (in case of + or ¥ read top

sign):
2¢
9% " % _(1+e %y sinh 2¢ - eZEO
S cosh 2E-cos 2n_ *
2g

% % _(1te 9
(cosh 2 - cos 2n)

[—cosh £ cos n(sinh 3¢ cos 3n-

3 sinh £ cos n) - ¢

sinh £ sin n(-cosh 3% sin 3n+3 cosh £ sin n)

1 cosh Zgo{sinh 4¢ cos 2n- sinh 2£(3 - cos 4n)}]

ty
28 .
0 _ sinh 2&
te cosh Zgo [1 tgh 25o (cosh 2¢ - cos 2n)] (D4)
2¢
2T 0
Sxy _lzte 3 [sinh £ sin n(sinh 3£ cos 3n-
(cosh 2& - cos 2n)

- 3 sinh £ cos n) -
- cosh £ cos n(-cosh 3¢ sin 3n+3 cosh g sin n)

+ %— cosh Zgo{sin 2n(3 - cosh 4g) - sin 4n cosh Zg}]‘

28 .
0 . sin 2n
te sinh Zgo {cosh,2g-cos 2n) (D5)

From these equations the maximum principal stress is obtained from the

wellknown formula:

o, + a0 o = O.\2 1/2
X 2
s, - 2>’+[<Y X> +Txy] | (06)




Along the X-axis (n =0, y = 0) Tyy = 0 and thus $q = Oy which is ob-
tained by summing Equations (D3) and (D4). Substitution of n = 0 and
replacing the & function by a/b functions obtained from Eq. (D2) lead

to:

(Oy)y=0 _ <§-+ 1) + g-coth £ [(g)z - %._.3 + coth? E]

S a a 2 (07)
G*1)E-Y
Defining:

(o)

v = =220 (e (08)
peak

a a a 2 a 2
(5 + 1) + E-coth £ [(B) ol 3 + coth E] (09)

B GBI CER IR

For a specific value of y the corresponding £ value has to be obtained
from the latter equation by iteration. The distance d1 = X - a from the
tip of the ellips to the point where (Oy)y=0 has dropped to vyo
then be calculated from Eq. (Dla) (n = 0):

! =1 - <%>z.cosh £-1 (D10)

e

peak €an

Calculated results for y = 0.95, 0.90 and 0.80 are presented in table
D1. ‘

For the edge of the hole (g = go) the stress is:

(0 ). : - 2€,
n'g=g  (sinh 2g - 1) +e © cos 2n

51
S = T Cosh 2E, - €05 2n

(D11)
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For-n =0 (x = a, y = 0) this equation leads to the wellknown formula:

(¢
_ “peak _ a
K== =1+2p | (D12)

The same formula is obtained from Eq. (D9) by substituting & = £, (and
coth £ = a/b).

For n = w/2 (x = 0, y =b) Eq. (D11) Teads to (Gn)€=€ = =S,
Defining: °
CRI |
Ye—2 (y<1) (013)
peak

the value of n where a specific value of y applies is found from:

(D14)

The y-co-ordinate d2 where (Gn)E‘E has dropped to yo is then

= peak
calculated from Egs. (D1b) and (DZ?:

o

2
a

sin n (D15)

o

Calculated results are presented in Table DI1.
‘Finally the gradient coefficient defined by:

do o] K.S
<—y) =_-a%ak=_-a_§_ | (D16)

is easily obtained by differentiation of Eq. (D7), subsequent substitution
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of £ = Eo and adopting Eq. (D2), where (dé/dx)£= = 1/a follows from
Eq. (Dla) (n = 0). The surprisingly simple result 8btained is:

3+432
@D =24 (D17)
1+2'5 t

Elliptical hole with g8 = 0°

Equations (D3), (D4)

P ———
and (D5) apply also
P T——
here, but now the
- bottom sign has to be
used, wherever +orz
—————
occurs.
———
—-—f——

Along the Y-axis: (n = m/2, x = 0) Ty = 0 and thus S1 = Oy which is
obtained by substracting Eqs. (D3) and (D4). Substitution of n = 0 and

replacing the go functions by a/b functions to be obtained from Eq.
(D2) lead to:

(Ox))(:o i} (g‘ + l) + % tgh £ [(%)2 - % -3+ tghz £:|

S - N > (D18)
G (-9
With v now defined as:
o), .
M (D19)
peak :
b b b\ b 2
(3 + 1) + = tgh & [<3> -3 - 3+ tgh E]
y = : (D20)

2
e
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Again the value .of £ for a specific vy value has to be obtained by
iteration. The distance d1 =y - b from the point of maximum stress
(y = b, x = 0) to the point were (ox)x=O has dropped to yo
calculated from Eq. (D1b) (n = m/2):

d /[, \2 -
Bl= (%) - 1sinh & -1 (D21)

Calculated results are presented in table DI.

peak can be

For the stress at the edge of the hole the result is:

(o) 25

S n’&=g (sinh 22+ 1) -~ e cos 2n

= = 0 - 0 (D22)

S S cosh Zgo - €cos 2n
The peak stress now occurs at n = n/2 (x = 0, y = b) which gives:

o
_ peak _ b

K = o= =1+22 (D23)
Forn =0 (x = a, y = 0) again oy = -S is found.
Defining again y as it has been done before (Eq. D13) the relation
obtained is:

2 2
( b) ( ) ( a _a
yil+2-)l—=+1}+|1-2¢-—
) \ a/ \2 _ b bZ)
cos 2n = 5 5 (D24)
1+29>(a_-1>- 1+a>
Y a/ \p2 , b

The x-co-ordinate d2 where (on)g=€o has dropped to v Opeak is then
calculated from Eqs. (Dla) and (D2):

d

B§-= %~cos n (D25)

Calculated results are presented in table DI.



D-7

Differentiation of Eq. (D18) leads to a similar formula for the stress
gradient coefficient as presented before (Eq. D17). The result is:

b

_3+4—a'

1
a = =2 4+ — (D17a)
1+2—§ Kt

Circular hole
With elliptical co-ordinates a circular hole is obtained if go > o, AlT

other ellipses & = constant (& = go) also become circles and the
hyperboles (n = constant) become straight lines:

y=xtgn (D26)
Y
S, With r and n as polar co-ordinates the
//’_ equations for the three stress components
\\\~/j/ x are:
a o, t0 2
X
l l ‘ l ‘ _g_l=1+z<§) cos 2n (D27)
)
o, -0 2 4
_Z_g__é =1+ (%) (cos 2n - 2 cos 4n) + 3 (%) cos 4n (D28)
21 2 _ 4
S - (%) (2 sin 4n - sin 2n) - 3 @) sin 4n (D29)

Along the X-axis (y = 0, n = 0) Ty T 0 and S1 =0y From Eqs. (D27) and
(D28):
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R R IORSEIC) e

For r = a the wellknown Kt = 3 is obtained.

The value of r where (oy)y=o has dropped to y Opeak is easily deduced
from equation (D30):
-1 .
2
-1 +V1 + 12(6y - 2
_g_=|: \[ - (6y )] (D31)

The corresponding distance from the edge of the hole is d1 =r-a.
Calculated results are given in table DI.

Along the edge of the hole (r = a) $1 7 (Gn)r=a =g, + oy From Eq.
(D27):

S; (o.) ..

1_2rea . g4 g cos 2n (D32)

S S
The location where (On)r=a has dropped to vy Gpeak is given by

1 3y - 1 | ‘
n = §-bg cos < Y2 ) | (D33)

The corresponding y-co-ordinate d2 = a sin 7.

Calculated results

Values of d1 and d2 have been calculated for a drop of the stress from
the peak value at the root of the notch (Opeak = KtS) with an amount

of 5%, 10% and 20% respectively, corresponding to y = 0.95, vy = 0.90
and ¥ = 0.80. The results are presented in table D1, whﬂe_dz/d1 values
are plotted in Figure 6. '
The results show that a smaller tip radius (p) associated with a higher

Kt value gives smaller values of d1 and d2' In other words the stress



-both away from the edge (direction of dl) and along the edge of the hole
(d2) decays faster for a sharper noth, which should be expected. However,
it is surprising that d2/d1 hardly varies for large variation of the
severity of the stress raiser.

Contours of constant maximum tensile stress (maximum principal .stress
Sl) have been calculated for three holes with Kt =7, 3 and 1.67
respectively. Values of S1 are obtained from Eq. (D6) by substituting
Eqs. (D3) - (D5) for the elliptical holes and Eqs. (D27) - (D29) for the
circular hole. The equations then obtained do not allow to calculate
explicitely the co-ordinates of the contours for specified values of Y.
For the elliptical holes a g-value was adopted and by iteration the
n-value was determined to obtain the required y value. For the circular
hole the same procedure was followed for n and r/a respectively. The
calculated points of the contours are presented in the table D2 and
in Figures 7a-c. A comparison between the three holes is given in
Figure 8 where the scale for each hole was adjusted to obtain equal

tip radii(p). A striking similarity is then obtained for y = 1 - 0.8,
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Table D2.

Calculated co-ordinates of lines of constant maximum
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principal stress S4 for elliptical holes.

Y = 51/0

peak

(a) » edge of hole

a/b = 3 a/b =1 a/b = 1
Ke =7 Kg =3 K =15
x/a y/a x/a y/a x/a y/a
y = 0.95]1.0027 0 1.0226 0 0 0.3940
1.0023 {0.0072 1.0212 0.0357 0.1628 |0.3823
1.0016 0.0112 1.0172 0.0711 0.3218 |0.3479
0.9997 0.0183 1.0105 0.1062 0.4209 0.3149
0.9975(a)|0.0237(a)| 1.0012 0.1407 0.4743(a)|0.2934(a)
0.9892 0.1744
0.9811(a)|0.1936(a)
vy = 0.90|1.0058 |0 1.0478 |0 0 0.4623
1.0054 0.0068 1.0464 0.0365 0.0965 0.4577
1.0034 0.0167 1.0422 0.0729 0.1631 0.4488
1.0001 0.0253 1.0353 0.1088 |0.2091 0.4400
0.9969 0.0311 1.0257 0.1442 0.3308 |0.4059
0.9947(a)| 0.0342(a)| 1.0133 0.1787 0.4137 0.3732
0.9983 0.2122 0.4792 0.3418
0.9807 0.2445 0.5344 |0.3116
0.9618(a)} 0.2739(a)} 0.5827 0.2825
0.6124(a)|0.2635(a)
vy = 0.80(1.0132 0 1.1086 0 0 0.6378
1.0124 |0.0106 1.1071 0.0387 0.2102 0.6118
1.0102 0.0198 1.1027 0.0771 0.3971 0.5395
1.0033 0.0348 1.0954 0.1151 0.4995 0.4741
0.9967 0.0432 1.0851 0.1525 0.5713 0.4143
0.9905 0.0490 1.0719 0.1890 0.6273 0.3591
0.9884(a)| 0.0506 1.0558 0.2244 |0.6742 0.3076
1.0369 0.2585 0.6957 0.2830
1.0151 0.2911 0.7164 |0.2591
0.9905 0.3218 |0.7366 0.2358
0.9635 0.3507 0.7500 0.2205(a)
0.9341 0.3774
0.9220(a)| 0.3873




Table D2 (Continued)

a/b =3 a/b =1 a/b = ¢
Ke =7 K =3 Kge = 1%
x/a y/a x/a y/a x/a y/a
vy = 0.50]1.0579 0 1.5175 0 1.2379 0.2842
1.0564 0.0205 1.5165 0.0530 1.1486 0.2625
1.0551 0.0275 1.5134 0.1058 1.0758 0.2442
1.0515 0.0407 1.5083 0.1585 1.0128 0.2322
1.0472 0.0516 1.5008 0.2109 0.9812 0.2267
1.0375 0.0676 1.4908 0.2629 0.9515 0.2192
1.0288 0.0771 1.4781 0.3142 0.9264 0.2073
1.0209 0.0835 1.4621 0.3646 0.9084 0.1903
1.0135 0.0880 1.4426 0.4137 0.9024 0.1800
0.9999 0.0934 1.4189 0.4610 0.8984 0.1687
0.9876 0.0957 1.3903 0.5060 0.8965 0.1565
0.9764 |0.0961 1.3560 0.5479 0.8964 0.1477(a)
0.9660 0.0952 1.3150 0.5855
0.9611 0.0944 1.2657 0.6173
0.9594(a)|0.0940(a) |1.2062 0.6414
1.1335 0.6544
1.0445 0.6527
0.9441 0.6368
0.8537 0.6202
0.7906(a)|0.6124(a)




stress gradient) _(‘day ) Tpeak
at notch root

dx

edge of notch

Figure 1: Stress distribution in minimum section

tensile stress along edge of notch,
/plotted perpendicular to edge

" ]

peak

Figure 2: Stress distribution along edge of notch

contour of constant Sy = ¥Gpeq [¥<1)

Figure 3: Contour of constant maximum tensile stress
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Figure 7a: Lines of constant principal stress (y = Sl/cpeak
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